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Preface

This volume presents mostly my own results concerning geometric structures on
foliated manifolds. Some of them have been obtained in colaboration with Luis
A. Cordero. Most results are quite new; either published in the last three years
or in some cases not published yet and available only in preprints.

The material is presented from the most general to the most particular. Thus
general definitions of geometric structures come first in the second chapter and
we study transversely afline foliations in the last one.

Since Riemannian foliations are covered in great detail and depth from various
points of view in two excelent books:

P. Molino, Riemannian Foliations, Progress in Math., Birkhauser 1988,

Ph. Tondeur, Ioliations on Riemannian Manifolds, Springer 1988,

I have decided to leave out this class of foliations from my study. At the present
moment it is difficult to add anything of interest to these two volumes. The
exclusion of the topics covered by these books means also that the reader will not
find in this volume any results on Lie and transversely parallelisable foliations.

This book is divided into chapters, sections and subsections, thus Subsection
111.2.3 is Subsection 3 of Section 2 of Chapter 11I. Theorems, propositions and
the like are numbered within each chapter, thus Example 1V.3 refers to Example
3 of Chapter IV.

In Chapter I we have gathered some very useful definition and properties. I'irst
of all we give various definitions of foliations and establish their equivalence. Next
we recall basic facts about pseudogroups and define the holonomy pseudogroup
of a foliation. Finally, we provide some classical constructions of foliations and a
characterization of developable foliations due to A. Haefliger.

Chapter II contains the general theory of geometric structures on foliated
manifolds. We distinguish three types of them: foliated, transverse and asso-
ciated. Let us take as an example a very simple object: a global vector field
preserving the foliation. Such a vector field is an associated geometric structure
in our sense. This vector field defines a global section (a foliated vector field) of
the normal bundle of the foliation. This section is a foliated structure in our sense.
In its turn a foliated vector field defines a holonomy invariant vector field on any
transverse manifold of the foliation. This vector field is a transverse structure.
It is not dillicult to see that there is one-to—one correpondence between foliated
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vector fields and holonomy invariant ones. To get a vector field on the mani-
fold corresponding to a foliated vector field we have to choose a supplementary
subbundle to the tangent bundle to leaves of the foliation.

We use the notion of a natural bundle to define these geometric structures.
Thanks to this most of objects considered on foliated manifolds fall into one of
these three classes of geometric structures and we show how some very well-known
objects fit into our definitions. To complete this chapter we explain relations
between these three types of structures.

In our search for this very general definition we have been motivated by the
similarity of proofs of some properties for different geometric structures. The
relations (between various geometric structures) demonstrated in this chapter
allow us to obtain results valid for large classes of these structures and which
generalize those proved for many particular classes of foliated manifolds.

The third chapter presents the theory of foliated systems of diflerential equa-
tions (FSDE). Studying Riemannian foliations one can quite easily notice that
many facts about these foliations can be obtained using only properties of geo-
desics of the bundle-like metric. One of the basic properties of these geodesics is
the following:

a geodesic orthogonal to leaves of the foliation at one point of its
domain is orthogonal to leaves of the foliation at any point of its
domain

This property even characterizes Riemannian foliations. It is not difficult to
notice that the equation of the geodesic of the Levi-Civita connection of the
bundle-like metric has very particular form. In the local representation for an
adapted chart the coefficients corresponding to the transverse part depend only
on the ’transverse’ coordinates; in our 'language’ it is a foliated system of ordinary
DE (FSODE). Other examples of these foliations provide transversely afline and
V — G-foliations which are considered in more detail in Chapter VI and VII.
The main aim of this chapter is to show that foliations admitting an I'SODI
which satisfies some natural assumptions have many properties similar to those ol
Riemannian foliations on a compact manifold. The most important assumption
on an FSODE is (transverse) completeness, i.e. the global existence of *transverse’
solutions. In the case of a Riemannian foliation on a compact manilold the
Hopf-Rinow theorem assures the global existence (completeness) of geodesics,
and it is not a coincidence that for non-compact manifolds many authors simply
assume that the bundle-like metric is complete. In general this condition is rather
difficult to verify. Even in such a simple case as that of a foliation by points and
a flat connection on a compact manifold it is not always true. Another difficulty
poses the dependence on the choice of a subbundle supplementary to the tangent
bundle to leaves of the foliation. G. Hector has shown that there are codimension
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1 transversely afline foliations for which transverse completeness depends on this
choice. We study this dependence in the fifth section.

The first section is dedicated to basic definitions and some properties of solu-
tions of I'SODE. In the following section we continue to study solutions of FSODE
and their relations with solutions of the corresponding SODE on the transverse
manifold. The third and forth sections contain proofs of the fundamental prop-
erties of foliated manifolds with FSODEs. The last section (sixth) deals with
a particular class of 'SODEs which admit a sufficiently great number of global
foliated fields of initial conditions. Foliations of non—-compact manifolds admit-
ting such an FSODE with some additional natural properties behave similarly to
complete TP foliations.

At the end we should mention that FSDEs appear quite naturally in the
investigation of SDE, cf. [OL] and [OV].

Chapter 1V presents a self-contained study of geometric properties of G-
foliations or rather of foliated G'=structures. In the first section we give some pre-
liminary definitions including that of the structure tensor and prove fundamental
properties of the defined objects. We pay particular attention to conditions under
which transversely projectable connections exist. The second section is dedicated
to foliated G-structures of finite type which we study using properties of pro-
longations of these structures. Among others we obtain a stability theorem for
foliations with all leaves compact. In the last two chapters we shall improve con-
siderably this result for V — G~ and transversely afline foliations. In the third
section we apply a theorem proved in the first one to obtain strong vanishing
theorems for characteristic classes of flag structures with additional ’adapted’ fo-
liated G-structures. In particular, we get a generalization of a Carreras—Naveira
vanishing theorem, c¢f. Canad. Math. Bull. 28 (1985), 77-83. G-foliations of
finite type are once again studied in the last section. This time we pay attention
to the properties of their leaves. A careflul review of some results of R. A. Blumen-
thal reveals that their proofs can be done according to a general ’scheme’ which is
also valid in many other situations (taking into account the bijective correspon-
dence between foliated and transverse structures). Thanks to this 'proof scheme’
we simplily the proofs of R. A. Blumenthal and obtain some new interesting
theorems on G—foliations of finite type.

The fifth chapter is dedicated to a special class of G-structures — transversely
Hermitian ones. These foliations have been investigated in great detail by many
authors. In the first section we restrict ourselves to give some examples of such
foliation having very precise transverse structures; for example

1. transversely symplectic but never transversely Kéahler;

2. transversely symplectic and holomorphic but never transversely Kahler, on
complex and non—complex nilmanifolds;
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3. transversely symplectic but not transversely holomorphic.

Base-like cohomology of transversely Hermitian foliations is studied in the sec-
ond section. We define the basic Frolicher spectral sequence. Ior transversely
Kahler foliations this spectral sequence collapses at the first level thanks to the
properties proved by A. El Kacimi. Next we present some examples of trans-
versely Hermitian foliations for which the basic Frolicher spectral sequence does
not collapse at the first level. At the end of this section we prove that the mini-
mal model for the base-like cohomology of a transverse IKahler foliation is formal
and demonstrate that our examples do not have formal minimal models for the
base-like cohomology. In the third section we present a new method of studying
Sasakian manifolds. A Sasakian manifold is a foliated manifold with a very par-
ticular foliated structure. Using the correspondence between foliated and trans-
verse structures, we reduce many theorems about geometrical objects in Sasakian
manifolds to theorems about corresponding objects in IKahler manifolds. In fact,
the 1-dimensional foliation of a Sasakian manifold generated by the character-
istic vector field is a transversely Kahler isometric flow. We call this foliation
the characteristic foliation. We consider two books of K.Yano and M.Kon, cf.
[YK1,YK2], and demonstrate that most results on the local structure of Sasakian
manifolds can be derived from the corresponding ones for I{ahler manifolds. To
complete this paper we present some new local properties of Sasakian manifolds
obtained applying our foliated method.

V — G—foliations form a very particular class of G—{oliations. They are these
G—foliations which admit a transversely projectable connection. Although they
seem to be very similar to Riemannian foliations they differ in at least two basic
aspects. Their base-like cohomology can be infinite dimensional and the clo-
sures of leaves needn’t be submanifolds. Examples of such V — G—foliations are
presented in Chapter VII. In Chapter VI we concentrate our attention on the
following problem: a V — G-foliation, when is it a Riemannian one? First we
establish when a pseudogroup of local affine transformations is a pseudogroup
of local isometries. Then we use this result to demonstrate that a transversely
complete V — G foliation with a particular commuting sheaf (’of compact type’)
must be Riemannian. In Section 4, for flows, we improve this theorem using a
totally different method. In the fifth section we apply our considerations to prove
Ghys’ conjecture, cf. Appendix E in Molino’s book, for V — G~flows. The last
section of this chapter is dedicated to foliations with all leaves compact in which
we refine the stability theorem. ’

Transversely afline foliations (TAF) are studied in the last chapter. These foli-
ations admit a transversely projectable connection and at the same time they are
developable. This allows us to define two notions of completeness (complete and
transversely geodesically complete) which are equivalent for foliations by points.
For general foliations it is not the case. However it is easy to check that a trans-
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versely geodesically complete TAF is complete. The completeness is one of the
most important properties and it has a very deep influence on the behaviour of
the foliation. The first section is almost totally devoted to the investigation of
these notions. Additionally we describe the commuting sheaf of a complete TAF.
The next three sections are dedicated to the comparison between TAFs and affine
manifolds. As our basis we take a series of papers by D. I'ried, W. Goldman and
M. W. Hirsch. Using the radiance obstruction of the affine holonomy represen-
tation of the foliation and properties of the algebraic hull of its afline holonomy
group we prove a series of results which are counterparts of the similar facts now
well-known for afline manifolds. In the case when foliation behave differently we
provide examples which illustrate these differences. In Section 5 we estimate the
growth of leaves. Fortunately, as we prove the growth of leaves of a TAF and of
the corresponding foliation on the total space of the bundle of transverse frames
is the same for a good choice of adapted atlases. It allows us to apply results
of Y. Carriere as this lifted foliation is a Lie one. In spite of this we cannot
obtain the same strong relation between the structure algebra and the degree
of growth. Leaves of TAI's behave more ’'wildly’ as it is well illustrated by two
examples which can be found at the end of this section. The promised examples
of V — G—foliations (in this case TAFs) in which there are leaves whose closures
are not submanifolds are given in the last section. Moreover we prove that some
properties of the afline holonomy group ensure that the closures of leaves form a
singular foliation.
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Chapter I

Preliminaries

In this introductory chapter we present various definitions and basic examples of
foliations.

Definition 1 A foliation F of dimension p and codimension q on a manifold
M is a partition {La}aea of M consisting of connected submanifolds having the
following property:

for any point of M there exists a chart (U, ) at this point

@ = (T1,..Tp, Y1, -.Yq): U — R? x R?
such that the sets
p(c) = {z € M:(y1(2),...y,(2)) = c € R}

are the connected components of U N L.

The elements of the partition are called leaves. The chart (U, ¢) is called an
adapted or distinguished chart and the sets ¢~(c) plaques. The pair (M,F) is
called a foliated manifold.

Let us denote by I‘g*q the pseudogroup of all local diffeomorphisms ¢ of
R? x R7, ¢ = (¢1,902), p1:R? x R — RP, ¢2:R? x R — R? such that the
mapping 2 is independent of the first p coordinates, i.e. pq(z,y) = @2(y) for
any (z,y) € domgp C R? x R%. Then, if we take any two adapted charts (Us, ;)
and (U;,,), the transformation ¢; 07 ':RP x R? — RP x R? is an element of the
pseudogroup I'?*%. The above considerations provide us with another definition
of a foliation or rather of a foliated manifold.

Definition 2 An n-dimensional manifold M is foliated by a codimension q foli-
ation if there exists a I'}~atlas U on this manifold. A mazimal I'} -atlas is called

a codimension q foliation on M.



2 Geometric Structures

The partition of M can be recovered from this atlas by considering the sets
Li(e) = {z € Uz oIt (2) = c1, 0P (2) = ¢, } where (Ui, i) € U, (cq,...¢,) € R,
The sets L;(c) define a topology on the set M. The connected components in this
topology are submanifolds of dimension p = n — ¢ and form a partition of M.
Equivalent atlases define the same topology and therefore the same partition.

As we are only interested in the last g-coordinates of any adapted chart we
can define a foliation in the following way.

Let V = {V,, fi, gij }ier be a cocycle modellled on a ¢g-manifold Ny such that:

1 {V;} is an open covering of M,
2 fi:V; — N are submersions with connected fibres,

3 g [;(VinV;) — f;(VinV;) are local diffeomorphisms of Np for which
fVinVy=gijo filVinV;,

The third condition ensures that g = gi; © gji whenever defined.

If {(U;,:)} is an adapted atlas then we can define a cocycle modelled on R?
as follows: Vi = Uy, fi = ¢}, gij = @i0¢;'|{0} x R%. For a given cocycle V
the sets f~*(c), ¢ € RY, define the foliation of M. By taking a finer covering, for
any cocycle V, we can find another cocycle U = {U,, ha, kap} modelled on Ny
defining the foliation F such that

1’ {U,} is an open locally finite covering of M by relatively compact sets,

2’ the covering {U,} is finer than {V;}, i.e. for any « there exists i(a) for which
U, C ‘/i(a) and U, C ‘Vi(a)v

3’ he: Uy — Ny has connected fibers and g = fi(a)|Us,
4 kap = giteiw)fie)(Ua) 0 fi()(Up)-

The cocycle U is called relatively compact. If we start with a cocycle V
satisfying the condition 1’ then the cocycle U can have the same set of indices.

We say that two cocycles U = {U;, fi,9i;1r and V = {V4, fa, Ga,s} 4 modelled
on Ny are equivalent if there exists a third cocycle W = {W,, f, g;:} B modelled
on Ny such that for any s € B there exists ¢(s) € [ or a(s) € A and

i) W, C Uiy or W, C V), respectively;
ii) fo = fi|Ws or fs = fas)|Ws, respectively.

The conditions i) and ii) ensure that the fibres of the submersions of cocycles
U,V, W define the same partion of M. Therefore we can put forward the following
definition.
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Definition 3 An equivalence class of cocycles on M modelled on a q-manifold
Ny is called a codimension ¢ foliation of M (modelled on Ny).

Finally, we give another classical definition of a foliation.

Definition 4 An involutive subbundle of constant dimension of the tangent bun-
dle T'M is called a foliation on the manifold M.

The famous Frobenius theorem, cf. [NR], ensures that this definition is equiv-
alent to our first one. A foliation can be also defined using differential forms.
The second version of the Frobenius theorem, cf. [NR], ensures that an inte-
grable Pfaff system of constant rank is a foliation, i.e. let ay,...c; be an intgrable
system of 1-forms such that the subbundle

kera ={X € TM:01(X) = ... = a(X) = 0}
is of constant dimension. Then the subbundle kera is involutive iff
do; = Z ﬁ,‘j A o

for some 1-forms G;;, 1,7 = 1,...k.

Let N be a g-manifold and j: N — M be an injective immersion transverse
to the leaves of the foliation F. IV is called a complete transverse manifold of F
if any leaf of F meets j(N) at at least one point.

Let U = {(Ui,¢:)} be an adapted atlas such that ¢;(U;) = (—¢, €)". Then the
g-manifold N = [ N; where ©?(U;) = N; is a complete transverse manifold of
M. Indeed, let us put ji: Ny — M, ji(y) = ¢7*(0,y). Then j = []J;, if necessary
deformed a little, is the injective immersion we have been looking for.

To any cocycle U = {Uj, fi, g;;}1 defining the foliation F we can naturally
associate the following g-manifold Ny = [IN; where fi(U;) = N;. In general
this manifold is not a complete transverse manifold of the foliation F - the
required injective submersion does not always exists. But the constant rank
theorem ensures that for some covering {Na}A of N finer than {N;}; the manifold
N =[N, is a complete transverse manifold. This implies that we can refine any
cocycle U to a cocycle V for which the corresponding manifold Ny is a complete
transverse manifold. Moreover, as we will be able to judge later, the manifold Ny
fulfills well all the duties of a complete transverse manifold. Therefore in spite
of the above restrictions, we shall call the manifold Ny a (complete) transverse
manifold of F associated to the cocycle Y. As we always talk about complete
transverse manifolds we drop ”complete” whenever possible and & whenever no
confusion arises.

Now we are going to define the holonomy pseudogroup of a foliation. Let
a:[0,a] — M be a leaf curve, i.e. the image of « is contained in a leaf of F and
let :[0,€0) — M be a curve transverse to the foliation such that a(a) = v(0).
Then there exist 0 < € < €y and a smooth mapping :[0,a] X [0,€) — M such
that
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1. for any t € [0,¢€),0][0,a] x {¢t} = o4 is a leaf curve called the holonomy lift
of a to v(t) and o¢ = «;

2. for any s € [0,a],0|{s} X [0,€) = o® is a curve transverse to the foliation
and o = 7.

This property ensures that for any leaf curve a:[0,a] — M such that «(0) €
J(N) and a(a) € j(N) there exist open neighbourhoods U and V of a(0) and
a(a), respectively, in (V) and a diffeomorphism h.:U — V assigning to any
point of U the end of the curve o, starting at this point; we can always arrange
that the end points of these curves belong to V. Moreover, for any two leaf curves
a and B which are homotopic relative to its ends in the leaf the corresponding
local diffeomorphisms Ao and kg have the same germ at «(0) = 5(0). h, is called
the holomomy mapping along « and the germ of %, at a(0) the holonomy of
a. Taking various leaf curves with ends in j(/N) we obtain a collection of local
diffeomorphisms of the transverse manifold N which generates a pseudogroup
called the holonomy pseudogroup (representative) of F on N.

On the transverse manifold NV associated to the cocycle U the local diffeomor-
phisms g;; generate a pseudogroup Hz which is called the holonomy pseudogroup
representative on IV associated to U. If the manifold NV is a 'real’ complete trans-
verse manifold, then the pseudogroup Hy is equal to the holonomy pseudogroup
defined on this manifold by leaf curves. Therefore we can use in this case the
term "holonomy’ pseudogroup representative without any restriction.

These definitions raise a very important question of relations between various
bolonomy pseudogroup representatives. In fact, all these pseudogroups are equiv-
alent in the following sense; the definition is due to A. Haefliger, cf. [HA3,HA4].

Let H and H' be two pseudogroups of local diffeomorphisms of manifolds N
and V', respectively. A morphism ®:H — H'is a collection ¢ of diffeomorphisms
of open sets of N on open sets of N’ such that:

i) the sources of ¢ belonging to ® cover N;
ii) if h € H and ¢y, @2 € ®, then @ 0hop;’ € H',
i) if he H, h' € H',p € ®, then hopohe ;
iv) @ is closed under unions.
Any collection ® such that
a) the H-orbit of each point of NV intersects the source of an elements of ¢,

b) if h € H and ¢1,¢92 € ® then prohopst € H!
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can be uniquely extended to a collection ® satisfying the conditions i)-iv) by
considering all unions of elements of the form h'ogoh, @€ ®, heH, h'e H'. Such
a collection & is called an atlas generating the morphism ®.

Let @ is a morphism of H' in H”, then the collection of all ¢'o¢, ¢ €
®, o' € D' generates a morphism of H into H"”. Therefore pseudogroups with their
morphisms form a category. A collection ® of local diffeomorphisms satisfying
the conditions a) and b) generates an isomorphism (or an equivalence) of M
on H' iff the union of targets of elements of ® intersects each orbit of H’ and
for any 1,02 € ®,h' € H' p;loh’op, € H. In that case we say that 7 is
equivalent to H'. For instance, let U be an open subset of NV and let Hy be the
pseudogroup of local diffeomorphisms of U whose elements are the restrictions
to U of elements of H. Then the inclusion of U in N generates a morphism of
Hy in H, and an isomorphism iff U meets each orbit of H. In the case when
the space N/H of H-orbits is a differentiable manifold, the natural projection
p: N — N/H being locally a diffeomorphism, the pseudogroup H is equivalent to
the trivial pseudogroup on N/H, i.e. the pseudogroup generated by the identity
transformation.

To complete this short résumé on pseudogroups we recall Haefliger’s definition
of a complete pseudogroup, cf. [HA3,SA2].

Definition 5 A pseudogroup H on a manifold N is complete if for any two points
z and y of N there exist open neighbourhoods U and V of x and y, respectively,
such that any element h of H with domain in U and target in V can be extended
to an element of H defined on the whole U.

The following lemma linking leaves of F with orbits of the holonomy pseu-
dogroup H seems to be well-known.

Lemma 1 Let L be a leaf of the foliation F and zq be a point of LNU;. Then
a point x € U; belongs to the leaf L iff the point fj(z) belongs to the H—-orbit of
the point fi(zo).

Let us take two transverse manifolds (Ny,7;) and (Na,j2). The holonomy
transformations h, defined by leaf curves a:[0,a] — M with (0) € ji(Ny) and
ala) € j2(N,) generate the equivalence between the holonomy pseudogroup rep-
resentatives on Ny and N,. Similarly for cocycles. Let i and V be two equivalent
cocycles and W be the third one realising this equivalence. Then the transfor-
mations gy with Wy C V() and W, C Uy, generate an equivalence between the
pseudogroups Hzy and Hy. Our previous considerations ensure that all holonomy
pseudogroup representatives for a given foliation are equivalent. Therefore the
equivalence class of these pseudogroups we call the holonomy pseudogroup of the
foliation F. Moreover one can easily prove the following lemma:
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Lemma 2 Let H be a representative of the holonomy pseudogroup of a foliation
F. For any pseudogroup H' equivalent to H there exists a cocycled = {U;, fi, 9ii}1
defining F with transformation g;; being elements of the pseudogroup H'.

Lemma 2 can be formulated very neatly using the notion of a K~foliation, cf.
[HA1]. Let K be any pseudogroup of local diffeomorphisms on a g-manifold Nj,.
A K—foliation is a foliation defined by a cocycle Y modelled on Ny with g;; being
elements of the pseudogroup K. Then the holonomy pseudogroup associated to i
is equivalent to a subpseudogroup of K. With this in mind we have the following.

Lemma 3 Let F be a foliation defined by a cocycle U and let (H',N') be a
pseudogroup equivalent to (H,N). Then F is an H'-foliation.

Remark If the manifold M is a compact one, we can consider only adapted
atlases and cocycles consisting of a finite number of elements and for whose the
sets U; are relatively compact.

Now we are going to give various examples of foliations and their holonomy
pseudogroups.

Example 1 Simple foliation

Let M and N be two smooth manifolds and f: M — N be a surjective sub-
mersion with connected fibres. The fibres constitute a foliation whose space of
leaves is V. A representative of the holonomy pseudogroup on N is the trivial
pseudogroup.

Example 2 Fibre bundles with discrete structure group

Let B and T be two smooth manifolds and h:7i(B) — Dif{(T) be a repre-
sentation of the fundamental group =1(B) into the group of diffeomorphisms of
T. Consider the simple foliation F of the product B x T' given by the projec-
tion B x T'— T where B is the universsal covering of B. The representation h
defines an equivalence relation 24 on B x T, namely (2',t) Rp(z, 1) iff @’ = za
and ¢’ = h(a)t. We denote by B x, T the quotient manifold of B x T' by the
equivalence relation Ry. It is a fibre bundle over B and with the standard fibre T'.
The foliation F is invariant by the relation R, and thus projects to the foliation
F of the manifold B x, T.

It is evident from the construction that 7" is a transverse manifold of F and
the holonomy pseudogroup on T is generated by the group tmh.

This construction provides us with some very interesting examples.

a) Linear foliations

Let B = T? and hy = (of,...a}),..h, = (of,...a?). The reductions of
h; mod 77 represent rotations of T¢ = S! x ...5'. The choice of hy,...h, de-
termines a representation h -of m((TP) = Z? into Diff{T?) defined by putting

h(e;) = hi,v =1, ...p, where e; are the generators of the abelian group Z”. In this
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case B x5, T is diffeomorphic to the torus TP+ = T? x T9 and the foliation F is
the linear foliation.

b) Suspension of a diffeomorphism

Let B = S', then a representation of the fundamental group m(S') = Z
is defined by a choice of a diffeomorphism n of 7', and the construction leads
to a one-dimensional foliation on R x, T. In particular, let us take T' = T?2
and a diffeomorphism h4 defined by a matrix A € SL(2,Z). We obtain a one-
dimensional foliation F4 on R x5, T? = T, cf. [GSS].

To obtain more examples we can modify the construction of Example 2 in the
following way.

Example 3 Let us assume that on the manifold T' there is a foliation Fy and the
representation A has the image in the group Diff{T, Fy) of global diffeomorphisms
of T preserving Fo. Thus on the manifold B x T there are two new foliations: Fyo
whose leaves are just {6} x L, and F x Fo whose leaves are B x L, where L is a
leaf of Fo. Both foliations are invariant by the relation Ry and, therefore, define
foliations on the quotient manifold B x5 T.

As an example of the above construction we consider the following, cf. [GSS].
Let us take the space T for a matrix A whose trace is strictly greater that
2. Then the manifold T? is called the hyperbolic torus. The matrix A has two
irrational eigenvalues A and 1/A. The corresponding eigenvectors vy and v, define
linear flows fl and fg on the torus T2, The matrix A having integral coefficients
defines a diffeomorphism of T2 which preserves the foliations F; and F,. The one
dimensional foliations F; and JF, of T¥ defined by F, and F, are called the proper
flows corresponding to eigenvectors vy and vy. The two-dimensional foliation F*
defined by fl is transverse to the flow F5 and vice versa.

R x S' can be considered as a transverse manifold of F;. In fact, the corre-
sponding foliation of R x T? admits R x S? as a transverse manifold, where S! is a
transverse manifold of the foliation F; of T2, Thus Rx S! is a transverse manifold
of F; and the holonomy pseudogroup is generated by the mapping td x R, where
R, denotes the rotation of S by the angle .

In the case of F! we can take as a transverse manifold R immersed as Rv,
into T% and the holonomy pseudogroup contains the homothety 1/A. In the
fibre T? Rwv, is a transverse manifold of the linear foliation F;. The holonomy
pseudogroup representative of this foliation on Ry is just a translation. Therefore
the holonomy pseudogroup of F! is generated by these two transformations.

Example 4 Actions of Lie groups provide us with a whole family of examples.
Let a: G x M — M be a smooth action of a Lie group G on a manifold M. The
orbits of this action are submanifolds of M. Vectors of the Lie algebra Lie(G) of
G define global vector fields on M which are tangent to orbits of G. Therefore
the action a defines singular (Stephan) foliation on M, cf. [DZ,ST,SM]. But we
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are only interested in regular foliation, i.e. with leaves of constant dimension. It
is the case, for example, if the action of G is locally free. The action of a Lie
subgroup H of G on G by left translations gives such an example. Ioliations
obtained in this way can have very interesting geometrical properties, cf. [TY].
For more details on actions of Lie groups see [VA].

Example 5 Developable foliations

Definition 6 A foliation F on a manifold M is said to be developable if there
ezists a covering M of M and a submersion f: M — N such Aihat the connected
components of fibres of f are the leaves of the lifted foliation F.

One can assume a little less restrictive definition, namely:

Definition 7 A foliation F on a manifold M is said to be developable if there
exists a covering M of M and a surjective submersion f: M — N of connected
fibres onto a non-necessarily Hausdorff g-manifold N such that the fibres of f
are the leaves of the lifted foliation F.

A classical result of R. A. Palais ensures that a developable foliation in the
first sense is developable in the second, cf. [PA1].

The following proposition characterizing developable foliations is due to A.
Haefliger, cf. [HA4]. We recall that a group G acts quasi—analytically if for any
g € G the fact that the transformation g restricted to an open subset is the
identity implies that it is the identity on the whole manifold.

Proposition 1 (Haefliger) Let F be a foliation on a connected manifold M.

1) If the foliation F is developable, then its holonomy pseudogroup has a represen-
tative which is a pseudogroup generated by a group of transformations G of
a connected non-necessarily Hausdor[f manifold N. There is a Galots cov-
ering M of M with its Galois group isomorphic to G and a G-equivariant
submersion f: M — N (called the development) such that the leaves of the
lifted foliation F of M are the fibres of f.

ii) If the holonomy pseudogroup has a representative generated by a group G act-
ing quasi—analytically on a connected, non-necessarily Hausdor[] manifold
N, then there exists a Galois covering M of the manifold M with the Ga-
lois group G and a G-equivariant surjective submersion of connected fibres

I M — N such that the leaves of the lifted foliation F of M are the fibres
of f.
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Proof i) In virtue of the hypothesis the space of leaves N of the lifted foli-
ation F of the universal covering space M of M is a connected, non- necessarily
Hausdorfl manifold and the canonical projection f M — Nisa submersmn with
connected fibres. The fundamental group G of M acts by deck transformations
on M and preserves the foliation F. So each element of the group G projects,
relative to f, onto a diffeomorphism of N. Let (o be the normal subgroup of
G consisting of elements of G projecting onto the identity of N. Then the quo-
tient manifold M of M by Gy is a Galois covering of M with the Galois group
G = G/ Gy, and the factor mapping f: M — N of f is a G-equivariant submersion
~ with connected fibres.

ii) Let us assume that the holonomy pseudogroup has as its representative a
pseudogroup generated by a group G of transformations acting quasi-analytically
on some manifold N. According to Lemma 2 there exists a cocycle {U;, fi, 9:;}
modelled on N such that the transformations g;; are restrictions of elements of
G.

Let S be the space of germs of submersions g o f; where g is an element of G:

S={(g0 fi)e:9 € G}

where (f). denotes the germ of a mapping f at the point z. We endow the space S
with the sheaf topology. Let M be a connected component of §. Then M with the
projection assigning to each germ its source is a Galois covering with the Galois
group isomorphic to G. The evaluation mapping h: M — N, h((go fi),) = - g(fi())
is a submersion into N constant along the leaves of the lifted foliation F'. O

Remarks 1) The part i) of the proposition asserts that a developable foliation
is a (G, N)~structure, cf. [TH2], [CAG].

2) The part ii) asserts that any (G, N)-structure with the group G acting
quasi—analytically is a developable foliation.

3) If F is developable in the sense of Definition 6, it does not mean that it is
a (G, N)-structure for the manifold N of Definition 6.

4) 1t should be stressed that in the part ii) of the proposition the manifold N
(from the (G, N)-structure) could be different from the g-manifold which appears
in Definition 7. The submersion constructed in the proof does not need to be
either surjective or of connected fibres. Later we shall find examples illustrating
well these points.

Example 6 Let (M, F) be a foliated manifold. Assume that a Lie group G acts
freely and properly on M and that the foliation F is G-invariant. Let T be a
smooth manifold on which the group G acts as well. Then the diagonal action of
G on M x T is also free and proper. The product foliation whose leaves are of
the form L x {t} where t € T' and L is a leaf of F, is G-invariant. Therefore it
induces a foliation on the quotient manifold M x T/G.






Chapter II

Geometric structures, general
approach

In this chapter we study geometric structures from the general point of view.
Three types of structures are distinguished: foliated, transverse and associated
ones. We give formal definitions as well as many examples. Moreover, we explain
relations between these structures.

II.1 Foliated and transverse geometric struc-
tures

We present many examples of geometric objects which have been studied on foli-
ated manifolds. Then we give a formal definition of a foliated geometric structure.
Next we show that various well-known geometric objects fit into this general def-
inition. We complete the chapter with the definition and examples of transverse
geometric structures of a foliation as well as with the precise description of rela-
tions between foliated and transverse structures.

Let T'F be the tangent bundle to the leaves of F. It is a subbundle of T'M
of constant dimension p = n — ¢. The bundle N(M,F) = TM/TF is called the
normal bundle of . N(M,F) is isomorphic to any supplementary subbundle @
to TF, and very often it has been identified with such a subbundle; e.g. in the case
of a Riernannian foliation many authors identify N(M,F) with the orthogonal
complement of TF. Let U = {Uj, fi,9i;} be a cocycle defining F. Then on U;
the differential df; defines a linear mapping fi: N(M, F)|U; — TN; which is an
isomorphism on cach fibre. Therefore V; = N(M,F)|U; & fTN;. Moreover
Vi, fi, dgi;} is a cocycle defining a foliation F of dimension p and codimension
2¢ on the total space of the normal bundle. Leaves of this foliation are covering
spaces of leaves of F. It is not difficult to verify that equivalent cocycles lead to
equivalent cocycles and thus give the same foliation Fy.

11
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The tensor product bundles

® N(M,F)= N(M,F)®..® N(M,F)@ N“(M,F) ® ... @ N*(M, F)

s T

also admit a foliation F3)° whose leaves are covering spaces of leaves of F.

Let L(M,F) be the bundle of linear frames of the nomal bundle N(M,F). It
is a principal fibre bundle with the structure group G'L(q) and its elements are
called transverse linear frames. The bundle L(M, F) is also called the bundle of
transverse linear frames of F. Over U; the differential df; defines the mapping
fi: L(M, F)|Ui = L(N;) which is an isomorphism on each fibre. Therefore L; =
L(M, F)|U; is isomorphic to ffL(N;) and {Li, fi, §ij} form a cocycle defining a
foliation F;, of dimension p and codimension ¢ + ¢* of the total space of the
bundle L(M,F). As previously, equivalent cocycles define the same foliation.
Thus we have associated in a canonical way to F a foliation Fp, of the total space
of L(M,F) whose leaves are covering spaces of leaves of F.

Any associated fibre bundle to the bundle of transverse linear frames inherits
a foliation whose leaves are covering spaces of leaves of F. In this way by taking
as the standard fibre F' = R? we recover the normal bundle N(M,F) with its
foliation Fy.

Now we shall present some more examples of fibre bundles which can be
constructed on a foliated manifold.

Example 1 Transverse (s,r)—velocities (s" —jets)

Let m be a point of the manifold M and f,g: (R*,0) — (M, m) be any local
smooth mappings of R® into M mapping 0 on m. Let us choose an adopted chart
(U,p) at m, © = (p1,902) = (T1,...Tp, Y1,..-Yq). We say that the mappings f
and g are equivalent if j3wof = jipag. This is equivalent to d/9t*(y:f)(0) =
A1/9t"(y:g)(0) for any multiindex v € N°, | v |[< r, i = 1,...q. We denote
the set of such indices by N(s,r) and their number by s(r). This equivalence
relation does not depend on the choice of an adapted chart at the point m. The
equivalence class of a mapping f is denoted by [f];. The set of all equivalence
classes at a point m we denote by N"(M,F), and the space Upep N3 (M, F)
by N*7(M,F). By 7} let us denote the natural projection of N*"(M,F) onto M,
i.e. m1([f];) = f(0). One can easily check that for any adapted chart (U, ) the
set Uner V27 (M, F) is isomorphic to U x R7*(")=7 and that the isomorphism is
given by the correspondence

[T — (F(0), 8"/ 0" (y: )15

This mapping defines a chart @7, @7:(77)~"}(U) — R™ 7 x R7*(") and the col-
lection of all such ¢ given by an adapted atlas on A, defines an atlas on the
space N*"(M,F). To see that one has only to notice that if ¢;, ¢; are two
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adapted charts the composition ¢; o (p}lz R"™7 x R? — R™ % x R? is of the form
(f1(z,), f2(y)) and then @I, o (¢},) " R"7 x R7*() — R"7 x R7*(") is equal to
(f1,T7(f2)) where T7(f;) is the mapping of 77(R?) & R7*(") induced by fs, cf.
[MM]. Thus {¢},} form an adapted atlas of a foliation of codimension ¢ - s(r).
Moreover, equivalent atlases give the same foliation.

Summing up, we have proved that N*"(M,F) is a locally trivial fibre bundle
whose total space admits a codimension g-s(r) foliation F] projecting by =} onto
the initial foliation F. Leaves of F are covering spaces of leaves of F. For s =1
the bundle N'7(M, F) is denoted by N7(M,F) and is called the normal bundle
of order r of the foliation F. If s = q and we take only mappings transverse to
the foliation the above construction gives a bundle L™(M,F) called the bundle
of transverse frames of order r of the foliated manifold (M,F). L"(M,F) is a
principal fibre bundle with the fibre L7. Sometimes this bundle is called the
bundle of transverse r-frames.

In the same way as N"(M,F) we define the space J"(R, M;F) — the space
of transverse r—jets of mappings of R into M. J"(R, M; F) is a fibre bundle over
both R and M. Its fibre over any point v of R is diffeomorphic to N"(M,F). On
the total space of J"(R, M;F) there is a foliation F, which induces on each fibre
the foliation F7.

Remarks 1) Similar constructions can be carried out using a subbundle @
supplementary to 7. By Q7 we shall denote the subset (subbundle) of T7(M),
the r~tangent bundle of the manifold M, consisting of r—jets of curves tangent to
@. The bundle Q" is isomorphic to N"(M,F). The bundle J(R, Q) of r—jets of
mappings f from R into M tangent to Q is isomorphic to J™(R, M; F) and thus
admit a foliation F, of the same dimension as F.

2) A leaf curve a:[0,1] = M, a(0) = z,a(l) = y, defines a holonomy isomor-
phism T: N(M,F), — N(M,F), of the fibres of the normal bundle as well as
N™(To): N"(M,F), — N"(M,F),. In fact let v be a transverse curve at z, and
let oy be the curve starting at y(¢), the holonomy lift of a to v(t). Then the curve
t — ay(1) is a curve at y transverse to F. The equivalence class of its tangent
vector at 0 in N(M, F), does not depend on the choice of v and therefore defines
the mapping.

In the light of our previous considerations these mappings can be interpreted
as follows:

Let £ € N"(M,F), and & be the lift of the leaf curve a to the leaf of the
foliation F" passing through ¢ then the vector N™(T,)(€) € N™(M,F), is the end
of the curve é&.

All these bundles are particular examples of the following general notion: a
foliated natural bundle.

Let Fol, be the category of foliated manifolds with codimension q foliations.
Global mappings which preserve foliations and which are transverse to them are
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the morphisms in this category, i.e.

f S MOT‘((Ml,]'—l),(MQ,fQ)) lff df(T]'-l) C TTQ and f*]“-z = fl'

Definition 1 A covariant (resp. contravariant) functor I' on the category Iol,
into the category of locally trivial fibre bundles and their fibre mappings is called
a foliated natural bundle if the following conditions are salisfied:

i) for any foliated manifold (M,F), F(M,F) is a locally trivial fibre bundle over
M;

i1) let f € Mor((My,F1), (M2, F2)). Then the fibre mapping F'(f) has the fol-
lowing properties:

a) covariant case:

o I'(f) covers f, i.e. the following diagram is commulative:

P(My,F) —ED g, )
M, —21Lf

o for any point z of My, the mapping
F(f)e: F(My, F1)e — F(M2, F2) 5z 15 a diffeomorphism;

b) contravariant case:

o for any point x of My, the mapping
F(f)e: F'(Ma, F2) p(oy — F(M1, F1)s is a diffcomorphism,

e the following diagram is commulative:

P(My, Fy) ~—L— pr(at, 7)) LU par, 7)

M, —L id M,

iii) the functor F' is regular.
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Remarks 1) In [WO7] we have called such functors transverse natural bun-
dles.

2) If a foliated natural bundle is a principal fibre bundle as well, then any asso-
ciated fibre bundle to this foliated natural bundle is also a foliated natural bundle,
cf. Example 1.6. Therelore the tensor bundles ®7 N(M,F) are foliated natural
bundles, as they are associated fibre bundles of the bundle L(M, F) of transverse
frames. The same is also true for the exterior product bundles A\* N(M, F)*. In
this way these bundles can be considered as covariant foliated natural bundles.

The use of the adjective foliated’ is best explained by the following. Let F'
be any covariant foliated natural bundle functor. If the foliation F is defined by
a cocycle U then {F(Uy, F), F(fi), F(g:;)}1 is a cocycle defining a foliation Fp
on the total space of the bundle F'(M,F). The leaves of the foliation Fp are
covering spaces of leaves of F. In the contravariant case we define this cocycle as
follows:

We start with the commutative diagram:

F(f3)

fi

F(Ni) ~—————— f{F(N;) F(U:, F)

fi U, id

N; U; .

Then take F(f;): F (Ui, F) — F(N;) equal to fiF(f;)~" and §;j = F(g;;). Indeed,
{F(Ui, F), F(f:),dij}1 is a cocycle defining a foliation Fr on the total space of
the bundle F'(M,F) whose leaves are covering spaces of leaves of F. It is not
difficult to verify that to equivalent cocycles defining the foliation F correspond
equivalent cocycles on the total space of F(M,F). Therefore the foliation Fp
does not depend on the choice of a cocycle defining F.

The following lemma explains the action of morphisms on fibres of foliated
natural bundles. Let f, g be two morphisms of (Mg, Fo) into (M, F;) such that
flzo) = g(z0), dimMy = n, dimM; = m. Let (U,p) and (V,%) be adapted
charts at x¢ and f(wo), respectively. Since f and g preserve the foliations, the
mappings f = o fop l,g=1ogop 1:R*" 7 xRI — R™ 7 x R? are of the form
F(9) = (@), o)), 9(@0) = (91(2,9),92(y)) where fy, gi:R™ — R™0,
and fy, go: R™ — R

Lemma 1 If the germs of the mappings fo and g2 at ¢~ *(xo) are equal, then the
mappings F'(f) and F(g) define the same mapping on the fibre F\(Mo, F)z, .

Proof We can take U, V so small that f3]p(U) = ¢g2le(U) and ¢(U) = D" 9%
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D9, (V) = D™ 9x D? where D* denotes the k-disc. Assume that ¢(m) = 0
and ¥(f(m)) = 0. Then the following diagram is commutative.

