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Editors’ introduction

Dear colleagues, It is our pleasure to welcome you to Santiago de Compostela for the
24th Conference on Applications of Computer Algebra – ACA 2018.

The ACA conference series is devoted to promoting all manner of computer alge-
bra applications, and encouraging the interaction of developers of computer algebra
systems and packages with researchers and users (including scientists, engineers, ed-
ucators, etc.). Topics include, but are not limited to, computer algebra in the sciences,
engineering, medicine, pure and applied mathematics, education and computer sci-
ence.

ACA Conferences are run in different Special Sessions. In ACA 2018, the fol-
lowing 12 Special Sessions have been accepted:

S01 General Session.

Organized by Michael Wester.

S02 Computer Algebra Modeling in Science and Engineering.

Organized by Alexander Prokopenya and Haiduke Sarafian.

S03 Computer Algebra in Education.

Organized by Michel Beaudin, Michael Wester, Alkis Akritas, Elena Varbanova,
Noah Dana-Picard, Sara Hershkovitz and Anatoli Kouropatov.

S04 Applied and Computational Algebraic Topology.

Organized by Graham Ellis, Marian Mrozek, Aniceto Murillo, Pedro Real and
Eduardo Sáenz de Cabezón.

S05 Computer Algebra for Dynamical Systems and Celestial Mechanics.

Organized by Victor Edneral, Nikolay Vassiliev and Aleksandr Mylläri.

S06 Computational Differential and Difference Algebra.

Organized by Vladimir Gerdt, Alexander Levin and Daniel Robertz.

S07 Algebraic and Algorithmic Aspects of Differential and Integral Operators.

Organized by Moulay Barkatou, Thomas Cluzeau, Georg Regensburger and
Markus Rosenkranz.

S08 Dynamic Geometry and Mathematics Education.

Organized by Tomás Recio, Philippe R. Richard and M. Pilar Vélez.

S09 Computer Algebra in Coding Theory and Cryptography.

Organized by Irene Márquez Corbella and Emilio Suárez Canedo.

13

AURELIOF.BARREIRO
Nota adhesiva
Marked definida por AURELIOF.BARREIRO



S10 Parametric Polynomial Systems.

Organized by Yosuke Sato and Katsusuke Nabeshima.

S11 Algorithms for Zero-Dimensional Ideals.

Organized by Vincent Neiger, Hamid Rahkooy and Éric Schost.

S12 Numerical Differential and Polynomial Algebra.

Organized by Greg Reid and Zahra Mohammadi.

From the very beginning, ACA Conferences have been a very important meeting
point for professionals in the use of Computer Algebra in different fields. In this
occasion, ACA 2018 has joined 120 participants from 25 different countries and 122
contributions have been accepted by session organizers.

This proceedings book contents abstracts of the 117 contributions presented at the
conference, together with the four invited plenary talks and the sponsor presentation.
When there are two o more authors, the name of the presenter is underlined.

The editors thank the organizers of the sessions for their good work and all the
participants for their interest and contribution to make this meeting a very important
event.

Santiago de Compostela, June 2018

The editors:
Francisco Botana

Felipe Gago
Manuel Ladra
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Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

Applications of Computer Algebra to Verification and
Satisfiability Checking

James H. Davenport1

Boolean Satisfiability Checking is one of the paradoxes of computer science: on 
the one hand it (as 3-SAT) is the quintessential NP-complete hard problem, on the 
other hand, problems with millions of instances are solved routinely. If we ask for 
(semi-)algebraic satisfiability over the reals, the quantified worst case complexity 
be-comes doubly exponential. While computer algebraists wrestle with this 
complexity, the Satisfiability Modulo Theories community has been working away 
pragmatically, using very different success criteria, and applying their techniques, 
especially in soft-ware and system verification. However, they could learn more 
from Computer Alge-bra, and we could learn from them. This talk will outline some 
of these directions.

1Department of Computer Sciences
University of Bath
Bath, United Kingdom
J.H.Davenport@bath.ac.uk

mailto:J.H.Davenport@bath.ac.uk


Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

SAT Solvers and Computer Algebra Systems:
A Powerful Combination for Mathematics

Vijay Ganesh1

In recent years we have witnessed a dramatic improvement in the performance of
Boolean SAT solvers, despite the fact that the Boolean satisfiability problem is NP-
complete [1, 2]. While SAT solvers are powerful combinatorial search algorithms,
they are weak when it comes to domain-specific mathematical knowledge. On the
other hand, computer algebra systems (CAS) are deep repositories of mathemati-
cal knowledge and contain many sophisticated mathematical algorithms. However,
computer algebra systems are not as strong at combinatorial search as SAT solvers.
Motivated by problems that require both powerful search and deep knowledge, we
propose a SAT+CAS combination method that brings together the best of both these
worlds aimed at solving problems in combinatorial mathematics.

In this talk I will present a SAT+CAS system, MathCheck [3, 4], that we de-
veloped and used to counterexample many combinatorial conjectures, most notably
the Williamson conjecture. I will discuss the internals of MathCheck, how it can be
used, and most importantly, how mathematicians can extend such SAT+CAS tools to
tackle a variety of problems. I will also argue that we are witnessing a new long-term
paradigmatic shift, wherein, previously unrelated methods such as solvers and CAS
are being profitably combined to tackle hard mathematical problems.

Keywords: Boolean SAT solvers, Computer algebra systems, Combinatorial math-
ematics

Mathematics Subject Classification 2010: 68, 05
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Dealing with real algebraic curves and surfaces for
discovery: from experiments to theory and applications

Laureano Gonzalez-Vega1

Geometric entities such as the set of the real zeros of a bivariate equation or the
image in of a rational parametrization can be treated algorithmically in a very effi-
cient way by using a mixture of symbolic and numerical techniques. This implies
that it is possible to know exactly which is the topology (connected components and
their relative position, connectedness, singularities, etc.) of such a curve or surface
if their equations are known in an exact manner (whatever this means) for moderate
or high degrees. We would describe several different “experiments” coming from
Algebraic Geodesy and Computer Aided Design that highlight how new visualisa-
tion tools in Computational Mathematics mixing symbolic and numerical techniques
allow to perform experiments conveying either to mathematical discoveries and/or to
new computational techniques useful in applications.

1Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain

laureano.gonzalez@unican.es

mailto:laureano.gonzalez@unican.es


Applications of Computer Algebra – ACA2018
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Automatic Geometric Theorem Proving and Discovering
Using (Comprehensive) Groebner Bases

Dingkang Wang1

Automatic geometric theorem proving and discovering is to prove and derive
mathematical theorems by computer programs, which has been studied for several
decades. It can be traced back to the great work of Tarski, Seidenberg, Gelern-
ter,Collins,Wu and so on. The extensive study in this research field is due to the
introduction of Wu’s method in later 1970s, which is surprisingly efficient for prov-
ing difficult geometric theorem. First, I will introduce our work on discovering ge-
ometric theorems by using the comprehensive Groebner systems, i.e. finding some
complementary conditions such that the geometric statement will become true under
the original hypotheses and these complementary conditions. Particularly, efficient
algorithms for computing comprehensive Groebner systems/bases are also reviewed.
Second, I will investigate the problem whether the conclusion is true on some com-
ponents of the hypotheses for a geometric statement. In that case, the affine variety
associated with the hypotheses is reducible. A polynomial vanishes on some but not
all the components of a variety if and only if it is a zero divisor in a quotient ring
with respect to the radical ideal defined by the variety. Based on this fact, we present
an algorithm to decide if a geometric statement is only true on components. Be-
sides proving theorems, the parametrical extension of this method can also be used
to discover new geometric theorems. That is, we can find out complementary condi-
tions such that the geometric statement becomes true or true on components. Some
illustrative examples will be presented to show how the method works.

This is joint work with Deepak Kapur, Yao Sun and Jie Zhou.

Keywords: Automatic Proving and Discovering, Geometric Theorem, Groebner
Bases

1KLMM, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing 100190, China
School of Mathematical Sciences, University of Chinese Academy of
Sciences, Beijing 100049, China

dwang@mmrc.iss.ac.cn

mailto:dwang@mmrc.iss.ac.cn
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Applications of Computer Algebra – ACA2018
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New features in Maple 2018

Daniel Skoog1

We will present an overview of new features in Maple 2018 including updates
to the Maple interface such as the context panel, improved tools for writing Maple
code, and options for protecting your content. We will also discuss improvements
and additions in areas such as interpolation, calculations with units, date and time,
thermochemical computations, computational geometry, symbolic integration, and
discuss some applications.

1Maple Product Manager
Maple at Maplesoft
Waterloo, Ontario, Canada



S1
General Session

This session is for talks that do not fit into any of the other ACA sessions. All pro-
posals in the scope of the conference are welcome.

24



Applications of Computer Algebra – ACA2018
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Randomized Algorithms for Normal Basis in Characteristic
Zero

Mark Giesbrecht1, Armin Jamshidpey1, Éric Schost1

For a finite Galois extension K/F with G = Gal(K/F ), there exists an element
α ∈ K such that its conjugates form an F -basis of K (as a vector space)[4, Theorem
6.13.1]. Having such a basis, which is known as normal basis, is useful for certain
computational purposes.

There are efficient algorithms for constructing a normal basis in positive char-
acteristics. For a deterministic algorithm see [1] and for randomized algorithms see
[6] and [3]. In characteristic zero, deterministic algorithms are introduced in [2] and
[5](for abelian extensions).

Our aim is to introduce randomized algorithms for constructing a normal basis
in characteristic zero. We will present an algorithm for cyclic extensions and more
generally abelian extensions. We also give a solution for Galois extensions with
dihedral group as Galois group.

Keywords: Normal Basis, Cyclic Extension, Abelian Extension
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Computer Algebra and Computer Science

Gereon Kremer1

Certain fields within computer science commonly make use of methods from computer
algebra. A prominent example for that is satisfiability modulo theories (SMT) solving that
extends the traditional question of satisfiability of propositional logic formulas to first-order
theories. We consider nonlinear real problems in particular which produces a need for meth-
ods to deal with nonlinear real constraints.

This topic is also an important topic in computer algebra, a community that deals with
very similar questions but is surprisingly disjoint from the SMT solving community. The
disjointness of these groups used to be a significant obstacle for any transfer of knowledge.
The SC2 project tries to resolve this hurdle by forging new collaborations between the com-
munities of satisfiability checking and symbolic computation.

We present SMT solving as an application of methods from computer algebra and mo-
tivate functional requirements and use cases for these methods that are uncommon but very
important for SMT solving. Though we can modify existing methods to a certain degree, we
as computer scientists depend on the computer algebra community to solve some issues. We
show several projects that yielded successful adaptations of methods like Gröbner bases [2],
virtual substitution [1] or cylindrical algebraic decomposition [3] to our applications.

Finally we give examples of existing implementations of methods from computer algebra
CoCoALib and Maple – that we struggled to integrate in a meaningful way. We provide

insights into the actual problems and hope to suggest new directions of research that ease the
cooperation between computer science and computer algebra in the future.

Keywords: Computer Algebra, Computer Science, Satisfiability Modulo Theories Solving,
Gröbner Bases, Cylindrical Algebraic Decomposition, Virtual Substitution
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Conversion of element representations in Galois rings

Juan Carlos Ku-Cauich1, Guillermo Morales-Luna2

A Galois ring is a finite ring with unity such that the divisors of zero, together
with zero itself, form a principal ideal, generated by an element of the form pe, where
e is the ring unit and p is a prime number. For any prime p and two integers s,m, the
map

πp : Zps [X]→ Fp[X] , g(X) =
m−1∑
j=0

ajX
j 7→ g(X) mod p =

m−1∑
j=0

(aj mod p)Xj ,

is a ring homomorphism. An irreducible polynomial h(X) ∈ Zps [X] is basic if
πp(h(X)) is irreducible in Fp[X] and in this case Zps/〈h(X)〉 is a Galois ring,
denoted GR(ps,m). Let η = X + 〈h(X)〉 ∈ GR(ps,m), then h(η) = 0 and
Fpm ≈ [Zp[X]/〈πp(h(X))〉]. Hence, GR(ps,m) = Zps [η] and each element in the
Galois ring can be written in an additive form:

∑m−1
j=0 ajη

j , with aj ∈ Zps .
A polynomial g(X) ∈ Zps [X] is basic primitive if πp(g(X)) is primitive in

Fp[X]. It is well known [4] that there is an element ξ ∈ GR(ps,m) and a basic prim-
itive polynomial g(X) ∈ Zps [X] of degree m such that o(ξ) = pm − 1, g(ξ) = 0,
g(X)|(Xpm−1 − 1) in Zps [X] and the following two properties hold:

• GR(ps,m) = Zps [ξ]

• Each element inGR(ps,m) can be written uniquely in a p-adic form:
∑s−1

k=0 bkp
k,

with bk ∈ T (g(X)), where T (g(X)) = {0} ∪
(
ξi
)pm−2

i=0
is a Teichmüller set.

Each primitive polynomial in Fp[X] characterizes a set of basic primitive polynomi-
als in Zps [X], namely its inverse image under the projection πp. The p-adic repre-
sentation depends on the chosen basic primitive polynomial.

We have developed a series of programs, basically in sage, to find monic basic
primitive polynomials and convert additive representations into p-adic representa-
tions of the Galois ring elements, and conversely.

For any m ∈ Z+ there is [2] a monic primitive polynomial fpm(X) ∈ Fp[X]
dividing Ppm(X) = Xpm−1 − 1 in Fp[X]. Then, by Hensel Lift [3] there is a
monic basic primitive polynomial fpsm(X) ∈ Zps [X] dividing Ppm(X) in Zps [X]
with projection fpm(X). Since fpm(X) ∈ Fp[X] is irreducible with no multiple
roots, the polynomial fpsm(X) ∈ Zps [X] is unique [4]. Hence, a natural correspon-
dence fpm(X) ↔ fpsm(X) arises, and in most cases it is not the identity, namely
fpm(X) 6= fpsm(X) in Zps [X].



In the worst case, for small values ofm and s the search of the Hensel lift polyno-
mial fpsm(X) ∈ Zps [X] can be done exhaustively. Alternatively, a list [2] of monic
primitive polynomials in the ring Fp[X] may be provided in order to consider the
inverse images of those polynomials under the projection modulus p.

The interest in finding effective and efficient representation conversions is due to
the implementation of authentication codes based on the Gray transform [1].

Keywords: Galois rings, Teichmüller elements, symbolic computation
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Automatic generation of diagrammatic subway maps for
any date with Maple

Alberto Almech1, Eugenio Roanes-Lozano2

The second author was one of the authors of a computer package written in Maple
that could automatically generate railway maps of a network for any date. This pack-
age was presented at ACA’2008 and its design and implementation is described in
[1]. Each section of the network was coloured accordingly to its characteristics (sin-
gle / double track, electrified / non electrified, opened / closed / greenway,...). The
position of the nodes (stations, junctions,...) was obtained from a list of geographical
coordinates.

The work presented here deals with a similar although not identical case: subway
networks are treated as graphs with the help of a computer algebra system in order to
obtain the diagrammatic map for any date.

Most metro network plans follow more or less closely the ideas introduced by
Harry Beck in his diagrammatic design of London subway map (the distances be-
tween stations and geographic orientation of the lines don’t have to be respected, as
the clarity and the number of stations between two stations is the key information to
be visualized).

Therefore allocating nodes is far simpler, and we have decided to manually allo-
cate the stations on a predefined grid.

The situation is also simpler because all lines are double track and electrified.
For instance in Madrid subway there are minor differences between lines, such as
the kind of catenary (classic or rigid), the gauge (narrow / broad),... that will not be
considered here. Each node and edge of the graph has dates associated: inauguration
date / closure date –the latter if applies.

The package takes advantage of the simplifications w.r.t. [1] mentioned above
and the features of Maple’s Networks package. This way the approach, although
general, can be implemented in relatively few lines of code.

We know of no other similar works.
The work is illustrated with the case of Madrid subway network, one of the

biggest ones in the world.

Keywords: Graph theory, Network models, Diagrammatic maps, Subways
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Detecting truth, just on parts, in automated reasoning in
geometry∗

Zoltán Kovács1, Tomás Recio2 and M. Pilar Vélez3

We introduce and discuss, through a computational algebraic geometry approach,
the automatic reasoning handling of propositions that are simultaneously true and
false over some relevant collections of instances. A rigorous, algorithmic criterion
is presented for detecting such cases, and its performance is exemplified through the
implementation of this test on the dynamic geometry program GeoGebra.

The algebraic geometry approach to automated reasoning in geometry proceeds
by translating a geometric statement {H ⇒ T} into polynomial expressions, after
adopting a coordinate system. Then, the geometric instances verifying the hypotheses
can be represented as the solution of a system of polynomial equations V (H) =
{h1 = 0, . . . , hr = 0} (hypotheses variety) they are represented algebraically by
the ideal (of hypotheses) H = 〈h1 = 0, . . . , hr = 0〉 generated by such polynomials.
Analogously, the thesis is represented as the solution of a polynomial V (T ) = {f =
0}, describing the hypotheses (resp. the thesis) variety.

Thus, when V (H) ⊆ V (T ) we can say that the theorem is always true. But
this fact rarely happens, even for well established theorems, because the algebraic
translation of the geometric construction described by the hypotheses usually forgets
explicitly excluding some degenerate cases, cf. [4].

Thus, a delicate, but more useful, approach for automated reasoning consists in
exhibiting, first, a collection of independent variables modulo H , so that no polyno-
mial relation among them holds over the whole V (H) (independent variables modulo
H). Now, the irreducible components of V (H) where these variables do remain in-
dependent are assumed to describe non-degenerate instances.

Accordingly, a statement is called generally true if the thesis holds, at least, over
all the non-degenerate components. On the other hand, if over each non-degenerate
component the thesis does not identically vanish, the statement is labeled as generally
false. Remark that this last includes the always false case, where the thesis does not
hold at all. A more detailed description of this quite established terminology (with
small variants) can be consulted, for instance, at [6], [3] or [7]. It follows from the
definition that to be generally true and to be generally false are incompatible.

However—and this is the object of interest in this talk—there are statements
which happen to be, simultaneously, not generally true and not generally false, i.e. state-
ments that are true, just on some components. Recently, in [7], a new terminology
∗Partially supported by the Spanish Research Project MTM2017-88796-P Computación simbólica:

nuevos retos en álgebra y geometría y sus aplicaciones



to describe such cases has been introduced, labelling as generally true on compo-
nents or, simply, as true on components; moreover [7] presents an algorithmic test to
check this property. We have decided—for the better comprehension of this notion
by general users of dynamic geometry programs implementing this feature, such as
GeoGebra—to label such statements in a more colloquial way, as statements true on
parts, false on parts, in some specific sense we will describe in detail below.

Let us first start analyzing a simple example. Consider points A(0, 0), B(2, 0)
in the plane and construct circles c = (x − 0)2 + (y − 0)2 − 3 and d = (x −
2)2 + (y − 0)2 − 3, i.e. circle c is centered at A and circle d is centered at B and
both have the same radius r =

√
3. Finally, we consider the two points of intersec-

tion of these circles, namely, E(u, v) and F (m,n). Thus, the hypotheses ideal is〈
u2 + v2 − 3, (u− 2)2 + v2 − 3,m2 + n2 − 3, (m− 2)2 + n2 − 3

〉
.

The thesis states the parallelism of the lines AE and BF , that is, the vanishing of
the polynomial u·n−v ·(m−2). The ideal of hypotheses is clearly zero-dimensional,
so there are no independent variables, nor degenerate components. Its primary com-
ponents, over the rationals, are〈

v − n, (m− 2)2 + n2 − 3, (u− 2)2 + v2 − 3,m2 + n2 − 3, u2 + v2 − 3
〉〈

v + n, (m− 2)2 + n2 − 3, (u− 2)2 + v2 − 3,m2 + n2 − 3, u2 + v2 − 3
〉
.

It easy to check that the thesis is false over the first one and true over the second. This
a clear, simple example of a neither true nor false, i.e. of a true on components, state-
ment arising in an elementary geometry context (see other, less artificial examples in
[6, 1]).

Obviously, since the idea of true on components, or true on parts, false on parts,
is based on the concepts of degeneracy and of irreducible component, it follows that
both the choice of the field over which the prime decomposition is performed (for ex-
ample, the ideal H of the previous example has four components instead, if Q(

√
2)

is considered as base field) and the choice of the independent variables –which deter-
mine which components are to be considered as degenerate– could be essential.

About this last issue we would like to remark that when dealing with geometric
statements it seems logical to take as independent variables the coordinates of the
free points in the geometric construction we are dealing with; and we expect that its
cardinality is the dimension of the hypotheses ideal. In most cases this “intuitively”
maximal set of independent variables is maximum-size, but there are examples in
which the coordinates of the free points in the geometric construction do not pro-
vide a maximum-size set of independent variables. See, for instance, Example 7 in
[4], concerning Euler’s formula regarding the radii of the inner and outer circles of
a triangle with vertices (−1, 0), (1, 0), (u[1], u[2]). Here the dimension of the hy-
potheses variety is expected to be 2 (referring to the two coordinates of the only
free vertex of the triangle), but applying the algebraic definition of independence it
turns out to be three. . . , unless it is explicitly required, and added as a new hypoth-
esis, that (u[1], u[2]) does not lie in the x-axis! This is a quite common problem—



related, as mentioned above, to the difficult a priori control and detail of all geometric
degeneracies—and is already considered in the basic reference of [2].

