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Abstract

Riemannian Geometry was introduced for the first time by Bernhard Riemann in the 19th
century. Nowadays, a Riemannian manifold is defined as a smooth manifold endowed with
a smooth positive definite quadratic form in each tangent space, a so-called Riemannian
metric. A Riemannian metric induces a distance on the manifold, and the transformations
of the space that preserve this distance are called isometries. The symmetry of an object,
from the point of view of Riemannian Geometry, is the invariance of that object under the
action of a certain subgroup of isometries.

Kähler manifolds are Riemannian manifolds that have a parallel complex structure. A
complex space form is a complete simply connected Kähler manifold with constant holo-
morphic sectional curvature, and it is known that such a manifold is one of the following:
a complex projective space CP n (for positive curvature), a complex Euclidean space Cn

(for vanishing curvature), or a complex hyperbolic space CHn (for negative curvature).
An isometric action on a Riemannian manifold is the action of a group of isometries

of that manifold. An orbit of an isometric action is called an (extrinsically) homogeneous
submanifold. The cohomogeneity of an isometric action is the codimension of an orbit of
maximal dimension. The study of isometric actions in its full generality is in principle
difficult; thus, certain types of isometric actions have been studied. A polar action is an
isometric action such that there exists a totally geodesic submanifold, called section, that
intersects all the orbits orthogonally. The cohomogeneity of a polar action coincides with
the dimension of its section. Polar actions on CP n have been classified by Podestà and
Thorbergsson [93], whereas for CHn these have been classified by Dı́az-Ramos, Domı́nguez-
Vázquez and Kollross [39] .

One outstanding problem in submanifold geometry is to characterize homogeneous sub-
manifolds, or more generally, submanifolds with many symmetries, by means of geometric
properties. In this thesis we focus, on the one hand, on the study of real hypersurfaces in
CP 2 and CH2 with a high degree of symmetry. More specifically, we study cohomogeneity
one hypersurfaces that are induced by polar actions of cohomogeneity two on CP 2 and
CH2. On the other hand, we are interested in the characterization of the principal orbits
of these actions by means of certain geometric criteria, such as isoparametric submanifolds.

In what follows we explain our main motivation for this thesis. We try to explain how
an open problem that we decided to tackle led us to the research project that is carried
out in this memoir.

A classic theorem in the geometry of surfaces of R3 establishes that a totally umbilical

ix



surface is an open part of a sphere or a plane; in particular, it is an open part of a ho-
mogeneous surface. This result is known to be true in higher dimensions. This suggests
to tackle the following problem: to what extent having a small number of distinct prin-
cipal curvatures imposes restrictions on the geometry of a hypersurface of a Riemannian
manifold. Tashiro and Tachibana [100] showed that there are no umbilical hypersurfaces
in nonflat complex space forms. Later, Cecil and Ryan [24] for the projective case, and
Montiel [86] for the hyperbolic case, carried out the classification of real hypersurfaces with
two distinct principal curvatures in CP n and CHn, n ≥ 3. All these examples are Hopf
(that is, the Reeb vector field is a principal curvature vector everywhere) and have constant
principal curvatures, and thus, are open parts of homogeneous hypersurfaces in view of the
results by Kimura [71] and Berndt [8]. Niebergall and Ryan [88, Open problem 9.2] state
the interest of addressing this question for n = 2, as the methods applied for n ≥ 3 do not
work in this situation. We have shown in [41], a result that is part of this thesis, that the
principal curvatures of a real hypersurface with two distinct principal curvatures in CP 2

or CH2 do not have to be constant; we also classify these hypersurfaces, thus completing
the classification for n = 2. In particular, there are inhomogeneous examples.

The examples that appear in the previous classification, some non-Hopf homogeneous
hypersurfaces in CHn, and the examples of cohomogeneity one hypersurfaces with constant
mean curvature constructed by Gorodski and Gusevskii in [54], satisfy certain geometric
properties that we have encoded in a definition. Thus, a real hypersurface in a complex
space form is called strongly 2-Hopf if the smallest distribution invariant under the shape
operator that contains the Reeb vector field is two-dimensional, integrable, and the prin-
cipal curvatures of the hypersurface along the integral submanifolds of this distribution
are constant. These hypersurfaces turn out to be intrinsically of cohomogeneity one, and
in fact, they are obtained by the equivariant geometry method applied to cohomogeneity
two polar actions. We impose further assumptions to get concrete examples and more
specific classifications. For example, in order to characterize the examples obtained by
Gorodski and Gusevskii [54], we study strongly 2-Hopf hypersurfaces with constant mean
curvature. The results obtained under these conditions underline the fact that the method
of equivariant geometry in conjunction with the strongly 2-Hopf condition gives rise to a
better understanding of these hypersurfaces and suggests a powerful approach to generate
new examples.

A Levi-flat hypersurface is a real hypersurface foliated by complex hypersurfaces. It
is an open problem to determine the existence of compact Levi-flat hypersurfaces in CP 2.
Motivated by this question and the previous results, we have tackled the study of Levi-
flat strongly 2-Hopf hypersurfaces in CP 2 and CH2. We have shown the existence of a
great deal of examples, although only locally. If we further assume that the hypersurface
has constant mean curvature, then it turns out to be austere. Austere hypersurfaces,
introduced by Harvey and Lawson [56] in their study of special Lagrangian submanifolds,
are defined as hypersurfaces whose shape operators are invariant under multiplication by
−1. The classification of austere hypersurfaces whose Reeb vector field has h = 1 or h = 2
nontrivial projections onto the principal curvature spaces led us to the classification of
three important types of ruled hypersurfaces: Lohnherr hypersurfaces, Clifford cones and
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bisectors.
The fundamental role of the principal orbits of polar actions in the study of strongly

2-Hopf hypersurfaces suggests the characterization of these submanifolds by means of a
suitable geometric property. Motivated by the recent classification of isoparametric hyper-
surfaces in CP n and CHn we have addressed the study of isoparametric submanifolds in
2-dimensional complex space forms as a first step to understand these objects in arbitrary
dimension.

A real hypersurface is called isoparametric if its sufficiently close equidistant hyper-
surfaces have constant mean curvature. Terng [101] generalized this concept for higher
codimension in manifolds of constant curvature. Nowadays the concept of isoparametric
submanifold is credited to Heintze, Liu and Olmos [57], who define it as a submanifold
with flat normal bundle, whose sufficiently close parallel submanifolds have constant mean
curvature in radial directions, and such that there is a section through every point of the
submanifold.

The study of isoparametric hypersurfaces in complex projective spaces can be deduced
from the classification of isoparametric hypersurfaces in spheres via a careful study of
the Hopf map. The classification of isoparametric hypersurfaces in spheres is actually
an outstanding open problem to this date. The works of Cecil, Chi and Jensen [23],
Immervoll [65], Chi [31], [32] and Miyaoka [84] have completed the classification except for
4 principal curvatures with multiplicities (7, 8). Domı́nguez-Vázquez [49] obtained from
here the classification of isoparametric hypersurfaces in CP n, n 6= 15. It is shown that
there is a number of inhomogeneous examples, but not for n = 2. The classification of
isoparametric hypersurfaces in complex hyperbolic spaces has recently been obtained by
Dı́az-Ramos, Domı́nguez-Vázquez and Sanmart́ın-López in [40]. In this classification there
are also inhomogeneous examples, but none of them arises in CH2.

For higher codimension, the classification of isoparametric submanifolds of CP n, n 6= 15,
follows from [49] as well, and again, inhomogeneous examples exist. For CHn, the problem
seems to be much more difficult and is still open. In [42], whose results are part of this
thesis, we have carried out the classification of isoparametric submanifolds in CH2 as a first
step to understand the problem in spaces of nonconstant, nonpositive curvature. Indeed,
we address both Heintze, Liu and Olmos’ and Terng’s definition, since the latter had not
been previously studied in spaces of nonconstant curvature.

So far we have presented our research from a chronological point of view. Nonetheless,
this thesis is structured in a more logical rather than historical order for the sake of narrative
coherence. In what follows we summarize the results obtained in this project.

Isoparametric submanifolds

Motivated by the classification of isoparametric hypersurfaces in CP n and CHn, we have
tackled this classification in higher codimension. Moreover, in a space of nonconstant
sectional curvature it is not clear whether the definitions of Terng’s and of Heintze, Liu
and Olmos’ agree. Thus, in Chapter 2 we carry out the classification of both isoparametric
submanifolds of CH2 and Terng-isoparametric submanifolds of CP 2 and CH2.
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The key result for this classification is obtained in Section 2.2. This result allows us
to establish that flat Lagrangian submanifolds with parallel mean curvature have parallel
second fundamental form and are isoparametric, Terng-isoparametric and coincide with
open parts of principal orbits of cohomogeneity two polar actions on CP 2 or CH2 (The-
orem 2.1).

In Section 2.3 we present the classification of isoparametric and Terng-isoparametric
submanifolds in complex projective and hyperbolic planes. We show that an isoparamet-
ric submanifold in CP 2 or CH2 is congruent to an open part of a principal orbit of a
cohomogeneity two polar action (Theorem 2.2). On the other hand, we show that a Terng-
isoparametric submanifold is either isoparametric, a Chen’s surface in CH2 or a circle
(Theorem 2.3). The Chen’s surface, constructed in [26], turns out to be homogeneous,
but not an orbit of a polar action. In Subsection 2.3.1 we give a Lie theoretic description
different from the definition given by Chen.

Strongly 2-Hopf hypersurfaces

As a means to generalize the examples obtained in [41], [54], and some examples of non-
Hopf homogeneous hypersurfaces in CHn [12], we introduce in Chapter 3 the concept of
strongly 2-Hopf hypersurface in a complex space form. We apply the method of equivariant
geometry to cohomogeneity two polar actions in order to characterize these hypersurfaces.

The idea behind the construction of strongly 2-Hopf hypersurfaces is as follows. We
take a cohomogeneity two polar action on CP 2 or CH2 and a curve in the regular part of
a section; we take the union of all the orbits through that curve. This gives a hypersurface
with at least two distinct principal curvatures that is generically strongly 2-Hopf.

Conversely, assume that we have a strongly 2-Hopf hypersurface in CP 2 or CH2. Some
calculations show that there exist two perpendicular integrable distributions on that hy-
persurface, one of which is 2-dimensional and the other one is 1-dimensional. The integral
surfaces of the 2-dimensional distribution are equidistant, flat, totally real, with parallel
second fundamental form and flat normal bundle. Each integral curve of the other distri-
bution is contained in a totally real, totally geodesic submanifold of the ambient space.
Therefore, the results of Section 2.2 show that the hypersurface is foliated orthogonally by
principal orbits of a cohomogeneity two polar action, and thus, it can be built as explained
above.

A particular case of this setting is the construction of hypersurfaces with two distinct
principal curvatures. In this case the curve in the section simply satisfies certain ordinary
differential equation. The existence of solutions to ordinary differential equations guar-
antees that such hypersurfaces exist. Since they are generically non-Hopf, the examples
obtained in this way are different from the standard ones. In particular we respond posit-
ively to the question posed by Niebergall and Ryan in [88]. We give a detailed description
and a classification of these examples in Section 3.4.

In Section 3.5 we focus on austere hypersurfaces. After proving that there are no Hopf
examples, we calculate their Levi-Civita connection explicitly and show that austere hyper-
surfaces whose Hopf vector field has nontrivial projection onto h = 2 principal curvature
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spaces are ruled, that is, their maximal complex distribution is integrable and their integral
submanifolds are totally geodesic in the ambient space. The result now follows from the
classification of minimal ruled hypersurfaces obtained by Lohnherr and Reckziegel in [79].
The examples arising under these hypotheses are: a Lohnherr’s hypersurface in CH2, a
Clifford cone in CP 2 or CH2, or a bisector in CH2.

Finally, we apply these results to study strongly 2-Hopf hypersurfaces that are Levi-
flat or have constant mean curvature. Any of these two extra conditions is equivalent for
the curve in the section to satisfy an ordinary differential equation. The existence and
uniqueness of solutions to ordinary differential equations allows us to characterize these
hypersurfaces. If the strongly 2-Hopf hypersurface is simultaneously Levi-flat and has
constant mean curvature, then it is austere, and we apply the previous results to obtain a
full description of them.

Structure of this thesis

In Chapter 1 the basic terminology and conventions are introduced. We explain the fol-
lowing concepts by order: semi-Riemannian manifolds (§1.1), submanifold geometry (§1.2)
singular Riemannian foliations (§1.3), isoparametric submanifolds (§1.4), isometric actions
(§1.5), complex space forms (§1.6) and polar actions (§1.7).

The core of the thesis is contained in chapters 2 and 3, where the main results are
presented.

In Chapter 2 we carry out the proof of, arguably, the pivotal result of this thesis (§3.1),
which guarantees that a flat Lagrangian surface with parallel mean curvature in CP 2 or
CH2 is an open part of a principal orbit of a cohomogeneity two polar action. Then, a
description of Chen’s surface as an orbit of an isometric action is given in Section 2.3.1.
In sections 2.3.2 and 2.3.3 we obtain the classification of isoparametric submanifolds and
Terng-isoparametric submanifolds in CP 2 and CH2, respectively.

Finally, Chapter 3 is focused on the study of certain types of real hypersurfaces that
are built using the method of equivariant geometry. We explain the construction method
in Section 3.1. Then we obtain the Levi-Civita connection of a real hypersurface in CP 2 or
CH2 whose Reeb vector field has h = 2 nontrivial projections onto the principal curvature
spaces in Section 3.2. Last, but not least, we obtain the following results for real hyper-
surfaces in complex projective and hyperbolic planes: characterization of strongly 2-Hopf
hypersurfaces (§3.3), classification of hypersurfaces with two distinct principal curvatures
(§3.4), classification of austere hypersurfaces with h ≤ 2 nontrivial projections of the Hopf
vector field onto the principal curvature spaces (§3.5), and characterization of strongly
2-Hopf hypersurfaces that have constant mean curvature, that are Levi-flat or satisfy both
conditions simultaneously (§3.6).
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Chapter 1

Preliminaries and conventions

In this chapter the basic notions and terminology needed for this thesis are introduced.
Throughout this work we will use the notations and conventions described here unless
otherwise mentioned.

In Section 1.1, the concept of semi-Riemannian manifold is introduced and the sign
convention for the curvature tensor is settled. In Section 1.2 all the basic concepts and
equations of submanifold geometry needed for this thesis are explained. In Section 1.3
the definitions of singular and polar Riemannian foliations are introduced. In Section 1.4
we recall the notions of isoparametric submanifold according to Heintze, Liu and Olmos,
and according to Terng. Section 1.5 is devoted to presenting the basic terminology related
to isometric actions. In Section 1.6 we provide the construction of complex projective
and hyperbolic spaces (in Subsections 1.6.2 and 1.6.3), we characterize them as irredu-
cible Hermitian symmetric spaces (in Subsection 1.6.1), and we provide a model of the
complex hyperbolic space as a solvable Lie group. Finally, we introduce polar actions in
Section 1.7 and recall their classification in the complex projective and hyperbolic spaces
(in Subsections 1.7.1 and 1.7.2).

1.1 Semi-Riemannian manifolds

Although this thesis deals mainly with geometric objects in the Riemannian setting, at
some points we will make use of arguments concerning the more general semi-Riemannian
geometry. That is why in this section we focus not only on the Riemannian case, but also
on semi-Riemannian geometry.

Let M be an n-dimensional smooth manifold. For each p ∈M , we denote by TpM the
tangent space of M at p. The tangent bundle is denoted by TM . If D is a distribution
along M , we will denote by Γ(D) the module of sections of such distribution, that is, those
vector fields X on M such that Xp ∈ Dp for all p ∈M .

If T denotes a bilinear tensor of type (0, 2) defined on a vector space, we say that T
is symmetric if T (x, y) = T (y, x) for all x, y and nondegenerate if T (x, y) = 0 for all y
implies x = 0. The signature of the tensor is a pair (r, s) such that the tensor T is linearly
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2 1 Preliminaries and conventions

congruent to a diagonal matrix diag(1,
r· · ·, 1,−1,

s· · ·,−1).
A semi-Riemannian manifold is a pair (M, 〈·, ·〉), where M is a manifold and 〈·, ·〉 is

a nondegenerate symmetric bilinear tensor field of type (0, 2) and constant signature. In
particular, each tangent space TpM is endowed with a nondegenerate symmetric bilinear
tensor 〈·, ·〉p. If the tensor has signature (r, s) we will say that M has signature (r, s).
Semi-Riemannian manifolds with signature (n, 0) are called Riemannian manifolds, while
Lorentzian manifolds are those with signature (n − 1, 1). If M is a Riemannian manifold
and X is a vector field on M , then we will denote by ‖X‖ its norm, ‖X‖ =

√
〈X,X〉. The

Riemannian exponential map of M will be denoted by exp.
The study of curvature plays an important role in semi-Riemannian geometry. The

curvature tensor R of a semi-Riemannian manifold M provides the curvature information.
It is a tensor of type (1, 3) that we define with the following sign convention:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM),

where ∇ is the Levi-Civita connection of M , that is, the unique torsion-free metric con-
nection on M . When R = 0 we say that the manifold is flat.

Let G∗2(TM) be the Grassmann bundle over M consisting of all nondegenerate 2-
dimensional linear subspaces σ of TpM , for p ∈ M . If σ is a nondegenerate subspace
of TpM , then we define the sectional curvature of σ as

K(σ) =
〈R(U, V )V, U〉

〈U,U〉〈V, V 〉 − 〈U, V 〉2
,

where {U, V } is a basis for σ. The function K : G∗2(TM) −→ R is called the sectional
curvature function ofM . A semi-Riemannian manifoldM is said to have constant curvature
if the sectional curvature function is constant. In this case, the curvature tensor can be
written as R(X, Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y ) for any vector fields X, Y and Z on M
and some constant c. It is known that the only connected, complete, simply connected
Riemannian manifolds of constant curvature are Euclidean spaces Rn (c = 0), spheres Sn

(c > 0) and real hyperbolic spaces RHn (c < 0). These are the so-called (real) space forms.

1.2 Submanifold geometry

In this section we introduce the basic terminology and fundamental formulas for the study
of submanifolds of Riemannian manifolds. More information can be found in [9, Chapters 2
and 8] and [25]. For semi-Riemannian manifolds of arbitrary signature, a detailed reference
is [91, Chapter 4] .

Let M̄ be a semi-Riemannian manifold with metric 〈·, ·〉 and M an embedded sub-
manifold of M̄ . The restriction of 〈·, ·〉 to M induces a symmetric bilinear tensor on M
that can be degenerate. If it is nondegenerate then M is a semi-Riemannian manifold
by itself and M is called a semi-Riemannian submanifold or a nondegenerate submanifold
of M̄ . If M̄ is Riemannian, every submanifold of M̄ is a Riemannian submanifold. In



1.2 Submanifold geometry 3

this work we will assume that submanifolds are embedded and equipped with the induced
semi-Riemannian metric (whenever the induced metric is nondegenerate). All the concepts
and terminology that we will explain below involve local geometry, so it also applies to
immersed submanifolds, since immersed submanifolds are locally embedded.

From now on, M̄ will be a Riemannian manifold and M will be a Riemannian subman-
ifold of M̄ . Each tangent space TpM is endowed with the metric 〈·, ·〉p. Hence, we can
consider the bundle of vectors that are orthogonal to the tangent space, which is called
the normal bundle of M and that is denoted by νM . By Γ(νM) we denote the mod-
ule of all normal vector fields to M . At each point p ∈ M , the canonical isomorphism
TpM̄ = TpM ⊕ νpM holds. In this work, the symbol ⊕ will always denote direct sum (not
necessarily orthogonal direct sum). Given a vector field X on M̄ along M we denote by
X> the orthogonal projection of X onto TM and by X⊥ the orthogonal projection onto
νM .

If V is a vector space with symmetric bilinear form 〈·, ·〉 and W ⊂ V is a vector
subspace, we denote V 	W = {v ∈ V : 〈v, w〉 = 0,∀w ∈ W}. If 〈·, ·〉 is positive definite,
this notation stands for the orthogonal complement of W in V . We will use the same
notation for distributions on M or subbundles of M̄ defined along M .

It is known that the curvature tensor R of a Riemannian submanifold M depends
only on the metric of M , thus the curvature tensor is an important intrinsic geometric
invariant. One may study the intrinsic geometry of both M̄ and M . Nonetheless, one can
also investigate the geometry of M in relation to the geometry of M̄ . This is called the
extrinsic geometry of M .

We denote by R̄ and R the curvature tensors of M̄ and M , and by ∇̄ and ∇ the Levi-
Civita connections of M̄ and M , respectively. We decompose ∇̄XY in its tangent part
(∇̄XY )> and its normal part (∇̄XY )⊥, for any X, Y ∈ Γ(TM). Then, the Levi-Civita
connection of M is given by the tangent part, ∇XY = (∇̄XY )>, and we define the second
fundamental form as the normal part, II(X, Y ) = (∇̄XY )⊥. Hence, we have an orthogonal
descomposition

∇̄XY = ∇XY + II(X, Y )

for any X, Y ∈ Γ(TM), which is called the Gauss formula of M . Let ξ ∈ Γ(νM) be a unit
normal vector field. The shape operator of M associated with ξ is the self-adjoint operator
Sξ on M defined by 〈SξX, Y 〉 = 〈II(X, Y ), ξ〉, where X, Y ∈ Γ(TM). The eigenvalues and
eigenspaces of Sξ are called the principal curvatures and the principal curvature spaces of
M with respect to ξ, respectively. Moreover, denote by ∇⊥ the normal connection of M ,
that is, ∇⊥Xξ = (∇̄Xξ)

⊥ for any X ∈ Γ(TM) and ξ ∈ Γ(νM). Then, we have an orthogonal
decomposition

∇̄Xξ = −SξX +∇⊥Xξ,
which is called the Weingarten formula.

We can relate the curvature tensors of M̄ and M applying the previous information,
via the second fundamental form. This relation is known as the Gauss equation, and for
X, Y, Z,W ∈ Γ(TM) it is written as follows:

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈II(Y, Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉.
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We also obtain the Codazzi equation which is very important in this work,

(R̄(X, Y )Z)⊥ = (∇⊥XII)(Y, Z)− (∇⊥Y II)(X,Z),

where the covariant derivative of the second fundamental form is given by

(∇⊥XII)(Y, Z) = ∇⊥XII(Y, Z)− II(∇XY, Z)− II(Y,∇XZ).

The Codazzi equation can also be written using the shape operator of M as follows

〈R̄(X, Y )Z, ξ〉 = 〈∇XSξY, Z〉 − 〈∇XY,SξZ〉 − 〈S∇⊥XξY, Z〉
− 〈∇Y SξX,Z〉+ 〈∇YX,SξZ〉+ 〈S∇⊥Y ξX,Z〉,

where ξ is a unit normal vector field on M .
The last of the three fundamental equations of second order in submanifold theory is

the Ricci equation

〈R⊥(X, Y )ξ, η〉 = 〈R̄(X, Y )ξ, η〉+ 〈[Sξ,Sη]X, Y 〉,

where X, Y ∈ Γ(TM), ξ, η ∈ Γ(νM) and R⊥ is the curvature tensor of the normal bundle
of M , defined by R⊥(X, Y )ξ = [∇⊥X ,∇⊥Y ]ξ −∇⊥[X,Y ]ξ.

We say that a submanifold is totally geodesic if its second fundamental form vanishes
identically, II = 0. This is equivalent to saying that every geodesic in M is also a geodesic
in M̄ . If M is complete and totally geodesic we have that M = expp(TpM) for any p ∈M .

The fact that ξ ∈ Γ(νM) is a parallel normal vector field to M means that ξ is parallel
with respect to the normal connection of M , i.e. ∇⊥ξ = 0. When for any point p in M
and any normal vector ξ ∈ νpM there exists a neighbourhood of p in M such that ξ can
be extended to a parallel normal vector field on that neighbourhood, then M is said to
have flat normal bundle. A submanifold has flat normal bundle if and only if the normal
curvature tensor R⊥ vanishes identically.

The mean curvature vector H of a Riemannian submanifold M is defined as the trace
of the second fundamental form. Hence, with respect to a local orthonormal frame {Ei}
of M we may write H =

∑
i II(Ei, Ei). If ξ ∈ Γ(νM), then the mean curvature of M with

respect to ξ is the trace of the shape operator Sξ. We will say that M has parallel mean
curvature if the mean curvature vector field is parallel with respect to the normal connection
of M . The mean curvature function of M is the norm of the mean curvature vector field
h = ‖H‖. A submanifold is said to be minimal if and only if its mean curvature function
vanishes. Minimal submanifolds appear in a natural way as the critical points of the volume
functional and they are a topic of current interest in Differential Geometry. A submanifold
M is called austere if, for each unit normal vector ξ, the eigenvalues of Sξ are invariant
under multiplication by −1. Austere submanifolds constitute an interesting subclass of
minimal submanifolds. These objects were introduced by Harvey and Lawson [56] in their
study of special Lagrangian submanifolds.

A submanifold M is said to be totally umbilical if there exists a normal vector field
ξ such that II(X, Y ) = 〈X, Y 〉ξ for all tangent vector fields X and Y . In this case ξ is
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proportional to the mean curvature vector field H by a factor dimM . It is clear that
every one-dimensional submanifold is totally umbilical, as well as any totally geodesic
submanifold.

A smooth curve σ : I → M̄ parametrized by arc length is called a circle in M̄ if it
satisfies the third order differential equation ∇̄σ̇∇̄σ̇σ̇ + 〈∇̄σ̇σ̇, ∇̄σ̇σ̇〉σ̇ = 0, where σ̇ denotes
the tangent vector to the curve σ. Circles are precisely the unit speed parametrizations of
curves with parallel mean curvature. In particular, unit speed geodesics are circles. More
information on circles can be found in [9, §8.4].

We say that M has parallel second fundamental form if ∇⊥XII = 0 for all X ∈ Γ(TM).
Submanifolds with parallel second fundamental form have parallel mean curvature.

Two Riemannian submanifolds M1 and M2 of M̄ are said to be congruent if there exists
an isometry of M̄ that takes M1 into M2.

Assume now that M is a hypersurface of M̄ , that is, an embedded submanifold of
codimension one. Then, locally and up to sign, there exists a unique unit normal vector
field ξ ∈ Γ(νM). Hence the second fundamental form II is a multiple of ξ.

We will denote by S = Sξ the shape operator with respect to ξ. The Gauss and
Weingarten formulas can now be written as

∇̄XY = ∇XY + 〈SX, Y 〉ξ,
∇̄Xξ = −SX.

Then, the Gauss and Codazzi equations reduce to

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈SY, Z〉〈SX,W 〉+ 〈SX,Z〉〈SY,W 〉,
〈R̄(X, Y )Z, ξ〉 = 〈(∇XS)Y − (∇Y S)X,Z〉,

whereas the Ricci equation does not give further information for hypersurfaces.

Since the mean curvature vector H is the trace of the second fundamental form, which
is a multiple of ξ, H is proportional to the vector ξ. Thus, one usually talks about the
mean curvature of the hypersurface, which is defined as the trace of its shape operator S.

Let ξ be a unit normal vector field defined on an open subset U of the hypersurface M .
We say that λ : U ⊂M → R is a principal curvature of M (associated with ξ) if there exists
a vector field X ∈ Γ(TU) such that SX = λX. If λ is a principal curvature we denote by
Tλ(p) the eigenspace of λ(p) and call it the principal curvature space associated with λ(p).
If X ∈ Tλ(p), X 6= 0, we say that X is a principal curvature vector of λ at p. In general, the
dimension of the principal curvature spaces associated with a principal curvature λ does
not need to coincide at different points. This dimension, that is, dim ker(Sp − λ(p) Id), is
called the multiplicity of λ at p.

A connected hypersurface is said to have constant principal curvatures if the eigenvalues
of the shape operator are the same at every point. In this case the principal curvature
spaces associated with an eigenvalue λ have the same dimension at any point.
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1.3 Singular Riemannian foliations

In this work we will deal with some examples of singular Riemannian foliations, a topic that
is an active field of research nowadays. Singular Riemannian foliations were introduced by
Molino [85] in his study of Riemannian foliations. See the articles [6], [7], [82] and [105]
for more information.

Let F be a decomposition of a Riemannian manifold M̄ into connected injectively
immersed submanifolds, called leaves, which may have different dimensions. We say that
F is a singular Riemannian foliation if the following conditions are satisfied:

(i) F is a singular foliation, that is, TpL = {Xp : X ∈ XF} for every leaf L in F and
every p ∈ L, where XF is the module of smooth vector fields on the ambient manifold
that are everywhere tangent to the leaves of F , and

(ii) F is a transnormal system, that is, every geodesic orthogonal to one leaf remains
orthogonal to all the leaves that it intersects.

If M̄ is complete, the transnormality condition implies that the leaves are equidistant to
each other.

The leaves of maximal dimension are called regular and the other ones are singular.
The points of M̄ are said to be regular or singular according to the leaves through them.
A singular Riemannian foliation is called regular if all leaves are regular, that is, if it is a
Riemannian foliation. The dimension of F is the maximal dimension of the leaves and its
codimension is dim M̄ − dimF .

An important example are polar foliations, also called singular Riemannian foliations
with sections in the terminology of Alexandrino [5]. Let F be a foliation on M̄ . Then F
is said to be polar if, for each point p ∈ M̄ , there is an immersed submanifold Σp, called
section, that passes through p and that meets all the leaves and always perpendicularly. It
follows that Σp is totally geodesic and that the dimension of Σp is equal to the codimension
of F . When the sections of a polar foliation are flat submanifolds, the foliation is called
hyperpolar.

If the ambient manifold M̄ is complete, the fact that a singular Riemannian foliation be
polar is equivalent to the fact that the distribution generated by the normal spaces to the
regular leaves is integrable. In this case, the sections are complete. Moreover, the leaves of
a polar foliation on a complete, simply connected Riemannian manifold are always closed
submanifolds with globally flat normal bundle (see [83, Theorem 1.2]). Note that, in a
complete ambient manifold, codimension one foliations are always polar.

Polar foliations are related to the so-called polar actions, whose definition will be in-
troduced in Section 1.7. One important question in the study of polar foliations is to
decide whether polar foliations are orbit foliations of isometric actions. In this case, such
homogeneous polar foliations are precisely the orbit foliations of polar actions.
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1.4 Isoparametric submanifolds

Let M be a submanifold of a Riemannian manifold M̄ . If the normal bundle of M is flat,
for each parallel normal vector field ξ and each sufficiently small r > 0, we can consider
the set M r,ξ = {exp(rξp) : p ∈M}. If such a set is a submanifold, then we call it a parallel
submanifold of M determined by the vector field ξ. Locally and for r sufficiently small,
M r,ξ is always a parallel submanifold. Indeed, every p ∈M admits an open neighbourhood
U where every normal vector can be extended to a parallel normal field. By restricting
U further if necessary, we can assume that there is an s > 0 such that for all r < s and
for every parallel normal field ξ on U , the set U r,ξ = {exp(rξp) : p ∈ U} is an embedded
parallel submanifold of U ⊂M .

The submanifold M is said to be almost isoparametric [57] if its normal bundle νM is
flat and if, locally, the parallel submanifolds of M have constant mean curvature in radial
directions.

A submanifold M is said to admit sections if for any point p ∈ M there is a totally
geodesic submanifold Σp, called the section through p, such that TpΣp = νpM . Then,
we say M is isoparametric (or more precisely, isoparametric according to Heintze, Liu
and Olmos [57]) if it is almost isoparametric and admits sections. Throughout this thesis
whenever we consider an isoparametric submanifold, we understand that it is isoparametric
according to this definition.

In particular, for the codimension one case, the definition of isoparametric submanifold
above simplifies. Let M be a hypersurface of M̄ . Then, the normal bundle of M is flat. Let
ξ be a parallel unit normal vector field and r > 0 sufficiently small. We can consider the
set M r = {exp(rξ) : ξ ∈ νM}. If such a set is a hypersurface, then we call it an equidistant
hypersurface to M . Locally and for r sufficiently small, M r is always an equidistant
hypersurface. Thus, a hypersurface in a Riemannian manifold M̄ is isoparametric if, locally,
it and its sufficiently close equidistant hypersurfaces have constant mean curvature. More
information about isoparametric hypersurfaces can be found in [103].

A submanifold M is said to have constant principal curvatures if for any curve σ : I →
M and any parallel unit normal vector field ξ ∈ Γ(σ∗ν1M) along σ the eigenvalues of
the shape operator Sξ(t) with respect to ξ(t) are constant along σ. Then, M is called
Terng-isoparametric (or isoparametric according to Terng [101]) if it has constant principal
curvatures and flat normal bundle.

1.5 Isometric actions

In this section, we present the basic concepts and terminology for the study of isometric
actions on Riemannian manifolds. More information can be found in [9, Chapter 3].

Let M̄ be a Riemannian manifold and G a Lie group. We say that G acts isometrically
on M̄ if there exists a smooth map

ϕ : G× M̄ → M̄, (g, p) 7→ gp,
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satisfying (gg′)p = g(g′p) for all g, g′ ∈ G and p ∈ M̄ , and such that the map

ϕg : M̄ → M̄, p 7→ gp,

is an isometry of M̄ for every g ∈ G. The map ϕ is called an isometric action on M̄ . If
we denote by I(M̄) the isometry group of M̄ , which is known to be a Lie group [87], then
we have a Lie group homomorphism ρ : G → I(M̄) given by ρ(g) = ϕg. For each point
p ∈ M̄ , the orbit of the action of G through p is

G · p = {gp : g ∈ G}

and the isotropy group or stabilizer at p is

Gp = {g ∈ G : gp = p}.

If we consider another isometric action ϕ′ : G× M̄ ′ → M̄ ′, then ϕ and ϕ′ are said to be
conjugate or equivalent if there is a Lie group isomorphism ψ : G → G′ and an isometry
f : M̄ → M̄ ′ such that f(gp) = ψ(g)f(p) for all p ∈ M̄ and g ∈ G. We say that both
isometric actions, ϕ and ϕ′, are orbit equivalent if there is an isometry f : M̄ → M̄ ′ that
maps the orbits of the G-action on M̄ to the orbits of the G′-action on M̄ ′. Clearly, two
conjugate actions are orbit equivalent.

If G · p = M̄ for some p ∈ M̄ , and hence for each p ∈ M̄ , the G-action is said to be
transitive and M̄ is a homogeneous G-space. The action is said to be trivial if each point in
M̄ is a fixed point. An action is called effective if the associated map ρ above is injective,
which means that G is isomorphic to a subgroup of I(M̄). If for every p ∈ M̄ and every g,
h ∈ G, the equality gp = hp implies g = h, then the action is free. If a G-action on M̄ is
free and transitive we say that G acts simply transitively on M̄ .

We will be mostly interested in studying the extrinsic geometry of the orbits of isometric
actions. Let M be a submanifold of a Riemannian manifold M̄ . We say that M is an
(extrinsically) homogeneous submanifold of M̄ if M is an orbit of an isometric action on
M̄ . In general, these submanifolds will only be immersed submanifolds of M̄ . With respect
to the induced metric, each orbit G · p is a Riemannian homogeneous space G · p = G/Gp,
on which G acts transitively by isometries.

Each isometric action induces certain orthogonal representations in a natural way. Re-
call that a representation of a Lie groupG on a vector space V is a Lie group homomorphism
ρ : G→ GL(V ) or, equivalently, an action G×V → V given by automorphisms of V ; when
V is a Euclidean space and the automorphisms ρ(g), g ∈ G, are orthogonal transformations
of V , we have an orthogonal representation ρ : G→ O(V ).