U U, glU v
@ P
D=1 x D1 [.9 D™= x DT
20 P
D f2,92 De

where i9: D7 — D™ 7 x D7 is given by 7o(y) = (0,y) and p: D™ x D — D? by
p(z,y) =y. _

Since F' is a functor it is sufficient to show that the mappings f and § induce
the same mapping in the fibre over 0. As pfi, = f, and pgip = g2, F(f2) =
F(p) o F(f)o F(ig) = F(g2) = F(p) o F(g) o F(io). But F(p) and F'(7y) induce
isomorphisms on the fibre, hence the mappings F\(f) and F(§) are equal on the
fibre over 0, which ends the proof.O

Definition 2 A foliated natural bundle F is of finite order r if for any two mor-
phisms f,g: (Mo, Fo) — (M1, F1) the integer r is the smallest one for which the
following implication is true:

Jul2 = jig2 = F()(y) = F9)(y)
for any point y of the fibre I'(My, Fo),-
Having this definition we can formulate the following theorem.

Theorem 1 Let I be a foliated covariant natural bundle. Then there exisis
an integer T and an L7-space W such that I is isomorphic to the fibre bundle
associated with the transverse r—frame bundle with standard fibre W. The smallest
such integer r is the order of the foliated natural bundle F.

The proof of the theorem is easy but technical. All details can be found in
[WOT7]. In fact one can easily verify that any foliated natural bundle is determined
by its values on g-manifolds. In fact, the bundle Fyy = [[ fFF(N;)/ ~ where
(z,7,v) ~ (2, 5,v") iff @ = 2" and o' = F(g;;)(v) (resp. v = F(g;;)(v") in the con-
travariant case), is a well-defined locally trivial fibre bundle over M. Two equiva-
lent cocycles define isomorphic bundles. Moreover this isomorphism preserves the
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natural foliations which, locally, are defined by projections f¥*F(N;) — F(N;)).
The bundle F(M,F) is isomorphic to Fy, and this isomorphism is foliation pre-
serving. Therefore any natural functor can be uniquely extended to a foliated
natural one.

We have noticed that any foliated natural bundle F'(M,F) admits a foliation
Fr of the same dimension as F. Therefore we can talk about foliated subbundles
of F(M,F),i.e. those whose total space is saturated for Fp, cf. [KT1,MO1,M11].

This leads us to the following definition of a foliated geometric structure.

Definition 3 A foliated subbundle E of a foliated natural bundle F(M,F) is

called a foliated geometric structure.

Now we proceed to give some examples of these structures. First of all we
notice that a foliated section of a foliated natural bundle is a foliated geometric
structure, i.e. a section which as a mapping of foliated manifolds is foliation
preserving. This gives us a whole family of vary interesting structures.

A foliated section of the normal bundle is called a foliated vector field. It is a
section of the bundle T'M /T'F, which is a local adapted chart p = (21, ...2p, y1,...¥q)
can be represented as Y- a;(y)d/0y; since the equivalence classes of vector fields

d/dy; span TM/TF and the foliation Fy is given by

(T4, - Tpy Y1y o+ Yqy U1y - Vg) > (Y1, Y, V1, ---Vg)

where vy, ..v, are the coordinates of a vector with respect to the transverse basis
d/9y1,...0/dy,. Therefore a foliated vector field can be considered as an equiva-
lence class of infinitesimal automorphisms of the foliation F relative to the vector
fields tangent to leaves. In other words two infinitesimal automophisms X and
X, define the same foliated vector field iff their difference X; — X, is tangent to
the leaves, or iff they have the same transverse part, i.e. if, locally, in an adapted
chart ¢ X = S0 (2,y)0/0zq + Y af(y)d/dyi, € = 1,2, then they define the
same foliated vector field iff a} = a? fori =1,...q.

A foliated section a of the bundle A N*(M,F) is called a k-base-like form.
It can be characterized as a k-form « such that iya = ixda = 0 for any vector
X tangent to F. Locally in an adapted chart such a form can be written as
Sai, .4 (y)dyy, A ..dyi,. A base-like O—form is a function constant along the
leaves. It is called a foliated or base-like function. Base-like forms constitute a
complex denoted by (A*(M,F),d). The cohomology of this complex, H*(M/F),
is called the base-like cohomology of the foliated manifold (M, F).

A G-reduction B(M,G;F) of the bundle of transverse frames L(M;F) is
called a foliated G-structure il B(M,G; F) is a foliated subbundle of L(M; F).

A foliated section of the tensor product bundle @’ N (M, F) is called a foliated
tensor field of type (r,s). Later we shall demonstrate a relation between foliated
tensor fields and foliated G'-structures which is well-known for the non-foliated
case.
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As a foliated section of the associated fibre bundle to B(M,G;F) with the
standard fibre g = Lie(G) we get transversely projectable connections, i.e. a
connection in B(M,G;F) whose connection form is a base-like form. We shall
discuss connections in foliated G-structures in Chapter IV.

It is well-known that many properties of a foliation can be read from the
properties of its holonomy pseudogroup. Therefore it is of importance to know
whether some representative of the holonomy pseudogroup is a pseudogroup of
local automorphisms of a geometric structure. With this in mind we introduce

the following definition.

Definition 4 Let N be a transverse manifold of the foliation F and H a rep-
resentative of the holonomy pseudogroup on N. An H-invariant subbundle E
of a natural fibre bundle I'(N) is called a transverse geometric structure of the

foliation F.

It is not difficult to see that the definition does not depend on the choice of
a cocycle U defining the foliation, i.e. on the choice of a transverse manifold and
holonomy pseudogroup. Let (H', N’) be a pseudogroup equivalent to (H, N) and
let ® = (¢o) be the equivalence. Then the subbundle

Eo = {v'€ F(N'):v" = F(¢a)(v), vE L}

(resp. Eg = {v' € F(N'): F(¢4)(v') € E} for a contravariant functor) is an H'-
invariant subbundle of F'(N') which is locally isomorphic to the subbundle E.
Therefore, we can talk about holonomy invariant subbundles on the transverse
manifold. Moreover, when solving a particular problem, we can choose a cocycle
making our foliation a K—~foliation for a suitable pseudogroup K.

Example 2 1. Let L be the functor associating to a manifold its bundle of linear
frames. Then any H-invariant G-reduction of L(N) is a transverse geometric
structure. Such a foliation is called a G—foliation, cf. [KT2,MO1,DU,RM].

2. Any H-invariant section of a fibre bundle F'(N) is a transverse geometric
structure. Thus, if we take the functor of the tangent bundle we get holonomy
invariant vector fields on the transverse manifold. For the contravariant functor of
the cotangent bundle we get H-invariant 1-forms and as H-invariant sections of
the tensor products of these bundles (functors) we get H—invariant tensor fields.

Using a suitable associated fibre bundle to the bundle of linear frames (such
functors are natural fibre bundles), we obtain that any H-invariant linear con-
nection in an H-invariant G-structure is a transverse geometric structure. Such
foliations we have called V — G—foliations, cf. [WO3]. Riemannian and trans-
versely affine foliations belong to this class.

We obtain holonomy invariant connections of higher order or Cartan connec-
tions as holonomy invariant sections of associated fibre bundles to the bundle
of frames of higher order. Such connections exist for transversely conformal or
transversely projective foliations, cf. [BL6].
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Many geometric constructions provide useful ways of constructing new trans-
verse geometric structures. In fact, the holonomy pseudogroup is a pseudogroup
of local automorphisms of a given transverse geometric structure. Any geomet-
ric object related to this structure and invariant under the action of the pseu-
dogroup of local automorphisms of the initial structure is itself a transverse geo-
metric structure. For example, take a holonomy invariant G-structure B(N, G).
Then its prolongations and their structure tensors are also holonomy invariant, cf.
[KO2,SB]. If V is a holonomy invariant connection in B(N,G), then its torsion
and curvature tensor fields 7' and R, respectively, are holonomy invariant as well
as VFT' and V*R.

Let us look closer at the relation between foliated and transverse structures.
Let U = {U;, fi,gi;} be a cocycle defining F and N and H the transverse
manifold and the holonomy pseudogroup representative associated to U, respec-
tively. Let B be the total space of a foliated structure B(M,F) which is a
foliated subbundle of a foliated natural fibre bundle F(M,F). Then the im-
age F(f;)(B) is a submanifold B; of F(N;) C F(N). Moreover as f; = g;if;
over Ui N U; F(f;)(B) = B; = F(g;ifi)(B) = F(gji) o F'(fi)(B) = F(g;:)(Bi)-
Therefore By =[] B; form an H-invariant subbundle of F'(IV), thus a transverse
geometric structure of F. Vice versa, to any H-invariant subbundle of F/(N) cor-
responds a foliated subbundle of (M, F). Therefore foliated geometric structures
are in one-to-one correspondence with transverse ones. This correspondence can
be presented in the following dictionary:

Dictionary
foliated holonomy invariant
normel bundle of order r tangent bundle of order r
bundle of transverse (s, r)-velocities bundle of (s, r)-velocities
bundle of transverse A-points bundle of A-points
foliated natural bundle natural bundle
foliated vector field vector field
base-like r-form (on the normal bundle)  r—form
foliated tensor field of type (s,7) tensor field of type (s,r)
foliated G-structure G-structure
fundamental form of 7 ” fundamental form of ”
structure tensor of 7 ” structure tensor of ”
kth prolongation of ” ” kth prolongation of ”
transversely projectable GG—connection (G-connection
torsion tensor of ” 7 torsion tensor of ”
curvature tensor of 7 ” curvature tensor of ”
bundle-like metric (on the normal bundle) Riemannian metric
transverse sectional curvature sectional curvature
foliated Cartan connection Cartan connection

curvature of 7 ” curvature of ” 7
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In [MO2] P.Molino considers foliations admitting transversely projectable con-
nections. The correspondence between structure tensors and prolongations have
been proved in [MO1,WO4]. Foliated Cartan connections were introduced by
M.Takeuchi in [TA] and R.A.Blumenthal in [BL6] and transverse sectional cur-
vature in [BL5].

Having established the correspondence between foliated and transverse struc-
tures we return to foliated tensor fields. We are going to prove the proposition
mentioned earlier.

The vector bundle @; N(M,F) is the fibre bundle associated to the bundle
L(M,F) of transverse frames with the standard fibre ® R?. Therefore to any
section t of @2 N(M,F) corresponds a mapping i: L(M,F) — ®2R? such that
to R, = h(g7")t and & is the natural representation of the group G'L(q) on the
vector space @;RY.

A transverse frame v at a point z, considered as an linear isomorphism v: R7 —
N(M,R),, defines an isomorphism 5~': @; N(M, F), — ®:R?. For any vector
w € ®;N(M,F), the vector 5~}(w) is called the representation of w in the
transverse frame v. A foliated tensor field ¢ of type (s,r) is said to be 0—deformable
if there exists an element u of ®ZR? such that for any point z of the manifold M
there exists a transverse frame v at this point in which the representation of ¢ is
equal to u.

Proposition 1 Let t be a foliated 0-deformable tensor field of type (s,r) on a
foliated manifold (M,F). The subspace

B(t)={ve L(M,F):o7(t) = u}

is a foliated subbundle of L(M,F) and a principal fibre bundle with the structure
group GL(u) = {g € GL(q): h(g)u = u}.

Proof A foliated 0—deformable tensor field ¢ defines a 0-deformable tensor field
tn on the transverse manifold N. The tensor field ¢y is H-invariant. The space
B(tn) = {v € L(N):v7!(ty) = u} is a subbundle of L(N) with the structure
group GL(u). This subbundle is preserved by H. The corresponding foliated
subbundle of L(M,F) is precisely B(t).0

The dictionary reduces the study of ”foliated” problems to holonomy invariant
ones and sometimes to the right choice of a cocycle defining the foliation. This,
owing to Lemma 1.2, is equivalent to a good choice of a representative of the
holonomy pseudogroup. It is a very powerful tool. We shall show its strength by
analyzing the results of R. A. Blumenthal presented in [BL1,BL2,BL3,BL4,BL6],
cf. Chapter IV.




II. General Approach 21

I1.2 Associated structures

On a foliated manifold there are other structures than foliated ones. Let us
consider the following two examples.

Example 3 A foliated vector field, which is a foliated section of the normal
bundle, is a foliated structure. On the other hand it is an equivalence class of
global infitesimal automorphisms of the foliation F. Such a global infinitesimal
automorphism is a foliated section of the tangent bundle T'M with the foliation
Frum defined by the atlas of TM associated to the adapted atlas of (M, F). The
foliation Fyas has codimension 2q. Its leaves project onto the leaves of F and the
natural projection py:T'M — N(M;F) is a morphism in Foly,.

Example 4 Let Lr(M) be the bundle of linear frames adapted to F, i.e. (vi)} €
Lr(M),ff vq,..0,_, span the subspace tangent to F at the point z. There is a
natural mapping py, from this bundle into the bundle of transverse linear frames
L(M;F) assigning to any frame (vy,...v,) the frame (0y,...%,) corresponding to
the vectors Up—g41,...vn. As in the previous example the adapted atlas of F
defines a foliation F7, of codimension ¢ + ¢2 on the total space of Lx(M). The
leaves of Fp, project onto the leaves of . The mapping py, is a morphism in the
category Flolpa,,.

In the above examples we have presented two structures which are not foliated
in our sense, but which are closely related to the structure of a foliated manifold.
These two structure are, what we call, associated geometric structures. Now we
are going to present a formal definition.

Let Fol® be a category of foliated manifolds with foliations of codimension g.
The morphisms in this category are the following:

f € Mor((My, Fy),(My, F)) iff

1. dimM; = dimMj, then f: M, — M, is an embedding and f*F, = Fy,

2. dimM; > dimM,, then dimM, = ¢, F; is the foliation by points and
f: My — M, is a submersion defining F;.

Definition 5 An associated natural bundle is a functor defined on Fol with
values in the category of locally trivial fibre bundles such that:

i) the bundle F/(M,F) is a locally trivial bundle over M;

i) for any morphism f € Mor((My,Fy), (M3, Fy)), F(f) is a bundle mapping
such that:
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a) covariant case: the diagram

Py, 7)) —ED g, Fy)

M1 "'"‘"“"‘"_"L"' M2

is commutative. Moreover, for any z € My, if dimM; = dimM, the
mapping F'(f)z: (M, F1)e = (M2, F3) p(z) is a diffeomorphism, and
if dimM; > dimM, = ¢ then this mapping is a surjective submersion;

b) contravariant case: the diagram

F(My, 7)) ~—L— pr(ay, 7)) LU puy, 7))

M, ——L id M,

is commutative, where f is the natural projection induced by f. More-
over, for any points y € My, = € [l (y), if dimM; = dimM; the
mapping F(f),: F(Ms, F2)y, — F(M;,Fi), is a diffeomorphism, and if
dimM; > dimM, = g then this mapping is an embedding;

i) the functor F' is regular.

Remarks 1) If we consider the category Man, as a subcategory of Fol;,
the restriction of any associated natural bundle functor to this subcategory is a
natural bundle functor. In general, it does not seem to be possible to reconstruct
an associated natural bundle functor from its values on Man,. But owing to
the considerations of the previous section, any associated natural bundle defines
a foliated natural bundle, e.g. the passage from the bundle of linear frames
adapted to the foliation to the bundle of transverse linear frames. Moreover, any
foliated natural bundle functor is an associated one.

2) Assume that an associated natural bundle F' is a principal fibre bundle as
well. It means that if f € Mor((M;,Fy1), (M, F,)) then F(f) is a mapping in the
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category of principal fibre bundles: let F'(M;, F;) be a G(My, Fy) principal fibre
bundle and F(M,, F;) be a G(M,, F3) principal fibre bundle, then there exists a
morphism hy of Lie groups G(M;, Fy) and G(M,, F3) such that

F(f)p-g9) = F(f)p)-hs9)

Assume that we have a corresponding system T' of G-spaces i.e. T(My,F1)
is a G(My,Fi)-space and for any f € Mor((My,F1),(Ma, F2)) T(f)(t-g) =
T(f)(t) - hy(g). Then the functor Fr:

(Afl,]‘—l) b JJ(F(Afl,fl),T(A/[],fl)),

the associated fibre bundle to I'(M;,F,) with the standard fibre T'(My, F1), is an
associated natural bundle. Therefore, if we choose a supplementary subbundle to
TF, the bundles @ T'M* and A*T'M* can be considered as associated bundles

in the above sense and therefore they are covariant associated natural bundles.

Definition 6 Let f be a morphism in Fol;, f € Mor((My, F1),(Ms, F3)). Two
subbundles By of F(My,F1) and By of F(My,F;) are said to be f-related if the
Sibre mapping F(f) restricted to By is a surjective submersion onto B, (resp. it
is a diffeomorphism of f*By onto By in the contravariant case).

Let U be a cocycle defining the foliation F modelled on N. In the covariant
case this cocycle defines a cocycle U on the total space of the bundle F'(M, F),
namely: {V;, fi, §i;}1 where F(M,F)|U; = Vi, fi = F(f:), §ij = F(gi;)- The
foliation Fp defined by this cocycle (equivalent cocycles of F give equivalent
ones) is not of the same dimension as F but it projects onto F. The codimension
of Fr is equal to dimI'(N). In the contravariant case, we obtain a subbundle
[(M, F) of the fibre bundle FF(M,F). Over U, it is isomorphic to f*F(N) and
therefore it is naturally foliated. This subbundle and its foliation Fr does not
depend on the choice of the cocycle ¢«. The foliation has codimension equal to
dimF(N) and is of the same dimension as F.

Definition 7 A foliated subbundle I of F(M,F) (resp. of F(M,F) in the con-
travariant case) is called an associated geometric structure on the foliated mani-

fold (M, F).

It is not difficult to see that for a given associated natural bundle F'(M, F), as-
sociated geometric structures on (M, F) which are foliated subbundles of F'(M, F)
define holonomy invariant subbundles of F(N) to which they are U-related, i.e.
fi-related for any ¢ € I.

Example 5 1. A global infinitesimal automorphism of the foliation F is an
associated geometric structure; a base-like form is such a structure as well.
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2. Let us consider the bundle Lx(M) of adapted linear frames to the foliation
F. It is a reduction of the linear frame bundle L(M) to the structure group
GL(n,n — ¢). The foliation Fy, of Ly(M), locally, is given by the following
submersion: let (U, ¢), ¢ = (é1,¢2):U — R"™7 x R? be an adapted chart, then
the mapping ¢: Lx(M)|U — L(R?),

qs(vlv ---Un) = (d¢2(U1), d¢2(vn)) = (d¢2(vn-q+l)a d¢2(vn))

is a submersion defining Fr, over U.
Associated G-structures are foliated reductions of Lx(M) to groups consisting

of matrices of the form | * 1(31 where A is a matrix of a given Lie subgroup

Gy of GL(q).

3. A linear connection w in the bundle Lx(M) is given by a G-invariant
section S, of the sheaf A'(Lx(M), E(Lx(M), gl(n,n—q))) of 1-forms on Lx(M)
with values in the associated fibre bundle E(Lz(M), gl(n,n—q)) (to be precise we
take the pull-back of this bundle to the total space of Lx(M)). Such a connection
is an associated geometric structure (or an associated connection) if in the bundle
L(N) there exists a connection wy given by a section Sy which is ¢{-related to the
gl(q)-component of S,,. Locally, it means that for any submersion f:U — N
defining the foliation F the following diagram is commutative:

ANT, B(LA(M), gl(q))) ———L e AV, F*B(L(N), gl(0)))

P I
AU, E(L#(M), gl(n,n = q))) AYL(N), E(L(N), gl(q)))
S Sn
U f L(N)

where U = Lr(M)|U, f is the mapping of frame bundles induced by f, fu
and f the corresponding mappings of the sheaves and associated fibre bundles,
respectively, and p* the mapping induced by the homomorphism p: gl(n,n—q) —




II. General Approach 25

gl(q) defined by the correspondence

dnn—q)3 ( * E)HAEQM)-
Thus

and therefore .
pw = frwy.

To be absolutely precise, such a connection itself is not an associated structure,
but rather a class of connections in Lx(M) having the same gl(¢)-component.

In terms of geometric properties it means that the parallel transport on M
defined by the connection w projects onto the parallel transport on the transverse
manifold N defined by the connection wy. Such pairs of connections were studied
by R. A. Blumenthal in [BL7,BL8].

4. Let us consider associated {e}-structures. An associated {e}-structure
is a foliated section of the bundle Lx(M); thus at each point z we have a
linear frame (vy,...v,) of Lx(M). Moreover, at any two points z; and z, of
U; such that fi(z;) = fi(z,), the value of the mapping fi on these frames is
the same, ie. df;(vj(z1)) = dfi(vj(zy)). Therefore, the global vector fields
X, Xj(x) = vjgn_g(z), 7 = 1,...q, are infinitesimal automorphisms defining a
transverse parallelism of F.

It is easy to verify that on the total space of Lx(M) an associated connection
defines an associated {e}-structure for the foliation Fr.

5. Prolongations of associated G'-structures provide other examples of asso-
ciated geometric structures. Let us consider the vector space R™ as the product
R? x R, p = n — ¢, the natural projection po: R* — R? and the natural inclu-
sion so:R? — R"™. Then let us take the Lie subgroup G of GL(n,p) consisting

31 ) with A from a Lie subgroup G’ of GL(q).

0

of matrices of the form < *

The correspondence p: — A defines a homomorphism of Lie groups

p: G — G" and of Lie algebras p: ¢ — g’. The mapping s: g’ — g defined as
00
s(B) =
s(B)=1{, g
It is straight—forward to verify that the mapping p induces surjective homo-
morphisms py of the subsequent prolongations of the Lie algebras of g and g
/)kzﬂ_(k) —_— il(k).
As the result of these considerations we obtain the following lemma.

is a section of p.

Lemma 2 If the Lie algebra g is of type k, the Lie algebra g’ is of type k', k' < k.
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Let f: M — N be a surjective submersion. Let B(M, G, ) be a G-structure
on the n-manifold M and B'(N,G’,7') a G'-structure on the g-manifold N
which are f-related. Then for the fundamental forms 8 and 6’ of B(M,G, )
and B'(N,G’, '), respectively, we have the following:

(IL1) 0 odf = pood

Let X € T,B, then 0/(df(X)) = f(p)~tdn'(df(X)) = f(p)~' o df o dr(X). As
f(p) Y od.f = pop~! where n(p) = z, we have

0'(dF(X)) = pop~tdr(X) = po(X).

We would like to show that the consecutive prolongations of the f-related
structures B(M,G,w) and B'(N,G’,x’) are f-related. First of all, we shall
demonstrate that their structure tensors are f-related.

The structure tensor ¢ of B(M, G, x) takes values in

Hom(R™ AR™,R™)/0Hom(R", g) = H**(g).
The mappings p and pg induce the mappings
pr Hom(R™ AR",R™) — Hom(R? A R?,R)

and

pH(g) — H**(g),
the second one being the quotient of the first. The mappings s and s define the
corresponding sections of p and p, respectively, i.e.

3t Hom(R* AR, RY) — Hom(R" AR™,R™) and & H%*(g") — H**(g).
The equality (1) ensures that
(11.2) dof=poc

Take a subspace S of Hom(R™ AR™ R™) supplementary to dHom(R", g) such
that the space S N §(Hom(R? A R%,R?)) is supplementary to §(0Hom(R7,g"))
in §(Hom(R? A R7,R7)). Then p(S) = S’ is supplementary to dHom(R?,g’) in
Hom(R? AR?, R7).

Let V be a horizontal subspace of T),B such that Cy € S. The equality (1)
ensures that for the horizontal subspace V' = df(V), Cyr € 5’y as pCy = Cyr.
This implies that the correspondence V — df(V) = V' defines a transformation
f1 of the first prolongation BM(M, G, ) of the G-structure B(M, G, ) onto the
first prolongation B'M(N, G, x) of the G'-structure B'(N,G",x"). fy covers f
and makes these two structures f-related, and thus the bundles B®) — M
and B — N f-related. Repeating the construction we obtain mappings
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5 BR(M, G, 7)) — B™(N,G' ') covering the mappings f*~! and f, and
making these structures f-related. If the group G is of type k + 1, the total
spaces of the bundles B®)(M,G, x) and B'®)(N,G’,x') are parallelisable and
these parallelisms are f*-related.

In the case of a foliation F defined by a cocycle i, the above construction
yields structures B®(M, G, ) and B®(N, G’ 7') which are U-related. For a
group G of type k + 1, the foliation Fyyq of the total space B* of the bundle
BW®(M, G, ) is transversely parallelisable. The parallelisms of the manifolds B*
and B’* are Uy, -related where Uy is the cocycle defining Fyyy derived from
the cocycle U.

Before we can formulate our main theorem on associated geometric structures
we need the following definitions.

Definition 8 A G-structure B(M,G,r) of type k + 1 is complete if the paral-
lelism of the total space B* of the kth—prolongation B®(M,G, ) is complete. ~

Definition 9 1. An associated geometric structure E(M,F) is of finite type if
the total space E of this bundle is parallelisable and this parallelism is Ug-related
to a parallelism of the total space of the corresponding bundle on the transverse
manifold.

2. An associated geometric structure E(M,F) of finite type is complete if
the vector space spanned by the vector fields of the parallelism of E consists of
complete vector fields.

3. An associated geometric structure E(M,F) is a Serre structure if the
projection in the bundle E(N) is a Serre fibration.

Example 6 Associated G-structures of finite type and G-structures of higher
order, cf. [OC,BLY], are Serre associated geometric structures of finite type.

Theorem 2 Let the foliation F be an (N, K)-structure on a manifold M. If
(M, F) admits a complete Serre associated geometric structure E(M,F) of finite
type, then the natural projection p: M — 1\4/}' of the universal covering space
M of M onto the space of leaves M |F of the lifted foliation F is a Serre fibration
and the space M |F is a Hausdorff manifold.

Proof Irom the very beginning we can assume that the manifold N is simply
connected. We can always take its universal covering and the group generated by
the action of K on it. Since elements of K lift to diffeomorphisms preserving the
parallelism of the total space of E(N), K acts quasi-analytically on N. Therefore
F is developable. Let h: M — N be the developing mapping. Then we have
the following commutative diagram:
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b4 h N

where E(M,F) is the lift of the bundle E(M,F) to M. The parallelisms of the
total spaces £ and Ey of the bundles E(M,F) and E(M,F), respectively, are
E(h)-related. Therefore, the lifted foliation Fg of E which is defined by the
global submersion £(h) is a complete transversely parallelisable foliation. Thus
the submersion E(h) is a locally trivial fibre bundle, and the developing mapping
is surjective. The fact that the projection Fny — N is a Serre fibration ensures
that the developing mapping itself is a Serre fibration. Since the manifold N
is simply connected, its fibres must be connected and the space of leaves of the
foliation  is just the manifold N.O

Remarks This theorem generalizes results of R. A. Blumenthal contained in
[BL7,BL8,BL9]. In its main outline the proof is the same as the one presented
by him and can be considered as a kind of ’proof scheme’. By adopting various
assumptions on geometric structures and imposing the completeness conditions
we can prove a series of results on associated geometric structures. It is worth
stressing that the completeness of an associated structure does not imply the
completeness of the corresponding foliated structure.

This kind of theorems is quite useful in the study of homotopy and homology
groups of leaves and their relations with the corresponding groups of the ambient
manifold, cf. [BL7,BL8,BL9]. As an example we can give the following corollary.

Corollary 1 Let the model space N be contractible and the holonomy pseu-
dogroup equivalent to the one gencrated by a group K. Then for any leaf L of
the foliation F the homotopy groups w;(L) inject into the corresponding homotopy
groups of the ambient manifold M.

Notes Most of the results of this chapter have been published in [WO7] and
[WO13].

For another approach to the transverse structures of foliations see [MO3] and
[MOS8]. There are very few papers concerned with general theory of geometric
structures of foliations. In addition to the ones mentioned earlier we should add a
very interesting paper by P. Libermann, cf. [LIB], and the book of P. Molino, cf.
[MO11]. One should also mention a thesis by A. Mba written under supervision
of Woufo Kamga.




Chapter I1I

Foliations admitting transverse
systems of differential equations

Riemannian foliations have been for a long time the subject of particular attention
and at present we know a lot about their properties. It turns out that many of
these properties are the consequence of two facts. TFirst, that the geodesics are
global on compact manifolds, and secondly that if a geodesic is orthogonal to
the foliation at one point then it is orthogonal to the foliation at any point of
its domain. A quick look at the equation of the geodesic of the Levi-Civita
connection of a bundle-like metric reveals that this equation is of a special form
which we shall call a foliated system of differential equations.

Foliations admitting ’foliated’ differential equations have many properties of
Riemannian foliations. Unfortunately we have to assume some additional prop-
erties like completeness of the equation and smooth dependence on the initial
condition. For example, the equation of the geodesic is complete iff the geodesics
are global. It is obvious that on compact Riemannian manifolds the equation
of the Levi-Civita connection is complete, and it is not coincidental that for
non-compact manifolds one assumes that the metric is complete. For other con-
nections the completeness of its geodesics must be proved. Even for the flat
connection of a compact affine manifold it is a non-trivial matter, cf. [FR2].

In addition to Riemannian foliations foliated equations admit, among others,
transversely affine, transversely homogeneous, conformal and V — G—foliations.
Until now they have been considered separately. In all these cases we take the
equation of the geodesic of some connection and the completeness of this equation
means precisely that geodesics are global.

In this chapter we are going to study foliations admitting such ’foliated’ sys-
tems of ordinary differential equations (SODE). We show that, in many respects,
their properties are similar to those of Riemannian foliations. In other chap-
ters dealing with V — G- and transversely affine foliations we shall stress the
differences.

29
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JII.1 Preliminaries

At the very beginning we recall some definitions concerning systems of ordinary
differential equations.

Definition 1 A subbundle E of J¥(R, M) is called a system of ordinary differ-
ential equations of order k on the manifold M.

A mapping f:R — M of connected domain is a solution of the system E if
the mapping f:domf 5t jFf € J¥(R, M) is a section of E

Let r be an integer smaller or equal to k, 0 < r < k. For each such an r the
system E defines a subset E] of T"(M);

By = {jof or: f is a solution of E att € R}

where 7y is a translation in R by the vectort. The set By is called the set of initial
conditions of order r of the system E.

A system E is called a USP (Unique Solution Property) system if there exists
0 < r < k such that the set Ej is a subbundle of T"(M) and for any pair
(t,&) € R x Ej there exists exactly one solution f in a neighbourhood of t such
that 37 for = &. Moreover, we assume that the solutions depend smoothly on the
initial condition.

Let v be the smallest integer having the above property, then the bundle Ef is
called the bundle of initial conditions of the system E.

We say that solutions of the system E depends smoothly on the initial condition
if for any smooth mapping f: W — Ej, W an open subset of R™, the mapping
p: WxR — M defined as p(t,v) = p(v), @; the solution with the initial condition
f(t), is a smooth mapping.

A system E is called transitive if for any tangent vector X there exists a
solution f of the system E such that X € imd,f.

It is our aim to explain the influence of systems of differential equations on
the structure of foliations. To have any relation between properties of these two
objects on the manifold they must be in some way compatible, i.e. the system
should be ’adapted’ or foliated’. We shall work with the following definition of
a foliated system of differential equations.

Definition 2 A SODE E is called foliated if there exists a subbundle Q) supple-
mentary to TF such that the set J5(R,Q) NE = Eq is a foliated subbundle of

JHR, Q).

The foliated subbundle E¢g defines a system Exn of ODE on the transverse
manifold N, i.e. Ey C J¥R,N), and Egq is the subbundle of J*(R,Q) cor-
responding to Ex. The holonomy pseudogroup H is a pseudogroup of local

automorphisms of the system Ey.
The following lemma can help to characterize FSODE.
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Lemma 1 Let (M, F) be a foliated manifold, Q a supplementary subbundle to
TF and E C J¥R, M;Q) be SODE. Then the system E is foliated for F iff for
any vector field X tangent to F its flow consists of automorphisms of E.

Proof. The foliation F; of J¥(R, M;Q) is defined by the lifted action of the
sheaf Sz of germs of vector fields tangent to F. The condition means precisely

that the subbundle E is foliated in J*(R,M;Q). O

Since we are interested in the transverse structure of the foliation, therefore we
shall look only at solutions transverse to the foliation. The following definitions
will be very useful.

Definition 3 A solution f:R — M of E is said to be tangent to @Q if imd,f C Q
for any t € domf.

Let the system Ey be USP and E{(N) be its bundle of initial conditions. The
corresponding subbundle of Q" we denote by Ef(Q) and it is called the bundle of
transverse initial conditions. A foliated system E is called a TUSP (Transverse
Unique Solution Property) system if solutions with initial conditions from the
bundle EG(Q) are unique and depend smoothly on the initial condition.

A solution is said to be transverse if its initial condition belongs to the bundle
of transverse initial conditions.

A system E 1s (transversely) complete if any (transverse) solution can be ex-
tended to a global one.

A foliated system E is transversely transitive if for any vector X of the bundle
Q there exists a transverse solulion f of the system E such that imf 5 X.

A curve y: (—€,€) — M is called a solution curve of the system E if there exists
a solution f of the system E at z = v(0) and a curve ¥:(—¢,¢) —» R, ¥(0) =0
such that vy = fo#.

A curve 4:[0,1] — M is called a piecewise solution curve of the system E
if there exists a sequence of numbers tg < t; < ... < tyup1 = 1 such that for
i =0,...m the curve v | [t;, t;41] is a solulion curve.

Remark If the system E is transversely transitive then any two leaves of the
connected manifold M can be joined by a piecewise solution curve.
To complete the introduction we provide a method of producing examples of

foliations with FSODE.

Example 1 Let F be a foliation of the manifold B X, N constructed in Exam-
ple 1.2 . If the group ¢mh is a group of automorphisms of a SODE Ex on IV then
the foliation F admits an FSODE.

Example 2 Let N be a transverse manifold of the foliation F and H be the
holonomy pseudogroup representative on N. Let us assume that there exists a
G-connection on N of which the pseudogroup H is a pseudogroup of local affine
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transformations. Thus in the induced foliated G-structure there is a transversely
projectable connection. Let us take a supplementary subbundle (). The trans-
versely projectable connection defines a covariant differentiation in . We can
extend this operation to the whole tangent bundle by choosing any covariant dif-
ferentation on T'F. The equation of the geodesic of this connection is a foliated
one.

This class of foliations also includes transversely parallelisable foliations. Let
us choose a subbundle @ as before and vector fields X, .. X, sections of @, defin-
ing the transverse parallelism. The connection making the vector fields X; parallel
is a transversely projectable one and segments of the flows of the vector fields
X; are geodesics. The equation of the geodesic of this connection is transversely
complete iff the vector fields ¥ a;X; are complete.

We can do the same for connections of higher order.

Let us return to our general considerations.

On any transverse manifold N of (M,F) an FSODE E defines a holonomy
invariant SODE Ep. Vice versa, for any choice of a supplementary subbundle Q,
a holonomy invariant SODE Ey defines a foliated system Eg. Having chosen two
supplementary subbundles @ and @' we get two different FSODE Eg and Eg.
They are isomorphic as fibre bundles, but this isomorphism does not need to be
holonomic. Therefore these FSODE can have very different properties. There
is no problem with local existence of solutions. However, the global existence
of solutions (transverse completeness) of E¢ does not insure that for some other
subbundle @’ the system E¢g has the same property as the following example
shows.

Example 3 Let us consider the set V = R3\ {(z,y,2)ly = z = 0} and the
projection p1: V — R, (z,y,2) — . The homothety hy: (z,y, z) — (Az, Ay, Az),
0 < XA < 1, preserves V and the foliation of V' defined by p;. The induced
foliation Fy of the quotient manifold V) = V/h, is transversely afline. The
transversely projectable flat connection of this foliation is transversely complete
for the supplementary subbundle @ generated by the vector field 9/dz of V. For
subbundles generated by vector fields of the form 9/9x +ad/dy+b9/dz, a®+b? #
0, the corresponding transversely projectable flat connections are not transversely
complete.

The transverse completeness plays a crucial role in the study of foliations
admitting FSODE. In Section 5 we are going to look into this particular question,
and, additionally, we give some conditions on the holonomy pseudogroup and the
transverse system Ep which ensure that for any supplementary subbundle ) the
system Eg is transversely complete.
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III.2 Basic properties of solutions

In this section we establish basic properties of transverse solutions. In particular
we look into relations between transverse solutions of an FSODE and solutions
of the corresponding system on the transverse manifold.

Lemma 2 Let F be a simple foliation given by a submersion p:M — N and E
be foliated TSUP system of differential equations on (M,F). Denote by En the
induced system on N. Let & be an element of the bundle EG(N) of the initial
conditions of the system En over a point zo. If f is a solution of the system Epn
such that j3f o1 = &, then for any z € p~zo) € = (N7(p)z)" (o) € En(Q)
there exists a solution f, of the system Eq such that jifromy=¢ and po fo = f
in a neighbourhood of t.

Proof The mapping f is the solution of the system Ex with the initial con-
dition &y, so its lift f, at @ tangent to @ is a solution of the system Eg. As
po fo = f in a neighbourhood of ¢ and N7(p)s(€£) = & the r—jet of fr o7 at 0
must be ¢.0

Corollary 1 Let F be a simple foliation defined by a submersion p: M — N and
let E be a transversely complete, TUSP foliated system. Let fi and f, be two trans-
verse solutions of B such that pfi(0) = pfa(0) and N™(p)(55f1) = N"(p)(55/f2)-
Then for any t of the intersection dom fiNdom f, the points fi(t) and fa(t) belong
to the same fibre of p.

Proof The mappings pfi and pf; are solutions of the system Ey with the
initial condition N"(p)(j§f1). From Lemma 2 it follows that pf; and pf; are equal
on the intersection of domains.O

Lemma 3 Let E be a TSUP foliated SDE. Let [0, s0) — EL(Q) be a leaf curve
and [y the solution of the system E with the initial condition a(s) at 0. If for any
s €10, s0] the solution f, is defined on a compact connected neighbourhood W of
0 in R, then for any t of W the points f,(t), s € [0, 0] belong to the same leaf of
the foliation F.

Proof Since E is a TUSP system, the mapping F: [0, so]x W — M, F(s,t) =
[s(t), is a smooth mapping. The set F'(]0,s0] x W) is compact and we can cover
it by a finite number of adapted charts. Let us choose an s; € [0, so] and adapted
charts (U1, 1), «..(Un, @m) covering the set f; (W). Then there exists ¢ > 0 and
compact sets Ky,../{, covering W such that each set F([s; — ¢€,51 + €] x K;) is
contained in some U; for some j = 1,...m. Corollary 1 ensures that for any ¢ € K;
the points f4(t), s € [sy — ¢, 81 + €], belong to the same leaf of the foliation F.
Thus for any ¢ € W the points f;(t), s € [s1 — €, 81 + €], belong to the same leaf
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of F. As we can cover the interval [0, so] with intervals [s; — €, sy + €] having the
required property, the lemma has been proved. O

The best known example of a foliated SODE is the equation of the geodesic
of the Levi-Civita connection of a bundle-like metric on a foliated manifold.
Bundle-like metrics are characterized by the following property, cf. [MO11,RE,YO]:

on a foliated manifold (M, F) a Riemannian metric g is bundle~like
iff any geodesic of ¢ orthogonal to F at one point is orthogonal to F
at any point of its domain.

We have showed that for a TUSP system foliated for a subbundle @ supplemen-
tary to T'F any solution tangent to () at one point remains tangent to @ at any
point of its domain, cf. Lemma 2. However, this property does not characterize
foliated systems as the following example illustrates.

Example 4 Let F be a transversely oriented codimension 1 foliation on a com-
pact manifold. Any global non-vanishing vector field X transverse to F defines a
system E of ODE on this manifold. Its solutions are integral curves of this vector
field. Let @ be the subbundle generated by X. Any solution of E is tangent to
@. But the system E is foliated only if X is an infinitesimal automorphism of
F. There are many examples of foliations which do not admit such infinitesimal
automorphisms, e.g. the Reeb foliation of S

We continue our considerations with the study of properties of the transverse
system Epn and of the holonomy pseudogroup H. The transverse manifold NV is
rarely connected. Therefore, we propose the following definition of completeness
for transverse SODE.

Definition 4 The system Exn of ODE on the transverse manifold N is called
complete if

1) for any solution v:(ag,by) — N, there exist solutions v;: (a;, b)) — N, i €
Z, a; — —00 ast — —o0, b; — 400 asi — +oo, and local diffeomorphisms
h; of the pseudogroup H such that a; € (ai-1,bi-1),bi € (@it1,biy1) and
hivi-1l(ai, bi-1) = vil(ai, bi-1);

i) let v1 and vy, be two solutions of B with initial conditions &; and &;, respec-
tively. If there exists an element h of H such that j"h(&) = &, then for
any t of the common domain, there eaists an element hy of H such that
3 (i) = Jive-

It is easy to verify that for complete pseudogroups the condition (ii) of Defi-
nition 4 is always satisfied.
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Lemma 4 Let H be a complete pseudogroup of local diffeomorphisms and E an
H—-invariant USP system of ODE on N. Then the condition (ii) of Definition 4

is always satisfied.

Proof Let v;: [0,a] — N and 7,: [0,a] — N be two solutions of E with initial
conditions &; and &; at xy = 41(0) and z, = v,5(0), respectively. Assume that
there exists an element hg of H such that j7ho(é1) = &,

Let us consider the set:

A= {te[0,a):3h € H: "h(5{m) = ji7a)-

Since the system E is USP the solutions hgy; and 72 are equal at a neighbourhood
of 0, and thus this neighbourhood is contained in A. The same considerations
ensure that A is open. We shall prove that it is also closed. Let us assume that the
interval [0, s) is contained in A. Consider two points z = v;(s) and y = ¥,(s), and
take open neighbourhoods U and V of z and y, respectively, from the definition
of completeness. For ¢ sufficiently close to s, y1(t) € U and v,(t) € V. Moreover,
as t € A, there exists an element h; of the holonomy pseudogroup H such that
7"hi(§iv1) = jive. Thus hyyr = v, whenever both curves are defined. But the
mapping h, is defined on the whole set U, thus also in an open neighbourhood of
v1(s). Hence hyy; = 7, as well in a neighbourhood of s, so j7h,(5171) = 7772 and
s € A. Therelore the set A is closed and thus equal to [0,a]. O

The next lemma elucidates the relation between solutions of the foliated sys-

tem Eg on (M, F) and solutions of the transverse system Ey on the transverse
manifold N.