The aim of this talk is to justify the specific interest of statements that, according
to our terminology, are simultaneously true on parts, false on parts statements in the
context of automated reasoning in geometry, pointing out the subtle, involved, issues
deriving from the quirky algebraic behavior described in some of the examples above,
as well as exhibiting a new, simpler way, of testing if a statement is true and false on
parts, by just detecting if a pair of elimination ideals are zero or not. This test has
been implemented in the dynamic geometry software GeoGebra and some illustrative
examples can be found in https://www.geogebra.org/m/zpDq7taB.

This extended abstract is based on a recent work by the authors [5].

Keywords: geometry theorem proving and discovery, elementary geometry, Gröb-
ner basis, elimination, true on components, GeoGebra
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S2
Computer Algebra Modeling in Science and
Engineering

The progressive impact of the Computer Algebra Systems (CAS) in science-based
disciplines vividly is noticeable. It is rare to encounter a scientific investigation that
is immune from its beneficial influences. Symbolic capabilities of the CAS pro-
vides forum to perform amazing calculations that practically are impossible other-
wise. Within the last 25 years, applications of the CAS are extended beyond the
peculiarities of scientific disciplines such as: biology, chemistry, microbiology, and
physics, and has become the tool of the choice for analyzing engineering and math-
ematical challenging problems. For instance, dynamic simulations of engineering
issues are addressed and mathematical conjectures are formulated and verified. Ap-
plications of the CAS lend it beyond the researchers’ tools and have become powerful
pedagogical instruments. The latter is suitable to engage the computer savvy genera-
tion promoting the discipline of interest.

The purpose of organizing this session is to bring together enthusiastic users of
the Computer Algebra Systems in science, engineering and mathematics. Expected
topics of presentations include (but are not limited to):

• Symbolic and numerical methods solving ODEs

• Modeling and simulation in physics

• Simulation of quantum computation

• Perturbation theories

• Stability and motion control

• Applications in biology, chemistry, and microbiology

• Modeling in finance and economics
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To analysis of the tunneling effect
through Schwarzschild barrier for spin 1/2 particles

A. V. Chichurin1, E. M. Ovsiyuk2, V. M. Red’kov3

For massless Dirac particle, the general mathematical and numerical study of the
particle tunneling process through effective potential barrier generated by Schwarzschild
black hole background is done. The study will be based on the use of 8 Frobenius
solutions of related 2-nd order differential equations with nonregular singularities of
the rank 2. We construct these solutions in explicit form and prove that power se-
ries involved in them are converged in all physical regions of the physical region of
the variable r ∈ (1,+∞). Results for tunneling effect significantly differ for two
situations: one when the particle falls on the barrier from within and another when
the particle falls from outside. The main novelty of the study consists in the use of
8 Frobenius solutions. Mathematical structure of the derived asymptotic relations is
exact, however analytical expressions for involved convergent powers series are not
known, and further study is based on numerical summing the series.

Keywords: Dirac particle, Schwarzschild field, tunneling process, Frobenius solu-
tions, reflection coefficient
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Numerical study of multiphase flow and viscous fingering in
a heterogeneous porous medium

Hassane DJEBOURI1, Salah ZOUAOUI1, Kamal MOHAMMEDI2 and Ali
BILEK1

This work deals with the numerical study of an immiscible water-oil displacement
through a porous medium. This type of flow finds its application in many industrial
processes [1]. The purpose of this work is to see the effect of the heterogeneity of the
porous medium on the instability of the interface of the two fluids. This instability
develops by the formation of viscous fingering at the interface [2].
The first work on this phenomenon began in the fifties (1951), but it still remains a
topic of interest for many researchers [2]. In order to investigate the effect of the
heterogeneity of the medium on this phenomenon, four cases are considered: the first
one is a reference case where the porous medium is homogeneous. For the second
and the third case, the medium is composed of two zones of the same porosity but
of different permeability. The ratio of permeability between the two zones is equal
to 1/3. In the second case, the injection is made in the zone that has the higher
permeability and inversely in the third case.
In the last case we are interested in a fractured porous medium. The fracture has an
opening of 2cm located in the middle of the domain (see figure 1).

Mathematical model

The studied domain is two-dimensional Ω ∈ R2. The mass conservation equations
supplemented by Darcy’s law allows to write [3]:

∂(φ.ρi.Si)

∂t
−∇.

(
ρi

K.Kri

µi
(∇Pi)

)
= 0 i = oil, water (1)

Where φ and K are respectively the porosity and the permeability of the porous
medium. Kri, Si, ρi and µi are respectively the relative permeability, the satura-
tion, the density and the viscosity of the i phase.
This system of equations is completed by the following relations:

So − Sw = 1 (2)

Kri = Kri(Sri) (3)

Pc = Po − Pw (4)

The Corey and CSF (Continuum Surface Force) models are used to calculate relative
permeability and capillary pressure, respectively.
The initial conditions as well as the boundary conditions are:



• At t = 0, the medium is completely saturated with oil then: So = 1.

• The boundaries of the domain are impervious: ∂Si
∂n = 0 et ∂Pi∂n = 0.

• Injection and production point pressures are 1.79MPa and 1.31MPa.

Figure 1: Different porous media studied

Table 1: Physical properties of porous media

Résultats

The finite volume method is used to solve this problem. Some results are presented:

Figure 2: Displacement fronts and fingering patterns for medium1 at different times

Figure 3: Displacement fronts and fingering patterns for medium2 at different times

The following observations are made:



Figure 4: Displacement fronts and fingering patterns for medium3 at different times

Figure 5: Number of fingers formed as a function of the square root of the dimen-
sionless time for media 1, 2 and 3

• The characteristics of the porous medium modify the behavior of the water-oil
interface and the appearance of breakthrough. This result is in agreement with
previous studies.

• Viscous fingers tend to develop almost linearly according to the square root
of time. These observations are in contradiction with the results of (Milad
Arabloo et al, 2015) but in good agreement with the experimental results of de
(Yadali Jamaloei et al, 2010) and (Shokrollahi et al, 2013).

Keywords: heterogeneous porous media, multiphase flow, viscous fingering, frac-
ture
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Leap-Frog Algorithm for interpolating reduced sparse data
Ryszard Kozera1,2,3, Lyle Noakes3

We discuss the problem of fitting ordered data pointsM = {xi}ni=0 (with n ≥
2) from arbitrary Euclidean space Em. The class IT of piecewise C2 interpolants
γ : [0, T ] → Em (where 0 < T < ∞) to interpolate reduced data M admits free
knots T = {ti}ni=0 satisfying γ(ti) = xi (here t0 = 0 and tn = T are fixed). More
precisely, it is assumed here that any choice of ordered interpolation knots {ti}ni=0

together withM generates a curve γ ∈ C1([0, T ]) which is also C2 over each sub-
segment (ti, ti+1) (where i = 0, 1, . . . , n − 1). A standard result (see [1] or [2])
claims that for given fixed knots {ti}ni=0 the optimal curve γopt ∈ IT to minimize:

JT (γ) =

n−1∑
i=0

∫ ti+1

ti

‖γ̈(t)‖2dt , (1)

coincides with the unique natural cubic spline γopt = γNS . Thus upon relaxing
the unknown knots {ti}n−1

i=1 , optimizing (1) over IT reduces into a respective search
over the class of natural splines, clearly contained in IT . Consequently, as each
γNS is uniquely determined by data pointsM and the respective knots T (see [1])
the above infinite dimensional optimization task forms a finite dimensional one. In-
deed, as recently shown (see [3]) for givenM, the task of minimizing (1) over IT
reformulates into optimizing the corresponding J0 this time depending merely on
(t1, t2, . . . , tn−1) variables, subject to t0 = 0 < t1 < ... < tn = T . The lat-
ter constitutes a highly non-linear optimization task depending on n − 2 variables.
The application of standard numerical schemes to optimize J0 often results in com-
putational difficulties. In this work we adapt a Leap-Frog scheme (see e.g. [4]) to
numerically optimize J0. In our setting, this iterative scheme relies on the overlapped
local optimizations each time depending on one variable only. The symbolic calcula-
tions performed with the aid of Mathematica software package (see e.g. [5]) permit
to derive the corresponding local optimization schemes and to address the unimodal-
ity issue. Finally, the numerical tests comparing Leap-Frog scheme against Newton’s
or Secant methods are also carried out.

Keywords: Interpolation, reduced data, optimization.
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Reparameterization and piecewise cubics for interpolating
reduced data

Ryszard Kozera1,2,3, Magdalena Wilkołazka3

We discuss the problem of estimating the unknown regular curve γ : [0, T ] →
En based on the so-called reduced data Qm. The latter represent m + 1 ordered
interpolation points Qm = {qi}mi=0 in arbitrary Euclidean space En satisfying qi =
γ(ti). Here the respective knots Tm = {ti}mi=0 fulfilling ti < ti+1 are not given.
In order to fit Qm with any interpolation scheme (see e.g. [1]), the missing knots
Tm must be replaced somehow with T̂m = {t̂i}mi=0 subject to t̂i < t̂i+1. One of the
possible choices is the so-called exponential parameterization depending on a single
parameter λ ∈ [0, 1] and Qm - see e.g. [2]. Note that λ = 1 renders a well-know
cumulative chord parameteriztion. Different interpolation schemes are studied to fit
reduced data Qm - see e.g. [3], [4] or [5].

Recent work [6] and [7] addresses the issue of interpolating Qm based on expo-
nential parameterization applied to either modified Hermite interpolants γ̂H ∈ C1 or
to piecewise C1 Lagrange cubics γ̂C . It is proved that for γ̂ = γH or γ̂ = γ̂C the
following asymptotics in γ ∈ C4 estimation holds (uniformly over [0, T ]):

(γ̂◦ψ)(t) = γ(t)+O(δ1
m) for λ ∈ [0, 1) and (γ̂◦ψ)(t) = γ(t)+O(δ4

m) for λ = 1.
(1)

Here the mapping ψ : [0, T ] → [0, T̂ ] for each γ̂ is specifically constructed. In
this work we formulate and prove (with the aid of Mathematica package [8]) suffi-
cient conditions for ψ to be a genuine reparameterization. Geometrical and algebraic
insight is also given. Finally, with the aid of symbolic and analytic calculation sharp-
ness of (1) is verified and justified.

Keywords: Interpolation, reduced data, convergence, sharpness and parameteriza-
tion.
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Computing perturbations in two-planetary three-body
problem with masses varying non-isotropically at different

rates
Mukhtar Minglibayev1,2, Alexander Prokopenya3, Saule Shomshekova1,2

The classical problem of three bodies of variable masses is considered in the case
when two of the bodies are protoplanets and the masses vary non-isotropically at
different rates. Reactive forces appearing due to the change of masses complicate
the problem substantially and general solution of the equations of motion cannot be
found in symbolic form. So the problem is analyzed in the framework of the pertur-
bation theory in terms of the osculating elements of aperiodic motion on quasi-conic
sections [1, 2]. An algorithm for symbolic computation of the perturbing function
and its expansions in terms of eccentricities and inclinations is discussed in detail.

Keywords: Three-body problem, protoplanets, variable masses, perturbations, Math-
ematica
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Motion of two bodies coupled by a spring on a rough plane
with variable coefficient of friction: simulation with

Mathematica
Alexander N. Prokopenya1

Two bodies of the same mass m connected by a spring move along a straight line
Ox of a horizontal plane which is smooth for x < 0 and is rough for x ≥ 0. Initially
both bodies are located in the domain x < 0 and have the same velocity v0 > 0.
Assume that at the initial instant of time t = 0 the spring is not deformed and the
x-coordinates of the bodies are x1(0) = −l0, x2(0) = 0, where l0 is the length of
non-deformed spring. The problem is to investigate the motion of the system when
the second body enters the domain x > 0 and starts to move on a rough surface. In
this case the second body is acted on by the dry friction force directed opposite to the
velocity of the body (see [1, 2]). As the spring is compressed and exerts a force on
each of the bodies, one can write the equations of motion in the form

ẍ2 = −µg − k

m
(x2 − x1 − l0),

ẍ1 =
k

m
(x2 − x1 − l0), (1)

where µ is a friction factor, k is the spring constant, g is the gravity acceleration,
and m is a mass of each body. It is assumed that only the second body moves on
the rough semi-plane and its velocity ẋ2(t) > 0. Solution to the system (1) can be
found in symbolic form and application of the built-in Mathematica function DSolve
(see [3]) gives

x1(t) = −l0 + v0t−
µgt2

4
+
µmg

4k

(
1− cos

(√
2k

m
t

))
,

x2(t) = v0t−
µgt2

4
− µmg

4k

(
1− cos

(√
2k

m
t

))
. (2)

Analysis of solution (2) shows that for some instant of time t = t1 which is a root
of the equation

v0 −
µgt1

2
=
µg

2

√
m

2k
sin

(√
2k

m
t1

)
, (3)

velocity of the second body ẋ2(t1) becomes equal to zero while x1(t1) < 0 and
ẋ1(t1) > 0. If the condition |x2(t1) − x1(t1) − l0| < µmg/k is fulfilled the sec-
ond body stops while the first one continues to move. Further motion of the system



depends on the parameters k, m, l0, µ, v0, and different scenarios may be realized.
Doing necessary symbolic and numerical calculations, we show that if elastic prop-
erties of the spring are asymmetric and its constant for stretching is greater than its
constant for compressing then there exist such values of the system parameters for
which the bodies are reflected from the rough semi-plane. Investigation of this inter-
esting phenomenon is a main aim of the present talk.

Keywords: Motion of coupled bodies, dry friction, simulation, Wolfram Mathe-
matica
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A study of sensitivity of nonlinear oscillations of a CLD
parallel circuit to parametrization of Esaki diode

Haiduke Sarafian1

Esaki diode, also known as, a tunneling diode [1] is a peculiar nonlinear elec-
tronic element possessing negative ohmic resistance. We consider a multi-mesh cir-
cuit composed of three elements: a charged capacitor (C), a self-inductor (L), and an
Esaki diode (D). All three elements in the circuit are parallel. We parametrize the I-V
characteristics of the diode and derive the circuit equation; this is a nonlinear differen-
tial equation. Applying a Computer Algebra System (CAS) specifically Mathematica
[2] we solve the equation numerically conducive to a diode dependent parametric so-
lution. The solution is oscillatory. In this note we investigate the sensitivity of the
nonlinear oscillations as a function of these parameters. Particularly we establish the
fact that for a set of parameters the tunneling diode becomes an ohmic resistor and
the circuit equation simplifies to a classic CLR parallel circuit with linearly damped
oscillations. Mathematica simulation assists visualizing the transition.

Keywords: Esaki Diode, Electrical Nonlinear Oscillations, Computer Algebra Sys-
tem, Mathematica
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3D Stress analysis of a loaded birefringent sphere by
photoelastic experiment and finite elements method

Kamel Touahir1, Ali Bilek1, Said Larbi1, Said Djebali1and Philippe Bocher2

This paper deals with a contact problem developed in a birefringent sphere loaded
by a plan along its diameter. In mechanical systems, contacts between moving ele-
ments can give rise to high stresses that can cause damage. Several authors [1, 2, 3, 4,
5] have contributed to the understanding of contact problems. To improve the design
and the durability, it is necessary to determine accurately the stress fields particularly
in the neighborhood of the contact zones. The analyzed model consists of a birefrin-
gent deformable sphere loaded along its diameter by birefringent rigid plans. Stress
fields are analyzed experimentally with plan polarized light and circularly polarized
light; photoelastic fringes are used to calculate stresses. A finite elements analysis
with Castem package allows calculating the stress fields. Comparison between the
experimental solution and the finite element one shows good agreements.

Experimental analysis

The birefringent sphere is machined from a birefringent parallelepiped on a high
speed numerically controlled machine. The model is then loaded inside an oven
(figure 1left) at the stress freezing temperature (120oC). A thermal cycle is used
to freeze stresses within the volume of the model. The model is then mechanically
sliced in a high speed rotating machine to prevent residual stresses. The birefringent

Figure 1: Sphere inside the oven (left), a slice analyzed in a polariscope (right)

slice is then positioned in the light path of a polariscope (figure 1 right) to obtain
the photoelastic fringes. The light intensity after the analyzer is given by Eq. (1).



The terms sin2 2α and sin2 ϕ/2 give respectively the isoclinic fringe pattern and the
isochromatic fringe pattern where α and ϕ are respectively the isoclinic parameter
and the isochromatic parameter [6].

I = a2 sin2 2α sin2 ϕ/2 (1)

The experimental isochromatic fringes are used to determine the values of the prin-
cipal stresses difference in the model by using the well known Eq. (2).

σ1 − σ2 =
Nf

e
(2)

Where N is the fringe order, f is the photoelastic fringe value, and e is the model
thickness. The values of the fringe order N are determined experimentally.
A 10mm thickness slice along the load direction (figure 2) is analyzed with plane
polarized light on a regular polariscope. One can see clearly the isochromatics and
the isoclinics developed on the model particularly in the neighborhood of the contact
zones where stresses are higher (zone of maximum shear stress).

Figure 2: Photoelastic fringes obtained with plan polarized light

Numerical analysis

A finite element analysis is used to determine the stress fields developed in the mod-
els particularly in the neighborhood of the contact zones; a program developed under
castem package allowed us to obtain stress values as well as numerical photoelastic
fringes that can be compared to the experimental photoelastic fringes. The analysis
is performed in the elastic domain. The meshing is refined in the neighborhood of
the contact zone for a better simulation (figure 3).
The isoclinic fringe pattern is calculated with eq. (3) where α is the isoclinic param-
eter [6]. Once α is obtained the value of sin2 2α gives directly the isoclinic fringe
pattern.

α = arctan(2τxy/(σx − σy)) (3)



The simulated isochromatic fringe patterns are obtained with eq. (4). The different
values of sin2 ϕ/2 give then easily the numerical isochromatic fringes.

ϕ =
2πe

f

√
(σx − σy)2 + 4τ2

xy (4)

The graph of variation of the principal stresses difference (Fig. 3) is obtained along
the vertical axis. Stresses increase up to approximately 0.6MPa and then decrease as
we move away from the contact zone. We can see relatively good agreement between
the two solutions.

Figure 3: Model meshing and isochromatic fringes for a slice along the load direction

Keywords: photoelasticity, birefringent, isochromatic, isoclinic, contact, stress
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Visualization of Planetary Motions Using KeTCindy
Satoshi Yamashita1, Kiyoshi Kitahara2, Shuhei Miyake3, Setsuo Takato4

KeTCindy, a plug-in for a dynamic geometry software Cinderella, facilitates the
creation of precise and beautiful drawings of 2D/3D graphics and their input into a
LaTeX document. Moreover, KeTCindy can call other mathematical software to run
a program and bring back the results. For a task of visualizing planetary motion, the
authors call the computer algebra software Maxima to execute mathematical expres-
sion processing. Then they create PDF slides that portray planetary motion precisely
based on the result[1].

About planetary motion, J. Kepler published the following three laws in 1619,
having found them by analyzing the astronomical observations of T. Brahe.

1. The orbit of a planet is an ellipse with the Sun at one of the two focuses. Letting
r be the distance from the Sun to the planet and letting θ be the angle to the
planet’s current position from its closest approach, as seen from the Sun, then
the polar coordinates (r, θ) satisfy the polar equation of the ellipse:

r =
l

1 + ε cos θ
, (1)

where l is the semi-latus rectum and ε is the eccentricity of the ellipse.

Figure 1: Elliptical orbit of the planet.

2. A line segment joining a planet and the Sun sweeps out equal areas during
equal intervals of time. Because the planetary area velocity dS

dt is constant, we
obtain the following formula.

dS

dt
=

1

2
r2dθ

dt
= κ (Kepler′s constant) (2)



Figure 2: Planetary swept area.

3. The square of the orbital period of a planet is proportional to the cube of the
semi-major axis of its orbit. Letting T be the orbital period and letting a the
elliptical semi-major axis, then T and a satisfy the following condition.

T 2

a3
= C (constant) (3)

In 1687, I. Newton derived Kepler’s laws from the law of universal gravitation in his
book “The Principia”[2].

Using KeTCindy, the authors calculate the planetary swept area as

2κt =

∫ t

0
r2dθ

dt
dt =

∫ t

0

l2

(1 + ε cos θ)2
dθ (4)

and the planetary velocity vector

dx

dt
= 2κ

(
ε sin θ cos θ

l
− sin θ

r

)
,
dy

dt
= 2κ

(
ε sin2 θ

l
+

cos θ

r

)
(5)

and planetary acceleration vector, respectively, from Kepler’s first law (1). Subse-
quently, they exhibit the calculated planetary motion so that the planetary area veloc-
ity is constant.