Let ϕ : G × M̄ → M̄ be an isometric action on a Riemannian manifold M̄ , and let
p ∈ M̄ . Since the isotropy group Gp fixes p and Gp leaves the orbit G · p invariant, the
action of the isotropy group Gp acting on TpM̄ by

Gp × TpM̄ → TpM̄, (g,X) 7→ (ϕg)∗pX,
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leaves the tangent space Tp(G · p) and the normal space νp(G · p) invariant, where (ϕg)∗p
denotes the differential of ϕg at the point p. The restriction of this action to the tangent
space to the orbit Tp(G · p)

Gp × Tp(G · p)→ Tp(G · p), (g,X) 7→ (ϕg)∗pX,

is called the isotropy representation of the action ϕ at p, while the restriction to the normal
space to the orbit νp(G · p)

Gp × νp(G · p)→ νp(G · p), (g, ξ) 7→ (ϕg)∗pξ,

is called the slice representation of the action ϕ at p.
Let M̄/G be the set of orbits of the action of G on M̄ , and equip M̄/G with the

quotient topology relative to the canonical projection M̄ → M̄/G, p 7→ G · p. In general,
M̄/G is not a Hausdorff space. To avoid this behaviour, the so-called proper actions were
introduced. Thus, the action of G on M̄ is proper if the map

G× M̄ → M̄ × M̄, (g, p) 7→ (p, gp),

is a proper map, i.e. the inverse image of each compact set in M̄ × M̄ is compact in
G × M̄ . Every compact Lie group action is proper. If M̄ is a Riemannian manifold and
G is a subgroup of I(M̄), then the G-action is proper if and only if G is closed in I(M̄).
Moreover, if G acts properly on M̄ , then M̄/G is a Hausdorff space, each isotropy group
Gp is compact, and each orbit G ·p is closed in M̄ and hence an embedded submanifold. In
fact, the orbits of an isometric action are closed if and only if the action is orbit equivalent
to a proper isometric action, see [36].

We can distinguish three different kinds of orbits of a proper isometric action: principal,
exceptional and singular orbits. A principal orbit is an orbit G ·p such that for each q ∈ M̄
the isotropy group Gp at p is conjugate in G to some subgroup of Gq. The union of all
principal orbits is a dense and open subset of M̄ and any orbit G · p of a proper action is
principal if and only if the slice representation at p is trivial. Each principal orbit is an
orbit of maximal dimension. The codimension of any principal orbit is the cohomogeneity
of the action. If an orbit has maximal dimension but is non-principal then it is called an
exceptional orbit. Finally, a singular orbit is an orbit whose dimension is less than the
dimension of a principal orbit or, equivalently, an orbit whose codimension is greater than
the cohomogeneity.

If G · p is a principal orbit and ξ ∈ νp(G · p), define ξ̃gp = g · ξ for all g ∈ G. The vector
field ξ̃ is a well-defined normal vector field on G · p called the equivariant normal vector
field determined by ξ. Hence, if G · p is a principal orbit and ξ1, · · · , ξk is an orthonormal
basis of νp(G · p), then ξ̃1, · · · , ξ̃k is a global smooth orthonormal frame of the normal
bundle of G · p (thus, the normal bundle of a principal orbit is flat and equivariant vector
fields are parallel [9, Corollary 3.2.5]). Moreover, from a given principal orbit G · p, one
can determine all nearby orbits by using equivariant normal vector fields of G · p. Since
expgp(ξ̃gp) = expgp(g · ξ̃p) = g exp(ξ̃p) then Mξ = {expq(ξ̃q) : q ∈ G · p} = G · expp ξ̃p, that

is, Mξ is the orbit through expp(ξ̃p).
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An important kind of isometric actions are polar actions. Let H be a connected closed
subgroup of I(M̄). The standard action of H on M̄ is called polar if there exists an
immersed submanifold Σ of M̄ such that:

1. Σ intersects all the orbits of the H-action, and

2. for each p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit
through p at p, Tp(H · p), are orthogonal.

In such a case, the submanifold Σ is called a section of the H-action, which is always a
totally geodesic submanifold of M̄ . In this case, the orbit foliation of M̄ by the polar action
is a polar foliation. Any polar action admits sections through any given point. The action
of H is called hyperpolar if the section Σ is flat in its induced Riemannian metric. Every
cohomogeneity one action is automatically hyperpolar.

1.6 Complex space forms

This thesis is devoted to the study of geometric objects in two families of symmetric spaces
of rank one: complex projective and hyperbolic spaces. Thus, in this section we present
their construction and some properties of these two spaces. The reader is referred to [46],
[48], [88] and [25] for more information about this topic. At the end of this section, we
describe some important classes of submanifolds in Kähler manifolds that will be important
to our classifications.

Firstly, let us recall some definitions concerning complex, Hermitian and Kähler mani-
folds. See [109] for more details and proofs.

Let V be a vector space with an inner product 〈·, ·〉. In this work, an orthogonal
transformation J of V such that J2 = − Id will be known a complex structure on the
vector space V . Thus, any endomorphism J of V is a complex structure if and only
if the following properties are satisfied: (i) 〈Jv, Jw〉 = 〈v, w〉 for all v, w ∈ V , that is,
J ∈ O(V ), and (ii) J2 = − Id for all v, w ∈ V , which implies that 〈Jv, w〉 = −〈v, Jw〉,
that is, J ∈ so(V ).

A complex manifold is a manifold that admits charts with their image onto open subsets
of Cn and such that the coordinate transitions are holomorphic. This induces an almost
complex structure J on M , i.e. an endomorphism of the tangent bundle of M such that
J2 = − Id. Then, M is called a Hermitian manifold if M is Riemannian and complex, and
the complex structure J is orthogonal (equivalently, J restricts to a complex structure of
each tangent space TpM , p ∈M). A Kähler manifold is a Hermitian manifold M satisfying
∇J = 0, where ∇ is the Levi-Civita connection of M . The endomorphism J is known as
the Kähler structure or the complex structure of M .

In Section 1.1 we have said that the only connected, simply connected Riemannian
manifolds of constant curvature are the real space forms. However, in Kähler geometry,
spaces of constant curvature are not very relevant because Kähler manifolds of constant
curvature and dimension greater than two are necessarily flat. Thus, for Kähler manifolds
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a new concept is introduced. Let M̄ be a Kähler manifold with complex structure J
and curvature tensor R̄. The restriction of the sectional curvature K̄ to J-invariant 2-
dimensional subspaces of the tangent space is called the holomorphic sectional curvature
K̄hol of M̄ . Since these subspaces are generated by pairs of the form {v, Jv}, with v ∈ TpM̄ ,
p ∈ M̄ , K̄hol can be regarded as a function that maps each unit tangent vector v ∈ TM̄ to
the real number K̄hol(v) = K̄(v, Jv) = 〈R̄(v, Jv)Jv, v〉.

A Kähler manifold is said to have constant holomorphic curvature if K̄hol is constant for
any unit tangent vector of M̄ . A complete, simply-connected Kähler manifold of constant
holomorphic curvature c is isometric to one of the following spaces: a complex Euclidean
space Cn if c = 0, a complex projective space CP n if c > 0, or a complex hyperbolic
space CHn if c < 0. These are the so-called complex space forms. Furthermore, if M̄ has
constant holomorphic curvature c then its curvature tensor can be written as

R̄(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X,Z〉Y + 〈JY, Z〉JX − 〈JX,Z〉JY − 2〈JX, Y 〉JZ) .

In this work we will focus on complex projective and hyperbolic spaces. Thus we give
a description of their construction.

1.6.1 Irreducible semisimple Hermitian symmetric spaces

Complex projective and hyperbolic spaces are precisely the irreducible semisimple Her-
mitian symmetric spaces of rank one. Symmetric spaces constitute a particularly nice
class of homogeneous spaces. Here we give a quick introduction to this topic. Basic facts
about these spaces and more information can be found in the standard references [59], [80],
[81] and [110].

Let M be a Riemannian manifold. Let o ∈ M . Take r > 0 sufficiently small so
that normal coordinates are defined on the open ball Br(o). We define the local geodesic
symmetry at o as the map so : Br(o)→ Br(o) given by so(expo(v)) = expo(−v) for v ∈ ToM ,
‖v‖ < r. In general, this map is defined only locally. A connected Riemannian manifold
M is called a (Riemannian) symmetric space if each local geodesic symmetry so can be
extended to a global isometry so : M →M .

Let M be a symmetric space and M̃ its universal covering. Then the De Rham theorem
guarantees that M̃ can be decomposed as M̃ = M̃0 × M̃1 × · · · × M̃k. Here M̃0 is the
Euclidean factor, that is, M̃0 is isometric to a Euclidean space, and each M̃i, i = 1, . . . , k,
is a simply connected, irreducible symmetric space. Recall that M is irreducible if and
only if its universal covering M̃ is irreducible, that is, M̃ does not split as a product of
manifolds, and is reducible otherwise.

A semisimple symmetric space is one for which the Euclidean factor of its universal
covering space has dimension zero. In this case, the Lie algebra of the isometry group of
M̃ is semisimple. A semisimple symmetric space is said to be of compact type if all the De
Rham factors of its universal covering are compact. It is said to be of noncompact type if
all the De Rham factors of its universal covering are non-Euclidean and noncompact.
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Simply connected, irreducible Riemannian symmetric spaces have been classified by
Cartan. One can find a list of them in [59, p. 515–520].

The rank of a symmetric space M is, by definition, the dimension of a maximal flat,
totally geodesic submanifold of M .

A symmetric space M is Hermitian if it is a Hermitian manifold and the geodesic
symmetries sp, p ∈ M , are holomorphic transformations. It occurs that every Hermitian
symmetric space is Kähler.

The classification of the irreducible semisimple Hermitian symmetric spaces is shown
in the following Table 1.1.

Compact Noncompact Dimension Rank

SU(p+ q)/S(U(p)U(q)) SU(p, q)/S(U(p)U(q)) 2pq min{p, q}
SO(2 + q)/SO(2)SO(q) SOo(2, q)/SO(2)SO(q) 2q min{2, q}
SO(2n)/U(n) SO∗(2n)/U(n) n(n− 1) [n/2]

Sp(n)/U(n) Sp(n,R)/U(n) n(n+ 1) n

E6/U(1) · Spin(10) E−14
6 /U(1) · Spin(10) 32 2

E7/U(1) · E6 E−25
7 /U(1) · E6 54 3

Table 1.1: Irreducible semisimple Hermitian symmetric spaces

The first row of Table 1.1, taking p = 1, contains the simply connected rank one irre-
ducible semisimple Hermitian symmetric spaces. These are precisely the nonflat complex
space forms: complex projective spaces CP n and complex hyperbolic spaces CHn. In
what follows we will denote by M̄n(c) an n-dimensional complex space form of constant
holomorphic sectional curvature c 6= 0. Thus, M̄n(c) is a complex projective space CP n

if c > 0, or a complex hyperbolic space CHn if c < 0. Now we will give a more detailed
description of these spaces.

1.6.2 The complex projective space CP n

The complex projective space of complex dimension n (real dimension 2n) is defined as the
space of complex lines of Cn+1 through the origin, or equivalently, as the quotient manifold
of a sphere, S2n+1(r)/ ∼, by the equivalence relation given by z ∼ λz, z ∈ S2n+1(r), λ ∈
S1 ⊂ C. We denote by π the canonical projection of ∼ from the sphere S2n+1(r) onto the
complex projective space, π : S2n+1(r)→ CP n. Then π is a smooth surjective submersion
called the Hopf map. We will consider the metric on CP n that makes π : S2n+1(r)→ CP n

a Riemannian submersion.

In what follows, we give a more detailed description of the construction presented above.
Consider a complex structure J on R2n+2, which allows us to identify R2n+2 with Cn+1,
where the multiplication by the imaginary unit i is induced by J . Now we consider the
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scalar product on Cn+1 given by

〈z, w〉 = Re

(
n∑
k=0

zkw̄k

)
,

for each z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1. This scalar product yields the
standard Euclidean metric 〈·, ·〉 on R2n+2.

The (2n+ 1)-dimensional sphere of radius r is S2n+1(r) = {z ∈ Cn+1 : 〈z, z〉 = r2}. Its
tangent space at z ∈ S2n+1(r) is TzS

2n+1(r) = {w ∈ Cn+1 : 〈z, w〉 = 0}.
The restriction of the above inner product yields a Riemannian metric of constant

sectional curvature 1/r2 on S2n+1(r). A unit normal vector field ξ along S2n+1(r) is given
by ξz = 1

r
z.

We consider the equivalence relation on S2n+1(r) generated by z ∼ λz with λ ∈ S1 ⊂ C.
This defines a principal fiber bundle over CP n with total space S2n+1(r), fiber S1 and
projection map π : S2n+1(r)→ CP n.

Define V = Jξ. Obviously, V is a unit tangent vector field to S2n+1(r) and we can
write

TS2n+1(r) = RV ⊕ V ⊥,

where V ⊥ is the orthogonal complement of V with respect to the metric on S2n+1(r).
Actually, if z ∈ S2n+1(r), then RVz is the kernel of π∗z, where π∗ denotes the differential
of π. Hence, π∗z maps V ⊥z isomorphically onto Tπ(z)CP n, and for each X ∈ Tπ(z)CP n we
can define the horizontal lift XL

z of X to z as the unique tangent vector in V ⊥z such that
π∗X

L
z = X. The map t 7→ ϕt(z) = eitz is exactly the geodesic on S2n+1(r) starting at z

with initial speed Jz = iz = rVz. We have π ◦ ϕt = π, and thus XL
ϕt(z)

= (ϕt)∗zX
L
z .

The complex structure J on CP n is then defined by

JX = π∗(JX
L)

for each X ∈ TCP n, whereas the metric on CP n is given by

〈X, Y 〉 =
〈
XL, Y L

〉
for all X, Y ∈ TCP n. This metric, called the Fubini-Study metric of CP n, makes
π : S2n+1(r) → CP n a Riemannian submersion. It also satisfies 〈JX, JY 〉 = 〈X, Y 〉 for
any tangent vectors X and Y . By virtue of the formulas for Riemannian submersions [90],
the Levi-Civita connection of CP n is given by

∇̄XY = π∗

(
∇̃XLY L

)
,

for tangent vector fields X, Y on CP n. Using this formula one can show that J is Kähler.
The theory of semi-Riemannian submersions [90] also allows to calculate the holo-

morphic sectional curvature of CP n, which turns out to be K̄hol(X) = 4/r2 for every unit
X ∈ TCP n. Therefore, CP n is a space of constant holomorphic curvature c = 4/r2.
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The unitary group U(n + 1) = {A ∈ GL(n + 1,C) : AA∗ = Id}, where A∗ denotes the
conjugate transpose matrix of A, A∗ = ĀT , preserves the standard metric of R2n+2 ≡ Cn+2.
Since it preserves complex lines through the origin of Cn+1 and acts transitively on them,
U(n+ 1) acts transitively by isometries on CP n by A(p) = π(Az) where p = π(z) ∈ CP n,
and A ∈ U(n+ 1). However, the action is not effective, as all transformations of the form
z Id with |z| = 1, act trivially on CP n. The subgroup SU(n + 1) of those matrices in
U(n + 1) with determinant one keeps acting transitively on CP n but with finite kernel
constituted by the matrices z Id with z an (n+ 1)-th root of the unit.

Therefore CP n is a homogeneous space. The isotropy group at, for example, the point
p = π(r, 0, . . . , 0) ∈ CP n is S(U(1)U(n)), which is isomorphic to U(n). Thus, the complex
projective space turns out to be the Hermitian symmetric space of rank one given by

CP n = SU(n+ 1)/S(U(1)U(n)).

The fact that CP n has rank one follows, for instance, from the following classification of
totally geodesic submanifolds, which implies that any totally geodesic, flat submanifold of
maximal dimension in CP n is a geodesic [107].

Theorem 1.1. Let M be a totally geodesic submanifold of CP n. Then M is holomorph-
ically congruent to an open part of a real projective space RP k for some k ∈ {1, . . . , n}
or to a complex projective space CP k for some k ∈ {0, . . . , n}. Any two totally geodesic
submanifolds of CP n are locally holomorphically congruent to each other if and only if they
are locally isometric.

1.6.3 The complex hyperbolic space CHn

The complex hyperbolic space, as a smooth manifold, is the quotient manifold CHn =
H2n+1

1 (r)/ ∼ of an anti-De Sitter space H2n+1
1 (r) by the equivalence relation given by

z ∼ λz, z ∈ H2n+1
1 (r), λ ∈ S1 ⊂ C. Equivalently, CHn is the space of timelike complex lines

through the origin of Cn+1. The canonical projection is denoted by π : H2n+1
1 (r) → CHn

and is called the Hopf map of CHn. As a Riemannian manifold, the metric on CHn will
be induced by the metric on the anti-De Sitter space through the map π.

Remark 1.2. Anti-De Sitter spaces are Lorentzian manifolds of constant negative sectional
curvature. Then, in order to construct the complex hyperbolic space we will need the theory
of semi-Riemannian submanifolds. The theory of Riemannian submanifolds presented in
Section 1.2 can be adapted to the semi-Riemannian setting with minor changes as follows.

Let M̄ be a semi-Riemannian manifold and assume now that M is a semi-Riemannian
hypersurface of M̄ , that is, an embedded Riemannian submanifold of codimension one and
with nondegenerate induced metric. Then, locally and up to sign, there exists a unique
unit normal vector field ξ ∈ Γ(νM), such that 〈ξ, ξ〉 = ε ∈ {1,−1}. Hence the second
fundamental form II is a multiple of ξ.

We will denote by S = Sξ the shape operator with respect to ξ. The Gauss and
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Weingarten formulas can now be written as

∇̄XY = ∇XY + ε〈SX, Y 〉ξ,
∇̄Xξ = −SX.

The construction of the complex hyperbolic space is very close to the construction of
the complex projective space. Hence, in this subsection we summarize the basic facts of
this construction, following the steps in the description of §1.6.2. However, we will see that
their geometries turn out to be very different.

As above, take a complex structure J on R2n+2, and identify R2n+2 with Cn+1. Now we
consider the scalar product on Cn+1 given by

〈z, w〉 = Re

(
−z0w̄0 +

n∑
k=1

zkw̄k

)
,

for each z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1. This scalar product does no
longer induce the usual inner product of R2n+2, but a standard semi-Riemannian metric
of signature (2, 2n). Hence, we consider the anti-De Sitter space (of radius r), which
can be regarded as the Lorentzian analogue of the real hyperbolic space, and that is
defined as H2n+1

1 (r) = {z ∈ Cn+1 : 〈z, z〉 = −r2}. Its tangent space at z ∈ H2n+1
1 (r) is

TzH
2n+1
1 (r) = {w ∈ Cn+1 : 〈z, w〉 = 0}. The restriction of the above inner product to

H2n+1
1 yields a Lorentzian metric of constant sectional curvature −1/r2 on H2n+1

1 (r). A
unit normal vector field ξ along H2n+1

1 (r) is given by ξz = 1
r
z, but in this case it satisfies

〈ξ, ξ〉 = −1.
We define the equivalence relation on H2n+1

1 (r) given by z ∼ λz with λ ∈ S1 ⊂ C. This
defines a principal fiber bundle over CHn with total space H2n+1

1 , fiber S1 and projection
map π : H2n+1

1 (r)→ CHn. Note that, as smooth manifolds, we have that CHn ⊂ CP n.
Define V = Jξ. Then V is a unit tangent vector field to H2n+1

1 (r), where now “unit”
means, similarly as for ξ, that 〈V, V 〉 = −1. Hence, both ξ and V are timelike vector fields.
We can write

TH2n+1
1 (r) = RV ⊕ V ⊥,

where V ⊥ is the orthogonal complement of V with respect to the Lorentzian metric on
H2n+1

1 (r). Actually, if z ∈ H2n+1(r), then RVz is the kernel of π∗z, where π∗ denotes
the differential of π. Hence, π∗z maps V ⊥z isomorphically onto Tπ(z)CHn, and for each
X ∈ Tπ(z)CHn we can define the horizontal lift XL

z of X to z as the unique tangent
vector in V ⊥z such that π∗X

L
z = X. The map t 7→ ϕt(z) = eitz is exactly the geodesic on

H2n+1(r) starting at z with initial speed Jz = iz = rVz. We have π ◦ ϕt = π, and thus
XL
ϕt(z)

= (ϕt)∗zX
L
z .

The complex structure J on CHn is then defined by

JX = π∗(JX
L)

for each X ∈ TCHn, whereas the metric on CHn is given by

〈X, Y 〉 =
〈
XL, Y L

〉



16 1 Preliminaries and conventions

for all X, Y ∈ TCHn. An important point here is the fact that the metric of H2n+1
1 (r)

is positive definite on V ⊥z and, hence, the metric on CHn is positive definite. Thus CHn

becomes a Riemannian manifold. This metric, called the Bergman metric of CHn, makes
π : H2n+1

1 (r) → CHn a semi-Riemannian submersion. Moreover, the Bergman metric is
Hermitian, i.e. it satisfies 〈JX, JY 〉 = 〈X, Y 〉 for any tangent vectors X and Y . By virtue
of the formulas for semi-Riemannian submersions (see [90] or [91, p. 213]), the Levi-Civita
connection of CHn is given by

∇̄XY = π∗

(
∇̃XLY L

)
,

for tangent vector fields X, Y on CHn. Using this formula one can show that J is Kähler.
Again, the theory of semi-Riemannian submersions allows to calculate the holomorphic

sectional curvature of CHn, which turns out to be K̄hol(X) = −4/r2 for every X ∈ TCHn.
Therefore, CHn is a space of constant holomorphic sectional curvature c = −4/r2.

The indefinite unitary group U(1, n) = {A ∈ GL(n,C) : AI1,nA
∗ = I1,n}, where A∗ de-

notes conjugate transpose and I1,n is the diagonal matrix diag(−1, 1, . . . , 1), leaves invariant
the metric of R2n+2 ≡ Cn+2 with signature (2, 2n) considered above. It also preserves time-
like complex lines through the origin of Cn+1 and acts transitively on them. Then it follows
that U(1, n) acts transitively by isometries on CHn and, like with CP n, we can restrict
to SU(1, n), the group of the matrices of U(1, n) with determinant one, which still acts
transitively on CHn. This shows that CHn is a homogeneous space. Even more, the com-
plex hyperbolic space is a Hermitian symmetric space that has the following expression as
coset space:

CHn = SU(1, n)/S(U(1)U(n)).

The following result completely explains both the intrinsic and extrinsic geometry of
totally geodesic submanifolds of CHn, and implies that complex hyperbolic spaces have
rank one as symmetric spaces. Note the analogy with Theorem 1.1, which can be obtained
using duality of symmetric spaces (cf. [9, §9.1]).

Theorem 1.3. Let M be a totally geodesic submanifold of CHn. Then M is holomorph-
ically congruent to an open part of a real hyperbolic space RHk for some k ∈ {1, . . . , n}
or to a complex hyperbolic space CHk for some k ∈ {0, . . . , n}. Any two totally geodesic
submanifolds of CHn are locally holomorphically congruent to each other if and only if they
are locally isometric.

1.6.4 The complex hyperbolic space as a symmetric space and
as a solvable Lie group

In Subsection 1.6.1 we have said that the simply connected rank one irreducible semisimple
Hermitian symmetric spaces of noncompact type are the complex hyperbolic spaces CHn.
Every symmetric space of noncompact type is a solvable Lie group and its metric is left-
invariant with respect to the Lie group structure (the proof of this fact is analogous to the
one we sketch below for the case of CHn). Thus, in this subsection, we will give an explicit
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description of CHn as a symmetric space and as a solvable Lie group AN equipped with
a left-invariant metric. Our exposition will make use of the Iwasawa descomposition of a
real semisimple Lie algebra. A complete description of the Iwasawa descomposition of the
Lie algebra of the isometry group of CHn appears in [46, Chapter 2]; see also [73, §6.4].
Here, we will give the construction without providing the proofs.

Now, let us consider some basic notation. We denote the Lie algebra of a Lie group
G with the corresponding gothic letter, in this case, g. Exp will be the notation for the
Lie exponential map. The map Ad: G → Aut(g), g → (Ig)∗ is the Lie group adjoint
map, where Aut(g) is the group of automorphisms of the Lie algebra g, i.e. those linear
transformations ϕ : g → g such that ϕ[X, Y ] = [ϕX,ϕY ] for all X, Y ∈ g, and (Ig)∗
is the differential at the identity element e ∈ G of the conjugation map Ig : G → G,
h 7→ ghg−1. The differential of Ad at e yields the Lie algebra adjoint map ad: g→ End(g),
X 7→ ad(X) = [X, · ]. The bilinear form B = Bg : g× g→ R, (X, Y ) 7→ tr(ad(X) ad(Y )) is
the Killing form of the real Lie algebra g.

As we have seen, CHn is a rank one Hermitian symmetric space of noncompact type.
From now on we denote by G = SU(1, n) the identity connected component of the isometry
group I(CHn) and by g the Lie algebra of G. Let o ∈ CHn and let so be the geodesic
symmetry at o. The isotropy group of G at o is denoted by K, that is, K = Go =
S(U(1)U(n)), which is compact. The coset space G/K is diffeomorphic to CHn by means of
the map Φ: G/K → CHn, gK 7→ g(o). Φ is an isometry and the metric 〈·, ·〉 is G-invariant,
that is, the map gK → hgK is an isometry for each h ∈ G, where 〈·, ·〉 denotes the metric
obtained by pulling back the metric of CHn. The isotropy representation of the symmetric
space CHn ∼= G/K at o is the orthogonal representation defined by K×ToCHn → ToCHn,
(k, v) 7→ k∗v. The isotropy representation of a semisimple symmetric space is called an
s-representation.

The map σ : G → G, g 7→ sogso, is an involutive automorphism of G, and G0
σ ⊂

K ⊂ Gσ, where so is the local geodesic symmetry at o, Gσ = {g ∈ G : σ(g) = g},
and G0

σ is the connected component of the identity of Gσ . Let θ be the differential of
σ at the identity. The Lie algebra of K is given by k = {X ∈ g : θ(X) = X}, and we
define p = {X ∈ g : θ(X) = −X}. Let B be the Killing form of g. Since G/K is of
noncompact type, this is equivalent to the fact that B|p is positive definite. The space
p may be identified with ToCHn by using the map Φ and taking into account that p is
the orthogonal complement of k in g with respect to B. Thus, p inherits an inner product
from ToCHn which turns out to be Ad(K)-invariant. In fact, the isotropy representation of
G/K is equivalent to the adjoint representation of K on p, K × p→ p, (k,X) 7→ Ad(k)X.
Moreover, we have the Lie bracket relations [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. The
decomposition g = k ⊕ p is called the Cartan decomposition of g with respect to the
involution θ (or the point o ∈ CHn), and θ is called the Cartan involution.

The Cartan involution θ is defined by θ(X) = X for all X ∈ k and θ(X) = −X for all
X ∈ p. It turns out that Bθ(X, Y ) = −B(θX, Y ) defines a positive definite inner product
on g satisfying the relation Bθ(ad(X)Y, Z) = −Bθ(Y, ad(θX)Y ) for all X, Y , Z ∈ g.

We consider now a maximal abelian subspace a of p. Recall that we defined the rank
of a symmetric space G/K = M as the dimension of a maximal flat, totally geodesic
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submanifold of M . The isotropy representation of a semisimple symmetric space M is a
polar action on the Euclidean space ToM ∼= p, and its cohomogeneity is precisely the rank
of M . In fact, any maximal abelian subspace of p is a section of this representation. Then,
the definition of the rank of a symmetric space G/K = M is equivalent to defining the
rank as the dimension of a maximal abelian subspace of p. Thus, since G/K = CHn is a
symmetric space of rank one, the dimension of a is one.

The set {ad(H) : H ∈ a} is a family of commuting self-adjoint endomorphisms of g
with respect to the inner product Bθ, and hence simultaneously diagonalizable with real
eigenvalues. Denoting by a∗ the dual vector space of a, we define for each λ ∈ a∗

gλ = {X ∈ g : [H,X] = λ(H)X, for all H ∈ a}.

If λ 6= 0 and gλ 6= 0, these are called the restricted roots and the restricted root spaces of
the simple Lie algebra g, respectively. These restricted root spaces provide us the following
descomposition, which is called the restricted root space decomposition of g with respect
to a:

g = g−2α ⊕ gα ⊕ g0 ⊕ gα ⊕ g2α

where α is a certain covector, α ∈ a∗. In particular, −2α, −α, α and 2α are precisely the
roots of g and g−2α, gα, gα and g2α are the root spaces, which are Bθ-orthogonal subspaces.
Moreover, a ⊂ g0, and for every λ, µ ∈ a∗, we have that [gλ, gµ] ⊂ gλ+µ and θ(gλ) = g−λ.

In our case, g = su(1, n) = {A ∈ gl(n,C) : AI1,n + I1,nA
∗ = 0, tr(A) = 0}, where

tr(A) denotes the trace of the matrix A. Then, one can obtain the root spaces making
matrix calculations and it can be shown that dim g2α = dim g−2α = dim a = 1 and dim gα =
dim g−α = 2n− 2. Furthermore, g0 = k0⊕ a, where k0 = g0∩ k ∼= u(n− 1) is the normalizer
of a in k. The root spaces gα and g2α are both normalized by k0.

We now fix the following criterion of positivity in the set of roots: we will say that α is
a positive root. We define the subset of the set of roots Σ+ = {α, 2α} as the set of positive
roots. We also define n = gα⊕g2α as the sum of the root spaces corresponding to all positive
roots. Due to the properties of the root space decomposition, n is a nilpotent Lie subalgebra
of g with center g2α; in fact n is isomorphic to the (2n−1)-dimensional Heisenberg algebra
(see [18, Chapter 3] for a description of generalized Heisenberg algebras). Then a⊕ n is a
solvable Lie subalgebra of g, since [a⊕ n, a⊕ n] = n is nilpotent.

The vector space direct sum decomposition g = k⊕a⊕n is called the Iwasawa decompos-
ition of the semisimple Lie algebra g. It is important to mention that this descomposition
of g is not an orthogonal decomposition (k and n are not orthogonal spaces), or a direct
sum of Lie algebras (for example, [a, n] 6= 0), in spite of the fact that k, a and n are Lie
subalgebras of g. We would also like to mention that a ⊕ n is a semidirect sum of Lie
algebras.

Let A, N and AN be the connected subgroups of G with Lie algebras a, n and a⊕ n,
respectively. The Iwasawa decomposition theorem at the Lie group level ensures that the
product map (k, a,m) ∈ K×A×N 7→ kam ∈ G is a diffeomorphism. Again, it is important
to mention that K ×A×N is a product of smooth manifolds but not a direct product of
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Lie groups. It follows from the Iwasawa decomposition that the solvable group AN acts
simply transitively on CHn.

Consider now the differentiable map

φ : h ∈ G 7→ h(o) ∈ CHn.

Note that kerφ∗ = k. Since AN acts simply transitively on CHn, the map φ|AN : AN →
CHn is a diffeomorphism, and one can identify a ⊕ n with the tangent space ToCHn via
φ∗. The Bergman metric g of the complex hyperbolic space CHn induces a metric φ∗g on
AN . The Riemannian manifolds (AN, φ∗g) and (CHn, g) are then trivially isometric. Let
us denote by Lh the left translation in G by the element h ∈ G. As the metric g on CHn

is invariant under isometries (and then under elements of G), it follows that

L∗h(φ
∗g) = L∗hφ

∗(h−1)∗g = (h−1 ◦ φ ◦ Lh)∗g = φ∗g, for all h ∈ G,

because (h−1 ◦ φ ◦ Lh)(h′) = h−1(hh′(o)) = h′(o) = φ(h′) for all h′ ∈ G. Therefore the
metric φ∗g on AN is left-invariant. From now on, we will denote by 〈·, ·〉 the metric φ∗g on
AN . Thus, we have obtained that CHn can be seen as a solvable Lie group AN endowed
with a left-invariant metric.

The Lie group AN can be equiped with a Kähler structure induced by the Kähler
structure in CHn via φ|AN . Then, we obtain a complex structure that we will denote by J
on AN and also on a⊕ n. It can be proved using matricial calculations that the complex
structure on a⊕ n leaves gα invariant and Ja = g2α.

Thus, we have obtained a model for the complex hyperbolic space CHn as a solvable
Lie group AN endowed with a left-invariant Riemannian metric whose Lie algebra a⊕n =
a⊕gα⊕g2α can be identified with the tangent space ToCHn, and such that gα can be seen
as a complex vector space Cn−1.

Let B ∈ a be a vector such that 〈B,B〉 = 1 and define Z = JB ∈ g2α. Then 〈Z,Z〉 = 1.
Let now a, b, x, y be real numbers and U , V ∈ gα. One can show that the Lie bracket of
a⊕ n is given by

[B,Z] =
√
−c Z, 2[B,U ] =

√
−c U, [U, V ] =

√
−c 〈JU, V 〉Z,

where c is the constant holomorphic sectional curvature of CHn. Furthermore, the Levi-
Civita connection ∇̄ of (AN, 〈·, ·〉) can be calculated by the expression (cf. [12, §2]):

(1.1)

1√
−c
∇̄aB+U+xZ(bB + V + yZ) =

(
xy +

1

2
〈U, V 〉

)
B − 1

2
(bU + yJU + xJV )

+

(
−bx+

1

2
〈JU, V 〉

)
Z.

Now, we give an idea of the geometric interpretation of the groups A and N that
appear in the Iwasawa decomposition of G = SU(1, n). Details can be found in [46, §2.2];
see also [50, Chapter 1].
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Two unit speed curves γ and σ in a nonpositively curved, complete, simply connected
Riemannian manifold M̄ are called asymptotic if there is a positive constant C such that
d̄(γ(t), σ(t)) ≤ C for all t ≥ 0, where d̄ denotes the Riemannian distance in M̄ . In
particular, for symmetric spaces of rank 1 we have limt→∞ d̄(γ(t), σ(t)) = 0. This definition
establishes an equivalence relation in the collection of complete geodesics of M̄ . Each
equivalence class is called point at infinity of M̄ . The set of the points at infinity of M̄ is
the ideal boundary of M̄ and is denoted by M̄(∞).

In our case M̄ = CHn, so we denote by CHn(∞) the ideal boundary of CHn. It is
possible to endow CHn∪CHn(∞) with a topology (the so-called cone topology) that makes
CHn ∪CHn(∞) homeomorphic to the closed unit ball of R2n in such a way that CHn(∞)
corresponds to the unit sphere of R2n. In this model, two geodesics in CHn are asymptotic
if they converge to the same point of the unit sphere. Moreover, for each p ∈ CHn and
x ∈ CHn(∞) there is a unique geodesic γpx : R → CHn such that ‖γ̇px‖ = 1, γpx(0) = p
and limt→∞ γpx(t) = x.

The Lie subalgebra a of g is a 1-dimensional abelian subspace of p. In p ≡ ToCHn,
the Riemannian exponential map and the Lie group exponential map coincide, that is,
Exp(tX) · o = expo(tX) for all X ∈ p and t ∈ R. It follows that the orbit of the group A
through o is the geodesic through o with tangent space at o given by a ⊂ p ≡ ToCHn. This
geodesic determines two points at infinity; let x be one of them. Thus, the submanifold A of
AN corresponds to γox(R) under the isometry φ|AN : AN → CHn. In other words, γox(R)
is the orbit A · o of the action of A on CHn, while the rest of the orbits are equidistant
curves to A · o.

Now, let us comment on the action of the nilpotent part N of the Iwasawa decompos-
ition. First notice that N has dimension 2n − 1. This, together with the fact that AN
acts simply transitively on CHn, implies that N acts isometrically with cohomogeneity one
on CHn. It turns out that the orbits of this action are hypersurfaces in CHn which are
orthogonal at every point to the integral curves of the left-invariant vector field B ∈ a.
These integral curves are all geodesics with a common point at infinity (x, according to
the notation above).

More specifically, the orbits of the N -action are the horospheres of CHn determined by
the point at infinity x. In order to define this concept, consider a unit speed geodesic γ in
CHn. The real function f : CHn → R given by fγ(p) = limt→∞

(
d̄(γ(t), p)− t

)
is said to

be the Busemann function with respect to γ. Then, horospheres are defined as the level
sets of a Busemann function, and these are parallel real hypersurfaces of CHn defining a
regular Riemannian foliation, each of whose leaves has a unique adherent point at infinity.
Thus, it turns out that the orbits of the N -action on CHn are the horospheres determined
by the geodesic γox or, in other words, the horospheres adherent to x.

1.6.5 Important classes of submanifolds in Kähler manifolds

Let M̄ be a Kähler manifold with complex structure J . We define the following classes of
submanifolds.
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Lagrangian submanifolds

Symplectic manifolds and their Lagrangian submanifolds appear naturally in the areas
of Classical Mechanics and Physics. A 2n-dimensional smooth manifold N is called a
symplectic manifold if it admits a nondegenerate closed 2-form Ω, called the symplectic form
(see [1] for more information on symplectic manifolds). An n-dimensional submanifold L
of N is called a Lagrangian submanifold of the symplectic manifold N if the restriction
of the symplectic form to the tangent bundle of L vanishes identically. Thus, one has
Ω(X, Y ) = 0 for X, Y ∈ Γ(TL). Lagrangian submanifolds are included in a list of special
geometries with mathematically rich properties which are interesting for string theory [2].