Lemma 5 Let Eg be an FSODE on (M,F) such that the system En is USP
and the holonomy pseudogroup H is complete. Lety € U; and f;(y) = x. Let us
take an r-vector & € EL(N), of the bundle of initial conditions of Ey and let ¢
be the corresponding transverse r —vector at y, i.e. 3" f:(£) = &o. If %0:[0,a] = N
and v:[0,a] — M are the solutions of the systems En and Eq with the initial
conditions & and &, respectively, then for any t € [0,a] there exists an element
hy of H such that j7hj; (fiv) = Jiv0 for some j.

Proof Let us consider the set:
A= {te[0,al:3h € H: j7h(F;(f;7)) = Jiv0}-

It is obvious that the definition does not depend on the choice of 7. The set
A is non-empty as 0 € A. Moreover, some open neighbourhood of 0 belongs
to A. We shall prove that A = [0,a]. In fact, there exits t5,0 < tp < a such
that 7][0,t0) € U; and v({¢) € dU;. If it were not the case v([0,a]) C U; and
immediately [0, a] = A as the Ey is USP. Thus we have fi7][0,%0) = 70|[0, to) and
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[0,t0) C A. Let us show that to € A. There exists U; for which v(t¢) € U;. Then
we can find ¢; and t5, 0 < ¢y < tp < t3 < a such that y((t1,t2)) C U;. Hence
Y((t1,t0)) C U; NU; and fiv|(t1,t0) = g;ifivl(t1,t0). Lemma 4 ensures that for
any t € (t1,t,) there exists hy € H such that j7h(j7(f;7)) = jive. This means
precisely that (t1,t2) C A and to € A. As the set A is always open, and we have
just demontrated that it is closed, A = [0,a]. O

Remark The statement of Lemma 5 can be shortened using the notion of a
@-horizotal lift of a curve in the transverse manifold. In fact, in Lemma 5, the
solution v is a (J-horizontal lift of ~q.

Definition 5 A curve 4:[0,a] — M tangent to Q is called a @Q-horizontal Lift
of ¥0:{0,a] — N if for any t € [0,a] there ewists hy € H such that ;7 f;(jiv) =
J (37 v0) for some j.

The same considerations as in the proof of Lemma 5 show that if the system
Eq is transversely complete, then the condition i) of Definition 4 is satisfied. As
we have already proved that for a complete holonomy pseudogroup the condition
il) is always fulfilled, cf. Lemma 4, we have the following.

Proposition 1 Let Eg be a transversely complete, TUSP, FSODE on a foliated
manifold (M,F). If its holonomy pseudogroup is complete, then the transverse
system Ep complete as well.

II1.3 Properties of transversely complete SODE

To obtain more information about a foliation admitting an FSODE we must know
that this system is sufficiently rich in ’good’ solutions, namely we assume that it
is transversely complete and transversely transitive. In this section we study the
properties of leaves of foliations with such FSODE.

Let us consider the bundle Ef(Q) x R. This manifold is foliated by the product
foliaton F" and the foliation by points of R. To any pair (¢,1) € E(Q) x R we
can associate the point fe(t) € M, where fe is the solution of the system E
with the initial condition ¢ at 0. This correspodence defines a smooth mapping
Ezp:EL(Q) x R — M. In the case of the equation of the geodesic this mapping
becomes the real exponential mapping.

Lemma 6 Let z be a point of M, & € BEy(Q), and L be the leaf of the foliation
FT passing through €. If Ly is the leaf of F passing through Exp(é,t), then for
any t € R the mapping Fxp|Le x {t}: Lg — L, is a covering.
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Proof Lemma 3 ensures that Ezp(Le x {t}) is contained in a leaf of F. It
is suflicient to show that the mapping in question is a local diffeomorphism and
that it has the property of lifting curves. Let y be any point of L; and a be a
leaf curve linking z, = Fap(€,1) to y. Let & = 75(fe o 7t) € Ef(Q)z, and oy be
the lift of a to ¢. Then the correspondence s — jffa,(s) is @ curve in the leaf
L¢ as jofano) = € (fau(s) is the solution of E with the initial condition ay(s) at
t). The fact that transverse solutions project onto solutions of the system En
ensures that the mapping is a local diffeomorphism. O

Actually, we have proved the following.

Corollary 2 (of the proof) Let x be a point M, ¢ € Ej(Q), Le and Lg, be the
leaves of the foliation F" passing through & and &;, respectively. Then for any
t € R the leaves L¢ and L, are diffeomorphic.

From the above corollary we immediately obtain the following proposition.

Proposition 2 Let (M, F) be a foliated manifold admitting a transversely com-
plete, transversely transitive, foliated TUSP system of differential equations. Then
the leaves of the foliation F have the common universal covering space.

Proof Corollary 2 asserts that two leaves joined by a solution curve have
the same universal covering space. This fact coupled with the remark that for a
transversely transitive system any two leaves can be linked by a piecewise solution
curve completes the proof.0

Lemma 6 leads us to the formulation of the following proposition.

Proposition 3 Let E be a transversely complete, foliated TUSP system on a
foliated manifold (M,F). Then the mapping Exp:E(Q) x R — M is smooth
and foliated.

It results from Proposition 3 that any global section X of the bundle Ej(Q),
for any ¢ € R, defines a global foliated mapping expx: M — M, expx,(z) =
Ezp(X(z),t). We denote the semigroup generated by mappings of this form by
Mapg (M, F). Then, as one can easily show, we obtain the following proposition.

Proposition 4 Let E be a transversely complete, foliated TUSP system of differ-
ential equations on a foliated manifold (M, F). Then the leaf of F passing through
a point T is a covering space of any leaf passing through the Mapg(M, F)-orbit
of the point x.

Let Xj,...X,, be foliated sections of EJ(Q) over an open subset U. Then we
can define the following mapping:

expy:RY x U — M,



38 Geometric Structures

expy(ty,..tw,z) = Exp(Xy,ty,) 0 ... 0 BEap(Xy, t;)(z)

where Ezp(X;,t:)(z) = Ezp(Xi(z),t;).

The smooth mapping expy is foliated for the product foliation of F|U and
the foliation by points of R™.

Before going further we need the following notation. Let #™: T"(M) — T(M)
be the natural projection. Then #” maps E}(Q) into . We conclude our consid-
erations with the following theorem which is a generalization of Herman’s theorem
about Riemannian submersions, cf. [HN].

Theorem 1 Let h: M — N be a submersion with connected fibres of a manifold
M of dimension n inte a connected manifold N of dimension q. If for the foliation
F defined by the submersion h there exists a transversely complete, transversely
transitive, foliated TSUP system E of differential equations, then the submersion
h is a locally trivial fibre bundle.

Proof Let us consider two mappings
Expg:EG(Q) xR — M and FEazprn:Ey(N)xR-— N

defined as above. The second mapping Expry is defined by the induced system
Epn which is, obviously, a foliated system for the foliation by points. Lemma 2
ensures that the following diagram is commutative.

E
Ey(@Q) xR e M
N7(h) x id h
E
E}(N) % R “PTN N

Since the system E is transversely transitive, the system Epy is also transi-
tive. Therefore for any point o € N there exist a neighbourhood U and sec-
tions );’1,...);’(1 of E{(N) over U such that for any point ¢ € U the vectors
7" (X1(x)), .7 (X,(2)) span T'N,. Thus for some neighbourhood W of 0 of R? the
mapping exp% [W x {zo} is a diffeomorphism on the image W. As the foliation de-

fined by & is without holonomy, the sections Xh Xq define the foliated sections
X1, .. X, of E5(Q) over h'(U). The image of the mapping expk|W x h™'(zo) is
precisely h=1(W). For each t € W, the mapping exp’|{t} x h=}(z() is a diffeomor-
phism of h~(xo) onto A~ (exp% (¢,20)) as the leaves of the foliation 7" of Ej(Q)
are diffeomorphic to the corresponding leaves of F. The fact that exp’ |W x {wo}
is a diffeomorphism on the image insures that the mapping exp’y|W x h=!(xo) is
itself a diffeomorphism on the image which precisely means that the submersion

h is a locally trivial fibre bundle. O
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Remark It is possible to drop the assumption 'with connected fibres’. Then
the system E must be induced by a SODE Ey, i.e. E = p*Ep.

Having proved a theorem about submersions we go back to study of foliated
manifolds and, in particular, of the universal covering of the manifold itself. But
first some preparatory explanations are necessary.

Let a:[0,1] — M be any leaf curve, and &, be an element of the fibre By(Q)a(o)-
The bundle Ef(Q) is foliated by F7. Thus the curve o admits a lift & to &g such
that & is a leaf curve. In this way we have obtained a differentiable field of initial
conditions along a.

Let us assume that the TUSP foliated system E is transversely complete.
If at a point o of M we have a pair of curves «:[0,1] — M,0:{0,¢] — M
where « is a leaf curve and o is a solution curve, then there exists a mapping
£:10,1] x [0,¢] — M such that «][0,1] x {0} = a and &|{0} x [0,¢] = o, for
any ¢t € [0,€¢] £][0,1] x {¢} is a leaf curve, and for any v € [0,1], «|{v} x [0,¢€]
is a solution curve tangent to (). Since o is a solution curve there is a solution
[:R — M of the system E at 0 and a curve 4:[0,¢] — R for which ¢ = fo7.
Denote by q the initial condition of the solution f,i.e. o = j7f. Let & be the lift
of the curve « to §p. Then the mapping x:[0,1] X [0,¢] = M, k(v,t) = f, o 7(¢),
where f, is the solution of the system E with the initial condition &(v), has
the required properties. Moreover, if we take at a point zy a pair of curves
a:[0,1] = M,0:[0,¢] — M such that o is a leaf curve and o is a piecewise
solution curve, i.e. there is a sequence ty = 0 < t; < ... < t;,41 = € for which
o|[ti, tiv1],t = 0, ...m, is a solution curve of the system E tangent to @, then there
exists a mapping «:[0,1] % [0, €] — M with the same properties as above but with
the following change: for any v € [0,1] the curve |{v} x [t;,ti41] is a solution
curve ot the system E tangent to the bundle Q.

Now we shall deal with the universal covering space of a foliated manifold
admitting a foliated system of differential equations. First of all we shall prove a
preparatory lemma.

Lemma 7 Let 0:[0,1] — M be a curve. Then o is a homotopic, relative to its
ends, to a curve of the form % « such that a is a leaf curve and f is a pieceuiise
solution curve of the system E tangent to the bundle Q.

Proof Tor any point ¢ of the manifold M there exist foliated sections Xj,...X,
defined on a neighbourhood V of z in the leaf passing through z and a neigh-
bourhood W of 0 in R? such that the mapping exp%|W x V is a diffeomorphism
on the image. By taking smaller W and V we can assume that both sets are
contractible. Then it is obvious that the lemma is true for curves contained in
exph (W x V).

The lemma results easily from the following two facts:

1) any curve o can be covered by a finite number of sets of the form as above;
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ii) a curve of the form a*f is homotopic relative to its ends to a curve of the form
B x o where o, are leaf curves and 3,3’ are piecewise solution curves.
(It is a consequence of the considerations preceding the lemma).O

Using a standard method, cf. [BH1], we can prove the following proposition.

Proposition 5 Let (M, F) be a foliated manifold. Let E be a transversely com-
plete, transversely transitive, foliated TSUP system of differential equations. If
the bundle Q is integrable, then the universal covering space M of the manifold
M is diffeomorphic to L x K where L is the universal covering space of a leaf
L of the foliation F, and K is the universal covering space of a leaf K of the
foliation Q.

Corollary 3 If the foliation F is of codimension 1, then the universal covering

space M is diffeomorphic to L x R where L is the universal covering space of
leaves of the foliation.

Corollary 4 If M is a compact manifold and the foliation F is of codimension
1, then the fundamental group m1(M) of the manifold M is infinite.

Proof If the group m (M) were finite, then the universal covering space M
would be compact and homoemorphic to L x R; contradiction.O

If the foliation F is Riemannian and @) a supplementary foliations, then the
leaves of F and () intersect one another; this can be proved by a well-known
method, cf. [BH2], also in our case.

Proposition 6 Let (M,F) be a foliated manifold with a transversely complete,
transversely transitive, foliated TUSP system E of differential equations. If the
normal bundle Q) is integrable, then any leaf L of the foliation F intersect any
leaf K of the foliation Q.

II1.4 The graph

Foliated manifolds with tranversely complete FSODE have another very impor-
tant property: the source projection of the graph of such a foliation is a locally
trivial fibre bundle. This fact is of great consequence for the C*-algebra asso-
ciated to the foliation, but this goes beyond the scope of our study. [MS] can
provide the reader with more information and details about C*-algebras associ-
ated to foliations.

The graph GR(F) of the foliation F is the space of equivalence classes of
triples (y, o, x) where = and y are points of the same leaf L of F and « is a
path in L linking = to y. Two triples (y,a,z) and (¥, &/, a’") are equivalent iff

e |
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z = a', y = y" and the holonomy of the curve ™! o is trivial. A neighbourhood
of (y,a,x) consists of elements represented by the triples of the form (¥, o/, z’)
where 2’ belongs to some neighbourhood of z is a transverse manifold passing
through @, y’ belongs to some neighbourhood of y is a transverse manifold passing
through y and a’ is the holonomy lift of « to o', cf. [WI1]. In the same paper the
author proved that the graph of a foliation is a manifold of dimension n+p but in
general non-Hausdorff. Moreover, if the elements of the holonomy pseudogroup
are determined by their jets the graph is a Hausdorfl topological space.

In our case we can prove that the elements of the holonomy pseudogroup are
determined by their r-jets.

Lemma 8 Let E be a transitive USP SDE of order k on a manifold N. If f and
g are two automorphisms of E such that j5f = jkg for some point x of N, then
they are equal in some neighbourhood of z.

Proof Let h be a solution of the system E with the initial condition ¢ at z.
Then fh and gh ate two solutions of E at f(z) with the initial conditions j¥ f(¢)
and j¥g(€), respectively. As j¥f(¢) = jEg(¢) fh = gh in some neighbourhood of
h='(z). Then as the solutions of the system E cover a neighbourhood of z the
germs of f and g at  must be equal.0

In this way we have obtained the following proposition.

Proposition 7 Let E be a FSODE of order k on a foliated manifold (M, F). If
E is transversely transitive TUSP system, then the graph GR(F) of the foliation
F is a Hausdorff manifold of dimension n -+ p.

The correspondences
pi: (y, @, 2) —
the source projection, and
P2 (:0,7) — 1,

the target projection, define two submersions
pi:GR(F) — M and pyuGR(F)— M.

In local coordinates they can be written as follows. Let (y,a,z) be a point of
GR(F) and (U,¢), (V,3) and (Ux,V,pxq.t) be adapted charts at z,y and
(y, o, z), respectively, where
UxoV = {{¢,a,2') € GR(F):a' € U p(a') = (x1,22) € R? X RY,
y' €V, () = (y1,92) € R x R, ho(22) = 92

and o is the holonomy lift of « to z'}

and
exo((y, a,z)) = (21, T2, x3) € R” x R? x R”.
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Then
o p10(pxath) R? x R x RP — RP x RY
(1'1,332,13) L (»T],xz)

and

P opo(pxXah) iR? x R? x RP — R? x R?

(xl’ 332,333) — (x3> ha(wz))'

On GR(F) there are three foliations:
i) F; defined by the fibres of py;
ii) F; defined by the fibres of pq;
iil) Fi® Fy = p{'F = p; ' F.

The fibres of the submersions p; and p, are the holonomy coverings of leaves
of F. Let @ be a subbundle of T'M supplementary to T'F and @) be the subbundle
of TGR(F) defined as follows: ‘

Q = {X € TGR(F):dpi(X) € Q, dpa(X) € Q}.
The tangent bundle of GR(F) admits the following decomposition:

TGR(F)=TF, & TF, & Q.

A curve v in GR(F) is tangent to Q iff the curves pyy and pyy are tangent to Q.
Moreover, the fibre bundle @) is isomorphic to piQ and p3Q@, and ) = py'QNp; Q.
Let Eq be the transverse part of the system E. We would like to lift this

system to G R(F). First we describe the bundle J¥(R,GR(F); Q) as

{7¥f € J*(R,GR(F)): i*pi f € J¥(R, M; Q) and j*pof € J*(R, M;Q)}.
Then the set

Eg = {j*f € J*(R,GR(F)): j*p1 f € Eq and j*pof € Eq}
is isomorphic to both piEg and piEg. It is a subbundle of J¥(R, GR(F); Q). The

bundle Eg is a foliated subbundle of JHR, GR(F); Q) for the foliation F; e F).
The bundle of initial conditions Eg(@), a foliated subbundle of J¥(R, GR(F); Q),

is isomorphic to piEL(Q). In fact a mapping f: R — GR(F) is a solution of the
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system Eg iff p1f and p,f are solutions of the system Eq. Therefore if the system
Eq is TUSP so is Ej. It is not so simple with transverse completeness.

Let £ be an r—jet from E}(Q) and put & = N7(p;)(€), & = N™(po)(€). If €
is in the fibre over the point (y, o, z), then €, = N7(T)(&1), or equivalently &,
is the end of the lift & of the curve a to the vector £ in E(Q). Let f; be the
solutions of the system E with the initial condition &(¢). Then for any vector v of
R the curve a,: [0,1] — M, at,(t) fi(v), te|o, 1], is a leaf curve. Moreover the

mapping f:R — GR(F), f = (fi(v), ay, fo(v)), is smooth. It is a solution of
the system Eg with the initial condition £ and tangent to Q Itis a Q ~horizontal
lift of f relative to the both projections p; and p,. Thus we have proved the
following lemma.

Lemma 9 [f the system E is transversely complete and TUSP, so is the system
Eg. Morcover, the transverse solutions of Eg are Q horizontal lifts of transverse
solutions of the system E.

To show that the submersion p; is a locally trivial fibre bundle it is sufficient
to find a family of curves in M having the following properties:

i) there exists a subbundle S of TG R(F) transverse to the fibres of p; such that
the curves of this family can be lifted S-horizontally to GR(F);

ii) for any point and any parametrized family of points of M it is possible to find
a family of curves linking this point to the points of the family in such a
way that the resulting mapping is continuous.

Our family of curves will consists of curves whose pieces are either leaf curves
or solution curves. We take TF,@®Q as the subbundle S. We have already proved
that we can lift S-horizontally transverse solutions, so we can also lift solution
curves. A leaf curve v: [0, s] — M we can lift in the following way. Let (y, o, z) be
a point over = ¥(0). For any 0 < ¢ < s we define 7;:[0,¢] = M as v4(u) = y(u)
for 0 < u <t <s. Then we put 5(t) = (y,a * ;" v(t)). The curve ¥ is the
S-horizontal lift of ~.

For any point 2 of M there exists a neighbourhood U of this point which
can be parametrized by such curves. Let X7, ...X, be foliated sections of E{(Q)
over some neighbourhood U of . Then there exists a neighbourhood P of z in
the leaf such that the mapping exp%:R? x P — M is a diffeomorphism of some
neighbourhood of (0,z) on U. Therelore to any point z of U corresponds a path
7::00,g+1] - M

| expk(sy(2),0) s €[0,1]
72(3) B { empg/\('(y(z)v 1( )7 ti- 1( ) Qiti(z)a ) S € [sz + 1]
where (exp%)™1(2) = (y(2),t:1(2), ...14(2)) and s; = s — ¢ for s € [1,7 + 1].

Lifts of these curve gives us a trivialisation of p; over U. Thus we have proved
the following theorem.
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Theorem 2 Let E be a transversely complete, transversely transitive, foliated
TUSP SODE on a foliated manifold (M,F). Then the source projection of ils
graph is a locally trivial fibre bundle.

The graph GR(F) = G is a groupoid, cf. [HA2], thus we can construct its
classifying space. From our theorem results the following.

Corollary 5 (c¢f. [HA2]) The mapping i of M into BG classifying GR(F) as
a G-principal fibre bundle is homotopy equivalent to a locally trivial fibre bundle
over BG.

H. Winkelnkemper informed the author that his results of [WI2] are also true
in our case. For example:

Theorem 3 (Winkelnkemper) Let (M, F) be a foliated mantfold with a trans-
versely complete, transversely transitive, TUSP FSODE E. If M is compact and
simply connected then the universal leaf of F has at most two ends.

IT1.5 Transverse completeness

We turn our attention to transverse completeness of FSODE. We give conditions
on the holonomy pseudogroup and the transverse SODE Ep which, in particular
cases, ensure that the system Egq is transversely complete.

At first, we shall deal with a foliation given by a smooth action of a Lie group
G on the manifold M. We assume that this action admits an almost connection,
cf. [MO4], i.e. there exits a supplementary subbundle @ to T'F which is invariant
by the action of G. For such foliations the following theorem is true:

Theorem 4 Let F be a foliation given by a smooth action of a Lie group G
on a complele Riemannian M whose Aliyah—Molino class vanishes. If on ils
transverse manifold N there exists a complete USP system En of ODE invariant
by the holonomy pseudogroup H, then there exists a supplementary subbundle @)
to TF for which the system Eqg of ODI is transversely complete.

Proof The vanishing of the Atiyah~Molino class of the action defining the
foliation F ensures that there exists a supplementary subbundle @ to T'F which
is invariant by this action. We shall demontrate that the system Eg is transversely
complete. Let a:[0,¢) — M be a solution of the system Eg, a € R. We have
to show that we can extend it to [0,a]. It can be always done il the length
of « is finite. Let us assume that the length of « is infinite. We can cover
a([0,a)) by a sequence of sets U,,, n € N, and there exists a sequence of numbers
a, — a such that a([an,a,1]) € U, for n = 0,1,... Let us consider the solution
ap = foallag,ai] of the system En and the corresponding sequence «,t € Z, of
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solutions of Ey from Definition 4. For any ¢ € [an, ant1] there exists an element
hy of H such that j7h,g](fne) = jioy, for ¢ suitably chosen. Let us take the
curve o; whose domain contains a. Then the point a;(a) belongs to some N; and
consider any point y of fj’l(a,-(a)). There exist € > 0 and a solution & of Eg
defined on (a — ¢,a + €), &(a) = y, such that f;& = a;|(a — €¢,a + €). Lemma L.1
ensures that for any ¢ € (e — ¢, a) the points &(t) and «a(t) belong to the same leaf
of F. The curves g&, g € G, are solutions of the system Eg and they are the only
solutions whose projections on N have the initial condition of the form j7h(j] )
at t € (a — ¢,a). Therefore, choosing t € (a — €,a) N [an, @ny1], non—empty for n
sulliciently large, we get that o|[an, ant1] = g&|[an, any1] for some g € G. Hence
we can extend the solution a to [0,a + €); contradiction.O

Remark The foliation of Example 3 is of the type considered in Theorem 4.
The transversely projectable flat connection is transversely complete only for
some choices of the supplementary subbundle.

Transversely affine foliations form a very important class of foliations. We
are going to give two theorems concerning transverse completeness of their trans-
versely projectable flat connections, for the discussion of this property and its
importance see Chapter VII.

Let F be a transversely afline foliation defined by a cocycle V and let U be
a relatively compact cocycle which can be derived from V. Then the connected
components of its transverse manifolds N and N’ corresponding to cocycles U
and V), respectively, are open subsets of R?. Let g be the Riemannian metric on
N’ induced by the immersion of N’ into R%. The assumption of completeness of
the holonomy pseudogroup has important consequences.

Theorem 5 Let F be a transversely affine foliation on a compact manifold M.
If for some relatively compact cocycle U = {U;, fi, gi; }5 the holonomy pseudogroup
H associated to it and the transverse system En are complete, then for any sup-
plementary subbundle Q the corresponding transversely projectable connection is
transversely complete.

Proof First we are going to look at the consequences of the completeness
assumption. Let x,y be two points of N and U,V be open neighbourhoods
of ¢ and y, respectively, of Definition 1.5. By taking a smaller set Uy C U
we can assume that there exists § > 0 such that for any 2 € Uy B(z,8) =
exp.(B(0,,8)) C U where B(0,,8) = {v € T'N,:||v||y < 6}. Let h € H be defined
on U. Then

hoexp,|B(0,,6) = exprz o d:h|B(0,,6).

The set V is contained in some IV; which is relatively compact in R?. Therefore
d,h(B(0,,8)) C B(0p),¢) for some € > 0. The same ¢ can be chosen for all
z € Uy. This means that the set {||d,h||,:h € H,z € Uy, h(z) € V} is bounded.
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Let us denote by Epn the equation of the geodesic of the flat connection on
N, and let us choose a supplementary subbundle @ to TF. The corresponding
transversely projectable connection defines a FSODE Eg, the equation of its
geodesic. We have to demonstrate that its transverse solutions, i.e. geodesics
tangent to @, are globally defined. We are going to show that it is possible
to lift Q-horizontally any solution of the system Ey. This fact coupled with
the completeness of the system Ep ensures that the system Eg is transversely
complete.

Let us assume that there is a solution v:[0,59) — N of Ex which does not
admit a Q-horizontal lift. Let 4:[0,s) — M be the lift of v which cannot be
extended to [0, s], so > s. Thus the curve 4 must have infinite length. Let yo be
an accumulation point of the sequence F(t,) for some sequence of numbers {t,}
tending to s. As M is compact such a point exists and we can assume that y,
is the limit of the sequence 4(t¢,). The point yo belongs to some U;, and let us
denote by y the point fi(yo) € N. Then there exists a sequence of elements h,, of
the pseudogroup H for which 7' fi(j} 7) = 7'hn(ji,7). Therefore hn(v(tn)) — v.
The completeness of H assures that for n sufficiently large the mappings h, are
defined for v(s) = z,. There exist § > 0 and a curve &:[s — 6,s] — T,,N
such that expé = 7y|[s — &,5]. Thus h,(7(t)) = hnexp(é(t)) = exp (7 ha(£(1))).
Therefore for a sufficiently large n we have a curve £,:t — j'h,((t)) € Tp N
where z, = hy(z;s). The length of these curves is bounded from above. Thus the
curves vp:t +— hy(v(t)), t € [s —§, 5], have bounded length. This ensures that for
n sufficiently large we can lift the whole curve v,|[tn, $] to any point in the fibre
[ (ha(7(t,))), in particular to #(¢,). Contradiction.O

Let E, be a SODE on R? and Aut(E,) the group of its global automorphisms.
Let us consider an (R?, Aut(E,))-foliation F given by a locally free action of the
group R? on a manifold M and assume that the universal covering M of M is the
product R? x R? with the lifted foliation F given by the projection onto the second
factor. We would like to apply the theory of differential inequalities developed in
[SZ].

The tangent bundle to F is trivial, thus we can take 1-forms w',...,w? on
R? x R? which are invariant by the deck transformations and which at each point
define a basis of the cotangent bundle of the lifted foliation. The forms w* can be
represented as follows:

. p . . q -
w'= 3 ai(z,y)da’ + 3 bi(,y)dy"
j=1 k=1

where z € R?, y € R? and det(a}) #0, i,7 =1,...,p.
Thus for any deck transformation ¢ the form ¢*w! is the following:

$ Wiy = Lim1p=1(a}(6(x,))0¢7 [ 0i)da*
+ Vet Tk s (a§((2, )07/ Dyi + V(@2 )0/ Dyr) dy*
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as 0¢F/0x; = 0 for k =1,...,q, 7 =1,...,p, since ¢ preserves F.
Since the forms w* are ¢-invariant we get
a5(¢(z,y)) =1 0,(2,)0(¢71)° [ 0x;5(b(2, y)),
(IIL.1) bi(é(z,y)) 3=1 b4(2,9)0(¢71)* Oy (4(=, )
+ o (2, 1)9(671)  dyr(é(2, y))-
Let 70: R — R be a solution of the system E,. The solution ¥ of the system

Eg on M corresponding to v is a curve J:R—- R” x R% 4 = (¥,70). The tangent
field along 4 must be annihilated by w*, ¢ =1,...,p; thus

Il

(1) = i (v(), 0(t))dy? /di (1) + Zb 1), v0())dyE/dt(t) = 0.

= et

Hence the curve v is a solution of the following equation:
(111.2) dy’ [dt = = 37 &lbi (v, vo)dvs/dt

where (&) is the inverse matrix of (af).

Since the manifold M is compact, there exists a compact subset K of R? x R?
such that Ugep ¢(J0) = R? x R? where D is the group of deck transformations.
Combining (1) and (2) we get the following:

dyifdt = — 5 0¢7 [0xafai($7 (7,70))(871)'/Oys(v, vo)dv3/dt
— £ 06/ 021, (7 (7,70))9(¢71)" [ Oys(7, o) dg [ dt.

Hence
dyl [dt = =3 0¢7 )0~ (¢~ 1) [ Dy, (v, 70)dvi/ dt
— Y0970z~ 0k 0L ¢ (1) /Dy, yo)dg/di.

We would like to find a comparison system for the system (2). On the compact
set $(K), ¢ € D, we have the following estimation: ‘

|dv?[dt] < 521047 [Dxp™"|0(671)* /Dyl s/ dt]
+ 1047 [0 |afe ™! 16,671 10(67) "/ Dya| |d3/dt|
< L1047 /0™t 10(671)*/ys| dvd/dt]
+ L pC?|0¢70xrd™"| 10(671)*/ ys| |ds/dt]

(111.3)

where C' is an upper bound on K of coefficients &;- and b}

About the partial derivatives of ¢ (€ D) we know that:

i) 9¢%/dy, depends only on the variable y for k,s =1,...¢;



48 Geometric Structures

ii) 9¢*/0y, =0 for k=1,...p, s = 1,...¢qif the transverse bundle is integrable;
iii) 0¢'/0z, = 6!, 1,5 = 1,...p for a suitable choice of adapted charts.

If M is compact, the group D of deck transformations is finitely generated.
Let {¢1,...,dx} be a symmetric set of generators. If ¢; have bounded partial
derivatives, we get a following comparison system for the norm:

dr/dt = ce?™")

where ¢ is a smooth function and ¢ € R. However, even in a very simple case:
g(t,r) = t + r, this system does not have global solutions. It is clear from the
comparisons theorems that if we can find a comparison system depending only
on the independent variable ¢, then the system (2) must have global solutions.
Thus from the above considerations we can deduce the following;:

Theorem 6 Let F be an (R?, Diff{R?))—foliation given by a locally free action of
the group R? on a manifold M. If the foliation F admits a transversely transi-
tive, TUSP system E of ODE foliated and transversely complete for an integrable
subbundle, then the system Eq is transversely complete for any supplementary
subbundle Q.

Proof Since the system E is transversely complete for an interable subbundle,
the universal covering M of M is the product R? x R? and the lifted foliation is
given by the projection onto the second factor. Moreover, in this case we can find
a comparison system which depends only on the variable . Then the comparison
theorems ensure that solutions v of (2) have the same domain as 7. Since the
transverse solutions of E are global the system E, must have global solutions, so
the system Eg is transversely complete.O

Corollary 6 Let F be a transversely affine foliation defined by a locally free
action of RP. If F is transversely geodesically complete for an integrable supple-
mentary subbundle, so is it for any supplementary subbundle.

I11.6 Transversely parallelisable systems

In this section we are going to consider a special class of foliated systems of
differential equations called transversely parallelisable. Foliations admitting such
systems have properties similar to transversely parallelisable (TP) foliations.

A foliated system E is transversely parallelisable if there exist foliated sections
XM — EJ(Q), ¢ = 1,...q, such that the vector ficlds 7" X;,7 = 1,...q, form a
transverse parallelism of the foliation F.

:
|
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A foliated system E is locally transversely parallelisable if there exist foliated
sections X;,¢ = 1,...m, of the bundle of transverse initial conditions such that
the vector fields 7" X, 7 = 1,...m, span the vector bundle Q). Although we restrict
our attention to transversely parallelisable systems, all the results of this paper
are true for locally transversely parallelisable ones.

The interesting case is that of a non—compact manifold as in the compact case
we have Molino’s structure theorem, cf. [MO5,MO11].

Any foliated field X of initial condition, (a foliated section of Ej(Q)), defines,
for any t € R, a smooth foliated mapping expx : M — M. Since our foliation is
without holonomy, the restriction of this mapping to any leaf is a diffeomorphism
onto the image which is also a leaf of the foliation F.

Now we shall study the semigroup Map™(M,F) of global smooth mappings
of M preserving the foliation. For transversely complete and transversely paral-
lelisable systems the semigroup Map® (M, F) is transversely transitive in the fol-
lowing sense. For any two leaves L and L’ of the foliation F there exist a sequence
of leaves Lo, ...Lky1, Lo = L and L' = Ly, and a sequence of mappings fo, ... [k
of Map®(M,F) such that fo;(L2;) = Loip1 and fai—1(Loi) = Lai—1,7 = 1,...[k/2].
This results from the fact that any two leaves can be joined by a piecewise solu-
tion curve whose pieces are solution curves with initial conditions given by the
fields X; and that the system is transversely complete.

Lemma 10 If the system E is tmﬁsvcrsely parallelisable and transversely com-
plete then the semigroup Map™(M,F) is transversely transitive.

If the subbundle @ of the definition of a foliated system is integrable, we can
consider the semigroup Map®™(M,F; Q) of mappings preserving both foliations.
Lemma 10 is also true for this semigroup, or for the semigroup Mapy(M,F)
whose elements are additionally diffeomorphisms when restricted to any leaf.

For further considerations we need the following lemma whose proof is classi-
cal.

Lemma 11 Let F:W x M — M be a smooth mapping. Denote by I, M — M
the mapping F,(x) = F(w, ). If for some point (wo, zo) there exists a neighbour-
hood Vy of zo such that the mapping I, |Vo 1s a diffeomorphism onto the image,
then there exist neighbourhoods Wy of wo and V of zo having the property that
for any w of Wy the mapping F,,|V is a diffeomorphism onto the image.

Let us consider the space C*®(M,F) of basic functions. The mapping ranks
assigning to each point « of the manifold M the dimension of the space

{d=f:f € C=(M, F)}

is semi-continuous from above. Moreover, for any mapping ¢ of Map>(M,F)
and basic function f, the function f¢ is basic. Therefore Lemma 11 ensures
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that the function ranks is also semi-continuous from below, and hence it is a
continuous function. As it takes only integer values, it is a constant function.
The space of vectors annihilated by basic functions

Fo={X eTM:df(X)=0,f € C°(M,F)}

is an involutive vector subbundle of T'M of constant rank. It defines a foliation
Fp, called the basic foliation, whose leaves contain leaves of the foliation F.

We shall investigate foliations with a closed leaf on non—-compact manifolds
admitting a transversely complete, transversely parallelisable TUSP system of
differential equations.

For complete TP foliations the existence of a closed leaf ensures that all leaves
are closed and that the natural projection onto the leaf space is a locally trivial
fibre bundle. In our case it is not so simple. The main reason is that the mappings
expx s, although globally defined, are not diffeomorphisms as it is in the case of
vector fields.

First of all we are going to consider the mapping exp’ defined by {X,...X,}
in a neighbourhood of a closed leaf. We would like to show that such a leaf has
a basis of open saturated neighbourhoods as it is in the case of complete TP
foliations. In general, it seems not to be true. One has to impose the following
condition, which links the length of a solution curve with the initial condition
and parametrization. We assume that the manifold M is a Riemannian manifold.

1) Let v:{0,a] —> M be a solution curve given by y(t) = Ezp(€,t) for some
r—vector £. Then the length of v is smaller than cf(||¢|l,a), where c € R
and f:R* x R* — R* is a continuous function non—decreasing in each

vartable with f(.,0) =0

The condition (1) is a natural one. It is verified by the equation of the geodesic
of a Riemannian metric and on compact manifolds, any linear SODE satisfies it.

Lemma 12 Let E be a system of differential equations satisfying the condition
(1) and there exists an open saturated neighbourhood of L on which the norms of
the sections X; are bounded. Then is a neighbourhood W of 0 in R? for which the
mapping exp% |W x L is a diffeomorphism onto the image.

Proof The proof is essentially the same as in [MO5]. The main difficulty is
the fact that for some neighbourhood W of 0 the mapping exp%|W x L is only
a local diffeomorphism, and, & priori, the leaves can meet any expy (W x {z})
at more than one point. Having demonstrated this fact we proceed as in [MO5]
with only minor changes which the reader can easily do.

For some small open neighbourhood Wy of 0 the mapping exp% |Wox L is a lo-
cal diffeomorphism. Let us assume that for any open neighbourhood W contained
in W, there exists a leaf I/ which meets the transverse manifold exp% (W x {z0}),
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zo € L, at more than one point. Let us take a sequence of balls W,, = B(0,1/n) in
R?. For each n there exists a leaf L, such that L,Nexp% (W, x{zo}) = {2}, z3,...}.
Thus there are t},t5 € W, for which exp% (¢}, z0) = z} and ezp% (1}, z0) = 7.
As the mapping exp% restricted to any leaf is a diffeomorphism, we can find a
point ™ of the leaf L such that exp%(i},2") = z3. Since {7 — 0 and tJ — 0
with n — o0, the sequence of points 2™ of the leaf L has xo as its limit. As L is
closed there exists an adapted chart (U, ) at zo meeting L at one plaque P only
such that for n sufficiently large z™ € U. By taking a smaller U we can assume
that exp%|V x P is a diffeomorphism on U for some neighbourhood V of 0 in RY.
Contradiction.O

Example 5 Let us consider the foliation on R?\ {(0,0)} defined by a global
vector field with one hyberbolic singularity at the origin. It convinces us that in
order to have the space of leaves Hausdorff we have to assume much more than
in Lemma 12.

Lemma 13 Let E be a transversely complete system of differential equations
satisfying the condition (1). Assume that all leaves of F are closed. If for a leaf
L the following conditions are satisfied:

1) there exists an open neighbourhood W of 0 in R? such that the set of mappings
W 3w+ expyx(w,z), « € L, is equicontinuous,

ii) there exists an open saturated neighbourhood of L on which the norms of the
seclions X; are bounded,

then the leaf L has a basis of closed saturated neighbourhoods.

Proof Lemma 12 ensures that for some neighbourhood W of 0 in R? the
mapping exp%|W x L is a diffeomorphism on the image. Taking a decreasing
sequence of neighbourhoods W, of 0 in R?, NW,, = {0} we obtain a sequence of
foliated neighbourhoods W, = exp% (W, x L) of L with the intersection equal
to L. Therefore the proof would be complete if we manage to show that for a
sufficiently small closed neighbourhood W of 0 the set exp% (W x L) is closed in
M.

Let {yn} C exp% (W x L) be a sequence of points with the limit y € M. We
must show that y € W. Let us take W equal to a small closed ball B(0,r), then
Yn = expk (tn,z,) where t, € B(0,7) and z, € L. By taking a subsequence we
can assume that ¢, — to. The points 28 = exp% ({0, z,) form a sequence of points
of the leaf exp%(to, L) = Lo. The assumptions i) and ii) ensure that as n — oo,
the distance between y, and 22 tends to 0, thus the point y is also the limit of
{22}. Since the leaf Lg is closed, y € Lo, and it also belongs to the set W.O

Lemma 13 leads us to the formulation of a proposition for which we need the
following definition.



52 Geometric Structures

Definition 6 A transversely parallelisable system E is called locally bounded if
for any leaf there exists an open saturated neighbourhood of this leaf on which the
sections of the transverse parallelism of E have bounded norm.

Proposition 8 Let E be a transversely parallelisable, transversely complete, fo-
liated TUSP system of differential equations on a foliated manifold (M,F). If
the following conditions are satisfied:

i) all leaves of the foliation F are closed,
i1) the system E has the property (1),

iii) (condition (E)) for any leaf L of F there exists an open neighbourhood W of
0 in R such that the set of mappings W 3 w — expx(w,z), = € L, is
equicontinuous,

iv) the system E is locally bounded,

then the space of leaves is a Hausdor[f manifold and the natural projection onto
the space of leaves is a locally trivial fibre bundle.

Proof According to [PA1] the space of leaves is a Ti—-manifold and Lemma
13 ensures that it is a Hausdorff manifold. Theorem 1 tells us that the natural
projection onto the space of leaves is a locally trivial fibre bundle.O

In Proposition 8 we have assumed from the very beginning that all leaves
are closed. It is quite a strong assumption. We would like to weaken it in the
following sense. We want to find some conditions which ensure that if one leaf
is closed, then all leaves are closed. For example, it is easy to verify that if
one leaf is compact, then all leaves are compact. As the foliation is without
holonomy the assertion of Proposition 8 is classical. Moreover, the hypotheses of
this proposition are satisfied in this case. If the subbundle @) is integrable we can
obtain a much stronger result.

Lemma 14 If the supplementary subbundle () is integrable and has a compact
leaf, then the foliation F has a closed leaf iff all leaves of F are closed.

Proof Let L be a closed leaf and L’ any leaf of F. Under the hypothesis
of Lemma 14 the semigroup Map%(M,F;Q) is transversely transitive. Thus
there exist a sequence of leaves Lg,...Lxy1, Lo = L and Lyyy = L' and a se-
quence of mappings fo,...[x of Map%(M,F; Q) such that f5;(Ly) = Loy and
f2i+1([12({+1)) = Lyiy1. Therefore to prove that L' is closed it is sufficient to show
that

1. if L is a closed leaf, so is f(L) for any f € Map%(M,F;Q),
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2. if for some mapping f € Mapss(M,F;Q) f(L) is closed, so is L.