Keywords: Orbits of planets, Cinderella, Maxima, TeX, KeTCindy
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Fluid/Particles Flow Simulation by Finite Volume Method
-Hybrid Approach-

Salah ZOUAOUI1, Hassane DJEBOURI1, Ali BILEK1 and Kamal
MOHAMMEDI2

We present here a numerical method to compute the motion of rigid particles in
fluid flow with a non-elastic impact law. Many methods have been proposed recently
and different strategies have been used to compute such flows [1]. Our motivation
is the handling of the non-overlapping constraint in fluid-particle direct simulations
[2, 3]. Each particle is treated individually and the Navier-Stokes equations are solved
for the moving fluid by Fluent code which is based on the Finite volume method. The
contact-handling algorithm is based on the projection of the velocity field of the rigid
particles over the velocity field of the fluid flow. The method consists of imposing a
constraint on the velocity field of the particles, as a guarantee that at each time step
the calculated particle velocity field belongs to an eligible velocity field of the fluid.
In this case study, an Uzawa algorithm has been applied [4].

Keywords: Simulation, Flow, Particles, Contact, Uzawa, Fluent

Contact Handling Procedure

Let us detail the method in the case of spherical particles: we denote by Xn :=
(xn

i )i=1,.....,N the position of N particles (more precisely, the position of their gravity
centre) at time tn, by V̂

n
= (v̂i)i=1,.....,N the a priori translational velocity, by Ω̂n =

(ω̂i)i=1,.....,N the a priori rotational velocity. As stated before, the a priori updated
position of the particles, defined as:

Xn+1 = Xn + ∆tV̂
n

+
1

2
γn4t2 (1)

where γ the acceleration, calculated from the Newton’s second law. Equation 1 may
lead to non-admissible configuration, in the sense that the particles overlap. To avoid
this, we project the velocities onto the following set:

K(Xn) = {V ∈ R2N , Dij(X
n) + ∆tGij(X

n).V +
1

2
γn4t2 > 0,∀i < j} (2)

where Dij is the distance between every two particles given as:

Dij(X
n) = ‖xni − xnj ‖ − (Ri −Rj) (3)



At each time step, V ∈ R2N is an admissible vector if the particles with velocity {V
do not overlap at the next time step:

E(Xn) = {V ∈ R2N , Dij(X
n + ∆tVn +

1

2
γn4t2) > 0,∀i < j} (4)

We not that equation 2 is the linearized form of equation 4 and, furthermore, it can be
shown that K(Xn) ⊂ E(Xn). It means in particular that particles with admissible
velocities at time tn do not overlap at time tn+1.
The constrained problem is formulated as a saddle-point problem, by using the intro-
duction of Lagrange multipliers:{

Find(Vn,Λn) ∈ R2N × RN(N−1)/2
+ suchthat

J (Vn, λ) 6 J (Vn,Λn) 6 J (V,Λn), ∀(Vn, λ) ∈ R2N × RN(N−1)/2
+

(5)

with the following functional:

J (V, λ) =
1

2
| V−V̂

n |2 −
∑

16i6j6N

λij(Dij(X
n)+∆tGij(X

n).V)+
1

2
γn4t2 (6)

Where Gij(X
n) ∈ R2N is the gradient of distance Dij . The number of Lagrange

multipliers ( λij) corresponds to the number of possible contacts. This problem is
solved by an Uzawa algorithm.

Falling of 50 particles of different sizes on a plane

The computer implementation of the contact Handling algorithm allows us to simu-
late the falling of 50 particles of different sizes on a plane (figure1). This allows us
to highlight the particle/particle and particle/wall contact.

t = 0.0s t = 0.10s t = 0.20s t = 0.80s

Figure 1: Fall down of 50 particles of different sizes on a plane

Simulation of the water flow inside a pipe with obstacles

The incompressible Navier-Stokes equations are written in the following form.
ρf
Du

Dt
− µ∆u+∇p = f Ω\B dans Ω

∇.u = 0 dans Ω
u = 0 sur ∂Ω

(7)



where ρf denotes the density of the fluid, u(u1, u2) the velocity of fluid, σ the  stress 
tensor and ff = ρf gey is the external force exerted on the fluid (gravity forces). We 
used a Fluent commercial code to solve equation 7.

Fluid-Particles Simulation

In this test case, we simulated the transport of solid particles in a pipe with obstacles
(figure 2). To take into account the solid particles we integrated, in the code of contact
management, the equations of the solid dynamics by considering all the forces acting
on a particle in a fluid flow. On the other hand, for the numerical resolution of the
Navier-Stokes equations, we resorted to the use of a Fluent commercial code which
is based on the finite volume method.

t = 0.0s t = 0.20s t = 0.40s t = 0.60s

t = 0.80s t = 1.00s t = 2.50s t = 3.00s

Figure 2: Injection of solid particles: Configuration at different time steps
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S3
Computer Algebra in Education

Education has become one of the fastest growing application areas for computers in
general and computer algebra in particular. Computer Algebra Systems (CAS) make
for powerful teaching and learning tools within mathematics, physics, chemistry, bi-
ology, economics, etc. Among them are:

• the commercial “heavy weights” such as Casio ClassPad 330, Derive, Magma,
Maple, Mathematica, MuPAD, TI NSpire CAS, and

• the free software/open source systems such as Axiom, Euler, Fermat, wxMax-
ima, Reduce, and the rising stars such as GeoGebra, Sage, SymPy and Xcas
(the swiss knife for mathematics).

The goal of this session is to exchange ideas, discuss classroom experiences, and
to explore significant issues relating to CAS tools/use within education. Subjects
of interest for this session will include new CAS-based teaching/learning strategies,
curriculum changes, new support materials, assessment practices from all scientific
fields, and experiences of joint use of applied mathematics and CAS.

We emphasize that all levels of education are welcome, from high school to uni-
versity, and that all domains are welcome, including teacher training, engineer train-
ing, etc.
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New rules for improving CAS capabilities when computing
improper integrals. Applications in Math Education

José Luis Galán-García1, Gabriel Aguilera-Venegas1, Pedro Rodríguez-Cielos1,
Yolanda Padilla-Domínguez1, María Ángeles Galán-García1

In many Engineering applications the computation of improper integrals is a
need. In [1] we pointed out the lack of some CAS when computing some types
of improper integrals. Even more, the work developed showed that some improper
integrals can not be computed with CAS using their build-in procedures.

In this talk we will develop new rules to improve CAS capabilities in order to
compute improper integrals such as:

1.
∫ ∞

0
f(x) g(x)dx ;

∫ 0

−∞
f(x) g(x)dx and

∫ ∞
−∞

f(x) g(x)dx

where g(x) = 1 or g(x) = sin(ax) or g(x) = cos(ax) and f(x) =
p(x)

q(x)
with degree of p(x) smaller than degree of q(x) and q(x) with no real roots
of order greater than 1.

2.
∫ ∞

0
xα f(x) dx where α ∈ R \ Z or −1 < α < 0

We will show examples of improper integrals that CAS as MATHEMATICA,  
MAPLE, DERIVE or MAXIMA cannot compute. Using advance techniques as La- 
place and Fourier transforms or Residue Theorem in Complex Analysis, we can 
develop new rules schemes for these improper integrals. We will also describe the 
conclusions obtained after using these new rules with our Engineering students 
when teaching Advanced Calculus.
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Teaching Partial Differential Equations with CAS

José Luis Galán-García1, Pedro Rodríguez-Cielos1, Yolanda
Padilla-Domínguez1, María Ángeles Galán-García1, Gabriel

Aguilera-Venegas1, Ricardo Rodríguez-Cielos2

Partial Differential Equations (PDE) are one of the topics where Engineering
students find more difficulties when facing Math subjects.

A basic course in Partial Differential Equations (PDE) in Engineering, usually
deals at least, with the following PDE problems:

1. Pfaff Differential Equations, which consists on finding the general solution
for:

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz = 0

2. Quasi-linear Partial Differential Equations, which consists on finding the
general solution for: P (x, y, x) p+Q(x, y, z) q = R(x, y, z) where

p =
∂ z

∂ x
and q =

∂ z

∂ y
.

3. Using Lagrange-Charpit Method for finding a complete integral for a given
general first order partial differential equation: F (x, y, z, p, q) = 0.

4. Heat equation which consists on solving the second order PDE:

k
∂2u

∂x2
=
∂u

∂t
, k > 0 0 < x < L t > 0

u(0, t) = 0 u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 < x < L

5. Wave equation which consists on solving the second order PDE:

a2 ∂
2u

∂x2
=
∂2u

∂t2
0 < x < L t > 0

u(0, t) = 0 u(L, t) = 0 t ≥ 0

u(x, 0) = f(x)
∂u

∂t

∣∣∣∣
t=0

= g(x) 0 < x < L



6. Laplace’s equation which consists on solving the second order PDE:

∂2u

∂x2
+
∂2u

∂y2
= 0 0 < x < a 0 < y < b

∂u

∂x

∣∣∣∣
x=0

= 0
∂u

∂x

∣∣∣∣
x=a

= 0 0 < y < b

u(x, 0) = 0 u(x, b) = f(x) 0 < x < a

In this talk we will describe how we introduce CAS in the teaching of PDE.

The tasks developed combine the power of a CAS with the flexibility of program-
ming with it. Specifically, we use the CAS DERIVE. The use of programming allows
us to use DERIVE as a Pedagogical CAS (PECAS) in the sense that we do not only
provide the final result of an exercise but also display all the intermediate steps which
lead to find the solution of a problem. This way, the library developed in DERIVE

serves as a tutorial showing, step by step, the way to face PDE exercises.

In the process of solving PDE exercises, first-order Ordinary Differential Equa-
tions (ODE) are needed. The programs developed can be grouped within the follow-
ing blocks:

• First-order ODE: separable equations and equations reducible to them, ho-
mogeneous equations and equations reducible to them, exact differential equa-
tions and equations reducible to them (integrating factor technique), linear
equations, the Bernoulli equation, the Riccati equation, First-order differential
equations and nth degree in y’, Generic programs to solve first order differen-
tial equations.

• First-order PDE: Pfaff Differential Equations, Quasi-linear PDE, Lagrange-
Charpit Method for First-order PDE.

• Second-order PDE: Heat Equation, Wave Equation, Laplace’s Equation.

In this talk we will introduce some improvements (redefinition of programs and
more types of ODE and PDE) with respect to the talks given in previous ACA [1, 2]
related with these topics. We will also remark the conclusions obtained after using
these techniques with our Engineering students.

Keywords: ODE, PDE, DERIVE, CAS, PECAS, Engineering
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About the Bulgarian experience in organizing National
Student Olympiad in Computer Mathematics

Penka Georgieva1

In this paper the experience in organizing, conducting and participating in the
National Student Olympiad in Computer Mathematics "Acad. Stefan Dodunekov"
(CompMath) in Bulgaria is presented.

CompMath has been running since 2009. The first two olympiads were experi-
mental. Since 2011 it is in the competitions calendar of Bulgarian universities. The
idea is to promote the tools of computer algebra software and inspire the academic
community to be part of this Olympiad [1].

CompMath is organized annually, it is held by a National Committee (NC) and
hosted by a different university every year. A General Assembly of CompMath con-
sists of the team leaders from the participating universities and meets at least once
a year. Every university student enrolled in a bachelor or master degree programme
at a Bulgarian or foreign university can participate individually. The participants are
divided into groups: Group A - Mathematics, Informatics and Computer Science,
Group B - Engineering and Natural Science. Those in group B are allowed to com-
pete in Group A. In the last year there was one more group for school mathematics,
again experimentally. Ranking is done within each Group. Up to 50 percents of the
participants are awarded golden, silver or bronze medals by the NC in an approximate
ratio of 1 : 2 : 3. The Organizing Committee issues certificates for the participants
and team leaders [2].

Thirty problems from different areas of mathematics (Algebra, Analytic Geom-
etry, Calculus, Differential Equations, Probability theory, etc.) have to be solved
within 4 hours. Twenty of the problems can be solved using basic CAS functions, the
remaining ten require advanced knowledge and skills.

The participants are free to choose the technology they prefer. They are allowed
to use only one CAS, Matlab and also to combine two or more CAS, CAS and Mat-
lab. Some students use only Mathematica, other - MatLab and MuPad, engineering
students prefer Maple, Matlab and MuPaD.

Rapid changes in computer and information technology and the large number
of mathematical software are prerequisites for gradual changes in the teaching and
learning of university mathematics. The CompMath is a step towards these changes
at Bulgarian universities.

Keywords: Computer mathematics, Olympiad, Bulgarian experience
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Do we take advantage of ICT when teaching maths at
primary and secondary education levels?

Do we teach maths as we should?
Eugenio Roanes-Lozano1

My son is finishing primary education and I consider many of the school activities
he has undertaken a waste of time. For example, does it make sense to divide by hand
a twelve-digit number by a seven-digit number, or to factorize by hand an integer, two
of whose factors are 71 and 107?

Although these are very specific cases, the exercises proposed in math classes at
the primary and secondary education levels are not usually interesting, are sometimes
even tedious and do not make the student love but hate maths. For example, in the
case of factoring a number, the key is to understand what is being done and to know
how to do it (algorithm), but it makes no sense to resolve uncomfortable cases when
powerful computer algebra systems (CAS) are available in computers, calculators and
even smartphones. In addition, the exercises proposed are many times disconnected
from the real world (unlike many of those proposed in tests such as Pisa).

The use of ICT (at least in Spain) is many times restricted to “doing some re-
search” on certain specific topics, but this is often a euphemism, since what the stu-
dent many times does is just a “Google search”.

Almost twenty years ago a secondary schoolmate asked me which software to
use, since the computers of his school had only the operating system and an office
package and there were no funds for software. My answer was taxative: the CAS
Maxima and the (then new) dynamic geometry system (DGS) GeoGebra. GeoGebra
has spread considerably at secondary education level (overshadowing the pioneers
Cabri Géomètre and The Geometer’s Sketchpad and the other DGS), but no CAS has
clearly spread at this level. Possibly, the use of the latter has even decreased at this
level for two reasons:

• Derive being discontinued

• the incorporation of algebraic capabilities by GeoGebra.

Despite the fact that since the 90s different theories have been developed about
the use of mathematical software in education, such as the “Black Box / Whyte
Box Principle” [1,2] and the “Mathematical Creativity Spiral” [3] (Buchberger), the
“Scaffolding Principle” [4] (Kutzler) or the “Elevator Principle” [5] (Cabezas and
Roanes), the teaching of primary and secondary education level mathematics contin-
ues to have a very low level of experimentality and the intensive use of mathematical
software in the classes is exceptional.



Which can be the reasons for the limited use of ICT in the math classes and the
persistence of tedious activities?
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Technology enhanced e-assessments in Calculus courses
with application of CAS

Elena Varbanova1

1. About the changing face of engineering education

As long as education can change, the world can change.

The technological development in the twenty-first century naturally and inevitably
leads to the introduction of new tools into the university education. The experience in
e-learning at the Technical University of Sofia (TUS) can be traced back to 1998. Nu-
merous technology enhanced lectures, tutorials, laboratory classes and related text-
books have been created by lecturers in engineering, informatics and mathematics
courses. Students and PhD students have been also involved through the development
of theses on applications of Virtual Learning Environments (VLE) such as Moodle
and ILIAS for design and implementation of effective didactic models. The outcomes
of their research contribute to the changing face of engineering education.

Mathematics education has undergone a transformation based on applications
of Computer Algebra Systems (CAS) [2], [3] and VLE. Though their simultaneous
application is a challenge, it is a good opportunity for digitalizing mathematics edu-
cation. Actually, there is "no way back", i.e. no education, progress and development
without technology. Digital mathematics exists and digital resistance is not appropri-
ate.

The focus of a dynamic unity of VLE and CAS in mathematics courses at TUS
was on students’ motivated, active, conscious and emotional participation in the
teaching-learning-assessment (TLA) process. Assessment was an integral part of the
TLA process and the three components were equally considered and mutually interre-
lated. But something was missing in the digital environment . . . It was e-assessments
(diagnostic, continuous, formative, summative) provided with tools for authentica-
tion & authorship analysis in online and blended environments assuming the student
would take the assessment at a distance. And, finally, a brave but necessary project
TeSLA has arrived [5].

2. Re-design of Calculus courses within the framework of TeSLA project

Ne varietatem timeamus. /Do not be afraid of diversity./

Since January 2016 TUS is a partner university in the TeSLA project which con-
ception /philosophy/ is built on a "general trust" that knows no time limits or national



boundaries and could fit to any system of higher education. The project aims to
support and assure e-assessment processes in order to improve the trust level across
students, teachers and institutions. According to TeSLA LOGO this system pro-
vides continuous and modular trust-based authentication & authorship analysis for
e-assessments.

Concerning the educational aspects of TeSLA system it has to be mentioned that
its implementation could give a significant added value as well: highly qualified and
experienced teachers can design and develop a great diversity of e-assessment activi-
ties with purposeful and balanced application of the potential of the VLE and course
related software [1], [4]. And these cannot be achieved in a face-to-face educational
mode. Of course, teachers have to be aware of possible abuse of technology: they
have to make what is important technology supported, rather than what is technology-
supported important.

The undergraduate course Calculus 1 (Calculus of One Variable) was one of the
piloted courses in TeSLA project. It is taught to students first year of study. The
latter could be a reason they to prefer performing the activities in university computer
labs, not at home, i.e. not at a distance. Within the framework of TeSLA project
six tools for authentication & authorship analysis have been developed and tested
in seven partner universities. Understandably, Face Recognition (FR) and Keystroke
Dynamics (KD) were recommended to be tested as suitable for mathematics courses.
Another two named Voice Recognition and Plagiarism are also useful for assessing
students’ capability to defense their individual and collaborative courseworks or to
explain multi-step solutions. In the presentation a real (follow up) assessment activity
monitored by TeSLa system will be demonstrated.

The students performed three activities: enrolment and two follow-up assessment
activities. It was both challenging and exciting to re-design the TLA process, modify
existing in-class tests and re-formulate questions. On one hand, in order to enhance
the quality of assessment activities, we took advantage of the wide range of types of
questions available in VLE Moodle and used the potential of a CAS-environment to
create questions as well as to facilitate students in selection of approaches to find,
interpret and check up answers/solutions. On the other hand, appropriate support
materials were provided online and students could use also external resources.

Almost all the types of questions available in VLE Moodle were included in the
assessment activities: True/False, Numerical, Multiple choice, Matching, Drag and
drop into text, Drag and drop onto image, Select missing words, Essay /open answer
questions/. A didactic system of questions/problems has been created. This diversity
of questions and flexibility in answering them considerably contributed to enrichment
and enhancement of assessment activities. They could serve as innovative assessment
practices in mathematics education. During the assessment process students are al-
lowed/required to use CAS and submit the produced CAS-protocol with solutions,
explanations, interpretations and reflection on the results. In the presentation illustra-
tive examples will be shown.



3. The synergies between VLE, CAS and TeSLA tools for enhancing univer-
sity mathematics

Some things can’t be explained, only experienced.

All the three components of the triad teaching-learning-assessment are to be con-
sidered in tandem and not focus on any one of them. Through a balanced integration
of VLE and CAS in the design and development of assessment activities and related
learning and support materials we aimed at helping students built up habits for Lower
Order Learning and Higher Order Learning in accordance with the improved Bloom’s
taxonomy.

The follow up activities were performed by students for the purpose of formative
e-assessment. They were used for both summative purposes in that 20% of the overall
mark was allocated to these activities and formatively in that detailed feedback was
provided. The latter appeared to be a motivation for students to better prepare them-
selves and avoid attempts for "helping" classmates or using illegal ways far achieving
higher results. Universities have a mission to create a good sense of fairness and hon-
esty for students as an important element of culture and to ensure action. And here
TeSLA tools come to the rescue.

An e-assessment tool provides data to teachers about students. Having infor-
mation per student, and also per "classroom", teachers could propose changes in
courses and curriculum in order to help students acquire sustainable knowledge and
develop required competencies. Independent individual/collaborative learning with
self-assessment can also be monitored by TeSLA tools. On time provided feedback
both online and offline, based on the individual learning trajectory, allows students
make a desired progress in their own pace anytime and anywhere.

4. Conclusion

Challenge is energy of life.

Technology can "replace" hundreds of teachers but a powerful methodology and
highly qualified teachers can give thousands of technologies vitality. Training of
teachers should be the key concern of universities: in creation of e-assessment activ-
ities interrelated with the teaching and learning activities and according to the prin-
ciple "What gets assessed is what gets taught". Like any other technological tool
TeSLA system need a professional attitude to be taken to. Converting tools into ef-
fectively integrable instruments is a real question in education. In this sense there is
still much to be done in order to assure trust-based e-assessments.
Educational technology (ET) is to be considered as

ET=Technology OF Education+Technology IN Education.
A proper utilization of technology in education requires a policy of support for re-
search in the field of educational science, high quality software and teacher train-
ing. Together we need to go further to 4C = Challenging Changes in Curricula and
Courses.
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Analyzing the "Calculator Effect" of Different Kinds of
Software for School Arithmetics and Algebra

Rein Prank1

The author of this paper realised the need to think about misuse effects when
participating in two activities connecting Mathematics teaching and computers: ad-
dition of school-style step by step solutions to the output of CAS, and compiling a
workbook that contains programming tasks extracted from School Mathematics.

The possibility of getting the answer and solution of arithmetic and algebra tasks
from external sources is currently provided by four kinds of software:

1. Spreadsheets. We usually think that spreadsheets do decimal calculations.
Solving examples from School Mathematics demonstrates an unexpected and
undocumented mixture of decimal and algebraic calculations.