The study of Lagrangian submanifolds of Kähler manifolds from the Riemannian geo-
metric point of view was initiated in the early 1970s. The complex structure J of a Kähler
manifold M̄ defines a symplectic form Ω on M̄ by Ω(X, Y ) = 〈JX, Y 〉, with X and Y
vector fields on M̄ . Then, a submanifold M is Lagrangian if and only if it is a submanifold
of maximum possible dimension such that Ω vanishes identically on each tangent space of
M . Recall also that a submanifold M is said to be totally real if JTpM is perpendicular
to TpM for any p ∈M . It is easy to see that in a Kähler manifold of complex dimension n
M̄ , n-dimensional submanifolds are Lagrangian precisely if they are totally real. See [27]
for more information on the Riemannian geometry of Lagrangian submanifolds.

Hopf hypersurfaces

A submanifold of a Kähler manifold is called a real hypersurface if it has real codimension
one (as opposed to complex codimension one). Let M be a real hypersurface in a Kähler
manifold M̄ , and ξ a (locally defined) unit normal vector field on M . Then, the tangent
vector Jξ is called the Hopf or Reeb vector field of M . Moreover, M is said to be Hopf at
a point p ∈M if Jξp is an eigenvector of the shape operator S of M at p, and M is called a
Hopf hypersurface if it is Hopf at every point. However, in general, Jξ can have nontrivial
projections onto several principal curvature spaces. Thus, we define the integer-valued
function h on M as the number of principal curvature spaces where Jξ has nontrivial
projection or, equivalently, as the dimension of the smallest subspace of the tangent space
to M that contains Jξ and is invariant under the shape operator S. Thus, M is Hopf
at a point p if h(p) = 1, and is a Hopf hypersurface if h = 1 on M , that is, if Jξ is a
principal curvature vector field everywhere. If h is constantly equal to an integer number
k, then there is a smooth distribution D of rank k on M that consists of the maximal
subspace of the tangent space to M at each point that contains Jξ and is S-invariant. If
D is integrable, then M is said to be k-Hopf [25].

Ruled hypersurfaces

Let M be a real hypersurface in M̄ . We say that M is a ruled hypersurface if the maximal
complex distribution (Jξ)⊥ of M is integrable and its integral submanifolds are totally
geodesic complex hypersurfaces of the ambient space M̄ [25, §8.5.1].
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Levi-flat hypersurfaces

The Levi form of a real hypersurface M in a Kähler manifold is the symmetric bilinear
map L : (Jξ)⊥ × (Jξ)⊥ → νM defined by

L(X, Y ) = II(X, Y ) + II(JX, JY ),

where (Jξ)⊥ is the maximal complex distribution of M . Then M is called Levi-flat if its
Levi form vanishes identically. It is easy to check that M is Levi-flat if and only if the
maximal complex distribution of M is integrable. Then, a real hypersurface is Levi-flat
if it is foliated by complex hypersurfaces. Thus, ruled hypersurfaces are a very particular
case of Levi-flat hypersurfaces. See [60] for more information on Levi-flat hypersurfaces.

1.7 Polar actions

Let M̄ be a Riemannian manifold and H a connected Lie group that acts on M̄ via
isometries. The action of H on M̄ is called polar if there exists a section Σ, that is, an
immersed submanifold of M̄ such that Σ intersects all the orbits of the H-action and for
each p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit through
p at p, Tp(H · p), are orthogonal. The action of H is called hyperpolar if the section Σ is
flat in its induced Riemannian metric.

Polar actions are much more rigid than arbitrary isometric actions. For complete,
simply connected ambient manifolds M̄ , the orbits of a polar H-action are always closed
submanifolds, and the image of the group H on the isometry group I(M̄) is closed (see [83,
Corollary 1.3]). This, in particular, implies that polar actions on complete, simply connec-
ted manifolds are orbit equivalent to proper actions, and it turns out that none of the orbits
of a proper polar action is exceptional. Furthermore, if ϕ is a polar action of a connected
group H on M̄ , p ∈ M̄ and Σ is a section through p, then the slice representation of such
action at p is polar with section TpΣ.

A first important objective in the study of polar actions is to classify them on certain
Riemannian manifolds of particular interest, as is the case of Riemannian symmetric spaces.
In this thesis we are interested in this classification for CP 2 and CH2. From the geometric
viewpoint, that is, if one is mainly interested in the geometry of the orbits, it is enough to
obtain such classifications up to orbit equivalence.

We now give a brief idea of the historical evolution of the study of polar actions until the
classification for CP n and CHn was obtained. More detailed information and references
can be found in [104], [105] and [37].

Polar actions have their origin in polar coordinates, that is, the well-known way of
representing a point of the plane given the angle with a fixed axis going through the
origin and the distance to the origin. Szenthe [97] and Palais and Terng [92] were the
first mathematicians to study the fundamental properties of polar actions on Riemannian
manifolds. Then Dadok [35] achieved the first classification on a concrete manifold, namely
the classification of polar representations on Euclidean spaces up to orbit equivalence, which
implies the classification on spheres.
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Several years later, a great interest in classifying polar actions on symmetric spaces of
compact type appeared [58]. In particular, it became interesting to classify polar actions
on compact symmetric spaces of rank one. Since the complex projective space has rank
one, it is clear that a hyperpolar action on CP n must be of cohomogeneity one, that
is, the minimum codimension of an orbit is one, and this codimension is precisely the
dimension of the section. Hence, the classification of hyperpolar actions on CP n follows
from Takagi’s classification [98] of cohomogeneity one actions on CP n. Takagi’s result can
be considered the first step towards the classification of polar actions on complex projective
spaces. The complete classification of polar actions up to orbit equivalence on compact
symmetric spaces of rank one was obtained by Podestà and Thorbergsson [93] (see also
[55] for a missing example in the Cayley projective plane). In particular, they obtained
the classification for CP n.

Many authors, such as Biliotti [19], Kollross [74], [75] and, Kollross and Lytchak [77],
made great advances in the study of polar actions on compact symmetric spaces of higher
rank, but these classifications are of no concern to us in this work. The situation in
the noncompact case is still open nowadays. Wu [108] classified polar actions on RHn and
showed that, up to orbit equivalence, the groups acting upon are products of a noncompact
factor (which is either the isometry group of a lower dimensional real hyperbolic space or the
nilpotent part of its Iwasawa decomposition), and a compact factor (which comes from the
isotropy representation of a symmetric space). Berndt and Dı́az-Ramos obtained in [14]
the classification of polar actions on the complex hyperbolic plane CH2. The complete
classification of polar actions on complex hyperbolic spaces of arbitrary dimension was
obtained by Dı́az-Ramos, Domı́nguez-Vázquez and Kollross in [39].

An important fact to keep in mind is the duality between compact and noncompact
symmetric spaces. Using duality Dı́az-Ramos and Kollross in [43] classified polar actions
with a fixed point on symmetric spaces. However, in general, duality cannot be applied
to derive classifications of polar actions on noncompact symmetric spaces from the cor-
responding classifications in the compact setting. For example, a horosphere foliation on
a real hyperbolic space is polar but cannot be obtained from duality. Nevertheless, there
are certain situations where duality can be really useful to obtain partial classifications, as
in [76].

Berndt and Tamaru [16] classified cohomogeneity one actions on complex hyperbolic
spaces, the quaternionic hyperbolic plane, and the Cayley hyperbolic plane. The classific-
ation remains open in quaternionic hyperbolic spaces HHn, n ≥ 3, and in most symmetric
spaces of higher rank. See [15] and [17] for more information on cohomogeneity one actions
on symmetric spaces of noncompact type.

1.7.1 Polar actions on CP 2

As we have commented above, polar actions on irreducible symmetric spaces of compact
type are nowadays well understood. In this subsection, we recall the classification of polar
actions on complex projective spaces.
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The complete classification of polar actions on CP n was obtained by Podestà and
Thorbergsson in [93]. This classification follows from the following result.

Theorem 1.4. If H acts polarly on a complex projective space CP n, then the action of H
is, up to orbit equivalence, induced by the isotropy representation of a Hermitian symmetric
space.

Let us explain the statement of Theorem 1.4.
Recall that a Hermitian symmetric space M = G/K is a Riemannian symmetric space

endowed with a complex structure J that is invariant under the geodesic symmetries; see
Table 1.1 for the list of irreducible Hermitian symmetric spaces. Assume M has complex
dimension n+1. Then, the tangent space at o has a complex structure Jo, which commutes
with the isometries of K, and which turns ToM into a complex vector space Cn+1. It turns
out that the isotropy representation of the semisimple symetric space G/K, K × ToM →
ToM , is a polar action on the Euclidean space ToM ∼= p, and its cohomogeneity is precisely
the rank of M . In fact, any maximal abelian subspace of p is a section of this representation.
Since G/K is Hermitian, the section a is totally real (that is, Ja is orthogonal to a) and the
action of K induces a polar action on the unit sphere S2n+1 of Cn+1. A complex projective
space can be defined as CP n = S2n+1/S1, and since Jo is invariant by the isometries of
K, the action of K on ToM ∼= Cn+1 descends via the Hopf map π : S2n+1 → CP n to an
isometric action on CP n. Using the fact that a is totally real, it is not difficult to see that
π(a ∩ S2n+1) is a section of the action induced on CP n. Theorem 1.4 implies that any
polar action on CP n can be obtained, up to orbit equivalence, in this way. Note as well
that the cohomogeneity of the polar action on CP n induced by the symmetric space G/K,
coincides with the rank of G/K minus one.

In particular, the classification of polar actions on complex projective planes reduces
to the following corollary.

Corollary 1.5. If H acts polarly on a complex projective plane CP 2, then the action of H
is, up to orbit equivalence, induced by the connected subgroup of SU(3) whose Lie algebra
h is one of

(i) Actions of cohomogeneity one - the section Σ is a totally geodesic real projective line
RP 1 ⊂ CP 2:

(a) h = s(u(1)⊕ u(2)) ∼= u(2); this action has a fixed point o and its cut locus (which
is a totally geodesic CP 1) as singular orbits, while the principal orbits are geodesic
spheres centered at o, or equivalently, tubes around the other singular orbit.

(b) h = so(2)⊕ so(3); this action has a totally geodesic real projective plane RP 2 and
the complex quadric {[z] ∈ CP 2 : z2

0 + z2
1 + z2

2 = 0} as singular orbits, and the
principal orbits are tubes around any of the singular orbits.

(ii) Actions of cohomogeneity two - the section Σ is a totally geodesic real projective plane
RP 2 ⊂ CP 2:
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(a) h = s(u(1) ⊕ u(1) ⊕ u(1)); the singular orbits are three fixed points and an un-
countable number of circles, whereas the principal orbits are 2-dimensional tori
which are contained in the geodesic spheres around each one of the three fixed
points.

1.7.2 Polar actions on CH2

As we have mentioned above, Dı́az-Ramos, Domı́nguez-Vázquez and Kollross obtained
in [39] the complete classification of polar actions on complex hyperbolic spaces CHn.

Let us briefly recall the notation introduced in §1.6.4, which will be important to
understand the statements of the results below. Let CHn = G/K be the complex hy-
perbolic space, where G = SU(1, n), and K = S(U(1)U(n)) is the isotropy group of
G at some point o. Consider the Cartan decomposition g = k ⊕ p with respect to o,
with associated Cartan involution θ. Choose a maximal abelian subspace a of p and let
g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α be the root space decomposition with respect to a. Set
k0 = k ∩ g0

∼= u(n − 1). Since k0 acts on the root space gα, the center of k0 induces a
complex structure J on gα which makes it isomorphic to Cn−1. We will say that a subset
of gα is a real subspace of gα if it is a linear subspace of gα, where gα is viewed as a real
vector space. The solvable Lie algebra a⊕ gα ⊕ g2α is endowed with certain inner product
〈·, ·〉 which is induced naturally from the metric on CHn. A real subspace w of gα is said
to be totally real if 〈w, J(w)〉 = 0.

Theorem 1.6. For each of the Lie algebras h below, the corresponding connected subgroup
of U(1, n) acts polarly on CHn:

(i) h = q ⊕ so(1, k) ⊂ u(n − k) ⊕ su(1, k), k ∈ {0, . . . , n}, where q is a subalgebra
of u(n − k) such that the corresponding subgroup Q of U(n − k) acts polarly with a
totally real section on Cn−k.

(ii) h = q⊕ b⊕w⊕ g2α ⊂ su(1, n), where b is a linear subspace of a, w is a real subspace
of gα, and q is a subalgebra of k0 which normalizes w and such that the connected
subgroup of SU(1, n) with Lie algebra q acts polarly with a totally real section on the
orthogonal complement of w in gα.

Conversely, every nontrivial polar action on CHn is orbit equivalent to one of the actions
above.

The classification of polar actions on the complex hyperbolic plane CH2 had previously
been obtained by Berndt and Dı́az-Ramos [14] and reduces to the following theorem (in
the statement, gRα is any one-dimensional real subspace of gα).

Theorem 1.7. For each of the subalgebras h of su(1, 2) listed below the connected closed
subgroup H of SU(1, 2) with Lie algebra h acts polarly on CH2:

(i) Actions of cohomogeneity one - the section Σ is a totally geodesic real hyperbolic line
RH1 ⊂ CH2:
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(a) h = k = s(u(1) ⊕ u(2)) ∼= u(2); the orbits are a fixed point o and the geodesic
spheres centered at o.

(b) h = g−2α⊕ g0⊕ g2α = s(u(1, 1)⊕ u(1)) ∼= u(1, 1); the orbits are a totally geodesic
complex hyperbolic line CH1 ⊂ CH2 and the tubes around it.

(c) h = θ(gRα) ⊕ a ⊕ gRα
∼= so(1, 2); the orbits are a totally geodesic real hyperbolic

plane RH2 ⊂ CH2 and the tubes around it.

(d) h = k0⊕gα⊕g2α or h = gα⊕g2α; the orbits form a foliation of CH2 by horospheres.

(e) h = a⊕gRα⊕g2α; the orbits form a foliation of CH2; there is exactly one minimal
leaf, which is the so-called Lohnherr hypersurface W 3 of CH2, and the other leaves
are its equidistant hypersurfaces.

(ii) Actions of cohomogeneity two - the section Σ is a totally geodesic real hyperbolic plane
RH2 ⊂ CH2:

(a) h = k ∩ (g−2α ⊕ g0 ⊕ g2α) = s(u(1) ⊕ u(1) ⊕ u(1)) ∼= u(1) ⊕ u(1); the orbits
are obtained by intersecting the orbits of the two cohomogeneity one actions (a)
and (b) in (i): the action has one fixed point o, and on each geodesic sphere
centered at o the orbits are two circles as singular orbits and 2-dimensional tori
as principal orbits.

(b) h = g0; the action leaves a totally geodesic CH1 ⊂ CH2 invariant. On this CH1

the action induces a foliation by a totally geodesic real hyperbolic line RH1 ⊂ CH1

and its equidistant curves in CH1. The other orbits are 2-dimensional cylinders
whose axis is one of the curves in that CH1.

(c) h = k0⊕ g2α; the orbits are obtained by intersecting the orbits of the two cohomo-
geneity one actions (b) and (d) in (i): the action leaves a horosphere foliation
invariant, and on each horosphere the orbits consist of a complex horocycle and
the tubes around it.

(d) h = gRα⊕g2α; the orbits are obtained by intersecting the orbits of the two cohomo-
geneity one actions (d) and (e) in (i): the action leaves a horosphere foliation
invariant, and on each horosphere the action induces a foliation for which a min-
imally embedded Euclidean plane and its equidistant surfaces are the leaves.

Every polar action on CH2 is either trivial, transitive, or orbit equivalent to one of the
polar actions described above.

This was the first such classification in a noncompact symmetric space of nonconstant
curvature. Apart from the trivial and transitive actions, there are exactly nine orbit
equivalence classes of polar actions on CH2.



Chapter 2

Isoparametric submanifolds

In this chapter we study and classify isoparametric submanifolds in the complex projective
and hyperbolic planes. We will do so by proving that they are induced by polar actions.
In particular, it will follow from our arguments that Lagrangian flat surfaces with parallel
mean curvature in these spaces are open parts of principal orbits of polar actions. This
result will be fundamental to achieve the results of Chapter 3. Moreover, we also classify
Terng-isoparametric submanifolds in CP 2 and CH2.

The motivation for this chapter comes from the study of isoparametric submanifolds in
symmetric spaces. The history of isoparametric submanifolds can be traced back at least
to the works of Somigliana [96], Levi-Civita [78] and Segre [94] who classified isoparametric
hypersurfaces in Euclidean spaces. All the examples in this classification are homogeneous.
Thorbergsson showed in [102] that compact, full and irreducible isoparametric submanifolds
of codimension greater than 2 in Euclidean spaces are homogeneous, which implies, with a
bit more work, that such submanifolds are open parts of principal orbits of polar actions,
which in turn correspond to isotropy representations of symmetric spaces [35].

Thorbergsson’s remarkable result [102] readily implies the classification of isoparametric
submanifolds of codimension ≥ 2 in spheres. However, the classification of isoparametric
hypersurfaces in spheres is open and still an active topic of research. See [105] for a recent
survey on this and other related topics.

Isoparametric hypersurfaces in real hyperbolic spaces were classified by Cartan [21],
and all such examples are homogeneous. For higher codimension, Wu [108] reduced the
classification problem of isoparametric submanifolds in RHn to the classification in spheres.
Moreover, the classification of polar actions on RHn follows from Wu’s results. It is
important to mention that, in real space forms, homogeneous isoparametric submanifolds
are always principal orbits of polar actions.

The general study of isoparametric submanifolds was started by Terng [101], whose
definition was given for spaces of constant curvature. Nowadays the general definition of
isoparametric submanifold is credited to Heintze, Liu and Olmos [57]. This is the definition
that we use in this chapter, although we also consider Terng’s definition which turns out
to be less rigid in our context. The definitions of isoparametric and Terng-isoparametric
submanifolds have been introduced in Section 1.4.

27
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Isoparametric submanifolds of complex projective spaces CP n have been studied by
Domı́nguez-Vázquez in [49], who gave a classification if n 6= 15. It turns out that inhomo-
geneous isoparametric submanifolds are relatively common. In this chapter we also study
Terng-isoparametric submanifolds of CP 2 and conclude that no new interesting examples
arise.

The classification of isoparametric hypersurfaces in complex hyperbolic spaces has re-
cently been obtained in [40]. It also turns out that there are inhomogeneous examples. For
higher codimension the problem seems to be much more complicated. We restrict to CH2

in this chapter and show that all examples are open parts of principal orbits of polar actions
on CH2. Surprisingly, there is a Terng-isoparametric submanifold of codimension 2 that
is not isoparametric; this submanifold is homogeneous but not an orbit of a polar action.

This chapter is organized as follows. We present our main results in Section 2.1. Next, in
Section 2.2, we give the relation between isoparametric submanifolds, Terng-isoparametric
submanifolds and principal orbits of cohomogeneity two polar actions on a nonflat two-
dimensional complex space form (Theorem 2.1). Finally, in subsections 2.3.2 and 2.3.3,
we proceed with the classification of isoparametric submanifolds and Terng-isoparametric
submanifolds in the two-dimensional nonflat complex space forms (theorems 2.2 and 2.3),
respectively.

2.1 Main results

Let us recall from Section 1.4 that a submanifold M of a Riemannian manifold is called
isoparametric if its normal bundle νM is flat, all nearby parallel submanifolds to M have
constant mean curvature in the radial directions, and for any p ∈M there exists a totally
geodesic submanifold Σp through p such that TpΣp = νpM . We also recall that a subman-
ifold is Terng-isoparametric if it has constant principal curvatures and flat normal bundle
(see Section 1.4).

We use the notation given in Section 1.6. Then, we denote by M̄2(c) a nonflat 2-
dimensional complex space form of constant holomorphic sectional curvature c 6= 0. In Sec-
tion 2.2 we prove the following fundamental result that establishes a relationship between
different properties of surfaces in M̄2(c).

Theorem 2.1. Let M be a 2-dimensional submanifold of M̄2(c), c 6= 0. Then the following
conditions are equivalent:

(i) M is Lagrangian, flat and with parallel mean curvature.

(ii) M is Lagrangian, flat and with parallel second fundamental form.

(iii) M is Lagrangian and Terng-isoparametric.

(iv) M is isoparametric.

(v) M is an open part of a principal orbit of a cohomogeneity two polar action on M̄2(c).
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The study of submanifolds with parallel mean curvature is an active field of research
nowadays; see [28] for a survey. In particular, the case of surfaces with parallel mean
curvature in 2-dimensional complex space forms deserves special attention, and is the
subject of important recent advances, e.g. [51]. As a consecuence of these relations between
isoparametric submanifolds, Terng isoparametric submanifolds and principal orbits of polar
actions on M̄2(c), we will prove in Section 2.3 the following characterization:

Theorem 2.2. An isoparametric submanifold of M̄2(c), c 6= 0, is congruent to an open
part of a principal orbit of a polar action on M̄2(c).

The previous theorem has been obtained in much greater generality for complex pro-
jective spaces CP n, n 6= 15, using a different method [49]. Here we deal with the projective
and hyperbolic cases simultaneously and obtain the result for CH2. Recall that in Sec-
tion 1.7 we have presented the classification of polar actions on complex projective and
hyperbolic spaces. Thus, our result implies the classification of isoparametric submani-
folds of M̄2(c). Note that the classification of isoparametric submanifolds in M̄2(0) = C2

is known, in view of the results of Cartan [21]. In this case, all examples are open parts of
principal orbits of polar actions on C2 ≡ R4.

In our context Terng’s definition is less rigid than Heintze, Liu and Olmos’, and thus,
a new example appears in codimension two:

Theorem 2.3. A submanifold of M̄2(c), c 6= 0, is Terng-isoparametric if and only if it is
congruent to an open part of:

(i) an isoparametric submanifold of M̄2(c), or

(ii) a Chen’s surface in CH2, or

(iii) a circle.

The proof of Theorem 2.3 is given in Section 2.3.3. Apart from circles, which are trivial
examples of Terng-isoparametric submanifolds, we do not get new examples in complex
projective spaces. However, there exists a Terng-isoparametric submanifold in CH2 that is
neither a circle nor a principal orbit of a polar action. We have called this new example a
Chen’s surface, which is homogeneous and unique up to isometric congruence (see §2.3.1).
This new example was introduced by Chen in [26], and a geometric characterization was
given in [30]. In Subsection 2.3.1 we present a new Lie group theoretic description of this
submanifold in terms of the root space decomposition of the Lie algebra of the isometry
group of CH2. Theorems 2.2 and 2.3 have given rise to the paper [42].

2.2 Proof of Theorem 2.1

Let M be a Lagrangian submanifold of M̄2(c), c 6= 0. Let J be the complex structure of
M̄2(c). Then M is totally real, that is, 〈JX, Y 〉 = 0 for all tangent vector fields X, Y
on M .

Let us start with an easy lemma.
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Lemma 2.4. If M is a Lagrangian submanifold of a Kähler manifold, then M is flat if
and only if M has flat normal bundle.

Proof. Let U , X ∈ Γ(TM). Since M is Lagrangian we have

∇⊥X(JU) = (∇̄XJU)⊥ = (J∇̄XU)⊥ = (J(∇XU + II(X,U)))⊥ = J∇XU.

Hence, U is parallel if and only if JU is ∇⊥-parallel. In particular, M is flat if and only if
the normal bundle of M is flat.

Theorem 2.1 provides a geometric characterization of the principal orbits of polar ac-
tions of cohomogeneity two on CP 2 and CH2. Now, we proceed with its proof.

Proof of (ii) ⇒ (i). We prove that an arbitrary submanifold with parallel second funda-
mental form has parallel mean curvature. Let {Ei} be an orthonormal frame of M . Then,
〈∇XEi, Ej〉 = −〈∇XEj, Ei〉 for any X ∈ Γ(TM). Since II is symmetric,∑

i

II(∇XEi, Ei) =
∑
i,j

〈∇XEi, Ej〉II(Ej, Ei) = −
∑
i,j

〈∇XEj, Ei〉II(Ej, Ei)

= −
∑
i,j

〈∇XEi, Ej〉II(Ei, Ej) = −
∑
i

II(∇XEi, Ei).

Thus,
∑

i II(∇XEi, Ei) = 0. Since M has parallel second fundamental form, the previous
equation yields

∇⊥XH =
∑
i

∇⊥XII(Ei, Ei) =
∑
i

(
(∇⊥XII)(Ei, Ei) + 2II(∇XEi, Ei)

)
= 0,

for all X ∈ Γ(TM), that is, M has parallel mean curvature.

Proof of (i) ⇒ (iii). Let M be a Lagrangian, flat surface with parallel mean curvature.
By Lemma 2.4, M has flat normal bundle. Let λi : νM → R be the principal curvature
functions. Let {ξ, η} be a local parallel orthonormal frame of νM , and let {U1, U2} be an
orthonormal frame of TM such that SξUi = λiUi, i = 1, 2. Without loss of generality, we
assume that η is perpendicular to the mean curvature vector.

Lemma 2.5. There are smooth functions b1, b2 : M → R with b2
1 + b2

2 = 1, such that

(2.1)
Jξ = b1U1 + b2U2, Jη = −b2U1 + b1U2,

JU1 = −b1ξ + b2η, JU2 = −b2ξ − b1η,

Proof. Since Jξ is a unit vector field tangent to M and {U1, U2} constitutes an orthonormal
frame on M we can write Jξ = b1U1 + b2U2, where b1, b2 are smooth functions on M
satisfying b2

1 + b2
2 = 1. Furthermore, since η is a locally parallel unit vector field on νM

orthogonal to ξ, we can write, changing the sign of η if necessary, Jη = −b2U1 + b1U2.
As −ξ = J2ξ = b1JU1 + b2JU2 and −η = J2η = −b2JU1 + b1JU2, taking inner product

with U2 we get b1〈JU1, U2〉 = 0 and b2〈JU1, U2〉 = 0. Since b1 6= 0 or b2 6= 0, we have that
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〈JU1, U2〉 = 0. This implies that JU1, JU2 ∈ span{ξ, η}. Now, 〈JU1, ξ〉 = −〈U1, Jξ〉 = −b1

and 〈JU1, η〉 = −〈U1, Jη〉 = b2. A similar argument shows that JU2 = −b2ξ − b1η, from
where the result follows.

Since νM is flat, the Ricci equation gives

(2.2) − c
4

= 〈R̄(U1, U2)ξ, η〉 = 〈SξU1,SηU2〉 − 〈SηU1,SξU2〉 = (λ1 − λ2)〈SηU1, U2〉.

Since c 6= 0, this readily implies λ1 6= λ2 on M . As η is taken to be perpendicular to
the mean curvature vector we have that trSη = 0 and, thus, the shape operator Sη with
respect to {U1, U2} can be written as

(2.3) Sη =

(
µ − c

4(λ1−λ2)

− c
4(λ1−λ2)

−µ

)
,

for some function µ : M → R.
Now, using the Codazzi equation we get

0 = 〈R̄(U1, U2)U1, ξ〉 = (λ2 − λ1)〈∇U1U2, U1〉 − U2(λ1),

0 = 〈R̄(U1, U2)U2, ξ〉 = (λ2 − λ1)〈∇U2U1, U2〉+ U1(λ2).

Since {U1, U2} is an orthonormal frame of the tangent bundle we obtain

∇UiUi =
Uj(λi)

λi − λj
Uj, ∇UiUj =

Uj(λi)

λj − λi
Ui, i, j ∈ {1, 2}, i 6= j.(2.4)

Now we compute the derivatives of the bi:

(2.5)

Ui(bi) = Ui〈Ui, Jξ〉 = 〈∇̄UiUi, biUi + bjUj〉+ 〈Ui, ∇̄UiJξ〉

= bj〈∇UiUi, Uj〉 − λi〈Ui, JUi〉 = bj
Uj(λi)

λi − λj
,

Ui(bj) = Ui〈Uj, Jξ〉 = 〈∇̄UiUj, biUi + bjUj〉+ 〈Uj, ∇̄UiJξ〉

= bi〈∇UiUj, Ui〉 − λi〈Uj, JUi〉 = bi
Uj(λi)

λj − λi
.

Moreover, we have

0 = U1〈U1, JU2〉 = 〈∇̄U1U1,−b2ξ − b1η〉+ 〈U1, ∇̄U1JU2〉(2.6)

= −b2λ1 − b1µ− 〈−b1ξ + b2η, ∇̄U1U2〉 = −b2λ1 − b1µ+
cb2

4(λ1 − λ2)
,

0 = U2〈U1, JU2〉 = 〈∇̄U2U1,−b2ξ − b1η〉+ 〈U1, ∇̄U2JU2〉(2.7)

=
cb1

4(λ1 − λ2)
− 〈−b1ξ + b2η, ∇̄U2U2〉 =

cb1

4(λ1 − λ2)
+ b1λ2 + b2µ.
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Without restriction of generality let us assume that b1 6= 0 on an open subset of M .
Henceforth working on this subset, from (2.6) we get

(2.8) µ =
b2(c− 4λ2

1 + 4λ1λ2)

4b1(λ1 − λ2)
.

Substituting (2.8) into (2.7) we deduce

(2.9) 0 = b2
1(c+ 4λ2(λ1 − λ2)) + b2

2(c− 4λ1(λ1 − λ2)).

This equation together with b2
1 + b2

2 = 1 form a linear system in the unknowns b2
1, b2

2. Since
we know that λ1 6= λ2, this system is compatible only if λ1 + λ2 6= 0, or λ2 = −λ1 and
λ2

1 = c
8
. If the second relation holds on an open set, then µ vanishes therein in view of

(2.8), and by (2.3), this open set is Terng-isoparametric.
Hence, from now on we assume that λ1 + λ2 6= 0. Then, solving the system we have

(2.10) b2
1 = −c+ 4λ1(λ2 − λ1)

4(λ2
1 − λ2

2)
, b2

2 =
c+ 4λ2(λ1 − λ2)

4(λ2
1 − λ2

2)
.

Since the mean curvature in the direction of ξ is constant by assumption, we have
Ui(λ1) + Ui(λ2) = 0, i = 1, 2. Therefore, using (2.5)

0 = U1(b2
1)− U1

(
−c+ 4λ1(λ2 − λ1)

4(λ2
1 − λ2

2)

)
= 2b1b2

U2(λ1)

λ1 − λ2

− c+ 2(λ1 − λ2)2

2(λ1 − λ2)2(λ1 + λ2)
U1(λ1),

0 = U2(b2
1)− U2

(
−c+ 4λ1(λ2 − λ1)

4(λ2
1 − λ2

2)

)
= −2b1b2

U1(λ1)

λ1 − λ2

− c+ 2(λ1 − λ2)2

2(λ1 − λ2)2(λ1 + λ2)
U2(λ1).

This gives a homogeneous linear system in the unknowns U1(λ1) and U2(λ1). Using (2.10)
one easily gets that this system is determined if and only if 2c+ (λ1 + λ2)2 6= 0. Hence, in
the open set where 2c + (λ1 + λ2)2 6= 0 holds, we have that U1(λ1) = U2(λ1) = 0, which
implies that λ1 and λ2 are constant, and by (2.10), (2.8) and (2.3), we deduce that the
open set is Terng-isoparametric. Finally, assume that 2c + (λ1 + λ2)2 = 0 on some open
set. Then c < 0 and λ2 =

√
−2c− λ1. Then, using (2.10) we have

b2
1 =

(2
√

2λ1 −
√
−c)2

8
√
−c(
√

2λ1 −
√
−c)

, b2
2 = − (3

√
−c− 2

√
2λ1)2

8
√
−c(
√

2λ1 −
√
−c)

.

Since b2
1 ≥ 0 we get b2

2 ≤ 0 from the previous equation. Thus, b2 = 0. But then λ1

is constant and, as above, we get that any open set where 2c + (λ1 + λ2)2 = 0 holds is
Terng-isoparametric.

Proof of (iii) ⇒ (v). Let now M be a Lagrangian, Terng-isoparametric surface in M̄2(c),
c 6= 0. We first consider the case that M is not minimal. Then, the notations above
apply, and equations (2.4), (2.8) and (2.10), together with the constancy of λ1, λ2, hold.
In particular, {U1, U2} is a parallel orthonormal frame on M , and λ1, λ2, µ, b1 and b2 are
constant on M .
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We first restrict ourselves to the case c < 0. Let then π : H5
1 → CH2 be the Hopf map

from the anti-De Sitter space H5
1 ⊂ C3 of constant sectional curvature c/4 to the complex

hyperbolic plane. Denote by J the complex structure of C3, and by N the outward normal
vector field to H5

1 with 〈N,N〉 = −1, that is, Nq =
√
−c q/2, for each q ∈ H5

1 . Then
V = JN is a unit timelike vector field tangent to the fibers of π. From the fundamental
equations of semi-Riemannian submersions [90], [91] (see also [40]) and the umbilicity of H5

1

with principal curvature −
√
−c/2, we have the following relations between the Levi-Civita

connections D and ∇̄ of C3 and CH2, respectively:

(2.11)
DXLY L = (∇̄XY )L +

√
−c
2
〈X, Y 〉N,

DXLN =

√
−c
2

XL,

where X, Y ∈ Γ(TCH2) satisfy 〈JX, Y 〉 = 0, and (·)L denotes the horizontal lift of a
vector field.

Now, using (2.1) and (2.3) we can easily compute the following derivatives on the
surface M :

(2.12)

∇̄JξJξ = J∇̄b1U1+b2U2ξ = −b1JSξU1 − b2JSξU2 = −b1λ1JU1 − b2λ2JU2 =

= (b2
1λ1 + b2

2λ2)ξ + b1b2(λ2 − λ1)η,

∇̄JξJη = J∇̄b1U1+b2U2η = −b1JSηU1 − b2JSηU2 =

=
(
−b1µ+

cb2

4(λ1 − λ2)

)
JU1 +

(
b2µ+

cb1

4(λ1 − λ2)

)
JU2 =

=

(
(b2

1 − b2
2)µ− cb1b2

2(λ1 − λ2)

)
ξ +

(
−2b1b2µ+

c(b2
2 − b2

1)

4(λ1 − λ2)

)
η,

∇̄JηJξ = J∇̄−b2U1+b1U2ξ = b2JSξU1 − b1JSξU2 = b2λ1JU1 − b1λ2JU2 =

= b1b2(λ2 − λ1)ξ + (b2
1λ2 + b2

2λ1)η,

∇̄JηJη = J∇̄−b2U1+b1U2η = b2JSηU1 − b1JSηU2 =

=
(
b2µ+

cb1

4(λ1 − λ2)

)
JU1 +

(
b1µ−

cb2

4(λ1 − λ2)

)
JU2 =

=

(
c(b2

2 − b2
1)

4(λ1 − λ2)
− 2b1b2µ

)
ξ +

(
cb1b2

2(λ1 − λ2)
+ µ(b2

2 − b2
1)

)
η.

Consider the lifted submanifold π−1M of H5
1 , which is invariant under the Hopf S1-

action. The tangent bundle of π−1M is spanned by JξL, JηL and V . Let A be the complex
(3× 3)-matrix whose columns are the derivatives DJξLN , DJξLJξ

L, DJξLJη
L expressed in

the pseudo-unitary basis {N, JξL, JηL} of C3; recall that the complex structure J of C3 is
given by multiplication by the imaginary unit i. Define B analogously as the matrix giving
the D-derivatives in the direction of JηL. Then, using (2.11), (2.12), (2.8) and (2.10), we
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get that

(2.13)

A =


0

√
−c
2

0
√
−c
2

i
c−4(λ21+λ22)

4(λ1+λ2)
ib1b2(λ1 − λ2)

0 ib1b2(λ1 − λ2) −i c+8λ1λ2
4(λ1+λ2)

 ,

B =


0 0

√
−c
2

0 ib1b2(λ1 − λ2) −i c+8λ1λ2
4(λ1+λ2)

√
−c
2

−i c+8λ1λ2
4(λ1+λ2)

ib1b2(λ2 − λ1)

 .

It is easy to check that both matrices A and B belong to the Lie algebra u(1, 2) of the
pseudo-unitary group U(1, 2).