Let I be a compact leaf of (). Proposition 6 ensures that the leaf K is a complete
transverse manifold of F. Therefore a leaf L of F is closed iff its intersection with
K is finite. One can easily check that as the mapping f preserves the foliation
Q, [(KNL)= f(KX)Nnf(L) = f(L)NIK. Moreover, since f restricted to any leaf
of F is bijective, the set f(L)N K is finite iff L N K is finite.

This lemma allows us to formulate the following corollary to Proposition 8.

Corollary 7 Let E be a system of differential equations satisfying the conditions
it) —iv) of Proposition 8. Assume that the subbundle Q) is integrable and the

foliation Q) has a compact leaf. Then if the foliation F has a closed leaf, all

leaves of F are closed and the natural projection onto the space of leaves of F is
a locally trivial fibre bundle.

Now we shall present a condition which together with (1) will ensure that the
union A of points of closed leaves is an open—closed subset of the manifold. Since
we have assumed that the manifold is connected the set A is either the whole
manifold or empty.

2) There exist an open covering U of the manifold M by adapted relatively com-
pact charts {(U;, )} and a number § > 0 such that for any plague P of
the covering U the set P(§) = {y € M:d(y, P) > é} is contained in some
relatively compact adapted chart.

Let us assume that the conditions (1) and (2) are satisfied and that the norms
of the sections X; are locally bounded. TFirst of all we shall prove that the set A
is closed. The closure A of A is a saturated set and let L be a leaf of A\ A. Then
there exist a curve v:[0,a] — M,a > 0, starting at a point of L transverse to
the foliation, and a sequence of numbers ¢, — 0 such that the leaf L, passing
through the point y(t,) is a closed one. There exists a leaf Ly, different from L,
contained in L. Let U; C U, be the pair of chart domains at a point z of L
satisfying the condition (2). Since the leaf L is in the closure of L, there is an
infinite number of plaques P, of U; belonging to L. For n sufficiently large there
is an infinite number of points Ym, ym = expy, (Tm), Tm € Pp, of the leaf L,
at the distance not greater than ¢ from the point x. As the leaf L, is closed, it
meets Uy at a finite number of plaques, and one of the plaques contains an infinite
number of points of {y,,}. Since the plaques are relatively compact these points
are contained is a compact set I{. However, the points @, = (exp% ;. |[L)" (ym)
belong to different plaques of U, and the image of K by (exp% , |L)™" is not
compact. Contradiction.

Now, we shall demonstrate that the set A is open. Actually, we shall prove
that if L is a closed leaf, then for a sufficiently small neighbourhood W of 0 in R?
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the set exp% (W x L) contains only closed leaves. Namely, let us take W so small
that for any ¢t € W the curve s — eapy, ,_su-1(zi_1) where s € [t ¢'], ¢ =
Ticitiy t = (t1,.1y), @i = expx, 4 0 ... 0 expx, 4 (), * € L, is of the length
smaller than §/2.

Let us assume to the contrary that the leaf L' = exp% , (L), to € W, is not
closed. Thus there exists a leaf Ly € L'\ L'. Let us choose a point zg of Lg
and an adapted chart (Uy,%1) at z¢ satisfying the condition (2). Then the leaf
L' meets U; at an infinite number of plaques, say P,,. Using a similar argument
as previously, this time for the points of the leaf L we obtain a contradiction.

We can summarize our considerations in the follwing theorem.

Theorem 7 Let (M, F) be a foliated connected manifold admitling a transversely
parallelisable, locally bounded, transversely complete, TUSP system of differential
equations. If the foliation F has a closed leaf and the conditions (1),(2) and (E)
are satisfied, then all leaves of F are closed and the natural projection onto the
space of leaves is a locally trivial fibre bundle.

In attemps to prove a structure theorem along similar lines as for complete TP
foliations one meets several difficulties. Since global foliated vector fields of the
foliation F are also foliated for the basic foliation, their flows map leaves of the
basic foliation onto themselves. It is not so in the case of equations. In general,
we cannot prove that the image of a leaf of the basic foliation by expyx, is a leaf
of this foliation. It is a consequence of the fact that we do not know whether the
system is foliated for the basic foliation. In our study we would like to point out
when it is, in fact, true.

The projections of the section X;, i = 1,...q, define a transverse parallelism
X, i = 1,..q. Thus the normal bundle N(M,F), isomorphic to Q, is a triv-
ial bundle, ie. N(M,F) =2 M x R? and the natural foliation of N(M,F)
goes to the product foliation of F with the foliation by points of R7. This
induces a global trivialisation of the fibre bundle J*(R, M;F) = J¥(R,Q), i.e.
JER, M; F) 2 R x M x JE(R,R?). Namely, to [f]; € J¥(R, M;F) corresponds
the point (¢, f(t),7f1¢) where %’;— = YU, £iX;. Then the natural foliation Fy is
isomorphic to the product foliation of F and the foliation by points. Therefore
the subbundle Eq of J*(R, Q) corresponds to a field of submanilolds of J¥(R,R?),
all of them being diffeomorphic.

Let us consider a system of linear differential equations of constant rank, i.e.
the subbundle Eq is a vector subbundle of J¥(R, Q) of constant rank m. To
such a subbundle corresponds a field of vector subspaces of J¥(R,R?) = V of
constant dimension m. Thus the subbundle Eg is given by a smooth mapping [z
of R x M into the Grassmann manifold G'R(V). The property that the bundle
Eg is foliated translates itself into the fact that fz is constant on leaves of the
foliation F. Thus the mapping fg is constant on leaves of the basic foliation as

well.
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The vector fields X;, i = 1,...q, define a bundle-like metric g on the normal
bundle, i.e. g()?i,f(j) = 63 We denote the orthogonal complement of T'F, by
@Qo. The bundle J*(R, Qo) can be considered as a foliated vector subbundle of
J¥(R, Q). Thus it can be represented as a smooth mapping

£ M xR — GR,(V),

p = dim J¥R, Qo) = Vo, constant on leaves of F, and, therefore on leaves of the
basic foliation as well. For this reason the mapping

Rx M3z fp(z)N f3(z) € U GR(Va)

r<m
is constant on leaves of Fy. This mapping defines a system of differential equa-
tions on Qo, to be precise, it describes the system ENJ*(R, Qo) = EqNJ*(R, Qo).
Locally, the intersection of Eg with J¥(R,Qo), to the system A,(z,¢é) =0, a =
1,..v, adds the system Y, cj-f; = 0,7 = 1,..v;, the condition of orthogonality to
TFy of &1, ...¢, and its prolongations up to order k — 1. As the functions A, and
¢; are constant on the leaves of Fj, the system thus obtained is foliated for the
basic foliation. It is not difficult to verify that although Eg, is not a subbundle
of J¥(R, Qo), it is a transversely complete, transversely transitive, TUSP foliated
system on (M, F). Since the orthogonal projections of the vector fields X7, .. X
define a local transverse parallelism of the basic foliation, the corresponding sec-
tions of the bundle Ef(Qo) = Ej(Q) N Qf ensure that the system Eg, is a locally
transversely parallelisable system on the foliated manifold (M, F;). Therefore we
have the following theorem.

Theorem 8 Let E be a transversely parallelisable, transversely complete, foliated
TUSP linear system of differential equations of constant rank on a connected
foliated mantfold (M,F). If the conditions (1) and (E) are satisfied and the
system is locally bounded then the closures of leaves are fibres of a locally trivial
fibre bundle. The foliation induced on each fibre is a Lie foliation.

Proof The previous considerations ensure that we can apply Proposition 8,
which asserts that the leaves of the basic foliation are fibres of a locally trivial
fibre bundle. The proof that the closures of leaves are leaves of the basic foliation
and that of the last statement is made in the same way as for TP foliations, cf.
[MO5,MO11].

Let us look at foliated equations from the point of view of holonomy pseu-
dogroups. The fact that the system E is locally bounded means that the holonomy
pseudogroup is of compact type. The condition (1) and local boundedness to-
gether with the assumption that the system is transversely complete ensure that
the holonomy pseudogroup is a complete pseudogroup. The fact that this pseu-
dogroup preserves a parallelism of the transverse manifold allows us to apply the
theory developed in [WO15], cf. also Section VI.2. Thus we have the following.
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Theorem 9 Let E be a transversely parallelisable, transversely complete, foliated
TUSP system of differential equations on a foliated manifold (M,F). If the sys-
tem E s locally bounded and the condition (1) is satisfied then the closures of
leaves of the foliation F are submanifolds of M.

At the end we formulate a technical lemma which can be useful in the study
of flows admitting transverse systems of differential equations.

Lemma 15 Let ¥ be a dense flow on a connected manifold M of dimension
greater that 1. If ¥ admits a transversely parallelisable, transversely complete,
foliated TUSP system E of differential equations which is locally bounded and
the condition (1) is satified then the manifold M s diffeomorphic to the torus
Tk k> 1.

Proof The tools which we have developed allow us to follow the method of
Ghys and Molino, cf. [GH2,M010].0

Remarks In our considerations we did not assume anything about the Rie-
mannian structure of the manifold. The nontrivial case, not covered by P.Molino’s
results, cf. [MO5,MO11], is that of a non—compact manifold, or even non-
complete Riemannian manifold. If the Riemannian manifold is complete the
assumption of only local boundedness only ensures that Theorem 7 is true, cf.
Section IV.2 for a discussion and a proof of a very similar fact. For the other
results completeness is not suflicient.

The condition (1) is quite a natural one. It means that at infinity solutions
does not behave ’wildly’, i.e. the norm of the tangent vector to them does not
grow too steeply.

The condition (E) is very important. It is a ’foliated’ condition, saying that
the exponential mapping associated to the system behaves topologically in the
same way along any chosen leaf.

"Local boundedness’ is a technical assumnption which together with the condi-
tion (1) allows us to estimate the length of solutions emanating from the leaf.

All these conditions together with the completeness of the system of differen-
tial equations, in fact, replace the assumption that the bundle-like Riemannian
metric defined by the transverse parallelism is transversely complete. In the TP
case the transverse completeness of this Riemannian metric, or of the correspond-
ing equation of the geodesic, is equivalent to the fact that the vector fields of the
transverse parallelism are complete. In this case the condition (1) and (E) are
satisfied. Moreover, the vector fields are of constant norm.

The condition (2) is purely topological and very well-known; essentially saying
that the 'diameter’ of charts is bounded away from 0 at infinity. It is a purely
technical assumption.

We can meet the equations considered in this section in the following context.
Let us consider a non-compact parallelisable manifold with vector fields Xi,... X,
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of the parallelism being non—complete. Then assume that on this manifold we
have a complete linear connection, ([FR2] provides an interesting condition en-
suring the completeness of a flat connection). Then any global infinitesimal affine
transformation X such that [X, X;] = f;X for i = 1,...n defines a foliation we
are interested in. More generally, we can take any system of ordinary differential
equations on a parallelisable manifold, and look for an infinitesimal symmetry
X of this system for which [X, X;] = f;X for ¢ = 1,..n. Any such infinitesimal
symmetry defines a foliation of the required type, cf. [OL,0V]. It is not, usually,
too diflicult to find such a infinitesimal symmetry as the conditions (equations)
we have to solve are linear ones. Then we have to check whether our conditions
are satisfied, but in any particular case this should not be too tedious.

Notes The chapter contains results of four papers. Sections 1 and 2 are based
on [WO8] and [WO14]. Section 3 presents facts published in [WOS8]. The results
of Section 4 correspond to [WO10]. Section 5 contains the rest of the paper
[WO14] and Section 6 is based on [WO9].






Chapter 1V

G—foliations

In this chapter we are going to study G-foliations, or equivalently foliations ad-
mitting a foliated G-structure. We start by demonstrating some general prop-
erties of these structures. Then we turn our attention to G-foliations with the
group G of finite type. The chapter is completed with a review of some results
of R. A. Blumenthal. We provide a ’proof scheme’ based on our considerations
from Chapter II. In this way we simplify the proofs and get some interesting
generalizations of these results.

The theory of foliated G-structures has been developed by P. Molino in
[MO1,MO11]. The characteristic classes of G-foliations have been studied by
I'. W. Kamber, Ph. Tondeur and Th. Duchamp, cf. [DU,KT?2].

IV.1 Preliminaries
Iirst we recall some basic definitions:

Definition 1 i) A transverse G-structure B(M,G;F) is a G-reduction of the
GL(q)-principal bundle L(M,F).

ii) A foliated G-structure B(M,G;F) is a G-reduction of L(M,F) whose total
space is Fy-saturated (i.e. with a point it contains the whole leaf of F;
passing through this point).

Definition 2 1) A connection in a transverse G-structure is called a transverse
connection.

il) A connection in a foliated G—structure is called:

a) basic if its connection form vanishes on veclors tangent to the foliation
fl;

b) foliated (or transversely projectable) if its connection form is base-like.

59
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In Chapter II we have already mentioned the following fact which is due to
P. Molino, [MO1,M011] .

Lemma 1 A foliation F admits a foliated G -structure iff on the transverse man-
ifold N there exists a G-structure of which the holonomy pseudogroup H is a
pseudogroup of local automorphisms.

It is well known that in any foliated G-structure there exists a basic G~
connection, cf. [MO1,MO11).

Lemma 2 (Molino) In any foliated G-structure B(M,G; F) there ezists a basic
connection.

Proof On any open set U; the foliated G-structure B(M, G; F) is isomorphic
to f7B(N;,G). In B(N;, @) there exists a G-connection with the connection
form @;. Then the form f®; = w; defines a foliated connection on U;. Taking a
partition of unity {h;} subordinated to {U;} and putting w = ¥ h;ww; we get a
connection form of a basic connection.O

The necessary and suflicient algebraic condition for the existence of foliated
connections have been found by P. Molino, see [MO2,MO11]. The following is
easy.

Lemma 3 (Molino) A foliated G-structure B(M,G;F) admils a foliated G-
connection iff the corresponding G—structure on the transverse manifold admits
an H-invariant G-connection.

Now we are going to define the Atiyah—Molino class of a foliated G-structure
whose vanishing ensures that in this G-structure there exists a foliated connec-
tion, cf. [MO2,MO11].

Let w be a k—-form on B with values in a G-vector space (V, p). We assume
that w vanishes on the vectors tangent to the foliation F; and Riw = p(g~")w for
any g € G. ‘

Let us take the associated fibre bundle E(M,G;V;F) to B(M,G;F) with
the standard fibre V. It is a foliated vector bundle. Then the k~form w can be
considered as a k~form on B with values in #*E(M, G; V; F), the pull-back of the
bundle E(M,G;V;F) onto B. Assume that the k+ 1-form dr,w = 7*a for some
k+1-form o on M. The form a is dr—closed as 7*dra = dr,7*a = (df, )’w = 0.
Thus the form a defines a cohomology class in H*!'(M, E), cf. [MO11], [RG2].

If the class [@] vanishes, then there exists a form 3 of type (k,0) on the
manifold M with values in E such that dzf = a. The form 7*8 is a k-form
on B with values in #*E. Let us take the form w — 7*f, then dx(w — 7*f) =
drw —drn*f = drw — 1*dsff = dryw — 7*a = 0. This precisely means that
w — m*f is a base-like form on B of type (V, p).
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Definition 3 We say that two k-forms w and w' on B with values in 7*E are
congruent if the form w' — w is a projectable form, that is there exists a k—form
wg on M with values in E such that n*wy = w' — w.

The cohomology class defined above depends only on the congruency class of
the form w. In fact, let @ and o' be two forms on M such that drw = 7*a
and drw’ = 7*a’. Then df, (v —w) = 7*(a/ — @) = dx, 7w = 7*dFwo. Thus
o' — a = drwy. We call the cohomology class [a] the Atiyah-Molino class of the
form w.

Theorem 1 Let B(M,G;F) be a foliated principal fibre bundle. Let w be a k-
Jorm on B of type (V, p) annihilated by vectors tangent to the foliation Fy. Then
the Atiyah—Molino class of the form w exists and it is zero iff the congruency
class of this form there is a base-like form.

The theorem is a consequence of the preceding considerations.

Let B(M,G; F) be a foliated G-structure on the foliated manifold (M, F). It
is not difficult to verify that any the connection forms of two basic connections in
this G-structure are congruent. Therefore these forms define just one cohomology
class in H*'(M, E(B(M, G; F); g)) which is called the Atiyah-Molino class of the
foliated G-structure B(M,G; F).

Now we can formulate the following corollary of Theorem 1.

Corollary 1 (Molino) Let B(M,G;F) be a foliated G-structure. Then the bun-
dle B(M,G;F) admits a transversly projectable connection iff its Atiyah—Molino
class is zero.

Having made this small detour about foliated connections we return to the

study of G-structures.
On the total space L of L(M, F) or B of any transverse G—structure B(M, G; F)
we define an R%-valued 1-form 0, the fundamental form, as follows:

T,L 2% M 2 N(M, F) 2 R

where m: I, — M and py: TM — N(M,F) are the natural projections, and
x =m(p);or0,=p pnd,m.

It is not difficult to check that if a transverse G-structure B(M,G;F) is
foliated, then its fundamental form 0 is base-like, i.e. over U; @ = f*0 where 0
is the fundamental form of the induced G-structure on the transverse manifold,
and f; the mapping on the level of linear frames defined by f;. Moreover, if the
transverse G-structure B(M, G; F) is foliated then the foliation F; of the total
space B of B(M,G;F) can be defined in yet another way, namely:

TF ={X € TB:ix0 = ixd) = 0}.
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Let w be a connection form of a transverse G-connection. As in the case
of G-structures on manifolds we can define fundamental horizontal vector fields
B(¢). Let Q be a supplementary subbundle to 7'F in TM. Then there exists a G-
invariant subbundle @ of kerw such that d=|@" is an isomorphism on each fibre of
Q' onto Q. Let ¢ € R%. Then for any point p of B there exists precisely one vector
B(¢), of the tangent space of B at p such that B(¢), € Q' and 0,(B(£),) = ¢.
We denote the vector field obtained in this way by B(£). One can easily check
that if B(M,G;F) is a foliated G-structure and w a foliated connection, then
the vector fields B(¢) are infinitesimal automorphisms of the foliation F; and,
locally, they project onto the corresponding fundamental horizontal vector fields
of the G-structure on the transverse manifold. Moreover, R:B(¢) = B(a~%¢) for
any a € G and [A*, B({)] = —B(A¢) for any A € g.

The torsion tensor field T' of a transverse connection w is defined as follows:
T(X,Y)=VxpnY — VypnX — pn[X, Y],

where V is the covariant differentiation operator associated to w and X,Y are
vector fields on M. The tensor field T is a section of T*MQT*MQN (M, F).
It is not difficult to verify that the form ©, ® = df — w A 0 is the tensor form
associated to T' and it is called the torsion form of w. If w is basic, then its
torsion tensor field 7" factorizes to a section of N*(M, F)QN*(M,F)QN (M, F).
The corresponding tensor to 7' (or @) with values in Hom(RYAR?,R?) we denote
t., (or t if no confusion arises). Moreover, if w is foliated then © is a base-like
form, ¢, is constant along the leaves (foliated) and T', considered as a section
of N*(M,F)QN*(M,F)QN(M,F), is foliated. In the case of a transverse con-
nection to define well the tensor t, with values in Hom(RAR?, R?) we have to
choose a supplementary subbundle @) to T'F in T'M and restrict the tensor field
T to @*®Q*. Unfortunately, this operation is not independent of the choice of
Q.

We will define the structure tensor of a transverse G-structure B(M,G; F).
Let us fix a subbundle @ of the tangent bundle T'M supplementary to T'F. Let V
be any g—dimensional subspace of the tangent space T, 5. We shall call this sub-
space horizontal if d7(V) = Qp. Irom now on we shall consider only horizontal
subspaces.

For any horizontal subspace V we define the mapping

Cy:RIAR? — R?;

Cy(uhv) = (XAY, db)
where X,V € V and 0(X) = u, 0(Y) = v. As in the standard theory (cf. [SB])

two such mappings defined for different horizontal subspaces at a given point
differ by an element of dHom(R?, g), thus for any point p of B the mappings Cy
define the unique class ¢(p) in Hom(RIARI, R?)/0Hom(R?,g). We shall call the
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tensor obtained in this way the structure tensor of the transverse G-structure
B(M,G;F) and we denote it by c.
We assume the standard Spencer notation, cf. [FU,SP]:

CY(g) = Hom(RY,g), a1 = i*@ad;
099 = Lrom(@ARR, 03 = K

H%?(g) = Hom(RIARY, H"W@Hom(R",g), azqo = qoas;
where a;,7 = 1,2,3, are representations of g on the respective vector spaces, ¢ is
the natural representation of g on R?, and ¢o is the projection of Hom(R‘AR?, R?)
onto Hom(RIAR?,R?)/0Hom(RY, g). Then, we have the following proposition.

Proposition 1 1) Let w be a transverse connection in a transverse G-structure,
then its torsion tensor is a tensor of type (az, C**(g)).

ii) The structure tensor of a transverse G'-structure is of type (asz, H**(g)).
The following lemma is easy but important:

Lemma 4 [fthe transverse G-structure B(M, G; F) is foliated, then its structure
tensor is foliated.

Proof Since B(M,G;F) is loliated, there exists a G-structure B(N,G) on
the transverse manifold N such that B(M, G; F)|U; = f: B(N,G). Therefore the
horizontal subspaces at a point p of B over U; are in one-to—one correspondence
with horizontal subspaces at the point f,-(p). Namely, if V' is a horizontal subspace
at the point p, then dpfi(V) = V is a horizontal subspace at f,(p) Moreover,
as Ol ~Y(U;) = f;"@, Cy(unv) = Cy(uAv) for any u,v € R?. If V; and V, are
two horizontal subspaces of B(M, G; F) at points p; and p,, respectively, over U;
such that (lfi(Vl) = df;(V;), it results from the above relation that Cy, = Cy,.
In particular, it means that c(p;) = ¢(p2); thus indeed the structure tensor is

foliated.O

The relation between the torsion tensor and the structure tensor is expressed
by the following proposition, which results directly from the definition of the
structure tensor.

Proposition 2 Let t be the torsion tensor of a transverse GG-connection in a
transverse G-structure B(M,G;F). Then for any point p of the total space of
B(M,G;F) qot(p) = c(p).

Remark The structure tensor is functorial, i.e. if f: M’ — M is a mapping
transverse to the foliation F, then the structure tensor ¢’ of the G-structure
[*B(M,G; F) on the foliated manifold (M’, /*F) is equal to f*c.

Using the methods of [I'U] we can prove the following.
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Proposition 3 Let (M,F) be a foliated manifold with a transverse G-structure
B(M,G;F). If the structure tensor of every transverse G-structure on (M,F)
vanishes identically, then the mapping

0: Hom(R?, g) — Hom(RIAR?,RY)
s surjective. §

For the consequences of this proposition in the standard case and examples
of Lie algebras for which 9 is surjective see [FU].

If we assume that the first prolongation g(!) of the Lie algebra g is trivial,
we get a much stronger relation between basic G~connections and their torsion
tensors.

G

Proposition 4 If the first prolongation g(l) of the Lie algebra g is trivial, then
basic connections in any foliated G-structure are determined by their torsion ten-
s078.

e

Proof Let w and w’ be two basic connections and © and ©' be their torsion
forms, respectively. From the structure equations we get that © — O’ = 9t,(IA0)
where w — w’ = 1 and ty is the tensor corresponding to 3. Thus, if © = 0,
Oty =0, and as kerd = gV = 0,4 = 0. Therefore w = w'.0

Remark For transverse connections the same proof yields a weaker result:

Proposition 5 If the first prolongation g(l) of the Lie algebra g is trivial, then
the transverse part (i.e. the restriction to any supplementary subbundle Q) of any
transverse (G—connection in a transverse G -structure 1s determined by its torsion
tensor.

Now we shall investigate the existence of transverse G-connections with a
prescribed torsion tensor. With the standard Spencer notation (dropping g ) we
have the following exact sequence of G-vector spaces:

(1) 0‘*“‘“)&(1)”‘—’)0]1 CO? ]02....._)0
and then of foliated G-vector bundles over the foliated manifold (M, F):

(2) 0— ¢WB(M,G;F) — CY'B(M,G;F) —
C*?B(M,G;F) — H"?B(M,G; F) — 0.
Let us assume that we have a G-invariant subspace S of C''! supplementary to
i(gV). Then the sequence:
00— g_(l) —cou e, kergo — 0

admits a G-invariant splitting s: kergy — C™1, as the spaces kerqo and S are
isomorphic as G-vector spaces.
Now, we are in a position to prove the following theorem:
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Theorem 2 Let (M,F) be a foliated manifold with a transverse G-structure
B(M,G;F). Assume that the Lie algebra g has the following property:
(*) there exists a G-invariant subspace S of C'(g) supplementary to gM). Then:

1) a tensort of type (az, C%?) on B(M,G; F) is the torsion tensor of a transverse
G-connection iff qot = c;

i) let B(M,G;F) be a foliated G-structure. Then a tensor t of type (ag, C*?)
on B(M,G;F) is the torsion tensor of a basic G~connection iff got = ¢;

i) let B(M,G;F) be a foliated G-structure admitling a foliated G~connection.
Then a foliated tensor t on B(M,G;F) of type (az,C%?) is the torsion
tensor of a foliated G~connection iff qot = c.

Proof The necessity has already been proved. We shall demonstrate the case
iii) of the theorem. The other ones are simpler and the proofs are similar. Let
w be a foliated connection in B(M,G;F) and i, its torsion tensor. Then as
qotw = ¢, qo(t, —t) = 0. Since the tensors are foliated, we can descend to the
level of the transverse manifold N, and consider H-invariant objects only. The
corresponding objects will be underlined. When the condition (*) is fulfilled the
vector space CM!/¢g() is isomorphic to S as a G-vector space. Because of (*)
t, — t defines a tensor s: B(N,G) — § which is also H-invariant such that
ds =1, —t. Let 3 be the corresponding tensorial 1-form with values in g. It is
an H-invariant 1-form. Therefore, it defines a foliated tensorial 1-form ¥ on B.
Then, w’ = w — 2% is a connection form such that ¢, —t, = —(t, —t). Thus
ty =1.0

Corollary 2 In a foliated G-structure there exists a torsion—free basic G—con-
nection iff the structure tensor vanishes identically.

Corollary 3 Let B(M,G;F) be a foliated G-structure. Assume that there exists
a foliated G'~connection and that the condition (*) is fulfilled. Then there exists
a torsion—free foliated G'—connection iff the structure tensor vanishes identically.

Using the above result we can demonstrate the existence of foliated connec-
tions in some other cases, (cf. [F'U],[WO3]).

Proposition 6 Let B(M,G;F) be a foliated G-structure on a foliated manifold
(M,F) and Q(l) = 0. Then, if the structure tensor of B(M,G; F) vanishes, there
exists a lorsion—free foliated connection in B(M,G;F).

Remark The assumptions of the proposition are fulfilled by the bundle of
transverse orthonormal frames of a Riemannian foliation. The torsion-free con-
nection obtained in this way is the transverse Riemannian connection, (cf. [LP1],
[LP2], [MO9], [MO11]).

We can also prove the existence of foliated connections in a more general
situation.
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Lemma 5 Let B(M,G;F) be a foliated G-structure on (M,F). Assume that
there exists a subspace S of Hom(RIAR?, R?) invariant by the natural representa-
tion of the group G such that Hom(RIAR?,R?) = S@imd. If the first prolongation
Q(l) is trivial, then there exists a basic connection for which any automorphism of

B(M,G;F) is an affine transformation.
Proof Let ¢ be the structure tensor of B(M,G;F). It takes values in
Hom(RIAR?,R?)/0Hom(RY, g).

Let t. be the tensor with values in S corresponding to the structure tensor. For
any automorphism f of B(]W,G’;f),cf = ¢. Therefore tcf = t. as well. From
Proposition 4 it results that there exists at most one basic G-connection whose
torsion tensor is equal to t.. On the other hand, from Theorem 2 ii) we obtain
that such a connection exists. Therefore the automorphisms of B(M,G; F) have
to be affine transformations of this connection.O

As an easy consequence of this lemma we get the following:

Proposition 7 Let G be a closed subgroup of GL(q) such that the first pro-
longation 2(1) of its Lie algebra is trivial and that there exists a subspace S of
Hom(RIARY, R?) invariant by the natural representation of G and supplementary
to O0Hom(RY, g)in Hom(RIAR?,R?). Then there exists a foliated connection in
any foliated G-structure B(M,G; F) on a foliated manifold (M,F) .

IV.2 (G—structures of finite type

In this section we define prolongations of foliated G-structures and use their
properties to obtain some more information about G-foliations for the group G
of finite type.

Let @ be a subbundle of the tangent bundle T'M supplementary to T'F. We
have shown that any horizontal subspace V of the tangent space 1,3 defines an
element Cy of Hom(RYAR?,RY), and that for any two such subspaces V; and V;, at
a given point their difference belongs to dffom(R?,g), i.e. Cy; —C'y, = 0Svy,v;. Let
us choose a subspace S of Hom(R?AR?, R?) supplementary to dllom(R?, g). This
choice, at each point p distinguishes a family of horizontal subspaces V for which
Cy € S. Then if V; and V;, are two such subspaces Cy, — Cy, = 0Swy, = 0 as
Cy, — Cy, belongs to S and dHom(R?Y, g) at the same time. Therefore Sy,y, € g(V).

Thus this choice of a subspace C defines a G(V-reduction of L(B,F;) where
G = l,il iod > € GL(RY+g):h e 5(1)}. We call this GD-structure the first
prolongation of the foliated G'-structure B(M, G; F) and denote it by B'(M, G; F).
The bundle BY(M,G;F) is a foliated subbundle of L(B,F;) corresponding to
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the first prolongation B*(N,G) of the G-structure B(N,@). The foliation of
BY(M,G;F) we denote by F,. By the k+ lst-prolongation of the foliated G-
structure B(M, G F) we understand the first prolongation of the foliated G*)-
structure B¥(M, G; Fi11) —the kth prolongation of B(M,G;F). Its foliation we
denote by Fyyo.

Lemma 6 If the group G is of type k, then the foliation Fy, is transversely par-
allelisable.

Proof The fact that the group G is of type k means that the group G®*)
is trivial. Therefore the foliated structure B¥(M,G; F) is an {e}-structure, the
bundle B¥(M, G; F) is a reduction of the bundle L(B*~*, ;). Thus, indeed, the

foliation Fj is transversely parallelisable. O

Definition 4 Let F be a G-foliation for a Lie group G of type k. The foliation
F is called transversely complete if the transverse parallelism of the foliation Fj
is complete.

Theorem 3 Let G be a Lie group of type k and F be a transversely complete
G—foliation. Then leaves of the foliation F have the same universal covering
space.

Proof Let us consider the foliation Fy of the total space of B¥"1(M,G;F).
It is a complete transversely parallelisable foliation. Therefore the leaves of Fy
are diffeomorphic. It results from the construction that leaves of Fy are covering
spaces of leaves of F;_;. Hence leaves of Fy are covering spaces of leaves of F,
and therefore leaves of F have the same covering space. O

Corollary 4 (Blumenthal) Leaves of a transversely complete conformal foliation
of codimension ¢ > 3 have the same universal covering space

Proof The conformal group CO(q) is of type 2 for ¢ > 3, cf. [BL5]. O

As an application of this method we consider the following foliations.

Definition 5 Let N be a g-manifold and K a pseudogroup of local diffeomor-
phisms of N. For any open subset U of N K(U) = {f € K:domf =U}. We say
that the pseudogroup K has the property Ey, k € N, if for any point © of N there
exists a sequence of open subsets {U,} such that Uy = N, (U, = {z} and the
spaces {35 f: [ € K(U,)} are equal.

Example 1 1) Any pseudogroup generated by a group of global diffeomorphisms
has the property Ey for any k.

2) Let B(N,G) be a regular G-structure on a simply connected compact
manifold NV for a group G of finite type k. The pseudogroup K generated by the
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flows of infinitesimal automorphisms of this G-structure has the property K.
In fact, the sheaf of germs of infinitesimal automorphisms of this G-structure
is constant, cf. [FU]. Thus any germ of an infinitesimal automorphism can be
extended to a global infinitesimal automorphism of B(N,G), hence any local
diffeomorphism from some flow with the domain small enough can be extended
to a global diffeomorphism, so the pseudogroup has the property FEj.

Let G be a closed linear group of type k, B(N,G) be a G-structure on N,
and K a pseudogroup of local automorphisms of B(N, ) having the property
E,. Let F be a K-foliation on M. Then:

Lemma 7 The restriction mapping K(Up) — K(Uns1) is bijective. In particu-
lar, any element of K can be extended to a global automorphism of B(N,G).

Proof Let f € K(Upny1).- Then the lift f of f to B¥1(N,G) preserves the
{e}-structure on B¥~(N, ), i.e. the parallelism {Xj,...X,}. Hence fexp(tX;) =
exp(tX;)f for any ¢ and ¢ = 1,...r whenever e:cp(tX ) is defined.

Let g be an element of }C( Un) such that j%¢ = j¥f. Then for the map-
ping § we have the equality §(p) = f(p) for any p over z. The set A = {p €
B¥(N,G): f(p) = g(p)} is non—empty and closed. Our previous considerations
ensure that it is open as well. Hence over U,y f = ¢. O

Lemma 7 ensures that our foliation is developable. Therefore as a corollary
we get the following fact.

Proposition 8 Let F be a K—foliation on a compact manifold M with the pseu-
dogroup K having the property Ey. Then the foliation F is developable.

The following theorem is true for transversely complete K~foliations.

Theorem 4 Let F be a transversely complete K—foliation modelled on a q-
manifold N with the pseudogroup K having the property ). Then the leaves
of F have the common universal covering space and the space of leaves of F is
homeomorphic to the orbit space of some group action on a covering space of the

manifold N.

Proof According to Proposition 8 there exists a covering M of M such that
the lifted foliation F is defined by a global submersion f: M — N. We restrict
our attention to sz which we denote also by N. Thus the foliation Fi of
B*Y(M,G; F) is defined by the submersion f*

. ‘
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B=1(01,G ) —— L )

A

b9t ! N

The total space of the bundle Bk_l(M, G; f') is a covering space of the total space
of the bundle B¥!(M, G; F) and the foliation Fy is the lifted foliation of Fy. Fi
is a_complete transversely parallelisable foliation, so is Fi. Moreover, as leaves
of Fy are closed, the projection onto the leaf space B¥/F is a locally trivial fibre
bundle. Thus indeed leaves of F have the same universal covering space.

The transverse parallelism of Fi projects onto a complete parallelism of B*|F
and it is mapped by the induced mapping fi onto the natural parallelism of the
total space B of B¥Y(N,G). Hicks’ Theorem, cf. [HK], ensures that the
mapping fx is a covering mapping. Therefore we have the following commutative
diagram.

Bk-1 B/c/]_- Ji B]I:]—-l
# 7 ™
M M F ! N

where M /F is a T} manifold according to [PA1]. Hence the mapping f is a local
homeomorphism. The next step is to show that f is a covering. To prove this need
only to show that f has the property of lifting curves. Since B*~'(N,G) — N
is a tower of principal fibre bundles, for any curve v in N there is a horizontal
lift 4 of v to BF"'(N,G). Because fj is a covering mapping, the curve ¥ can
be lifted to a curve ¥ in B¥/F. Thus the curve 7 o7 is a lift of v to M/F.
The choice of a point y in f~1(5(0)) forces the following choices in the liftings
executed: 771 (y) 3 7 and fi(7) € 75 (7(0)). Therefore the manifold M/F is a
covering of a Hausdorff manifold. We denote it by N.

Since the mapping f is a covering mapping we can lift K to a pseudogroup K of
N. The pseudogroup K has the property Ej as well. Thus F being a K—foliation
is a developable one. Therefore there exists a homomorphism h:my(M,z) —
Aut(B(N (), cf. Proposition I.1. The space of leaves of F is homeomorphic to
the space of orbits of the group tmh acting on N. D

To complete this section we turn our attention to foliations with all leaves
compact. First we establish a simple but useful lemma.
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Lemma 8 A leaf of Fi is compact iff the corresponding leaf of F is compact and
has finite holonomy group.

Proof Let U = {U;, fi,9:;} be a cocycle defining the foliation F with the
following properties:

i) the open covering {U;} is locally finite,
ii) the open sets U; are relatively compact,

iii) the submersions f; take values in a g—manifold N admitting a G-structure
B(N,G) and have connected fibres,

iv) thelocal diffeomorphisms g;; of NV are local automorphisms of the G-structure

B(N,G).

Then the foliation Fi of the total space B*¥~! of B¥~1(M,G,F) is given by a
cocycle
u* = {Vi, B¥<(£), B (9)}

where V; is the total space of B¥~1(M,G;F)|U:, B¥~'(f;) is the fibre mapping
corresponding to f; of B¥Y(M,G;F) into B*"}(N,G) and B*~!(g;;) the cor-
responding local diffeomorphism of the total space B! of B*Y(N,G). The
holonomy pseudogroup H* of the foliation F given by the cocycle U* consists
of local diffeomorphisms of B%™! preserving a parallelism of this manifold, cf.
[KO2,SB]. Therefore, they are determined by their values at any point, and the
elements of the holonomy pseudogroup H generated by the cocycle U are deter-
mined by their k—jets. The holonomy group of a leal L of the foliation F at a
point z of U;, up to conjugation, is the group

H; = {(h)zh(z) =z,h € H}

where 7 = f;(z). The leaf L is compact iff the H-orbit of Z is finite. Therefore,
the lemma is equivalent to the following one:

an H-orbit of T is finile and the group H, is finite iff for any point p over T
of Bi! the H*—orbit of p is finite.
The statement that the H*~orbit of p is finite means precisely that the set HX =
{j5h:h € H} is finite. The fact that local automorphisms of the G-structure
B(N,G) are determined by their k-jets ensures that the set HX is finite iff the
group Hx is finite and the H-orbit of the point Z is finite.O

Let us assume that all the leaves of Fy are compact. According to Lemma 8
it is so if the leaves of F are compact and have finite holonomy. Then the Reeb
Stability Theorem, cf. [HH,LA], ensures that the space of leaves M/F of the
foliation F is a Satake manifold.
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The converse is also true. Let F be a foliation on a compact manifold. If the
space of leaves is a Satake manifold the foliation cannot have a non-compact leaf.
Otherwise this leaf could not be separated from any other leaf contained in its
closure. Moreover, the structure of a Satake manifold ensures that these compact
leaves cannot have infinite holonomy. Therefore we have proved the following:

Corollary 5 All the leaves of the foliation Fy are compact iff the space of leaves
of the foliation F is a Satake manifold.

This corollary leads us to the following theorem.

Theorem 5 Let F be a transversely complete G—foliation of finite type k on a
compact manifold M. All the leaves of F are compact iff the space of leaves of F
is a Satake manifold.

Proof The set of points of generic leaves (i.e. without holonomy) is open
and dense in M, cf. [HC,EP]. Thus according to Lemma 8 the foliation F} has
compact leaves. Moreover, as it is a complete T.P. foliation, all its leaves are
compact and the theorem results from Corollary 5.0

As a corollary we obtain the following fact due to P.Molino, cf. [MO9,MO11].

Corollary 6 Let F be a Riemannian foliation on a compact manifold with all
leaves compact. Then the space of leaves of F is a Satake manifold.

Proof A Riemannian foliation on a compact manifold is a transversely com-
plete foliation of type 1.0

As a corollary of the proof of Theorem 5 we get:

Corollary 7 Let F be a transversely complete G-foliation of finite type. If the
foliation F has a compact leaf with finite holonomy then all the leaves of the
foliation F are compact with finite holonomy and the space of leaves of F is a
Satake manifold.

The assumption of transverse completeness which ensures that all the leaves
of F} are compact can be weakened in many ways. In fact, for us, it is enough
to show that the union of the compact leaves of F} is open and closed, or just
closed as it is always open. For example, we have the following.

Proposition 9 Let F be a G-foliation of finite type k with all leaves compact on
a compact manifold M. If one of the following conditions is satisfied:

a) the foliation Fy, is a complete Riemannian foliation,

b) on the manifold B¥=! there exists a complete Riemannian metric in which the
vector fields of the transverse parallelism have locally bounded norms,
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c) the foliation F is given by an action of a Lie group K such that:

i) there exists a supplementary subbundle Q to T'F invariant by I,
ii) the group K acts by automorphisms of B(M,G;F),

then the space of leaves of F is a Satake manifold.

The proof of the part a) of the proposition is based on the following lemma
for T.P. foliations.

Lemma 9 If a transversely parallelisable foliation F has a compact leaf and ad-
mits a complete bundle-like metric for the foliation F then the leaves of F are
compact.

Proof At the very beginning let us stress that there is no connection between
the T.P. and the bundle-like metric. Let us pass to the bundle of transverse
orthonormal frames. Its foliation is a complete T.P. one as the bundle-like metric
is complete. It has also a compact leaf. Thus all leaves of this foliation are
compact which implies that all leaves of F are compact. O

Part a) of the proposition is a consequence of Lemmas 8 and 9 and the fact
that the foliation has a compact leaf without holonomy. The proof of the parts b
and c) depends on the fact that under these assumptions, using similar arguments
as in Lemma 9, we can prove that all leaves of the foliation Fj are compact.O

Remarks

1) The assumption that the manifold M is compact and that all the leaves of
the foliation F are compact can be replaced by ”there exists a compact leaf with
finite holonomy”.

2) If the group K of ¢) is compact a K{~invariant subbundle () supplementary
to TF always exists.

3) The above considerations are also valid for V — G—foliations as the foliation
Fi of the total space of B(M,G;F) is T.P. More generally, it is also true for
foliations admitting foliated Cartan connections, cf. [BL6].