2. Lightweight drill environments for arithmetic and algebra. They have quite
small calculator effect because usually they do not enable entering user-provided
exercises.

3. Step by step solution environments (MathXpert, Aplusix, T-algebra). The
key question is again whether the student gets right to enter initial expressions
of the tasks.

4. "Algebra calculators". There are a few dozen programs designed specifically
for doing students’ homework (producing solutions with necessary explana-
tions) for almost all technical exercises of School Algebra. But very often the
calculators implement textbook algorithms without any intelligence.

Item 4 means that availability of solutions in educational CAS (for example, in
Geogebra) will not change the situation very much. In the first years, the CAS solu-
tions will most likely have the same imperfections as the current algebra calculators.

Many school arithmetic and algebra tasks can be converted to programming tasks:
long multiplication or division, reducing fractions, multiplication of polynomials. For
routine tasks, programming does not replace exercising with something easier. The
situation can be different when we come to the more original tasks in textbooks. A
task of replacing stars with given numbers can lead to an interesting logical journey.
However, stronger students in middle grades are perfectly capable of programming
a brute-force solution search. It is important to think about ways of protecting the
more interesting tasks in textbooks from such shortcuts.
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Student Attitudes toward Technology Use in Math
Education

Karsten Schmidt1

In the Faculty of Business and Economics at Schmalkalden University, the ma-
trix algebra course of the bachelor program has been taught in the PC lab for many
years (one or two students in front of a PC, instructor’s PC connected to a projector).
A Computer Algebra System (CAS) is used throughout the course. Students can in-
stall the CAS on their private PCs, and have access to it during the final exam in the
PC lab (then, naturally, only one student per PC). Other courses, like Introduction to
Mathematics, and Introduction to Statistics, are still taught in a traditional classroom
setting (blackboard, overhead projector, and pocket calculators). At the beginning
of the 2010/11 winter semester, a survey was carried out to investigate whether the
students preferred traditional or technology-based courses in mathematics, and how
well they coped with the technology. During the 2015/16 winter semester, a similar
survey was carried out to check whether students’ attitudes toward the use of tech-
nology in the teaching of mathematics have changed over time. In this presentation
we will look at the key questions of the questionnaire, display descriptive statistics
as well as charts of the variables generated from the gathered data, and analyze the
effect that certain characteristics of the students (e.g. male vs. female, or students
who like math vs. those who do not) have on their answers. The new results will be
also compared to those found five years ago.

Keywords: Student attitude toward CAS, Survey of students, Changes over time
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Dynamic visualizations for network flow optimizations
problems with Mathematica

Włodzimierz Wojas1, Jan Krupa1

Network flows as a problem domain is considered as a part of such mathematical
disciplines as: graph theory, combinatorial optimization, mathematical programming
or operation research. It is taught at universities in framework of different academic
courses, for example: Graphs and networks, Optimization methods, Linear program-
ming, Mathematical programming or Operation research. In the framework of net-
work flows a number of optimizations problems are considered, such as: shortest
path problem, maximum flow problem or minimum cost flow problem. Newer ver-
sions of Mathematica contain some functions dedicate to solve some network flows
optimizations problems. In this talk, first we would like to present a few dynamic
visualizations of network flows in pure, generalized and dynamic networks using
Mathematica. Next, we will present visualizations for maximum flow problem and
minimum cost flow problem

Keywords: network flows, network optimization, didactics of mathematics, math-
ematics education, CAS, Mathematica
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Using TI-Nspire for the financial education of
future engineers

Hanan Smidi1

For several years, and more precisely since September 2011, "L’École de tech-
nologie supérieure" (ÉTS) has chosen the TI-Nspire as the mandatory calculator for
most, if not, all courses leading to an engineering degree.

One compulsory course in particular requires students to learn about the financial
profitability of a project. The TI-Nspire offers all the basic financial functions from
calculating the time value of money, depreciation of a loan, solving complex equa-
tions, graphic representations as well as programming functions for a quicker and
easier access.

With its software, the lecturer can easily show examples while students can follow
and do the problems directly on their handheld devices in the classroom.

There are many financial calculators available and mostly, Excel is widely used
to present financial models. The TI-Nspire allows the user to solve most financial
math situations on one device and hence become an unavoidable and powerful tool
for the student.

This short presentation is an overview of the TI-Nspire’s powerful use of financial
math in the classroom.
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Accurate plotting in 3D: how to choose the mesh

David G. Zeitoun1, Thierry N. Dana-Picard2

When studying continuity of 1-variable functions, a classical example is given by
the function f such that f(x) = sin 1

x . this is an opportunity to show an example of
Heine’s Theorem:

Theorem: Let f be a function defined on a punctured neighborhood of the real
number a. The two following properties are equivalent:

1. The function f has a limit l at a (maybe infinite).

2. For every convergent sequence (xn) of real numbers whose limit is a, the se-
quence (f(xn)) has limit l.

Take the sequences given by

xn =
1

2nπ
and yn =

1

2nπ + π
2

Both sequences converge and have a limit equal to 0, but f(xn) and f(yn) have
different limits, showing that f has a discontinuity at 0.

This situation cannot be illustrated using a plot. Figure 1 shows the strange plot
obtained using a standard command∗. Zooming does not improve the visualization, as
the function has an infinite number of oscillations within a compact interval around 0.
Students have difficulties both with the visualization and with "for every sequence".
The teacher has to insist on the fact that this theorem is mostly used to disprove
continuity/existence of a limit.

(a) First plot (b) After zooming

Figure 1: Strange plots for a one-variable function
∗We used GeoGebra, but the same phenomenon appears with any other package.



Transition towards Calculus II, with functions of 2 real variables (or more than
two) leads to problems, either different or more of the same. Sometimes, the visu-
alization becomes harder to understand. For example, consider the function given
by

f(x, y) =
1

1− (x2 + y2)
. (1)

Using standard commands for plotting graphs of 2-variable functions may provide a
non accurate result (see Figure 2).

(a) (b)

Figure 2: Strange plots for a two-variable function

The function has non-isolated singularities, but the plot in cartesian coordinates
does not show them. Moreover the plot shows a lot of needles. The reason is that the
standard plot3d command divided the given domain using a cartesian mesh, made of
squares; this can be visualized when looking on the graph "from above", as shown
in Figure 2b. Actually the plot is obtained using numerical computations: the CAS
computes values of the function on the edges of the cells and make interpolations for
what happens inside the cells, as explained in [2]. Zooming is useless, as this only
inflates the cells, but does not compute new values for the function inside each cell.

Based on a prior mathematical analysis of the continuity of the function, a more
accurate plot may be achieved using a new coordinate systems (See the reference
[4]).

We choose new coordinates, which fit the specific coordinates of the given func-
tion. Figure 3a shows a plot of the function defined in Equation (1), using polar
coordinates, with x = r cos θ, y = r sin θ. Even the choice of these coordinates do
not ensure that the plot will be really accurate. Figure 3b and Figure 3c represent the
same plot, viewed from different directions, after a slight modification of the domain.
Here the interpolations once again hide the actual discontinuities.

Other modifications, such as considering g(x, y) = 1/(3−(x2+y2)), or h(x, y) =
1/(1− (x2 + 3y2)) lead students to understand the need for a mathematical analysis
of the data prior to computerized work.

Algorithms have been described in [3] in order for the software to determine a
mesh which will provide an accurate plot. In our talk we will present both further
advances in this field, and actual situations encountered in classroom. Moreover, we



(a) 0 ≤ r ≤ 2, 0 ≤ θ ≤
2π

(b) 0 ≤ r ≤ 3, 0 ≤ θ ≤
2π

(c) 0 ≤ r ≤ 3, 0 ≤ θ ≤
2π

Figure 3: The influence of the choice of the plotting domain

can mention the possibility to enhance more understanding by using Virtual Reality,
as described in [1].

Keywords: surface, accurate plot, mesh
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Addressing discrete mathematics problems in the classroom

A. Bergeron-Brlek1

The TI-Nspire CX CAS calculator is mandatory in all mathematics courses at
École de technologie supérieure. Every student has a handheld device in the class-
room and can use it in real time. Making students work actively in the classroom is
an effective way for improving their knowledge and understanding of the concepts.

The compulsory course Logic and Discrete Mathematics (MAT210) is given to
software engineering students. Using a CAS in this course enables the teacher and
the students to explore more complex examples. For instance, students can manip-
ulate large prime numbers in the study of the RSA cryptographic system, or solve
recurrence relations related to counting problems. We study, among other topics in
this course, the complexity of algorithms.

In this talk, we will present our approach to handle this notion. Using Nspire,
students are guided in the implementation of several algorithms to solve the same
problem. In order to measure the time complexity (using the big-O notation), they
run the algorithms on samples of different size and plot the results. This leads to
a better understanding of the big-O notation, which is then confirmed algebraically
using the handheld device.
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Analyzing discrete suspended chains using
computer algebra

Gilbert Labelle1

The mathematical description of the shape of various kinds of suspended chains,
cables or funiculars under gravity is well covered in the scientific literature. In this
talk we apply computer algebra to analyze, classify and animate suspended discrete
chains whose links are “thin straight rods” joining the origin O to a variable end-
point P in the closed right half-plane. We use Lagrange multipliers to minimize the
potential energy of each chain.

In contrast with the continuous limiting case of the catenary where the suspended
chain is given explicitly (up to translation and zoom) as an arc of the hyperbolic
cosine, the global shape of such discrete regular suspended chains has no simple
explicit expression and falls into 3 classes :

Concave, Parallel, Convex,

according to the values of the Lagrange multipliers and the position of endpoint P .
This provides to undergraduate students a stimulating example of the application of
Lagrange multipliers and computer algebra methods to analyse a discrete optimiza-
tion problem.

Keywords: Discrete chains, catenary, Lagrange multipliers, computer algebra
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Consolidation of abstract knowledge in the process of
confronting errors using digital tools: The case of the

inflection point

Anatoli Kouropatov1, Regina Ovodenko2

At the previous ACA conference (see the reference [6]) we reported the results
about the development of the integrated teaching unit that was designed towards
learning an entire mathematical concept – the inflection point. The unit was built
in the digital environment ([3]]) and includes geogebra labs, interactive digital ques-
tionnaires, and videos, as well as a variety of investigative assignments that are based
on them. This environment has been developed with special attention to addressing
errors. The development of the environment was informed by research regarding
the use of technological tools in math education and research about typical errors in
specific mathematical subjects, such as functions ([2]), tangent lines ([1], [7], [9]),
inflection ([8]), and so on. We theorized that learning with this unit would allow
students to confront errors and to consolidate knowledge about the inflection point.
With the purpose of testing this conjecture, we conducted a short feasibility study
with a pair of first year students from the Industrial Engineering College. These stu-
dents are considered advanced students (according to high formal achievements and
their lecturer’s personal opinion). It was suggested to the students that they learn the
unit after they learned the concept of the inflection point during the course Calculus
1. Their previous encounter with this concept consisted of the part of the process that
dealt with investigating functions based on algorithmical usage of well-known theo-
rems related to the concept. The study was organized as a two-hour clinical interview
in laboratory conditions. The students’ work was documented and transcribed with
the purpose of analyzing their learning process. The analysis of the students’ learn-
ing process has been conducted using “Abstraction in Context” (AiC) as developed
in [5] as a theoretical framework and as methodological tool ([4]). According to “Ab-
straction in Context”, learners vertically reorganize previous elements of knowledge
to construct new (for the learner) elements and to consolidate previously constructed
(by the learner) elements. This construction/consolidation process takes place in stu-
dents’ minds in a specific context, in our case – learning the inflection point concept
using the digital-based teaching unit. In the conference we will present the method-
ology we used at the study as well as empirical evidence regarding the students’
learning process in general, and regarding the consolidation of abstract knowledge in
the process of confronting errors using digital tools, in particular.
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Periodic and Nontrivial Periodic Input in Linear ODEs
(Part I, Part II)

Michel Beaudin1

Differential equations courses are among the ones where the use of computer
algebra systems (CAS) was first experienced. In many cases. it was and it is still
for solving application problems where the computation can become very long and
tedious. Textbooks as [1] and [2] contain very interesting projects on which students
can work. Unfortunately, some authors seem to forget the important role CAS can
play in increasing student’s understanding of theoretical concepts.

The first part of the talk will be devoted to introduce the subject: we will present
the classical problem of finding the steady-state solution of a damped mass-spring
problem where the external force is a pure cosine of different frequency. Then, in
the second part, the external force will be a nontrivial periodic one. This is well
documented but we rarely see different approaches. One approach we will use is the
convolution of the input with the impulse response. Another approach will be the use
of Fourier series because the linearity of the differential equation allows us to apply
the principle of superposition. In both cases, the CAS will work for us, computing
the convolution and finding the Fourier expansion.

Finally in the case of underdamping, the shape of the frequency response is best
understood and illustrated with the aid of sliders. For this purpose, the TI-Nspire CX
CAS software will be used. The notebook [3] contains many examples of how to use
it in differential equations.
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Introducing parametric curves with CAS

Louis-Xavier Proulx1

The TI-Nspire CX CAS handheld device is mandatory in every math courses at
École de technologie supérieure. Our engineering students learn single-variable cal-
culus in a one-term course (MAT145). Students get their motivation to learn math-
ematical concepts through applied problems. Hence, in-house course notes [1] were
written to emphasize on the applications of the syllabus material and the use of CAS.

The multi-variable calculus course (MAT165) follows a classic reference text-
book [2] contrary to the more hands-on approach pursued in MAT145. Many con-
cepts can be explored and visualized with graphs of level surfaces. Plotting 3D ob-
jects is a useful feature of TI-Nspire, but it requires the use of parametric curves and
surfaces. Vector functions are a fundamental tool for the course, but students hardly
conciliate the graphical representations of these functions with their algebraic defi-
nition. Moreover, the students are challenged by the general and abstract setting in
which these mathematical concepts are introduced.

The aim of this talk is to explore alternative ways for introducing the concept of
parametric curves and vector functions using computer algebra. More focus will be
given to different vector calculus concepts presented in applied problems. Software
such as TI-Nspire will be used to graph and manipulate parametric curves.

Keywords: Parametric curves, Vector functions, Applications
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Visualizations of the nondominated set and the efficient set
in multicriteria optimization problems using Mathematica

Włodzimierz Wojas1, Jan Krupa1

Multicriteria optimization also known as multicriteria programming is a sub-
discipline of operation research. It is taught students in framework of such academic
courses as for example: Operation research, Multiobjective optimization, Optimiza-
tion methods or Mathematical programming. Multicriteria optimization problem has
a general form:

f(x) = (f1(x), f2(x), . . . , fk(x))→ min/max

subject to x ∈ X,X ⊂ Rn

where x is a decision variable vector, X is a feasible set in decision space Rn,
(f1(x), f2(x), . . . , fk(x)) is a criterion vector and min or max are understood in ac-
cordance with the partial order P in criterion space Rk. We define: a feasible set
Y in criterion space as the image of the set X under f = (f1, f2, . . . , fk), the non-
dominated set YN = {y ∈ Y : there is not y′ ∈ Y with y′Py} and the efficient set
XE = {x ∈ X : f(x) ∈ YN}. Many academic books contain visualizations of
sets X,Y, YN , XE for some linear functions f : R2 → R2. It would be more dif-
ficult but didactically useful to present these sets also for functions f : R2 → R3

and f : R3 → R3. It would rather require computer support using for example
CAS programs. In this talk we would like to present a few didactic visualizations
of sets X,Y, YN , XE for some functions f : R2 → R3 and f : R3 → R3 using
Mathematica.

Keywords: multicriteria optimization, multicriteria programming, didactics of math-
ematics, mathematics education, CAS, Mathematica
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Fractals and tessellations: from K’s to cosmology

Thierry Dana-Picard1, Sara Hershkovitz2

We present two related topics which can accompany Mathematics Education
from early childhood to university and even beyond.

1. A tessellation is a partition of a space (usually a Euclidean space like the Eu-
clidean plane or the Euclidean 3-dimensional space) by elements of a finite set,
called tiles (more precisely, they are non-empty compacts). We begin with con-
sidering tilings by translations, i.e. two isometric tiles are deductible from one
another by a translation (excluding rotations or symmetries). Generalization is
possible to surfaces locally topologically equivalent to a plane. See Figure 1.
Another generalization is to accept symmetries (either central or axial), as the

(a) Plane tessel-
lation

(b) Honeycomb

Figure 1: Tessellations

tessellation using a 4th generation Sierpinski triangle in Figure 3 (b).

2. A fractal is an abstract object used to describe and simulate naturally occurring
objects, showing self-similarity at increasingly small scales. Among the most
known examples is the Mandelbrot set (Figure 1 (a)). An example of a 3D
fractal is the so-called Menger sponge. See Figure 2

We show how to use a standard triangular grid to produce tessellation, and how
to use a fractal to build a tessellation. Figure 3 shows a Sierpinski triangle, a plane
tessellation built with it and a Sierpinski pyramid.

Different levels of technology can be used: low-tech such as paper and pencil,
then progressive introduction of Dynamic Geometry (in our case GeoGebra: http:
//geogebra.org) and Computer Algebra Systems (we used Maple 2017), to-
gether with easy free software to work with images (Irfanview: http://irfanview.
com).

http://irfanview


(a) Mandelbrot set (b) Menger sponge

Figure 2: 2D and 3D fractals

(a) Sierpinski triangle (b) Sierpinski tessella-
tion

(c) Sierpinski pyramid

Figure 3: 2D and 3D fractals

We demonstrate how to work with technology, using GeoGebra applets, anima-
tions∗ and Maple programming. The examples serving as a basis can come from
everyday life and also from more advanced scientific topics, such as the shape of
space. In particular, we may quote the following works:

[(i)]Luminet’s theory of wrapped universe [1] relies on a kind of 3D tessel-
lation; see Figure 4 (a). A work presented at ACA 2017 in Jerusalem in the
session on Applied Physics [2], describing the repartitions of galaxies using a
Sierpinski gasket; see Figures 4 (b) and (c)†.

Part of this exploration has been performed with in-service teachers in a special
lab, last February.

Keywords: Tessellations, Fractals, CAS, DGS
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(a) Wraparound uni-
verse

(b) Sierpinski gasket (c) Repartition of galax-
ies

Figure 4: The shape of space
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The Runge Example for Interpolation and
Wilkinson’s Examples for Rootfinding

Leili Rafiee Sevyeri1, Robert M. Corless2

We look at two classical examples in the theory of numerical analysis, namely the
Runge example for interpolation and Wilkinson’s example (actually two examples)
for rootfinding. We use the modern theory of backward error analysis and condition-
ing, as instigated and popularized by Wilkinson, but refined by Farouki and Rajan.
By this means, we arrive at a satisfactory explanation of the puzzling phenomena
encountered by students when they try to fit polynomials to numerical data, or when
they try to use numerical rootfinding to find polynomial zeros. Computer algebra,
with its controlled, arbitrary precision, plays an important didactic role.

Keywords: Interpolation, Rootfinding, Conditioning, Sensitivity.
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A non-iterative method for solving nonlinear equations

Michael Xue1

Newton-Raphson method is the most commonly used iterative method for finding
the root(s) of a real-valued function or nonlinear systems of equations. However, its
convergence is often sensitive to the error in its initial estimation of the root(s). This
talk will present a non-iterative method that mitigates non-convergence. An auxiliary
initial-value problem of ordinary differential equation(s) is generated by a Computer
Algebra System first, then integrated numerically over a closed interval. The solu-
tion(s) to the original systems of nonlinear equations is obtained non-iteratively at the
end of the interval. A proof of the theorem serving as the base for this new method
is presented at the talk. Several examples will illustrate its guaranteed convergence,
a clear advantage over the Newton-Raphson method.

Keywords: Non-iterative method, Convergence, Nonlinear equations, Computer
algebra
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What is the integral of xn ?

David J. Jeffrey1, David R. Stoutemyer2 Robert M. Corless1

Thus, computer algebra systems usually solve a problem under the implied as-
sumption that any parameters appearing in the problem will take values that lead to
the general result returned. The title refers to the fact that the systems return the
integral of xn as xn+1/(n+ 1) while omitting the condition n 6= −1.

We shall use the word specialization to describe the action of substituting spe-
cific values (usually numerical, but not necessarily) into a formula. The special-
ization problem is a label for a cluster of problems associated with formulae and
their specializations, the problems ranging from inelegant results to invalid ones. For
example, in [2] an example is given in which the evaluation of an integral by special-
izing a general formula misses a particular case for which a more elegant expression
is possible. The focus here, however, is on situations in which specialization leads to
invalid or incorrect results. To illustrate the problems, consider

I1 =

∫ (
ασz − αλz

)2
dz =

1

2 lnα

(
α2λz

λ
+
α2σz

σ
− 4α(λ+σ)z

λ+ σ

)
. (1)

Expressions equivalent to this are returned by Maple, Mathematica and many other
systems, such as the Matlab symbolic toolbox. It is easy to see that the specialization
σ = 0 leaves the integrand in (1) well defined, but the expression for its integral on
the right-hand side is no longer defined. If we pursue this further, we see that there
are multiple specializations for which (1) fails, viz. α = 0, α = 1, λ = 0, σ = 0,
λ = −σ, and combinations of these. The question of how or whether to inform
computer users of these special cases has been discussed in the CAS literature many



times [1]. A list of every special case for (1) is as follows.