Let now E be the complex (3 × 3)-matrix whose columns are the coordinates of N ,
JξL and JηL in the canonical pseudo-unitary basis of C3, along the lifted submanifold
π−1M ⊂ H5

1 . Observe that, as well as A and B, E is an endomorphism-valued tensor field
on π−1M . Indeed, the value of E at each point is a matrix in U(1, 2). Moreover, since E
is the transition matrix from {N, JξL, JηL} to the canonical basis of C3, we must have

(2.14) DJξLE = EA, DJηLE = EB, DVE = i

√
−c
2

E.

The last equation follows from the umbilicity of H5
1 with principal curvature −

√
−c/2, and

from the equation of semi-Riemannian submersions [90], [40]

DVX
L = DXLV =

√
−c
2

JXL, X ∈ Γ(TM).

It follows from (2.11) and (2.12) that JξL, JηL are parallel vector fields on π−1M . This
and the previous equation imply that {V, JξL, JηL} is a parallel orthonormal frame on
π−1M . Moreover, it is also easy to check, using (2.10), that A and B commute. Hence,
due to the constancy of the entries of the matrices A and B, each equation in the partial
differential system (2.14) can be integrated separately to deduce that E is parametrized as

E(t, u, v) = eit
√
−c
2 E(0, 0, 0)euAevB,

where E(0, 0, 0) is any matrix in U(1, 2). Therefore, since N is the normalized position
vector field, it follows that the first column of E, multiplied by 2/

√
−c, gives the para-

metrization of π−1M . In particular, π−1M is an open part of an orbit of the action of the

abelian Lie subgroup {eit
√
−c
2 euAevB : t, u, v ∈ R} of U(1, 2) on H5

1 .

Now, since {eit
√
−c
2 : t ∈ R} acts trivially on CH2, it follows that M is contained in an

orbit of the action of the abelian Lie subgroup of U(1, 2) with Lie algebra RA⊕ RB. We

can define the trace-free matrices A′ = A− trA
3

Id = A+ i(λ1+λ2)
3

Id and B′ = B− trB
3

Id = B,
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so that A′, B′ ∈ su(1, 2). Therefore, h = RA′⊕RB′ is an abelian Lie subalgebra of su(1, 2),
and M is an open part of an orbit of the action of the Lie subgroup H of SU(1, 2) with
Lie algebra h.

We just have to prove that the H-action on CH2 is polar. Consider the Cartan decom-
position g = k⊕ p of the simple Lie algebra g = su(1, 2). This decomposition is orthogonal
with respect to the inner product on g defined by the Killing form of g. Note also that
k = s(u(1)⊕ u(2)) ⊂ su(1, 2) and p consists of all matrices 0 z̄1 z̄2

z1 0 0

z2 0 0

 ∈ su(1, 2), with z1, z2 ∈ C.

Recall that there is an isomorphism between p and the tangent space ToCH2, where
o = π(1, 0, 0) ∈ CH2 is the only fixed point of the isotropy group K = S(U(1)U(2)).
Define the two-dimensional totally real subspace s of p given by the relation z1, z2 ∈ iR.
Now we define the totally geodesic submanifold Σ = {(ExpX)(o) : X ∈ s} of CH2, where
Exp is the Lie group exponential map. In particular, the isomorphism between ToCH2 and
p allows us to identify ToΣ with s. We show that the action of H on CH2 is polar with
section Σ. We use the criterion of polarity that can be found in [14, Corollary 3.2].

Proposition 2.6. Let M̄ = G/K be a Riemannian symmetric space of noncompact type,
and let Σ be a connected totally geodesic submanifold of M̄ with o ∈ Σ. A connected closed
subgroup H of I(M̄) acts polarly on M̄ with section Σ if and only if

1. ToΣ ⊂ νo(H · o),

2. ToΣ is a section of the slice representation of Ho on νo(H · o),

3. 〈[v, w], X〉 = 0 for all v, w ∈ ToΣ ⊂ p and all X ∈ h.

Note first that, since h is abelian and G = SU(1, 2) has rank 2, H is a closed subgroup of
G = SU(1, 2). According to the Proposition 2.6, it is sufficient to show that ToΣ ⊂ νo(H ·o),
ToΣ is a section for the slice representation of Ho = {h ∈ H : h(o) = o} on νo(H · o), and
〈[s, s], h〉 = 0. It is straightforward to check that 〈s, h〉 = 0, which implies that ToΣ is
orthogonal to To(H · o). The second condition is also clearly satisfied, since the orbit of
H through o is principal by (2.13) and, hence, its slice representation is trivial and thus
polar with section νo(H · o) = ToΣ. Finally, again some elementary calculations show that
〈[s, s], h〉 = 0. This proves that the action of H on CH2 is polar, and hence M is an open
part of the principal orbit H · o of the action of H.

For the case c > 0, with M nonminimal, we argue analogously as above, adapting the
arguments to the Hopf map π : S5 → CP 2. Thus, one shows that π−1M is an open part of
an orbit of the connected Lie subgroup H̃ of U(3) with Lie algebra h̃ = RA⊕RB⊕ i

√
c

2
Id,
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where now

A =


0 −

√
c

2
0

√
c

2
i
c−4(λ21+λ22)

4(λ1+λ2)
ib1b2(λ1 − λ2)

0 ib1b2(λ1 − λ2) −i c+8λ1λ2
4(λ1+λ2)

 ,

B =


0 0 −

√
c

2

0 ib1b2(λ1 − λ2) −i c+8λ1λ2
4(λ1+λ2)

√
c

2
−i c+8λ1λ2

4(λ1+λ2)
ib1b2(λ2 − λ1)

 .

One can check easily that h̃ is an abelian Lie subalgebra of u(3) of dimension 3. Since all
maximal abelian subalgebras of a compact Lie algebra are conjugate, we have that h̃ is
conjugate to the standard embedding of u(1)⊕u(1)⊕u(1) in u(3). Similarly, H̃ is a maximal
torus of U(3), so its action on S5 is conjugate to the standard action of U(1)×U(1)×U(1)
on S5. In particular, the action of H̃ on S5 is polar, and it induces a polar action on CP 2

that has an orbit containing M (see Subsection 1.7.1).
Finally, we are just left with the case of a minimal surface M . It follows from (2.9)

that this case appears only if c > 0. Moreover, we can put λ2 = −λ1 = −
√
c

2
√

2
and µ = 0.

Now, the matrices A and B are

A =


0 −

√
c

2
0

√
c

2
i
√
c

2
√

2
(b2

2 − b2
1) ib1b2

√
c√
2

0 ib1b2

√
c√
2

i
√
c

2
√

2
(b2

1 − b2
2)

 ,

B =


0 0 −

√
c

2

0 ib1b2

√
c√
2

i
√
c

2
√

2
(b2

1 − b2
2)

√
c

2
i
√
c

2
√

2
(b2

1 − b2
2) −ib1b2

√
c√
2

 .

The argument to conclude is then the same as in the previous paragraph.

Proof of (v) ⇒ (iv). It is well-known that any principal orbit of a polar action on a
Riemannian manifold is isoparametric; see [57, p. 152], [9, Corollary 3.2.5].

Proof of (iv) ⇒ (iii). Let M be an isoparametric submanifold of M̄2(c), c 6= 0. By defini-
tion, M has a section at every point, that is, for each p ∈M there exists a totally geodesic
submanifold Σp such that TpΣp = νpM . Totally geodesic submanifolds of complex space
forms are known to be either complex or totally real.

First we assume that the section is complex. Then, M is almost complex, and it is
well-known that an almost complex submanifold in a Kähler manifold is Kähler. Since the
normal bundle of M is flat, [4, Theorem 19] implies that M is either a point or an open
part of M̄2(c).
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Hence, we may assume from now on that sections are totally real. Since M has codimen-
sion 2, sections are totally geodesic real projective planes RP 2 in CP 2 or real hyperbolic
planes RH2 in CH2. Since in this case sections are totally real, it follows that TM and
νM are both totally real. Indeed, M is Lagrangian as JTpM = νpM for each p ∈M .

If M is totally umbilical, then it follows from [29] that M is an open part of a totally
geodesic real projective plane RP 2 in CP 2 or a totally geodesic real hyperbolic plane RH2

in CH2. However, these are not isoparametric because their normal bundle is not flat.
Indeed, by the Ricci equation

〈R⊥(X, Y )JX, JY 〉 = 〈R̄(X, Y )JX, JY 〉 − 〈[SJX ,SJY ]X, Y 〉 = − c
4

for X, Y ∈ TM , where we have used that JX, JY ∈ νM .
Since the normal bundle of M is flat, for each parallel normal vector field ξ and each

sufficiently small r > 0, we can consider the parallel submanifolds determined by the vector
field ξ, M r,ξ = {exp(rξp) : p ∈M}. Our objective is the study of local geometric properties
of the displacement of M in the direction given by ξ at a certain distance r.

We denote by ν1M the unit normal bundle of M . By assumption νM is flat. For
a given parallel unit normal vector field ξ ∈ Γ(ν1M) and r > 0 we define Φr,ξ : M →
M̄2(c), p 7→ expp(rξ). Let γξp be the geodesic of M̄2(c) with initial conditions γξp(0) = p,
γ′ξp(0) = ξp. We also define the vector field ηr along Φr,ξ by ηr(p) = γ′ξp(r) for each p ∈M .

Parallel submanifolds to M are of the form M r,ξ = Φr,ξ(M). Clearly, M r,ξ is an immersed
submanifold of M̄2(c) if and only if Φr,ξ is an immersion. It may happen, however, that
M r,ξ is a focal submanifold, that is, the codimension of M r,ξ is greater than the codimension
of M . The fact that M r,ξ has higher codimension depends on the rank of Φr,ξ. But for
r small enough M r,ξ is a parallel submanifold with the same dimension as M . Our aim is
then to calculate the mean curvature of M r,ξ at Φr,ξ(p) in the direction of ηr(p).

We denote by λ1, λ2 : ν1M → R the principal curvature functions, which are given by
the fact that λ1(ξ) and λ2(ξ) are the eigenvalues of the shape operator Sξ for a fixed parallel
unit normal vector field ξ ∈ Γ(ν1M). We have already seen that M cannot be umbilical,
so we may assume that there exists ξ ∈ ν1M such that λ1(ξ) 6= λ2(ξ). By continuity, the
principal curvature functions are thus different on an open neighbourhood of ξ in ν1M . In
the sequel we assume that calculations take place in such a neighbourhood. We also denote
by U1(ξ) and U2(ξ) a (local) orthonormal frame of TM consisting of principal curvature
vectors associated with λ1(ξ) and λ2(ξ).

One can study the geometric behaviour of a submanifold when this is moved along
normal directions. This is an important method in submanifold theory which is based on
Jacobi vector field theory. More features of this method can be found in [9, Chapter 8].

Let p ∈ M . Let c be a curve in M such that c(0) = p and c′(0) = v. Then, F (s, t) =
expc(s)(tξc(s)) is a variation of γξp through geodesics. Let Xv be the variational vector field
of F along γξp . Then, Xv is a Jacobi vector field, that is, a vector field along γξp satisfying
the initial value problem

X ′′v + R̄(Xv, γ
′
ξp)γ

′
ξp = 4X ′′v + cXv + 3c〈Xv, Jγ

′
ξp〉Jγ

′
ξp = 0, Xv(0) = v, X ′v(0) = −Sξ(v).



38 2 Isoparametric submanifolds

Here (·)′ stands for covariant derivative along γξ. A straightforward calculation shows that
Φr,ξ
∗p (v) = Xv(r) for each v ∈ TpM .

In order to simplify notation we define ui = Ui(ξp), i = 1, 2, and we set v = ui in the
previous calculations. Then

Xui(t) = fλi(t)Pξui(t) + 〈ui, Jξ〉gλi(t)Jγ′ξ(t),

where Pξv (t) denotes parallel transport of v ∈ TpM along the geodesic γξ. The functions
fλ and gλ are defined by

fλ(t) = cosh
(t√−c

2

)
− 2λ√
−c

sinh
(t√−c

2

)
,

gλ(t) =
(

cosh
(t√−c

2

)
− 1
)(

1 + 2 cosh
(t√−c

2

)
− 2λ√
−c

sinh
(t√−c

2

))
.

(For c > 0 one would have to replace hyperbolic trigonometric functions by standard
trigonometric functions.) In other words, Xui is the parallel transport along γξ of the
tangent vector fλiui + 〈ui, Jξ〉gλiJξ.

Since the normal Riemannian exponential map is a local diffeomorphism, it is clear
that Φr,ξ is a local diffeomorphism for sufficiently small values of r. Thus, we will take, if
necessary, a sufficiently small neighbourhood of p and sufficiently small values of r so that
Φr,ξ is a diffeomorphism.

At this point we recall that M has totally real tangent and normal bundles. Thus,
Jξ is tangent to M and can be written as Jξ = 〈U1(ξ), Jξ〉U1(ξ) + 〈U2(ξ), Jξ〉U2(ξ).
Moreover, since TΦr,ξ(p)M

r,ξ = Φr,ξ
∗p (TpM) and Φr,ξ is a diffeomorphism, it is then clear

that TΦr,ξ(p)M
r,ξ = PξTpM(r), that is, the tangent space of M r,ξ at Φr,ξ(r) is obtained by

parallel translation of TpM along the geodesic γξ from p = γξ(0) to Φr,ξ(r) = γξ(r).

The previous considerations allow us to define the endomorphism-valued map of the
tangent space Dξ(t) : TΦt,ξ(p)M

t,ξ → TΦt,ξ(p)M
t,ξ by Dξ(t)(Pξv (t)) = Xv(t), where v ∈ TpM .

As we are assuming that r is sufficiently small, Dξ(r) is actually an isomorphism of the

tangent space. We denote now by Sr,ξηr the shape operator of M r,ξ with respect to the

radial vector ηr. It follows from Jacobi field theory that Sr,ξηr (Φr,ξ
∗p (v)) = −X ′v(r)>, where

(·)> denotes the orthogonal projection onto the tangent space TΦr,ξ(p)M
r,ξ. By the previous

calculations, X ′ui(t) = f ′λi(t)P
ξ
ui

(t) + 〈ui, Jξ〉g′λi(t)Jγ
′
ξ(t) ∈ TΦr,ξ(p)M

r,ξ. This implies that

Sr,ξηr = −D′ξ(r)Dξ(r)
−1. Finally, the mean curvature in radial directions is the function

hr,ξ : M r,ξ → R determined by

hr,ξ(Φr,ξ(p)) = trSr,ξηr(p) = − trD′ξ(r)Dξ(r)
−1 = −

d
dr

detDξ(r)

detDξ(r)
.

It is easy to check that detDξ = fλ1fλ2 + 〈U1(ξ), Jξ〉2fλ2gλ1 + 〈U2(ξ), Jξ〉2fλ1gλ2 . The
function hr,ξ ◦ Φr,ξ can be calculated explicitly, but for our purpose it suffices to calculate



2.2 Proof of Theorem 2.1 39

its Taylor power series expansion. After some relatively long but elementary calculations,
and using 〈U1(ξ), Jξ〉2 + 〈U2(ξ), Jξ〉2 = 〈Jξ, Jξ〉 = 1, we get

(hr,ξ ◦ Φr,ξ)(p) = λ1(ξp) + λ2(ξp) + r
(5c

4
+ λ1(ξp)

2 + λ2(ξp)
2
)

+
r2

4

(
c
(
λ1(ξp) + λ2(ξp)

)
+ 4
(
λ1(ξp)

3 + λ2(ξp)
3
)

+ 3c
(
λ1(ξp)〈U1(ξp), Jξp〉2 + λ2(ξp)〈U2(ξp), Jξp〉2

))
+O(r3).

Since M is isoparametric, hr,ξ is constant. Since Φr,ξ is a diffeomorphism, this is equivalent
to requiring that (hr,ξ ◦ Φr,ξ)(p) does not depend on p. More precisely, (hr,ξ ◦ Φr,ξ)(p)
depends on r and the choice of parallel unit normal vector field ξ ∈ Γ(ν1M), but not
on the base point p of ξp. Therefore, the above power series expansion implies that the
functions p 7→ λi(ξ)(p) = λi(ξp), p 7→ 〈Ui(ξ), Jξ〉(p) = 〈Ui(ξp), Jξp〉, i = 1, 2, are constant
for a fixed parallel ξ ∈ Γ(ν1M). By linearity this readily implies that an isoparametric
submanifold of M̄2(c) has constant principal curvatures and is Terng-isoparametric. Then
(iv) ⇒ (iii).

Proof of (iii) ⇒ (ii). Let M be a Lagrangian and Terng-isoparametric submanifold. Then,
by Lemma 2.4 M is flat. Moreover, M has parallel mean curvature, since M has flat normal
bundle and the principal curvatures of M are constant for any parallel normal vector field.
Thus, the arguments and notation used in the proof of (i) ⇒ (iii) above can be applied
to M . In particular, there are parallel orthonormal frames {ξ, η} of νM , and {U1, U2} of
TM , such that 〈SξUj, Uk〉 and 〈SηUj, Uk〉 are constant on M , for j, k ∈ {1, 2}. Thus, for
all i, j, k ∈ {1, 2} we have:

(∇⊥UiII)(Uj, Uk) = ∇⊥UiII(Uj, Uk)− II(∇UiUj, Uk)− II(Uj,∇UiUk)

= ∇⊥Ui(〈∇̄UjUk, ξ〉ξ + 〈∇̄UjUk, η〉η)

= ∇⊥Ui(〈SξUj, Uk〉ξ + 〈SηUj, Uk〉η) = 0.

Hence, M has parallel second fundamental form. Thus, (iii) implies (ii).

We have thus concluded the proof of Theorem 2.1. As a corollary, we obtain the
following result:

Corollary 2.7. A Lagrangian submanifold of M̄2(c) is isoparametric if and only if it is
Terng-isoparametric.

Remark 2.8. There is a shorter alternative proof of the implication (iv) ⇒ (iii) that does
not require working with Jacobi fields. Indeed, in the proof of this implication, once the
problem was reduced to the case of an isoparametric Lagrangian surface M , we could have
used Lemma 2.4 to show that M is flat. Since by assumption M is Lagrangian and has
parallel mean curvature, then (i) holds and, since we had already proved that (i) ⇒ (iii),
we can conclude that (iv) ⇒ (iii).
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Remark 2.9. Surfaces with parallel mean curvature in two-dimensional complex space forms
have been studied by Ogata [89], Kenmotsu and Zhou [70], Kenmotsu and Masuda [69], and
Hirakawa [61], [62]. In [41] the equivalence (i)⇔(v) was proved using the strong results
in the previously mentioned papers. However, in this thesis we have presented a direct
approach that does not make use of any of these articles.

2.3 Classification

In this section we classify isoparametric submanifolds and Terng-isoparametric submani-
folds in the 2-dimensional nonflat complex space forms. A special surface called the Chen’s
surface appears in this classification of Terng-isoparametric submanifolds.

2.3.1 Chen’s surface

In this subsection we give a Lie group theoretic description of the surface introduced by
Chen in [26] that arises in Theorem 2.3 (ii).

First we recall the characterizing properties of this surface according to [26]. A surface
M in CH2 is called slant if its tangent space has constant Kähler angle (called Wirtinger
angle or slant angle in [26]), that is, if for each nonzero vector v ∈ TpM the angle between
Jv and TpM is independent of p ∈ M and v ∈ TpM . Such surface is called proper slant
if it is neither complex nor totally real, that is, if the Kähler angle is neither 0 nor π/2.
The Chen’s surface that appears in Theorem 2.3 (ii) is a proper slant surface of CH2 with
Kähler angle θ = arccos(1/3) and satisfying 〈H,H〉 = 8K − 2c(1 + 3 cos2 θ), where K is
the Gaussian curvature of M . It is proved in [30, Theorem 5.1] that K is constant, and
that Chen’s surface is unique up to isometric congruence.

The Chen’s surface turns out to be homogeneous, although not an orbit of a polar
action (by the classification in Theorem 1.7), and the aim of this subsection is to give a
subgroup of the isometry group of CH2 one of whose orbits is precisely the Chen’s surface.
In Subsection 1.6.4 we have described CHn as a symmetric space and as a solvable Lie
group. Let a ⊕ n be the solvable part of the Iwasawa descomposition of g = su(1, 2) and
AN the connected subgroup of SU(1, 2) whose Lie algebra is a⊕n. Let B be a unit vector
in a and define Z = JB ∈ g2α.

Now assume that U ∈ gα is a unit vector. We have gα = RU ⊕ RJU . We define the
following subalgebra of a⊕ n:

h = RU1 ⊕ RU2, with U1 =
1√
3

(√
2B + JU

)
, and U2 =

1√
3

(
U +
√

2Z
)
.

Let H be the connected subgroup of AN whose Lie algebra is h, and M = H · o the
orbit through the unique fixed point o ∈ CH2 of K = S(U(1)U(2)). Since AN acts simply
transitively on CH2 we may identify H with M for the calculations that follow.

First notice that {U1, U2} is an orthonormal basis of the tangent space of M , and
〈JU1, U2〉 = 1/3. By homogeneity we conclude that M is a proper slant surface with
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Kähler angle θ = arccos(1/3). Using (1.1) we get the mean curvature vector and the
Gaussian curvature

H =
2
√
−c

3

(
B −

√
2JU

)
, and K =

c

6
.

It readily follows from this equation that 〈H,H〉 = 8K − 2c(1 + 3 cos2 θ) and hence, [26,
Theorem A] and [30, Theorem 5.1] imply that M is isometrically congruent to Chen’s
surface.

2.3.2 Proof of Theorem 2.2

Let M be an isoparametric submanifold of M̄2(c), c 6= 0, and Σp a section for M through
p ∈M . Recall that Σp is a totally geodesic submanifold, and totally geodesic submanifolds
of complex space forms are known to be either complex or totally real.

As we argued in the proof of the implication (iv) ⇒ (iii) of Theorem 2.1, if we assume
that the section is complex, M is either a point or an open part of M̄2(c).

Hence, we may assume from now on that sections are totally real. In this case, sections
are either geodesics or totally geodesic real projective planes RP 2 in CP 2 or real hyperbolic
planes RH2 in CH2. If the section is a geodesic, M is an isoparametric hypersurface. The
classification of isoparametric hypersurfaces in CP 2 follows from [49], and all examples are
open parts of orbits of cohomogeneity one actions. Isoparametric hypersurfaces in CHn

have been classified in [40, Corollary 1.2] and it follows from this paper that M is an open
part of a principal orbit of a cohomogeneity one action on CH2.

Finally, if M has codimension 2 it follows from Theorem 2.1 that an isoparametric
submanifold of M̄2(c) is an open part of a principal orbit of a cohomogeneity two polar
action on M̄2(c). This concludes the proof of Theorem 2.2.

This result implies that the classification of isoparametric submanifolds in M̄2(c) is
equivalent to the classification of polar actions on M̄2(c), whose description appears in
Section 1.7.

2.3.3 Proof of Theorem 2.3

Let M now be a Terng-isoparametric submanifold of M̄2(c). In particular, the normal
bundle of M is flat, and we have already seen in the proof of the implication (iv) ⇒ (iii)
of Theorem 2.1 that, if the normal bundle of M is complex, then M is either a point or an
open part of M̄2(c). Thus we may assume that the normal bundle of M is not complex.

If the normal bundle of M is totally real, M is either a hypersurface or a Lagrangian
submanifold. In the first case, M is a hypersurface of M̄2(c) with constant principal
curvatures. These were classified in [106] for CP 2 and in [11] for CH2 where it was shown
that such hypersurfaces are open parts of homogeneous hypersurfaces. In particular they
are open parts of orbits of cohomogeneity one actions, which are polar.
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If the normal bundle is totally real and has rank 2, then M is Lagrangian. Hence, it
follows from Theorem 2.1 that M is an open part of a principal orbit of a cohomogeneity
two polar action on M̄2(c).

Therefore, we can assume from now on that the normal bundle of M is neither complex
nor totally real. If M is 1-dimensional, then M has to be a geodesic or a circle (Section 1.2),
so we also assume that M is 2-dimensional.

Hence, we take, at least locally, a parallel orthonormal basis {ξ, η} of the normal bundle
of M , and let {U1, U2} be an orthonormal basis of the tangent space of M such that
SξUi = λiUi, i = 1, 2. Since ξ is parallel, λ1 and λ2 are constant by assumption. At
this moment we observe that the mean curvature vector field of M is parallel because the
normal bundle is flat and the principal curvatures are constant (and hence the trace of each
shape operator with respect to a parallel normal vector field is constant). Therefore, we
may further assume that {ξ, η} is chosen so that η is perpendicular to the mean curvature
vector field.

Using the fact that the tangent and normal spaces are neither complex nor totally real
we can write Jξ = b1U1 + b2U2 + aη, where a, b1, b2 : M → R are smooth functions with
b2

1 + b2
2 + a2 = 1, and b2

1 + b2
2 6= 0, a 6= 0. Since {U1, U2, ξ, η} is an orthonormal frame of

TCH2 along M we can write

−ξ = J2ξ = b1JU1 + b2JU2 + aJη

= b1(〈JU1, U2〉U2 − b1ξ + 〈JU1, η〉η) + b2(−〈JU1, U2〉U1 − b2ξ + 〈JU2, η〉η)

+ a(−〈JU1, η〉U1 − 〈JU2, η〉η − aξ)
= (−b2〈JU1, U2〉 − a〈JU1, η〉)U1 + (b1〈JU1, U2〉 − a〈JU2, η〉)U2

+ (b1〈JU1, η〉+ b2〈JU2, η〉)η − ξ.

Thus, −b2〈JU1, U2〉 − a〈JU1, η〉 = b1〈JU1, U2〉 − a〈JU2, η〉 = b1〈JU1, η〉 + b2〈JU2, η〉 = 0.
Using these equalities and b2

1 + b2
2 + a2 = 1, it is easy to show that we can write (up to a

choice of orientation)

Jξ = b1U1 + b2U2 + aη, Jη = −b2U1 + b1U2 − aξ,
JU1 = −aU2 − b1ξ + b2η, JU2 = aU1 − b2ξ − b1η.

For i ∈ {1, 2}, using the Codazzi equation, taking into account that ξ is parallel and
that λ1 and λ2 are constant, we get

−3cabi
4

= 〈R̄(U1, U2)Ui, ξ〉 = (λ2 − λi)〈∇U1U2, Ui〉 − (λ1 − λi)〈∇U2U1, Ui〉.

Since a 6= 0 and b2
1 + b2

2 6= 0, we readily get λ1 6= λ2. Since {U1, U2} is an orthonormal basis
of the tangent space we obtain

∇UiUi = − 3cabi
4(λ1 − λ2)

Uj, ∇UiUj =
3cabi

4(λ1 − λ2)
Ui, i, j ∈ {1, 2}, i 6= j.(2.15)
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Now, since νM is flat, the Ricci equation implies

c

4
(−b2

1 − b2
2 + 2a2) = 〈R̄(U1, U2)ξ, η〉 = 〈SξU1,SηU2〉 − 〈SηU1,SξU2〉

= (λ1 − λ2)〈SηU1, U2〉.

Recall that, since η is perpendicular to the mean curvature vector, we have trSη = 0, and
thus, with respect to the orthonormal basis {U1, U2} the shape operator Sη can be written
as

(2.16) Sη =

(
µ − c(1−3a2)

4(λ1−λ2)

− c(1−3a2)
4(λ1−λ2)

−µ

)
,

for some function µ : M → R.
By assumption, the eigenvalues of Sη are constant, or equivalently, the functions

(2.17) trSη = 0 and trS2
η = 2µ2 +

c2(1− 3a2)2

8(λ1 − λ2)2

are constant.
Now we calculate the derivatives of the functions b1, b2 and a. We take i, j ∈ {1, 2},

i 6= j. Using (2.15) and (2.16) we obtain

(2.18)

Uibi = Ui〈Ui, Jξ〉 = 〈∇̄UiUi, biUi + bjUj + aη〉+ 〈Ui, ∇̄UiJξ〉

= bj〈∇UiUi, Uj〉+ a〈Ui,SηUi〉 − λi〈Ui, JUi〉 = − 3cab1b2

4(λ1 − λ2)
− a(−1)iµ,

Uibj = Ui〈Uj, Jξ〉 = 〈∇̄UiUj, biUi + bjUj + aη〉+ 〈Uj, ∇̄UiJξ〉
= bi〈∇UiUj, Ui〉+ a〈Uj,SηUi〉 − λi〈Uj, JUi〉

=
3cab2

i

4(λ1 − λ2)
− ca(1− 3a2)

4(λ1 − λ2)
− a(−1)iλi,

Uia = Ui〈Jξ, η〉 = 〈∇̄UiJξ, η〉+ 〈biUi + bjUj + aη, ∇̄Uiη〉
= −λi〈JUi, η〉 − bi〈Ui,SηUi〉 − bj〈Uj,SηUi〉

= bj(−1)iλi + bi(−1)iµ+
cbj(1− 3a2)

4(λ1 − λ2)
.

In order to get a relation for the derivatives of µ, we use the Codazzi equation together
with (2.15), (2.16) and (2.18) to get, after some calculations

−3c(−1)iabj
4

= 〈R̄(U1, U2)Ui, η〉

= 〈∇U1SηU2, Ui〉 − 〈∇U1U2,SηUi〉 − 〈∇U2SηU1, Ui〉+ 〈∇U2U1,SηUi〉

= −Ujµ−
3ca(bjλi + 2biµ)

2(λ1 − λ2)
.
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Thus, we obtain

(2.19) Uiµ =
3ca

4(λ1 − λ2)
(biλi − 3biλj − 4bjµ), i, j ∈ {1, 2}, i 6= j.

The aim of the argument that follows is to show that the functions b1, b2, a and µ are
constant. We first have

Lemma 2.10. If the function a : M → R is constant, then b1, b2 and µ are also constant.

Proof. If a is constant, it readily follows from (2.17) that µ is constant. Hence, from (2.19)
we get (λ1−3λ2)b1−4µb2 = −4µb1 +(λ2−3λ1)b2 = 0. This is a homogeneous linear system
in the variables b1 and b2, whose coefficients are constant. It cannot have a unique solution
because b1 = b2 = 0 is not possible, and thus the rank of the matrix of the system cannot
be 2. The rank cannot be 0 because that would imply λ1 = λ2 = 0. Thus, it has rank one
and we can write b2 = νb1 for some constant ν ∈ R. Then 1 − a2 = b2

1 + b2
2 = (1 + ν2)b2

1

implies that b1 is constant, and hence also b2.

In view of Lemma 2.10, the calculations that follow aim at proving that a is constant.
Recall from (2.17) that trS2

η is constant. Hence there is k ∈ R such that

(2.20) µ2 = k − c2(1− 3a2)

16(λ1 − λ2)2
.

Taking derivatives with respect to Ui, using (2.18) and (2.19) and substituting µ2 by (2.20)
we get, after some calculations

(2.21)
0 = bj

(
(−1)jc2(1− 3a2)2 + 4c(1− 3a2)λi(λ1 − λ2) + 32(−1)ik(λ1 − λ2)2

)
+ 4bi(λ1 − λ2)

(
c(1− 3a2)− 2(−1)i(λ1 − λ2)(λi − 3λj)

)
µ.

If c(1− 3a2) + 2(λ1 − λ2)(λ1 − 3λ2) or c(1− 3a2)− 2(λ1 − λ2)(λ2 − 3λ1) is zero in an
open set, then the function a is constant and it follows from Lemma 2.10 that b1, b2 and µ
are also constant. As a consequence, we may assume that there is a point in M where
these two functions do not vanish, and thus, they do not vanish in an open set. Moreover,
if bi = 0 in an open set, then it follows from the first equation in (2.18) that µ = 0, so
by (2.20), a is constant, and thus also bj. Hence, we also assume that bi, i = 1, 2, is not zero
on an open set. Thus, from (2.21) we get two possible expressions for µ, and combining
this with (2.20) yields

0 =
(
k −

c2(1− 3a2)2

16(λ1 − λ2)2

)
−

(
−b2

c2(1− 3a2)2 + 4c(1− 3a2)λ1(λ1 − λ2)− 32k(λ1 − λ2)2

4b1(λ1 − λ2)(c(1− 3a2) + 2λ21 − 8λ1λ2 + 6λ22)

)
·

·
(
b1
c2(1− 3a2)2 − 4c(1− 3a2)λ2(λ1 − λ2)− 32k(λ1 − λ2)2

4b2(λ1 − λ2)(c(1− 3a2) + 6λ21 − 8λ1λ2 + 2λ22)

)
=
−c3(1− 3a2)3 − 3c2(1− 3a2)2(4k + (λ1 − λ2)2) + 16k(λ1 − λ2)2(16k + 3λ21 − 10λ1λ2 + 3λ2)

4(c(1− 3a2) + 2λ21 − 8λ1λ2 + 6λ22)(c(1− 3a2) + 6λ21 − 8λ1λ2 + 2λ22)
.

This equation implies that 1− 3a2 is constant, and hence, by Lemma 2.10 we get that b1,
b2 and µ are also constant.
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Using (2.18) we get

0 = U1b1 + U2b2 = − 3cab1b2

2(λ1 − λ2)
,

and since a 6= 0 we get b1 = 0 or b2 = 0. We may assume b1 6= 0, b2 = 0, a2 = 1 − b2
1.

Then, by (2.18) we obtain 0 = U2b2 = −aµ, so µ = 0. Next, equation (2.19) implies that
0 = U1µ = 3cab1(λ1 − 3λ2)/(4(λ1 − λ2)), and thus, λ1 = 3λ2 6= 0. Finally, using (2.18)
once more,

0 = U1b2 =
3cab2

1 − ca(1− 3a2)

4(λ1 − λ2)
+ aλ1 =

a(c+ 12λ2
2)

4λ2

.

Hence, if c > 0 we get a contradiction, which yields

Proposition 2.11. A Terng-isoparametric surface of CP 2 is isoparametric.

Otherwise, if c < 0 we have λ2 = ±
√
−3c/6. By changing the orientation if necessary,

we may assume λ2 > 0. Finally, (2.18) yields 0 = U2a = cb1(9b2
1− 8)/(4

√
−3c). Altogether

we have obtained

Sξ =

(√
−3c
2

0

0
√
−3c
6

)
, Sη =

(
0

√
−3c
6√

−3c
6

0

)
, a =

1

3
, b1 =

2
√

2

3
, b2 = 0.

Finally, it follows from [30, Theorem 5.1(vi)] that M is an open part of a Chen’s surface,
as we wanted to show.





Chapter 3

Real hypersurfaces

The interest of studying real hypersurfaces in Kähler manifolds appeared in the field of
Complex Analysis. In the theory of several complex variables, an important problem is to
understand the relation between holomorphic functions defined on a domain of the complex
space Cn, and the boundary of such domain. When this boundary is smooth, it becomes a
real hypersurface, that is, a submanifold of the Euclidean space R2n with real codimension
one. See [68] for a survey on real hypersurfaces from the viewpoint of Complex Analysis.

From the point of view of Differential Geometry, a problem that has attracted the
attention of many mathematicians over the last few decades is the classification of real
hypersurfaces in terms of different geometric conditions. The case of real hypersurfaces
in nonflat complex space forms deserves special attention, for these spaces are the nonflat
Kähler manifolds with the simplest curvature tensor.

The method of equivariant differential geometry has shown to be a powerful tool for
the construction of submanifolds with specific geometric properties, see for example [63],
[64]. Given a proper isometric action of a Lie group H on a Riemannian manifold M̄ , the
idea of the method is to find a curve in the orbit space M̄/H such that the union of the
corresponding orbits in M̄ yields a submanifold M with the desired geometric property.
It turns out that for many interesting properties, finding such a curve is equivalent to
solving certain ordinary differential equation. Thus, existence and uniqueness of this curve
is guaranteed for given initial conditions. The resulting submanifolds M are, intrinsically,
manifolds of cohomogeneity one, that is, they admit an isometric action whose principal
orbits have codimension one in M .

In [54], Gorodski and Gusevskii constructed many examples of complete constant mean
curvature hypersurfaces of cohomogeneity one in complex hyperbolic spaces CHn by apply-
ing the equivariant method to several cohomogeneity two polar actions on CHn. We recall
that a proper isometric action on a Riemannian manifold is called polar if there is a sub-
manifold intersecting all the orbits of the action perpendicularly; such a submanifold must
be totally geodesic, and is called a section of the action. Thus, the resulting hypersurfaces
appear as the union of orbits through some curve in the 2-dimensional section.