4) The lemma for T.P. foliations corresponding to the point b is the weakest
possible as indicates the following example:

Example 2 Let T? = S x S! be the 2-torus foliated by circles {z} x S'. When
we puncture it, we obtain a T.P.foliation of the punctured torus whose all but
one leaves are compact. We can make it a complete manifold, but then the vector
field defining the T.P. will not have locally bounded norm.
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IV.3 Applications: characteristic classes of flag
structures

A flag structure F on a manifold M is a system of {oliations
(Fi, o Fr), Fi S Fipr, 1=1,.k— 1.

The characteristic classes of these structures were studied by many authors, cf.
[CB,CMA,DO,WO1,W02]. We are going to apply Theorem 2 to obtain vanishing
theorems for characteristic classes of flag structures with an adapted transverse
geometric structure. In particular, as a corollary we obtain the vanishing theorem
of F'. J. Carreras and A. M. Naveira, cf. [CN]. For simplicity’s sake we assume k
= 2. Let ¢) = codimFy, q¢ = codimF, and p = q; — q.

Definition 6 A transverse G-structure adapted to the flag F is a Gy x Gy-reduc-
tion B(M,G1xGq; F1) of the bundle L{M;Fy) where Gy C GL(p), G2 C GL(q),
such that if p = (v1,...Up, Vps1, --Upiq) 18 a lransverse frame of B(M,GyxGq; Fy)
at a point x, then the vectors vy, ...v, span the veclor space TFo/TFi,.

If we identify the normal bundle of the foliation F; with a subbundle @ of
TM supplementary to T'Fy, the choice of a GyxGa-reduction of L(M;F;) as
above means that we have chosen subbundles )1 and @ of T'M such that @
is supplementary to T'F; in TF,, @, is supplementary to TF, in TM and @ =
@1 ® Qo. Moreover, we have a Gy-reduction B(M,Gy; F) of the frame bundle
L(Q,) of Qy and Go-reduction B(M, Gy; Fy) of the frame bundle L(Q3) of Q5.

Let ir1: B(M,G1xGq; Fi) — B(M,G1;F) be the projection defined by the
correspondence

(V1) Uy Vp 1y - Upg) > (01, ...0p)

and mo: B(M,G1x Gy Fr) — B(M,Gq; Fa) be the projection defined by the
correspondence

(V1 - Upy Up1s - Vpg) = (Vpty - -Vpgq)-
Moreover, the principal fibre bundle B(M, Gy xGy; F1) is the fibre product of the
bundles B(M,G1; F) and B(M,Gq; F2), L.

B(A{, GIXGQ;}-l) = B(A/[, Gl;f)XA{B(]M, Gg;fz).
Let B, By and By be the total spaces of the bundles B(M, Gy xG2; Fi), B(M,G1; F)
and B(M, Gy; F7), respectively.

Let w be a linear connection in the bundle B(M,GxGy; F1). Then w is a
I-form on B with values in Lie(GyxGy) = 9,99, Let

g, g, — 9, and p2g, D9, — 9,
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be the natural projections. Then there exists exactly one linear connection w,
in B(M,G1;F) (resp. wy in B(M,Gy; F,)) such that pyw = wjw; (resp. pow =
mhws). Conversely, if wy and w, are G- and Gy connections in the bundles
B(M,Gq; F) and B(M,G3; Fy), respectively, then the form w = wjw; @ mjw,
defines a G'y X Gy—connection in B(M,G1xGy; Fy). Moreover, the canonical form
0 of B(M,GyxGy; Fy) which takes values in R? @ R? = RP*? decomposes itself
with respect to this direct sum into @ = (01,0%) and 0* = =}0,, 07 = =30,
where 0; and 0, are the fundamental forms of the structures B(M,G4;F) and
B(M, Gq; F,), respectively.

Now, we are going to study the relationship between the structure tensors ¢, ¢y
and ¢; of B(M,Gy1xG; Fy), B(M,G1; F) and B(M,G4; F,), respectively. Let p
be a point of B and V a horizontal space at p. Then there exist (unique) sub-
spaces V) and V, of V such that d,n(Vi) = Qi and dyn(Vy) = Qi Thus
the subspaces V; and V; are horizontal. The mapping Cv is an element of
Hom(RPYYARP* RP+9) which decomposes itself into:

Hom(RPARP,R?) & Hom(RT’/‘\R”,R")‘Ga Hom(RPAR?, R?)
@ Hom(RPARY,RY) & Hom(RARY,R?) @& Hom(R‘AR? RY)

The subspaces of this decomposition we denote Vi, Vy, V3, Vi, Vs and Vs, respec-
tively. The corresponding components of Cy we denote by Ci,, ¢ = 1,...6, respec-
tively, i.e. Cy =CL @ ... ® C§.

We are going to calculate Cy taking into account this decomposition. Let
u,v € RPY 5 :RPY —o RP 5,: RPTY — R? be the natural projections and
X(u), X(v) be the unique vectors of V such that 0(X(u)) = u and 0(X(v)) =
v. We can extend these vectors to vector fields, denoted by the same letters,
defined on an open subset of B having the same properties, i.e. 0(X (u))=u and

dm(X(u)) € Q. Then

I

Cy(uAv) do(X (u), X'(v)) = d0Y (X (w), X (v)) ® d0*( X (u), X (v))

A0 (X (u), X () @ d(m305)(X (), X (1)
dOy(dmi (X (u), dry(X (v))) @ dOy(dra( X (u), dra(X(v)))

and as dy(dm(X(u))) = p1(w) and dfy(dmy(X (v)) = pa(u)
= —1/2(04([dra (X (), dra( X (0))]) @ Oa([dma( X (), dr( X (0))])}

If w,v € R? then the mapping

]

uhv — —1/20,(dm ([ X (u), X (v)]))

is the component C}, and the mapping

UA = —1/205(dro([X (u), X (v)]))
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is the component C. If u,v € RY, then the mapping

uAv — —1/20(dm([X (), X(v)]))
is the component C§, and the mapping

uAv — —1/20,(dro([ X (u), X (v)]))

is the component C¥§.
The structure tensor takes values in the space

Hom(RPHIARP* RP*) [9H om(RP*, g @ g,)
which decomposes itself in the following way:

Vijollom(RP,g,) @ V? @ V*[/0Hom(R%,g,)
o Vll/aH"m(Rpaﬂg) ® Voo VG/(?Hom(R",QZ)

The corresponding components of the structure tensor ¢ we denote by ¢, ...c%, res-

pectively. It results from this decomposition that c¢*(p) = C¥ and ¢*(p) = C} for
any horizontal space V at p. Since 0;(dm1(X(u))) = pi(u) and Ox(dmy(X (u))) =
P2(u), cimy = ¢! and epmy = . Thus we have identified the components ¢! and
c® of the structure tensor.

Now, we shall look at the component ¢2. The vanishing of ¢? means that

Oo(dro([X (u), X(v)])) =0
for any w,v € R?, which is equivalent to
0([X (), X (v)]) = 0.

Let T be the horizontal bundle of a connection w. Relative to the decomposition
TF, @ Q1 & Qq of TM, the bundle I decomposes itselfl into TF} @ Q' & Q?
where all the three bundles are Gy x (Gy—invariant. Then we can assume that the
vector fields X (u) and X (v) are local sections of @' and 0*([X (u), X (v)])=0 is
equivalent to the fact that

(X(u),X(v)]eTH Q" @V

(V - the vertical bundle). In its turn, this is equivalent to the condition that for
any two sections of Q! its bracket is a section of TF! @ Q' ¢ V. This condition
on the level of the manifold M means precisely that for any two sections of the
bundle @y, their bracket is a section of T F; @ @1; i.e. the subbundle T'F, is
integrable. Summing up, ¢?=0 il F, is a floliation.

Similar considerations lead to the following conclusion: ¢*=0iff F; & @, is a
foliation.
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The restriction of the Gi—structure B(M, G1; F) to aleaf L of the foliation F;
is a transverse Gy-structure B(M, G; FL) for the foliation FF¥ of L by the leaves
of F;. The restriction w” of the 1-form w; to the total space By, of B(M,Gy; FF)
defines a transverse G;—connection in this Gy-structure. Its structure tensor ¥
is the restriction of the tensor ¢y to By.

Let us assume that there exists a supplementary subspace S = $S;

OHom(R™%,g ®g,)® S = Hom(RPHIARP RPYT)

where S; is a supplementary subspace of A" in V¥, Al = aHom(R”,gl), A? =0,
A® = 0Hom(RY,g,), A* = dHom(R?,g,,), A® = 0 and A® = JHom(R?,g,);
moreover the subspaces S; are invariant with respect to the natural representation
of Gy xGy on Hom(RPHARPH RPHY),

Let w be a Gy xGy—connection in B(M, G4 xG2; Fy) whose torsion tensor takes
values in S. Then the torsion tensor of the connection wf takes values in Sy and
of the connection ws in Sg. Therefore the results of Section 1 ensure the following:

Lemma 10 a) Ifggl) = 0 and the Gy~structure B(L,Gy; FF) is foliated then the
connection wf is foliated.

b) If le) = 0 and the Gy-structure B(M,Gy; L) is foliated then the conneclion
wy is foliated and ifw; = wk.

c) Ifg_gl) = 0 and the Gy-structure B(M, Gq; F,) is Fi-foliated (i = 1,2), then

the connection wy 1s F;—foliated.
Summing up, we have proved the following:

Theorem 6 Let F be a flag structure on a manifold M with an adapted trans-
verse Gy X Gq—structure B(M,GxGq; Fy).

i) If the Gy-structure B(M,Gy; F)is foliated, ggl) = 0 and there ecxists a G~
invariant subspace S of Hom(RPARP,R?) supplementary to (')f]'om(R”,QI),
then there exists a transverse connection w in the transverse GyxGL(q)-
structure extending B(M, G1x Gy F1) such that the connection wy induced
by w on B(M,Gq;F) is the unique foliated G1~connection whose torsion
tensor takes values in the subspace S and wy is a basic connection for the

foliation F,.

il) If the Go-structure B(M,Gq; Fs) is foliated, le) = 0 and there eaists a Go-
invariant subspace S of Hom(RIARY,R?) supplementary to 0llom(R7,g,),
then there exisls a transverse connection w in the transverse G L(p)x Gy
structure extending B(M, G1xGq; Fy) such that the connection w, induced
by w on B(M,Gy; Fy) is the unique foliated Gay—connection whose torsion
tensor takes values in S and wy is a basic conneclion for Fy.
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iii) Ifthe Gy-structure B(M,Gq; F) s Fi-foliated, the Gy-structure B(M, Go; F3)
Fy—foliated, g(') = Q(l) = 0 and there ezist G;~invariant subspaces S;
of ][0777(R”/\R77 R?) an(l Hom(R?AR,R?) supplementary to Hom(R”, g )
and Olom(R%,g,), © = 1,2, respectively, then there exists a transverse
connection w in the G’;ng—»struclure B(M,G1xGy; Fy) such that the in-
duced connection wy in B(M,G1;F) is the unique foliated Gy—connection
whose torsion tensor has values in Sy and the induced connection wy in
B(M, Gy F,) is the unique foliated Gy~connection whose torsion tensor has
values in Sy.

iv) If there exist a GyxGy-subspace S of Hom(RPHIARPTY RPF) supplemen-
tary to f)[[om(ﬂp"’q,gl ©g,) which agrees with the natural decomposition of
Hom(RPHARPY, RV and (g, @ g,)") = 0, then there exists the unique
foliated connection w in B(M,G1x Gy Fy) whose structure tensor has val-
ues S and which induces the unique folialed connections wy and wsy in
B(M,Gy; F) and B(M, Gy, Fy) whose torsion tensors have values in Sy and

S¢, respectively.

As a consequence of this theorem, using the standard methods, we get the
following corollary.

Corollary 8 1) If the assumptions of Theorem 6 i) are satisfied then the Chern—
Weil homomorphim for the foliation Fy vanishes on

= a®c € I'(g)®1°(gl(9))
Jor 2(r -+ s) > p+ 2¢.

i1) If the assumptions of Theorem 6 ii) are satisfied then the Chern—-Weil homo-
morphism for the foliation Fy vanishes on

c=c®cy € I"(gl(p)) ® IS(QQ)
forr+2s>p+qors>|q/2].

iit) If the assumptions of Theorem 6 iii) are satisfied then the Chern—-Weil ho-
momorphism for the foliation F; vanishes on

c=ca®c € I'(g)®1(g,)
forr+42s>p/2+4q.

Remarks 1) Corollary 8 i) generalizes the result of I'. J. Carreras and A. M.
Naveira, cf. [CN].
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2) By imposing the condition ’Fi—foliated’ on B(M,GyxGy; F1) and using
Corollary 8 we obtain algebraic obstructions to the existence of structures with
the above mentioned properties.

3) For examples of flag structures and their characteristic classes see [DOJ,
and also [GM,MI,NA].

4) The secondary characteristic classes involving the unique connection ob-
tained from Theorem 6 behave under deformations in the same way as the sec-
ondary classes of Riemannian foliations, cf. [LP1,LP2], or, more generally, as
those of V — G—foliations, cf. [WO3].

5) For most considerations of this paper we do not need the assumption of
the integrability of the bundle T'F,. We could have just considered the almost
product structure TF;® QD@ and its characteristic classes or the characteristic
classes of the foliation F; obtained from the reduction of the normal bundle to
the structure group G1xG,.

6) For example, in Theorem 6 ii) and iii) we can replace the assumption "F,-
foliated’ by *Fi—foliated’. Then we obtain the following:

Corollary 8 iv) If the above assumptions are satisfied, then the Chern-Weil
homomorphism for the foliation Fy vanishes on

a®c € l'(g,)®1I°(g,) for v > [p+q/2Jor s > [p+ ¢/2].

IV.4 Proof scheme

To complete this chapter we look at the results of R. A. Blumenthal in the light
of our considerations on foliated structures. In [BL1,BL2,BL3,BL4] he considers
foliations admitting a transversely projectable connection whose curvature and
" torsion tensors have some additional properties. These properties, the connection
being transversely projectable, can be read as the properties of the curvature and
torsion tensors, respectively, of the corresponding holonomy invariant connection
on the transverse manifold. In Blumenthal’s case well-known theorems ensure
that we can choose a very good representative of the holonomy pseudogroup. It is
precisely what Blumenthal did in each case. In fact, as a holonomy pseudogroup
representative we can take a subpseudogroup of the pseudogroup obtained as the
localization of an quasi-analitical action of a Lie group K on a connected simply—-
connected manifold Ny. Therefore, our foliation is an (Ng, I{)-structure and a
developable foliation. The completeness assumptions ensure that the developing
mapping is a locally trivial fibre bundle, and this fact yields the most important
results.
At the basis of these four papers is the following scheme:




1V. GG—{oliations 79

e Realize that the considered geometric objects on the foliated manifold are
foliated and pass to the holonomy invariant ones.

e Using theorems on local equivalence of geometric structures choose a good
representative of the holonomy pseudogroup.

o Check that any element of the holonomy pseudogroup can be uniquely ex-
tended to a global one.

e Verily that "completeness” assumptions ensure that the developing map-
ping is a locally trivial fibre bundle; for example the foliated differential
equation defined by the foliated geometric object is a transversely complete
foliated differential equation and it projects onto a differential equation on
the developing image.

The same scheme has been applied to foliations admitting Cartan connections
in [BLG].

Having formulated our proof scheme we can prove the results contained in
[BL1,BL2,BL3,BL4] quite casily. We only need some results on local equivalence
of reductive and locally symmetric spaces, see for example [KN,WF]. In the case
of Cartan connections we should take into account Lemma 11.10 and Proposition
11.1 of [OC]. Then the equation of the geodesic of the transversely projectable
connection is a tranversely complete foliated differential equation corresponding
to the equation of the geodesic of the connection of the transverse manifold.
Therefore the developing mapping must be locally trivial.

The theory of foliated Cartan connections is very similar to its classical coun-
terpart, cf. [OC]. Let us restrict our attention to G-structures of second order
modelled on a semi-simple homogeneous space. Let B(M,G;F) be such a fo-
liated G-structure. Its total space B is foliated by a foliation Fpg. As in the
case of 1st order G-structures foliated Cartan connections do not always exist.
The standard construction (using the partition of unity and local existence) en-
sures the existence of basic Cartan connections, i.e. 1-forms on B with values in
Lie(L) = [ vanishing on vectors tangent to the foliation Fp. It is also possible to
introduce the notion of basic admissible Cartan connections. The vanishing of the
Spencer cohomology group H?!(1) ensures the existence of a foliated Cartan con-
nection, cf. Theorem 1.1 of [TA]. In fact, the vanishing of this cohomology group
makes sure that in the corresponding G-structure on the transverse manifold
there exists the normal Cartan connection and that this connection is holonomy
invariant. Thus it defines a foliated Cartan connection in B(M,G; F) which we
call the normal foliated Cartan connection of this G'-structure. Next one can
define its Weyl tensor, and it is not difficult to verify that it is a foliated tensor.
In some cases its vanishing ensures that the model G-structure is flat. This leads
us to formulate the following theorem which is a generalization of Theorem 2 of

(BL6).
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Theorem 7 Let B(M,G;F) be a foliated G -structure of second order model-
led on a semi-simple flat homogeneous space L[Ly such that H*Y(1) =H?**(])
=H"!(]) = 0. If the normal foliated Cartan connection of this structure is com-
plete, and the Weyl tensor of B(M,G;F) vanishes, then F is an (L/Lq, L)~
structure and the developing mapping h: M — L/Ly ( L/Lo is the universal

covering space of L/ Lg) is a locally trivial fibre bundle whose fibres are the leaves
of the lifted foliation F.

Proof We follow our proof scheme. Since the Weyl tensor is foliated, the
Weyl tensor of the corresponding G-structure on the transverse manifold van-
ishes. Ochai’s theorem (cf. [OC] Theorem 12.1) ensures that the normal Car-
tan connection is flat. Then according to Proposition 11.1 and Lemma 11.10
of the same paper the foliation F is an (L/Lg, L)-structure. The completeness
of the normal foliated Cartan connection means that the foliation Fpg is a com-
plete transversely parallelisable foliation, cf. [BL6], and that the equation of the
geodesic of this connection is complete. This first fact ensures that the holonomy
coverings of leaves of F are diffeomorphic, and the second that the developing
mapping is a locally trivial fibre bundle.O

Let us provide some more background material for our ’proof scheme’. Lo-
cal equivalence of geometric structures have been studied for many years. The
best account can be found in [AM], see also [MO7]. Geometers looked for a set
of invariants of K-structures (K a Lie pseudogroup) which would ensure that
any two K-structures having the same invariants are locally equivalent. Having
defined the structure tensors, it was necessary to determine whether the formal
integrability (i.e. all structure tensors vanish) is equivalent to the integrability
(i.e. the K-structure is locally equivalent to the corresponding canonical flat
structure on R™). It is true for any G-structure, as well as for many other K-
structures, cf. [AM]. We can say a little more about G-structures of finite type:
two G-structures with the same constant structure tensors are locally equivalent,
cf. [KO2,5B]. Therefore transverse G-structures of foliated G-structures of finite
type with the same constant structure tensors are locally equivalent. Thus any fo-
liated G'-structure of finite type with vanishing structure tensors can be modelled
on the canonical flat G-structure of R?. The group of automorphisms of such a
G-structure B(Ny, ) of finite type is a Lie group, and its elements are deter-
mined by their finite jets, cf. [KO2]. Therefore, this group acts quasi-analytically
on the manifold N,.

Having chosen a model (K, N) of the transverse structure of the foliation F,
with N being a connected manifold, we would like to know whether the pseu-
dogroup K is generated by a group, i.e. whether any element of K can be uniquely
extended to a global diffeomorphism of N. It is a very well known problem, and
there are many theorems of this type. We have already used some of them. They
are based on the following principle:
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There exists a fibre bundle B(N) over N whose total space is parallelisable
and which has the following properties:

o the vector space spanned by vector fields of the parallelism consists of com-
plete vector fields,

o the group generated by the flows of these vector fields acts freely (i.e. f(z) =
a implies f = 1id),

e clements of the pseudogroup K lift to local diffeomorphisms of the total
space of B(N) which commute with the parallelism,

e any local diffeomorphism commuting with the parallelism is, locally, the lift
of an element of K.

Then, of course, any element of K can be uniquely extended to a global diffeo-
morphism of N. In some cases it is possible to verify directly that the pseudogroup
of automorphisms of a given geometric structure has this extension property.

In general, it is easier to solve the infinitesimal version of this problem, (as it
only concerns solutions of systems of linear differential equations): can any local
K-vector field be extended to a global one?, ¢f. [NO2,LO,AR). Having a positive
answer to this question does not solve the extension problem for the pseudogroup
K. First of all, we have to know whether any element of X, at least locally, can be
represented as the composition of a finite number of elements of flows of K-vector
fields and whether global K-vector fields are complete. The first one have been
studied thoroughly in the framework of Lie pseudogroups and we have a definite
answer, cf. [RO] Propositions 3.6 and 3.7. The second one is just the question
whether a certain differential equation has global solutions.

The above considerations lead to several interesting results concerning G-
foliations.

Theorem 8 Let N be a simply connecled compact analytic manifold with an
analytic G-structure B(N,G) of finile type. Let H be a connected regular pseu-
dogroup of local analytic automorphisms of B(N,G). Then any H-foliation F
is developable. Moreover, if the G-foliation F is transversely complete, then the
developing mapping is a locally trivial fibre bundle whose fibres are the leaves of
the lifted foliation.

Proof Our proof scheme takes care of everything but the fact that the foliation
Fis an (N, K)-structure. Proposition 3.6 or 3.7 of [RO] ensures that any element
of the pseudogroup H, locally, can be represented as the composition of a finite
number of local diffeomorphisms from flows of H-vector fields. The theorem of
Amores, cf. [AR], makes sure that any local (analytic) infinitesimal automorphism
of the G-structure B(N, () can be extended to a global one, and as the manifold
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N is compact, these vector fields are complete. Thus F is an (N, Aut(B(N,G)))-
structure. The local triviality of the developing mapping results from the fact
that the transversely complete TUSP foliated system of differential equations on
(M,F) defined by the transverse parallelism of F) projects via the developing
mapping onto a system of differential equations defined by the parallelism of

BE-O)(N @).0

The results of A.Y.Ledger and M.Obata lead us to the formulation of the
following theorem, cf. [LO].

Theorem 9 Let (M,F) be a conformal but non—Riemannian transversely ana-
lytic foliation of codimension q (¢ > 2). Then:

1. Let the foliation F be modelled on a compact Riemannian analytic mani-
Sold with finite fundamental group whose pseudogroup C of local conformal
transformations is a reqular Lie pseudogroup. If the holonomy pseudogroup
of F is contained in the connected component of id in C then the foliation
F is developable and the developing mapping is into the q—sphere S9.

2. If, additionally, the folialion F is transversely complete, then the developing
mapping is a locally trivial fibre bundle with fibres being leaves of the lifted
foliation.

Taking into account the results of A.Y.Ledger and M.Obata the proof of this
theorem is the same as that of Theorem 8.

Theorem 10 Let (M, F) be a G-foliation of type 1 with vanishing structure ten-
sors. If the holonomy pseudogroup M on the transverse manifold N is contained
in the connected component of id of the pseudogroup of local automorphisms of
the G-structure B(N,G), then the foliation F is developable. Moreover, of F is
transversely complete, then the developing mapping is a locally trivial fibre bundle
over RY with fibres being the leaves of the lifted foliation.

Proof The vanishing of the structure tensors of the foliated G-structure
B(M, G F) ensures that the structure tensors of B(N, () also vanish. There-
fore the G-structure B(N, () is integrable, cf. [KO2,5B], and the foliation F is
modelled on the canonical flat G-structure of R?. Since the group G is of type
1, only the vector fields of the form 3°_; ald; or X!, alx;0; ((a;) € g) are
infinitesimal automorphisms of this flat (—structure, and any local infinitesimal
automorphism can be extended to a global one. It is not difficult to see that these
vector fields are complete. The rest of the proof is standard.0 -

Using our proof scheme we can produce some other theorems of this kind.
For example, by imposing conditions on the transverse sectional curvature of a
Riemannian foliation we obtain:
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Theorem 11 Let (M, F,q) be a complete Riemannian foliation. If the trans-
verse sectional curvature is constant or depends only on the point of the manifold
M, then the foliation F is developable, and the developing mapping is a locally
trivial fibre bundle over R, S7 or HT with fibres being the leaves of the lifted
foliation.

Proof The second condition ensures that the transverse sectional curvature
is constant (a foliated version of the Schur lemma which can be easily proved or
deduced from the original one). Then the theorem on local isometries of such
Riemannian manifolds, cf. [KN,WF], and our proof scheme take care of the
rest.O

There are many applications of these theorems. We shall give only some of
them, see also [BL1,BL2,BL4,BL6]. We assume that JF is transversely complete
and that the assumptions of one of the theorems are satisfied.

Corollary 9 Let N be a contractible g—manifold and I a Lie group acting quasi—
analytically on it. If the foliation F is an (N, K)-structure then the universal
covering space M of the manifold M is the product Lx N, where L is the common
universal covering space of leaves of the foliation F.

Proof In this case the developing mapping is a trivial bundle.O

Corollary 10 On a compact manifold with a finite fundamental group there are
no G—joliations satisfying the assumption of Theorem 10.

Proof In this case, the universal covering space would be both compact and
diffeomorphic to L x R?; contradiction.O

Corollary 11 Let ¢ be a flow on a compact manifold with finite fundamental
group. If the flow ® admils a foliated structure satisfying the assumptions of one
of the theorems then ils leaves have finite holonomy. If all its orbits are closed
then @ is a Riemannian flow.

Proof Assume the contrary. Let L be a leaf with infinite holonomy. Its holon-
omy covering cannot be compact. Thus the developing mapping is a locally trivial
fibre bundle whose total space is compact but whose fibres are diffeomorphic to
R. Contradition. Then the second assertion follows from [EP], see also Chapter
VIO

Notes The results of this chapter has been published in four papers of ours.
Additionally, we have included some basic results of P. Molino from [MO1], [MOZ2]
and [MO11]. Section 1 is based on [WO11]. Section 2 presents results of [WO4]
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and a part of [WO11]. Section 3 contains the most important part of [WOL1].
The last section reproduces a part of [WO13].

There have been published many papers on the theory of G-structures, in
particular on characteristic classes of these foliations. Let us mention only some
of them: [BL5], [BL7], [CO1], [DU], [HU1], [KT1], [KT2], [MN], [MY1], [MT2],
[NT], [RM], [RG1], [TA], [VN1], [VN2]. At the end we would like to add that in
[WO6] and [WOT] we developed the theory of liftings of foliated tensor fields.




Chapter V

Transversely Hermitian and
transversely Kahler foliations

In this chapter we are going to study transversely I{ahler foliations. They form a
very interesting class of foliations studied by many authors. First we present some
non-trivial examples of which show that the classes of transversely Hermitian,
transversely IKahler and transversely symplectic foliations are, in fact, disjoint.
Then we study the base-like cohomology of manifolds foliated by a transversely
Kahler foliation, which is illustrated by more examples. The work presented in
Sections 1 and 2 was done jointly with Luis A. Cordero.

V.1 Examples

Let N be a simply connected nilpotent Lie group and I' a torsionfree, finitely
generated subgroup of N. Then according to [MA], or [RA], Theorems 2.11
and 2.18, there exist a simply connected nilpotent Lie group U containing I" as a
uniform subgroup and a homomorphism v : U — N such that u is the identity
on I' (if we identify the subgroups of U and N isomorphic to I'). So we have the
following commutative diagram:

I'cv

11

]1

N

The homomorphism u is a surjective submersion with connected fibres since
both manifolds U/ and N are contractible. The foliation defined by the submersion
w is I'-invariant and therefore it projects to a foliation F(I', U,u) on the compact

85
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manifold M (I') = '\ U. The foliation F(I',U,u) is an (N, T")-structure, a devel-
opable one, and the submersion u is its developing mapping. Therefore, foliated
geometric structures on (M(I'), F(I', U, u)) correspond bijectively to I'-invariant
ones on V.

If the subgroup I' contains a uniform subgroup I'y of N, then any foliated
geometric structure on (M(T'), F(I',U,u)) defines a geometric structure of the
same type on the compact manifold E(Tg) = I'y \ N. The following diagram
presents this correspondence:

rcv —4%——— N>DI'DT,

r\e ————— o\ N

In fact, any foliated geometric structure on (M(T"), F(T, U, u)) lifts to a I'-
invariant foliated structure on U. This one, in its turn, defines a I'-invariant
structure on N which projects to a geometric structure on E(I'g) = Ty \ N.

For example, if (M(T), F(T',U,u)) is

|

transversely symplectic then E(Ty) is symplectic,
— transversely holomorphic then E(T's) is complex,
— transversely Kahler then E(I'g) is Kéhler,

— transversely Hermitian then E(I'g) is Hermitian,

and so on.
We are now going to present examples of foliations on compact nilmanifolds
which are

1. transversely symplectic but never transversely Kahler;

2. transversely symplectic and holomorphic but never transversely Kahler, on
complex and non—complex nilmanifolds;

3. transversely symplectic but not transversely holomorphic;
4. transversely Sasakian but never transversely cosymplectic.

Our examples are based on the Luis A. Cordero work with M. Fernandez, A.
Gray and others on geometric structures on compact nilmanifolds.

The general scheme for the constructions is the following. First, we consider a
simply connected nilpotent group N of uppertriangular matrices and I'g C IV the

i
i
1

1]
|




V. Transversely Kahler 87

uniform subgroup of matrices with integral entries. Next, we a take a subgroup
I' of N whose matrices have some entries of the form a; + s b; where s € Q and
a;,b; € Z. This subgroup I' can be represented as a uniform subgroup of some
group of uppertriangular matrices, which will be the group U of the construction
described above.

Let us pass to the precise examples.

V.1.1 A transversely symplectic but not transversely Kahler folia-
tion

Let us consider N = (R*,*) with the following group operation:
(a,byc,d) * (2,y,2,t) = (a+z,b+y,c+ z+ay,d+1)
In the matrix form the group N = (R*, %) can be represented as follows:
1 = ¢
10
1

—_ow N

As the group I’y we take (Z*, %), and as ' D T'y we take the group of matrices
of the form
1 zy+sxy t 2143829

1 0 Y
1 0 ’
1

where s € Q and x4, %9,Y, 21, 22,t € L.
In this case the group U is R® with the following group operation:

(a1, a2,b,c1,c2,d)0 (a1, 79,7, 21, 22, 1)
= (ay + @y, a9 + 2,0+ y, 00 + 21 +agy, e + 29+ agy, d + 1),
and the subgroup T' is isomorphic to (2%, 0).
The submersion u : U = (R%,0) — N = (R* %) is given by the correspon-
dence
(z1,®2,Y, 21, 22, ) = (T1 + s T2, Y, 21 + S 22, 1)
The foliation obtained in this way cannot be transversely K&hler because
E(To) = I'o\ N is Kahler if and only if IV is commutative (cf. [BG,CFG3]). This

foliation is transversely symplectic as the form
D=deA(dz—ady)+dyAdt

is a closed left invariant 2-form on N of maximal rank.

Summing up, we have constructed a transversely symplectic foliation F(T', U, u)
of codimension 4 on a real compact manifold M(I") of dimension 6, and such a
foliation cannot be made transversely Kahler.
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V.1.2 Transversely symplectic and transversely holomorphic but
not transversely Kéhler foliations on real and complex ma-
nifolds

!
Let E(I'g) = T'o\ N be the Iwasawa manifold, i.e. N is the complex Lie group of |
complex matrices of the form f

1 Z1 23
1 Z9 s

1 |
|
-
{

and T'g is the subgroup of N of those matrices whose entries are Gauss integers. |
A basis of holomorphic left invariant 1-forms on N is given by '

o = le 3 |
/B = dZ2 ) :
v = dzz—z1dz, !

and it verifies

da=0, dB=0, dy=—-aAf .

Let us put
o = CY1’+\/—1052 ,
13 - ,Bl+\/_'1ﬂ2 >
7 = VI
Then

|
|
|
|
D=y Ayr—as Ay + B AP {
|

is a left invariant symplectic form on V.
Let I'; D T'g be the subgroup of N of matrices of the form

L oay+ V=1 +sy1) aa+szi+v—1(ys+sys) ‘
1 T+ V-1y2 ) “
/ ‘

where s € Q, and z;, &}, y;,y! € Z. |

Then T’y can be considered as a uniform subgroup of R with the group oper-
ation:

(a1,...,a9)0(2y, ..., x9) = (a; + 24, a6 + Te + 174 — a5, )

a7+ T7 — azTs, ag + T + a1T5 + Agy, a9 + T + a3T4)
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The matricial form of U = (R, 0) is the following:

1 23 x7 z9 1 Ty ¢ T4
1 —z5 24 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0

1 0 Ty Ts

1 —z5 x4

1 0

1

The submersion v : U = (R% 0) —s N is given by the correspondence:
(1, ., @9) — (T1 + V=1(22+ sT3), 74 + V—1z5,26 + sT7 + V—1(25 + 579)) .

In this case, the resulting foliation JF(I'y,U,u) is transversely symplectic and
transversely holomorphic of complex codimension 3 on a real compact man-
ifold M(I';) of real dimension 9, and it cannot be made transversely Kahler
(cf. [CFG)).

A completely different example arises if we consider the group I'; D Iy of
matrices of the form

1 z1+s82] 23+ s24
1 22 )
1

where s ¢ Q and 21, 21, 22, 23, 25 are Gauss integers.
The subgroup I'; can be considered as a uniform subgroup of C® with the
following group operation:

(uty .-, us)O(z1,. .oy 25) = (2i + Wiy 24 + ug + ur2s, 25 + us + ugzs) .
The submersion v : U = (C% 0) — N is given by the correspondence
(21, 22, 23, 24, 25) > (21 + S 29, 23,24 + S 25) .

The foliation F (T, U, u) obtained in this way is holomorphic and transversely
symplectic of complex codimension 3 on a compact complex nilmanifold M(T';)
of complex dimension 5, and it cannot be made transversely K{ahler either.

The group (C%, 0) can be represented in the matrix form as

1 21 R4 Rg Zs

1 z3 0 0
1 0 0 )
1 23

1
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and the submersion u: U = (C% 0) — N is given by

1 21 24 29 25
1 23 0 0 1 zy+s829 24+ 525
1 0 0 — ( 1 23 )
1 Z3 1
1

Remark Examples of this type have been considered, from another point of
view, by A. El Kacimi and M. Nicolau in [EN1}; there, only the non—existence
of transverse Kahler structures is studied. Nevertheless, the existence of foliated
symplectic structures has a significant influence on the cohomological structure
of the foliated manifold (cf. [BE]).

V.1.3 A transversely symplectic but not transversely Kihler folia-
tion on a compact non—complex nilmanifold

Let N be the real nilpotent Lie group of complex matrices of the form

1 21 Z9
1 21
1

where z;,2, € C, and let I'y be the uniform subgroup of matrices with Gauss
integer entries. Then E(T¢) = I\ IV is the well known Kodaira-Thurston mani-
fold (cf. [FGG)).

Let us consider the left invariant 1-forms over N given by:

a = dz1 s
B = dzz—Zz1dz ;

they define real 1-forms

ap = day ,
Qg = dy] 5
,31 = dzy — 71 d«’ﬂr—yl dyx ’

B2 = dys—x1dys +yaday
where z; = z; + V=11, 29 = T3 + /—1yo. Then
dalzdagzd,@1=0 5 dﬁgz—Zoq/\ag .

Therefore, the 2—form
QzalAﬂ1+a2Aﬂ2




V. Transversely I(ihler 91

is a left invariant symplectic form on V.
As the group I' D I'y we take the group of matrices of the form

= =t ! 2 1
1 Zi+s82] zp+s25+48%2]

1 2z + 82 ,
1

where s € Q and 21, z{, 29, 25 and 2§ are Gauss integers.
The group I' can be considered as the uniform subgroup of Gauss integers

5-tuples in (C®, 0), where O is the following group operation:

(ay,...,a5)0(z1,...,25) = (a;i + zi,a3 + 23 + @121,
ay + 24 + @123 + Ga21, a5 + 25 + dg22) .

The group (C®, @) can be represented in matricial form by

1 2y Zy 2z3 24 25
1 0 23 z 0
1 0 21 22

1 0 0

1 0

1

The submersion v : U = (C®,0) — N is given by the correspondence
2
(21,22, 23,24, 25) — (21 + S22, 23 + s24 + 5" 25) .

The foliation F(T", U, «) constructed in this example is transversely symplectic
and transversely holomorphic of complex codimension 2 on a complex manifold
M(T) of complex dimension 5 (which is a real nilmanifold but not a complex

nilmanifold, cf. [CFG3]).

V.1.4 A transversely symplectic but not transversely holomorphic
foliation

To construct this example we shall consider a compact 4-dimensional nilmani-
fold which is symplectic but does not admit any complex structure (cf. [FGG]
and [CM]).

Let N be the 4-dimensional Lie group of real matrices of the form

Ly 20 —(z/n) —(t/q)

1 0 0 0
12y ny?/2 ,
1 ny/2

1
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where n, ¢ € Z are nonzero and fixed. Then N = (R*, ), where

(a,b,c,d) * (z,y,2,t) = (a + &, b+ y,c+ 2z —2nay,d +t — ngay® + qcy) .
As the subgroup I'p we take the integer lattice, and then the compact nilmanifold

E(Tg) =To \ N is symplectic but not complex (cf. [FGG]).
Now, let us consider the group I' of the matrices of the form

1 b 2a+sd) —2(c+sc)/n —(d+sd)/q

1 0 0 0
1 2b nb?/2
1 nb/?2

1

where s & Q and a,d’,b,c,¢',d,d' € Z.
Then I can be imbedded as a uniform subgroup of R” with the following group
operation:

(a1,...,a7)0(zq,...,T7)
= (a; + zj, a4 + T4 — 2n a4 T3, a5 + T5 — 2n ay13,

2 )
ag + Te — NG a1x3 + qasT3, a7 + T7 — ngaxry + qa5$3) .

The group U = (R7, 0) can be represented as the following group of matrices:

1 z3 2z 27y —2z4/n —2a35/n —z6/q —T7/q
1 0 0 0 0 0 0
1 0 2w, 0 nz3/2 0
1 0 223 0 nz2/2
1 0 nxs/2 0
1 0 nxa/2
1 0
1

The submersion u : U — N is given by the correspondence
(@1, 27) = (Ty + S T2, T3, T4 + §T5,T6 + sT7)

The foliation F(I',U,u) is, in this case, transversely symplectic of real codi-
mension 4 on a real compact nilmanifold M(I') of real dimension 7, and it can-
not be made transversely holomorphic (since the results in [FGG] ensure that
E(To) =To\ N is never a complex manifold).
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V.1.5 A transversely Sasakian but not transversely cosymplectic
foliation

Let N = H(r,1), r > 1, be the Heisenberg group of real matrices of the form

1 A ¢
I, B
1

where A is a 1 X r matrix, B is an 7 X 1 matrix and ¢ is a real number. As the
subgroup I'g we take the group of matrices of the same form with integer entries,
and as the subgroup I' the group of matrices of the form
1 A4sA c+sd
I, B
1

where A, A’, B are matrices with integer entries, ¢, ¢’ are integers too, and s ¢ Q.

The group I' can be identified with the integer lattice of the group U of real
matrices of the form

1 a a, aj al ¢ ¢
1 0 0 0 b 0
1 0 0 0

1 0 0 b

1 b,

1 0

1

The submersion u : U — N is given by the correspondence
! ’ ’ /
(ai,atye,c b)) v (a; + sa,c+sc,b)

From [CFL] it is known that I/(I'g) = I'g \ NV admits a Sasakian structure.
Then the resulting foliation F(T', U, u) is transversely Sasakian of codimension
2r 4+ 1 on a compact real manifold of dimension 4r -+ 1; it cannot be made trans-
versely cosymplectic (cf. [CFL]).

V.1.6 Other examples
Let be N = H(1,7), r > 1, be the Heisenberg group of real matrices of the form

I, A C
1 b ,
1
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where A, C are r x 1 matrices and b is a real number.

Let I'g be the integer lattice of N, and let I' be the subgroup of matrices of

the form ‘
I, A+sA CH+sC
1 b ,
1

where A, A',C,C’ are integer matrices, b is an integer too, and s ¢ Q.

Then the group I' can be considered as a uniform subgroup of the group U of
matrices of the form

A C

IZr A/ Cl
10
1

The submersion u : U — N is given by the correspondence

Iy, A, C, I, A+sA C+sC’
A C
- 1 b
1% :
1

According to the results of [CFL] the foliation F(T', U,u) of M(T') admits

1. a foliated nonnormal almost cosymplectic structure, but no foliated cosym-
plectic structure (for r > 1);

2. if r=2p or r = 4p + 1, no foliated Sasakian structure;
3. if r = 2p, a foliated semi~cosymplectic normal structure;
4. if r =2p+1 (p > 0), a foliated normal structure.

In particular, if r = 1 the foliation modeled on H(1,1) always admit a foliated
Sasakian structure.

Remark Let us recall the following result of E. Macias (cf. [MC]):
Theorem If a dense subgroup I' of a simply connected nilpotent Lie group N
contains a uniform subgroup Ty then the mapping

HY(N)=2 H*(To\ N) — H*(T\U)= H(U) ,
induced by the mapping u : U — N defined by T, is injective. (U 1s the Malc’ev
completion of T'.)

This theorem ensures that any invariant symplectic form on N is mapped to
a non-zero cohomology class in H*(I' \ U). This means that the characteristic
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classes defined by the elements w* of the complex W (sp (g),2)z, cf. [BE], are
non-zero for such foliations.

Therefore the example constructed in 1.1.3 is a new example of a transversely
symplectic foliation with non-trivial characteristic classes. The other examples
can be reworked so that the subgroups I' would be dense, and therefore they would
provide examples of transversely symplectic foliations with non-trivial character-
istic classes.