I1 =



1

2λ lnα

(
α2λz − α−2λz − 4zλ lnα

)
,

[
λ+ σ = 0 ,
α 6= 0 , α 6= 1 , σ 6= 0 ;

z +
1

2λ lnα

(
αλz(αλz − 4)

)
,

[
σ = 0 ,
α 6= 0 , α 6= 1 , λ 6= 0 ;

z +
1

2σ lnα
(ασz(ασz − 4)) ,

[
λ = 0 ,
α 6= 0 , α 6= 1 , σ 6= 0 ;

ComplexInfinity ,

[
α = 0 ,
<(λz)<(σz) < 0 ;

Indeterminate ,

[
α = 0 ,
<(σz)<(λz) ≥ 0 ;

1

2 lnα

(
α2λz

λ
+
α2σz

σ
− 4α(λ+σ)z

λ+ σ

)
, otherwise, (generic case) .

(2)

Expressions such as this will be called comprehensive antiderivatives. There are
several questions surrounding such expressions. The first is whether comprehensive
antiderivatives should be returned to users. A second question is how systems can
compute such expressions. The automatic discovery of exceptional cases is not easy.
A third question concerns continuity with respect to parameters.

We shall discuss why the expression∫
xn dx =

xn+1

n+ 1
− 1

n+ 1

is better than the usual expression, and how we found it.

Keywords: Specialization problem, integration, parameters, continuity
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Familiarizing students with definition of Lebesgue measure
using Mathematica - some examples of calculation directly

from its definition
Włodzimierz Wojas1, Jan Krupa1, Jarosław Bojarski1

“Young man, in mathematics you don’t understand things. You just get used to
them”John von Neumann

In this talk we present some examples of calculation the Lebesgue measure of
some subsets of R2 directly from definition. We cannot find such examples in the
literature we know. We will consider the following subsets of R2: {(x, y) ∈ R2 : 0 ≤
y ≤ x2, 0 ≤ x ≤ 1}, {(x, y) ∈ R2 : 0 ≤ y ≤ sinx, 0 ≤ x ≤ π/2}, {(x, y) ∈ R2 :
0 ≤ y ≤ exp(x), 0 ≤ x ≤ 1}, {(x, y) ∈ R2 : 0 ≤ y ≤ ln(1−2r cosx+r2), 0 ≤ x ≤
π}, r > 1. The aim of these examples is to familiarize students with the definition of
Lebesgue measure. We calculate sums, limits and plot graphs and dynamic plots of
needed sets and unions of rectangles sums of which volumes approximate Lebesgue
measure of the sets, using Mathematica. The title of this talk is very similar to the title
of author’s article [1] which deals with definition of Lebesgue integral but our talk
deals with definition of Lebesgue measure instead. Using Mathematica or others CAS
programs for calculation Lebesgue measure directly from its definitions, seems to be
didactically useful for students because of the possibility of symbolic calculation of
sums, limits - checking our hand calculations and plot dynamic graphs. Moreover
we get students used not only to definition of Lebesgue measure but also to CAS
applications generally.

The following definitions we will use in our talk (see [9, 3]):
Rectangles. A closed rectangle R in Rd is given by the product of d one-

dimensional closed and bounded intervals: R = [a1, b1] × [a2, b2] × · · · × [ad, bd],
where aj ≤ bj are real numbers, j = 1, 2, . . . , d. In other words, we have R =
{(x1, . . . , xd) ∈ Rd : aj ≤ xj ≤ bj for all
j = 1, 2, . . . , d}. We remark that in our definition, a rectangle is closed and has
sides parallel to the coordinate axis. In R, the rectangles are precisely the closed and
bounded intervals, while in R2 they are the usual four-sided rectangles. In R3 they
are the closed parallelepipeds.

We say that the lengths of the sides of the rectangle R are b1 − a1, . . . , bd − ad.
The volume of the rectangle R is denoted by vol (R), and is defined to be vol (R) =
(b1 − a1) · · · (bd − ad).

Definition 1. (see [3, 7, 8, 9]) Let (R2,M,m) be measure space, where M is σ−
algebra of Lebesgue measurable subsets in R2, and m- Lebesgue measure on R2.



The measure m for any A ∈M is defined by the following formula:

m(A) = inf
{ ∞∑
j=1

vol (Rj) : A ⊂
∞⋃
j=1

Rj , Rj is closed rectangle in R2, j ∈ N
}
.

(1)

Keywords: Higher education, Lebesgue measure, Application of CAS, Mathemat-
ica, Mathematical didactics
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CAS in Teaching Basics of Stereoscopy

Jurell Benjamin1, Donna Walker1, Mylläri Tatiana1, Mylläri Aleksandr1

We use Wolfram Mathematica in teaching the basics of stereoscopy. Each stereo
image is represented either as a stereopair (for parallel and cross-eye views) or as an
anaglyph image (to be viewed with red-cyan glasses). By changing the parallax of
the left and right parts of the stereogram, one can move the image (or some part of it)
in front of or behind the window frame. We demonstrate basic stereoscopic effects
and typical mistakes made by beginners.

Soon after the invention of photography in 1839, a first suggestion for a stereo
camera was given by Brewster in 1847. By 1860 viewing stereo photos was a popular
pastime [1]. Later - in 20th century - interest waned. Recently, with the development
of technology interest in 3D imaging has increased: 3D cameras are available; 3D
lenses exist for cameras and smartphones; 3D cartoons and movies can be watched
on an ordinary tv or computer screen using anaglyph (red-cyan) glasses; there are
special 3D TVs, 3D movie cinemas, glasses-free 3D displays, etc.; and, finally, the
recent development of virtual reality.

Here, we demonstrate some basic tricks one can do with changing the position of
the stereo window and basic mistakes of beginners (and not only beginners - similar
mistakes can be seen in big-screen, multi-million-dollar budget movies!). For exam-
ple, one of the standard "Wow!" effects with 3D images is when most of the image
appears behind the frame, but part of the image is hanging out in front. One has to be
careful: that part shouldn’t be cut by the frame! It is especially important in action
scenes when objects which are moving around can easily be cut by the frame border.

Wolfram Mathematica provides good tools for image processing as well as pow-
erful analytic tools, 3D graphics and animation. These allow one to easily construct
simple stereograms; demonstrate effects and distortions introduced by the incorrect
methods of constructing stereo image; and manipulate constructed images to demon-
strate different effects. We use Mathematica to demonstrate correct and incorrect
"Wow!" effect realizations of the type described above. By changing relative par-
allax of left and right images, we change position of the image with respect to the
frame. Our manipulations with stereo images we base on a classic textbook by J.G.
Ferwerda [1].

Keywords: Stereoscopy, 3D Imaging
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S4
Applied Computational Algebraic Topology

Algebraic Topology was in its origin an area of pure mathematics with deep alge-
braic and geometrical roots, which has had an intense development in the last 120
years. However, in this period this discipline has become the core of several areas
of application-oriented research using algebraic topology methods in biology, statis-
tics, engineering, computer science. . . The growing number of these interactions has
given rise to the field of applied and computational algebraic topology.

This session is therefore mainly devoted to the computational aspects of this
emerging field in all possible directions which include, but are not restricted to:

• Computational algebraic topology

• Computational homological algebra

• Computational topological dynamics

• Coding theory and cohomology of groups

• Topological analysis and processing of digital images

• Topological analysis of data

• Stochastic algebraic topology

• Topological pattern recognition

• Topological robotics

• Topology, computer science and parallelism
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New algorithms for computing homology of finite
topological spaces

Julián Cuevas-Rozo1, Laureano Lambán2, Ana Romero2, Humberto Sarria
Zapata1

We present some algorithms to compute the homology of finite topological spaces,
which have been implemented in the Kenzo system by combining techniques of point
reduction of finite topologies and discrete vector fields.

Keywords: Finite topological space, simplicial complex, discrete vector field, ho-
mology.

1 Introduction

A useful correspondence between finite topological spaces and finite simplicial com-
plexes is due to McCord [6], who assigns to each finite T0 space X a simplicial
complex K(X), called the order complex of X , in such a way that X and K(X) are
weak homotopy equivalent. In addition, McCord proves that weak homotopy types of
compact polyhedra are in one-to-one correspondence with those of finite topological
spaces.

In the last years the theory of finite topological spaces has experimented a new
impulse from works by Barmak and Minian [2] about the study of homotopy and
weak homotopy types, among many other results; for example, they show that el-
ementary collapses of compact polyhedra correspond to elimination of weak points
of finite T0-spaces. On the other hand, Minian [7] introduced a version of discrete
Morse theory for posets that satisfy the h-regularity property; the incidence graphs of
simplicial complexes are h-regular so that Minian’s results apply to any finite topo-
logical space coming from the simplicial context.

More recently, Cianci and Ottina [3] have generalized Minian’s results by defin-
ing an appropriate spectral sequence that converges to the homology of a finite T0-
space and showing that, in the particular case of quasicellular posets, the computation
is more tractable. In this work we present the implementation of some algorithms in
the Kenzo system [5] to compute topologial invariants of finite spaces. The Kenzo
system was developed by Francis Sergeraert and some coworkers and it allows the
user to compute homotopy and homology invariants of spaces by using their simpli-
cial versions. Our algorithms combine theoretical results by Barmak and Minian and
some previous ideas implemented in Kenzo, as the technique of discrete vector fields.



2 Computation of homology in finite spaces

Given a finite T0-space (X, T ) where X = {x1, . . . , xn}, the topogenous matrix
associated to X is the n-square matrix TX = [tij ] defined by

tij =

{
1 , xi ∈ Uj
0 , xi /∈ Uj

where Uj is the minimal open set that contains xj . There exists a well-known result
due to Alexandroff [1] providing a one-to-one correspondence between finite topo-
logical spaces and posets (the order relation is given by: xi 6 xj ←→ xi ∈ Uj).
In this way, the topogenous matrix can be regarded as the incidence matrix corre-
sponding to the order relation and Ux is the set of elements that are less than or equal
to x. Moreover, in the previous work [4] it is shown how to modify TX in order to
obtain an upper triangular permutation-similar matrix, such that it is associated to a
T0-space which is homotopically equivalent to X . For this reason, we assume that a
finite T0-space X has an enumeration of its elements in such a way that its topoge-
nous matrix is upper triangular. Usually a poset is represented by its Hasse diagram
H(X), given by edges (x, y) such that x < y and there does not exist z such that
x < z < y.

If X is a finite T0-space, the order complex K(X) associated to X is the simpli-
cial complex whose simplices are the nonempty chains of X . The simplicial com-
plex K(X) can be used to compute the topological invariants of X; the problem is
the size of K(X), which limits the possible computations on it. In fact, the McCord
morphism [6] provides a weak homotopy equivalence between X and K(X). Never-
theless, there exist methods that can be directly apply to finite spaces. For instance,
Stong [9] proved that by sequencially removing some particular points in a finite T0-
spaceX , a minimal space, which is homotopy equivalent toX , is obtained; this space
is called a core ofX . Moreover, to decide if two spaces have the same homotopy type
is equivalent to verify that their cores are homeomorphic.

With regard to homology, some results given in [2], [7] can help us to develop
algorithms for computing homology groups of some particular classes of finite topo-
logical spaces. A space X is called h-regular if for every x ∈ X , the order complex
K(Ûx) is homotopy equivalent to the sphere Sn−1, where n is the degree of x, that
is, the maximum of the cardinality of the chains of Ûx (Ûx denotes the subspace
Ux − {x} in the poset associated to X). In the same way, a cellular poset X is a
graded poset such that for every x ∈ X , Ûx has the homology of Sn−1, where n is
the degree of x.

We say that an edge (x, y) in the Hasse diagram H(X) is admissible if the sub-
poset Ûy − {x} is homotopically trivial. A poset is admissible if all its edges are
admissible. It can be proved that any admissible poset is h-regular and the face poset
X (K) (the poset given by the simplices ofK ordered by subset inclusion) of any reg-
ular CW-complex K (in particular, of any finite simplicial complex) is admissible.



Given a cellular poset X , its cellular chain complex (C∗, d) is defined in [7] by

Cp(X) =
⊕

deg(x)=p

Hp−1(Ûx) (1)

where Hk(Y ) denotes the k-homology group of Y .
Then, the following result [7, Theorem 3.7] provides a framework to compute

homology.
Theorem 1. Let X be a cellular poset and let (C∗, d) be its cellular chain com-

plex. Then H∗(C∗) = H∗(X).
In order to improve the efficiency, one can consider discrete vector fields, a basic

tool in homology computations. Let X be an h-regular poset and let H(X) be its
Hasse diagram. A matching M is a Morse matching provided that the directed graph
H(X) is acyclic and M is called admissible if all its edges are admissible. Corollary
3.15 in [7] asserts that the homology of a cellular poset X coincides with the ho-
mology of a complex (C̄∗, d̄), obtained by restricting only to those direct summands
of (1) corresponding to the set CM of critical points of M (those points that are not
incident to any edge in M ).

Theorem 2. Let X be a cellular poset with an admissible Morse matching M
defined on it. Then H∗(C̄∗) = H∗(X), where (C̄∗, d̄) is defined by

C̄p(X) =
⊕

deg(x)=p
x∈CM

Hp−1(Ûx). (2)

3 New algorithms and its implementation

In this section we are going to present some algorithms developed in Kenzo allow-
ing the user to make topological computations over finite spaces. In particular, we
provide algorithms to determine the core and the order complex of a space X . More-
over, we present an ongoing work for the computation of homology groups by using
discrete vector fields.

An element x is a beat point of the space X if either Ûx has a maximum or the
set {y ∈ X : x < y} has a minimum. A core of a finite T0-space X is a strong
deformation retract of X which has no beat points; in [9] it is proved that the core
can be obtained by removing one by one all the beat points of X .

Given an element xk ∈ X , we have implemented an algorithm to decide if xk
is a beat point by using the topogenous matrix TX = [tij ] as follows: consider the
sets Ik = {i : tik = 1, i 6= k} and Jk = {j : tkj = 1, j 6= k} and the numbers
Mk = max Ik, mk = min Jk; if either Ik = {i : ti,Mk

= 1} or Jk = {i : tmk,j = 1}
then xk is a beat point. Once we know that xk is a beat point, we can delete the k-th
row and column in order to obtain a smaller topogenous matrix that represents the
space X − {xk}; continuing this process, after a finite number of steps, we will have
the topogenous matrix of a core of X .



In [2] another kind of points that preserves the weak homotopy type is defined;
these points are called weak points and satisfy the following property: x is a weak
point if the link of x (the subspace consisting of all the elements comparable with
x, different to x) is contractible. Since the algorithm to find the core of a space is
already implemented, we have a procedure to decide if xk is a weak point: consider
the set Lk = {l 6= k : tlk = 1 or tkl = 1} and delete the r-th row and column from
TX for all r /∈ Lk in order to obtain the topogenous matrix TĈxk

of the link; then, the
matrix of the core of this link has size 1 if and only if xk is a weak point.

We can also compute the order complex of any finite topology making use of
its topogenous matrix. More exactly, if we consider the matrix NT obtained from
TX by substracting the identity matrix i.e. NT = TX − In, we have the following
proposition.

Proposition. [4] For each 0 6 k 6 n−1, the entry [Nk
T ]ij represents the number

of chains of k + 1 elements with xi as minimum and xj as maximum.
The above result allows us to find all the chains of elements in X from the suc-

cessive powers of NT , and therefore Kenzo is able to compute the order complex of
a finite space.

With regard to homology, in order to define an admissible Morse matching on
H(X), we have modified the algorithm proposed in [8, Section 5.2] (for comput-
ing admissible discrete vector fields for digital images), with the purpose it can be
applied to any cellular space. In addition, the involved calculations to verify the cel-
lularity condition improve the efficiency by means of the sequential construction of
the discrete vector field. At first instance, we consider those edges (x, y) where the
core of Ûx − {y} is a single point (in this case, Ûx − {y} is contractible), which is a
stronger condition than being homotopically trivial, and combine this with the modi-
fied algorithm in [8] in order to obtain admissible vectors up to degree p − 1. Then,
we can compute all the homology groups Hp−1(Ûx) appearing in (2) by applying
Theorem 2 to X := Ûx together with those vectors contained in it. In this manner,
the Kenzo system uses in a recursive way Theorem 2 and the modified algorithm in
[8] to construct an admissible discrete vector field and also to check the cellularity
condition in each step.

It should be mentioned that the class of finite topological spaces to which these
results can be applied has been extended in [3] to quasicellular spaces. The idea is to
replace the degree function by the definition of a morphism ρ : X −→ N0 satisfying
some particular conditions, in such a way that Theorems 1 and 2 are still valid and
our algorithms can also be applied.
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Maximal Stable Homological Regions and AT-models∗

H. Molina-Abril1, P. Real1, F. Díaz-del-Río1

Keywords: Maximal Stable Homological Regions, Homological Segmentation, AT-
model

Let X be a finite cell complex. Working with Z/2Z as the ground ring, we con-
struct from an AT-model [1] a partition of X as a set of cells, called a homological
segmentation of X . Its regions are strongly related to the specification of the homo-
logical holes of X as set of cells in which paths cutting or delineating them live. This
method can be curiously seen as a purely homological version of the computer vision
procedure named maximally stable extremal regions (MSER) proposed by Matas et al
[2], which is used as a method of blob detection in digital images. In this sense, we
show some experiments with three-dimensional digital objects in order to analyze the
mathematical notion of homological segmentation within the context of topological
object recognition.
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Computing Homotopy Information of 4D Digital Objects in
Parallel∗

P. Real1, F. Díaz-del-Río1, H. Molina-Abril1, D. Onchis-Moaca2, S.
Blanco-Trejo1

Keywords: four-dimensional digital object, primal-dual abstract cell complex, ho-
mology, homotopy,

Let X ⊂ I be a digital object embedded in a 4-dimensional digital image I .
Working with a primal-dual abstract cell complex (pACC, for short) version pACC(X)
of X , we design an algorithm in which elementary homotopy operations can be ex-
haustively applied to pACC(X) in order to obtain a smaller pACC (in terms of cells
and connexions between them) whose cells are strongly related to the integer alge-
braic homological generators of pACC(X). An ambiance-based parallel version of
this previous algorithm can be designed from which homology and homotopy Infor-
mation of X can be derived in a straightforward manner.
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Reductions of monomial resolutions for the computation of
high dimensional simplicial homology

E. Sáenz-de-Cabezón1

Abstract

In this paper we propose an algorithm for the computation of monomial
resolutions that can be useful for obtaining the reduced homology of simplicial
complexes. The algorithm is based on the reduction of known resolutions us-
ing the support of smaller ones. We start with a combinatorial resolution that
is highly non minimal but easy to obtain, such as Taylor resolution. On the
other hand, we compute in a combinatorial way the support of a smaller reso-
lution (without computing the differentials in this resolution). In this step we
use Mayer-Vietoris tree algorithm to obtain the support of a mapping cone res-
olution. Finally the last step consists on reducing the differential of the Taylor
resolution using the information in the support of the mapping cone resolution
to have smaller matrices, from which we compute the homology of the given
simplicial complex.

Usually, a simplicial complex is given by a list of its facets. It is impor-
tant to note that we use the ideal generated by the complements of the facets
of the simplicial complex, which is equivalent to use the ideal generated by
the minimal nonfaces, however, passing from one representation to the other
is computationally demanding. Due to the size of the matrices involved in this
process, our algorithm is particularly useful for simplicial complexes of high di-
mensions, since the matrices in the usual algorithm grow exponentially in terms
of dimension of the complex, and those in our approach grow exponentially in
terms of the number of facets of the complex.
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S5
Computer Algebra for Dynamical Systems
and Celestial Mechanics

Celestial Mechanics and Dynamical Systems are traditional fields for applications of
computer algebra. Computer algebra methods play a fundamental role in the treat-
ment of concrete problems and applications. Computer algebra applications include
nontrivial use of existing systems Maple, Mathematica, Singular etc. and the de-
velopment and implementation of new algorithms, and specialized packages. The
session will bring together specialists from diverse areas: differential equations, dy-
namical systems and computer algebra. Expected topics of presentations include (but
are not limited to):

• Stability and bifurcation analysis of dynamical systems

• Construction and analysis of the structure of integral manifolds

• Symplectic methods

• Symbolic dynamics

• Celestial mechanics and stellar dynamics. N-body problem, KAM theory

• Specialized computer algebra software for celestial mechanics

• Normal form theory and formal integrals

• Deterministic chaos in dynamical systems

• Families of periodic solutions

• Perturbation theories and reductions

• Exact solutions and partial integrals

• Analysis and blow-ups of non-elementary stationary points

• Analysis of singularities: geometry and topology

117



• Integrability and nonintegrability, algebraic invariant sets and Darboux integra-
bility

• Discrete Dynamical Systems and ergodic theory

• Topological structure of phase portraits and computer visualization
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On the Numerical Analysis and Visualisation of Implicit
Ordinary Differential Equations

Elishan Braun1, Werner M. Seiler2, Matthias Seiß2

We discuss how the geometric theory of differential equations [4] can be used for
the numerical integration and visualisation of implicit ordinary differential equations,
in particular around singularities of the equation [3]. The Vessiot theory [2] automat-
ically transforms an implicit differential equation into a vector field distribution on
a manifold and thus reduces its analysis to standard problems in dynamical systems
theory like the integration of a vector field and the determination of invariant man-
ifolds. For the visualisation of low-dimensional situations we adapt the streamlines
algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation
in Matlab is presented [1].