In the context of real hypersurfaces in Kähler manifolds, the class of Hopf hypersurfaces
has been studied thoroughly. Recall that if M is a real hypersurface in a Kähler manifold

47
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with complex structure J , and ξ is a (locally defined) unit normal vector field on M , we
have that M is a Hopf hypersurface if Jξ is an eigenvector of the shape operator S of M
at every point p (see Subsection 1.6.5). For example, homogeneous hypersurfaces in CP n

(that is, those which are orbits of a cohomogeneity one isometric action on CP n) happen
to be Hopf, and Hopf hypersurfaces with constant principal curvatures in CP n and CHn

are open parts of homogeneous hypersurfaces and, thus, are classified; see [8] and [71]
(see [47] for a survey). However, as we have said in Subsection 1.6.5, the Hopf vector field
Jξ can have nontrivial projection onto several principal curvature spaces; the number of
these nontrivial projections is denoted by h. In particular, the examples constructed in
[54] are generically non-Hopf, that is, they usually satisfy h > 1. For more information on
real hypersurfaces in complex space forms we refer to [25] and [88].

The main idea of this chapter is to use the equivariant method to study certain types of
real hypersurfaces in the two-dimensional nonflat complex space forms. In particular, we
find the first examples of real hypersurfaces with exactly two distinct principal curvatures
in CP 2 and CH2 and, then, classify all such examples by proving that they must be
constructed using the equivariant method applied to a polar action. Then, we introduce the
notion of strongly 2-Hopf real hypersurface and we prove that, roughly speaking, this notion
characterizes the cohomogeneity one real hypersurfaces in CP 2 and CH2 constructed by the
equivariant method applied to a polar action. Finally, we also obtain a partial classification
of austere real hypersurfaces in the complex projective and hyperbolic planes, as well as
some other applications.

This chapter is organized as follows. In Section 3.1 we explain how one can use the
equivariant method applied to a cohomogeneity two polar action on a two-dimensional
nonflat complex space form. In Section 3.2 we prove some formulas for the Levi-Civita
connection of a hypersurface satisfying h = 2, that will allow us to classify real hypersur-
faces in CP 2 and CH2 with certain geometric properties. In Section 3.3 we introduce the
notion of strongly 2-Hopf real hypersurface and investigate its relation to those cohomo-
geneity one real hypersurfaces constructed by the equivariant method applied to a polar
action. In Section 3.4 we classify real hypersurfaces with exactly two distinct principal
curvatures in CP 2 and CH2. Section 3.5 is devoted to the classification of austere hyper-
surfaces in CP 2 and CH2 that satisfy h ≤ 2. Finally, in Section 3.6 we apply these results
to the study of strongly 2-Hopf real hypersurfaces that have constant mean curvature or
are Levi-flat.

3.1 Method of equivariant geometry

In this section we present the method of equivariant differential geometry to construct real
hypersurfaces in nonflat complex space forms. We use the basic notations and formulas
established in Chapter 1. For the construction of these hypersurfaces we make use of the
notion of polar action introduced in Section 1.7. Let H be a group acting polarly on M̄2(c),
c 6= 0, with cohomogeneity two and section Σ ⊂ M̄2(c), where M̄2(c) denotes a nonflat
complex space form. It is known that the section Σ is a totally geodesic real projective
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plane RP 2 if c > 0, or a totally geodesic real hyperbolic plane RH2 if c < 0.
The idea behind our construction is rather simple. We start with a polar action of a

group H acting with cohomogeneity two on M̄2(c). In one of its 2-dimensional sections we
find a (locally defined) curve σ such that, if we attach to each point σ(t) of σ the H-orbit
through σ(t), we obtain a 3-dimensional real hypersurface M of M̄2(c).

Figure 3.1: Idea of the construction

In Figure 3.1, the orbits of the polar action, which are 2-dimensional, are (unfaithfully)
represented by grey lines. The section Σ is a real projective or hyperbolic plane and the
black curve σ is contained in the section. Then, the real hypersurface we are looking for is
(at least locally) the union of the orbits through the points of σ.

We will check that this hypersurface has at least 2 different principal curvatures which
are constant along the principal orbits of the polar action we consider. Moreover, we will
see that, generically, such a hypersurface is non-Hopf.

Let H be the connected subgroup of the isometry group of M̄2(c) acting polarly and
with cohomogeneity two on M̄2(c). Let Σ be a section, and Σreg the set of regular points
of Σ for the H-action.

Let σ : t ∈ (−ε, ε) 7→ σ(t) ∈ Σreg be a curve in the regular part of Σ. Then, the subset

M = H · σ = {h(σ(t)) : t ∈ (−ε, ε), h ∈ H}
is a 3-dimensional hypersurface in M̄2(c) that is foliated by equidistant H-orbits, and
orthogonally, by the curves h◦σ : t ∈ (−ε, ε) 7→ (h◦σ)(t) = h(σ(t)) ∈ Σreg for each h ∈ H.
Note that H · σ is intrinsically a cohomogeneity one manifold.

Let p ∈ M̄2(c) be any regular point for the H-action, and take {ξ, η} an orthonormal
basis of the normal space νp(H · p). We denote by λ1, λ2 the principal curvatures of H · p
with respect to ξ, and by {U1, U2} the corresponding basis of Tp(H ·p) of principal curvature
vectors. Since H · p is Lagrangian, JU1, JU2 are orthogonal vectors of the normal space.
Since H · p has flat normal bundle, the Ricci equation reads

c

4
(〈JU2, ξ〉〈JU1, η〉 − 〈JU1, ξ〉〈JU2, η〉) = 〈R̄(U1, U2)ξ, η〉

= 〈R⊥(U1, U2)ξ, η〉 − 〈[Sξ,Sη]U1, U2〉
= (λ1 − λ2)〈SηU1, U2〉.
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The left-hand side of this equation is nonzero because JU1 and JU2 are linearly independ-
ent. Thus, λ1 6= λ2. Since ξ was taken arbitrarily, the principal curvatures are always
different.

Fix now p ∈ Σreg, and w ∈ TpΣreg. Consider a (locally defined) curve σ in Σreg,
parametrized by arc-length, and such that σ(0) = p, and σ̇(0) = w. Fix a unit vector
field ξ along σ tangent to Σreg, and such that 〈ξ(t), σ̇(t)〉 = 0 for all t where σ is defined.
Thus, ξ(t) is a unit normal vector field to H · σ along σ. Consider also a local chart U for
Σreg around p, with coordinates (x1, x2). Let α, β : TU → R be the principal curvature
functions of the principal orbits of H intersecting U at the intersection points. As explained
above, we know that α(η) 6= β(η) for any vector η ∈ TU , and thus, α and β are smooth
functions.

The shape operator of H · σ at σ(t) with respect to the unit normal vector ξ(t) has the
following eigenvalues:

α(ξ(t)), β(ξ(t)), and 〈Sξ(t)σ̇(t), σ̇(t)〉 = −〈∇̄σ̇(t)ξ, σ̇(t)〉 = 〈∇̄σ̇(t)σ̇(t), ξ〉.

This last eigenvalue is precisely the curvature of the curve σ in M̄2(c), or equivalently,
since Σ is totally geodesic, the curvature of σ (with respect to the orientation determined
by the normal field ξ) as a curve in Σ.

Moreover, we check now that H ·σ has constant principal curvatures along the H-orbits.
The integrable distributions associated with the two foliations of M = H · σ are invariant
under the shape operator of M . Indeed, let ξ be an equivariant unit normal vector field
on M . Then, the principal curvatures (resp. principal curvature spaces) of some orbit
H · q at q with respect to ξ are also principal curvatures (resp. principal curvature spaces)
of M at q. This follows from the fact that H-equivariant normal fields along principal
orbits of a polar action are parallel with respect to the normal connection of the orbits [9,
Corollary 3.2.5]. An H-equivariant unit normal vector field to H · σ is given by h∗ξ(t), for
any h ∈ H and any possible t. Note that this is a well-defined vector field because H ·σ(t)
is a principal orbit. Since H acts by isometries of M̄2(c), the principal curvatures of M at
h(σ(t)) with respect to h∗ξ(t) are the same as the principal curvatures at σ(t) with respect
to ξ(t). Therefore, the principal curvatures of M along an H-orbit are constant.

Now, we see that H · σ is generically non-Hopf. Fix a point p ∈ Σreg. Then we know
that for every unit w ∈ TpΣreg, there is a locally defined curve σw such that σw(0) = p,
σ̇w(0) = w, and H · σw has at least two distinct principal curvatures. Let wp be the subset
of the unit sphere S1(TpΣreg) of TpΣreg consisting of those vectors w such that the real
hypersurface H · σw is Hopf at p. Note that if w ∈ wp, then −w ∈ wp. Assume that wp

is an infinite set. We will get a contradiction with this assumption. For each hypersurface
H · σw, w ∈ wp, let ξw be a unit normal vector field along H · σw, which we know is
H-equivariant along the principal H-orbits that foliate H · σw. Note that the subindex w
in ξw denotes only that the normal vector field depends on the initial value w for σw; in
particular, 〈σ̇w(t), (ξw)σw(t)〉 = 0 for each possible t. The assumption that H · σw is Hopf
at p means that (Jξw)p is an eigenvector of the shape operator of H ·σw, and hence, (Jξw)p
is also an eigenvector of the shape operator S(ξw)p of the principal orbit H · p with respect
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to the normal vector (ξw)p. In particular, the map

Φ: w ∈ S1(TpΣreg) 7→ 〈S(ξw)p(Jξw)p, Jw〉 ∈ R

vanishes in wp. Since this map is the restriction of an analytic map to S1(TpΣreg) and
wp has an accumulation point in S1(TpΣreg), Φ vanishes identically, which means that
(Jξw)p is an eigenvector of S(ξw)p for every unit w ∈ TpΣreg. Since Jw is perpendicular
to (Jξw)p and H · p is 2-dimensional, we have that Jw is also an eigenvector of S(ξw)p for
each w. But now, if we fix any w and take unit normal vectors ξ = (ξw)p and η = w at p,
then {Jξ, Jη} is a common basis of eigenvectors for the shape operators Sξ and Sη of the
principal orbit H · p at p with respect to ξ and η. This means that the shape operators
Sξ and Sη commute. Using this and the fact that the principal orbit H · p has flat normal
bundle [9, Corollary 3.2.5], the Ricci equation of H · p applied to Jξ, Jη, ξ, and η reads

0 = 〈R⊥(Jξ, Jη)ξ, η〉 = 〈R̄(Jξ, Jη)ξ, η〉+ 〈[Sξ,Sη]Jξ, Jη〉 = − c
4
,

where R⊥ is the normal curvature tensor of H · p. This gives the desired contradiction.
Therefore, the real hypersurfaces H · σw are Hopf at p at most for a finite collection of
vectors of S1(TpΣreg). We keep denoting by wp the smallest subset of S1(TpΣ) such that,
if w = σ̇(0) /∈ wp, then M = H · σ is not Hopf at p. We have just proved that wp is finite.

3.2 Real hypersurfaces with h = 2

Let M be a real hypersurface of M̄n(c). Let ξ be a (local) unit normal vector field to
M , and as above denote by J the complex structure of M̄2(c). Recall that the tangent
vector field Jξ is called the Hopf or Reeb vector field of M . Moreover, we have defined the
integer-valued function h on M as the number of principal curvature spaces where Jξ has
nontrivial projection. In particular, if h is constantly equal to 2, then there is a smooth
distribution D of rank 2 on M that consists of the maximal subspace of the tangent space
to M at each point that contains Jξ and is S-invariant (see Subsection 1.6.5).

Now, we calculate the Levi-Civita connection of a real hypersurface M in M̄2(c), c 6= 0,
satisfying h = 2. This information will be used several times throughout this chapter.

Let α, β and γ be the three principal curvatures of M . For each principal curvature λ,
we denote by Tλ the corresponding principal curvature distribution; note that, in principle,
this distribution might be singular.

For the following two propositions we only assume that M satisfies that the Hopf vector
field Jξ of M has nontrivial projections onto exactly h = 2 principal curvature spaces, say
onto Tα and Tβ. This implies that α 6= β at every point. Recall that Γ(Tλ) denotes the
module of smooth vector fields X on M such that Xp ∈ Tλ(p) for every point p.

Proposition 3.1. There are positive smooth functions b1, b2 : M → R with b2
1 + b2

2 = 1,
and an orthonormal frame {U1, U2, A} on M with U1 ∈ Γ(Tα), U2 ∈ Γ(Tβ), A ∈ Γ(Tγ),
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such that

Jξ = b1U1 + b2U2, JU1 = −b2A− b1ξ,

JU2 = b1A− b2ξ, JA = b2U1 − b1U2.

Proof. Since Jξ is a unit vector field tangent to M that has nontrivial projection onto Tα
and Tβ, we can write Jξ = b1U1 + b2U2, where U1 ∈ Γ(Tα), U2 ∈ Γ(Tβ) are unit vector
fields, and b1, b2 are smooth functions on M satisfying b2

1 + b2
2 = 1, and b1, b2 > 0. Let

A be a unit vector field perpendicular to U1 and U2. In what follows we always assume
that dim Γ(Tα) = 1. If dim Γ(Tβ) = 2, then γ = β and A is a unit vector field in Γ(Tβ)
orthogonal to U2. If dim Γ(Tβ) = 1, then γ 6= β and A ∈ Γ(Tγ) is a unit vector field
perpendicular to U1 and U2. Then, {U1, U2, A} always constitutes an orthonormal frame
on an open set of M .

As −ξ = J2ξ = b1JU1 + b2JU2, and b1 6= 0, taking inner product with U2 we get that
〈JU1, U2〉 = 0. This implies that JU1, JU2 ∈ span{A, ξ}. Now, 〈JU1, ξ〉 = −〈U1, Jξ〉 =
−b1, and since U1 has unit length, we obtain 〈JU1, A〉 = ±b2. By changing the sign of
A if necessary, we can assume that JU1 = −b2A − b1ξ. A similar argument shows that
JU2 = b1A − b2ξ. Finally, these expressions imply 〈JA,U1〉 = b, 〈JA,U2〉 = −b1, and
〈JA, ξ〉 = 0, from where the result follows.

Proposition 3.2. Assume that γ 6= α 6= β at every point. Then the Levi-Civita connection
of M in terms of the basis {U1, U2, A} is given by the following equations:

∇U1U1 =
U2α

α− β
U2 +

1

α− γ

(
Aα− 3b1b2c

4

)
A,

∇U2U1 =
U1β

α− β
U2 +

( c

4(α− γ)
+
α(β − γ)

α− γ
+

3b2
1c(β − γ)

4(α− γ)2
− b1(β − γ)

b2(α− γ)2
Aα
)
A,

∇U1U2 = − U2α

α− β
U1 +

(
α− b1

b2(α− γ)

(
Aα− 3b1b2c

4

))
A,

∇U2U2 = − U1β

α− β
U1−

(b1β

b2

+
b1c

4b2α− γ)
+
b1α(β − γ)

b2(α− γ)
+

3b3
1c(β − γ)

4b2(α− γ)2
− b2

1(β − γ)

b2
2(α− γ)2

Aα
)
A,

∇U1A = − 1

α− γ

(
Aα− 3b1b2c

4

)
U1 −

(
α− b1

b2(α− γ)

(
Aα− 3b1b2c

4

))
U2,

∇U2A = −
( c

4(α− γ)
+
α(β − γ)

α− γ
+

3b2
1c(β − γ)

4(α− γ)2
− b1(β − γ)

b2(α− γ)2
Aα
)
U1

+
(b1β

b2

+
b1c

4b2(α− γ)
+
b1α(β − γ)

b2(α− γ)
+

3b3
1c(β − γ)

4b2(α− γ)2
− b2

1(β − γ)

b2
2(α− γ)2

Aα
)
U2,

∇AU1 =
(
γ − Ab2

b1

)
U2 +

U1γ

α− γ
A, ∇AU2 = −

(
γ − Ab2

b1

)
U1 −

b1U1γ

b2(α− γ)
A,

∇AA = − U1γ

α− γ
U1 +

b1U1γ

b2(α− γ)
U2,
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Moreover,

U1b1 =
b2U2α

α− β
, U2b1 =

b2U1β

α− β
, Ab1 = −b2Ab2

b1

,

U1b2 = −b1U2α

α− β
, U2b2 = −b1U1β

α− β
, U2γ = −b1(β − γ)

b2(α− γ)
U1γ.

Ab2 = b1γ +
b1c(b

2
1 − 2b2

2)

4(α− β)
− b1α(β − γ)

(α− β)
− 3b3

1c(β − γ)

4(α− β)(α− γ)
+

b2
1(β − γ)

b2(α− β)(α− γ)
Aα,

Aβ = −3b1b2c

4
− aβ(β − γ)

b2

− b1c(β − γ)

4b2(α− γ)
− b1α(β − γ)2

b2(α− γ)
− 3b3

1c(β − γ)2

4b2(α− γ)2
+
b2

1(β − γ)2

b2
2(α− γ)2

Aα.

Proof. Using the fact that U1 and A are orthogonal eigenvectors of S associated with the
eigenvalues α and γ respectively, and the symmetry of S with respect to the inner product,
we get

〈(∇U1S)A,U1〉 = 〈∇U1SA− S∇U1A,U1〉 = 〈∇U1(γA), U1〉 − 〈∇U1A,SU1〉
= (U1γ)〈A,U1〉+ γ〈∇U1A,U1〉 − α〈∇U1A,U1〉 = (α− γ)〈∇U1U1, A〉.

As U1 is a unit vector field we have 〈∇AU1, U1〉 = 0. Thus, proceeding as before, we
get 〈(∇AS)U1, U1〉 = Aα. Moreover, the expression of the curvature tensor of a complex
space form yields 〈R̄(U1, A)U1, ξ〉 = −3b1b2c/4. Hence, the Codazzi equation applied to
the triple (U1, A, U1) implies

〈∇U1U1, A〉 =
1

α− γ

(
Aα− 3b1b2c

4

)
.

Applying the Codazzi equation to the triples (U1, U2, U1), (U1, U2, U2), (U1, U2, A),
(U1, A, U1), (U1, A, U2), (U1, A,A), (A,U2, U2) and (A,U2, A) we obtain in a similar way:

(3.1)

〈∇U1U1, U2〉 =
U2α

α− β
, 〈∇U2U1, A〉 =

c+ 4(β − γ)〈A,∇U1U2〉
4(α− γ)

,

〈∇U2U1, U2〉 =
U1β

α− β
, 〈∇U1U1, A〉 =

1

α− γ

(
Aα− 3b1b2c

4

)
,

〈∇AU1, A〉 =
U1γ

α− γ
, 〈∇AU1, U2〉 =

c(2b2
2 − b2

1)− 4(β − γ)〈U2,∇U1A〉
4(α− β)

,

Aβ = −3b1b2c

4
− (β − γ)〈U2,∇U2A〉,

U2γ = (β − γ)〈A,∇AU2〉.

Since J is parallel with respect to the connection ∇̄ of M̄2(c), we have ∇̄U1Jξ =
J∇̄U1ξ = −JSU1 = −αJU1. Taking this into account, and using Proposition 3.1 and (3.1)
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we get

0 = U1〈A, Jξ〉 = 〈∇̄U1A, Jξ〉+ 〈A, ∇̄U1Jξ〉
= b1〈∇U1A,U1〉+ b2〈∇U1A,U2〉+ αb2〈A,A〉+ αb1〈A, ξ〉

= − b1

α− γ

(
Aα− 3b1b2c

4

)
+ b2〈∇U1A,U2〉+ αb2,

from where we obtain 〈∇U1A,U2〉.
An analogous argument with U2〈A, Jξ〉 = 0, gives the following result:

〈U2,∇U2A〉 =
b1β

b2

+
b1(c− 4(β − γ)〈∇U1A,U2〉)

4b2(α− γ)
.

Using the expression for 〈∇U1A,U2〉 we also get 〈U2,∇U2A〉. This and an analogous argu-
ment with A〈A, Jξ〉 = 0, yields

(3.2)

〈∇U1A,U2〉 = −α +
b1

b2(α− γ)

(
Aα− 3b1b2c

4

)
, 〈∇AU2, A〉 = − b1U1γ

b2(α− γ)
,

〈U2,∇U2A〉 =
b1β

b2

+
b1c

4b2(α− γ)
+
b1α(β − γ)

b2(α− γ)
+

3b3
1c(β − γ)

4b2(α− γ)2
− b2

1(β − γ)

b2
2(α− γ)2

Aα.

The next step is to calculate the derivatives of the functions b1 and b2 in terms of the
derivatives of α and β. For example, using Proposition 3.1, (3.1) and (3.2) we get

U1b1 = U1〈U1, Jξ〉 = 〈∇̄U1U1, Jξ〉+ 〈U1, ∇̄U1Jξ〉 = b2〈∇U1U1, U2〉 − α〈U1, JU1〉 = b2
U2α

α− β
.

We directly give the results for the other derivatives, whose calculations are similar to
those of U1b1. Note that we use the fact that b2

1 + b2
2 = 1.

(3.3)

U1b1 =
b2U2α

α− β
, U2b1 =

b2U1β

α− β
, Ab1 = − b2Ab2

b1

,

U1b2 = − b1U2α

α− β
, U2b2 = − b1U1β

α− β
,

Ab2 = b1γ +
b1c(b

2
1 − 2b2

2)

4(α− β)
− b1α(β − γ)

(α− β)
− 3b3

1c(β − γ)

4(α− β)(α− γ)
+

b2
1(β − γ)

b2(α− β)(α− γ)
Aα.

Putting together (3.1), (3.2) and (3.3), we obtain Proposition 3.2, as desired.

Remark 3.3. Since b2
1 + b2

2 = 1 we can write b1 = cosφ, b2 = sinφ, for a smooth function
φ : M → (0, π/2). This will be more convenient in some calculations, for example in
Proposition 3.4.

Assume now that M has two distinct principal curvatures. The Levi-Civita connection
of M is summarized in the following proposition:
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Proposition 3.4. Assume that α 6= β = γ at every point. Then the Levi-Civita connection
of M in terms of the basis {U1, U2, A} is given by the following equations:

∇U1U1 = −b2(c− 4α(α− β))

4b1(α− β)
A, ∇U1U2 =

c

4(α− β)
A,

∇U2U1 =
c

4(α− β)
A, ∇U2U2 = −b1(c+ 4β(α− β))

4b2(α− β)
A,

∇AU1 = −(b2
1 − 2b2

2)c

4(α− β)
U2, ∇AU2 =

(b2
1 − 2b2

2)c

4(α− β)
U1,

∇U1A =
b2(c− 4α(α− β))

4b1(α− β)
U1 −

c

4(α− β)
U2, ∇AA = 0,

∇U2A = − c

4(α− β)
U1 +

b1(c+ 4β(α− β))

4b2(α− β)
U2.

Furthermore, we have U1φ = U2φ = U1α = U2α = U1β = U2β = 0, and

(3.4)

Aφ = β +
c(1− 3 sin2 φ)

4(α− β)
,

Aα =
1

4

(
c(2− 3 sin2 φ) + 4α(α− β)

)
tanφ,

Aβ = −3c

8
sin 2φ.

Proof. In order to prove this proposition, we need to calculate U1β, but this will take some
effort. Using Proposition 3.2 with γ = β we get

[A,U2]β = (∇AU2 −∇U2A)β = −c(2b
2
2 − b2

1)

4(α− β)
U1β +

3b1b2c

4

b1

b2(α− β)
U1β +

c

4(α− β)
U1β

=
c(1 + 4b2

1 − 2b2
2)

4(α− β)
U1β.

On the other hand, since U2β = 0 by Proposition 3.2 with γ = β, it is clear that
AU2β = 0. Using Proposition 3.2 with γ = β, we also obtain

U2Aβ = −3c

4
U2(b1b2) = −3c

4
((U2b1)b2 + b1(U2b2)) =

3c(b2
1 − b2

2)

4(α− β)
U1β.

Taking all this together we have

(3.5) 0 = ([A,U2]− AU2 + U2A)β =
c(1 + 7b2

1 − 5b2
2)

4(α− β)
U1β.
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Assume momentarily that there exists a point p ∈M such that 1+7b1(p)2−5b2(p)2 = 0.
Taking the derivative with respect to U2 in the previous equation and evaluating at p yields

0 = (U2)p

(c(1 + 7b2
1 − 5b2

2)

4(α− β)
U1β

)
=
c

4

(U2(1 + 7b2
1 − 5b2

2)

α− β
U1β − (1 + 7b2

1 − 5b2
2)
U2(α− β)

(α− β)2
U1β +

1 + 7b2
1 − 5b2

2

α− β
U2U1β

)∣∣∣
p

=
c

4(α(p)− β(p))
(U2)p(1 + 7b2

1 − 5b2
2)((U1)pβ).

Now, using Proposition 3.2 with γ = β, we get

0 =
c

4(α(p)− β(p))

(
14b1

b2

α− β
+ 10b2

b1

α− β

)
(p)((U1)pβ)2 =

6b1(p)b2(p)c

(α(p)− β(p))2
((U1)pβ)2,

and since by assumption b1, b2 6= 0, we finally get (U1)pβ = 0. Therefore, (3.5) implies
U1β = 0 and thus we have from Proposition 3.2, setting γ = β,

U1β = U2β = 0, Aβ = −3b1b2c

4
.(3.6)

Now, by Proposition 3.2 and (3.6) it follows that [A,U1]β = 0, AU1β = 0 and

0 = ([A,U1]− AU1 + U1A)β = U1

(
−3b1b2c

4

)
= −3c(b2

2 − b2
1)

4(α− β)
U2α.

Arguing as before, if p ∈M is such that b2(p)2−b1(p)2 = 0, then using again Proposition 3.2
with γ = β, we get

0 = (U1)p

(
−3c(b2

2 − b2
1)

4(α− β)
U2α

)
=

3b1(p)b2(p)c

(α(p)− β(p))2
((U2)pα)2,

and the two previous equations readily imply U2α = 0 on M .
Proposition 3.2 with γ = β and equation (3.6) yield

0 = ([U1, U2]− U1U2 + U2U1)β = −3b1b2c

4

((
α− b1

b2(α− β)

(
Aα− 3b1b2c

4

))
− c

4(α− β)

)
,

from where we can obtain Aα. Indeed, we have

U2α = 0, Aα =
b2

4b1

(
c(3b2

1 − 1) + 4α(α− β)
)
.(3.7)

In order to obtain U1α we need the Gauss equation for the tuple (U1, U2, U1, A).
Proposition 3.1 with γ = β implies 〈R̄(U1, U2)U1, A〉 = 0, and 〈SU1, U1〉〈SU2, A〉 −

〈SU1, A〉〈SU2, U1〉 = 0.
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Using Proposition 3.2 with γ = β together with (3.6) and (3.7) we get

〈∇U1∇U2U1, A〉 =〈∇U1

( c

4(α− β)
A
)
, A〉 = U1

( c

4(α− β)

)
= −cU1(α− β)

4(α− β)2

=− c

4(α− β)2
U1α.

Now, substituting (3.7) in Proposition 3.2 with γ = β yields

∇U1U1 = −b2(c− 4α(α− β))

4b1(α− β)
A.

Taking into account that U2α = U2β = U2b1 = U2b2 = 0 by equations (3.7) and (3.6), and
Proposition 3.2 with γ = β, we get

〈∇U2∇U1U1, A〉 = 〈∇U2

(
−b2(c− 4α(α− β))

4b1(α− β)
A
)
, A〉 = U2

(
−b2(c− 4α(α− β))

4b1(α− β)

)
= 0.

Finally, since U1β = U2α = 0, Proposition 3.2 with γ = β implies that [U1, U2] is a
multiple of A. Since 〈∇AU1, A〉 = 0, it readily follows that 〈∇[U1,U2]U1, A〉 = 0.

Altogether this means that the Gauss equation is equivalent to

− c

4(α− β)2
U1α = 0,

from where it follows that U1α = 0.
Putting together all the results of this section, and taking into account that b1 = cosφ,

b2 = sinφ, we obtain Proposition 3.4, as desired.

3.3 Strongly 2-Hopf real hypersurfaces

As we have stated, the method of equivariant differential geometry has shown to be a
powerful tool for the construction of submanifolds with specific geometric properties. In
particular, in [54], Gorodski and Gusevskii constructed many examples of complete con-
stant mean curvature hypersurfaces of cohomogeneity one in complex hyperbolic spaces
CHn, which are generically non-Hopf, by applying the equivariant method to several co-
homogeneity two polar actions on CHn.

Moreover, in CHn, n ≥ 2, there are examples of non-Hopf homogeneous hypersur-
faces [12]. The observation that motivates the results in this section is that most of the
examples in [54], and some examples in [12], share the following geometric properties:

(C1) The smallest S-invariant distribution D of M that contains Jξ has rank 2.

(C2) D is integrable.

(C3) The spectrum of S|D is constant along the integral submanifolds of D.
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Here, as usual, S stands for the shape operator of M . Recall that a real hypersurface
M satisfying (C1) and (C2) has been called 2-Hopf in [25] and [67]. Motivated by this
terminology, we will say that a real hypersurface M in a Kähler manifold is strongly 2-Hopf
if it satisfies conditions (C1), (C2) and (C3) above. The generalization of these definitions
to k-Hopf and strongly k-Hopf hypersurfaces, for any positive integer k, is straightforward.
It is important to mention that the notions of Hopf, 1-Hopf and strongly 1-Hopf real
hypersurfaces agree when the ambient manifold is a nonflat complex space form CP n or
CHn (see [88]). Also, note that condition (C1) has been investigated in the context of
real hypersurfaces with constant principal curvatures in nonflat complex space forms [38].
Finally, observe that we have defined h as the number of principal curvature spaces of M
onto which the Hopf vector field has nontrivial projection. Then M is Hopf precisely when
h = 1, and condition (C1) is equivalent to h = 2.

The main result of this section is a characterization of the non-Hopf cohomogeneity one
hypersurfaces in CP 2 and CH2 constructed via the equivariant method applied to a polar
action of cohomogeneity two. Such characterization is achieved in terms of the strongly
2-Hopf property. Then, our main result in this section can be stated as follows.

Theorem 3.5. Consider a polar action of a group H acting with cohomogeneity two and
with section Σ on a nonflat complex space form M̄2(c).

Let p ∈ Σ be a regular point, and σ : (−ε, ε)→ Σ a unit speed curve in Σ with σ(0) = p.
Define the subset H · σ = {h(σ(t)) : h ∈ H, t ∈ (−ε, ε)} of M̄2(c). Then, for ε small
enough, there exists a finite set wp ⊂ S1(TpΣ) such that, if σ̇(0) /∈ wp, the set H · σ
is a strongly 2-Hopf hypersurface of M̄2(c), whereas if σ̇(0) ∈ wp, then H · σ is a real
hypersurface of M̄2(c) that is Hopf at p.

Conversely, any strongly 2-Hopf real hypersurface in M̄2(c) is locally congruent to a
hypersurface constructed as above.

Theorem 3.5 guarantees that a real hypersurface under the above mentioned assump-
tions is foliated by orbits of maximal dimension of a polar action of cohomogeneity two on
M̄2(c). Interestingly, the proof of the Theorem 3.5 relies on the geometric characterization
of the principal orbits of polar actions of cohomogeneity two on M̄2(c), c 6= 0, achieved in
Theorem 2.1 of Chapter 2.

Now, we investigate the structure of strongly 2-Hopf hypersurfaces in CP 2 and CH2.
The first part of the Theorem 3.5 has already been proved in Section 3.1. Then, we
only have to prove the classification part, that is, we show that a strongly 2-Hopf real
hypersurface in M̄2(c), c 6= 0, must be locally congruent to a hypersurface constructed as
in Section 3.1.

The Levi-Civita connection of a strongly 2-Hopf real hypersurface

From now on we assume that M is a strongly 2-Hopf real hypersurface, we denote by ξ a
(local) unit normal vector field of M , and let D be the smallest S-invariant distribution
containing Jξ. We will use the notation given in Proposition 3.1, that is, Jξ = b1U1 +b2U2,
JU1 = −b2A − b1ξ, JU2 = b1A − b2ξ and JA = b2U1 − b1U2, where b1 and b2 are positive
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smooth functions with b2
1 + b2

2 = 1, and {U1, U2, A} is an orthonormal frame on M . So,
in particular D = RU1 ⊕ RU2. In the following proposition we determine the Levi-Civita
connection of M .

Proposition 3.6. The Levi-Civita connection of M in terms of the frame {U1, U2, A} is
given by the following equations:

∇U1U1 = −b2(c− 4α(α− β))

4b1(α− β)
A, ∇U1U2 =

c

4(α− β)
A,

∇U2U1 =
c

4(α− β)
A, ∇U2U2 = −b1(c+ 4β(α− β))

4b2(α− β)
A,

∇AU1 =

(
c(β − γ)

4(α− β)2
− c (b2

1 − 2b2
2)

4(α− β)

)
U2, ∇AU2 =

(
− c(β − γ)

4(α− β)2
+
c (b2

1 − 2b2
2)

4(α− β)

)
U1,

∇U1A =
b2(c− 4α(α− β))

4b1(α− β)
U1 −

c

4(α− β)
U2,

∇U2A = − c

4(α− β)
U1 +

b1(c+ 4β(α− β))

4b2(α− β)
U2,

∇AA = 0.

Furthermore, we have Db1 = Db2 = Dα = Dβ = Dγ = 0.

Proof. First of all, note that, in case that γ equals one of the other two principal curvatures
in an open set of M , then the relations above hold, according to Proposition 3.4.

Therefore, it is enough to prove Proposition 3.6 if M has three distinct principal
curvatures at every point. In particular, we use the results provided by Proposition 3.2.

By definition of strongly 2-Hopf hypersurface we have U1α = U1β = U2α = U2β = 0.
Then, Proposition 3.2 implies U1b1 = U1b2 = U2b1 = U2b2 = 0.

Since the distribution D = span{U1, U2} is integrable due to the strongly 2-Hopf as-
sumption, we must have 〈∇U1U2−∇U2U1, A〉 = 0. Using Proposition 3.2, this allows us to
obtain, after some calculations,

(3.8)

Aα =
αb2(α− γ)

b1

+
b2c(α− γ)

4b1(β − α)
+

3b1b2c

4
,

Aβ = −βb1(β − γ)

b2

− b1c(β − γ)

4b2(α− β)
− 3b1b2c

4
,

Ab2 = b1

(
c (b2

1 − 2b2
2)

4(α− β)
− c(β − γ)

4(α− β)2
+ γ

)
.

The last step is to show that U1γ = 0. Proposition 3.2, (3.8), and U1α = 0, easily imply

[U1, A]α = (∇U1A−∇AU1)α = − 1

α− γ

(
αb2(α− γ)

b1

+
b2c(α− γ)

4b1(β − α)
+

3b1b2c

4

)
U1γ,

U1Aα =
b2(c− 4α(α− β))

4b1(α− β)
U1γ, AU1α = 0.
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Thus,

0 = ([U1, A]− U1A+ AU1)α = − 3b1b2c

4(α− γ)
U1γ,

which yields U1γ = 0, as desired. Finally, by Proposition 3.2, we get U2γ = U1γ = 0.
Altogether we obtain Proposition 3.6.

Two perpendicular integrable distributions

In order to conclude the proof of the Theorem 3.5 we need first to extract certain geometric
information on the integrable distributions D = RU1 ⊕ RU2 and RA, and then use this
information to show that M can be constructed as in the statement of the Theorem 3.5.
We assume the notation and results obtained so far.

Proposition 3.7. The leaves of the integrable distribution D are Lagrangian, flat, totally
real submanifolds of M̄2(c) with parallel second fundamental form and flat normal bundle.

Proof. It follows from Proposition 3.6, using the Gauss formula, that

(3.9)
∇̄U1U1 = −b2(c− 4α(α− β))

4b1(α− β)
A+ αξ, ∇̄U2U2 = −b1(c+ 4β(α− β))

4b2(α− β)
A+ βξ,

∇̄U2U1 = ∇̄U1U2 =
c

4(α− β)
A.

As M is a strongly 2-Hopf hypersurface, D is integrable. Let L be any integral submanifold
of the distribution D, and denote by ∇̃ its Levi-Civita connection. The normal space νpL
of L at p ∈ L, as a submanifold of M̄2(c), is generated by Ap and ξp. Hence, using (3.9),

we get ∇̃U1U1 = ∇̃U1U2 = ∇̃U2U1 = ∇̃U2U2 = 0. Therefore, U1 and U2 are parallel

vector fields on L with respect to the Levi-Civita connection ∇̃. In particular, L is flat
as a 2-dimensional Riemannian manifold of M̄2(c). By Proposition 3.1 L is a totally real
submanifold of M̄2(c) and hence a Lagrangian submanifold of M̄2(c). Lagrangian surfaces
of M̄2(c) are flat if and only if they have flat normal bundle, see Lemma 2.4.