V.2 Base-like cohomology

V.2.1 Preliminaries

Base-like forms on the foliated manifold (M,F) are in one-to-one correspon-
dence with H~invariant forms on the transverse manifold N. Moreover, base-like
k—forms can be considered as foliated sections of A*N (M, F)*, the kth exterior
product of the conormal bundle of F. If the foliation F is transversely holomor-
phic the normal bundle N(M, F) of F has a complex structure corresponding to
the complex structure of V. Therefore any complex valued base-like k—form can
be represented as a sum of the k~forms of pure type (r,s) corresponding to the
decomposition of k~forms on the complex manifold N. We can obtain the same
decomposition by looking at the decomposition of sections of the complex bundle
AEN(M,F)*, ie. a base-like k~form « is of pure type (r,s) if for any point of
M there exists an adapted chart (zy,...,Tn-24,21,..-,2,) such that

a=3fydz A Ndzi, Ndzj, A Ndz;, .

where ] <4 < ... <4 <q,1 <1 <...<3, < ¢ =" (i1,...,4,), J =
(jl) v 7.js)'

Let us denote by AE(M,F) the space of complex valued base-like k-forms
on the foliated manifold (M, F), and by Ag*(M,F) the space of complex valued
base-like forms of pure type (r,s). Then

AE(M,F) = Y Ag'(M,F),
r4s=k

for short A¥ = 32, A

The exterior derivative d: Ag¢(M,F) — A (M, F) decomposes itself into
two components d = 9+ 3, where 9 is of bidegree (1,0) and @ is of bidegree (0,1),
le.

AT — AT and  0: AT — AT

Now we are going to recall some results of A. El Kacimi, cf. [EK], concerning
transversely Hermitian and transversely I{ahler foliations.
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Let us assume that F is a transversely Hermitian foliation. The operator
*: AF(M, F) — AP%(M, F)

defined in [EH] via the transverse part of the bundle-like metric of F extends to
an operator

% AL(M, F) — A¥5(M, F) .

Let B(M,SO(2q),n,F) be the bundle of transverse orthonormal frames of
F. Let k be the form defining the volume form on each fibre of the bundle
B(M,S0(2q),w,F). The foliation F; on the total space B of B(M,SO(2¢), r,F)
is transversely parallelisable and therefore the closures of the leaves are the fibres
of the basic fibration p: B — W, cf. [MO11].

We define the scalar product on AgL(M,F) = $i0, AL(M, F) as

(a,8) = 0 if a€ AE(M,F), BeAL(M,F) and k+#1,

(V.1) - )
Jw I(m*(a A*B) A k) for o, € AL(M,F)

I

{a,

where T is the integration along the fibres of the basic fibration.

The operator §: AE(M,F) — ALY (M, F) defined as § = ¥~ 1d* is the adjoint
operator of d relative to the scalar product (, ).

Similerly, the “foliated” Laplacian operator is defined by A = d¢§ + §d; it is,
in this case, an auto-adjoint foliated (transversely) elliptic operator.

Let us consider the following differential complex

(V?) 0— AT,O —i) Ar,l — e _5_; A" — 0.
We denote its cohomology H™(M,F) = i H"(M,F) and we call it the

base-like Dolbeault cohomology of the foliation F.

The operator # induces isomorphisms %: A" — AT""97% Let us put § =
—%0%. Then the operator ¢ is the adjoint of J relative to the inner product (, )
defined in (I.1). Moreover, the operator A” = 96 4 §J is an auto-adjoint foliated
(transversely) elliptic operator.

Now, let F be transversely Kahler. The Kahler form of N defines a base-like
(1,1)~form w on (M, F) which we call the transverse Kahler form of the foliation
F. This form allows to define the following operator:

L:AE(M,F) — AEPA(M,F) , La=aAw,

and its adjoint A = —%Lk.
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Then for a transversely Kahler foliation F on a compact manifold, the follow-
ing relations hold:

A)— 0N = —/=16,
AO—ON = /=16,
(V.3) 054+60 = 96 +60 = 0,
A = 20",

AL = LA , AA=AA.

These identities lead to the following theorem, cf. [EX]:

Theorem 1 (El Kacimi) Let F be a transversely Kdhler foliation on a compact
manifold M. If F is homologically oriented, then

1) a base-like k—form o = 3, 05, @, s € A%, is harmonic if and only if
the forms a, s are harmonic; thus

HEM,Fy= S H™(M,F).
r4s=k
ii) the conjugation induces isomorphisms H™*(M,F) = H*"(M,F).
iif) for any 0 < r < q, the form w™ is harmonic, thus H™"(M,F) # 0.

V.2.2 Basic Frolicher spectral sequence

Now we turn our attention to the basic Irélicher spectral sequence.
Let us consider the complex (A = 3, ,A™*,d) of complex valued base-like
forms of the foliated manifold (M, F). We can filtrate it as follows
kA = DA
r>k
This filtration is compatible with the bigradation of the complex. The spectral
sequence associated to this filtration is called the basic I'rolicher spectral sequence
of the transversely holomorphic foliation F, cf. [FL]. It can be easily shown that
it converges to the complex base-like cohomology of (M, F).

The terms E7° of this spectral sequence are the cohomology groups of the
differential complex (1.2),1.e. E7° = H™* (M, F), the (r, s)-th base-like Dolbeault
cohomology group.

When the foliation F is homologically oriented and transversely Kahler, The-
orem 1 ensures that £]° o~ H™* H** - the complex of complex valued base-like
harmonic forms; therefore the differential operator dy: E}* — E]*"* vanishes and
the spectral sequence collapses at the level Fj.

Theorem 2 Let F be a homologically oriented transversely Kdhler foliation on
a compact manifold M. The basic Frolicher spectral sequence of F collapses at
the first term, te. By~ By oo [0,
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Now, we shall present examples of homologically oriented transversely Hermi-
tian foliations on compact nilmanifolds whose basic Frolicher spectral sequence
behaves in a markedly different manner. The examples are based on the examples
of [CFG2] of compact complex nilmanifolds whose Frélicher spectral sequences
have similar properties.

Example 1. A transversely Hermitian foliation for which Fy % E,.
Let us consider the 3-dimensional complex Heisenberg group N = (C3, %)
where

(a1, ag, az) * (by, by, b3) = (ay + by, az + b2, a3 + bz + ayby) .

The compact complex nilmanifold I'p\C3, where I'g is the lattice of Gauss integers,
is the well known Iwasawa manifold for which E; # E,, cf. [CFG2].

The second example of V.1.2 provides us with the foliation F(I'y, U, u) which
is a holomorphic and transversely symplectic of complex codimension 3 on a
compact complex nilmanifold T';\U of complex dimension 5, and it cannot be
made transversely Kahler either. Its base-like forms are in one-to-one corre-
spondence with the I';-invariant forms on (C3, *). The same considerations as in
[CFG2,GRH] ensure that the basic Frolicher spectral sequence of F(I'y, U, u) has
the property of being E; % E,.

Example 2. A transversely Hermitian foliation for which Eq % Ej.
Let us consider the group N = (C*, ) with the following group operation:

(a17a2,a3,a4) * (blab% 637 b4) = (al + bl)aZ + va
az + bz + (az + @2)b1, aq + by — arby) .

This is a real nilpotent Lie group with a left invariant complex structure. The
compact complex nilmanifold T'o\C*, where I'y is the lattice of Gauss integers,
has the required property, cf. [CFG2].

Now, let us consider the following finitely generated subgroup I'y of (C*, *):

{(n1,n2 + smq,n3 + s ma,ng + $my) : n;,m; Gauss integers, s ¢ Q} .

I'y can be embedded as a uniform subgroup of the group U = (C7,0) with the
following group operation:

((l], e ,(l7)D(lJ1, ce ,b7)
= ((l] + bla a; + bg, as + I)g, ay + b4 + (Clq + 62)()17
as + bs + (ag + az)by, ag + bg — a1by, az + by — ayb3) .

It is a real nilpotent Lie group with a left invariant complex structure. The I'y—
equivariant submersion u: U — N is given by the formula:

(a1, ...ar) — (a1, as + saz, aq + sas, ag + sar)
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The foliation F(U,T4,u) is tranversely Hermitian. Its base-like forms are in
one-to-one correspondence with the I'y-invariant forms on (C* ). The same
considerations as in [CFG2] ensure that the basic I'rdlicher spectral sequence of
F(I'y, U,u) has the property Fy % 3.

Example 3. A transversely Hermitian foliation for which Ez % E,.
Let us consider the group N = (C®, %) with the following group operation:

((11,... ,CL(;) * (b],. . ,,be)
= (a1 + l)l, ag + [)2,&3 + bg, a4 + b4 + (a2 + &2)1)1,
as + bs — f1by, ag + be + (1/2)(az + @2)b% + asby + @zb;) .
The manifold T6\C®, where I'y is the lattice of Gauss integers, has the required

property, cf. [CFG2].
Let us consider the following finitely generated subgroup I's of (C¢, *):

{(ny,n2 + smy,ng,ng + smy,nys + sms,ng + sme):n;, m; Gauss integers, s ¢ Q}.

As in the previous examples, we can find a simply connected nilpotent Lie group U
containing ['g as a uniform subgroup and a surjective homomorphism of Lie groups
u: U — (C8 ) which is the identity on I's. The resulting foliation F(T's, U, u)
of the manifold I'¢\U is transversely Hermitian. The same considerations as in
[CFG2] ensure that the basic Frolicher spectral sequence of F(I's, U, u) has the
property I3 % Fy. :

The group U can be represented as (C'°, 0) with the following group opera-
tion:

(a1, ..., a10)3(by, ..., bio)
= (a; + bi, a5 + bs + (ag + @3)b1, ag + bg + (as + @3)by, az + by — @yby,
ag + bg — d1ba, ag + by + (1/2)(ag + @2)b + asby + aqby,
aro+ bio + (1/2)(as + @3)b? + agby) .

The submersion u is the following:

U.((ll7 Ceay (Llo) =z ((ll,tlg + S as, dy,ds + Sdg, Q7 + Sag, Qg + S(llg) .

V.2.3 Complex conjugation

Theorem 1 asserts that for homologically oriented transversely Kahler foliations
the complex conjugation induces an isomorphism of the base-like Dolbeault co-
homology. We are going to give a simple example of a homologically oriented
transversely Hermitian foliation for which this is not true.
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Example 4. Let us consider the Example V.1.3. The foliation F(I', U, u) con-
structed in this example is transversely symplectic and transversely holomorphic
of complex codimension 2 on a complex manifold M(I") of complex dimension 5
(which is a real nilmanifold but not a complex nilmanifold, cf. [CFG3]). The
base-like forms of F(I',U,u) are in one-to-one correspondence with I'~invariant
forms on N. Since I' is dense in N the base-like forms can be identified with
left invariant forms. As I' contains I'g the base-like cohomology of F(I', U, u) is
isomorphic to the cohomology of the Kodaira~Thurston manifold. The computa-
tions of [C] show that dim H'°(I\N) = 1 and dim H*!(I',\N) = 2, which means
that in this case the complex conjugation does not induce an isomorphism in the
Dolbeault cohomology. However its basic Frolicher spectral sequence collapses at
the first level.

V.2.4 Formality of the minimal model

We are going to look at the minimal model of the complex base-like cohomology
of a homologically oriented transversely Kéahler foliation. In fact, as for compact
Kéahler manifolds, the minimal model for the complex base-like cohomology is
formal, and hence all Massey products must vanish, cf. [DGM].

Lemma 1 The dd®-lemma is true in the algebra of complex valued base-like
forms of a homologically oriented transversely I{dhler foliation on a compact man-

ifold.

Proof The identities (I.3) and Theorem 1 ensure that we can repeat the proof of
the dd®~lemma for compact Kahler manifolds cf. [5.11] of [DGM].O

As the theorem on the formality of the minimal model is a purely “formal”
consequence of the dd®~lemma, cf. [Sect. 6] of [DGM], we have the following
theorem:

Theorem 3 Let F be a transversely Idhler foliation on a compact manifold M.
If F is homologically oriented then the minimal model of the complex base-like
cohomology of F 1s formal and thus Massey products of complex valued base-like
forms vanish.

To show the non-triviality of this result we present a homologically oriented
transversely Hermitian foliation whose complex base-like cohomology possesses
non—vanishing Massey products, thus whose minimal model of the base-like co-
homology cannot be formal. The following proposition for Lie foliations asserts
that Examples 1, 2 and 3 have this property.

Proposition 1 Let F be a Lie foliation on a compact manifold modelled on a
nilpotent Lie group N with a left invariant complex structure, dime¢ N = q. If the
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holonomy group I' of F contains a uniform subgroup I'g of N then the following
conditions are equivalent:

i) F is transversely Kdahler;

it) the complez base-like cohomology of (M,F) has no non-trivial Massey
products;

iii) the group N is commutative.

Proof We can assume that the group N is simply connected. As the manifold
M is compact, the developing mapping is surjective and has connected fibres.
Therefore base-like forms on (M, F) are in one-to—one correspondence with I'-
invariant forms on V. On the manifold NV we can consider three complexes of
complex valued forms:

AE(N, o) - the complex of T'g-invariant forms,

AE(N,T) - the complex of I'-invariant forms,

AL(N, N) - the complex of N-invariant forms.
Of course, AL(N,N) C AE(N,T) € Ag(N,Tg). Then Nomizu’s theorem, cf.

[NO1], ensures that in cohomology we have
(V.4) HE(N,N) — HE(N,T) - HE(N,Ty)

as HE(N,N) = HE(N,T).

Theorem 3 ensures that i) == ii).

Let us look at the second implication ii) ==> iii). Assume that the group N
is not commutative. In [CFG3], the authors proved that in this case there exist
non—trivial Massey products in H&(N, N). In view of (L.4), the Massey product
of the same cohomology classes considered in HE(N,T') must be also non-trivial.
Contradiction.

The third implication is trivial as N is just C9.0

V.3 Sasakian manifolds

We complete the chapter with a quick look at Sasakian manifolds. In this section
we present a new method of studing Sasakian manifolds. A Sasakian manifold
is a foliated manifold with a very particular foliated structure. Using the corre-
spondence between foliated and transverse structures, we reduce many theorems
about geometrical objects in Sasakian manifolds to theorems about correspond-
ing objects in Kahler manifolds. In fact, the 1-dimensional foliation of a Sasakian
manifold generated by the characteristic vector field is a transversely K&hler iso-
metric flow. We call this foliation the characteristic foliation. We consider two
books of K.Yano and M.Kon, cf. [YK1,YK2], and demonstrate that most results
on the local structure of Sasakian manifolds can be derived from the correspond-
ing ones for Kahler manifolds. To complete this section we present some new
local properties of Sasakian manifolds obtained applying our foliated method.
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V.3.1 Preliminaries

Now let us recall the definition of a Sasakian manifold. Let M be a smooth
manifold of dimension 2n+1. The manifold M is called an almost contact metric
manifold if there exist on M:

1. a non-vanishing vector field ¢ and a 1- form 7 such that n(¢) = 1;

2. a tensor field ¢ of type (1,1) such that ¢? = —Id + 7 ® ¢, this implies that
¢(€) =0and nop =0;

3. a Riemannian metric g such that g(¢o(X),»(Y)) = g(X,Y) — n(X)n(Y).

An almost contact metric manifold is called Sasakian if, additionally, it satis-
fies the following condition, cf. [SH,BL2],

5. (Vxe)Y = g(X,¥)é —n(Y)X,

and hence Vx¢ = —p(X), dn(X,Y) = g(X, ¢Y) and the 2n + 1-form n A dp™
does not vanish.

The last condition ensures that the vector field ¢ is a Killing vector field for
the metric g. Therefore, this vector field defines a Riemannian foliation F of di-
mension 1 which is an isometric flow, cf. [CA1,CA3]. The vector field £ is called
the characteristic vector field and F the characteristic foliation of the Sasakian
manifold M. It is not difficult to verify that Lep|kern = 0. Therefore the tensors
g and ¢ induce foliated tensors in the normal bundle of the characteristic foliation
which can be identified with the bundle kern. Let § and J be the corresponding
tensors on the transverse manifold N (of the characteristic foliation). The Rie-
mannian connection V of M induces a transversely projectable connection in kern
and which projects onto the Riemannian connection of (N, g). The condition (5)
ensures that the almost complex structure J is integrable, thus (N, J, §) is a Her-
mitian manifold. The equality dn(X,Y) = ¢(X, ¢Y) means that the 2-form dy is
base-like. The corresponding 2—form ® on the transverse manifold is its I{ahler
form. The holonomy pseudogroup is a pseudogroup of Kahler transformations
and F is transversely Kahler.

There are many transversely Kahler isometric flows which are not given by
any Sasakian structure. Let W be an isometric flow defining a transversely Kahler
foliation. The transverse manifold N of this foliation admits a holonomy invariant
Kéhler structure (g,J). Let ¢ be the vector field tangent to the flow W, ¢ the
Riemannian metric for which the flow is isometric, and let @) be the orthogonal
complement of ¢ in the metric g. Then we put:

n: n(€) =1 and n|Q = 0; )
v @(¢) =0and dfi(e(X)) = J(dfi(X)) for any X € TU;.

One can easily check that the structure (g,¢,&,n) defined above satisfies the
conditions 1)~ 4), i.e. it is an almost contact metric structure. The condition
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(5) is not a transverse one which can be deduced easily from the Boothby-Wang
theorem, cf. [BL2,BW] and also [OG,TN,TB].

Theorem 4 Let M be a Sasakian compact manifold. If the characteristic vector
field & is regular, then the manifold M is the total space of a S'~bundle over a
Kéahler manifold N which is the space of orbits of the vector field . Conversely,
let M be the total space of an S'-bundle over a Kdhler manifold N. If the Euler
class of this S'-bundle is cohomologous to the Kdihler form of N, then there exists
a Sasakian structure (g,¢,&,m) on M inducing on N its Kdhler structure with &
being the vertical vector field of the S*~bundle.

Let us look at the consequences of this very well-known result. The fundamen-
tal vertical vector field of any S'-bundle over a Kahler manifold is a transversely
Kahler isometric flow. However such a flow comes from a Sasakian structure iff
the Euler class of this S'-bundle is cohomologous to the Kahler form of the base
manifold, or equivalently iff there exists a 1-form n with n(¢{) = 1 and whose
exterior differential projects onto the Kahler form of the base manifold N. This
has two interesting consequences:

a) the vertical vector field of the trivial S'~bundle (equivalent to the vanishing
of its Euler class according to [KO1]) cannot be the characteristic vector field of
a Sasakian structure, as the cohomology class of the Kéhler form is non~trivial.

b) if the cohomology class of the Kahler form of the base manifold N is
not integral the vertical vector field of any S'-bundle over N cannot be the
characteristic vector field of a Sasakian structure inducing this K&hler structure.

Now let us look closer at the condition (5). We have the following well known
lemma:

Lemma 2 Let € be a non-vanishing vector field on a Riemannian manifold
(M,g) defining a transversely Hermitian flow. With the notation as above, any
two of the following three conditions imply the third one:

1. ¢ is a Killing vector field,

2. ¢(X) = =Vx¢,

3. 9(X,p(Y)) = dp(X,Y).

This lemma leads to the following characterization of Sasakian structures.

Theorem 5 Let ¢ be a non-vanishing Killing vector field defining a transversely
Kdhler isometric flow on a Riemannian manifold (M,g). The corresponding al-
most contact metric structure (g,¢,€,n) s Sasakian iff p(X) = -V x¢.

As a corollary we get:



104 Geometric Structures

Corollary 1 Let ¢ be a transversely I(dhler flow. If there exists a 1-form n such
that n(&) > 0 and the 2-form dn projects onto the Kdhler form of the transverse
manifold, then we can reparametrize the vector field & to obtain a vector field &'
such that the corresponding almost contact metric structure is Sasakian.

Proof The reparametrisation &' of ¢ such that n(¢’) = 1 is a Killing vector
field, cf. [GL]. On the other hand we know that dn(X,Y) = ¢g(X,#Y) as the 2-

form dn is base-like and projects onto the I(ahler form of the transverse manifold.

Therefore according to Lemma 2 Vx¢ = —pX. Then Theorem 5 ensures the

rest.O

V.3.2 Sasakian versus Kahler

First of all we are going to compare various curvature tensors of the manifolds
(M,g,¢) and (N,g,J). For any X € T, N; and y € f7'(z) denote by X* the only
vector of kern, such that df;(X*) = X. The considerations of [YK1], Chapter
VI, yield the following relations:

L (JX)* = o(X7);
2. g(X*,Y™) =g(X,Y);
3. (VxY) = VxuV* + g(Y*, pX*)E, where V and V are the Levi-Civita

connections of g and g, respectively;

4. (R(X, Y)Z)
= R(X*Y*)Z*+g(Z*, oY *)pX*~g(Z*, X *)pY*=29(Y*, 0 X*)pZ* where
R and R are the curvature tensors of V and V, respectively;

5. S(X,Y) = S(X*,Y*) +2¢(X* Y*) where S and S are the Ricci curvature
tensors of (M, g) and (N, g), respectively;

6. ¥ = r + 2n where r and ¥ are the scalar curvatures of (M,g) and (N, g),
respectively;

7. K(X,JY) = K(X*,¢Y*) + 3 where K and K are the sectional curvature
tensors of (M, ¢) and (N, g), respectively;

8. G(B(X,Y)Z,W) = g(B(X*,Y*)Z*,W*) where B and B are the contact
Bochner curvature and Bochner curvature tensors of (M,g) and (N,g),
respectively. Moreover, B vanishes iff B does.

As an example we shall prove the following theorem, cf. [BR2]:

Theorem 6 The p-sectional curvature determines completely the sectional cur-
vature of a Sasakian manifold.
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Proof It is well-known that for any plane tangent to the characteristic vec-
tor field the sectional curvature is equal to 1. The formula (4) establishes the
relation between the sectional curvature in the transverse direction in a Sasakian
manifold and the corresponding sectional curvature in the transverse manifold.
The formula (7) gives the precise relation between @-sectional curvature and the
holomorphic sectional curvature of M and N, respectively. As N is a Kéahler
manifold, its holomorphic sectional curvature determines its sectional curvature,
so the ¢p-sectional curvature determines the sectional curvature of a Sasakian
manifold M.O

The formula (7) leads to the following proposition:

Proposition 2 The characteristic foliation of a Sasakian space form M(c) is a
transversely Kdhler isometric flow modelled on a Kdhler space form N(c — 3).

Now let us turn our attention to submanifolds. Let W be an m + 1 dimensional
submanifold of M tangent to ¢, i.e. for any ¢ € W {(z) € T,W. For any point
of this submanifold we can find a very special adapted chart at this point.

Lemma 3 Let z be a point of a submanifold W tangent to the characteris-
tic vector field of a Sasakian manifold M. Then there exists an adapted chart
PV — R b = (1, .., 9n41), at & such that the set

U={y €V 1¢¥na(y) = ... = Yans1(y) = 0}
is a connected component of VNW containing ¢ and
(1)U, < tpmga |U): U — R™H
is an adapted chart for the induced foliation of W.

Proof It is a simple generalization of the classical result for submanifolds; we
have to start with adapted charts, and then proceed as in the standard case.O
This lemma leads us to the following proposition:
Proposition 3 Let W be a submanifold tangent to the characteristic foliation of

a Sasakian manifold M. Then for any point @ of W there exist neighbourhoods
U andV of x in W and M, respectively, having the following properties:

i) U is a connected component of VW containing x;
i1) U is a foliated subsct of V (for the characteristic foliation);

ii1) there exists a Riemannian submersion with connected fibres f:V — Ny onto
a Kdahler manifold Ny defining the characteristic foliation;
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iv) there exists a submanifold Wy of No such that U = f~1(Wy).

Proof Let U and V be neighbourhoods of the point  from Lemma 3. Then
the submersion f we define as pa, 0 ¥:V — R?" where p,, is the propjection
(z1y---Tont1) > (T2, ---Tons1)- On the set imf C R** the Sasakian structure of M
induces a Kahler structure for which the submersion is a Riemannian submersion.
Since the characteristic foliation restricted to V is defined by this submersion and
the set U is saturated, there exists a submanifold Wy of Ny satisfying the condition
(iv). O

If the submanifold W is foliated for the characteristic foliation Lemma 3 yields
the following stronger result. For example it is the case if W is a complete
submanifold.

Proposition 4 Let W be a submanifold of a Sasakian manifold M. If W is foli-
ated for the characteristic foliation of M, then for every cocycle U = {U;, fi, g5}
defining the characteristic foliation there exists a holonomy invariant submanifold
Wo of the transverse manifold such that W NU; = f7(Wo N N;).

Proposition 3 ensures that the study of local properties of submanifolds tan-
gent to the characteristic vector field of a Sasakian manifold can be reduced to the
study of a foliated submanifold of a Sasakian manifold with its characteristic foli-
ation given by a global Riemannian submersion with connected fibres. Then the
properties of submanifolds related via a Riemannian submersion, cf. Appendix,
further reduce it to the study of properties of the corresponding submanifolds
of a Kéahler manifold. This method applied to anti-invariant submanifolds of a
Sasakian manifold studied in [YK1] ensures that their properties are immediate
consequences of the properties of anti-invariant submanifolds of Kahler mani-
folds. We present a list of corresponding theorems. Of course this list does not
pretend to be exhaustive.

Sasakian (Chapter IV of [YK1]) Kahler (Chapter III of [YK1])
Proposition 2.3, Theorem 2.1, Cor. 2.1 Lemma 2.1 plus curvature estimates

Lemma 1.1 Lemma 2.1

Corollary 8.1 Corollary 5.1

Corollary 8.2 Corollary 5.2

Lemma 8.1 Lemma 5.2

Proposition 8.2 Proposition 6.5
Proposition 8.3 ! Proposition 6.6
Proposition 8.4 Proposition 6.7
Theorem 12.1 Theorem 10.2

In the statement of Proposition 8.3 the authors forgot to include the assumption ”the

normal f-structure is parallel”.
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V.3.3 Contact CR—submanifolds

First we recall the definition of a contact CR-submanifold, cf. [YK2].

Definition 1 Let W be a submanifold of a Sasakian manifold M tangent to the
characteristic vector field. W is called a contact CR-submanifold of M if there
exists a differentiable distribution D on W of constant dimension, D:z — D, C
T, W, salisfying the following conditions:

i) D is invariant with respect to @, i.e. for anyx € W oD, C Dy,

ii) the complementary orthogonal distribution Dt:x w— D} C T,W is anti-
invariant with respect to o, i.e. for anyx € W oD+ C T,W+.

The distribution D can be described in the following way:
ATLW) = p(D. @ DY) = 9(D2) @ (DY) C TLW & TLWL.

Thus
o(D;) C T.W N (T W) and o(DE) C ToW Nop(T.W).

Since p? = —id + @ &, @(T,W N (T, W)) C o(TuW) N T,W. Therefore Dy =
TW N (TW) C D. Similarly ¢(D*) = (TW)NTW+=+. Thus the distribution
Dy has constant dimension and Do = D or D = Do @ T'F, and D* = D @ TF
or D, respectively, where D¢ is the orthogonal complement of Do @ T'F. This
means that the tangent bundle TW of W admits the following decomposition:
TF @ Do® D¢. Moreover the distributions Dy and D¢ define the decomposition
of the subbundle kern = imep. For the rest of the paper we assume that D =
Do TF.

The above description of the distributions D and D+ coupled with the fact
that the tensors g and ¢ induce foliated tensors on kern yield the following; cf.

[YK2J:

Proposition 5 Let W be a submanifold tangent to the chardcteristic vector field
of a Sasakian manifold. Then W is a contact CR-submanifold iff the correspond-
ing submanifolds in the transverse manifold are CR-submanifolds.

Having described in detail the distributions D and D* we turn our attention
to their properties. The argument in the proof of Theorem I11.3.1 of [YK2] ensures
only that the distribution D @ TF is integrable. Thus the correct version of
Theorem I11.3.1 is the following:

Theorem 7 Let W be a contact CR-submanifold of a Sasakian manifold M.
Then the distribution D@ TF is completely integrable and its integral submani-
folds are anti-invariant submanifolds (tangent to the characteristic vector field).
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For the same reason Theorem I11.3.2 of [YK2] is not exact. It should read as
follows:

Theorem 8 Let W be a contact CR-submanifold of a Sasakian manifold M.
Then the distribution D is integrable ff B(X,PY) = B(Y,PX) for any X,Y €

D. Its integral submanifolds are invariant submanifolds of M.

Remark As the properties described by the above theorems are local, they
can be derived from the corresponding theorems for CR-submanifolds of Kahler
manifolds, compare Theorems IV.4.1 and 1V.4.2 of [YK2].

Proposition 6 Let W be a contact CR-submanifold tangent to the characteristic
vector field of a Sasakian manifold M. If g(B(X,Y),FZ) = 0 for any X,Y €
Dy, Z € Dy then any geodesic of W tangent to Dy at one point remains tangent
to Dy at any point of its domain.

Proof Since the foliation F|W is a Riemannian foliation a geodesic orthogonal
to F at one point is orthogonal to F at any point of its domain, and it is a
Do & D¢ horizontal lift of the corresponding geodesic in the transverse manifold,
cf. [RE,YO]. Let us consider a geodesic a: (a,b) — W tangent to Dy at 0 and the
set A = {t € (a,b):&(t) € Do}. The set A is closed and 0 € A. We shall show
that it is also open. As the problem is local we can reduce our considerations
to a foliated submanifold of a Sasakian manifold with the characteristic foliation
given by a global submersion with connected fibres, cf. Appendix. The relations
from Appendix ensure that §(B(X,Y),FZ) = 0 for any X,Y € D and Z € D*.
Then Proposition IV.4.2 of [YK2] ensures that D is a totally geodesic foliation
of Wy. Let & be the geodesic in Wy corresponding to «. If o is tangent to Dy at
t € (a,b), then & is tangent to D at this point. Since the foliation D is totally
geodesic & must be contained in some leaf of D. Hence o being the Do @ D
horizontal lift of &, it must be tangent to Dg. Therefore the set A is open, and

thus A = (a,5).0

Taking as a model K&hler manifolds we can introduce the following notions:
Definition 2 We say that a contact CR-submanifold W is:
1) Do-totally geodesic iff B(X,Y) =0 for any X,Y € Dy;

ii) contact mized foliate if B(X,Y) for any X € D and Y € D*, and B(PX,Y)
= B(X,PY) for any X,Y € D,.

Proposition 7 Let W be a contact CR-submantfold tangent to the characteristic
vector field of a Sasakian manifold M. If W is Do~totally geodesic, then D is a
foliation and any geodesic of W tangent to Dy at one point remains tangent to
Dy at any point of its domain.
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Proof It is a consequence of Appendix (8), Corollary IV.4.3 of [YK2] and of
the considerations similar to those of the second part of the proof of Proposition
6. O

Proposition 8 If W is a contact mized foliate non—irivial contact CR-subma-
nifold of a Sasakian manifold space form M(c), then ¢ < —3.

Proof The transverse manifold of the characteristic foliation has the constant
holomorphic sectional curvature equal to ¢+3. The problem is local and Appendix
(8) together with Proposition IV.4.3 of [YIK2] ensures that ¢+3 < 0. Thus ¢ < —3.
O

Corollary 2 Let W be a contact mized foliate contact CR-submanifold of a
Sasakian space form M(c). If ¢ > —3, then W is either an invariant submanifold
or an anti-inavriant submanifold of M(c).

It is a counterpart of Corollary IV.4.4 of [YK2]. Appendix 6 and Theorem
IV.6.1 of [YK2] or [BJ] yield the following.

Theorem 9 Let W be a contact totally umbilical non-trivial contact CR-subma-
nifold of a Sasakian manifold M. If dimDg > 1, then a geodesic orthogonal to ¢
and tangent to W at one point has this property on an open subset of its domain.

Proof Since the characteristic foliation is Riemannian we have to show that
the geodesic is tangent to W on an open subset of its domain. This property
is a local one and therefore we can reduce our considerations to the situation
described in Appendix. The geodesic is the kern horizontal lift of a geodesic in
N. Therefore it is sufficient to know that the submanifold Wj is totally geodesic.
This is precisely the fact which Bejancu’s theorem ensures. O

Theorem 10 Let W be a totally geodesic contact CR-submanifold of a Sasakian
manifold M. Then D and D* @ TF are Riemannian foliations, and locally:

1) W is diffeomorphic to R x Wy,
ii) F is given by the projection R x Wy — W,

iii) Wy is a Riemannian product of Ny X Ny of a totally geodesic invariant sub-
manifold No and a totally geodesic anti-invariant submanifold N1 of N.

Proof The properties i), ii) and iii) are a consequence of Proposition 2, A.6
and Theorem IV.6.2 of [YK2]. Therefore it remains to prove that the foliations
D and D+ @ TF are Riemannian. i.e. that a geodesic of W which is tangent to
Dy (resp. D) at one point remains tangent to Do (resp. Dg) at any point of
its domain. A similar argument as in the proof of Proposition 5 ensures that the
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problem is local and that we can reduce our considerations to the case described in
Appendix. Since the distributions Dy and Dy are orthogonal to F this property
is a simple consequence of the fact that this geodesic, being a geodesic of M, is a
kern horizontal lift of a geodesic in IV and that the corresponding distributions
D and D™, respectively, on Wy are totally geodesic foliations. O

Final remarks 1. The same method can be applied to submanifolds trans-
verse to the characteristic vector field of a Sasakian manifold.
2. This method is also applicable to the S—structures of D. E. Blair, cf. [BR1].

Appendix. Riemannian submersions and Sasakian man-
ifolds

Let M be a Sasakian manifold with the characteristic foliation given by a
global submersion f: M — N with connected fibres. The manifold N has an
induced Kahler structure and the submersion f is Riemannian for these Rieman-
nian structures. Any foliated submanifold W of M is of the form f~1(W;) where
Wy is a submanifold of N; we say that the submanifolds W and Wy correspond
via the Riemannian submersion f. We are going to compare the properties of W
and Wo, cf. Chapter VI of [YK1] and [YK2]; most of these properties are proved
in these two books.

1. Let V° and V° be the induced connections on W and Wj, respectively.
They are the Levi-Civita connections of the induced metrics gg and §o, respec-
tively. Moreover '
(V&Y) = —p*(V%.Y7).

2. Let D and D be the induced connections in the normal bundles of W and
W, respectively. Then

(DXV)* = Dx.V*where X € TWy and V € T*+W,.

3. Let B and B be the second fundamental forms of W and Wy, respectively.
Then

i) B(X*,Y*) = B(X,Y)"

ii) the second fundamental form of W is commutative iff the second fundamental
form of Wy is;

iii) let S and S be the square of the length of the second fundamental forms of W
and Wy, respectively, then S = S + 227, g(Jeft, Je); thus S < S + 2m.

4. Let m and m be the mean curvature vectors of W and Wy, respectively,
then

1) m* = Ztlm;
m
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i) if the means curvature vector of W is parallel, so is the mean curvature vector
of W().

5 Let P, F, f, f, t and P, I/, f, T be the corresponding (1,1)-tensors
associated with the submanifolds W and Wy, respectively. Then

P(X) = P(X7), F(X)" = F(X), J(X)" = f(X"), {X)" =1(X").
The following properties are not difficult to verify:
i) if f is parallel, so is f;
ii) if P is parallel, so is P;

iii) if PAy = Ay P, so PAy = AyP for any V € TW™ and V € TW{, respec-
tively.

6. The previous considerations ensure that:
i) W is minimal iff Wy is;
i1) W is anti-invariant iff Wy is;
iii) W is invariant iff Wy is, cf. [HR];
iv) if W is totally geodesic, so is Wy;
v) W is contact totally umbilical iff Wy is totally umbilical, cf. [KON];
vi) if W is anti-invariant, then

a) W is flat ifl Wy is;
b) il m = n, then the normal connection of W is flat iff the normal con-
nection of Wy is flat;
c) (Ro(X,Y)Z)* = Ro(X*,Y*)Z* where Ry and Ry are the curvature ten-
sors of W and Wy, respectively. Thus ‘
Ko(p) = Ko(p*) where Iy and I{y are the corresponding sectional
curvatures;
So(X,Y) = So(X*,Y*) where Sy and Sy are the corresponding Ricci
curvatures;
7o = 1o where 7o and 7y are the corresponding scalar curvatures;

vii) {rom (4) we get that:

a) W is anti-ivariant iff S = § + 2m;
b) W is invariant iff § = S.
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viii) if W is invariant then W is totally geodesic iff Wj is;

7. The submanifold W is a contact CR-submanifold iff W is a CR-subma-
nifold.

Let us denote by D and D+ the distributions on W corresponding to D
and D%, respectively. The distribution D+ is said to be totally geodesic if any
geodesic of W tangent to D at one point remains tangent to D*. Then we have
the following:

Proposition 9 i) The distribution D* is totally geodesic iff the foliation D* is
totally geodesic;

ii) the distribution D* is totally geodesic iff B(X,Y) € fTW? for any X €
D¢, Y € Dy

1) if B(X,Y) =0 for any X € Dy, Y € D¢, then the distribution Dt is totally
geodesic;

iv) a generic submanifold is contact mized totally geodesic iff the distribution D+
is totally geodesic.

Proof First let us remark that if we prove (i) then the other points will
follow easily from the corresponding properties of Kéhler manifolds as D+* = D
and D* = Dy Let us return to (i). Leaves of Dt @ TF are anti-invariant
submanifolds of M. The corresponding submanifolds of N are leaves of D+. A
geodesic « tangent to D is a geodesic ortogonal to F|W. Therefore it must be
a kern horizontal lift of a geodesic & in Wp. But the distribution D+ defines a
totally geodesic foliation, so & remains tangent to Dt and a to DF.O

8. For the notions introduced in Definition 2 we have the following:
i) W is a Do-totally geodesic iff W, is D-totally geodesic;
i1) W is contact mixed foliate iff Wy is mixed foliate.

The proof of both equivalences is a simple calculation.

Notes The chapter contains results of three papers which correspond to three
section, cf. [CW1], [CW2] and [WO19], respectively.

It is alimost impossible to mention all papers on transversely symplectic, holo-
morphic or Kéahler foliations. Various authors turned their attention to different
aspects of the theory, from characteristic classes to the theory of deformations.
The reader can easily find many papers on these foliations in the Bibliography.




Chapter VI
V — G—foliations

The notion of a V — G-foliation the author introduced in [WO3]. They are
these G-foliations on whose transverse manifold there is a holonomy invariant
G-connection. In Chapter II we showed that this property is equivalent to the
existence of a transversely projectable G-connection. This type of foliations was
studied earlier by P. Molino, cf. [MO2]. In Chapter IV we dedicated a lot of
space to find some conditions ensuring the existence of transversely projectable
G-connections. Under some assumptions V — G-foliations behave very much like
Riemannian foliations, which, of course, admit a transversely projectable con-
nection. In Chapter III we showed that these foliations admit a FSODE and
proved some similarities. But we would like to know which properties distin-
guish between these two classes of foliations. Let us take two other fundamental
properties of Riemannian foliations on compact manifolds:

a) the closures of leaves are submanifolds;
b) the base-like cohomology is of finite dimension.

In the next chapter we shall show that both properties do not hold for V —
G-foliations on a compact manifold, even if the corresponding FSODE (i.e.
the transversely projectable connection) is transversely complete, cf. Examples
VIL.10, VIL.11 and VIL.2.3 . In this chapter we concentrate our attention on the
converse problem: a V — G-foliation, when is it a Riemannian one?

V1.1 Preliminaries

We begin with the structure theorem for our foliations. Let w be the correspond-
ing transversely projectable connection in the foliated G-structure B(M,G; F).
The choice of a supplementary subbundle @ to T'F fixes our choice of a supple-
mentary subundle Q to TF;, ie. Q = (dm)~}(Q). Therefore the corresponding
fundamental horizontal vector fields B(¢) and the fundamental vertical vector

113
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fields A* form a transverse parallelism of F;. This transverse parallelism is com-
plete iff the connection w is transversely complete, i.e. its geodesics tangent to @
are globally defined. This results from the following simple lemma.

Lemma 1 The projections onto M of integral curves of the vector fields B(¢)
are geodesics tangent to @ of the connection w.

Proof Let & be the extension of the connection w as in Example I11.2. @ is a
connection in the GL(p) x G-structure B(M, G L(p) x G) which can be written as
the fibre product L(TF) xp B(M,G;F). The geodesics of & which are tangent
to @ are precisely the ”transverse geodesics” of w, i.e. solutions of the FSODE
of (M, F).

The fundamental horizontal vector fields B(¢), ¢ € R?, of B(M,G; F) can be
lifted to B(M,GL(p) x G). The lift of B(¢) is precisely the vector field B((0,¢))
for (0,¢) € R? x R? = R™. The projection of an integral curve of B((0,¢)) is a
geodesic of @, cf. [LIC], which must be tangent to . Since B((0,¢)) is the lift of
B(¢) the projections on M of integral curves of these vector fields are the same.
m}

The above considerations lead to the following definition.

Definition 1 A V — G-foliation is transversely complete if for some choice of a
supplementary subbundle Q) the corresponding FSODE s transversely complete,
or equivalently if the corresponding transverse parallelism is complete.

With this definition in mind we have the following structure theorem for

V — G-foliations:

Theorem 1 let F be a transversely complete V — G—foliation on a mantfold
M. Then the closures of leaves of the foliation Fy of the foliated G-structure
B(M,G;F) are fibres of a locally trivial fibre bundle, called the basic fibration.
The foliation of the closure of a leaf of Fy by leaves of Fy is a Lie foliation with
the same model Lie group for any leaf.