Keywords: Implicit ordinary differential equations, Vessiot distribution, jet bun-
dles, singular points, invariant manifolds
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Singular Initial Value Problems for Quasi-Linear Ordinary
Differential Equations

Werner M. Seiler1, Matthias Seiß1

We discuss existence, non-uniqueness and regularity of solutions of initial value
problems for quasi-linear ordinary differential equations where the initial condition
corresponds to an impasse point [4] of the equation. With a differential geomet-
ric approach [1, 3], we reduce the problem to questions in dynamical systems the-
ory. As an application, we discuss in detail second-order equations of the form
g(x)u′′ = f(x, u, u′) with an initial condition imposed at a simple zero of g. This
generalises results by Liang [2] and also makes them more transparent via our geo-
metric approach.

Keywords: Quasi-linear ordinary differential equations, geometric theory, initial
value problem, existence and (non-)uniqueness of solutions, regularity

References

[1] D. FESSER; W.M. SEILER, Existence and Construction of Vessiot Connections.
SIGMA 5, 092 (2009)

[2] J.F. LIANG, A singular initial value problem and self-similar solutions of a non-
linear dissipative wave equation. J. Diff. Eqs. 246, 819–844 (2009)

[3] W.M. SEILER, Involution. Springer-Verlag, Berlin, 2010.

[4] W.M. SEILER, Singularities of implicit differential equations and static bifurca-
tions. In Computer Algebra in Scientific Computing – CASC 2013, V. Gerdt et al.
(eds.), 355–368, Springer-Verlag, Chaim, 2013

1Institut für Mathematik
Universität Kassel
Heinrich-Plett-Straße 40, 34132 Kassel, Germany
[seiler,mseiss]@mathematik.uni-kassel.de

mailto:mseiss]@mathematik.uni-kassel.de


Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

The construction of averaged semi-analytical planetary
motion theory up to the third degree of planetary masses by

means CAS Piranha

Alexander Perminov1, Eduard Kuznetsov1

The study of planetary systems orbital evolution is one of important problems of
Celestial mechanics. In this work authors present the algorithm for the construction
of the averaged semi-analytical motion theory up to the third degree of the small
parameter for the case of planetary system with four planets. In this case the small
parameter is the ratio of sum of planetary masses to the mass of the star.

The Hamiltonian of four-planetary problem is written in Jacobi coordinates and
it is expressed into the Poisson series in elements of Poincare’s second system. It
allows sufficiently simplifying an angular part of the series expansion. In this case
only one angular element – mean longitude, is defined.

The averaged Hamiltonian and the motion equations in averaging elements are
constructed by Hori-Deprit method as the series in the small parameter and all orbital
elements. The transformation between osculating and averaged orbital elements is
performed by using of the functions for the change of variables. The using of the av-
eraged motion equations allows sufficiently increase time step of the next numerical
integration.

All analytical manipulations are performed by using of computer algebra system
Piranha [1]. The author of Piranha system is Francesco Biscani from Max Plank
Institute for Astronomy in Heidelberg, Germany. Piranha is echeloned Poisson series
processor. It is developing C++ code with Python interface for analytical calculations
with polynomials, Poisson series and echeloned Poisson series.

Orbital elements and masses are kept in the series expansions as symbol variables.
It should be noted that series numerical coefficients are kept as rational numbers with
arbitrary precision for the elimination of rounding errors.

The terms with the first order of the small parameter in the averaged Hamiltonian
is constructed up to 8-th degree of eccentric and oblique Poincare elements. The
second order terms is constructed up to 6-th degree and the third order terms – up to 2-
nd degree of eccentric and oblique Poincare elements. It allows to get high precision
motion equations for giant planets of Solar system and various extrasolar systems
also. The algorithms of the expansion into the Poisson series and the construction of
motion equations are presented in this work.

The results of numerical integration of the motion equations for the Sun – Jupiter –
Saturn – Uranus – Neptune’s system on a time interval of 10 billion years is consid-
ered. It is performed by Everhart method of 15-th order. The motion of the planets



has an almost periodic character. The orbital eccentricities and inclinations save small
values over whole time of the integration. The comparison with numerical theories is
given.

The study was funded by RFBR according to the research project no. 18-32-
00283 and the Government of the Russian Federation (Act no. 211, agreement no.
02.A03.21.0006).

Keywords: CAS Piranha, echeloned Poisson series processor, four-planetary prob-
lem, semi-analytical motion theory, Hori-Deprit method, Jacobi coordinates, second
system of Poincare elements
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Local and Global Properties of ODEs∗

Victor Edneral1, Valery Romanovski2

We consider autonomous planar systems of ordinary differential equations with
a polynomial nonlinearity. These systems are resolved with respect to derivatives
and can contain free parameters. To study local integrability of the system near each
stationary points, we use an approach based on Power Geometry[1] and on the com-
putation of the resonant normal form[2, 3]. For the pair of concrete planar systems[4]
and[5], we found the complete set of necessary conditions on parameters of the sys-
tem for which the system is locally integrable near each stationary points. The main
idea of this report is in the hypothesis that if for each fixed set of parameters such that
all stationary points of the equation are centers then this system has the global first
integral of motion. So from some finite set of local properties we can obtain a global
property. But if the system has some invariant lines or separatists, this first integral
can exist only in the part of the phase space, where center points take place.

Keywords: Local Integrability, Global Integrability
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Nonlinear Oscillations of a Spring Pendulum at the 1 : 1 : 2
Resonance by Normal Form Method∗

Victor Edneral1, Alexander Petrov2

Nonlinear spatial oscillations of a material point on a weightless elastic suspen-
sion are considered. The frequency of vertical oscillations is assumed to be equal to
the doubled swinging frequency (the 1 : 1 : 2 resonance) [1]. In this case, vertical
oscillations are unstable, which leads to the transfer of the energy of vertical oscil-
lations to the swinging energy of the pendulum. Vertical oscillations of the material
point cease, and, after a certain period of time, the pendulum starts swinging in a
vertical plane. This swinging is also unstable, which leads to the back transfer of
energy to the vertical oscillation mode, and again vertical oscillations occur. How-
ever, after the second transfer of the energy of vertical oscillations to the pendulum
swinging energy, the apparent plane of swinging is rotated through a certain angle.
These phenomena are described analytically by the normal form method[2].

Keywords: Pendulum, Resonance, Normal form method
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On the estimation of complexity of trajectories in the
equal-mass free-fall three-body problem

Mylläri Aleksandr1, Mylläri Tatiana1, Myullyari Anna2, Vassiliev Nikolay3

We study complexity of trajectories in the equal mass free-fall three-body prob-
lem. We construct numerically symbolic sequences using different methods: close
binary approaches, triple approaches, collinear configu- rations and other. Different
entropy estimates for individual trajectories and for a system as a whole are com-
pared.

Keywords: Three-Body Problem, Symbolic Dynamics, Entropy
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Schutzenberger transformation on the three-dimensional
Young graph

Vasilii Duzhin1, Nikolay Vassiliev1,2

The Schutzenberger transformation on Young tableaux, also known as "jeu de
taquin", was introduced in [1]. This transformation allows to solve different prob-
lems of enumerative combinatorics and representation theory of symmetric groups.
Particularly, it can be used to calculate the Littlewood-Richardson coefficients [2].

It is known [3] that a limit distribution of Plancherel probabilities on the front of
large Young diagrams of size n, n→∞ has the following density function known as
semicircle distribution:

dµ(u) =

√
4− u2

2 · π
,

where u is one of Vershik-Kerov coordinates: u = x−y√
n

. Later it was proved [4] that
the coordinates of Schutzenberger path ends are distributed according to the semicir-
cle distribution as well.

However, there are no known limit distribution function of the coordinates of
three-dimensional Schutzenberger path ends. Moreover, there are no known 3D ana-
logues of the central Plancherel process and RSK correspondence. In this work we
made an attempt to fill this gap by conducting some numerical experiments on the
three-dimensional Young graph.

Also we considered a special randomized variant of the Schutzenberger transfor-
mation. It was found that this approach can be used to calculate the co-transition
probabilities on the Young graph, which in turn gives a possibility to calculate the
ratios of dimensions of 3D Young diagrams. Note that the exact dimensions of 3D
Young diagrams cannot be calculated directly.

Keywords: Young tableaux, Young diagrams, Schutzenberger transformation, Jeu
de taquin, Limit shape
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The modeling of the effect of velocity of breakup in
osculating orbital elements of the young asteroid family

Rosaev A.1

Asteroid families are groups of minor planets that have a common origin in
breakup events. The very young compact asteroid clusters (VYF) with age smaller
than 1 Myr allow us to study impact process and nonlinear dynamics. In previous our
paper [1] we had noted dependence between dΩ and d$ for Datura family but had not
explained it. Additionally, we find other dependences between angular elements dω
and d$ in some other very young asteroid family. Vokrouhlicky et al. [2] have given
explanation but their model cannot proper explain value of observed slope. In this pa-
per we test the hypothesis of the primordial origin of the observed dependences at the
epoch of the cluster formation. The implicit dependences of the orbital elements on
breakup velocity components are studied with Maple. As a result, the dependences,
similar to observed, obtained at specific values of breakup velocities.

Keywords: asteroid family, orbital evolution, breakup velocity
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Searching for periodic solutions with central symmetry in
Hill problem∗

Alexander Batkhin1,

We consider Hill problem (see [1, 2]) describing the motion of massless body
near the minor of two active masses as a regular perturbation of Kepler problem in
uniformly rotating (sinodical) frame. It makes possible to apply the classical method
of Hamiltonian normal form [3] for searching generating solutions of families of
periodic orbits. The essential difference of the Hill problem from the well-known
Restricted Three Body Problem (RTBP) is that canonical equations of motions are
invariant under the group of linear transformations of the extended phase space with
generators:

Σ1 : (t, x1, x2, y1, y2)→ (−t, x1,−x2,−y1, y2) ,

Σ2 : (t, x1, x2, y1, y2)→ (−t,−x1, x2, y1,−y2) ,

This fact allows two state that the set of periodic solutions can be divided into
following subsets:

• asymmetric orbits, which change under any transformation;

• singly symmetric orbits, which are invariant under transformation Σ1 or Σ2;

• centrally symmetric orbits, which are invariant under composition Σ12 ≡ Σ1 ◦
Σ2 only;

• doubly symmetric orbits, which are invariant under any transformation.

Earlier [2, 4], periodic solutions with any type of symmetry but central were
computed. This work is an attempt to find generating solutions with central symmetry
and to continue them into periodic solutions of the Hill problem.

Just now the following steps are realized:

1. generalized Hill problem Hamiltonian with small parameter ε is rewritten in
Delaunay variables;

2. the procedure of invariant Hamiltonian normalization up to the second order is
applied;

∗RFBR project No. 18-01-00422



3. the condition on existing of generating solutions can be written in the form

F (e, p, q) sin k$ = 0,

where e is an eccentricity,$ is an argument of the pericenter, p+q ∈ {1, 2, 4}.
Function F (e, p, q) is smooth for e ∈ [0; 1). The parameter k equals to 2 for
p+ q = 1 or 2, equals to 4 for p+ q = 4.

The specific of the generalized Hill problem leads to the evidence that it is possi-
ble to successfully continue such generating solutions into the Hill problem periodic
orbits, which major semi-axis a is less then 1, or p, q ∈ N. For centrally symmetric
generating solutions it is possible if p > 2, p is odd, and $ 6= kπ/4, k ∈ N. A
suitable for continuation generating solution corresponds to the only values p = 3
and e ≈ 0.8525432355.

Keywords: Hill problem, periodic solution, symmetry
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S6
Computational Differential and
Difference Algebra

Algebraic differential and difference equations and systems of such equations arise
in many areas of mathematics, natural sciences and engineering. One can say that
difference equations relate to differential equations as discrete mathematics relates to
continuous mathematics. Differential / difference computer algebra studies algebraic
differential / difference equations in a constructive way that extends the methods and
algorithms of commutative algebra and algebraic geometry. The main goal of the
session is to consider the computational problems in differential/difference algebra to
explore new constructive ideas and approaches oriented toward various applications.

Expected topics of presentations include (but are not limited to):

• Differential and Difference Equations and Systems

• Differential and Difference Gröbner (Standard) and Involutive Bases

• Differential and Difference Characteristic Sets

• Triangular Decompositions of Differential and Difference Systems

• Differential and Difference Elimination

• Algorithmic Generation of Finite Difference Approximations to PDEs

• Consistency and Stability Analysis of Finite Difference Approximations

• Difference-Differential Polynomials and Systems

• Software Packages for Differential and Difference Algebra

• Applications of Differential and Difference Algebra in Mathematics and Natu-
ral Sciences
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Bounds for Proto-Galois Groups
Eli Amzallag1, Andrei Minchenko2, Gleb Pogudin3

In studying linear differential equations of the type Y ′ = AY,A ∈ Mn(C(t)),
it is often important to investigate the algebraic or differential relations among the
solutions. The benefit of obtaining such data is that it can be used to anticipate the
computational power needed to express solutions. In [4], Kolchin made this precise
by establishing a link between how solutions to Y ′ = AY might be expressed and
different properties of the corresponding differential Galois group, an object he con-
structed exactly to capture relations among the solutions. These differential Galois
groups can be realized as linear algebraic groups. In fact, many algorithms to com-
pute them have been developed since Kolchin’s foundational discussions of these
results in [4] and [5].

Kovacic [6] proposed an algorithm for second-order differential equations. Com-
point and Singer also provided an algorithm in [1] that can be applied to equations
of any order, if it is known in advance that the differential Galois group is reduc-
tive. A general algorithm for computing the differential Galois group was designed
by Hrushovski [3]. Making this algorithm practical and understanding its complex-
ity is an important challenge. Hrushovski conjectured that none of its steps would
“require more than doubly exponential time.” In [2], Feng expounded on the details
of Hrushovski’s original algorithm with differential-algebraic terminology and im-
proved the algorithm. He also formally defined an object computed in the first step
of the algorithm, a proto-Galois group. Such a group is an algebraic group, con-
tains the differential Galois group, and the computation of it allows one to reduce the
computation of the differential Galois group to the hyperexponential case, which is
addressed by the algorithm in [1]. In Hrushovski’s algorithm, a proto-Galois group is
computed by making an ansatz based on an a priori bound for the degrees of defining
polynomials of the group. Thus, such a bound is an essential part of the algorithm.
Moreover, it also needed for understanding the complexity of the algorithm.

In [2], Feng showed that there exists a proto-Galois group defined by polynomials
of degree at most sextuply exponential in n. Sun [7] utilized triangular sets in place
of the Groebner bases used by Feng. This different choice of representation for a
group leads to a bound triply exponential in n.

We adopt a different emphasis from both Feng and Sun. Instead of focusing
on equations for the group’s corresponding radical ideal, we take a more geometric
approach and focus on equations that define a proto-Galois group as an algebraic
variety in GLn(C). In conjunction with exploiting the structural theory of algebraic
groups, this approach allows us to further improve on Feng’s bound and thereby
improve the algorithm. We obtain an explicit bound of the form nO(n4).



We also assess the practicality of using Hrushovski’s algorithm for n = 2, 3, the
cases that arise most often in applications. We expect to determine tighter bounds
than our general bound suggests for these cases. In fact, we have established a tighter
bound for n = 2, for which our final bound is 6. We will discuss how we obtained this
result. We will also discuss work in progress for n = 3 and extending our methods
for n = 2 to those cases.

Keywords: Algebraic Geometry, Group Theory and Generalizations, Ordinary Dif-
ferential Equations
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The global dimension of the algebras of integro-differential
operators and their factor algebras

V. V. Bavula1

We discuss some homological properties of the algebras of integro-differential
operators and their factor algebras. In particular, their global dimension and weak
homological dimensions are found.

Keywords: the algebra of integro-differential operators, the weak homological di-
mension, the global dimension
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Effective calculation in studying the Jacobian Conjecture
Paweł Bogdan1

In 1930s Keller stated a problem which is known nowadays as the Jacobian Con-
jecture. In [1] Crespo and Hajto gave an equivalent condition to this Conjecture in a
language of Picard-Vessiot theory. They also gave an effective criterion to determine
whether a given polynomial map is an automorphism. Their result was improved in
[2].

The work on this improvement led me to propose a method to invert polynomial
maps F = (F1, ..., Fn) on a field K such that, for every i ∈ {1, ..., n} Fi = Xi+Hi,
whereHi has a vanishing order at least 2. My algorithm does not perform derivatives
neither division so it can be applied to maps over finite fields. A description of the
algorithm can be found in [3] and an estimation of its computational complexity can
be found in [4].

In my talk I will present the algorithm and the estimation of its complexity. I will
also discuss effective implementations of it on various Computer Algebra Systems.

Keywords: polynomial automorphisms, Jacobian Conjecture, algorithmics
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Formal Power Series Solutions of First Order Autonomous
Algebraic Ordinary Differential Equations∗

Sebastian Falkensteiner1, J.Rafael Sendra2

Let K be an algebraically closed field of characteristic zero. Given a first order
autonomous algebraic ordinary differential equation, i.e. an equation of the form

F (y, y′) = 0 with F ∈ K[y, y′],

we present a method to compute all formal power series solutions. Furthermore, by
choosing for instance K = C, the computed formal power series solutions are indeed
convergent in suitable neighborhoods.

We follow the algebro-geometric approach by Feng and Gao [2] and consider y
and y′ as independent variables, let us say y and z. Then F implicitly defines an
affine plane curve where local parametrizations can be computed, see e.g. [3]).

We show a sufficient and necessary condition on such a local parametrization to
obtain a formal power series solution of the original differential equation by substitu-
tion. Moreover, we present a polynomial-time algorithm for computing all the initial
tuples, i.e. the first two coefficients of a formal power series, which can be extended
to a solution. By choosing a particular initial tuple, a second algorithm determines
the coefficients of all solutions starting with this initial tuple up to an arbitrary order.

A full version [1] has been submitted to a journal and is online available.

Keywords: Algebraic autonomous differential equation, algebraic curve, local parametriza-
tion, formal power series solution
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Dimension Polynomials and the Einstein’s Strength of Some
Systems of Quasi-linear Algebraic Difference Equations

Alexander Evgrafov1, Alexander Levin2

We present a difference algebraic technique for the evaluation of the Einstein’s
strength of quasi-linear partial difference equations and some systems of such equa-
tions. Our approach is based on the properties of difference dimension polynomials
that express the Einstein’s strength and on the characteristic set method for comput-
ing such polynomials. The obtained results are applied to the comparative analysis
of difference schemes for some chemical reaction-diffusion equations.

Keywords: Difference dimension polynomial, Autoreduced set, Einstein’s strength

1 Preliminaries

LetK be an inversive difference field with a basic set of automorphisms σ = {α1, . . . , αm}
and Γ the free commutative group generated by σ. If γ = αk11 . . . αkmm ∈ Γ, then the
number ord γ =

∑m
i=1 |ki| is called the order of γ; if r ∈ N, we set Γ(r) = {γ ∈

Γ | ord γ ≤ r}. In what follows we denote the set {α1, . . . , αm, α
−1
1 , . . . , α−1

m } by
σ∗ and use the prefix σ∗- instead of “inversive difference”. A reflexive difference
ideal will be refer to as a σ∗-ideal.

Let R = K{y1, . . . , yn}∗ be the ring of σ∗-polynomials in n σ∗-indeterminates
over K. (As a ring, R = K[{γyi | γ ∈ Γ, 1 ≤ i ≤ n}]) An n-tuple ξ = (ξ1, . . . , ξn)
with coordinates in some σ∗-overfield K ′ of K is said to be a solution of the set of
σ∗-polynomials F = {fj | j ∈ J} ⊆ R or a solution of the system of algebraic
difference equations

fj(y1, . . . , yn) = 0 (j ∈ J) (1)

if F is contained in the kernel of the natural difference K-homomorphism (“sub-
stitution”) R → K ′ (yi 7→ ξi). The system (1) is called prime if the σ∗-ideal P
generated by the set F in R (it is denoted by [F ]∗) is prime. In this case the quotient
field L of R/P has a natural structure of a finitely generated σ∗-field extension of
K: L = K〈η1, . . . , ηn〉∗ where ηi is the canonical image of yi in L. (As a field,
L = K({γ(ηi) | γ ∈ Γ, 1 ≤ i ≤ n}).) As it is proven in [3, Section 6.4], there exists
a polynomial φη|K(t) ∈ Q[t] such that

φη|K(r) = tr.degK K({γηj |γ ∈ Γ(r), 1 ≤ j ≤ n}) for all sufficiently large
r ∈ Z.