Finally, the functions α, β, γ, b1 and b2, are constant along the integral curves of U1

and U2 by Proposition 3.6. Therefore, they are constant along L. This, the fact that U1

and U2 are parallel with respect to ∇̃, and the fact L has flat normal bundle, imply that
the second fundamental form of L is parallel.

Thus, the real hypersurface M is foliated orthogonally by the leaves of the 2-dimensional
distribution D, and by the integral curves of the vector field A. Observe that the relation
∇AA = 0 in Proposition 3.6 implies that the integral curves of A are geodesics of M and,
by the Gauss formula, they have curvature γ as a curve in M̄2(c). Moreover, these curves
are, locally, intersections of M with totally geodesic, totally real surfaces in M̄2(c). More
precisely, we have:

Proposition 3.8. Let σ be an integral curve of A through a point p ∈ M . Let Qp =
expp(RAp ⊕ Rξp), where expp denotes the Riemannian exponential map of M̄2(c) at p.
Then, Qp is a totally real, totally geodesic surface of M̄2(c), and σ is contained in Qp.
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Furthermore, the curve σ is determined by the initial conditions σ(0) = p, σ̇(0) = Ap,
and the fact that σ is a unit speed curve in Qp = expp(RAp ⊕ Rξp) with curvature γ with
respect to ξ.

Proof. From Proposition 3.1 it is clear that 〈JA, ξ〉 = 0, and hence RAp ⊕Rξp is a totally
real subspace of TpM̄

2(c), that is, J(RAp ⊕ Rξp) is orthogonal to RAp ⊕ Rξp. Then, it is
well-known that Qp is a totally real, totally geodesic submanifold of M̄2(c). We now prove
that the curve σ is contained in Qp.

From the Gauss equation and Proposition 3.6 it follows that

∇̄AA = γξ, ∇̄Aξ = −γA.

As a consequence, the curvature of σ with respect to the vector field ξ is given by
κ[σ](t) = 〈∇̄σ̇(t)σ̇, ξσ(t)〉 = (γ ◦ σ)(t). Thus, the curvature of σ is given by the function
γ̃(t) = (γ ◦ σ)(t). Therefore, the curve σ is determined by the differential equation

(3.10) ∇̄σ̇σ̇ = γ̃ξ̃, ∇̄σ̇ ξ̃ = −γ̃σ̇, σ(0) = p, σ̇(0) = Ap, ξ̃(0) = ξp.

Let (U , ψ = (y1, y2)) be a normal coordinate chart of Qp around p with ∂1(p) = Ap,
∂2(p) = ξp, and {η1, η2} an orthonormal frame of νU . We consider the Fermi coordinates
ϕ = (x1, x2, x3, x4) of M̄2(c) on a neighbourhood of p associated with (U , ψ) and {η1, η2},
which are defined as

xi(expq(a1η1(q) + a2η2(q))) = yi(q), i = 1, 2,

xi(expq(a1η1(q) + a2η2(q))) = ai−2, i = 3, 4,

for each q ∈ U . If q ∈ U , then ϕ(q) = (y1(q), y2(q), 0, 0) and

∂1(q) =
∂

∂y1

(q), ∂2(q) =
∂

∂y2

(q) ∈ Γ(TU), ∂3(q) = η1(q), ∂4(q) = η2(q) ∈ Γ(νU).

We denote by Γkij the Christoffel symbols with respect to these coordinates, which are
defined by ∇̄∂i∂j =

∑
k Γkij∂k. See [53, Chapter 2] for more information on Fermi coordin-

ates.
Now we write σ and ξ̃ in Fermi coordinates as

σ(t) = (x1(t), x2(t), x3(t), x4(t)), ξ̃(t) = ξ1(t)∂1 + ξ2(t)∂2 + ξ3(t)∂3 + ξ4(t)∂4.

Then, (3.10) becomes

(3.11)

x′′k +
4∑

i,j=1

x′ix
′
jΓ

k
ij = γ̃ξk, ξ′k +

4∑
i,j=1

x′iξjΓ
k
ij = − γ̃x′k, k = 1, 2, 3, 4,

x1(0) = y1(p), x2(0) = y2(p), x′1(0) = 1, x′2(0) = 0,

ξ1(0) = 0, ξ2(0) = 1,

x3(0) = x4(0) = x′3(0) = x′4(0) = ξ3(0) = ξ4(0) = 0.
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Since Qp is totally geodesic, the second fundamental form II of U satisfies

0 = II(∂i, ∂j) =
( 4∑
k=1

Γkij∂k

)⊥
= Γ3

ij∂3 + Γ4
ij∂4,

with i, j ∈ {1, 2}. Thus, along U , Γkij = 0 if i, j ∈ {1, 2} and k ∈ {3, 4}. Furthermore,
since Qp is totally geodesic, the Christoffel symbols Γkij, i, j, k ∈ {1, 2}, of ϕ coincide with
the Christoffel symbols of ψ.

We consider the new differential equation on U

x̂′′k +
2∑

i,j=1

x̂′ix̂
′
jΓ

k
ij = γ̃ξ̂k, ξ̂′k +

2∑
i,j=1

x̂′iξ̂jΓ
k
ij = − γ̃x̂′k, k = 1, 2,

x̂1(0) = y1(p), x̂2(0) = y2(p), x̂′1(0) = 1, x̂′2(0) = 0, ξ̂1(0) = 0, ξ̂2(0) = 1,

and let (x̂1(t), x̂2(t)), (ξ̂1(t), ξ̂2(t)) be the unique solution to this initial value problem.
Taking into account that, along U , the Christoffel symbols Γkij, i, j, k ∈ {1, 2}, of ψ and ϕ
coincide, and that Γkij = 0 if i, j ∈ {1, 2}, k ∈ {3, 4}, it turns out that (x̂1(t), x̂2(t), 0, 0),

(ξ̂1(t), ξ̂2(t), 0, 0) is a solution to the initial value problem (3.11). Since the solution to
such initial value problem is unique, it turns out that σ(t) = (x̂1(t), x̂2(t), 0, 0) and ξ̃(t) =
ξ̂1(t)∂1 + ξ̂2(t)∂2. Therefore, σ is contained in Qp and ξ̃ is tangent to Qp. (Another way of
proving this fact is to use [45, Theorem 3.4].)

Finally, since σ is contained in Qp, and Qp is a complete 2-dimensional Riemannian
manifold of constant sectional curvature (because it is totally real and totally geodesic
in M̄2(c)), then the curve σ is determined by its curvature, an initial point, an initial
tangent vector, and a choice of orientation given in this case by ξ. Hence, Proposition 3.8
follows.

We study some further properties of the integral submanifolds of the distribution D.

Lemma 3.9. Let p ∈M , Qp = expp(RAp ⊕Rξp), and σ an integral curve of A through p.
Then, Qp intersects the integral submanifolds of D through σ(t) perpendicularly.

Proof. By Proposition 3.8, σ is contained in Qp. Clearly, Aσ(t) = σ̇(t) is tangent to Qp

along σ. We now show that ξσ(t) is tangent to Qp. Let η be a vector field along σ such
that ηp ∈ νpQp and that is parallel with respect to the normal connection D⊥ of Qp. Then,
since Qp is totally geodesic, the Weingarten formula implies ∇̄σ̇η = D⊥σ̇ η = 0. Hence,

d

dt
〈ξ, η〉 = 〈∇̄σ̇ξ, η〉+ 〈ξ, ∇̄σ̇η〉 = −γ〈σ̇, η〉 = 0,

and since 〈ξσ(0), ησ(0)〉 = 0, and η is arbitrary, we conclude that ξσ(t) is tangent to Qp for
all t.

Altogether this implies that Tσ(t)Qp = span{Aσ(t), ξσ(t)}. Therefore, by construction we
have Qp = Qσ(t) for all t, and in particular, Qp is perpendicular to the leaf of D through
σ(t), as we wanted to show.
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We are now in position to state the key result of this subsection.

Proposition 3.10. We have:

(i) The integral submanifolds of D are equidistant surfaces of M̄2(c).

(ii) Let L be an integral surface of the distribution D, and let Lt be an integral surface of
D whose distance to L is a sufficiently small number t. Then, in a neighbourhood U
of a point of L there exists a parallel normal vector field ηt such that

Lt = {expp(ηt(p)) : p ∈ U}.

Proof. Let L be a leaf of the distribution D. We continue to denote by ∇⊥ the normal
connection of L. Recall from Proposition 3.7 that ∇⊥ is flat, and indeed, {A, ξ} constitutes
a parallel basis of the normal bundle νL of L as a submanifold of M̄2(c).

Let p ∈ L, and let τp be an integral curve of A through p. We denote by Lt the integral
manifold of D through τp(t). Since A is a geodesic vector field in M by Proposition 3.6, τp is
a unit speed geodesic in M . Since τp is perpendicular to L and Lt, dM(L,Lt) = L(τp|[0,t]),

where dM denotes the Riemannian distance of M , and L(·) is the length of a curve. The
point p is arbitrary, and thus the integral submanifolds of D are equidistant in M .

For a point p ∈ L, we consider the geodesic ρp of M̄2(c) that minimizes the distance
between ρp(0) = p and ρp(1) = τp(t). Since Qp = expp(RAp ⊕ Rξp) is totally geodesic,
τp is contained in Qp (see Proposition 3.8), and t is sufficiently small, it follows that ρp is
contained in Qp. Since Qp intersects L and Lt orthogonally by Lemma 3.9, so does ρp and
we conclude that ρp is a minimizing geodesic of M̄2(c) between these two submanifolds.
We define ηt(p) = ρ̇p(0) ∈ RAp ⊕ Rξp for each p ∈ L.

Now let q ∈ L be another point. By the previous argument the curve τq, if defined for
time t, realizes the distance in M between L and Lt. The normal bundle of L in M̄2(c) is
flat with respect to the normal connection ∇⊥, and {A, ξ} is parallel. Thus, Qq is obtained
by the parallel transport of Qp to q along L. There is a unique holomorphic isometry g of
M̄2(c) such that g(p) = q, g∗p(Ap) = Aq, and g∗p(ξp) = ξq, where g∗ denotes the differential
of g (note that RA⊕ Rξ is totally real). Since g is an isometry, and the curvature of τq is
given by the same function as that of τp due to Proposition 3.8, it follows that the curve
g ◦ τp satisfies the differential equation (3.10) with q instead of p. By uniqueness, we have
that g ◦ τp = τq. Hence, the geodesic ρq that minimizes the distance between q and τq(t)
coincides with g ◦ ρp, and thus it satisfies that ρ̇q(0) = g∗p(ρ̇p(0)). Since parallel transport
is a linear isometry, and there is a unique isometry between νpL and νqL mapping Ap to
Aq and ξp to ξq, it follows that ρ̇q(0) is precisely the ∇⊥-parallel transport of ρ̇p(0) to q.
Therefore, ηt is a normal parallel vector field along L wherever it is defined, and we conclude
that Lt = {expp(ηt(p)) : p ∈ L} (at least locally). This proves Proposition 3.10.

Then M is foliated orthogonally by the integral submanifolds of the integrable 2-
dimensional distribution D, and by the integral curves of the vector field A. Now we
are in position to prove the final part of our Theorem 3.5.
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Proof of Theorem 3.5

It follows directly from Proposition 3.7 that the integral submanifolds ofD are 2-dimensional
Lagrangian, flat surfaces with parallel second fundamental form and flat normal bundle in
M̄2(c). Theorem 2.1 then guarantees that each integral submanifold of D is an open part
of a principal orbit of a polar action of cohomogeneity two on M̄2(c). In order to conclude
the proof of Theorem 3.5 we have to show that all integral surfaces of D are open parts of
principal orbits of the same polar action.

Let H be a subgroup of the isometry group of M̄2(c) acting polarly and with cohomo-
geneity two on M̄2(c). Let H · p be a principal orbit of the action of H, and let η be an
H-equivariant normal vector field along H · p. If ∇⊥ denotes now the normal connection
of H · p, then ∇⊥η = 0, as equivariant vector fields are parallel, see Section 1.5. In fact, we
have seen that equivariant vector fields along H · p are in one-to-one correspondence with
∇⊥-parallel normal vector fields along H · p. If q ∈ M̄2(c), then there exists a minimizing
geodesic ρ from p to H · q which intersects both H · p and H · q orthogonally. We may
assume that ρ(0) = p, ρ(1) = q, define ηp = ρ̇(0), and extend ηp to a normal parallel vector
field η along H · p. Using that η is also equivariant, it is then easy to obtain

(3.12) H · q = {h(expp(ηp)) : h ∈ H} = {exph(p)(ηh(p)) : h ∈ H} = {expx(ηx) : x ∈ H · p}.

We saw above that any fixed integral submanifold L of the distributionD is an open part
of a principal orbit of the action of some group H acting polarly and with cohomogeneity
two on M̄2(c). According to Proposition 3.10, the rest of the sufficiently close integral
submanifolds of D are obtained locally as {expq(ηt(q)) : q ∈ U}, where U is an open subset
of L, and ηt is a suitable parallel normal vector field along U ⊂ L. Hence, by (3.12), all the
integral submanifolds of D are open parts of principal orbits of the same polar action of a
group H. Moreover, for each p ∈ M the integral curve of A through p is contained in the
totally geodesic submanifold Qp = expp(RAp ⊕ Rξp), which is perpendicular to the leaf of
D through p and then, must be a section for the H-action. If σ is an integral curve of the
vector field A, then it is obvious that in a neighbourhood of the point p, the hypersurface
M is obtained as M = H · σ, as stated in Theorem 3.5. This concludes the proof of the
Theorem 3.5.

3.4 Real hypersurfaces with 2 principal curvatures

The main reference for the study of real hypersurfaces in complex space forms is the influen-
tial survey [88] by Niebergall and Ryan, where the authors reviewed the basic terminology
and results in the field, and included a list of open problems that has motivated research
over the last years. One of the outstanding problems that was still pending, in spite of the
efforts of several geometers, is Question 9.2 in [88]:

Are there hypersurfaces in CP 2 or CH2 that have two principal curvatures,
other than the standard examples?
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Let us explain the motivation of this question. Tashiro and Tachibana [100] proved that
there are no umbilical real hypersurfaces (i.e. real hypersurfaces with exactly one principal
curvature) in nonflat complex space forms M̄n(c), c 6= 0. Cecil and Ryan [24, Proposition
5.2] showed that a real hypersurface with two principal curvatures in CP n, n ≥ 3, has con-
stant principal curvatures, and is an open part of a geodesic sphere. Their classification
needs the assumption n > 2. This hypothesis implies that a real hypersurface M has at
least dimension 5. They assume that the Reeb vector field has nontrivial projection onto
2 different principal curvature spaces. Since one of them has at least dimension 3, using
the Codazzi equation, they conclude that both spaces need to have the same dimension.
Then, M has to be even-dimensional, which is a contradiction. Thus, M is Hopf. As a con-
sequence, M has constant principal curvatures and Hopf real hypersurfaces with constant
principal curvatures are homogeneous [8], [71]. Montiel [86] obtained an analogous result
for CHn, n ≥ 3, showing that real hypersurfaces with two distinct principal curvatures
must be open parts of geodesic spheres, tubes around a totally geodesic CHn−1 in CHn,
tubes of radius 1√

−c log(2 +
√

3) around a totally geodesic RHn in CHn, or horospheres.

All these examples are homogeneous, that is, orbits of isometric actions on M̄n(c).
As we have said, the methods used by Cecil and Ryan, and Montiel, do not work if

n = 2. The question above states the interest of extending the classification of real hyper-
surfaces with two distinct principal curvatures to CP 2 and CH2, and poses the problem of
the existence of examples with nonconstant principal curvatures. Here, we answer Ques-
tion 9.2 in [88] affirmatively for CP 2 and CH2, and obtain a complete description of all
the examples.

We state now the main contribution of this section.

Theorem 3.11. Consider a polar action of a group H acting with cohomogeneity two and
with section Σ on a nonflat complex space form M̄2(c).

Then, for any regular point p ∈ Σ and any unit tangent vector w ∈ TpΣ, there are exactly
two different locally defined unit speed curves γi : (−ε, ε)→ Σ, i = 1, 2, with γi(0) = p and
γ̇i(0) = w, such that the set H · γi = {h(γi(t)) : h ∈ H, t ∈ (−ε, ε)} is a real hypersurface
with two principal curvatures in M̄2(c). Generically, such hypersurface is non-Hopf and
with nonconstant principal curvatures.

Conversely, let M be a real hypersurface of M̄2(c) with two principal curvatures and
that is non-Hopf at every point. Then M is locally congruent to an open part of a real
hypersurface constructed as above.

Theorem 3.11 guarantees that a real hypersurface under the assumptions mentioned
above is foliated by orbits of maximal dimension of a polar action of cohomogeneity two
on M̄2(c). Indeed, it follows that such hypersurfaces are generically strongly 2-Hopf. In-
terestingly, the proof of Theorem 3.11 relies on the characterization of the principal orbits
of polar actions of cohomogeneity two on M̄2(c), c 6= 0, which are precisely the Lagrangian
and flat surfaces with parallel mean curvature in M̄2(c), in the same way as the proof of
the Theorem 3.5.

These are the first examples of real hypersurfaces with exactly two distinct nonconstant
principal curvatures in the complex projective and hyperbolic planes, CP 2 and CH2, thus
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answering the open question posed by Niebergall and Ryan in [88]. These new examples
are, again, constructed using the equivariant method applied to cohomogeneity two polar
actions on CP 2 and CH2. The results of this sections can also be found in [41].

Remark 3.12. Some weeks after we finished the article [41], Ivey and Ryan derived a
construction of the same examples and an equivalent result using the method of moving
frames in [67].

Remark 3.13. It is possible to construct the curves σi, i = 1, 2, mentioned in Theorem 3.11
in terms of a solution to an explicit system of ordinary differential equations, which we
present now. Given p ∈ Σ and w ∈ TpΣ, let ξp ∈ TpΣ be a unit vector orthogonal to w. Let
α0, β0 be the principal curvatures of the surface H · p with respect to the normal vector ξp,
(U1)p the orthogonal projection of Jξp onto the principal curvature space associated with
α0, and φ0 ∈ [0, π/2] the angle between Jξp and (U1)p. Let us assume that φ0 ∈ (0, π/2).
By reversing the sign of ξp if necessary, we can further assume that 〈Jw, (U1)p〉 > 0.

Consider a local solution (α̃, β̃, φ̃) : (−ε, ε)→ R3 to the ODE

α̃′ =
1

4

(
c(2− 3 sin2 φ̃) + 4α̃(α̃− β̃)

)
tan φ̃,

β̃′ = −3c

8
sin 2φ̃,

φ̃′ = β̃ +
c(1− 3 sin2 φ̃)

4(α̃− β̃)
,

with initial conditions α̃(0) = α0, β̃(0) = β0, and φ̃(0) = φ0. Then, one of the two
curves mentioned in the Theorem 3.11 is the unique curve σβ : (−ε, ε)→ Σ with curvature
function β̃ and orientation given by ξp (i.e. ∇̄σ̇β(t)σ̇β = β̃(t)ξσβ(t) for all t, where ∇̄ is the
Levi-Civita connection of Σ, and ξ is a smooth normal vector field along σβ extending ξp
and tangent to Σ). The corresponding hypersurface H · σβ has two principal curvatures α
and β (this one with multiplicity 2) such that (α ◦ σβ)(t) = α̃(t), and (β ◦ σβ)(t) = β̃(t)
for all t. The other possible curve σα is obtained by interchanging the roles of α0 and β0

in the description above.

This Section is organized as follows. In Subsection 3.4.1 we present the construction
of the new examples of real hypersurfaces with two principal curvatures. Then, in Subsec-
tion 3.4.2 we focus on the classification problem. Using the information given in Propos-
itions 3.1 and 3.4 we show that our hypersurface is foliated orthogonally by equidistant,
Lagrangian, flat surfaces with parallel second fundamental form, and by the integral curves
of certain vector field and finally, we conclude the proof of the Theorem 3.11.

3.4.1 Construction

We assume the notation and terminology introduced in Section 3.1. Thus, let M be a
hypersurface constructed as in Section 3.1. Then, the fact that M has two principal
curvatures is equivalent to the fact that σ satisfies certain ordinary differential equation.
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Using the theorem of existence of solutions to ODEs in canonical form, we derive the
existence of our hypersurfaces. Let us be more specific.

We recall that for a connected subgroup H of isometries of M̄2(c) acting polarly and
with cohomogeneity two and section Σ, we take a curve σ : t ∈ (−ε, ε) 7→ σ(t) ∈ Σreg

in the regular part of Σ. Then, the 3-dimensional hypersurface H · σ in M̄2(c) given by
the subset M = H · σ is orthogonally foliated by equidistant H-orbits, and by the curves
h ◦ σ : t ∈ (−ε, ε) 7→ (h ◦ σ)(t) = h(σ(t)) ∈ Σreg for each h ∈ H.

In Section 3.1 we proved that the two principal curvatures (with respect to any unit
normal vector) of a principal orbit of the cohomogeneity two action of the group H on
M̄2(c) are always different. The curvature of the curve σ in M̄2(c) is given by

〈Sξ(t)σ̇(t), σ̇(t)〉 = −〈∇̄σ̇(t)ξ, σ̇(t)〉 = 〈∇̄σ̇(t)σ̇(t), ξ〉.

Hence, H · σ will have two principal curvatures at the points of σ if and only if the
curvature of σ (with respect to ξ) as a curve in Σ coincides with one of the two functions
α(ξ(t)) or β(ξ(t)). If we write σ in local coordinates as σ(t) = (x1(t), x2(t)), we have:

∇̄σ̇σ̇ = x′′1∂1 + x′1∇̄σ̇∂1 + x′′2∂2 + x′1∇̄σ̇∂2

= (x′′1 + f(x1, x2, x
′
1, x
′
2))∂1 + (x′′2 + g(x1, x2, x

′
1, x
′
2))∂2,

where f , g are smooth functions depending on x1, x2, x′1, x′2 and the Christoffel symbols
of Σ. The fact that the curvature of σ coincides with α(ξ(t)) means that ∇̄σ̇σ̇ = α(ξ(t))ξσ(t).
Hence, this condition is equivalent to the existence of smooth functions Fα, Gα such that

x′′1 = Fα(x1, x2, x
′
1, x
′
2), x′′2 = Gα(x1, x2, x

′
1, x
′
2).

This is a second order system of ordinary differential equations that has a unique solution
for given initial conditions σ(0) = p and σ̇(0) = w. Therefore, the hypersurface H · σ
has two principal curvatures at the points of σ if and only if σ is a solution to one of the
two possible systems of ODEs constructed as explained above. A completely analogous
argument applies for β instead of α, and it is obvious that the two possible choices that
we have for σ, depending on whether we choose α or β to be the principal curvature with
multiplicity two, provide indeed two different curves, say σα 6= σβ, and thus, two different
hypersurfaces H ·σα and H ·σβ. Moreover, as proved in Section 3.1, the principal curvatures
of the hypersurface H · σ are constant along the H-orbits. Thus, H · σ has exactly two
distinct principal curvatures at every point, not only on the points of σ.

Finally, we have to show that the examples we have just constructed are indeed new,
or equivalently, that their two principal curvatures are nonconstant. Fix a point p ∈ Σreg.
Then we know that for every unit w ∈ TpΣreg, there is a locally defined curve σw such that
σw(0) = p, σ̇w(0) = w, and H · σw has two principal curvatures. In fact, there are exactly
two such curves, but the argument that follows applies to any of them. In Section 3.1,
we have proved that there exists a finite set wp ⊂ S1(TpΣ) such that, if σ̇(0) /∈ wp, the
hypersurface M = H · σ is non-Hopf at any point of M . But since M has two principal
curvatures, these cannot be constant, because all hypersurfaces in M̄2(c) with two constant
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principal curvatures are Hopf, as follows from a well-known classification result (see [10]
and [99]). Thus, we have proved the first part of the Theorem 3.11.

The previous construction can be made more explicit for complex projective planes.
The rest of this subsection is devoted to this alternative description. It is interesting to
point out that our construction ultimately relies on the use of classical geometric objects
of surfaces of R3. This alternative description has been published in [44].

Recall from Corollary 1.5 that the only polar action of cohomogeneity two on CP 2 is
induced by the isotropy representation of the Hermitian symmetric space CP 1×CP 1×CP 1.
This isotropy representation is equivalent to the action of K = U(1)×U(1)×U(1) on C3.

Isotropy representations of symmetric spaces are known to be polar, and any maximal
flat is a section. For Hermitian symmetric spaces, sections are also totally real. Let
{e1, e2, e3} be a unitary basis of C3 and {λ1, λ2, λ3} its dual basis. Then a = Re1⊕Re2⊕Re3

is a section of the action of K on C3. Given an orbit of K there exists an element x ∈ a
where the orbit meets the section. Assume that the orbit is principal, so that x =

∑
j xjej

with xj 6= 0, that is, x is a regular point. We are going to calculate the shape operator of
the orbit K · x. It suffices to do so at x by homogeneity of K · x. Let ξ ∈ νx(K · x) be a
normal vector of K ·x. Since the orbit is principal, νx(K ·x) = a, and we write ξ =

∑
j ξjej.

We define pj = Riej. Then, using the root space decomposition of a real semisimple Lie
algebra [9, Example 3.4] it has been shown that the shape operator of K · x with respect
to ξ is given by

(3.13) S̃ξ|pj = −λj(ξ)
λj(x)

Idpj , j ∈ {1, 2, 3}.

Let S5(r) be the sphere of radius r > 0 in C3. Since K ⊂ O(6), it is clear that the
orbits of K are contained in spheres. We denote by π : S5(r)→ CP 2 the Hopf map, which
is a Riemannian submersion. In fact, given x ∈ S5(r), kerπ∗x = Rix and the restriction
π∗x : TxS

5(r) 	 Rix → Tπ(x)CP 2 is an isometry of vector spaces, where by 	 we denote
orthogonal complement.

Let x ∈ a ∩ S5(r) be a regular point. Since a is totally real (that is, ia is orthogonal
to a), the action of K descends to CP 2, and it follows that Σ = π(a ∩ S5(r)) is a section
of the induced action of K on CP 2 [93]. Moreover, Σ and a ∩ S5(r) are locally isometric,
and K · x is a principal orbit if and only if the induced orbit K · π(x) is. Now we take
ξ ∈ TxS

5(r) 	 Tx(K · x) = a 	 Rx a vector that is normal to the orbit K · x at x, but
tangent to the sphere. Let ζ = π∗xξ. Our aim in what follows is to calculate the shape
operator Sζ of K · π(x) at π(x) with respect to ζ = π∗xξ.

The restriction π∗x : Tx(K · x) 	 Rix → Tπ(x)(K · π(x)) is a linear isometry. Hence,
if v ∈ Tx(K · x) 	 Rix, the shape operator is determined by the equation Sζ(π∗xv) =
π∗x(S̃ξ(v))>, where (·)> denotes orthogonal projection onto Tx(K · x)	 Rix = i(a	 Rx).
Let {A1, A2} be an orthonormal basis of a	 Rx. Writing ξ = ξ1A1 + ξ2A2, Aj =

∑
l ajlel,

and using (3.13), we get that the (j, k) component of Sζ is

(3.14) 〈Sπ∗ξ(π∗(iAj)), π∗(iAk)〉 = 〈S̃ξ(iAj), iAk〉 = −
2∑
l=1

ξl

3∑
s=1

ajsaksals
xs

.
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We denote by ∇̄ the Levi-Civita connection of CP 2, and by D the usual connection of
a Euclidean space.

We start with a curve σ : I → Σ contained in the section Σ. We denote by ζ a unit
normal vector field of σ in Σ (recall that Σ is a two-dimensional totally geodesic real
projective plane). We assume that σ is parametrized by arc length. We consider, at least
in a sufficiently small neighbourhood, the submanifold M = K · σ = ∪t∈IK · σ(t). For a
fixed t, the principal curvatures of M along K ·σ(t) are constant, as K ·σ(t) is an orbit of an
isometric action. The other principal curvature of M at σ(t) is γ(t) = −〈∇̄σ̇(t)ζ(t), σ̇(t)〉,
because Σ is totally geodesic and ζ has unit length. The idea is to make γ(t) equal to one
of the principal curvatures of K · σ(t).

We now make this more explicit by lifting the geometric data to S5(r). Thus, we choose
a unit-speed curve x : I → S5(r)∩ a such that σ = π ◦ x. Since x is contained in a sphere,
ẋ(t) ∈ a	Rx(t), and a unit normal of x in S5(r) is ξ(t) = 1

r
x(t)× ẋ(t) ∈ a	Rx(t), where

× denotes vector product of a ∼= R3. Thus, we have that the curvature of x is

γ(t) = −〈∇̄σ̇(t)ζ(t), σ̇(t)〉 = −〈∇̄π∗ẋ(t)π∗ξ(t), π∗ẋ(t)〉 = −〈Dẋ(t)ξ(t), ẋ(t)〉

= −1

r
〈x(t)× ẍ(t), ẋ(t)〉 =

1

r
det(x(t), ẋ(t), ẍ(t)).

Now we turn to the explicit calculation of (3.14). We will take here a simple approach
and use spherical coordinates on a sphere, which, in particular, gives a system of coordinates
whose coordinate vectors are orthogonal. Thus, let φ(u, v) = r(cosu cos v, sinu cos v, sin v),
and write x(t) = φ(u(t), v(t)). Since x is parametrized by arc length, we obtain the equation
r2(u′(t)2 cos2 v(t) + v′(t)2) = 1. We also get

γ = r2((u′v′′ − u′′v′) cos v + (u′)3 cos2 v sin v + 2u′(v′)2 sin v).

A suitable orthonormal basis of a 	 Rx(t) is A1 = ∂uφ/‖∂uφ‖, A2 = ∂vφ/‖∂vφ‖ at
(u(t), v(t)). Thus, ξ = −rv′A1 + ru′ cos vA2, and substituting in (3.14) we obtain

Sζ =

(
u′ sin v + 2v′ cot 2u

cos v
−v′ tan v

−v′ tan v −u′ cos 2v
sin v

)
,

whose characteristic polynomial is

p(λ) = λ2 − λ
(
u′
(

sin v − cos 2v

sin v

)
+ v′

2 cot 2u

cos v

)
− 4u′v′cot 2u cot 2v − (u′)2 cos 2v − (v′)2 tan2 v.

All in all this means that, in order to construct a real hypersurface with exactly two
principal curvatures we have to solve the ODE:

r2((u′)2 cos2 v + (v′)2) = 1,

p
(
r2((u′v′′ − u′′v′) cos v + (u′)3 cos2 v sin v + 2u′(v′)2 sin v)

)
= 0,
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where the first equation is the condition that x(t) is parametrized by arc length, and the
second states that the curvature of x coincides with one of the principal curvatures of
K · π(x(t)). It is proved above that, for given initial conditions, there are two curves (one
for each eigenvalue of Sζ) satisfying the above ODE. Thus, this method produces a real
hypersurface with two principal curvatures in CP 2.

3.4.2 Classification

A real hypersurface of M̄2(c) has, generically, three distinct principal curvatures. As we
have said, Tashiro and Tachibana [100] proved that there are no umbilical real hypersurfaces
in nonflat complex spaces forms. If n ≥ 3, Cecil and Ryan [24] in CP n, and Montiel [86]
in CHn proved that real hypersurfaces with two distinct principal curvatures are open
parts of homogeneous Hopf hypersurfaces. The methods used by Cecil and Ryan, and
Montiel, do not work if n = 2, and we have indeed provided in Section 3.4.1 examples
of real hypersurfaces in M̄2(c) with two distinct nonconstant principal curvatures. The
classification of real hypersurfaces with two distinct constant principal curvatures in M̄2(c)
is not very difficult to obtain and can be found in [99] for CP 2 as a particular case of the
classification in arbitrary dimensions, and in [10] for CH2. Again, all the examples are open
parts of homogeneous Hopf real hypersurfaces. The classification of Hopf real hypersurfaces
with constant principal curvatures in nonflat complex space forms is due to Kimura [71] in
CP n, and to Berndt [8] in CHn.

The aim of this section is to prove the second part of the Theorem 3.11, that is, to
show that a real hypersurface in M̄2(c), c 6= 0, must be locally congruent to a hypersurface
constructed as in the previous subsection.

From now on we assume that M is a real hypersurface of M̄2(c), c 6= 0, with two
nonconstant principal curvatures α and β and that is non-Hopf at every point. In par-
ticular, we will assume without loss of generality that dimTα = 1 and dimTβ = 2, and
that {U1, U2, A} is an orthonormal frame of M where U1 ∈ Γ(Tα) and U2, A ∈ Γ(Tβ). We
will use the notation given in Proposition 3.1 and Remark 3.3 with γ = β, and where b1,
b2 6= 0 along M . Then, since M has two principal curvatures, Proposition 3.4 gives us
the Levi-Civita connection of M . In particular, the relations in Proposition 3.4 imply that
M is a strongly 2-Hopf real hypersurface with two principal curvatures in CP 2 and CH2,
that is, D = RU1 ⊕ RU2, the smallest S-invariant distribution of M that contains Jξ, has
rank 2 and is integrable, and α and β are constant along the integral submanifolds of D.
Furthermore α, β and φ satisfy the following ODE,

(3.15)

Aφ = β +
c(1− 3 sin2 φ)

4(α− β)
,

Aα =
1

4

(
c(2− 3 sin2 φ) + 4α(α− β)

)
tanφ,

Aβ = −3c

8
sin 2φ.

This concludes the classification part of the Theorem 3.11.
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We still have to justify the assertions made in Remark 3.13, which basically follow
from Proposition 3.4 where it is said that the functions φ, α, and β are constant along
the leaves of the distribution D, and thus, (3.15) translates into the differential equation
given in Remark 3.13. Consider a group H acting polarly with cohomogeneity two and
section Σ on M̄2(c), and fix a regular point p ∈ Σ, and a unit vector w ∈ TpΣ. Let σ be
one of the two locally defined unit speed curves on Σ with σ(0) = p and σ̇(0) = w such
that H · σ has two principal curvatures (cf. Section 3.4.1). We have to show, under the
assumption that H ·σ is everywhere non-Hopf, that the curve σ can be obtained by means
of the initial value problem stated in Remark 3.13. We start by regarding M = H · σ
as a real hypersurface with two principal curvatures in M̄2(c), so that we can apply to
it the arguments presented above in this subsection. Let ξ be a unit normal vector field
along M . Recall from Section 3.1 that the principal curvatures α0 and β0 of H · p at p
with respect to ξp coincide with the two principal curvatures of M at p. Assume without
restriction of generality that β0 has multiplicity two as principal curvature of M . In view
of Proposition 3.8, it is enough to show that the tangent vector field to σ is given by the
vector field A introduced in Proposition 3.1. The Hopf vector Jξ is orthogonal to σ̇ along
σ, since Σ is totally real and ξσ(t) is tangent to Σ for all t. Moreover, as explained in
Section 3.1, σ̇(t) is a principal curvature vector of the hypersurface M for all t. Therefore,
it follows that σ̇ is collinear with A. Since both A and σ̇ have unit length, reversing the
sign of ξ if necessary, we have that σ̇(t) = Aσ(t) for all t. This proves Remark 3.13.

Remark 3.14. Let us explain why we make the assumption that the real hypersurface M is
non-Hopf at every point. On the one hand, if it were Hopf (at every point), it is known (it
follows for example from [88, Theorem 2.1 and Corollary 2.3]) that M would have constant
principal curvatures, thus leading to well-known examples. On the other hand, we should
consider the case when M is Hopf only along a subset of M whose complement in M
is open and dense. In this situation, the vector fields U2 and A in Proposition 3.1 with
γ = β might not be well-defined in the points where M is Hopf. However, in any case
we know that there is an open and dense subset of M that has the structure described in
Theorem 3.11.

3.5 Austere hypersurfaces

In this section we investigate austere hypersurfaces in two-dimensional nonflat complex
space forms. Recall that a hypersurface is called austere if its principal curvature func-
tions are invariant under multiplication by −1 (see Section 1.2). The classification of
austere hypersurfaces in spheres, or in the complex projective and hyperbolic planes, is
not known [34], [66]. In this sense we prove the following result.