Proof It is a direct consequence of our considerations and Molino’s structure
theorem for complete T.P. foliations, cf. [MO5,MO11].0

For V — GG—foliations we can define, following P. Molino, the commuting sheaf,
cf. [MOG6,M09,MO11]. Let C; be the sheaf of germs of foliated vector fields X on
B commuting with all global foliated vector fields of (B, F;), thus in particular the
transverse parallelism of F;. This last condition is equivalent to L x0 = L yw = 0.
Let X be the corresponding vector field on the total space of B(N,G). Then
L0 = L = 0 where @ is the connection form of V. This means that X is the
lift of a local infinitesimal affine transformation of V. Thus the sheaf C; defines
the sheaf C of germs of foliated vector fields which are also local infinitesimal
affine transformations of the transversely projectable connection w. We call C
the commuting sheaf of F.
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Definition 2 We say that the commuting sheaf C is of compact type if the orbits
of the sheaf C; are compact.

The following proposition is an immediate consequence of the definition and

of the properties of T.P. foliations, cf. [M0O5,M09,MO11].

Proposition 1 Let F be a transversely complete V — G~foliation. If its commut-
ing sheaf is of compact type, then the closures of leaves are compact and they are
integral submanifolds of a regular distribution of non-constant dimension defined
by the commuting sheaf.

Let us assume that the foliation F is a transversely complete V — G—foliation.
Since the foliation F| is complete T.P., it determines a locally trivial fibration
(the basic fibration) p: B — W whose fibres are the closures of leaves of the
foliation Fy, cf. [MO5,M0O9,MO11]. As this foliation is G-invariant, the group G
acts on the basic manifold W. This leads us to the following lemma whose proof
is trivial.

Lemma 2 If the commuting sheaf C is of compact type, then the action of the
group G' on the basic manifold W is proper.

Using the properties of proper actions of Lie groups, cf. [PA2,KS,DA], we can
define types of closures of leaves, cf. [DA,HA3]. In the foliations considered by us
the closures of leaves correspond bijectively to orbits of the action of the group
G on the basic manifold W. We say that two leaves have the same closure type if
the corresponding (to the closures) orbits are of the same normal orbit type. Let
a be a normal orbit type. Then the space W, of all points of W whose G-orbit
is of lype «a is a proper submanifold of W, the space V, of G-orbits of W, is a
manifold and the natural projection k: W, — V, is a locally trivial fibre bundle.
The same can be proved for leaves.

Proposition 2 Let F be a V — G—foliation with the commuting sheaf C of com-
pact type and let « be a closure type of leaves of the foliation F. Then the space
M, of all points of leaves of the closure type a is a proper submanifold of M.
The space of closures of leaves of M, is a Hausdor{f manifold V,, and the natural
projection py: My — Vo is a locally trivial fibre bundle.

Proof Let a be a closure type of leaves of the foliation F. The corresponding
(G-orbit type we denote by the same letter a. The stratum W, of the basic man-
ifold is a proper submanifold of W. Thus p~'(W,) is a proper submanifold of B.
Since the set M, is equal to the quotient p~*(W,)/G, it is a proper submanifold
of M. The space of closures of leaves of M, is precisely the space of G-orbits
of W,, thus it is a Hausdorff manifold. The submersion is a locally trivial fibre
bundle, as its fibres, the closures of leaves of F, are compact.
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Corollary 1 If v is the principal normal orbit type of the action of the group G
on the basic manifold W, then the corresponding stratum M., is open and dense

Remark In the Riemannian case the notion of the a—stratum was introduced

by A. Haefliger, cf. [HA3,HA4]; compare also [PI].

V1.2 The case of a pseudogroup

Let 'H be a pseudogroup of local affine transformations of a connection V in a
G-structure B(S, @). To any element h of H corresponds a local diffeomorphism
R' of B which preserves the parallelism of B. And vice-versa, any such a local dif-
feomorphism of B of connected domain is defined by a local affine transformation.
The correspondence j1: h —s Al associates to the pseudogroup H a pseudogroup
JYH of local diffeomorphisms of B preserving the parallelism.

There is a natural one-to-one correspondence between pseudogroups and group-
oids of germs of local diffeomorphisms. The groupoid defined by a pseudogroup
‘H we denote by H.

Definition 3 We say that a pseudogroup H of local affine transformations of a
connection in B(S,G) is closed if the groupoid jYH is closed in the groupoid of
germs of local diffeomorphisms preserving the parallelism of B.

For our purposes we need also the following definition.

Definition 4 We say that a pseudogroup H of local affine transformations of
a connection in a G-structure B(S,G;m) is of compact type if for any compact
subset K of S and any point © of B the set j*Ha N7~ 1K) is relatively compact.

Remark Both notions are ’invariant’ under compactly generated equivalences
of pseudogroups.
Having formulated these definitions we can prove the following:

Proposition 3 Let H be a complete pseudogroup of local affine transformations
of a connection V in a G-structure B(S,G). Then there exists the unique pseu-
dogroup H of local affine transformations of the connection V called the closure
of H such that Z}E is the closure of j'H. The pseudogroup H is also complete
and p: H/H — S is a covering. The pseudogroup H is equivalent to a covering
of H. If H is of compact type, so is F. Moreover, the closures of orbits of H are
the orbits of the pseudogroup H and the space of orbits of H is Hausdorff.
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Proof The results concerning complete pseudogroups can be derived easily
from the known results on pseudogroups of local isometries, cf. [HA3,HA4], as
the pseudogroup j'M is a pseudogroup of local diffeomorphisms preserving a
parallelism, thus, in fact, a pseudogroup of local isometries.

If the pseudogroup H is of compact type, so must be H, as ]_17‘(_~ is the closure
of jH. The orbits of the pseudogroup jVH are closed; they are the closures of
orbits of jYH. Since the pseudogroup H is of compact type, their projections
onto manifold S are closed and they are the closures of orbits of the pseudogroup
‘H. Moreover, from the very definition these projections are the orbits of the
pseudogroup H. Using the same methods as in the proof of Proposition 3.1 of
[HA4] we can show that the space of orbits of H is Hausdorff.O

In our case, Salem’s theorem, (cf. [SA1,SA2]), yields the following.

Theorem 2 A closed complete pseudogroup H of local affine transformations of
a connection V in a G-structure B(S,G) is a Lie pseudogroup i.e. for each point
of the manifold S, there is an open neighbourhood U and a finite dimensional
Lie algebra g(U) of infinitesimal affine transformations of the connection V on
U such that for any relatively compact subset V of U ; V C U, the elements of
H close to the identity of the domain V' are of the form exp & for some & € g(U).

The closure of the H-orbit of a point zg of S is a submanifold S5. Denote
by N its normal bundle. Both pseudogroups H and H act on this bundle. The
pseudogroup defined by these actions we denote by Hy and Hy, respectively.
Then:

Lemma 3 The pseudogroup Hy is differentiably equivalent to the restriction of
H to a small tubular neighbourhood of Sy.

Proof The submanifold S is the H-orbit of the point zo. The isotropy
group H,, at xo can be identified with a compact subgroup of the group of
lincar transformations of the tangent space of S at zg. Therefore the action
of H,, is semi-simple. Since the action of H preserves the tangent bundle to
the submanifold Sg, there exists a subbundle @ of T'S on Sy supplementary to
T'Sy which is H —invariant. The exponential mapping defined by the connection
restricted to the subbundle @ provides the equivalence we have been looking
for.O

This lemma and the facts we have proved earlier (cf. Proposition 3 and
Theorem 2) ensure that Theorems 4.3 and 5.6.1 of [HA4] are also valid in this
case. This implies that for any closure Hzq of an orbit Hzg of the pseudogroup
M there exists a tubular neighbourhood U of this submanifold and a Riemannian
metric gy on this neighbourhood such that the restriction Hy of this pseudogroup
to the open subset U is a pseudogroup of local isometries of gy. Let O be an open
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covering by H-saturated open subsets of S as above. Using the same method as
in [WO21] we can construct an H —invariant partition of unity subordinated to
O. Piecing together the Riemannian metrics gy with the help of this partition
of unity we get a Riemannian metric on the whole manifold S of which the
pseudogroup H is a pseudogroup of local isometries. Lemma 3 ensures that the
pseudogroup generated by restrictions of H to open sets of O is the pseudogroup
'H itself. Therefore we have proved the following:

Theorem 3 Let H be a pseudogroup of local affine transformations of a linear
connection on a mantfold S. If the pseudogroup H is complete and of compact
type, then H is a pseudogroup of local isometries of some Riemannian melric on

the manifold S.

V1.3 The case of a foliation

In this section we shall apply the results of Section 2 to V — G—foliations. Let
U = {U,, fi, 9i;} be a cocycle defining the foliation F for which the sets U; are
relatively compact and such that the covering {U;} is locally finite. For such a
cocycle the leaves of the foliation F correspond to the orbits of the pseudogroup H
and the closures of leaves correspond to the closures of orbits of this pseudogroup.
Moreover, it is not difficult to verify that if the closures of leaves of the foliation JF;
are compact, the pseudogroup H is of compact type. Thus, if the commuting sheaf
C of the foliation F is of compact type the holonomy pseudogroup H associated
to the cocycle U is of compact type as well. Therefore to apply Theorem 3 to
our V — (G-foliations we have to find some natural condition which would ensure
that H is complete.

‘Lemma 4 If the commuting sheaf is of compact type then the linear holonomy
of any leaf is distal.

Proof The bundle N(M;F) is the associated fibre bundle to L(M;F) (or
B(M,G;F)) with the standard fibre R?. The foliation Fy of N(M;F) is the
corresponding foliation to the foliation Fy of L(M;F). If the commuting sheaf
of F is of compact type it is not difficult to see that the closures of leaves of the
foliation Fpy are compact and that the saturation by the closures of leaves of any
compact subset of N(M;F) is also compact.

Having said that it is easy to verify that any eigenvalue of the linear holonomy
map must have absolute value equal to 1. This means precisely that this linear
mapping is distal and therefore the linear holonomy of any leaf must be distal,

cf. [CGl.O

Let us look at the consequences of this property. Let v be a point of the fibre
N(M;F),, over a point m. The leaf L, of the foliation Fy of N(M;F) passing
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through this point v cannot approach the zero section of N(M;F). Assume that
it is the case. Then L, N L,, # @, where L,, is the leaf passing through m.
By taking the leaf from this intersection we can assume that L, D L,,. The
projection L’ of the leaf L onto M also contains L., in its closure. Then there
exists a leaf L” of F over L., such that exp(L”) = L'. Therefore there exists a
sequence of points v, in N(M;F),,NL" which tends to m. Let «, be a leaf curve
linking v, t0 vn41. It is contained in N(M;F)|L,,. lts projection 4, is a curve
in the leaf L,,. Consider the holonomy mapping h,, defined by «,. Its linear part
must map v, to v,y as it is the end of the lift of the curve 4, to the vector v,
This means precisely that the linear holonomy of the leaf of F passing though m
does not have distal linear holonomy at m. Contradiction.

Lemma 5 Let F be a transversely complete V — G—foliation with the commuting
sheaf of compact type. Then its holonomy pseudogroup is complete.

Proof Let us consider a cocycle U definig the foliation F as at the beginning
of this section and the holonomy pseudogroup H defined by this cocycle. Let us
chose two points © and y of the transverse manifold N belonging to N; and IVj,
respectively. We can choose two points ' and y’ and sets U’ and V' such that
Ji|U" and f;|V" are diffeomorphisms onto open neighbourhoods U/ and V of z and
y, respectively.

We shall try to demonstrate that the neighbourhoods U and V or some their
open subsets are the ones we are looking for.

Let h be an element of the holonomy pseudogroup such that for some point z
of U hiz) € V. To this local diffeomorphism corresponds a local diffeomorphism
of U’ into V' obtained as the holonomy along a leaf curve A linking the point 2’ of
U’ to h(z)' of V'; where fi(2') = z and f;(h(z)") = h(z). Let us choose complete
vector fields B(e;) correponding to the foliated vector fields B(e;),7 = 1,...q. The
vector subbundle spanned by these vector fields projects onto the manifold M and
forms a subbundle @) supplementary to the tangent bundle to leaves of the folia-
tion. The projections of integral curves of the vector fields 3> a; B(e;) = B(Y oye;)
are geodesics tangent to the subbundle @ of the transversely projectable connec-
tion. Therefore these geodesics are globally defined. For any point m of the
manifold M let us denote by ezp,, the exponential mapping defined by the con-
nection: exp,,: Qm — M. By e(m) we denote the greatest number for which
expm|B(m, €(m)) is an embedding, where B(m, r) is the open ball in @, at 0 with
radius 7. Since the foliation F is of compact type, for any leaf L of F there exist
an open saturated neighbourhood P of this leaf and a positive number € such
that for any point m of P exp,,|B(m,¢€) is an embedding. We can assume that
both U’ and V' are contained in exp,(B(z',¢)) and exp,(B(y', €)), respectively.

Let us describe in detail the way one can obtain the holonomy along any leaf
curve a from z’ to y’. Let w be any point of U’. There exists precisely one
geodesic 7, linking 2’ to w in U’ with the initial condition exp;'(w) = &,. Let
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oy, be the lift of the curve « to the leaf of the foliation Fy passing through the
point £,. The curve t — exp(a,(t)) is a leaf curve passing through the point
w. Its end, h,(w), is the value at w of the holonomy diffeomorphism h, defined
by the curve a. To have the mapping well defined on the whole U’ we must know
that the norm of vectors of curves «,, is always smaller than e.

We shall prove that there exists § > 0 such that the saturation of B(z’,§) does
not have vectors with the norm greater or equal to €. Assume the contrary. Then
there exists a sequence of vectors ¢,, of the norm ¢ which belong to the closures
of leaves passing through points of B(z',1/n), respectively. Thus the saturation
of m is a compact set. Hence it must contain L; contradiction.

Let us return to our point z’ and the holonomy mapping hg defined by the
leaf curve . Assume that this point belongs to exp(B(z',§)). The previous
considerations ensure that to complete the proof we need to show that hgp is
defined by some holonomy mapping at z'. Let £ = exp'(z’) and B be the lift
of the curve f§ to the leaf of the foliation Fn passing through ¢,.. Then the leaf
curve a: ¢ — exp(B(t)) defines the holonomy mapping we have been looking for.

The subsets U = fi(exp(B(',6))) and V = fi(expy(B(z',€))) with § chosen
as above satisfy the condition of Definition 1.5.0

Our considerations together with these of Section 1 lead to the following the-
orem.

Theorem 4 Let F be a transversely complete V — G —foliation. If its commuting
sheaf is of compact type, then the foliation F is a Riemannian one.

Proof Lemma 5 ensures that the holonomy pseudogroup of F is complete.
Moreover this pseudogroup is also of compact type as our previous considerations
indicate. Then the theorem is a consequence of Theorem 3.

V1.4 The case of a flow

In this section we pay particular attention to flows admitting foliated G-structures.
Using a different method we refine the results obtained in the previous section.

Let the foliation F be given by a flow ® = (¢;). We say that the flow admits
an almost connection, cf. [MO4], if there exists a supplementary subbundle @ to
the tangent bundle to F such that for any ¢

a) d¢(Q) C Q.

Now we shall look at the consequences of this condition for flows admitting
a transversely projectably connection V7. This connection can be considered as
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a connection in the vector bundle @). It defines a system of ordinary differential
cquations of order 2, the equation of the geodesic. The projections of geodesics of
V7 tangent to () onto the transverse manifold are geodesics of the corresponding
connection V of this manifold. Moreover, a curve tangent to @ and projecting
onto a geodesic of V is itself a geodesic of V7.

For any leaf curve a:[a,b] — M and geodesic v: [0,¢] — M tangent to Q,
a(a) = v(0), there exists the unique mapping o: [a,b] X [0, €] —» M such that

1. for any t € [0, €], o|[a, b] x {t} = o, is leaf curve and oy = o;
2. for any s € [a,b],0|{s} x [0,€¢] = ¢° is a geodesic tangent to @ and ¢® = 1.

Let us take « equal to a segment of the flow @, i.e. afs) = ®(z, s) for some
x € M. Then the condition (a) ensures that the curves ¢* are equal to ¢, 0+, as
the curve ¢, o v has the same projection onto the transverse manifold, modulo
the action of the holonomy pseudogroup, as 4. Thus, in fact, it is a geodesic
of V7 tangent to Q. Therefore the curve o, is a segment of the flow ®, i.e.
o.(s) = ®(v(e€),s). Reversing, if for any pair of curves o and =, as above, the
curve o, is a segment of the flow @, then the curves ¢, o v are geodesics tangent
to @ and, therefore, the flow @ satisfies the condition (a).

We have just proved that the condition (a) is equivalent to the following one:

a') the mappings ¢, send geodesics of V7 tangent to Q onto geodesics of V7
tangent to Q).

The choice of a supplementary subbundle @ allows us to define global vector-
fields B(€) for any £ € R7. It is easy to check that the condition (a') is equivalent
to the following one:

a") the vector fields B(£) commute with the lifted flow @ on the total space B
of the principal fibre bundle B(M, G; F).

The condition (a) is equivalent to the vanishing of a cohomology class with
values in R associated to the action of the additive group R, called the Atiyah-
Molino class of the action (cf. [MO4]).

We continue the study of properties of V — G-flows.

Theorem 5 Let (M, F) be a V — G-flow with non-zero commuting sheaf. Then,
if it admils an almost-connection there exists a parametrization of F making il
an isometric flow.
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Proof Let & = (¢:) be the parametrization of the flow F satisfying the
condition (a). Let X be the vector field defined by the flow. First of all, let us
remark that there is a 1-form w such that w(X) > 0 and ixdw = 0. In fact, let
us put w(X) =1 and w|@ = 0. We have to verify only the second condition. Let
Y be any vector of @ at a point z. The condition (a) ensures that there exists a
vector field ¥, a section of @, defined on a small neighbourhood of = extending
the vector ¥ and commuting with X. Then dw(X,Y) = 0.

Taking into account the criterion of Sullivan-Gluck (cf. [GL]) we have to
show the existence of a bundle-like metric for the foliation F. Unfortunately, we
cannot use Theorem 4 as we do not assume that the foliation is a transversely
complete V — G-foliation. We have to do it in another way.

The lifted flow @, on the total space B commutes with the vector fields B(¢)
and A*. Using the methods developed by P.Molino, c¢f. [MO5,MO11], one can
verify that although the vector fields B(¢) need not to be complete, the space of
leaves of @, is a Hausdorff manifold W and the natural submersion p: B — W
is a locally trivial fibre bundle. It results from the fact that integral curves of the
vector field B(¢) are defined on the same interval for any point of a given orbit.
As the commuting sheaf is non-zero, the fibres of the basic fibration are the tori
with dense flows, cf. [MO10,GH2]. We can choose the standard fibre T* and a

“dense flow @, in T*. The structure group of the basic fibration commutes with
the flow ®q as the vector fields A* and B(¢) commute with ®;. The flow @ is a
reparametrization of a linear flow of T# .

The action of the group G on W is proper. Therefore any point v of W has a
G-invariant neighbourhood of the form V x gy G, where H is the isotropy subgroup
at v, and V is a small transverse submanifold at v identified with T,,W/T,zG.
The transverse submanifold V' is contractible; thus the basic fibration over V is
trivial, i.e. B|V & V x T*. Therefore, over V x ;y G, there exists a diffeomorphism
h commuting with the actions of the group G,

hip ™ (VxgG)=V' — (Vx TF) xg G.

The diffeomorphism & maps the lifted flow ®; onto the flow of (V x T¥) xy G
defined by the standard flow ®, of T*. The foliation of V x T* defined by the
flow ®, is a Riemannian foliation. Since this foliation is H -invariant, it admits an
H-invariant bundle-like metric. Thus it is possible to find a G-invariant bundle-
like metric on V'. In fact, it is suflicient to take a right G-invariant and left
H-invariant metric on G. These two metrics define an H-invariant metric for
the diagonal action of H on V x T* x G. Thus this metric induces a Riemannian
metric gy on V' . The Riemannian metric gy+ is a bundle-like metric for the
foliation Fj restricted to V' and, moreover, it is a G-invariant one.

Let V = {V,} be an open locally finite covering of B by G-invariant sets
of type (V x T*) x g G. We would like to construct a partition of unity {A.}
subordinated to the covering V by G-invariant basic functions. Choose a set
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V' = (V x T¥) x G. For any compact subset K of V we shall construct a
G-invariant basic function which is equal to 1 on K and when restricted to V
has compact support. In fact, for any compact K C V there exists a function
1V —[0,1] of compact support such that f| = 1. As the group H is compact,
we can assume that fis H-invariant. Then the function fpy, p1: VxT¢xG — V,
is G-invariant and H-invariant for the diagonal action of H. Therefore it projects
to a G-invariant function on V' with the required properties. Eventually, by
taking a refined covering we obtain a partition of unity for which we have been
looking for.

Using a G-invariant partition of unity {A,} and G-invariant bundle-like me-
trics {gv,} constructed above, we obtain a G-invariant bundle-like metric § =
Y Aagv, on B. The restriction of this metric to the horizontal space I' of the
connection induces a bundle-like metric on the manifold M. This ends the proof
of the theorem.O

Corollary 2 If the holonomy pseudogroup is I-connected, then the flow F is
tsometric.

Proof Let {U, fi, gi;} be a cocycle making the foliation F a Riemannian flow.
Since the fundamental groups of representatives of the holonomy pseudogroup
are isomorphic (cf. [HA4,HS,SA2]), the representative H of the holonomy pseu-
dogroup defined by this cocycle is also 1-connected. This implies that the com-
muting sheaf is constant, which in its turn ensures that the flow F can be
parametrized in such a way as to make it isometric, cf. [MOS].

V1.5 Equicontinuous V — G—foliations

In Appendix E to [MO11] E. Ghys suggested the study of foliations whose holon-
omy pseudogroup consists of equicontinuous transformations for some metric on
the transverse manifold. Moreover he conjectured that the closures of orbits of

- a flow whose holonomy pseudogroup is equicontinuous are orbits of some abelian

groups. We prove this conjecture for foliations admitting a transversely pro-
jectable connection. In fact we show something much stronger; that such folia-
tions must be Riemannian.

For general pseudogroups the notion of a complete pseudogroup is not invari-
ant under equivalences as the following example illustrates well this fact.

Example 1 Let N = R and H be a pseudogroup generated by the homothety
liy:x = Az for 0 < A < 1 and the translation 71z — x4+ 1. (N, H) is a complete
pseudogroup. It is equivalent to its restriction H’ to the interval (—1/2,1/2).
However this second pseudogroup is not complete.

To obtain a notion which is invariant under equivalences of pseudogroups we
should demand more.
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Definition 5 A pseudogroup (N, H) is strongly complete if for any two points x
and y of N and any neighbourhood Vy of y there exist neighbourhoods U and V
of z and y, respectively, V C Vy such that any element h of H with domain in U
and target in V' can be extended to an element h' of H defined on the whole set
U and whose image is contained in Vj.

For pseudogroups of local isometries and for ”equicontinuous” pseudogroups
the notions of completeness and strong completeness are equivalent. It is not dif-
ficult to check that a pseudogroup equivalent to a strongly complete pseudogroup
is itself strongly complete. Moreover it is obvious that a strongly complete pseu-
dogroup is complete. The pseudogroup (INV,H) of Example 1 is not strongly
complete although it is complete.

The assumption of strong completeness seems to impose very strong restric-
tions on the pseudogroup. Let us look into this problem. Let V be any cocycle
defining F and U be a relatively compact cocycle associated to it, c¢f. Chap-
ter I. We denote the transverse manifold associated to the cocycle U« by N’ and
the holonomy pseudogroup representative on N/ by H'. The transverse mani-
fold associated to the cocycle V is denoted by N and the holonomy pseudogroup
representative on N by H. The subset N’ of N is relatively compact and the
pseudogroup H' is the restriction of H to N'.

Since N’ is a relatively compact subset of N there exists € > 0 such that for
any point * € N' there is an open neighbourhood V, of = with the following
properties: ‘

1) for any z € V, exp,|B(0,,¢€) is a diffeomorphism onto the image;
i) exp,(S(0,,€) NV, = 0;

where B(0,,¢) = {v € TN,:||v]| < €} and 5(0,,¢) = {v € TN,:|jv|| = €}, for
some Riemannian metric on V. This fact results easily from a slight refinement
of the clasical argument about geodesically convex neighbourhoods, cf. [IKXN].

Having established these technical details we return to the strong complete-
ness. Let us take a pair of points z and y with Vo = V,. Then the set U can
be equal to B(z,§) = expy(B(04,8)) for some § > 0, and V' C V,. Then for any
element h of H defined on U we have

h o expy|B(0s,8) = exph(s) 0 dzh|B(04, ).

As h(U) C V,, the set dyh(B(0,,6)) must be contained in B(0p),€). This
means precisely that the set JYH(z,V) = {jlh:h € H, h(z) € V} is bounded
(relatively compact). Hence for any relatively compact subset /X of NV the set
J'H(z,K) = {jlh:h € H, h(z) € K} is relatively compact. Thus we have
proved the following lemma.




VI. ¥V — GG-foliations 125

Lemma 6 A strongly complete pseudogroup of local affine transformations of an
affine connection is of compact type.

Combining Lemma 6 with Theorem 3 we get the following theorem.

Theorem 6 Let F be a V —G-foliation on a compact manifold. If the holonomy
pseudogroup of F is strongly complete, then F is a Riemannian foliation.

As a corollary we obtain:

Corollary 3 A V — G-foliation F of a compact manifold whose holonomy pseu-
dogroup is equicontinuous is a Riemannian foliation.

Theorem 7 Let F be a flow on a compact manifold admitiing a transversely
projectable connection. If F has a representative of the holonomy pseudogroup
which is equiconlinuous for some metric inducing the natural topology on the
transverse manifold, then the closures of its orbits are diffeomorphic to tori.

Proof It is a consequence of Corollary 3 and Carriére’s result on minimal

Riemannian flows, cf. [CA1,CA3].0

For transversely afline flows we have an even stronger result.

Corollary 4 Let F be a transversely affine flow on a compact manifold. If for
some finite cocycle defining F the representative of its holonomy pseudogroup is
complele, then the closures of its orbits are diffeomorphic to tori.

Proof It is a consequence of Theorem IV.5 and Theorem 3.0

Remarks 1. It is impossible to prove that the flow is distal and then apply the
result of Ellis, cf. [EL]. There are 1-dimensional transversely affine flows with
distal holonomy group which are induced by both distal and non-distal flows.
Such an example has been constructed by E. Ghys.

2. It can be easily proved that the condition

Vz,y € N 3U,V neighbourhoods of z and y, respectively, such that
JYH(U, V) = {j}h:z € U, h(U) C V} is bounded

is suflicient for strong completeness of the holonomy pseudogroup.
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VI.6 Foliations with all leaves compact

We complete the chapter with a glance at V—G foliations with all leaves compact.
The results presented in this section complement our considerations of Section
IV.2. The main idea is to linearize the holonomy of any leaf.

Using the exponential mapping defined by transverse geodesics of the trans-
versely projectable connection we can try to linearize the holonomy of any leaf L
of the foliation, i.e. we would like to know whether there exists an open neigh-
bourhood D of L in the normal bundle N(L) of the leaf L and an open saturated
neighbourhood U of L in M such that exp|D: D — M is a diffeomorphism of D
onto U. If it is true, then for any point € L and any element h of the holonomy
group of L at = we have: exp o h o (exp|D) D, = dh|D,. Let us assume that
we can linearize holonomy. If the leaves are compact, then any orbit of the linear
holonomy group is finite. In this case it is not difficult to see that any element of
the linear holonomy group is of finite order and the Schur Theorem, cf. [CG,SU]J,
ensures that this group is finite and that the space of leaves of F is a Satake
manifold.

The converse is, in fact, also true. The results of D.B.A.Epstein, cf. [EP],
ensure that any leaf has a basis of open saturated neighbourhoods. As the leaves
are compact, for any leal L there exists an ¢ > 0 such that exp|D(L): D (L) —
M is a diffeomorphism onto the image, where D (L) = {v € N(L):||v]| < ¢}
for some Riemannian metric on N(F). Then we can find an open saturated
neighbourhood U of L contained in exp(D(L)). Thus explezp™(U) defines the
required linealization of the holonomy group of L. We have proved the following
theorem.

Theorem 8 Let F be a V — G —foliation with all leaves compact. Then the holon-
omy of any leaf of F can be linearized iff the space of leaves of F is a Satake
manifold.

As a corollary we get the fact that the space of leaves of a Riemannian foliation
with all leaves compact on a non—compact manifold is a Satake manifold. It is so
since the holonomy of any compact leal of a Riemannian foliation is linearisable.

These considerations can be summarized as {ollows:

Corollary 5 Let F be a V — G-foliation with all leaves compact on a compact
mantfold M. Then the following conditions are cquivalent:

1. the holonomy of each leaf is lineartsable;
2. F is Riemannian;
3. the holonomy of each leaf is finite;

4. the space of leaves is a Satake manifold;
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5. the volume function is locally bounded;

6. the foliation F is minimal.

Corollary 5 is a consequence of our considerations and of [EMS,EP4,RU], see
also Appendix B by V.Sergiescu in [MOI11]. Conditions 2, 3, 4, 5 and 6) are
equivalent for any foliation with all leaves compact on a compact manifold.

Corollary 6 If the foliation F is of codimension 2, then the holonomy of any
leaf is linearisable.

Proof It is a consequence of Theorem 2 of [EMS].O

Notes The chapter contains results published in four papers. Section 1 is
based on [WO3] and [WO15]. Sections 2,3 and 4 present the rest of [WO15].
Section 5 contains the main result of [W020]. A part of [WO12] dealing with
V — G-foliations is reproduced in Section 6.

Only a few authors have been interested in transversely projectable connec-
tions and V — G—foliations. The basic facts have been established by P. Molino in
[MO1], [MO2] and [MO11]. The book of F. Kamber and Ph. Tonder, cf. [KT1],
contains very important results on characteristic classes of foliated bundles with
foliated connections. We should also mention a series of results of R. A. Blu-
menthal about which we have talked in Section IV.4 as well as a paper by 1. V.
Belko on the group of global affine transformations of a transversely projectable
connection, cf. [BK], and a paper by II. Suzuki, cf. [SK].






Chapter VII

Transversely affine foliations

Let M be a connected manifold of dimension n and F a codimension ¢ foliation
on M. The foliation F is called transversely affine (for short TAF) if there exists
a cocycle U defining F, U = {U,, fi, 9i;}, modelled on a ¢-dimensional affine
space B such that the transformations g;; are restrictions of elements of the affine
group A[(E); in other words F is an (A{(E), E)-structure.

The pair (M, F) where F is a TAI" is called a transversely affine foliated
manifold, for short TAFM. TAFs are developable, i.e. there exist a covering M
of M (called the holonomy covering of (M, F)) and a submersion D : M —E
called the developing mapping of F such that the leaves of the lifted foliation
F on M are the connected components of the fibres of the submersion D. In
general, the developing mapping D is neither surjective nor locally trivial, and
neither of these conditions implies the other.

Moreover there exist homomorphisms: a:71(A) — AE) called the affine
holonomy representation and ima = I' the afline holonomy group, A: 7 (M) —
GL(E) called the linear holonomy representation (just the linear part of o) and
imX the linear holonomy group, and the mapping w: (M) — E the transla-
tional part of a which is a cocycle with values in E (for the group my(M) with
the linear representation A). The group of the deck transformations of M can be
identified with the afline holonomy group.

Although a TAF is developable, il does not mean that D(]\?f) is a trans-
verse manifold. The fibres of the developing mapping needn’t be connected and
therefore the holonomy pseudogroup of such a foliation is not the pseudogroup
obtained as the localisation of the action of the affine holonomy group on D(M).

Example 1 (Hop/f foliation)

Let us consider the submersion p;: R?\ {(0,0,0)} — R, p1: (2,9, 2) — z. The
quotient of R®\ {(0,0,0)} by the homothety Ay with [A| < 1is S x S*. The
foliation given by the submersion p; projects to a TAI of S% x S'. Its affine
holonomy group is generated by the homothety hy of R. This foliation is not
complete, although the developing mapping is surjective. Therefore R is not a

129
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(complete) transverse manifold of the Hopf foliation. In fact, we need two copies
of R. The pseudogroup obtained as the localization of the action of the afline
holonomy group is a proper subpseudogroup of the holonomy pseudogroup on
this transverse manifold.

VII.1 Completeness
In the case of TAFM we have the following two notions of completeness:

Definition 1 A TAF F is:

i) complete if the universal covering of the manifold M is of the form L xE
where L ts a leaf of the lifted foliation F and the foliation F is defined by
the projection onto the second factor;

it) transversely geodesically complete if for some choice of a supplementary sub-
Y P Py Y
bundle @) transverse geodesics tangent to Q) of the flat transversely pro-
jectable connection are global.

If the foliation F is complete E can be considered as a (complete) transverse
manifold and its holonomy pseudogroup is the pseudogroup obtained by the lo-
calisation of the action of the affine holonomy group.

Before embarking on the discussion of completeness we prove a very important
result concerning the affine holonomy group of a complete TAF.

Theorem 1 Let F be a complete transversely affine foliation on a compact man-
ifold M. Then the affine holonomy representation is irreducible.

Proof The manifold M is the quotient of its covering space M by the group 7 of
the deck transformations. Thus M = 7r\lAL x E and the group 7 is isomorphic to the
affine holonomy group. Let us assume that F is an afline subspace of E invariant
under 7. Then the inclusion of 7r\[: x F into ﬂ\iJ x E induces isomorphisms
of the homotopy groups and therefore it is a homotopy equivalence of compact
manifolds 7\L x F and M. Thus they must be of the same dimension. Hence
F = E and the affine holonomy representation is irreducible.O

From the considerations of Chapter III result that transverse geodesics via
the developing mapping (after being lifted to M) project onto straight lines in
E. The developing mapping of a transversely geodesically complete foliation
is surjective and a locally trivial fibre bundle, cf. Theorem III.1. And as E
is contractible the developing mapping is a trivial bundle, thus the foliation F
is complete. Unfortunately, it is not known whether these two conditions are
equivalent for TAFs on compact manifolds. Moreover, it is unknown whether
transverse geodesic completeness depends on the choice of a subbundle Q). The
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geodesic completeness is not equivalent to completeness and it depends on the
choice of a supplementary subbundle, ¢f. Example II1.3. for an example on a
non-compact manifold. For compact manifolds this problem has been recently
solved by G. Hector. However, for a TAT" of a compact manifold with all leaves
compact the following is true.

Proposition 1 Let F be a TAF with all leaves compact. If F is transversely
geodesically complete for one supplementary subbundle or more generally, if F
is complete, then the foliation F is transversely geodesically complete for any
supplementary subbundle.

Proof The developing mapping of F is a trivial bundle over E. Its fibre being
the holonomy covering of leaves of F must be compact as the foliation F has
leaves without holonomy, cf. [EP,IIC]. Therefore for any horizontal bundle of the
developing mapping we can lift horizontally any straight line in E. This ensures
that our foliation is transversely geodesically complete for any supplementary
subbundle.O

Unfortunately, we cannot prove that a foliation with all leaves compact is com-
plete. It is suflicient to take an example of Goldman, cf. [GO2], of a non-complete
compact afline manifold and take the product of this manifold with 1. The folia-
tion given by the projection onto the non-complete flat manifold is not complete.
Although the completeness is not a transverse property some assumptions on the
affine holonomy group can ensure that the foliation is complete.

The flat connection on E defines a transversely projectable connection V in
the normal bundle of the foliation. We can consider its linear holonomy : for
any point @ of M there is a homomorphism h,: 7 (M,2) — GL(¢q). When M
is connected, by changing the point @ we get conjugate homomorphisms. For
simplicity’s sake we identily the normal bundle N(M,F) with a subbundle @ of
TM supplementary to T'F.

We say that the foliation F is distal if the action of the linear holonomy group
H, = imh, on R? = Q, is distal (c[. [CG,I'R2]). This condition does not depend
on the choice of a point . The condition equivalent to the distality ensures
that the group H, preserves a flag of subspaces Vo = {0} C Vi... C Vi1 = Q.
Since the connection V is without torsion the corresponding subbundles T'F C
Q1 C ...Qr C T'M of the tangent bundle are involutive, thus they define a flag of
foliations Fy = F C F, C ...F). The foliations F;, ¢ = 1,...k, are totally geodesic
with respect to the connection V. Moreover, we can find a Riemannian metric
on M adapted to the flag (Fo, F1,...Fk) such that the foliations of leaves of Fiyy
by leaves of JF; are Riemannian (cf. [[FR2]). The foliations F; correspond via the
developing mapping to the foliations F? of R? which are totally geodesic with
respect to the flat connection of R?. Thus these foliations are by parallel affine
subspaces of R?. Irom this fact it results that the foliations of leaves of Fiyq by
leaves of F; are complete Riemannian foliations modelled on R% where ¢; is the
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codimension of F; in Fiyi. Let D: M — R? be the developing map and Fi be the
lift of F; to M. Let L;y1 be a leaf of ﬂ+1 and L; a leaf of F; contained in L.
The foliation of L4y by leaves of Fis a complete Riemannian foliation modelled
on R% and it is given by a global submersion D;: L; — R% defined as follows

LH—I o R(i‘ — Rq‘ o H‘ji/Rfji-l

where ¢; = Z}:o(lr

A well-known Herman’s theorem, cf. [HN] or Theorem III.1, ensures that
D; is a locally trivial fibre bundle, and as R% is cbntxactlble it is a trivial fibre
bundle, i.e. L,+1 = [; x R%, and thercfore M = [, x R? where L is a leal of the
lifted folmtmn F. We have just proved the following proposition:

Proposition 2 A distal transversely affine folialion on a compact manifold is
complete.

To complete this section we describe the commuting sheaf of a TAF.
A TAT F is a V — G-foliation with V being the canonical flat connection of
E. Thus we have the following commutative diagram:

My = p*M, D L(E)
M, 4
N D E
)|
M

where M is the total space of the bundle of transverse frames of (M, F). M,
admits a canonical foliation F; of the same dimension as F and whose leaves are
coverings of leaves of F. Fj is a developable foliation modelled on the total space
L of the bundle L(E), the bundle of linear frames of E; thus it is an Af{E)-Lie
foliation.

In Chapter VI we have defined the commuting sheaf of a V — G-foliation.
The lift € of the sheaf C to M consists of germs of foliated vector fields of (]\[ f)
whose lifts to M, forming a sheal ¢, (,ommute with all '-invariant global foliated
vector fields. If F is complete Ch projects to a sheaf C4 on Af[{E) whose elements
commute with all global (left) I'-invariant vector fields on Af[{E), thus with all
I = T-invariant vector fields. This means that the vector fields of the sheal Cy
must be tangent to the fibres of the K-fibre bundle AJ(E) — K\AJ(E) = W.
Additionally, they must commute with the fundamental vertical vector fields
k*, k € Lie(K) = k, of this bundle as well as with any vector field of the
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form Y- fik? where k; € k, fi € C*(W). Thus each stalk of Cy4 is isomorphic to
the conjugated algebra k~. We call this Lie algebra the structure algebra of the
transversely affine foliation F. We have proved the following.

Proposition 3 Let F be a complete transversely affine foliation with the affine
holonomy group T'. Then ils commuting sheaf is a locally constant sheaf of Lie
algebras whose stalk is isomorphic to the conjugated Lie algebra of Lie(K), K =

I'c Af(E).

VI1.2 Radiance obstruction and tensor fields

The radiance obstruction of an affine manifold proved to be a very useful tool in
the study of these manifolds. In this section we define the radiance obstruction
of a TAI'M and look at the influence of its properties on foliated tensor fields.

Definition 2 The radiance obstruction c, of the affine holonomy representation
o is called the radiance obstruction cx of the foliation F. If cx = 0, the foliation
F is called radiant.

It is the cohomology class ¢y = cx = [u] € H}(G;E)), where (¢ = m(M) and
H*(G;E,) denotes the cohomology of the group G with values in the G-module
E, obtained from E via the representation A (of G onto E), (cf. [FGH,GH2] for
general properties of the radiance obstruction of an affine representation).

Since the affine holonomy representation of a complete TAF on a compact
manifold is irreducible, cf. Theorem 1, as a corollary we get the following.

Proposition 4 A complete TAF on a compact manifold is not radiant.

Now, we shall express the radiance obstruction in various cohomology theories
(these considerations are based on [GH2]). The normal bundle N(M,F) of F
can be considered as a bundle in three different ways:

i) a flat affine bundle N*//(M; F) - the affine bundle with cocycle a;

i) a flat vector bundle identified with the derived bundle of N*//(A; F) (nota-
tion: N*I(M; F)') - the vector bundle with the cocycle A;

iti) a vector bundle TM/TF.
Then:

i) the identity mapping N(M;F) — N*J(M;F) is an isomorphism of afline
bundles;
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i) the identity mapping N*//(M;F)r — NeJ(M;F) is an isomorphism of
afline bundles, but not as flat bundles unless F is radiant.

Notation For convenience sake we shall denote the normal bundle N(M; F)
of the foliation F, considered as a flat vector bundle, by £ or just &; to stress
that it is the ’inverse image’ of the tangent vector bundle to the afline space E
by the cocycle U.

Let {Us, f, 9:;} be a cocycle modelled on E defining F. Then for each ¢ and
each z € U; we define an afline isomorphism:

0;p: No(M,F) — E,

v i— fi(2) + d.fi(v)

and the natural afline trivializations {(U;, 0;)};
0;: N(M,F)|U; — U; x E,

V> (71‘('0), Oi,r(u)(v))

where 7: N(M,F) — M is the bundle projection, form an atlas for a flat alline
bundle structure on N(M,F) which is completely determined by the transverse
affine structure of F. The resulting flat affine bundle is called N/ (M, F) (the
flat affine normal bundle of (M, F)).

The bundle N*//(M, F)|U; has the flat foliation given by p,0; = const, thus
taking account of N(M;F)|U; = U; x E (as vector bundles) and identifying
fi:U; — E with the projection p;U? x V® — VP € E, where U; = U? x
VO, we get that the foliation of N%/f(M;F)|U; is given by the level sets of the
mappings (x,y;v) — y+ v, thus by the translations of the graph of the mapping
(z,y) — —y. Theorem 2.4 of [GI12] ensures that for any section s of N/ (M, F)
the cohomology class of Vs in H(M, &) is the radiance obstruction of (M, F).
If we take as s the zero section of N(M,F), our considerations together with
those of Section 1.3 of [GH2] show that Vs is equal to the natural projection
TM — N(M,F). Therelore we have proved the following: (compare Theorem

2.4 of [GH2)).