This polynomial is called the σ∗-dimension polynomial of the σ∗-field extension
L/K associated with the system of σ∗-generators η = {η1, . . . , ηn}. It is also said
to be the σ∗-dimension polynomial of system (1). We refer to [3, Chapter 6] and
[4, Chapters 4 and 7] for properties, invariants, and methods of computation of σ∗-
dimension polynomials.

Let us consider a system of equations in finite differences with respect to un-
known functions of m real (or complex) variables x1, . . . , xm that induces a prime
system of algebraic difference equations. (Them basic automorphisms are defined by
the shifts of the arguments: for any function g(x1, . . . , xm), αi : g(x1, . . . , xm) 7→
g(x1, . . . , xi−1, xi+hi, xi+1, . . . , xm) where h1, . . . , hm are some real (or complex)
numbers.) It is shown in [4, Section 7.7] that the σ∗-dimension polynomial of such
a system expresses its strength in the sense of A. Einstein. This important character-
istic of the system is a difference counterpart the concept of strength of a system of
PDEs introduced in [1], see [4, Section 7.7] for details.

2 Autoreduced sets of quasi-linear σ∗-polynomials.
Computation of the Einstein’s Strength

With the above notation, let ΓY = {γyi|γ ∈ Γ, 1 ≤ i ≤ n} ⊆ R; the elements of
this set are called terms. The order ordu of a term u = γyj is defined as the order of
γ.

In what follows we consider the set Zm as the union of 2m orthants Z(m)
j (1 ≤

j ≤ 2m), that is, Cartesian products of m factors each of which is either N =
{k ∈ Z, k ≥ 0} or Z̄− = {k ∈ Z, k ≤ 0}. We set Γj = {αk11 . . . αkmm ∈
Γ | (k1, . . . , km) ∈ Z(m)

j } and (ΓY )j = {γyi | γ ∈ Γj , 1 ≤ i ≤ n}, so that
ΓY =

⋃2m

j=1(ΓY )j . A term v ∈ ΓY is called a transform of a term u ∈ ΓY if u
and v belong to the same set (ΓY )j and v = γu for some γ ∈ Γj . We also fix an
orderly ranking on ΓY , that is, a well-ordering ≤ of ΓY such that
(i) If u ∈ (ΓY )j and γ ∈ Γj , then u ≤ γu; (ii) If u, v ∈ (ΓY )j , u ≤ v and γ ∈ Γj ,
then γu ≤ γv; (iii) If u, v ∈ ΓY and ordu < ord v, then u < v.

If A ∈ R, then the greatest (with respect to ≤) term in A is called the leader of
A; it is denoted by uA. If d = deguA A and A is written as a polynomial in uA, then
the coefficient of udA is called the initial of A and is denoted by IA. If d = 1 then the
σ∗-polynomial A is called quasi-linear.

Let A,B ∈ R. The σ∗-polynomial A is said to be reduced with respect to B if
A does not contain any power of a transform γuB whose exponent is greater than
or equal to deguB B. If A ⊆ R \ K, then a σ∗-polynomial A ∈ R, is said to be
reduced with respect to A if A is reduced with respect to every element of A. A set
A ⊆ R is said to be autoreduced if either A = ∅ or A

⋂
K = ∅ and the elements of

A are reduced with respect to each other. As it is shown in [3, Section 3.4], distinct
elements of an autoreduced set A have distinct leaders and every autoreduced set is



finite. Furthermore, if A ∈ R, then there exists a σ∗-polynomial B ∈ R such that
B is reduced with respect to A and IB ≡ A(mod[A]∗) where I is a product of
transforms of initials of elements of A. (We say that A reduces to B modulo A.)

Let A,B ∈ R. We say that A has higher rank than B and write rkA > rkB if
either A /∈ K, B ∈ K, or uB < uA, or uA = uB and deguA B < deguA A. If uA =
uB and deguA A = deguA B, we say that A and B have the same rank and write
rkA = rkB. Assuming that elements of an autoreduced set in R are arranged in the
order of increasing rank, we compare such sets as follows: ifA = {A1, . . . , Ap} and
B = {B1, . . . , Bq}, then A is said to have lower rank than B if either there exists
k ∈ N, 1 ≤ k ≤ min{p, q}, such that rkAi = rkBi for i < k and rkAk < rkBk,
or p > q and rkAi = rkBi for i = 1, . . . , q.

By [3, Proposition 3.4.30], every nonempty family of autoreduced sets contains
an autoreduced set of lowest rank. If P is an ideal ofR, then an autoreduced subset of
P of lowest rank is called a characteristic set of P . Basic properties of characteristic
sets are described in [4, Section 2.4]. In particular, it is shown that if P is generated
by the σ∗-polynomials in the left-hand sides of a prime system of difference equations
(1) andA is a characteristic set of P , then the σ∗-dimension polynomial of the system
is determined by the leaders of elements of A. Therefore, the strength of a prime
system of difference equations is determined by a characteristic set of the associated
σ∗-ideal in the ring of σ∗-polynomials.

An autoreduced subsetA ofR consisting of quasi-linear σ∗-polynomials is called
coherent if it satisfies the following two conditions: (i) If A ∈ A and γ ∈ Γ, then
γA reduces to zero modulo A; (ii) If A,B ∈ A and v = γ1uA = γ2uB is a com-
mon transform of uA and uB , then the σ∗-polynomial (γ2IB)(γ1A)− (γ1IA)(γ2B)
reduces to zero modulo A.

The following two statements are the main results that allow one to evaluate the
Einstein’s strength of difference equations that arise from difference schemes for
some chemical reaction-diffusion equations arising in many problems of transfusion,
see [2].

Theorem 1. If a characteristic set A of some σ∗-ideal in R consists of quasi-linear
σ∗-polynomials, thenA is a coherent autoreduced set. Conversely, ifA is a coherent
autoreduced set consisting of quasi-linear σ∗-polynomials, then it is a characteristic
set of [A]∗.

Theorem 2. Let 4 be a preorder on R such that A1 4 A2 iff uA2 is a transform
of uA1 . Let A be a quasi-linear σ∗-polynomial and ΓA = {γA | γ ∈ Γ}. Then the
σ∗-ideal [A]∗ is prime and all minimal (with respect to 4) elements of ΓA form a
characteristic set of [A]∗.

Using the last two theorems and the expression of the σ∗-dimension polynomial
given in [3, Theorem 6.4.8], we obtain σ∗-dimension polynomials that express the
Einstein’s strength of difference schemes for some quasi-linear reaction-diffusion
PDEs (e. g., the Murray’s equation and its particular cases), the system of PDEs



of chemical reaction kinetics with the diffusion phenomena and the mass balance
PDEs of chromatography. The results of the corresponding computations allow one
to do comparative analysis of alternative difference schemes from the point of view
of their strength.

This work was supported by the NSF grant CCF-1714425.
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Computation of differential Chow forms for
ordinary prime differential ideals

Wei Li1, Ying-Hong Li1

The differential Chow form is an important associated form for a prime differen-
tial ideal or an order-unmixed differential cycle [1]. For example, it can characterize
invariants of its corresponding prime differential ideal, such as the differential dimen-
sion, order, leading differential degree and differential degree. So it is desirable to
devise efficient algorithms to compute the differential Chow form. In this talk, we
propose algorithms for computing differential Chow forms for ordinary prime dif-
ferential ideals which are given by characteristic sets. The algorithms are based on
an optimal bound for the order of a prime differential ideal in terms of a character-
istic set under an arbitrary ranking, which shows the Jacobi bound conjecture holds
in this case. That is, ord(sat(A)) ≤ Jac(A). Apart from the order bound, we also
give a Bézout type degree bound for the differential Chow form. The computational
complexity of the algorithms is single exponential in terms of the Jacobi number, the
maximal degree of the differential polynomials in a characteristic set, and the number
of variables.

Keywords: Differential Chow form, Jacobi bound, Single exponential algorithm
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Group Classification of ODEs: a Challenge to Differential
Algebra?

Dmitry Lyakhov1, Vladimir Gerdt2, Dominik Michels3

One of the most prominent application of differential algebra is algebraic analy-
sis of determining system of partial differential equations for infinitesimal symmetry
generators. It provides receipts and software tools to compute the integrability con-
ditions, to simplify (e.g. to interreduce) the system, to determine a dimension of its
space, to construct the abstract Lie algebra for the symmetry generators, to apply
the Lie symmetry algebra for ordinary differential equations (ODEs) to detect their
linearizability [1] by point transformations. The problem of group classification for
differential equations was first posed by the Norwegian mathematician Sophus Lie,
the inventor of the concept and theory of continuous groups and their application to
differential equations [2]. Lie began to solve the group classification problem for the
second-order ordinary equation y′′ = f(x, y, y′) and proved that this class of equa-
tions admits no more than an eight-parameter transformation group on the plane with
the maximum size of the group is reached iff the equation is linear or equivalent to
the linear one. The Russian mathematician Lev Ovsyannikov [3] proposed the equiv-
alence transformation (ET) method for group classification and later [4] applied it to
the ODE of form y′′ = f(x, y). The ET method is based on the fact that equivalent
equations admit similar groups and ET is a similarity transformation. The problem
of group classification admits reformulation as an elimination problem in differential
algebra. However, even reproduction of the results, obtained in [4] by hand com-
putation, seems to be too hard for the modern differential elimination tools. In the
talk we discuss both the pure mathematical and computational issues of the group
classification for ODEs.

Keywords: Differential Algebra, Group Classification, Ordinary Differential Equa-
tions
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Power series solutions of systems of nonlinear PDEs

Daniel Robertz1

One of the first existence theorems for a large class of PDEs is the Cauchy-
Kovalevskaya Theorem [5]. In work of C. Méray and C. Riquier in the second half
of the 19th century a generalization of the Cauchy-Kovalevskaya Theorem was ob-
tained. Riquier’s Existence Theorem asserts the existence of analytic solutions for
the class of orthonomic and passive systems of PDEs [7, Chap. VIII]. J. M. Thomas
[9] showed that polynomially nonlinear systems of PDEs can be decomposed into
finitely many so-called simple differential systems, each of which can be solved for
the highest ranked derivatives to obtain orthonomic and passive systems. Building
also on work by M. Janet [4], the algorithmic details of the Thomas decomposition
method have been recently developed [1], [2], [6], [8].

In this talk we explain how the differential Thomas decomposition can be used to
find all power series solutions around sufficiently generic points of a system of non-
linear partial differential equations. Further applications of the Maple package for
computing Thomas decompositions [3], e.g. to differential elimination, are demon-
strated as well. The talk is based on joint work with Vladimir Gerdt and Markus
Lange-Hegermann.

Keywords: completion to involution, Thomas decomposition, differential elimina-
tion
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S7
Algebraic and Algorithmic Aspects of
Differential and Integral Operators

The algebraic/symbolic treatment of differential equations is a flourishing field, branch-
ing out in a variety of subfields committed to different approaches. In this session,
we want to give special emphasis to the operator perspective of both the underly-
ing differential operators and various associated integral operators (e.g. as Green’s
operators for initial/boundary value problems).

In particular, we invite contributions in line with the following topics:

• Symbolic Computation for Operator Algebras

• Factorization of Differential/Integral Operators

• Linear Boundary Problems and Green’s Operators

• Initial Value Problems for Differential Equations

• Symbolic Integration and Differential Galois Theory

• Symbolic Operator Calculi

• Algorithmic D-Module Theory

• Rota-Baxter Algebra

• Differential Algebra

• Discrete Analogs of the above

• Software Aspects of the above
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The Jacobian algebras, their ideals and automorphisms

V. V. Bavula1

The talk is about general properties of the Jacobian algebras (in arbitrary many
variables), classifications of their ideals, an explicit description of their groups of
automorphisms. Explicit values of their global and weak dimensions are found.

Keywords: Jacobian algebra, group of automorphisms, global and weak dimen-
sion
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On the Parameter Estimation Problem for
Integro-Differential Models∗

François Boulier1

This talk summarizes a joint work with modelers and biologists [2]. It deals
with the parameter estimation problem for dynamical systems presented by explicit
systems of polynomial integro-differential equations (IDE).

Models formulated by means of IDE are very interesting because they are much
more expressive than their ODE counterparts: they naturally permit to express de-
lays (IDE are viewed as continuous delay differential equations in [9]), to take into
account the age of populations (typical motivation for integral equations in popula-
tion dynamics), to incorporate curves obtained by interpolating experimental data as
integral kernels (an important feature for modeling processes interacting with com-
plicated environment) and to handle non smooth (e.g. piecewise defined) inputs. See
[6] and references therein.

The rest of this abstract is essentially borrowed from the introduction of [2].
IDE modeling raises, in turn, the problem of estimating parameters from experi-

mental data. This talk focuses on a particular method, called the “input-output (IO)
ideal” method, which is available in the nonlinear ODE case. Its principle consists
in computing an equation (called the “IO equation”) which is a consequence of the
model equations and only depends on the model inputs, outputs and parameters. In
the nonlinear ODE case, it is known since [8] that it can serve to decide the identifia-
bility property of the model. It is known since [7] that it can also be used to determine
a first guess of the parameters from experimental data. This first guess may then be re-
fined by means of a nonlinear fitting algorithm (of type Levenberg-Marquardt) which
requires many different numerical integrations of the model.

Designing analogue theories and algorithms in the IDE case is almost a com-
pletely open problem. The talk presents two contributions:

1. a symbolic method for computing an IO equation from a given nonlinear IDE
model. This method is incomplete but it is likely to apply over an important
class of models that are interesting for modelers. It relies on the elimination
theory for differential algebra [4, 5] and on an algorithm for integrating differ-
ential fractions [3];

∗This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026
SYMBIONT



2. an algorithm for the numerical integration of IDE systems, implemented within
a new open source C library [1]. The library does not seem to have any avail-
able equivalent. Our algorithm is an explicit Runge-Kutta method which is
restricted to Butcher tableaux specifically designed in order to avoid solving
integral equations at each step.

Keywords: nonlinear integro-differential, input-output equation, parameter esti-
mation, numerical integration
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Parametric b-functions for some hypergeometric ideals∗

Francisco-Jesús Castro-Jiménez1, Helena Cobo Pablos1

We denote by D := C[x1, . . . , xn, ∂1, . . . , ∂n] the Weyl algebra over the field C.
The aim of this note is to study the b–function associated with a class of hyperge-

ometric ideals HA(β) ⊆ D following [9, Section 5.1]. Let us recall the definition of
HA(β). Given A = (aij) a d× n matrix of rank d with integer coefficients, we first
consider the associated toric ideal IA ⊂ C[∂] := C[∂1, . . . , ∂n]

IA := C[∂]{∂u − ∂v | u, v ∈ Nn, Au = Av}.

Moreover we consider the Euler operators, for 1 ≤ i ≤ d

Ei = ai1x1∂1 + · · ·+ ainxn∂n.

Then for any parameter vector β ∈ Cd the hypergeometric ideal is defined as

HA(β) = D · IA +
∑

1≤i≤d
D(Ei − βi).

Given a holonomic left ideal I in D and a nonzero weight vector ω ∈ Rn, we
denote in(−ω,ω)(I) ⊂ D the initial ideal of I with respect to the filtration (Fp)p∈R
induced on D by the vector (−ω, ω) ∈ R2n. The C–vector space Fp is defined as
follows:

Fp := C{xα∂β | − ωα+ ωβ ≤ p} for p ∈ R.

Kashiwara has introduced in (On the Holonomic Systems of Linear Differential
Equations, II. Inventiones Math. 49, 121–135, 1978) the b–function bI,ω(s) associ-
ated with the pair (I, ω), as the monic generator of the ideal

in(−ω,ω)(I) ∩ C[s] (1)

where s :=
∑n

i=1 ωixi∂i. It is proven in loc. cit. Theorem 2.7 that the ideal in (1)
is nonzero. In this note we follow the presentation and notations of [9, §5] on this
subject.

The polynomial bI,ω(s) is called the b–function of the holonomic ideal I ⊂ D
with respect to the weight vector ω.

Previous b-functions are closely related to the classical notion of Bernstein poly-
nomial (also called Bernstein-Sato polynomial) bf (s) associated with a given nonzero

∗Partially supported by MTM2013-40455-P, MTM2016-75024-P and Feder



polynomial f ∈ C[x] (see e.g. [9, Lemma 5.3.11]). Bernstein polynomials have been
introduced in [2] and [8] and represent fundamental invariants in singularity theory.
There are several algorithms for computing Bernstein polynomials. Some of them are
described in [5], [6], [4], and [1]. These and other algorithms have been implemented
in the computer algebra systems Asir, Macaulay2 and Singular among others.
Nevertheless, in practice bf (s) is hard to compute even in the case of a polynomial
f in two variables. In [3] the authors propose the algorithm checkRoot which,
given a rational number α checks if it is a root of the Bernstein polynomial bf (s),
and computes its multiplicity.

We simply denote bω,β(s) := bHA(β),ω(s). We refer to [9] for the main results on
hypergeometric ideals and the corresponding b–functions bω,β(s) for generic param-
eters w and β (see below for details). In [7] the authors describe bounds for the roots
of bω,β(s).

In this paper we restrict ourselves to matrices of the form A = (1, p, q) with
integers 1 < p < q and p and q coprime. The first step is to describe the Gröbner
fan of the toric ideal IA, as defined in (T. Mora; L. Robbiano, The Gröbner fan of an
ideal. J. Symbolic Comput. 6(2-3) 183–208 (1988)) and in (B. Sturmfels, Gröbner
bases and convex polytopes. University Lecture Series, 8. Providence RI, 1995.) We
define a finite family of disjoint regions R(k)

i ⊂ R3 which are the intersection of two
half-spaces with the line (1, p, q)R in common (see Example ). The possible integers
k and i depend on the extended Euclidean division of q over p. We prove an equality

R3 =
⋃
i,k R

(k)
i such that for each ω ∈ R(k)

i , the initial ideal inω(IA) is a monomial
ideal and it is independent of ω.

In [9, Proposition 5.1.9.] there is a description of bω,β(s) for Zariski generic β
and generic ω In (M.C. Fernández-Fernández, Soluciones Gevrey de sistemas hiper-
geométricos asociados a una curva monomial lisa. DEA, U. Sevilla, 2008.), the
polynomial bω,β(s) is described for ω = (1, 0, 0) and β generic. Our main result is:

Theorem 3. Given R(k)
i , a facet of the Gröbner fan of IA, there is a proper Zariski

closed set C(k)
i ⊂ R

(k)
i such that if ω ∈ R(k)

i \ C
(k)
i and β is generic the b–function

is
bω,β(s) =

∏
α∈F (k)

i

(s− α)

for certain finite set F (k)
i ⊆ C. Moreover, if ω ∈ C(k)

i or β is non-generic, the right
hand side of previous equality gives a multiple of the b–function.

The setF (k)
i is explicitly described in terms of standard monomials of in(−ω,ω)(HA(β)).

In the following example we sum up our results.

Example. Consider the matrixA = (1, 3, 5). The Gröbner fan of IA ⊂ C[∂x, ∂y, ∂z]

consists of seven facets. Let us focus in one of them, namelyR(2)
1 = {ω ∈ R3 | 2ω1+



ω2 > ω3, ω1 + 3ω2 < 2ω3}. For any ω ∈ R(2)
1

inω(IA) = D
(
∂3
x, ∂

2
x∂y, ∂x∂z, ∂

2
z

)
.

Any complex number β 6= 2 is generic, and we have that

in(−ω,ω)(HA(β)) = D
(
∂2
x, ∂x∂z, ∂

2
z , E − β

)
.

We have C(2)
1 = R

(2)
1 ∩ {3ω1 + 4ω2 = 3ω3}. The b–function for ω ∈ R(2)

1 \ C
(2)
1

and β 6= 2 is

bω,β(s) = (s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)(s− β − 5

3
ω2 − ω3).

If ω ∈ C(2)
1 and β 6= 2, the polynomial

(s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)

is a multiple of the b–function. With Singular we check that in this case we obtain
the true b–function and not just a multiple. If ω ∈ R

(2)
1 but β = 2 we have the

following multiple of the b–function: (s− 2
3ω2)(s− ω1 − 1

3ω2)(s− 2ω1)(s+ ω2 − ω3) if ω 6∈ C(2)
1

(s− 2
3ω2)(s− ω1 − 1

3ω2)(s− 2ω1) otherwise.

Again, with Singularwe check that this is indeed bω,2(s). However, if we consider
the region R(2)

2 = {ω ∈ R3 | ω1 + 3ω2 > 2ω3, 3ω3 > 5ω2}, we have β = 1, 2, 4, 7

as non-generic values, and for ω ∈ R(2)
2 and β = 2 we give a polynomial with five

roots, and only four of them are the roots of bω,2(s).

If ω ∈ R3 \
⋃
i,k R

(k)
i the study of bω,β(s) is a work in progress.

Keywords: b–function, hypergeometric ideal.
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Reduction operators and completion of linear rewriting
systems

Cyrille Chenavier1

In rewriting theory, the confluence property guarantees the coherence of calculi.
In this talk, we study the confluence property for linear rewriting systems defined by
reduction operators. We use this approach to provide a lattice description of obstruc-
tions to confluence. We deduce lattice formulations of the completion procedure as
well as a method for extending linear rewriting systems so that they become conflu-
ent.