Theorem 3.15. Let M be a real hypersurface of M̄2(c), c 6= 0, whose Hopf vector field
has nontrivial projection onto at most two principal curvature spaces (i.e. h ≤ 2). Then
M is austere if and only if it is an open part of one of the following examples:

(i) a Lohnherr hypersurface in CH2, or
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(ii) a Clifford cone in CP 2 or CH2, or

(iii) a bisector in CH2.

In particular, M is strongly 2-Hopf on the open and dense subset of nonumbilic points.

All the examples in this classification are ruled, in the sense that their maximal complex
distribution is integrable and its integral submanifolds are totally geodesic in the ambient
space. We briefly describe the examples in Theorem 3.15. The Lohnherr hypersurface is
the only complete ruled hypersurface of CHn with constant principal curvatures, up to
congruence [79]. It is also the unique minimal homogeneous hypersurface of CHn [12];
indeed it is the only minimal orbit of the action in Theorem 1.7 (i)-(e). A Clifford cone
is a minimal hypersurface which is constructed as follows (see also [3], [52] and [72] for
alternative descriptions). The Lie group H = U(1) × U(1) acts on M̄2(c) polarly with
cohomogeneity two. This action has three fixed points in CP 2, and only one in CH2. Let
p be one of these fixed points, and Sr any geodesic sphere centered at p. Then a Clifford
cone with vertex p is the (singular) hypersurface made by all geodesic rays starting from p
and hitting the only 2-dimensional H-orbit that is minimal as a submanifold of Sr. Finally,
a bisector in CHn is a minimal hypersurface of cohomogeneity one defined as the set of
points in CHn that are at the same distance from two fixed points [52].

Now, we proceed with the study of austere real hypersurfaces in M̄2(c), c 6= 0, under
the only assumption that the Hopf vector field does not have nontrivial projection onto
three principal curvature spaces. In other words, we just assume h ≤ 2. We prove first
that h must be constantly equal to 2 in an open dense subset.

Proposition 3.16. There are no Hopf austere hypersurfaces in M̄2(c), c 6= 0.

Proof. Austere hypersurfaces have, by definition, vanishing mean curvature. Then, by
Theorem 3.20 below in Subsection 3.6.1, a Hopf austere hypersurface in M̄2(c), c 6= 0,
must be an open part of a Hopf homogeneous hypersurface (see Subsection 3.6.1 for the
complete list of such hypersurfaces, known as Tagaki’s and Montiel’s examples). But by
direct inspection of the principal curvatures of the examples in Takagi’s and Montiel’s
lists [88, §3] one can check that the only Hopf, homogeneous, minimal hypersurfaces in
M̄2(c), c 6= 0, are geodesic spheres or tubes around a totally geodesic RP 2 of certain fixed
radius in CP 2. But none of these examples is austere.

Hence, if M is an austere hypersurface of M̄2(c), c 6= 0, with h ≤ 2, then there is an
open and dense subset of M where h = 2. In what follows we will assume that calculations
take place in this subset. Note that the assumption that M is austere implies that its
principal curvatures are α, −α and 0, for some smooth function α on M . We will use the
notation established in Proposition 3.1.

Proposition 3.17. Let M be an austere hypersurface of M̄2(c), c 6= 0, with h = 2, and
three distinct principal curvatures α, −α and 0. Then M is strongly 2-Hopf, the Hopf
vector field has nontrivial projections onto Tα and T−α, and the norm of both projections
is b1 = b2 = 1/

√
2.
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Proof. Assume first that Jξ has nontrivial projection onto Tα and T0. Thus, we put β = 0
and γ = −α in the results of Section 3.2. In particular, from Proposition 3.2 we get:

(3.16)

∇U2U1 = −3b2
2c

4α
A, ∇AU1 =

(3b2
1 − 5)c

4α
U2 −

U1α

2α
A,

∇U2U2 =
3b1b2c

4α
A, ∇AU2 = −(3b2

1 − 5)c

4α
U1 +

b1U1α

2b2α
A,

∇U2A =
3b2

2c

4α
U1 −

3b1b2c

4α
U2, ∇AA =

U1α

2α
U1 −

b1U1α

2b2α
U2.

∇U1U1 = −b1U1α

2b2α
U2 +

b2((7− 6b2
1)c+ 4α2)

4b1α
A,

∇U1U2 =
b1U1α

2b2α
U1 +

(6b2
1 − 7)c

4α
A,

∇U1A = −b2((7− 6b2
1)c+ 4α2)

4b1α
U1 −

(6b2
1 − 7)c

4α
U2,

U1b1 = − b1

2α
U1α, U2b1 = 0, Ab1 = − b2

4α
(5c− 4α2 − 3cb2

1),

U1b2 =
b2

1

2b2α
U1α, U2b2 = 0, Ab2 =

b1

4α
(5c− 4α2 − 3cb2

1),

(3.17)

U2α = − b1

2b2

U1α, Aα =
b2

4b1

(5c+ 8α2 + 9b2
2c).(3.18)

In order to obtain U1α, U2α, U1b1 and U1b2 we need the Gauss equation. Thus, let
us use the Gauss equation for the tuple (U1, U2, U1, A). Proposition 3.1 (with β = 0 and
γ = −α), implies 〈R̄(U1, U2)U1, A〉 = 0, and 〈SU1, U1〉〈SU2, A〉 − 〈SU1, A〉〈SU2, U1〉 = 0.

Using (3.16), together with (3.17) and (3.18), we get

〈∇U1∇U2U1, A〉 = 〈∇U1

(
−3b2

2c

4α
A
)
, A〉 = U1

(
−3b2

2c

4α

)
= −3b2c

4

(2αU1b2 − b2U1α

α2

)
= − 3c(b2

1 − b2
2)

4α2
U1α,

〈∇U2∇U1U1, A〉 = 〈∇U2

(
−b1U1α

2b2α
U2 +

b2((7− 6b2
1)c+ 4α2)

4b1α
A
)
, A〉

= − b1U1α

2b2α
〈∇U2U2, A〉+ U2

(b2((7− 6b2
1)c+ 4α2)

4b1α

)
= − 3b2

1c

8α2
U1α +

7c− 6b2
1c+ 4α2

4b1α
U2b2

− b2(7c+ 6b2
1c+ 4α2)

4b2
1α

U2b1 −
b2(7c− 6b2

1c− 4α2)

4b1α2
U2α

=
(7− 9b2

1)c− 4α2

8α2
U1α,
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〈∇∇U1
U2U1, A〉 = 〈∇ b1U1α

2b2α
U1+

(−7+6b21)c

4α
A
U1, A〉 =

b1U1α

2b2α
〈∇U1U1, A〉+

(−7 + 6b2
1)c

4α
〈∇AU1, A〉

=
(7− 6b2

1)c+ 2α2

4α2
U1α,

〈∇∇U2
U1U1, A〉 = − 3b2

2c

4α
〈∇AU1, A〉 =

3b2
2c

8α2
U1α.

Altogether this means that the Gauss equation is equivalent to

3(−7 + 5b2
1 + 3b2

2)c

8α2
U1α = 0.

Since the expression −7 + 5b2
1 + 3b2

2 = 2(−2 + b2
1) cannot vanish on M , we deduce that

U1α = 0. Therefore, the Gauss equation for the tuple (U1, U2, U1, A) implies U1α = 0.
Then, using (3.17) and (3.18), we get

(3.19) U1α = U2α = U1b1 = U1b2 = 0.

Similarly, using again Proposition 3.1 (with β = 0 and γ = −α), (3.16), (3.17), (3.18),
and (3.19), together with the Gauss equation applied to (U1, U2, U1, U2), we obtain α2 =
1
4
(2 + 3b2

2)c. Again, by the Gauss equation applied to (A,U2, U1, A) we obtain α2 =
(−8+9b22+27b42)c

4(−7+3b22)
. But both expressions for α2 are incompatible for b2 ∈ R. This contradiction

implies the nonexistence of austere hypersurfaces whose Hopf vector field has nontrivial
projections onto Tα and T0.

Since α and −α are interchangeable, we just have to deal with the case where Jξ has
nontrivial projection onto Tα and T−α. Thus, we put β = −α and γ = 0 in the results of
Section 3.2. In particular, Proposition 3.2 yields

(3.20)

∇U1U1 =
U2α

2α
U2 −

b1b2(c− 8α2)

4α
A, ∇U2U1 = −U1α

2α
U2 +

4α2 + b2
2(c− 8α2)

4α
A,

∇U2U2 =
U1α

2α
U1 −

b1b2(c− 8α2)

4α
A, ∇U1U2 = −U2α

2α
U1 +

4α2 + b2
1(c− 8α2)

4α
A,

∇AU1 =
(−1 + 2b2

2)(c− 2α2)

4α
U2, ∇AU2 = −(−1 + 2b2

2)(c− 2α2)

4α
U1,

∇U1A =
b1b2(c− 8α2)

4α
U1 −

4α2 + b2
1(c− 8α2)

4α
U2,

∇U2A = −4α2 + b2
2(c− 8α2)

4α
U1 +

b1b2(c− 8α2)

4α
U2,

∇AA = 0.

(3.21)
U1b1 =

b2U2α

2α
, U2b1 = −b2U1α

2α
, Ab1 =

b2(−1 + 2b2
2)(c− 2α2)

4α
,

U1b2 = −b1U2α

2α
, U2b2 =

b1U1α

2α
, Ab2 = −b1(−1 + 2b2

2)(c− 2α2)

4α
,
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(3.22) Aα =
b1b2

2
(c+ 4α2).

Then, by applying the Gauss equation to (A,U2, A, U1), and using Proposition 3.1 (with
β = −α and γ = 0), (3.20), and (3.22), we obtain b1b2c(b

2
1− b2

2)(c+ 4α2) = 0. If b1 6= b2 on
a nonempty subset U of M , we deduce that U is a real hypersurface with constant principal
curvatures ±

√
−c
2

and 0 in M̄2(c), c < 0. By the classification in [11], U must be an open
part of a Lohnherr hypersurface, but this example satisfies b1 = b2 everywhere, which is a
contradiction. Therefore we must have b1 = b2 on M . Since b2

1 + b2
2 = 1, we deduce that

b1 = b2 = 1√
2
. But then (3.21) yields U1α = U2α = 0. This, together with (3.20), implies

that ∇U1U2 −∇U2U1 = 0. Hence, M is strongly 2-Hopf, as we wanted to show.

In order to conclude the proof of Theorem 3.15 we will make use of the notion of ruled
hypersurface. Recall that a real hypersurface M in a complex space form is called ruled if
the maximal complex distribution (Jξ)⊥ of M is integrable and its integral submanifolds
are totally geodesic complex hypersurfaces of the ambient space (see Subsection 1.6.5).

Proof of Theorem 3.15. Observe that (Jξ)⊥ = RJA ⊕ RA = R(b2U1 − b1U2) ⊕ RA. By
Proposition 3.17 we have SJA = αb2U1 +αb1U2 = α√

2
(U1 +U2) = αJξ and SA = 0, which

implies that S(Jξ)⊥ ⊂ RJξ. By [25, Proposition 8.27], M is a ruled hypersurface. In par-
ticular, M is a minimal ruled hypersurface in M̄2(c), c 6= 0. Lohnherr and Reckziegel [79]
proved that there is at most one minimal ruled hypersurface in CP 2 up to local congruence,
and at most three in CH2.

Kimura [72] proved that a cone over a Clifford torus in CP 2 is austere and ruled. Since
ruled hypersurfaces satisfy h ≤ 2 everywhere (indeed h = 2 on an open and dense subset),
Kimura’s example gives the only possibility of an austere hypersurface with h ≤ 2 in CP 2.

In CH2 there are three known (noncongruent) examples of minimal ruled hypersurfaces:
Clifford cones [3, §3], Lohnherr hypersurfaces [79, §4], and bisectors [25, p. 447]; see also [52,
p. 253]. All of them are known to be austere with h ≤ 2. Therefore, these are precisely
the examples of austere hypersurfaces with h ≤ 2 in CH2.

Remark 3.18. It is known that a ruled hypersurface M in a complex space form is loc-
ally constructed by attaching to an integral curve τ of Jξ the complex totally geodesic
hypersurfaces that are normal to τ̇ . It was also shown in [79] that a ruled hypersurface
in M̄2(c), c 6= 0, is minimal if and only if τ is a circle contained in a totally geodesic and
totally real submanifold of M̄2(c). Moreover, in the projective case, any two such circles
give rise to the same ruled hypersurface, up to congruence, whereas in the hyperbolic case,
two circles τ1, τ2 give rise to congruent ruled hypersurfaces if and only if their curvatures∥∥∇̄τ̇1 τ̇1

∥∥,
∥∥∇̄τ̇2 τ̇2

∥∥ are both greater, equal, or less than
√
−c
2

. It follows from our study above
that ∇̄JξJξ = αA for an austere hypersurface with h = 2. Note that from (3.22) with

b1 = b2 = 1√
2
, we have that α−

√
−c
2

has constant sign. It turns out that the cases α >
√
−c
2

,

α =
√
−c
2

and α <
√
−c
2

correspond, respectively, to Clifford cones, Lohnherr hypersurfaces
and bisectors.
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3.6 Applications

In this section we derive some characterizations of strongly 2-Hopf hypersurfaces that sat-
isfy some additional properties. In Subsection 3.6.1 we use the strongly 2-Hopf assumption
to characterize certain cohomogeneity one real hypersurfaces with constant mean curvature
(Corollary 3.19). In Subsection 3.6.2 we describe Levi-flat strongly 2-Hopf real hypersur-
faces in M̄2(c), c 6= 0 (Corollary 3.21). Finally, in Subsection 3.6.3, we classify strongly
2-Hopf, Levi-flat real hypersurfaces with constant mean curvature in M̄2(c), c 6= 0, which
turn out to be austere (Theorem 3.22).

Theorem 3.5 guarantees that strongly 2-Hopf hypersurfaces in M̄2(c), c 6= 0, are con-
structed locally as a set H · σ = {h(σ(t)) : t ∈ (−ε, ε), h ∈ H}, where H is a connected
group of isometries acting polarly and with cohomogeneity two on M̄2(c), and σ is a smooth
curve in the regular part of a section Σ of the H-action. Our purpose is to determine which
curves σ give rise to a real hypersurface with one or several additional properties.

3.6.1 Strongly 2-Hopf hypersurfaces with constant mean curva-
ture

A first consequence of the classification theorem of strongly 2-Hopf hypersurfaces in CP 2

and CH2 is a local characterization of the examples of constant mean curvature hypersur-
faces constructed by Gorodski and Gusevskii [54].

Corollary 3.19. Let H and Σ be as in the Theorem 3.5, and let η ∈ R. Then, for any
regular point p ∈ Σ and any unit w ∈ TpΣ, there is exactly one locally defined curve
σ on Σ with σ(0) = p, σ̇(0) = w, and such that the hypersurface H · σ has constant
mean curvature η. Conversely, any strongly 2-Hopf real hypersurface with constant mean
curvature in M̄2(c) is locally congruent to a hypersurface constructed in this way.

It is interesting to point out here that, in the family of constant mean curvature hy-
persufaces in M̄2(c), the wealth of strongly 2-Hopf examples contrasts with the rigidity of
those that are Hopf. Indeed, we have the following result.

Theorem 3.20. Let M be a connected Hopf real hypersurface in CP 2 or CH2 with constant
mean curvature. Then M is an open part of a standard homogeneous hypersurface.

Here, by standard homogeneous hypersurface we refer to the Hopf homogeneous hy-
persurfaces known as the examples in Takagi’s and Montiel’s lists [88]. In the case of CP 2

these are geodesic spheres and tubes around a totally geodesic RP 2, whereas in CH2 they
are geodesic spheres, tubes around a totally geodesic RH2, tubes around a totally geodesic
CH1, and horospheres (compare with the classification of cohomogeneity one polar actions
on CP 2 and CH2 in Section 1.7).

As an application of well-known results about Hopf real hypersurfaces in nonflat com-
plex space forms, we prove Theorem 3.20.
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Proof of Theorem 3.20. Let M be a Hopf real hypersurface in M̄2(c), c 6= 0, with constant
mean curvature. Let α denote the principal curvature of the Hopf vector field. By [88,
Theorem 2.1] we know that α is constant on M . Now, by [88, Corollary 2.3(ii)], if β and γ
denote the other principal curvatures of M , we have 2α(β+γ)−4βγ+c = 0. This equation,
together with the constancy of α and α + β + γ, implies that β and γ are also constant.
Hence, M is a Hopf hypersurface in M̄2(c), c 6= 0, with constant principal curvatures.
According to the classification by Kimura [71] and Berndt [8], we conclude that M must
be an open part of a standard homogeneous hypersurface.

Proof of Corollary 3.19. Assume that the mean curvature of the resulting hypersurface
H · σ is constant. Thus, let p ∈ Σ be a regular point, w ∈ TpΣ a tangent vector, and σ
a smooth curve in the regular part of Σ such that σ(0) = p and σ̇(0) = w. Let ξ be one
of the two unit normal vector fields along σ that are tangent to Σ, and let γ denote the
curvature of σ with respect to ξ. We also denote by ξ the unique extension to a smooth
unit normal vector field along H · σ; note that such extension is H-equivariant. Observe
also that, by equivariance, the principal curvatures of H · σ with respect to ξ are constant
along each H-orbit. Then the mean curvature of H ·σ with respect to ξ will have a constant
value η ∈ R if and only if the curvature function γ satisfies γ(t) = η − α(ξ(t)) − β(ξ(t))
for all t where σ is defined, where here α(ξ(t)) and β(ξ(t)) are the principal curvatures
of the orbit H · σ(t) with respect to ξγ(t) at the point γ(t). In other words, we need
(∇̄σ̇σ̇)(t) = (η − α(ξ(t)) − β(ξ(t)))ξσ(t) for all t. But, in local coordinates, this yields
an ordinary differential equation of second order in normal form, so it admits a unique
local solution σ for initial conditions σ(0) = p and σ̇(0) = w. This, together with the
Theorem 3.5, proves Corollary 3.19.

Observe that, by the Theorem 3.5, the hypersurface with constant mean curvature
constructed above is generically strongly 2-Hopf.

3.6.2 Levi-flat strongly 2-Hopf hypersurfaces

Another application of Theorem 3.5 concerns the existence of Levi-flat hypersurfaces of
cohomogeneity one. Recall that a real hypersurface of a complex manifold is called Levi-
flat if it is foliated by complex hypersurfaces, or equivalently, if the Levi form vanishes
identically (see Subsection 1.6.5). This notion is important in the study of holomorphic
foliations, and indeed, an outstanding problem is the existence of complete, smooth Levi-
flat hypersurfaces in the complex projective plane; nonexistence has been proved for CP n,
n ≥ 3 [95]. Note that the following result contrasts with the nonexistence of Levi-flat,
Hopf real hypersurfaces in nonflat complex space forms [33].

Corollary 3.21. Let H and Σ be as in the Theorem 3.5. Then, for any regular point p ∈ Σ
and any unit w ∈ TpΣ, there is exactly one locally defined curve σ on Σ with σ(0) = p,
σ̇(0) = w, and such that the hypersurface H · σ is Levi-flat. Conversely, any strongly
2-Hopf, Levi-flat real hypersurface in M̄2(c) is constructed locally in this way.
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Proof. Consider a real hypersurface M in M̄2(c), c 6= 0, satisfying h = 2. We will use
the notation established in Section 3.3. Assume that M is Levi-flat. Then, its Levi form
vanishes. Since A, JA ∈ (Jξ)⊥ by Proposition 3.1, we have II(A,A) + II(JA, JA) = 0 or,
equivalently, 〈SA,A〉+ 〈SJA, JA〉 = 0. Using Proposition 3.1 again, this condition reads

γ + b2
2α + b2

1β = 0.

Now, in order to prove Corollary 3.21, assume that the resulting hypersurface H · σ
is Levi-flat. Thus, let p ∈ Σ be a regular point, w ∈ TpΣ a tangent vector, and σ a
smooth curve in the regular part of Σ such that σ(0) = p and σ̇(0) = w. Let ξ be one
of the two unit normal vector fields along σ that are tangent to Σ, and let γ denote
the curvature of σ with respect to ξ. We also denote by ξ the unique extension to a
smooth unit normal vector field along H · σ, which is H-equivariant. Observe also that,
by equivariance, the principal curvatures of H · σ with respect to ξ are constant along
each H-orbit. Then H · σ will be Levi-flat if and only if the curvature function γ satisfies
γ(t) = −b2(ξ(t))2α(ξ(t))− b1(ξ(t))2β(ξ(t)) for all t where σ is defined, where b1(ξ(t)) and
b2(ξ(t)) are the norms of the orthogonal projections of Jξ(t) onto the principal curvature
spaces Tα(ξ(t)) and Tβ(ξ(t)) of the surface H ·σ(t) with respect to ξ(t), at each point σ(t). In
other words, we need (∇̄σ̇σ̇)(t) = (−b2(ξ(t))2α(ξ(t)) − b1(ξ(t))2β(ξ(t)))ξσ(t) for all t. But,
in local coordinates, this yields an ordinary differential equation of second order in normal
form, so it admits a unique local solution σ for initial conditions σ(0) = p and σ̇(0) = w.
This, together with Theorem 3.5, proves Corollary 3.21. Observe that, by Theorem 3.5,
the Levi-flat hypersurface constructed above is generically strongly 2-Hopf.

3.6.3 Levi-flat strongly 2-Hopf hypersurfaces with constant mean
curvature

One can wonder to what extent imposing some additional geometric conditions restricts
the class of Levi-flat hypersurfaces. In this sense, Bryant [20] classified Levi-flat minimal
hypersurfaces in 2-dimensional complex space forms. It follows from his result that, for
CP 2 and CH2, each example in his classification is invariant under a one-dimensional
subgroup of the ambient isometry group. By weakening the minimality condition, and
adding the strongly 2-Hopf assumption, we can obtain the following result.

Theorem 3.22. Let M be a connected, Levi-flat, strongly 2-Hopf real hypersurface in
M̄2(c), c 6= 0. Then M has constant mean curvature if and only if it is an open part of

(i) a Lohnherr hypersurface in CH2, or

(ii) a Clifford cone in CP 2 or CH2, or

(iii) a bisector in CH2.

In particular, M is austere and ruled.
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Proof. Let M be a Levi-flat strongly 2-Hopf real hypersurface in M̄2(c), c 6= 0, with
constant mean curvature η. By Subsections 3.6.1 and 3.6.2, we have that γ = η − α − β
and γ = −b2

2α− b2
1β. Since b2

1 + b2
2 = 1, we deduce b2

1α+ b2
2β = η. If we take derivatives in

this expression with respect to the vector field A we obtain

2b1αAb1 + b2
1Aα + 2b2βAb2 + b2

2Ab2 = 0.

From (3.8) in Section 3.3 and from the relation b1Ab1+b2Ab2 = 0, we deduce the expressions
of Ab1, Ab2, Aα and Aβ in terms of b1, b2 and the principal curvatures. Thus, substituting
into the previous equation we obtain, after some calculations, 3γ = α + β. Since γ =
η − α− β, then γ = η

4
and α + β = 3

4
η.

From the equations b2
1 + b2

2 = 1 and αb2
2 + βb2

1 = −γ we get the expressions b2
1 = γ+β

β−α
and b2

2 = α+γ
α−β . Since α + β is constant, we have A(α + β) = 0. This, together with (3.8),

the previous expressions for b2
1 and b2

2, and the relations γ = η
4

and β = 3
4
η−α, imply after

some calculations that
0 = η(8α2 − 6ηα + 3η2 − 4c).

We distinguish between the minimal and non-minimal cases. Thus, if η 6= 0, the previ-
ous equation implies that α is constant, and then M has constant principal curvatures. But
real hypersurfaces with constant principal curvatures in the complex projective and hyper-
bolic planes have been classified [11], [106]. On the one hand, in CP 2 there do not exist
non-Hopf hypersurfaces with constant principal curvatures. On the other hand, in CH2 the
only non-Hopf hypersurfaces with constant principal curvatures are the Lohnherr hypersur-
face (which is minimal), and its equidistant hypersurfaces (which are non-minimal). All of
them are strongly 2-Hopf, as follows from [12, §4.1] (cf. [38]). However, only the Lohnherr
hypersurface is Levi-flat: it is the only one that satisfies the relation γ = −b2

2α − b2
1β, as

can be checked from [38, Theorem 3.12]. Hence, the case η 6= 0 is impossible.
Assume now that η = 0. Then γ = 0, β = −α and b2

1 = b2
2 = 1

2
. In particular, M is

an austere strongly 2-Hopf hypersurface in M̄2(c), c 6= 0. By the classification achieved
in Section 3.5, we deduce that M must be an open part of a Lohnherr hypersurface, or a
Clifford cone, or a bisector. Finally, all these examples are Levi-flat, since they are ruled.
This concludes the proof of Theorem 3.22.





Conclusions and open problems

This thesis deals with the classification of isoparametric submanifolds and real hypersur-
faces with certain geometric properties in two-dimensional nonflat complex space forms.
The investigation carried out allows us to present the following conclusions.

• Any Lagrangian flat surface with parallel mean curvature in a complex projective or
hyperbolic plane is congruent to an open part of a principal orbit of a polar action
(Theorem 2.1).

• Any isoparametric submanifold of CP 2 or CH2 is congruent to an open part of a
principal orbit of a polar action on CP 2 or CH2 (Theorem 2.2).

• Any Terng-isoparametric submanifold of CP 2 or CH2 is an open part of an iso-
parametric submanifold of CP 2 or CH2, or a Chen’s surface in CH2, or a circle
(Theorem 2.3).

• Any strongly 2-Hopf real hypersurface in a complex projective or hyperbolic plane
can be constructed using the equivariance method applied to a polar action of co-
homogeneity two on CP 2 or CH2 (Theorem 3.5).

• There are non-Hopf real hypersurfaces with two distinct principal curvatures in CP 2

and CH2. This provides an affirmative answer to Question 9.2 in [88].

• Any austere real hypersurface in CP 2 or CH2 whose Hopf vector field has h ≤
2 nontrivial projections onto the principal curvature spaces is an open part of a
Lohnherr hypersurface in CH2, or a Clifford cone in CP 2 or CH2, or a bisector in
CH2 (Theorem 3.15).

• We have obtained a characterization of strongly 2-Hopf real hypersurfaces with con-
stant mean curvature and of Levi-flat strongly 2-Hopf real hypersurfaces in CP 2 and
CH2 (Corollaries 3.19 and 3.21, respectively).

• Any Levi-flat strongly 2-Hopf real hypersurface with constant mean curvature in CP 2

or CH2 is an open part of a Lohnherr hypersurface in CH2, or a Clifford cone in CP 2

or CH2, or a bisector in CH2 (Theorem 3.22).
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In view of these results, there are still some open problems to be solved concerning
isoparametric submanifolds and real hypersurfaces in nonflat complex space forms. We
emphasize the following ones, which are directly related to the investigation carried out in
this memoir.

• Surfaces with parallel mean curvature and constant Gaussian curvature in the two-
dimensional nonflat complex space forms are relatively well understood after the work
of Hirakawa [62]. It would be interesting to investigate surfaces with parallel mean
curvature without the assumption on the Gaussian curvature.

• Complete the classification of isoparametric submanifolds in CHn. This problem
seems unapproachable in its full generality, but it would be interesting to obtain
some partial classifications.

• Can one characterize some particular class of isoparametric (or Terng-isoparametric)
submanifolds in higher dimensional nonflat complex space forms as principal orbits
of polar actions?

• For each polar action on CP 2 and CH2, determine the tangent directions w to the
section that give rise, via the equivariant method, to real hypersurfaces that are
Hopf at some point (see the end of Section 3.1). Are there inhomogeneous Hopf real
hypersurfaces of cohomogeneity one?

• Classify the surfaces with constant principal curvatures in the two dimensional nonflat
complex space forms. In view of Theorem 2.3 it just remains to consider those surfaces
with nonflat normal bundle.

• Complete the classification of austere real hypersurfaces in CP 2 and CH2. In view
of Theorem 3.15 it just remains to consider the case h = 3.

• Prove that there cannot exist compact Levi-flat strongly 2-Hopf real hypersurfaces
in CP 2 without singularities.

• Find a geometric condition to characterize cohomogeneity one real hypersurfaces
obtained via de equivariant method applied to a cohomogeneity two polar action on
a nonflat complex space form of dimension n ≥ 3.
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Resumo en galego
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O concepto de xeometŕıa de Riemann foi proposto por primeira vez de xeito xeral por
Bernhard Riemann no século XIX. Esta xeometŕıa baséase no estudo das variedades di-
ferenciables dotadas dunha métrica de Riemann (forma cuadrática definida positiva). En
particular, céntrase no estudo das propiedades métricas e da curvatura desas variedades.
Unha métrica de Riemann determina unha distancia. O estudo do grupo daquelas trans-
formacións do espazo ambiente que preserva dita distancia foi un problema moi frut́ıfero
dentro das matemáticas. Aqúı é onde aparece o interese polo concepto de simetŕıa den-
tro da xeometŕıa de Riemann. Tal grupo de transformacións preservando as distancias é
coñecido como o grupo de isometŕıas.

Dentro da xeometŕıa de Riemann atopámonos cun tipo especial de variedades, coñeci-
das como variedades Kähler. Unha variedade Kähler é unha variedade de Riemann dotada
dunha estrutura complexa paralela. O estudo das variedades Kähler atraeu a múltiples
matemáticos ó longo da historia, os cales, engadindo certas propiedades xeométricas in-
tentaron caracterizalas. Hai que destacar dentro desas propiedades a de ter curvatura
seccional holomorfa constante. As variedades Kähler con curvatura seccional holomorfa
constante redúcense a un dos seguintes espazos: o espazo proxectivo complexo, CP n (para
curvatura positiva), o espazo euclidiano complexo, Cn (para curvatura nula), e o espazo
hiperbólico complexo, CHn (para curvatura negativa). Refeŕımonos a estes espazos como
os espazos modelo complexos. Centrarémonos no estudo de subvariedades con certas pro-
piedades xeométricas dentro dos espazos modelo complexos non chans, é dicir, en CP n e
CHn.

A acción dun subgrupo do grupo de isometŕıas dunha variedade dada coñécese como
acción isométrica. Cada unha das órbitas dunha acción isométrica recibe o nome de subva-
riedade extrinsecamente homoxénea ou, simplemente, subvariedade homoxénea. O estudo
de tales accións na súa total xeneralidade é un problema matemático complicado, polo que
se introdúce o concepto de acción polar. Unha acción polar non é mais que unha acción
isométrica que admite unha subvariedade totalmente xeodésica que interseca a todas as
órbitas da acción ortogonalmente. As accións polares foron completamente clasificadas en
CP n e en CHn grazas a Podestà e Thorbergsson [93] (para o caso proxectivo), e a Dı́az-
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Ramos, Domı́nguez-Vázquez e Kollross [39] (para o caso hiperbólico). Ditas clasificacións
serán fundamentais para o noso traballo. Coñécese como cohomoxeneidade dunha acción
isométrica á menor codimensión das súas órbitas. En particular, debemos destacar que a
cohomoxeneidade dunha acción polar coincide coa dimensión da súa sección.

Ó longo da historia moitos matemáticos intentaron caracterizar certos tipos de subva-
riedades homoxéneas, ou máis xeneralmente, de subvariedades con alto grao de simetŕıa, a
través de diferentes propiedades xeométricas. Aśı, nesta tese centrarémonos, por un lado,
no estudo de hipersuperficies nos planos proxectivo e hiperbólico complexos, CP 2 e CH2,
dotadas dun alto grao de simetŕıa, máis especificamente, estudaremos certas hipersuperfi-
cies que admiten unha acción de cohomoxeneidade un inducida por unha acción polar de
cohomoxeneidade dous no espazo ambiente. Por outro lado, interésanos caracterizar preci-
samente as órbitas principais de tales accións polares mediante propiedades como a de ser
unha subvariedade isoparamétrica.

A continuación presentamos a motivación matemática deste estudo, tratando de expli-
car como un problema aberto que inicialmente decidimos abordar acabou conducindo a
realizar a investigación que se expón nesta memoria.

Un teorema clásico dentro da xeometŕıa de superficies en R3 establece que unha superfi-
cie totalmente umb́ılica (isto é, unha superficie con exactamente unha curvatura principal)
en R3 é parte aberta dunha esfera e dun plano; en particular, é parte aberta dunha superficie
homoxénea. Tamén é coñecido que este resultado pode ser estendido a dimensións maio-
res. Isto suxire o problema de determinar en que medida, a propiedade de ter un pequeno
número fixo de curvaturas principais distintas impón restricións sobre a xeometŕıa dun-
ha hipersuperficie. No contexto de espazos modelo complexos, Tashiro e Tachibana [100]
amosaron que non hai hipersuperficies reais totalmente umb́ılicas en CP n e CHn. Máis
tarde, Cecil e Ryan [24] (para o caso proxectivo), e Montiel [86] (para o caso hiperbólico),
levaron a cabo a clasificación de hipersuperficies reais con exactamente dúas curvaturas
principais en CP n e CHn, n ≥ 3. Todos os exemplos que aparecen en ditas clasificacións
son Hopf, é dicir, o campo de Reeb de tales hipersuperficies é campo de curvatura princi-
pal, e teñen curvaturas principais constantes, co cal, son partes abertas de hipersuperficies
homoxéneas, en vista dos traballos de Kimura [71] e Berndt [8]. Non obstante, esta cla-
sificación non está completa. Tal e como establecen Niebergall e Ryan no [88, Problema
aberto 9.2], os argumentos de Cecil, Ryan e Montiel deixan aberta a cuestión da existencia
e clasificación das hipersuperficies reais con dúas curvaturas principais non constantes en
dimensión n = 2. No artigo [41], cuxos resultados forman parte desta tese, amosamos que
unha hipersuperficie real con dúas curvaturas principais en CP 2 e CH2 pode ter curvatu-
ras principais non constantes; ademais, posteriormente, clasificamos tales hipersuperficies.
Deste modo complétase a clasificación de hipersuperficies reais dentro dos espazos proxec-
tivo e hiperbólico complexos con dúas curvaturas principais e amósase que non todos os
exemplos son homoxéneos.

Os exemplos que aparecen nesta clasificación verifican unha serie de propiedades in-
teresantes. Ademais dos nosos exemplos, estas propiedades están presentes en certas hiper-
superficies homoxéneas non Hopf de CHn, aśı como nos exemplos de hipersuperficies de
cohomoxeneidade un con curvatura media constante constrúıdos por Gorodski e Gusevs-
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kii en [54]. Polo tanto, é natural a idea de establecer un novo concepto que resuma estas
caracteŕısticas, ó cal chamaremos hipersuperficie fortemente 2-Hopf. Diremos que unha hi-
persuperficie M é fortemente 2-Hopf se verifica que a menor distribución invariante baixo o
operador de configuración de M que contén ó campo de Reeb ten dimensión 2, é integrable
e ademais as curvaturas principais de M son constantes ó longo das subvariedades integrais
de tal distribución.

Grazas a este novo concepto, intentamos xeneralizar a clasificación de hipersuperficies
reais con dúas curvaturas principais non constantes, xunto cos demais exemplos mencio-
nados anteriormente. Deste xeito levamos a cabo a caracterización das hipersuperficies
fortemente 2-Hopf nos planos proxectivo e hiperbólico complexos. Estas hipersuperficies
resultan ser, intrinsecamente, de cohomoxeneidade un e, de feito, obtéñense mediante o
denominado método de xeometŕıa equivariante aplicado a unha acción polar de cohomoxe-
neidade dous. Co fin de ter clasificacións expĺıcitas e obter exemplos concretos, impóñense
certas condicións adicionais. En particular, para caracterizar os exemplos obtidos por Go-
rodski e Gusevskii en [54], impuxemos a propiedade de ter curvatura media constante.