Theorem 2 The radiance obstruction of a TAF F on a manifold M is the de
Rham class cx € HYM,E;F) represented by the natural projection pn of TM
onto the normal bundle of F.

Let us look at the radiance obstruction of codimension 1 TAFs. Such a trans-
versely orientable foliation F is given by the following data, cf. [BS]:

1) (w,w;) a couple of 1-forms on M, where w is a Pfaff form defining F,
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il) dw = w A wy, and dw;, = 0.

Assume that c¢x = 0. Then two cases are possible. The first one: the develop-
ing mapping is surjective. Then the radiant vector field defines a global foliated
vector field with isolated singularities , i.e. it is tangent to the foliation along
compact leaves corresponding to the fixed point of the afline holonomy represen-
tation. If the holonomy representation is not trivial there is only a finite number
of compact leaves, cf. Example 1; compare [FGH].

The second case is that of a non-surjective developing mapping with the fixed
point of the affine holonomy representation lying outside the developing image.
Then the radiant foliated vector field is without singularity and the foliation
can be defined by a closed 1-form. Thus there exist a different transverse affine
structure making our foliation a complete TAF. This corresponds to a diffeomor-
phism log: (0,00) — (—00,+00) which does not preserve the afline structure of
the manifolds. Therefore there exist TAFM admitting two different transverse
affine structures one of which is non—complete and the other is complete. This
means that we cannot expect any relation between AYexr # 0 and the existence of
a transverse volume form. In codimension 1 a transverse volume form is precisely
a closed 1-form defining the foliation. Of course, there are codimension 1 TAFs
on compact manifold which are not defined by closed 1-forms.

Foliated tensor fields are in one-to-one correspondence with holonomy invari-
ant tensor fields on the transverse manifold. Therefore if the developing mapping
has connected fibres it means that they are in one-to-one correspondence with
ima-invariant tensor fields on D(M). We say that a foliated tensor field is par-
allel (resp. polynomial) if locally, the corresponding local tensor field on D(M)
is parallel (resp. polynomial), i.e. its coeflicients with respect to the natural
basis are constant (resp. polynomial). Therelore they induce ima-invariant
tensor fields on D(M). Parallel (resp. polynomial) hase-like forms constitute
a subcomplex of the complex of base-like forms on (M,F). Its cohomology
we denote by My, (M, F) (vesp. I, (M,F)). Moreover, parallel base-like
k-forms are in one-to-one correspondence with #mA-invariant linear mappings
AFE — R. This means that the space of parallel base-like k~forms on (M, F) is
equal to HO(M,A*E%). The complex of base-like forms corresponding to ima-
invariant forms on D(]\A'I) we propose to call the reduced complex of base-like
forms and its cohomology the reduced base-like cohomology (notation: A%X(M,F)
and HX(M,F), respectively). In the case of foliations with the developing map-
ping of connected fibres the reduced complex of base-like forms is equal to the
complex of base-like forms, for example in the case of a complete TAT.

The natural pairing A*€3 x A€ — M x R induces in cohomology the
mapping (,): HO(M,A*ER) x H¥(M,A*Ex; F) — H*(M;F) which allows to
formulate the following proposition (compare 2.6 of [GII2]) 5 H¥(M,A*Exr; F) -
the kth cohomology group of the complex of foliated forms on (A1, F) with values
in the flat bundle A*Ex.
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Proposition 5 Let w € HO(M,A*E5) be a parallel base-like k—form. Then
(w, Afcr) = (W], [w] - the base-like cohomology class of the form w.

The equality results directly from the definition of the pairing (,) and the fact
that Afcr is represented by the projection AFpy: ASTM — AFEx.

Locally the projection py can be written as 3 vf ® v; where v; are vector fields
corresponding to constant vector fields on E and v} are the duals of v;. Then,
locally, A’py is equal to v} A ..v¥ @ vy A ...v,. The form v} A ...v7 is the inverse
image of the parallel volume form on E. If the holonomy group in contained in
SL(q) x E, the gth exterior power of the radiance obstruction can be expressed as
the cohomology class of w® w where w is the parallel transverse volume form and
w is the corresponding flat section of A?E. Therefore the base-like cohomology
class of w is zero iff A%cr = 0.

A simple translation allows us to prove the following properties, cf. [GI2],

sections 2.6-2.8.

Theorem 3 Let (M,F) be a TAFM. Then

1. If there exists a parallel base-like k—form defining a non-zero base-like co-
homology class, then

a) the k—th exterior power of the radiance obstruction AFcx is non-zero.

b) the affine holonomy group cannol preserve an affine subspace of E of
dimension smaller than k.

2. If F admits a parallel base~like volume form defining a non-zero base-like
cohomology class, then its affine holonomy representation is irreducible.

3. Let F be transversely orientable. If the lincar holonomy representation of F
factorizes through a group G' which admits no nontrivial homomorphisms to
the group R of real numbers, then the foliation F has a parallel transverse
volume form. In particular, if the first Betli number of M is zero, then F
has a parallel transverse volume form.

Now, let us turn our attention to polynomial tensor fields. Using methods of
[GH1,GH2] we can prove the {ollowing:

Proposition 6 Let (M,F) be a TAF'M.

1. If D(M) C h(C) where C C E is a non—emply open cone and h: E — E
is a polynomial mapping whose Jacobian is not identically zero, then every
bounded polynomial foliated function on M is constant.

2. If M is compact and F radiant, then every polynomial closed base-like I-
form is zero.
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3. If F is radiant, then every closed polynomial base-like k—form (k > 0) is
exact (i.e. HE, (M,F) =0 fork >0).

poly

4. If the affine holonomy group is nilpotent and the foliation admits a parallel
base~like k-form defining a non-zero base-like cohomology class, then for
any j < k there exvists a non-zero parallel base-like j—form.

Remark The results of [FR1] are also valid for TAFMs as the author himself
indicated.

VII.3 Algebraic hull of affine holonomy group

In this section we shall look into the influence of the properties of the algebraic
hull of the affine holonomy group I' of a TAFM (M, F). Let us denote by A(I")
the algebraic hull of I' and its unipotent radical by UA(T"). The basic reference for
the properties of the algebraic hulls of affine groups, their radicals and radiance
obstructions is [GH3].

Combining Theorem 3 with 1.9 of (GH3] we get:

Proposition 7 Let (M, F) be a TAFM which admits a parallel base-like k—form
defining a non-zero base-like cohomology class. Then every orbit of UA(T) is of
dimension > k.

Corollary 1 Let (M, F) have a parallel transverse volume form defining a non-
zero base-like cohomology class. Then the group A(L') acts lransitively.

The proof of Theorem 2.6 of [GII3] we can be shortened and in the foliated case
it yields the following:

Theorem 4 Let (M, F) be a compact complete TAFM. Then the group A(T') acts
transitively on E.

Proof Let us represent A(I') as a semidirect product of its unipotent radical
UA(T) and a maximal reductive subgroup R, cf. [GH3,HO]. It is sufficient to
show that the group U A(I") acts transitively. The group R, being reductive, fixes
a point b of E. Then the UA(I')-orbit UA(I')b is invariant under the action of
A(D).

Let G = UA(T') and H be its isotropy subgroup at b. As G is a connected
unipotent algebraic group, its orbits are closed, cf. [IIO]. Moreover, the expo-
nential mapping induces a diffeomorphism Lie(G)/Lie(ll) — G/I. Therefore
G/ H is a closed contractible submanifold Eqg of E. Let Ay be the inverse image
of Eq by the developing mapping, i.e. My = L x Eo. The group I acts freely
and properly discontinuously on My and the inclusion My — M is I-equivariant.
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Thus My = T\]\Al is a compact foliated submanifold of M of the same homotopy
type. This means that My is homotopy equivalent to M, and thus is equal to M.
Hence Ep = E and the unipotent radical U/ A(T") acts transitively on E.

Remark For other conditions equivalent to the transitiveness of the action of

A(), of. [GH3), 1.11.

Using the considerations of Theorem 2.10 of [GH3] we can prove:

Theorem 5 Let (M,F) be a connected TAFM. If either F is complete and M
compact or there exists a parallel transverse volume form defining a non-zero
base-like cohomology class, then

i) M admits no nonconstant basic rational function;

i1) every rational foliated tensor field of type (r,s) on (M,F) is polynomial of
degree < (s +1)A, where A, = (2¢ —2)!/(27 (¢ —1)!).

Furthermore, if A(T') acts transitively (cf. Theorem 4) then any A(I')-invariant
tensor field of type (r,s) (thus a polynomial tensor field, cf. [GII3] Lemma 2.11)
is determined by its value at a given point. Therelore the space of A(I")~invariant
tensor fields of type (7, s) is of finite dimension and its dimension is smaller than
the dimension of the space ® E. This implies that the space of polynomial base-
like forms is of finite dimension and thus the spaces Hy, (M,F) are of finite
dimension, and in particular dim H,,, (M,F) < 1. As a lot of properties depend
on the fact that some parallel form defines a non-zero base-like cohomology class,
it is important to know the properties of the mappings

(M, F) — H*(M,F) and I},

para

(M, F) —s H*(M,F).

Let K be the closure of the afline holonomy group and I7 the isotropy subgroup
at 0 of A(I'). Then the reduced complex of base-like forms is isomorphic to
the complex of K-invariant forms on the homogeneous space A(I')/ I and the
complex of polynomial base-like forms is isomorphic to the complex of A(T")-
invariant forms on the homogenecous space A(I')/ 1.

Definition 3 We say that a TAF F is amenable if the Zariski closure A(I') of
the affine holonomy group T' acts transitively on E and the homogencous space
AD)/K is compact and amenable, i.e. there exists a linear continuous A(I')-
invariant form m on the Banach space of bounded complex uniformly conlinuous
functions on A(T")/ K wilh the uniform convergence topology such that:

1.m(l)y=1;

2. m(f)=m(f);
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3. m(f) 20 for any real positive function f on A(T')/K.

Theorem 0.1 of [IEN2] ensures that the following is true:

Theorem 6 Lel F be an amenable TAF, then the mapping

s (M, F) — H(M,F)

poly

induced by the inclusion of the complexes is injective.

Example 2 1. Any complete TAT on a manifold with nilpotent fundamental
group is amenable, cf. Theorem 2.1 of [RA].

Bo

A complete TAI" with solvable holonomy group is amenable iff A(I')/K is
compact, cf. Theorem 3.1 of [RA].

3. (cf. [GS3]) Let A be a matrix ( (1) i

morphism A of the torus T2, Suspending this diffeomorphism A over S we
obtain a 1-dimensional TAF F of the compact manifold T% whose holon-
omy group is generated by A and the translations by vectors (1,0) and
(0,1). E. Ghys demonstrated that 1-base-like forms correspond to forms
on R? of the form: a(z)dx and 2-base-like forms to forms on R? of the
form b(z)dz A dy. Therefore, the space H*(T%; F4) is infinite dimensional.
Moreover, one can easily check that polynomial forms are the following;:
adz, bdx A dy where a,b € R, compare [EGS].

) of SL(2,Z). It defines a diffeo-

4. Example 2 of [GHL] gives us an example of a complete codimension 2 TAF
F ol a compact manifold A for which the mapping

H2 (M, F) — H*(M)

para
is not injective but the mapping

H2, (M, F) — H*M,F)

poly

is injective according to our theorem. The foliation F is given by the vector
field 9/0dx. In particular, the parallel volume form of F defines a non-
zero base-like cohomology class but is cohomologous to 0 in the de Rham
cohomology.

-

5. Example 5 of [GHL] provides us with an example of a codimension 2 TAT
F of a compact manifold for which the mapping

H2 (M, F) — HX(M,F)

para

is not injective.
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Let us look at the implications of Theorem 6. Assume that the foliation F
is amenable and that it admits a parallel transverse volume form. This trans-

verse volume form defines a cohomology class in 1], (M,F). It is non-zero iff

H!, (M,F) # 0. Therefore we have the following.

poly

Corollary 2 Let F be an amenable TAF admilling a parallel volume form. Then
its reduced base~like cohomology class is non—zero ff H},, (M,F) # 0.

VII.4 Nilpotent affine holonomy group

In this section we pay particular attention to TAFs with nilpotent holonomy.
The results of [FGH] proved for afline manifolds can be generalized without many
difficulties to the case of TAF'Ms. In fact the following theorem holds, compare

Theorem 4.1 of [GH3] as well.

Theorem 7 Let (M,F) be a compact TAI'M with nilpotent affine holonomy
group. Then the following condilions are equivalent:

a) (M,F) is complete;

b) the developing mapping is surjective;

c) the linear holonomy is unipotent;

d) the affine holonomy is irreducible;

e) theiafﬁne holonomy is indecomposable;

f) M has a parallel transverse volume form;

g) A(T) acts transitively;

If Hzoly(l\l, F) #0, then the above conditions are equivalent to:

h) /\qu 76 0.

Proof The equivalence of a)-f) can be proved as in [FGH]. It is not difficult to
see that most theorems have their corresponding versions for transversely afline
foliations. In general, the terms ’vector field’ and ’form’ on the manifold M are
replaced by ’foliated vector field’ and "base-like form’ on the foliated manifold
(M,F). We leave to the reader the statements and proofs of the theorems for
transversely affine foliations corresponding to the following ones of [FGII]: 3.2-
3,4.1,4.3-4,6.1-4,6.6, 6.8-9.

Theorem 4 states that from a) follows g). The fact that A(T") acts transitively
implies that the affine holonomy is irreducible, and thus a), ¢f. Theorem 1.
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The condition h) always imply g) (cf. Theorem 1.9 of [GH3]). Let us prove the
converse. Any volume form on E is of the form fdy; A ...dy, and for a polynomial
transverse volume form the function f is a polynomial. Transverse volume forms
correspond to '-invariant volume forms. As the linear holonomy is unipotent,
the form fdy; A ...dy, is T'-invariant, iff f is. Since f is a polynomial function,
it must be constant, and this parallel volume form defines a non-zero base-like
cohomology class. It results from Proposition 5 that A%cx 5 0.

Example 3 The Hopf foliation of $? x S! is not complete, but its developing
mapping is surjective, compare Theorem 6.11 of [FGIH].

In the afline case the Nomizu theorem can be applied to obtain the repre-
sentation of cohomology classes of the affine manifold, cf. [FGH]. In the case of
foliations it is more complex.

As Example 2 has demonstrated we cannot expect Theorems 8.1 and 8.4 of
[GH3] to be true for TATs. However, when the closure of the affine holonomy
group I' in Af(E) is connected the following is true: (for nilpotent groups the
above condition means precisely that the closure of the group I' is equal to its

Zariski-closure (cf. [RA])).

Theorem 8 Let (M,F) be a compact complete TAFM wilh nilpotent affine holon-
omy group whose closure in Af{E) is connected. Then the inclusion of the com-
plex of polynomial base-like forms in the reduced complex of base-like forms in-
duces an isomorphism in cohomology, and the reduced base-like cohomology is
finite dimensional.

Praof According to Theorem 7 the closure of the afline holonomy group acts
transitively on E. Thus.any holonomy invariant tensor or form is polynomial, (cf.
Lemma 2.11 of [GH3]), and hence these two complexes are, in fact, equal.

Remark Theorem 8 is also true il the closure of the afline holonomy group
has a finite number of connected components. It is easy to see that the afline
holonomy group of the foliation of Example 2.3 is discrete and denumerable.

Example 4 The space I},,,(M,F) is the space of parallel 1-base-like forms on
(M,F). Tor a complete TAI" on a compact manifold with abelian fundamental
group it results from Theorem 7 that its holonomy group is unipotent. So is its
algebraic closure A(T"). The group A(I') acts transitively on E, c¢f. Theorem 4,
so according to Theorem 4.b of [FR2] it acts simply transitively. Moreover trans-
lations in A(T") correspond to A(I')-invariant parallel vector fields on E, i.e. to
parallel foliated vector fields and hence to parallel 1-base-like forms, [IFGH]. Us-
ing the example of Tiried, cf. [FR2], and the construction presented in Chapter V
we can find a complete TAI on a compact manifold admitting a parallel foliated
vector field but for which the algebraic closure of the affine holonomy group does

not contain any translation.
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The foliated version of Theorem 4.2 of [GH3] is the following:

Theorem 9 Let (M,F) be a compact TAI'M with nilpotent affine holonomy
group. Then the largest k such that A cr is non—zero is smaller than the mini-
mal dimension of A(I')-orbils on E. Furthermore, if M is incomplete, then ihe
unique orbit of minimal dimension lies outside the developing tmage.

Proposition 4.3 and Theorem 4.6 of [GH3] are also true for TAFs.

Proposition 8 Let (M, F) be a compact TAI'M with nilpotent affine holonomy
group I'. Then:

i) there exist a unique I'~ invariant affine subspace Ey C E upon which T' acts
unipotently and a unique I'=invariant affine projection = : E — Ey;

iW) =D : M — Ey isa surjective fibration and if E # Ey Euy is disjoint from
the developing image;

iii) there exists v € T' whose linear part L(v) restricted to a fibre of ™ is an
eTPAnsion.

) the group A(T) acts transitively on Ey;
v) every D-invariant Zariski-closed non—empty subspace of E contains Ey.

Remark The space Ey is called the Fitting subspace of I' or (M, F).

Unfortunately, the base-like cohomology class of the volume form of the Fit-
ting subspace does not need to be non-zero which implies that the inequality in
Theorem 9 can be sharp, cf. Example 2.4 and compare [GIL].

Now let us consider a compact TAI'M (A, F) with nilpotent affine holonomy
group of rank smaller that the codimension of the foliation.

Theorem 10 Let (M,F) be a compact TAIM with nilpotent affine holonomy
group. 1f the foliation F is complcte, then the rank of the group m (M) must
be greater or equal to the codimension of F. Moreover, if the equality holds, the
foliation F is given by a global submersion onto a nilmanifold.

Proof Assume that it is not true. Let U be the simply connected nilpotent Lie
group containing I as a uniform subgroup. Then dimU = rankl’ < q. According
to Theorem 7 the group I' is unipotent, thus the group I' is a subgroup of a
maximal unipotent subgroup Ay of alline transformations. Therefore there exists
a homomorphism h:U — Ay which is identity on I'. The image h(U) of the
group U is a Zariski-closed (connected) subgroup of Ay. Hence it contains the
Zariski-closure of T' in Ay. Thus dimA(l") < dimh(U) < dimU = rankl’ <
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codimF. Then, as the foliation F is complete, the group A(I') acts transitively
on E; hence codimF < dimA(T'). Thus codimF = dimA(l) = dimU = rankl.
The simply connected group U must therefore act transitively on E, and hence
simply transitively. From this fact it results that the group I' acts freely and
uniformly on E. Therefore the foliation F is defined by a global submersion with
connected fibres onto the nilmanifold '\ E.

Definition 4 Let M be a manifold whose universal covering space is an algebraic
variety. Then a TAF F on M is said to be algebraic if its developing mapping is
a morphism of algebraic varielies.

Theorem 11 Let (M,F) be a compact complete TAFM with nilpotent funda-
mental group. If M is a complete affine manifold and F an algebraic foliation,
then the universal covering M of M is a simply-connected nilpotent Lie group N
and the lifted foliation is given by a transitive aclion of N on the affine space E.

Proof It is well-known, cf. [FGH], that M is diffeomorphic to I'o\/N where
N is a simply connected nilpotent Lie group and I'g is a uniform subgroup of
N. Let D:N — E be the development of (M,F) such that D(e) = 0. The
holonomy group I' is unipotent, its Zariski~closure A(I") acts transitively on E
‘and it is a subgroup of a maximal unipotent subgroup Ay. Then we can extend the
homomorphism a: 11(M) =g — I' C Af(E) to a homomorphism h: N — Ay
which is also a morphism of algebraic varieties. Thus the action of N via h on
E is-also algebraic. Let us consider the orbit mapping of hg of N at 0 and the
developing mapping D. They are both morphisms of algebraic varieties and are
equal on I'g. As the subgroup I'y is Zariski-dense in N, these two mappings
are equal and the foliation F is just the quotient of the foliation given by the
submersion hg. Its space of leaves is I\ N/H, where H is the isotropy group of

N at 0.

The result of D. Fried, cf. Theorem 4.b of [FR2], has a very interesting
consequence for algebraic complete TAFs on compact manifolds with abelian
fundamental group.

Corollary 3 Let F be an algebraic complete TAF on a compact affine manifold
with abelian fundamental group. Then the foliation F is a Lie foliation modelled
on an abelian Lie group.

Proof The considerations of Example 4 ensure that the group A(I') acts
simply-transitively on E. Therefore the mapping hg of Theorem 11 considered as
a mapping into A(T') must be a surjective submersion making F a Lie foliation.
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Example 5 As a curiosity we can add that on a non-complete compact AM
we can have a complete algebraic TAF. In fact the Goldman example of [GO2]
provides us with such a foliated manifold. The projection O, x R — R defines
a complete algebraic TAF of a non-complete compact AM O, x R/T.

Polynomial Riemannian metrics have been used in [GHO] to characterize com-
pact affine manifolds with virtually nilpotent {undamental group and to obtain in
this way a generalization of the Bieberbach theorem. The foliated case is much
different. Let us consider the following three conditions:

1. (M,F) admits a complete polynomial bundle-like metric;

2. there exist a compact afline manifold M;, a complete transversely affine
foliation JF; of M; with all leaves compact, a finite covering M’ of M and a
mapping & : M’ — M, with connected fibres such that F' = h*Fy;

3. the fundamental group of M contains a nilpotent subgroup of finite index.

We have the following relations between them:
Proposition 9 Let (M,F) be a TAFM. Then 1) and 2) imply 3).

Proof Since there exists a polynomial bundle-like metric, the developing map-
ping is a Riemannian submersion and therefore any curve of finite length can be
lifted horizontally to M (the holonomy covering of (M, F)). Proceding step by
step we can lift any straight line in E. Thus the foliation F is geodesically com-
plete. -

As the fundamental group of a finite covering can be considered a subgroup of
finite index of 71 (M), we can assume that M’ = M. The alline holonomy group
of the foliation Fj is equal to the afline holonomy group of F. Since the leaves of
Fi are compact, the affine holonomy group I' of F; must be a discrete subgroup
of Af{E). Even more: the space of leaves of 7, which is equal to the space of
orbits of I" on E, is a Satake manifold according to Proposition 1. Then following
the considerations of [GHO] p.4 we obtain 3).

Example 6 It is worth mentioning that, contrary to the affine case, neither 1)
ensures 3) nor 3) implies 1). In fact, let us take a compact complete AM M with
virtually nilpotent fundamental group and the product L x M with a compact
manifold I whose fundamental group is neither nilpotent nor finite. Then the
foliation given by the projection onto the second factor is transversely afline and
admits a polynomial bundle-like metric. To construct the second example let
us consider a TAF modelled on a nilpotent simply connected Lie group N with
a dense finitely generated subgroup I, cf. Section V.1. We can casily find a
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transitive action of the group N on R” with p < ¢ = dim N such that the isotropy
groups of the induced action of I' are not relatively compact. Therefore there
does not exist any I'-invariant Riemannian metric on R?, and the codimension p
foliation on I'\U defined by this action cannot admit a polynomial bundle-like
metric.

Proposition 10 Let (M, F) be a TAF'M. If the folialion F is algebraic and the
conditions 1) and 3) are satisfied, then F is a Lie folialion modelled on a unipotent
Lie group.

Proof By passing to a finite covering we can assume that the manifold has
the nilpotent fundamental group. Therefore as F is complete its afline holonomy
group must be a unipotent group of isometries of a polynomial metric on E.
Moreover, its Zariski closure acts transitively on E and consists also of isometries
of this metric. Thus any isotropy subgroup of A(I') is compact. These isotropy
groups consist of unipotent isometries, hence they must be trivial and A(I") acts
simply transitively on E. Therefore there exists a mapping D: M — A(I') which
composed with the orbit mapping at 0 is the developing mapping. The existence
of the mapping D ensures that the foliation F is a Lie foliation.

Proposition 11 Let (M, F) be a complete TAFM with all leaves compact. Then
the condition 8) ensures 1).

Proof By passing to a finite covering we can assume that A has nilpotent fun-
damental group. As the foliation F is complete and the leaves of F are compact,
the holonomy of ecach leaf is finite and the space of leaves is Hausdorff. There-
fore, the group I" acts properly discontinuously on E. T" being unipotent, it is also
torsion-free. Thus it acts {reely on E, cf. [FFG], and I'\E is a compact complete
flat manifold with nilpotent fundamental group. Then according to Theorem 7.1
of [FGH] it is a nilmanifold, i.e. there exists a simply connected nilpotent Lie
group NV containing I' as a uniform subgroup and acting simply transitively on E
in such a way that I'\E is affinely diffecomorphic to I'\NV. Hence any left invariant
Riemannian metric on N defines a polynomial I'-invariant Riemannian metric on
E, and hence induces a polynomial bundle-like Riemannian metric on (Af, F).

VII.5 Growth of leaves

The very particular structure of TAFs allows us to estimate the growth of these
foliations. Using the methods of Y. Carriere developed for Lie and Riemannian
foliations combined with some peculiar properties of TAI's we obtain estimates
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similar to those for Riemannian foliations. However, in this case TAI's ’behave’
more disorderly than Riemannian ones as Iixamples 7 and 8 illustrate well.
Since the foliation F is developable, we have the following estimate due to R.

A. Blumenthal, cf. [BL].

Proposition 12 (Blumenthal) Let F be a transversely affine foliation of a com-
pact manifold M. Then gr(F) < gr(m(M)), or to be precise, gr(F) < gr(T').

Combining this result with the estimate of H. Bass, cf. [BA], we get:

Corollary 4 Let F be a transversely affine foliation of a compact manifold M.
If the fundamental group m (M) is nilpotent, then gr(F) < d(I).

This corollary together with Plante’s theorem, cf. [PL1}, ensure that any
transversely affine foliation with nilpotent, or virtually nilpotent, affine holonomy
group admits a holonomy invariant measure, cf. (GHL].

The following result proved by Y. Carriere for Lie foliations is also valid for a
larger class of foliations, among them for transversely afline foliations, cf. [CA2].

Proposition 13 (Carriére) Let F be a complete transversely affine folialion of
a compact manifold M. Then the growth type of a leaf L of F can be read as the
local growth of the corresponding orbit of the affine holonomy group on E.

To get more information about the growth type of F we compare the growth
type of leaves of F and F;. However, as M; is not compact, the growth type of
a leaf is not well-defined; it depends on the choice of an adapted atlas, cf. [PL1].
Fortunately, the foliated manifold (My, F7) has a class of adapted atlases which
are particularly well-suited to the comparative study of the growth types of leaves
of F and F;. We have in mind the atlases which are derived from adapted atlases

of (M,F); we call them preferred adapted atlases. If M is compact, it can be

asﬂy shown that the growth type of a leaf of 7, does not depend on the choice
of a preferred adapted atlas. Therefore, for any leaf L of Fy, we donote by gr (L)
the growth type of L for any preferred adaptod atlas of (My, Fy). Then:

Lemma 1 Let L be a leaf of Fi covering a leaf L of F. Then gr(L) < q7([2)

Proof It is a simple consequence of the definition.O

Considerations of the proof of Proposition 13 applied to the foliation Fy yields
the following:

Lemma 2 The growth type of any leaf of Fy can be read as the growth type of
the corresponding orbit of the action of the affine holonomy group restricled to
the set #=Y(U) where U is a relalively compact subset of E.
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Proof It results from the considerations of Y. Carricre, cf. [CA2], and the
fact that we calculate the growth type relative to a preferred adapted atlas of

(My, Fy). O

Having described the growth type of leaves of both foliations, we can show
that, in fact, gr(F) = gr(Fy).

Proposition 14 Let F be a complete transversely affine foliation on a compact

manifold M, then gr(F) = gr(Fy).

Proof As the growth type of a foliation is the supremum of the growth type
of its leaves it would be sufficient to show that there exists a leaf L of F such that
gr(L) = gr(F) and that for any leal L of F covering L gr(L) = gr(L) = gr(Fy).
Owing to Proposition 13 and Lemma 2 it would be sufficient to find a point v
of E such that the correspondence I' 3 a + a(v) is one-to-one, or equivalently,
to find a leaf without holonomy. Therelore the following lemma completes the
proof.

Lemma 3 Any complete transversely affine foliation F of a compact manifold
M has a leaf without holonomy.

Proof Leaves of F correspond to orbits of the affine holonomy group I' on
E. Let us assume that for any point v of E there exists a € I', a 5 id, such that
a(v) = v, l.e. any leaf of F has holonomy. For any element a 3 id of I' consider
the set E, = {v € E:a(v) = v}, thus User\(igy B = E. As M is compact the
set I' is denumerable. Therefore the Baire property of E ensures that for some
a €'\ {id} intE, # 0. But as the group A{{E) acts quasi~analytically, ¢ = id;
contradiction. O

Now we would like to find a lower bound for the growth of leaves of F de-
pending on the structure of the afline holonomy group. Proposition 14 makes
our task easier, as:we can work with the Lie foliation F;. The closure of a leaf
L correspond via D to the orbit of the group K = I' C Af{E). Let us assume
that the afline holonomy group I is nilpotent. We have proved that in this case T’
and therefore I must be unipotent, cf. Theorem 7. Thus the connected compo-
nent Ko of e in K is a simply connected closed nilpotent Lie subgroup of Af(E).
The group I'g = Ko N T is a finitely generated dense subgroup of I{o. Using the
Malcev theorem , cf. [MA,RA] we can construct a Lie foliation Fo with dense
leaves of a compact manifold for which the group I'g is the holonomy group. In
[CA2] Y. Carricre showed that in such a case gr(Fg) = 6(I{o) where §( /o) is the
degree of nilpotency of K. The growth of leaves of Fy can be read as the local
growth of orbits of I'g in K. On the other hand the growth of leaves of F; can
be read as the growth of orbits of I' in K relative to some open subset of IX.
Thus gr(Fy) > gr(Fo) and 8(Ko) < gr(Fo) < gr(Fi) = gr(F). The structure
algebra of F is the conjugated algebra of Lie(Ky). Therefore we have proved the
following proposition, compare Proposition 3.1 of [CAZ2].
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Proposition 15 Let F be a complete transversely affine foliation on a compact
manifold M. Then gr(F) > §(k) where 6(k) is the degree of nilpotency of the
structure algebra of F.

The above considerations together with results of [SR,ZM] yield the following
theorem, compare Theorem A of [CAZ2).

Theorem 12 Let F be a complete transversely affine foliation of a compact man-
tfold M with the structure algebra k™ of degree of nilpotency 6(k). Then:

1) if F has polynomial growth then the structure algebra is nilpotent;

ii) if the affine holonomy group is nilpotent, then F has polynomial growth and
gr(F) =z 8(k).

Proof The point ii) combines the assertions of Proposition 15 and Corollary 4.
If we assume that the growth of F is polynomial, then F; has polynomial growth
as well and it is amenable according to [SR]. Then the result of Zimmer, cf. [ZM],
ensures that the group Ky is solvable. If Ky is not nilpotent then according to
[CA2] the foliation Fy has ”suprapolynomial” growth type. Thus F cannot have
polynomial growth type; contradiction.O

Corollary 5 If the growth type of F is linear then the structure algebra is abelian.
In particular, for any complete transversely affine flow its structure algebra is
abelian, which is equivalent to the fact that the group T'o ts abelian.

To illustrate that our Theorem 12 cannot be improved we provide two exam-
ples.

Let us consider the 3-dimensional solvable group Sy, cf. [AGH], which can be
represented in the matrix form as follows:

st 0 =z
0 e % 0 y
0 0 1 =z
0 0 01

where ¢, y and z are real numbers and & is a fixed real number such that e 4+e=* is
an integer different from 2. This group acts simply transitively on R® and admits a
uniform discrete subgroup I'y. The manifold I';\\S; = S1(T'y) is an afline manifold
which can be identified with the hyperbolic torus 73, A € SL(2,Z),trA > 2, cf.
[GSS].

Example 7 The projection py: R® — R, (x,y,2) = (z,y), is Si—equivariant
for the natural actions of this group. Therefore p, defines a complete transversely
affine flow 72 of the compact manifold $1(I';). The flow F? is diffeomorphic to the
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flow of T'3 given by suspention of the matrix A. The growth type of the foliation
F?is linear as it is a flow with non-compact leaves. The afline holonomy group
I can be identified with a subgroup of Aff{R?) generated by A and the integer
translations. Since I' is a discrete subgroup, the structure algebra of F?% is 0-
dimensional. However, the group I' is solvable, but not nilpotent. Therefore we
cannot improve the implication (i).

Example 8 The projection p;:R® — R, (2,y,2) — y, is Sj—equivariant for
the natural actions of this group. Therefore p; defines a codimension 1 complete
transversely affine foliation F! of the compact manifold 5;(I'1). The leaves of
this foliation are dense, and only the leaves corresponding to rational numbers
have holonomy. The foliation F! is diffeomorphic to the proper foliation of T%
corresponding to one of the eigenvalues of A, cf. [GSS]. The affine holonomy group
of F'is solvable, the structure algebra is isomorphic to R, but the leaves of F; have
exponential growth. In fact, as all leaves are dense, these corresponding to points
of T? with rational coefficients are resilient. Hence they must have exponential
growth, cf. [GSS]. This implies that a complete transversely afline foliation with
nilpotent structure algebra can have the growth type even exponential. Thus we
cannot weaken the assumption that the afline holonomy group is nilpotent.

VII.6 Closures of leaves

Geodesically complete TAF's have many properties of Riemannian foliations. We
have considered these similarities in Chapter III. However when we look at the
closures of leaves we find the first main difference. In Riemannian foliations the
closures of leaves form a singular foliation, cf. [MO11]. In TAF it is not the
case. Examples of non—complete TAI* on compact manifolds and of complete
ones on non-compact manifolds have been well-known, cf. the 1-dimensional
Hopf foliation of S? x S'. However, even in transversely geodesically complete
TAT leaves can behave very strangely. The following example is due to E. Ghys,

cf. [GS3].

Example 9 Let us take once again Example 2.3. The leaves of F4 correspond
to orbits of A on T2 Thus the leaves corresponding to points with the first
coeflicient rational are compact, the closures of other leaves are 2-tori, cf. [GSS].
Hence the closures of leaves of Fy, although submanifolds, they do not form a
singular foliation.

Using the same suspension procedure, cf. Example 1.2, we can construct trans-
versely geodesically complete TAT" on compact manifolds in which the closures of
leaves are not necessarily submanifolds.
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Example 10 Let us consider a linear Anosov diffeomorphism A of a ¢-torus
T9. We would like to impose some additional conditions on A which would
ensure that the foliation F,4 obtained by suspending A has some leaves whose
closures are not submanifolds. First, according to a result of M. Hirsch this
cannot occur if ¢ = 2, cf. [HI]. Let us choose an irreducible primitive matrix
A€ SL(¢,Z),q > 2, cf. [GA]. Assume that the closure of an orbit of such a
linear Anosov diffeomorphism is a submanifold. By passing to a finite covering,
which correspond to the suspension of the diffeomorphism A* for some k > 0,
we can assume that the closure of the orbit is a connected submanifold. Then
Theorem A of [MN] ensures that it must be a torus, but from Proposition of [HN]
it results that our submanifold is either the torus T? or a point. S. G. Hancock
and F. Przytycki constructed very complicated invariant subsets for any linear
Anosov diffeomorphism, cf. [IIN,PR)]. Thus the closure of any non-periodic orbit
contained in such an invariant subset cannot be a submanifold.

Having shown that on compact manifolds there exist transversely geodesically
complete TAF with leaves whose closures are not submanifolds we would like to
find out whether under some additional assumptions it is possible to demonstrate
that the closures of leaves are submanifolds. I'irst we must reduce the study of
the closures of leaves to the study of some more manageable objects.

Leaves of F correspond to orbites of I' on E. Let L be a leaf of F and
I'v (v € E) the corresponding orbit of I'. Then L = I'\D~!(Tv). This equality
leads to the following lemma.

Lemma 4 Let F be a complete TAF. Then the closure of a leaf L is a subman-
ifold iff the closure of the corresponding orbit of the affine holonomy group is a
submantfold.

Thus we can concentrate our attention on the study of orbits of finitely gener-
ated subgroups of Af/{E). We have proved that for a complete TAF the algebraic
closure A(T") of the afline holonomy group I' must act transitively on E, i.e. E
can be considered as a homogencous space A(I')\/{ where I is an isotropy group
of the natural representation of A(I') on E. Then we have:

Lemma 5 The closure of an orbil I'v is a submanifold of B iff the set T - II is a
submantfold of A(T') where H is the isolropy group of A(T') at v.

Proof Consider E as the homogencous space A(I')\H. Then the orbit T'v
correspond to the orbit I'eyy where ey = ell € A(I')\H. The closure of I'eyy in
A(D)\H is equal to I' - H\H. Thus it is a submanifold iff I - /1 is a submanifold.
0

The lemmas lead to the following theorem.
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Theorem 13 Let F be a complete TAI' on a compact manifold M with abelian
Sundamental group. Then the closures of leaves of F form a singular foliation.

Proof The affine holonomy group I' of F is abelian, so is its algebraic closure
A(L). Since F is complete, the group A(I') acts transitively on E. As A(T) is
abelian, the isotropy groups of the representation of A(I') on E are equal. We
denote it by [. Lemma 5 ensures that the closures of orbits of I' are the orbits of
the group I - T = H(I") which is a Lie subgroup of A(I') C Af{E). Thus these
orbits are submanifolds, and therefore the closures of leaves are submanifolds as
well. Elements of the Lie algebra of H(T') define vector fields which span the
tangent space to the orbits of H(I'). As they are I'-invariant, these vector fields
induce global foliated vector fields on Af. Their foliated orbits are precisely the
closures of leaves of F. Thus, in fact, the closures of leaves form a singular
foliation in the sense of Stefan, cf. [ST,SM].O

Foliations with nilpotent afline holonomy group form another more general
and very interesting class of TAF. For them we can prove the following:

Theorem 14 Let F be a complete TAF of a compact manifold with nilpotent
affine holonomy group I'. If the group K =T has a finite number of components,
then the closures of leaves forms a singular foliation and they are the orbils of
the commuting sheaf.

Proof We have proved that the group I' must be unipotent. Thus the con-
nected component Ko of I is an algebraic group, and according to [RO] the orbits
of Iy are closed. Since I{ has a finite number of connected components, its orbits
are-closed, and thus equal to the closures of orbits of I". Therelore the closures
of leaves are submanifolds. The description of the commuting sheaf ensures that
these closures are the orbits of this sheaf. Hence the closures of leaves of F form
a singular foliation.O

Example 7 shows that Theorem 14 is false if the group K has an infinite
number of connected components, but we can still hope that the closures of
leaves are submanifolds. We have seen that in the same example the space of
closures of leaves have been a very irregular topological space. If we impose some
separability condition on the space of orbits of the group I we can relax a little
our other assumptions.

Proposition 16 Let F be a complete TAF on a compact manifold. If
a) the affine holonomy group T is distal;
b) the group ¥ =T has a finite number of connected components;

¢) the space K\E is Ty,
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then the closures of leaves are the orbits of the commuting sheaf of F and they
form a singular foliation. .

Proof Glimm’s theorem, cf. [GI], ensures that orbits of K are relatively
open in their closures. On the other hand these closures are minimal, cf. [MR].
Therefore the orbits of K must be closed. The rest follows as in the proof of
Theorem 14.0

To complete this section we give an example of a TAT having a solvable affine
holonomy group and with some closures of leaves not being submanifolds.

Example 11 As in the previous examples we suspend an Anosov diffeomor-
phism; this time of a non—toral nilmanifold, cf. [SM,BR).

Let H be a 3-dimensional real Heisenberg group, and let G = H x H. The
group G is diffeomorphic to R®. G admits the following uniform subgroup Iy:

Lo = {(ay,..as) € R® a; € Z(V/3) and aiy3 = d@;,7 = 1,2,3}

where if « = m4+nv/3, m,n € Z, then @ = m—n+/3. The space G/Tgis a compact
non-toral nilmanifold. Let A = 2 4 \/3, v=(2- \/g)z, L=Av=2-— V3. Then
the transformation ¢: R® — RS,

B(z1, -x6) = (21, pg, vas, Ary, fixs, vag)

preserves the lattice I'g, and therefore defines an Anosov diffeomorphism of G//T.
The suspension of ¢ defines a 1-dimensional TAF F; on the total space of R x,
G/To. The affine holonomy group T' of Fy is the subgroup of Aff (R®) generated
by the group I'g and ¢. It is a solvable group. It is not difficult to verify that the
closure of the I'-orbit of the point (z,0,...0), = # 0, is not a submanifold. Thus,
indeed, the foliation F, has the property we have been looking for.

Other examples of this sort can be constructed from the examples of 1. L.
Porteous, cf. [PO]. Moreover, Ii. Ghys has informed the author that similar
examples can be constructed using the work of M. Morse on dymanics on tori,
which is of course previous to the results of S. G. Hancock and F. Przytycki.

Notes This chapter presents results from four papers. Parts of [WO12] and
[WO20] form Section 1. Sections 2,3 and 4 are derived from [WO16]. Section 5
is based on [WO17] and Section 6 on [WO18].

The most important work has been done on codimension 1 TAF's. We should
mention papers by E. Fedida, P. M. D. Furness and Bobo Seke, and in particular
unpublished results of G. Hector concerning the existence of exeptional minimal
sets for TAFs. There are some other papers concerned with TAIs, for example

[GHL], [ME1] and [ME2].
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