Estes resultados puxeron de manifesto que a combinación do método equivariante xunto
coa propiedade de ser fortemente 2-Hopf daba lugar a unha mellor comprensión de todos
estes exemplos, e se presentaba como un método con certa potencia á hora de xerar no-
vos exemplos. Motivados por isto, e polo problema aberto da existencia de exemplos de
hipersuperficies Levi-chás (é dicir, foliadas por hipersuperficies complexas) compactas sen
singularidades en CP 2, abordamos o estudo das hipersuperficies fortemente 2-Hopf que son
Levi-chás en CP 2 e CH2, podendo demostrar a existencia de múltiples exemplos, pero só
a nivel local. Como mencionamos anteriormente, o noso obxectivo é o de obter exemplos
concretos de dita clasificación, co cal impoñemos ambas as propiedades, é dicir, ter curva-
tura media constante e ser Levi-chás. Chegados a este punto, un dáse conta de que unha
hipersuperficie real, fortemente 2-Hopf, Levi-chan con curvatura media constante resulta
ser austera. Este concepto foi introducido por Harvey e Lawson [56] no seu estudo de varie-
dades lagrangianas especiais, e foi definido como aquelas hipersuperficies cuxas curvaturas
principais son invariantes baixo multiplicación por −1. Polo tanto, procedemos á clasifica-
ción das hipersuperficies austeras en CP 2 e CH2 cuxo vector de Reeb proxecta en h = 1
ou h = 2 espazos de curvaturas principais. Este resultado proporciónanos unha interesante
caracterización de tres importantes tipos de hipersuperficies regradas (as hipersuperficies
de Lohnherr, os conos de Clifford, e os bisectores) mediante a propiedade de ser austeras.

A importancia da xeometŕıa das órbitas principais das accións polares nos exemplos de
hipersuperficies fortemente 2-Hopf constrúıdos levounos a preguntarnos se seŕıa posible ca-
racterizar tales órbitas mediante algunha propiedade xeométrica adecuada. Aśı, motivados
por clasificacións recentes de hipersuperficies isoparamétricas en CP n e CHn, abordamos
o estudo das subvariedades isoparamétricas nos espazos modelo complexos de dimensión
dous, como primeiro paso de cara a unha comprensión destes obxectos en codimensión
arbitraria.

Unha hipersuperficie denomı́nase isoparamétrica se as súas hipersuperficies equidistan-
tes próximas teñen curvatura media constante. A xeneralización deste concepto a codimen-
sión arbitraria foi desenvolvida por Terng [101], áında que a súa definición foi dada para
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espazos de curvatura constante. Hoxe en d́ıa, tomamos como definición xeral de subvarie-
dade isoparamétrica, nunha variedade de Riemann calquera, a establecida por Heintze, Liu
e Olmos [57], que di que unha subvariedade é isoparamétrica se ten fibrado normal chan,
as súas subvariedades paralelas suficientemente próximas teñen curvatura media paralela
e ademais admite seccións.

A clasificación das hipersuperficies isoparamétricas nos espazos proxectivos comple-
xos dedúcese da clasificación das hipersuperficies isoparamétricas nas esferas mediante un
detallado estudo da correspondente fibración de Hopf. A clasificación de hipersuperficies
isoparamétricas nas esferas é un problema áında aberto. Os traballos de Cecil, Chi e Jen-
sen [23], Immervoll [65], Chi [31], [32] e Miyaoka [84] completan a clasificación nas esferas
salvo o caso no que a hipersuperficie isoparamétrica teña catro curvaturas principais con
multiplicidades (7, 8). Utilizando estes resultados, Domı́nguez-Vázquez [49] obtivo a clasi-
ficación de hipersuperficies isoparamétricas en CP n, n 6= 15. En dita clasificación amósase
que existen numerosos exemplos non homoxéneos de hipersuperficies isoparamétricas en
CP n, pero non para n = 2. A clasificación das hipersuperficies isoparamétricas no espa-
zo hiperbólico complexo foi obtida recentemente por Dı́az-Ramos, Domı́nguez-Vázquez e
Sanmart́ın-López en [40]. Nesta clasificación tamén se amosa que existen exemplos non
homoxéneos, pero de novo, todos os exemplos en CH2 son homoxéneos.

Para codimensión maior, as subvariedades isoparamétricas en CP n foron clasificadas
por Domı́nguez-Vázquez tamén no traballo [49]. Novamente, aparecen exemplos non ho-
moxéneos. Para o caso de CHn, o problema de clasificar subvariedades isoparamétricas
de codimensión maior que un vólvese moito máis complicado e permanece completamente
aberto. En [42], cuxos resultados forman parte desta tese, levamos a cabo a clasificación de
subvariedades isoparamétricas restrinx́ındonos ó caso n = 2, como primeiro paso para unha
mellor comprensión destes obxectos en espazos de curvatura non positiva. Ademais, estuda-
mos tamén a definición de isoparametricidade de Terng que, ó noso entender, áında nunca
fora estudado en subvariedades de codimensión maior que un nos espazos de curvatura non
constante.

Nesta introdución presentamos a evolución cronolóxica das investigacións que vimos
desenvolvendo nestes anos. Non obstante, ó longo da tese e na procura dunha maior cohe-
rencia expositiva, usaremos unha orde diferente. A continuación resumimos os principais
resultados obtidos.

Subvariedades isoparamétricas en CP 2 e CH2

Motivados pola clasificación de hipersuperficies isoparamétricas en CP n e CHn, xórdenos
a idea de xeneralizar esta clasificación a codimensión maior. Como xa mencionamos, para
o caso de CP n tal clasificación foi realizada por Domı́nguez-Vázquez en [49]. Non obstante
para o caso hiperbólico o problema está aberto. Ademais, non está clara a relación entre as
definicións de isoparametricidade de Terng por un lado, e de Heintze, Liu e Olmos por outro,
en espazos de curvatura non constante. No Caṕıtulo 2 levamos a cabo a clasificación de
subvariedades isoparamétricas en CH2, aśı como das subvariedades Terng-isoparamétricas
en CP 2 e CH2.
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A clave para estas clasificacións é o resultado principal obtido na Sección 2.2. Dito
resultado permı́tenos establecer unha relación entre certas propiedades que cumpren as su-
perficies lagrangianas chás con curvatura media paralela en CP 2 e CH2. Estas superficies
verifican ter segunda forma fundamental paralela, ser Terng-isoparamétricas, isoparamétri-
cas e ser parte aberta dunha órbita principal dunha acción polar de cohomoxeneidade dous
en CP 2 ou CH2.

Deste xeito, na Sección 2.3 podemos establecer a clasificación de subvariedades isopa-
ramétricas e Terng-isoparamétricas nos planos proxectivo e hiperbólico complexos. En tal
clasificación obtemos que unha subvariedade isoparamétrica en CP 2 e CH2 é congruente a
unha parte aberta dunha órbita principal dunha acción polar. Para o caso de subvariedades
Terng-isoparamétricas, obtemos que unha subvariedade é Terng-isoparamétrica en CP 2 ou
CH2 se, e só se, é unha subvariedade isoparamétrica, unha superficie de Chen en CH2, ou
un ćırculo.

A superficie de Chen, constrúıda por primeira vez en [26], é unha subvariedade ho-
moxénea que non é órbita de ningunha acción polar, e para a cal, na Sección 2.3, damos
unha descrición mediante grupos de Lie, distinta á proporcionada por Chen.

Hipersuperficies fortemente 2-Hopf en CP 2 e CH2

Como xa mencionamos, co fin de xeneralizar certos exemplos obtidos en [41], [54], e certos
exemplos de hipersuperficies homoxéneas non Hopf [12], no Caṕıtulo 3 levamos a cabo a
caracterización das hipersuperficies fortemente 2-Hopf en CP 2 e CH2. Para iso faremos
uso do método de xeometŕıa equivariante aplicado a accións polares de cohomoxeneidade
dous sobre CP 2 e CH2.

En primeiro lugar, e co obxectivo de constrúır os nosos exemplos, debemos considerar
unha acción polar sobre a nosa variedade ambiente, de cohomoxeneidade dous. A idea
detrás desta construción é a seguinte: tomamos unha curva na parte regular da sección
da acción polar e consideramos a unión das órbitas principais da acción polar a través de
dita curva. Esta unión dá lugar a unha hipersuperficie con polo menos dúas curvaturas
principais distintas. Xenericamente, esta hipersuperficie terá tres curvaturas principais e
será fortemente 2-Hopf.

Agora supoñamos que temos unha hipersuperficie fortemente 2-Hopf en CP 2 ou CH2.
Tras unha serie de cálculos, probamos a existencia de dúas distribucións perpendiculares
sobre a hipersuperficie, as cales son integrables e de dimensións 1 e 2. A distribución 2-
dimensional verifica que as súas subvariedades integrais son subvariedades da variedade
ambiente totalmente reais, equidistantes e chás, con segunda forma fundamental paralela e
fibrado normal chan. Á súa vez, cada unha das curvas integrais da outra distribución está
contida nunha subvariedade totalmente xeodésica e totalmente real do espazo ambiente.
Utilizando entón o resultado obtido na Sección 2.2 pódese probar que a hipersuperficie está
foliada por órbitas principais dunha acción polar de cohomoxeneidade dous, e aśı, pode ser
constrúıda polo método que describimos anteriormente.

A construción de hipersuperficies reais con dúas curvaturas principais en CP 2 e CH2 é
un caso particular da construción de hipersuperficies fortemente 2-Hopf. Aśı, na Sección 3.4,
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usamos o método da xeometŕıa equivariante aplicado a accións polares de cohomoxenei-
dade dous sobre CP 2 e CH2, e observamos que o feito de que a hipersuperficie resultante
teña exactamente dúas curvaturas principais distintas é equivalente a que a curva escollida
na sección satisfaga unha certa ecuación diferencial ordinaria. Deste xeito proporciónase
un método para a construción de hipersuperficies con dúas curvaturas principais. Xene-
ricamente, tales hipersuperficies son non Hopf, e polo tanto, constitúen exemplos novos.
A continuación, tras extraer a suficiente información das ecuacións fundamentais da xeo-
metŕıa de subvariedades, conseguimos probar que unha hipersuperficie con dúas curvaturas
principais distintas e que é non Hopf en todo punto é fortemente 2-Hopf e, polo tanto, pode
ser constrúıda polo método de xeometŕıa equivariante a partir de certa curva na sección
dunha acción polar.

Como xa mencionamos, estes son os primeiros exemplos de hipersuperficies reais con
exactamente dúas curvaturas principais distintas e non constantes en CP 2 e CH2, polo que
respondemos á pregunta presentada por Niebergall e Ryan en [88]. Ademais, na Sección 3.4
tamén daremos unha construción expĺıcita destas hipersuperficies para o caso do plano
proxectivo complexo.

A continuación, na Sección 3.5 centrarémonos no estudo das hipersuperficies austeras
nos planos proxectivo e hiperbólico complexos. Despois de probar que non existen exemplos
Hopf, e tras obter unha descrición expĺıcita da conexión de Levi-Civita da hipersuperficie,
conseguimos probar que todos os exemplos posibles de hipersuperficies austeras cuxo vector
de Reeb proxecta en dous espazos de curvaturas principais en CP 2 e CH2 son regrados.
Neste caso, dicimos que unha hipersuperficie é regrada no sentido de que a súa distribución
complexa maximal é integrable e as súas subvariedades integrais son totalmente xeodésicas
no espazo ambiente. Polo tanto, a clasificación séguese da clasificación de hipersuperficies
regradas minimais obtida por Lohnherr e Reckziegel en [79]. Os exemplos que aparecen
nesta clasificación son os seguintes: a denominada hipersuperficie de Lohnherr en CH2, un
cono de Clifford en CP 2 ou CH2 e un bisector en CH2.

Finalmente, aplicamos os resultados obtidos para estudar as hipersuperficies fortemente
2-Hopf que ademais teñen curvatura media constante ou ben son Levi-chás. Que a nosa
hipersuperficie verifique algunha destas propiedades é equivalente ó feito de que a curva
usada no proceso de construción dos exemplos de hipersuperficies fortemente 2-Hopf satis-
faga unha certa ecuación diferencial ordinaria. O resultado de existencia e unicidade para
ecuacións diferenciais ordinarias permite caracterizar estes exemplos.

Por último, probamos que unha hipersuperficie real fortemente 2-Hopf, Levi-chá e con
curvatura media constante en CP 2 e CH2 é austera. Deste xeito, o resultado de clasificación
de hipersuperficies austeras obtido previamente permı́tenos conclúır este estudo.

Estrutura da tese

Esta memoria orgańızase como segue.
No Caṕıtulo 1 introdúcense os conceptos básicos, terminolox́ıa e convenios necesarios

para a realización desta tese. Dito caṕıtulo div́ıdese nos seguientes temas: variedades semi-
riemannianas (§1.1), xeometŕıa de subvariedades (§1.2), foliacións riemannianas singulares
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(§1.3), subvariedades isoparamétricas (§1.4), accións isométricas (§1.5), espazos modelo
complexos (§1.6) e accións polares (§1.7).

Os seguientes caṕıtulos conteñen as clasificacións e contribucións principais desta tese.
No Caṕıtulo 2 lévase a cabo a demostración do que é, tal vez, o resultado central desta

tese (§2.2), que en particular garante que unha superficie lagrangiana chá con curvatura
media paralela en CP 2 ou CH2 é parte aberta dunha acción polar de cohomoxeneidade
dous. Posteriormente, dáse unha descrición da superficie de Chen como órbita dunha acción
isométrica (§2.3.1), e obtense a clasificación de subvariedades isoparamétricas (§2.3.2) e
Terng-isoparamétricas (§2.3.3) en CP 2 e CH2.

Finalmente, o Caṕıtulo 3 céntrase no estudo de certo tipo de hipersuperficies reais
constrúıdas mediante o método de xeometŕıa equivariante aplicado a accións polares en
CP 2 e CH2. Aśı, primeiro descŕıbese a construción de tales hipersuperficies mediante este
método (§3.1). Posteriormente procédese a realizar os cálculos precisos co fin de determinar
explicitamente a conexión de Levi-Civita dunha hipersuperficie real cuxo campo de Hopf
ten exactamente h = 2 proxeccións non triviais nos espazos de curvatura principais (§3.2).
Finalmente obtéñense os seguintes resultados relativos a hipersuperficies reais nos planos
proxectivo e hiperbólico complexos: a caracterización das hipersuperficies fortemente 2-
Hopf (§3.3), a clasificación das hipersuperficies con dúas curvaturas principais (§3.4), a
clasificación das hipersuperficies austeras con h ≤ 2 (§3.5), aśı como a caracterización
das hipersuperficies fortemente 2-Hopf con curvatura media constante, a caracterización
das hipersuperficies fortemente 2-Hopf e Levi-chás, e a clasificación das hipersuperficies
fortemente 2-Hopf, Levi-chás con curvatura media constante (§3.6).
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Resumen en castellano
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El concepto de geometŕıa de Riemann fue propuesto por primera vez de manera ge-
neral por Bernhard Riemann en el siglo XIX. Esta geometŕıa se basa en el estudio de las
variedades diferenciables dotadas de una métrica de Riemann (forma cuadrática definida
positiva). En particular, se centra en el estudio de las propiedades métricas y de curvatura
de esas variedades. Una métrica de Riemann determina una distancia. El estudio del grupo
de aquellas transformaciones del espacio ambiente que preservan dicha distancia ha sido
un problema muy fruct́ıfero dentro de las matemáticas. Aqúı es donde surge el interés por
el concepto de simetŕıa dentro de la geometŕıa de Riemann. Tal grupo de transformaciones
preservando las distancias es conocido como el grupo de isometŕıas.

Dentro de la geometŕıa de Riemann nos encontramos con un tipo especial de varieda-
des, conocidas como variedades Kähler. Una variedad Kähler es una variedad de Riemann
dotada de una estructura compleja paralela. El estudio de las variedades Kähler ha atráıdo
a múltiples matemáticos a lo largo de la historia, los cuales, añadiendo ciertas propieda-
des geométricas han intentado caracterizarlas. Cabe destacar dentro de esas propiedades
la de tener curvatura seccional holomorfa constante. Las variedades Kähler con curvatura
seccional holomorfa constante se reducen a uno de los siguientes espacios: el espacio pro-
yectivo complejo, CP n (para curvatura positiva), el espacio euclidiano complejo, Cn (para
curvatura nula), y el espacio hiperbólico complejo, CHn (para curvatura negativa). Nos re-
ferimos a estos espacios como los espacios modelo complejos. En esta tesis nos centraremos
en el estudio de subvariedades con ciertas propiedades geométricas dentro de los espacios
modelo complejos no llanos, es decir, en CP n y CHn.

La acción de un subgrupo del grupo de isometŕıas de una variedad dada se conoce
como acción isométrica. Cada una de las órbitas de una acción isométrica recibe el nombre
de subvariedad extŕınsecamente homogénea o, simplemente, subvariedad homogénea. El
estudio de tales acciones en su total generalidad es un problema matemático complicado,
por ello se introduce el concepto de acción polar. Una acción polar no es más que una
acción isométrica que admite una subvariedad totalmente geodésica que interseca a to-
das las órbitas de la acción ortogonalmente. Las acciones polares han sido completamente
clasificadas en CP n y en CHn gracias a Podestà y Thorbergsson [93] (para el caso pro-
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yectivo), y a Dı́az-Ramos, Domı́nguez-Vázquez y Kollross [39] (para el caso hiperbólico).
Dichas clasificaciones serán fundamentales para nuestro trabajo. Se conoce como cohomo-
geneidad de una acción isométrica a la menor codimensión de sus órbitas. En particular,
debemos destacar que la cohomogeneidad de una acción polar coincide con la dimensión
de su sección.

A lo largo de la historia muchos matemáticos han intentado caracterizar ciertos tipos
de subvariedades homogéneas o, más generalmente, de subvariedades con alto grado de
simetŕıa a través de diferentes propiedades geométricas. Aśı, en esta tesis nos centraremos,
por un lado, en el estudio de hipersuperficies en los planos proyectivo e hiperbólico comple-
jos, CP 2 y CH2, dotadas de un alto grado de simetŕıa; más espećıficamente, estudiaremos
ciertas hipersuperficies que admiten una acción de cohomogeneidad uno inducida por una
acción polar de cohomogeneidad dos en el espacio ambiente. Por otro lado, nos intere-
sará caracterizar precisamente las órbitas principales de tales acciones polares mediante
propiedades como la de ser una subvariedad isoparamétrica.

A continuación presentamos la motivación matemática de este estudio, tratando de
explicar cómo un problema abierto que inicialmente decidimos abordar nos acabó condu-
ciendo a realizar la investigación que se expone en esta memoria.

Un teorema clásico dentro de la geometŕıa de superficies en R3 establece que una super-
ficie totalmente umb́ılica (esto es, una superficie con exactamente una curvatura principal)
en R3 es parte abierta de una esfera o de un plano; en particular, es parte abierta de una
superficie homogénea. También es bien conocido que este resultado puede ser extendido a
dimensiones mayores. Esto sugiere el problema de determinar en qué medida la propiedad
de tener un pequeño número fijo de curvaturas principales distintas impone restricciones
sobre la geometŕıa de una hipersuperficie. En el contexto de los espacios modelo complejos,
Tashiro y Tachibana [100] mostraron que no hay hipersuperficies reales totalmente umb́ıli-
cas en CP n y CHn. Más tarde, Cecil y Ryan [24] (para el caso proyectivo), y Montiel [86]
(para el caso hiperbólico), llevaron a cabo la clasificación de hipersuperficies reales con
exactamente dos curvaturas principales en CP n y CHn, n ≥ 3. Todos los ejemplos que
aparecen en dichas clasificaciones son Hopf, es decir, el campo de Reeb de tales hipersu-
perficies es campo de curvatura principal, y tienen curvaturas principales constantes, con
lo cual, son partes abiertas de hipersuperficies homogéneas, en vista de los trabajos de
Kimura [71] y Berndt [8]. Sin embargo, esta clasificación no está completa. Tal y como
establecen Niebergall y Ryan en [88, Problema abierto 9.2], los argumentos de Cecil, Ryan
y Montiel dejaban abierta la cuestión de la existencia y clasificación de las hipersuperficies
reales con dos curvaturas principales no constantes en dimensión n = 2. En el art́ıcu-
lo [41], cuyos resultados forman parte de esta tesis, mostramos que una hipersuperficie
real con dos curvaturas principales en CP 2 y CH2 puede tener curvaturas principales no
constantes; además, posteriormente, clasificamos tales hipersuperficies. De este modo se
completa la clasificación de hipersuperficies reales dentro de los espacios proyectivo e hi-
perbólico complejos con dos curvaturas principales y se muestra que no todos los ejemplos
son homogéneos.

Los ejemplos que aparecen en esta clasificación verifican una serie de propiedades in-
teresantes. Además de en nuestros ejemplos, estas propiedades están presentes en ciertas
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subvariedades homogéneas no Hopf de CHn, aśı como en los ejemplos de hipersuperficies de
cohomogeneidad uno con curvatura media constante construidos por Gorodski y Gusevskii
en [54]. Por tanto, es natural la idea de establecer un concepto nuevo que resuma estas
caracteŕısticas, al cual llamaremos hipersuperficie fuertemente 2-Hopf. Diremos que una
hipersuperficie M es fuertemente 2-Hopf si verifica que la menor distribución invariante
bajo el operador de configuración de M que contiene al campo de Reeb tiene dimensión
2, es integrable y además las curvaturas principales de M son constantes a lo largo de las
subvariedades integrales de tal distribución.

Gracias a este nuevo concepto, intentamos generalizar la construcción de hipersuper-
ficies reales con dos curvaturas principales no constantes, junto con los demás ejemplos
mencionados anteriormente. De esta manera llevamos a cabo la caracterización de las hi-
persuperficies fuertemente 2-Hopf en los planos proyectivo e hiperbólico complejos. Estas
hipersurperficies resultan ser, intŕınsecamente, de cohomogenidad uno y, de hecho, se ob-
tienen mediante el denominado método de geometŕıa equivariante aplicado a una acción
polar de cohomogeneidad dos. Con el fin de tener clasificaciones expĺıcitas y obtener ejem-
plos concretos, se imponen ciertas condiciones adicionales. En particular, para caracterizar
los ejemplos obtenidos por Gorodski y Gusevskii en [54], impusimos la propiedad de tener
curvatura media constante.

Estos resultados pusieron de manifiesto que la combinación del método equivariante
junto con la propiedad de ser fuertemente 2-Hopf daba lugar a una mejor comprensión de
todos estos ejemplos, y se presentaba como un método con cierta potencia a la hora de
generar nuevos ejemplos. Motivados por esto, y por el problema abierto de la existencia
de ejemplos de hipersuperficies Levi-llanas (es decir, foliadas por hipersuperficies comple-
jas) compactas sin singularidades en CP 2, abordamos el estudio de las hipersuperficies
fuertemente 2-Hopf que son Levi-llanas en CP 2 y CH2, pudiendo demostrar la existencia
de múltiples ejemplos, pero sólo a nivel local. Como mencionamos anteriormente, nuestro
objetivo es el de obtener ejemplos concretos, con lo cual imponemos ambas propiedades, es
decir, tener curvatura media constante y ser Levi-llana. Llegados a este punto, uno se da
cuenta de que una hipersuperficie real, fuertemente 2-Hopf, Levi-llana con curvatura media
constante resulta ser austera. Este concepto fue introducido por Harvey y Lawson [56] en
su estudio de variedades lagrangianas especiales, y fue definido como aquella hipersuper-
ficie cuyas curvaturas principales son invariantes bajo multiplicación por −1. Por tanto,
procedemos a la clasificación de las hipersuperficies austeras en CP 2 y CH2 cuyo vector
de Reeb proyecta en h = 1 o h = 2 espacios de curvaturas principales. Este resultado nos
proporcionó una interesante caracterización de tres importantes tipos de hipersuperficies
regladas (las hipersuperficies de Lohnherr, los conos de Clifford, y los bisectores) mediante
la propiedad de ser austeras.

La importancia de la geometŕıa de las órbitas principales de las acciones polares en
los ejemplos de hipersuperficies fuertemente 2-Hopf construidos nos llevó a preguntarnos
si seŕıa posible caracterizar tales órbitas mediante alguna propiedad geométrica adecuada.
Aśı, motivados por clasificaciones recientes de hipersuperficies isoparamétricas en CP n y
CHn, abordamos el estudio de las subvariedades isoparamétricas en los espacios modelo
complejos de dimensión dos, como primer paso hacia una comprensión de estos objetos en
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codimensión arbitraria.
Una hipersuperficie se denomina isoparamétrica si sus hipersuperficies equidistantes

próximas tienen curvatura media constante. La generalización de este concepto a codimen-
sión arbitraria fue desarrollada por Terng [101], aunque su definición fue dada para espacios
de curvatura constante. Hoy en d́ıa, tomamos como definición general de subvariedad iso-
paramétrica, en una variedad de Riemann cualquiera, la establecida por Heintze, Liu y
Olmos [57], que dice que una subvariedad es isoparamétrica si tiene fibrado normal llano,
sus subvariedades paralelas suficientemente próximas tienen curvatura media paralela y
además admite secciones.

El estudio de hipersuperficies isoparamétricas en los espacios proyectivos complejos se
deduce de la clasificación de hipersuperficies isoparamétricas en las esferas mediante un
detallado estudio de la correspondiente fibración de Hopf. La clasificación de hipersuperfi-
cies isoparamétricas en las esferas es un problema aún abierto. Los trabajos de Cecil, Chi
y Jensen [23], Immervoll [65], Chi [31], [32] y Miyaoka [84] completan la clasificación en
las esferas salvo el caso en que la hipersuperficie isoparamétrica tenga cuatro curvaturas
principales con multiplicidades (7, 8). Utilizando estos resultados, Domı́nguez-Vázquez [49]
obtuvo la clasificación de hipersuperficies isoparamétricas en CP n, n 6= 15 . En dicha cla-
sificación se muestra que existen numerosos ejemplos no homogéneos de hipersuperficies
isoparamétricas en CP n, pero no para n = 2. La clasificación de las hipersuperficies iso-
paramétricas en el espacio hiperbólico complejo ha sido obtenida recientemente por Dı́az-
Ramos, Domı́nguez-Vázquez y Sanmart́ın-López en [40]. En esta clasificación también se
muestra que existen ejemplos no homogéneos, pero de nuevo, todos los ejemplos en CH2

son homogéneos.
Para codimensión mayor, las subvariedades isoparamétricas en CP n han sido clasifica-

das por Domı́nguez-Vázquez también en el trabajo [49]. Nuevamente, aparecen ejemplos no
homogéneos. Para el caso de CHn, el problema de clasificar subvariedades isoparamétricas
de codimensión mayor que uno se vuelve mucho más complicado y permanece comple-
tamente abierto. En [42], cuyos resultados forman parte de esta tesis, llevamos a cabo la
clasificación de subvariedades isoparamétricas restringiéndonos al caso de dimensión n = 2,
como primer paso para una mejor comprensión de estos objetos en espacios de curvatura
no positiva. Además, estudiamos también la definición de isoparametricidad de Terng que,
a nuestro entender, aún no hab́ıa sido nunca estudiada en subvariedades de codimensión
mayor que uno en espacios de curvatura no constante.

En esta introducción hemos presentado la evolución cronológica de las investigaciones
que hemos venido desarrollando en estos años. Sin embargo, a lo largo de la tesis y en
busca de una mayor coherencia expositiva, usaremos un orden diferente. A continuación
resumimos los principales resultados obtenidos.

Subvariedades isoparamétricas en CP 2 y CH2

Motivados por la clasificación de hipersuperficies isoparamétricas en CP n y CHn, nos surge
la idea de generalizar esta clasificación a codimensión mayor. Como ya mencionamos, para
el caso de CP n tal clasificación fue realizada por Domı́nguez-Vázquez en [49]. Sin embargo
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para el caso hiperbólico el problema está abierto. Además, no está clara la relación entre
las definiciones de isoparametricidad de Terng por un lado, y de Heintze, Liu y Olmos
por otro, en espacios de curvatura no constante. En el Caṕıtulo 2 llevamos a cabo la
clasificación de subvariedades isoparamétricas en CH2, aśı como la de las subvariedades
Terng-isoparamétricas en CP 2 y CH2.

La clave para estas clasificaciones es el resultado principal obtenido en la Sección 2.2.
Dicho resultado nos permite establecer una relación entre ciertas propiedades que cum-
plen las superficies lagrangianas llanas con curvatura media paralela en CP 2 y CH2. Estas
superficies verifican tener segunda forma fundamental paralela, ser Terng-isoparamétri-
cas, isoparamétricas y ser parte abierta de una órbita principal de una acción polar de
cohomogeneidad dos en CP 2 y CH2.

De este modo, en la Sección 2.3 podemos establecer la clasificación de subvariedades
isoparamétricas y Terng-isoparamétricas en los planos proyectivo e hiperbólico complejos.
En tal clasificación obtenemos que una subvariedad isoparamétrica en CP 2 o CH2 es con-
gruente a una parte abierta de una órbita principal de una acción polar. Para el caso de sub-
variedades Terng-isoparamétricas, obtenemos que una subvariedad es Terng-isoparamétrica
en CP 2 o CH2 si, y sólo si, es una subvariedad isoparamétrica, una superficie de Chen en
CH2, o un ćırculo.

La superficie de Chen, construida por primera vez en [26], es una subvariedad ho-
mogénea que no es órbita de ninguna acción polar, y para la cual, en la Sección 2.3 damos
una descripción mediante grupos de Lie, distinta a la proporcionada por Chen.

Hipersuperficies fuertemente 2-Hopf en CP 2 y CH2

Como ya mencionamos, con el fin de generalizar ciertos ejemplos obtenidos en [41], [54],
y ciertos ejemplos de hipersuperficies homogéneas no Hopf [12], en el Caṕıtulo 3 llevamos
a cabo la caracterización de las hipersuperficies fuertemente 2-Hopf en CP 2 y CH2. Para
ello haremos uso del método de geometŕıa equivariante aplicado a acciones polares de
cohomogeneidad dos sobre CP 2 y CH2.

En primer lugar, y con el objetivo de construir nuestros ejemplos, debemos considerar
una acción polar sobre nuestra variedad ambiente, de cohomogeneidad dos. La idea detrás
de esta construcción es la siguiente: tomamos una curva en la parte regular de la sección
de la acción polar y consideramos la unión de las órbitas principales de la acción polar a
través de dicha curva. Esta unión da lugar a una hipersuperficie con al menos dos curvaturas
principales distintas. Genéricamente, esta hipersuperficie tendrá tres curvaturas principales
y será fuertemente 2-Hopf.

Ahora supongamos que tenemos una hipersuperficie fuertemente 2-Hopf en CP 2 o CH2.
Tras una serie de cálculos, probamos la existencia de dos distribuciones perpendiculares
sobre la hipersuperficie, las cuales son integrables y de dimensiones 1 y 2. La distribución
2-dimensional verifica que sus subvariedades integrales son subvariedades de la variedad
ambiente totalmente reales, equidistantes y llanas, con segunda forma fundamental paralela
y fibrado normal llano. A su vez, cada una de las curvas integrales de la otra distribución
está contenida en una subvariedad totalmente geodésica y totalmente real del espacio
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ambiente. Utilizando entonces el resultado obtenido en la Sección 2.2 se puede probar que la
hipersuperficie está foliada por órbitas principales de una acción polar de cohomogeneidad
dos, y aśı, puede ser construida por el método que describimos anteriormente.

La construcción de hipersuperficies reales con dos curvaturas principales en CP 2 y CH2

es un caso particular de la construcción de hipersuperficies fuertemente 2-Hopf. Aśı, en la
Sección 3.4, usamos el método de geometŕıa equivariante aplicado a acciones polares de
cohomogeneidad dos sobre CP 2 y CH2, y observamos que el hecho de que la hipersuperficie
resultante tenga exactamente dos curvaturas principales distintas es equivalente a que la
curva escogida en la sección satisfaga una cierta ecuación diferencial ordinaria. De este mo-
do se proporciona un método para la construcción de hipersuperficies con dos curvaturas
principales. Genéricamente, tales hipersuperficies son no Hopf, y por tanto, constituyen
ejemplos nuevos. A continuación, tras extraer la suficiente información de las ecuaciones
fundamentales de la geometŕıa de subvariedades, conseguimos probar que una hipersuper-
ficie con dos curvaturas principales distintas y que es no Hopf en todo punto es fuertemente
2-Hopf y, por tanto, puede ser construida por el método de geometŕıa equivariante a partir
de cierta curva en la sección de una acción polar.

Como ya mencionamos, estos son los primeros ejemplos de hipersuperficies reales con
exactamente dos curvaturas principales distintas y no constantes en CP 2 y CH2, por lo
que respondemos a la pregunta presentada por Niebergall y Ryan en [88]. Además, en la
Sección 3.4 también daremos una construcción expĺıcita de estas hipersuperficies para el
caso del plano proyectivo complejo.

A continuación, en la Sección 3.5 nos centramos en el estudio de las hipersuperficies
austeras en los planos proyectivo e hiperbólico complejos. Después de probar que no existen
ejemplos Hopf, y tras obtener una descripción expĺıcita de la conexión de Levi-Civita de
la hipersuperficie, conseguimos probar que todos los ejemplos posibles de hipersuperficies
austeras cuyo vector de Reeb proyecta en dos espacios de curvaturas principales en CP 2 y
CH2 son reglados. En este caso, decimos que una hipersuperficie es reglada en el sentido
de que su distribución compleja maximal es integrable y sus subvariedades integrales son
totalmente geodésicas en el espacio ambiente. Por tanto, la clasificación se sigue de la
clasificación de hipersuperficies regladas minimales obtenida por Lohnherr y Reckziegel
en [79]. Los ejemplos que aparecen en esta clasificación son los siguientes: la denominada
hipersuperficie de Lohnherr en CH2, un cono de Clifford en CP 2 o CH2 y un bisector en
CH2.

Finalmente, aplicamos los resultados obtenidos para estudiar las hipersuperficies fuer-
temente 2-Hopf que además tienen curvatura media constante o bien son Levi-llanas. Que
nuestra hipersuperficie verifique alguna de estas propiedades es equivalente al hecho de que
la curva usada en el proceso de construcción de los ejemplos de hipersuperficies fuertemen-
te 2-Hopf satisfaga una cierta ecuación diferencial ordinaria. El resultado de existencia y
unicidad para ecuaciones diferenciales ordinarias permite caracterizar estos ejemplos.

Por último, probamos que una hipersuperficie real fuertemente 2-Hopf, Levi-llana y
con curvatura media constante en CP 2 o CH2 es austera. De este modo, el resultado de
clasificación de hipersuperficies austeras obtenido previamente nos permite concluir este
estudio.
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Estructura de la tesis

Esta memoria se organiza como sigue.
En el Caṕıtulo 1 se introducen los conceptos básicos, terminoloǵıa y convenios necesarios

para la realización de esta tesis. Dicho caṕıtulo se divide en los siguientes temas: variedades
semi-riemannianas (§1.1), geometŕıa de subvariedades (§1.2), foliaciones riemannianas sin-
gulares (§1.3), subvariedades isoparamétricas (§1.4), acciones isométricas (§1.5), espacios
modelo complejos (§1.6) y acciones polares (§1.7).

Los siguientes caṕıtulos contienen las clasificaciones y contribuciones principales de esta
tesis.

En el Caṕıtulo 2 se lleva a cabo la demostración del que es, tal vez, el resultado central
de esta tesis (§2.2), que en particular garantiza que una superficie lagrangiana llana con
curvatura media paralela en CP 2 o CH2 es una parte abierta de una acción polar de
cohomogeneidad dos. Posteriormente, se da una descripción de la superficie de Chen como
órbita de una acción isométrica (§2.3.1), y se obtienen la clasificación de subvariedades
isoparamétricas (§2.3.2) y Terng-isoparamétricas (§2.3.3) en CP 2 y CH2.

Finalmente, el Caṕıtulo 3 se centra en el estudio de cierto tipo de hipersuperficies reales
construidas mediante el método de geometŕıa equivariante aplicado a acciones polares en
CP 2 y CH2. Aśı, primero se describe la construcción de tales hipersuperficies mediante
este método (§3.1). Posteriormente se procede a realizar los cálculos necesarios con el
fin de determinar expĺıcitamente la conexión de Levi-Civita de una hipersuperficie real
cuyo campo de Hopf tiene exactamente h = 2 proyecciones no triviales en los espacios
de curvatura principal (§3.2). Finalmente se obtienen los siguientes resultados relativos a
hipersuperficies reales en los planos proyectivo e hiperbólico complejos: la caracterización
de las hipersuperficies fuertemente 2-Hopf (§3.3), la clasificación de las hipersuperficies
con dos curvaturas principales (§3.4), la clasificación de las hipersuperficies austeras con
h ≤ 2 (§3.5), aśı como la caracterización de las hipersuperficies fuertemente 2-Hopf con
curvatura media constante, la caracterización de las hipersuperficies fuertemente 2-Hopf
y Levi-llanas, y la clasificación de las hipersuperficies fuertemente 2-Hopf, Levi-llanas con
curvatura media constante (§3.6).
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