Keywords: Reduction operators, Lattice structure, Confluence, Completion proce-
dure
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Observability and orders of derivatives of data

Sette Diop1

Observability of nonlinear systems has been approached using differential alge-
braic geometry with quite interesting breakthroughs in this systems theory notion.
Among detailed aspects to be studied is the relationship between observability of,
say z, and the minimum order of derivatives of data. This relationship is an ingredi-
ent in the design and the complexity of observers. This talk will give new insights in
this topic.

Keywords: Observability, systems theory, differential algebra
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Effective criterion to test differential transcendence of
special functions.

Carlos Arreche1, Thomas Dreyfus2, Julien Roques3

Consider a field k equipped with an automorphism φ. Typical examples are

• k = CZ, φ(un) := (un+1);

• k = C(x), φf(x) := f(x+ 1);

• k = C(x), φf(x) := f(qx), q ∈ C∗;

• k = ∪`∈N∗C(x1/`), φf(x) := f(xp), p ∈ N∗.

A difference equation is a linear equation of the form

a0y + · · ·+ anφ
n(y) = 0,

with a0, . . . , an ∈ k. The difference Galois theory, see [1], attaches to such equation
a linear algebraic subgroup of GLn(C) that measures the algebraic relations among
the solutions of the difference equation. More recently, it has been developed in [2]
a Galois theory that aims at understanding the algebraic and differential relations
among the solutions of the difference equation

The goal of this talk is to give explicit and computable criteria to ensure that a 
solutions of an order two difference equation does not satisfy any algebraic differen-
tial equations in coefficients in k . We apply this criterion to the elliptic analogue of 
the hypergeometric functions.

Keywords: Difference Galois theory
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Rota’s Classification Problem, Rewriting Systems and
Gröbner-Shirshov Bases

Li Guo1

Throughout the history, mathematical objects are often understood through study-
ing operators defined on them. Well-known examples include Galois theory where a
field is studied by its automorphisms (the Galois group), and analysis and geometry
where functions and manifolds are studied through their derivations, integrals and
related vector fields.

A long time ago, Rota raised the question of identifying all the identities that
could be satisfied by a linear operator defined on algebras. We will discuss some re-
cent progress on understanding and solving Rota’s Problem by the methods of rewrit-
ing systems and Gröbner-Shirshov bases.

This is joint work with Xing Gao, William Sit, Ronghua Zhang and Shanghua
Zheng.

Keywords: Linear operators, Gröbner-Shirshov bases, rewriting systems
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Symbolic computation for integro-differential-time-delay
operators with matrix coefficients

Thomas Cluzeau1, Jamal Hossein Poor2, Alban Quadrat3, Clemens G. Raab4,
Georg Regensburger5

In order to facilitate symbolic computations with systems of linear functional
equations, we require an algebraic framework for such systems which enables effec-
tive computations in corresponding rings of operators. We briefly explain the recent
developed tensor approach from scalar equations [1] to the matrix case [2], by allow-
ing noncommutative coefficients. Noncommutative coefficients even allow to handle
systems of generic size. Normal forms are a key ingredient for computing with oper-
ators and rely on a confluent reduction system.

The tensor approach is flexible enough to cover many operators, like integral
operators, that do not fit the well established framework of skew-polynomials. For
instance, it can be used to construct the ring of integro-differential operators with lin-
ear substitutions (IDOLS) having (noncommutative) matrix coefficients, containing
the ring of integro-differential-time-delay operators. In the Mathematica package
TenRes we provide support for tensor reduction systems [3]. In addition, we im-
plement the ring of IDOLS and corresponding normal forms. We illustrate how, by
elementary computations in this framework, results like the method of steps can be
found and proven in an automated way. We also apply normal forms of IDOLS to
partly automatize certain computations related to differential time-delay systems, e.g.
Artstein’s transformation [4] and its generalization [5].

This work is supported by PHC AMADEUS project no. 35602WA, WTZ project
no. FR10/2016, and FWF project no. P27229.

Keywords: integro-differential operators with linear substitutions, Artstein’s re-
duction, algebraic analysis approach to linear systems theory
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Low-Order Recombinations of C-Finite Sequences

Maximilian Jaroschek1,2, Manuel Kauers1, Laura Kovács2

One of the central open problems for C-finite sequences, that is sequences that
admit a linear recurrence equation with constant coefficients, is the Skolem problem,
which asks if a given sequence includes the term 0. Special instances for which an
answer can be given algorithmically include the case where there exists an annihilat-
ing recurrence of order less than or equal to 4. The Skolem problem is of particular
interest in program verification, as the values of loop variables in practice often de-
scribe C-finite sequences. We investigate how to combine these C-finite sequences
via term-wise multiplication and addition so that the resulting sequences admit re-
currences of low order. These combinations then can be used as inequality loop
invariants in automatic program analysis.

Keywords: C-finite Sequences, Skolem Problem, Invariant Generation
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Some Properties and Invariants of Multivariate
Difference-Differential Dimension Polynomials

Alexander Levin1

Multivariate dimension polynomials associated with finitely generated differen-
tial and difference field extensions arise as natural generalizations of the univariate
differential and difference dimension polynomials defined respectively in [1] and [2].
It turns out, however, that they carry more information about the corresponding ex-
tensions than their univariate counterparts (see [3, Theorem 4.2.17] and [4]). In this
presentation we extend the known results on multivariate dimension polynomials to
the case of difference-differential field extensions with arbitrary partitions of sets of
basic operators. We also describe some properties of multivariate dimension polyno-
mials and their invariants. The following is the outline of the talk.

Let K be a difference-differential field, CharK = 0, and let ∆ = {δ1, . . . , δm}
and σ = {α1, . . . , αn} be basic sets of derivations and automorphisms of K, respec-
tively. Below we often use the prefix ∆-σ- instead of “difference-differential”. Sup-
pose that the sets ∆ and σ are represented as unions of disjoint subsets: ∆ = ∪pi=1∆i

and σ = ∪qj=1σj where Card ∆i = mi (1 ≤ i ≤ p) and Cardσi = ni (1 ≤ i ≤ q).
Let Λ denote the free commutative semigroup of all power products of the form
λ = δk11 . . . δkmm αl11 . . . α

ln
n where kµ ∈ N, lν ∈ Z and for every such λ, let

ord∆iλ =
∑
µ∈∆i

kµ and ordσjλ =
∑
ν∈σj

|lν |

(1 ≤ i ≤ p, 1 ≤ j ≤ q). Furthermore, for any (r1, . . . , rp+q) ∈ Np+q, let
Λ(r1, . . . , rp+q) = {λ ∈ Λ |ord∆iλ ≤ ri for i = 1, . . . , p and ordσjλ ≤ rp+j
for j = 1, . . . , q}. The following theorem generalizes the main result of [4].

Theorem 4. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension generated by a set
η = {η1, . . . , ηs}. Then there exists a polynomial Φη ∈ Q[t1, . . . , tp+q] (called the
∆-σ-dimension polynomial of the extension L/K) such that

(i) Φη(r1, . . . , rp+q) = tr. degK K(

s⋃
j=1

Λ(r1, . . . , rp+q)ηj)

for all sufficiently large (r1, . . . , rp+q) ∈ Np+q (it means that there exist s1, . . . , sp+q ∈
N such that the equality holds for all (r1, . . . , rp+q) ∈ Np+q with r1 ≥ s1, . . . , rp+q ≥
sp+q);



(ii) degti Φη ≤ mi (1 ≤ i ≤ p), degtp+j Φη ≤ nj (1 ≤ j ≤ q) and
Φη(t1, . . . , tp+q) can be represented as

Φη =

m1∑
i1=0

. . .

mp∑
ip=0

n1∑
ip+1=0

. . .

nq∑
ip+q=0

ai1...ip+q

(
t1 + i1
i1

)
. . .

(
tp+q + ip+q

ip+q

)

where ai1...ip+q ∈ Z and 2n | am1...mpn1...nq .

We sketch the proof of this theorem and present a method of computation of the
polynomial Φη based on a generalization of the Ritt-Kolchin method of characteris-
tic sets. Furthermore, we determine invariants of a ∆-σ-dimension polynomial, i. e.,
numerical characteristics of the ∆-σ-field extension that are carried by such a poly-
nomial and that do not depend on the set of ∆-σ-generators this ∆-σ-dimension poly-
nomial is associated with. We also give conditions under which the ∆-σ-dimension
polynomial is of the simplest possible form.

Keywords: Difference-differential field extension, Dimension polynomial, Char-
acteristic set
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Computer algebra and the Lanczos problems
in arbitrary dimension

J.-F. Pommaret1

When D is a linear partial differential operator of any order, a direct problem is
to look for an operator D1 generating the compatibility conditions (CC) D1η = 0 of
Dξ = η. We may thus construct a differential sequence with successive operators
D,D1,D2, ..., where each operator is generating the CC of the previous one. Intro-
ducing the formal adjoint ad(), we haveDi◦Di−1 = 0⇒ ad(Di−1)◦ad(Di) = 0 but
ad(Di−1) may not generate all the CC of ad(Di). When D = K[d1, ..., dn] = K[d]
is the (non-commutative) ring of differential operators with coefficients in a differen-
tial field K, it gives rise by residue to a differential module M over D. The homo-
logical extension modules exti(M) = extiD(M,D) with ext0(M) = homD(M,D)
only depend on M and are measuring the above gaps, independently of the previous
differential sequence.

The purpose of this talk is to explain how to compute extension modules for
certain Lie operators involved in the formal theory of Lie pseudogroups in arbitrary
dimension n. In particular, we prove that the extension modules highly depend on
the Vessiot structure constants c. When one is dealing with a Lie group of trans-
formations or, equivalently, when D is a Lie operator of finite type, then we shall
prove that exti(M) = 0, ∀0 ≤ i ≤ n − 1. It will follow that the Riemann-Lanczos
and Weyl-Lanczos problems just amount to prove such a result for i = 2 and arbi-
trary n when D is the Killing or conformal Killing operator. We finally prove that
exti(M) = 0, ∀i ≥ 1 for the Lie operator of infinitesimal contact transformations
with arbitrary n = 2p+ 1. Most of these new results have been checked by means of
computer algebra.

Keywords: Differential sequence, Variational calculus, Differential constraint, Con-
trol theory, Killing operator, Riemann tensor, Bianchi identity, Weyl tensor, Lanczos
tensor, Contact transformations, Vessiot structure equations
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Algebraic proofs of operator identities
Jamal Hossein Poor1, Clemens G. Raab2, Georg Regensburger2

Many interesting properties of linear operators can be phrased as operator iden-
tities, which then can be proven algebraically. In practice, however, linear operators
often map between different spaces, then we can no longer add or compose any two
such operators. For instance, this already happens with rectangular matrices or with
differential operators having rectangular matrix coefficients.

In order to still be able to do meaningful symbolic computations with such op-
erators on the computer, an algebraic framework is needed that deals with the cor-
responding domains and codomains of operators when adding and multiplying op-
erators. In principle, symbolic computation with such operators (or matrices) would
require at each step taking care of the domains and codomains of those operators (or
of the formats of the matrices). In contrast, we aim at an a-posteriori justification of
an identity, independent of how it was computed algebraically.

In this talk we present first results towards such an algebraic framework based
on quivers and noncommutative Gröbner bases, which could be applied to operators
with rectangular matrix coefficients. We will also present examples from the theory
of generalized inverses using noncommutative Gröbner bases.

Keywords: Linear operators, noncommutative Gröbner bases
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Definite Integration of D-finite Functions via Generalized
Hermite Reduction

Alin Bostan1 Frédéric Chyzak1, Pierre Lairez1, Bruno Salvy2

Hermite reduction is a classical algorithmic tool in symbolic integration. It is
used to decompose a given rational function as a sum of a function with simple poles
and the derivative of another rational function. It provides a canonical form mod-
ulo derivatives of rational functions. We extend Hermite reduction to arbitrary linear
differential operators instead of the pure derivative, and develop efficient algorithms
for this reduction. We then apply the generalized Hermite reduction to the compu-
tation of linear operators satisfied by definite integrals. The resulting algorithm is a
generalization of reduction-based methods for creative telescoping.

Keywords: Hermite reduction, symbolic integration, creative telescoping
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Solution of non homogenous Ordinary Differential
Equations using Parametric Integral Method

Thierry N. Dana-Picard1, David G. Zeitoun2

The solution of non homogenous ordinary differential equation (ODE) is an im-
portant research subject appearing in numerous engineering fields. When the ODE
is associated with boundary conditions (BC), the problem is referred to as a Bound-
ary Value Problem (BVP). Numerical schemes such as finite differences and finite
elements have been used for the solution of such problem.

A general homogeneous ODE may be expressed as:
n=p∑
n=0

an(x)d
(n)y
dxn = 0

a ≤ x ≤ b
(BC) at x = a and at x = b

(1)

This equation may be decomposed into the homogenous part and a non ho-
mogenous part, using a MacLaurin expansion of each coefficient an(x). For any
n ∈ {1, ..., p}, we have:

an(x) = an(0) + a′n(0)x+
x2

2
a′′n(0) + .... =

∞∑
n=0

xn

n!
a(n)(0) (2)

Inserting this last identity into Equation (1) leads to:
L0(y) = −L(y)

a ≤ x ≤ b
(BC) at x = a and at x = b

(3)

where the differential operator L is defined by:

L =

n=p∑
n=0

[ ∞∑
n=1

xn

n!
a(n)(0)

]
d(n)

dxn
(4)

The operator L0 is defined as :

L0 =

n=p∑
n=0

an(0)
d(n)

dxn
(5)



In this contribution we present a general methodology based on the Adomian
decomposition method (ADM) as described in [3]), where the inverse operator L−1

is expressed in terms of eigenvectors and eigenvalues expansion. The ADM is a
systematic method for solution of either linear or nonlinear operator equations, in-
cluding ordinary differential equations (ODEs), partial differential equations (PDEs),
integral equations, integro-differential equations, etc. The ADM is a powerful tech-
nique, which provides efficient algorithms for analytic approximate solutions and
numeric simulations for real-world applications in the applied sciences and engineer-
ing. It enables to solve both nonlinear initial value problems (IVPs) and boundary
value problems (BVPs) (see [5]) without physical restrictive assumptions, such as
those required by linearization, perturbation, ad hoc assumptions, and guessing the
initial term or a set of basis functions.

Using ADM, we denote a possible solution by y(x) =
∞∑
m=0

ym(x). A general

solution of the non homogenous ODE may be found in an iterative way as follows:

• Solve for y0(x): 
L0(y0) = 0

a ≤ x ≤ b
(BC) at x = a and at x = b

(6)

• Solve for ym(x);m = 1, 2, ....
L0(ym) = −L(ym−1)

a ≤ x ≤ b
(BC) at x = a and at x = b

(7)

After solving for y0(x), the general solution for Equations (7) may be derived
using the Green function associated with the operator L0.

L0(G(x, ξ)) = δ(x− ξ)
a ≤ x ≤ b
(BC) at x = a and at x = b

Using Equation (8) and suitable boundary conditions for G(x, ξ), we obtain an
iterative solution for m ≥ 1:

ym(x) =

∫ b

a
G(x, ξ)L(ym−1(ξ)dξ (8)

In a large class of boundary value problems, the Green function G(x, ξ) may be
expressed as an eigenfunction expansion as follows:

G(x, ξ) =

r=q∑
r=1

φr(x)φr(ξ)

λr
(9)



where λr is the eigenvalue associated with the eigenfunction φr(x) which is the so-
lution of the following ODE:

L0(φr) = λrφr

a ≤ x ≤ b
(BC) at x = a and at x = b

(10)

So finally the iterative Adomian solution of Equation (7) may be written as:

ym(x) =

r=q∑
r=1

φr(x)

λr

∫ b

a
φr(ξ)L(ym−1(ξ)dξ (11)

In this talk, this last expression will be used to generate different types of iterative
algorithms for the solution of the BVP. This iterative algorithm generates an iterative
algorithm which can be implemented in a CAS. As examples, we will present so-
lutions of groundwater flow through non homogenous formations using parametric
integral solutions. This type of integrals have been already analysed by the authors
in [1, 2, 4].

Keywords: parametric integral, non homogenous ODE, Adomian decomposition
method
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Desingularization in the q-Weyl algebra

Christoph Koutschan1, Yi Zhang2

The desingularization problem has been primarily studied for linear differential
operators with polynomial coefficients. The solutions of such an equation are called
D-finite functions. It is well known that a singularity at a certain point x0 of one
of the solutions must be reflected by the vanishing (at x0) of the leading coefficient
of the differential equations. However, the converse however is not always true:
not every zero of the leading coefficient polynomial induces a singularity of at least
one function in the solution space. The purpose of desingularization is to construct
another equation, whose solution space contains that of the original equation, and
whose leading coefficient vanishes only at the singularities of the previous solutions.
Typically, such a desingularized equation will have a higher order, but a lower degree
for its leading coefficient. In summary, desingularization provides some information
about the solutions of a given differential equation.

The authors of [1, 3] give general algorithms for the Ore case. However, from
a theoretical point of view, the story is not yet finished, in the sense that there is no
order bound for desingularized operators in the Ore case. We consider the desingu-
larization problem in the first q-Weyl algebra. Our main contribution is to give an
order bound for desingularized operators, and thus derive an algorithm for comput-
ing desingularized operators in the first q-Weyl algebra. In addition, an algorithm
is presented for computing a generating set of the first q-Weyl closure of a given q-
difference operator. As an application, we certify that several instances of the colored
Jones polynomial from knot theory are Laurent polynomial sequences by computing
the corresponding desingularized operator.

Keywords: Desingularization, q-Weyl algebra, Knot Theory
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S8
Dynamic Geometry and
Mathematics Education

Dynamic geometry environments (DGE) have emerged in the last half-century with
an ever-increasing impact in mathematics education. DGE enlarges the field of ge-
ometric objects subject to formal reasoning, for instance, simultaneous operations
with many geometric objects. Today DGE open the possibility of investigating vi-
sually and formulating conjectures, comparing objects, discovering or proving rigor-
ously properties over geometric constructions, and Euclidean elementary geometry
is required to reason about them.

Along these decades various utilities have been added to these environments,
such as the manipulation of algebraic equations of geometric objects or the auto-
mated proving and discovering, based on computer algebra algorithms, of elemen-
tary geometry statements. Moreover, some intelligent tutoring systems for Euclidean
geometry based in DGE have been developed.

The merging of these tools (DGE, automated proving and intelligent tutoring sys-
tems) is, thus, a very natural, challenging and promising issue, currently involving
logic, symbolic computation, software development, algebraic geometry and mathe-
matics education experts all from over the world.

The Special Session intends to be a forum for:

• presenting the current state of the art concerning the design and implementation
of automatic reasoning features on dynamic geometry systems and intelligent
tutoring systems;

• fostering a debate concerning the role and use of such features in mathematics
education, in general, and their potential impact in proof and proving concep-
tion in the classroom, in particular.
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A new approach to automated study of isoptic curves

Thierry Dana-Picard1, Zoltan Kovács2

Let C be a plane curve. For a given angle θ with 0 ≤ θ ≤ 180◦), a θ-isoptic of
C is the geometric locus of points in the plane through which pass a pair of tangents
with an angle of θ between them. The special case for which θ = 90◦ is called an
orthoptic curve. The orthoptics of conics are well known: the directrix of a parabola,
the director circle of an ellipse, and the director circle of a hyperbola (in this case, its
existence depends on the eccentricity of the hyperbola).

Orthoptics and θ-isoptics can be studied for other curves, in particular for closed
smooth convex curves; see [1]. Isoptics of an astroid are studied in [2] (see Figure 1)
and of Fermat curves in [3]. If C is an astroid, there exist points through which pass 3
tangents to C, and two of them are perpendicular. These works combine geometrical
experimentation with a Dynamical Geometry System (DGS) GeoGebra and algebraic
computations with a Computer Algebra System (CAS). For them, the curve has been
defined by a parametrization. A new approach to these curves is proposed, using

Figure 1: The 45-isoptic of the astroid

the DGS GeoGebra, not only its geometrical part but also its CAS component. The
central feature is the connection between the two components of the same software
package, enabling automatic switching between different registers of representation.
This approach enables to determine the θ-isoptics of various curves, either closed or
not. Moreover, the dynamics of the work is essential for the study of the convexity
of the θ-isoptic. Students, teachers and researchers can make their own experiments,
checking the existence of flexes, changing curves to look for invariant properties, etc.

We demonstrate this approach with GeoGebra applets [4] and [5] for parabolas
and other planes curves, either closed or not. Here there is no need to use parametric
equations for defining C, and the work is based on implicit equations.



Figure 2: A screenshot of an applet

This automated work allows undergraduates to be acquainted with an advanced
topic in Differential Geometry.

Keywords: Plane curves, isoptics, automated proof, dynamical geometry
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Discovering properties of bar linkage mechanisms based on
partial Latin squares by means of Dynamic Geometry

Systems

Raúl M. Falcón1

Dynamic Geometry Systems (DGSs) have recently been proposed in mechanical
engineering as an alternative to deal with the teach, design, analysis and implementa-
tion of mechanisms [1, 6, 7, 8, 9]. Recall that a mechanism is any set of rigid bodies
connected by joints so that force and motion are transmitted among themselves. A
link within a mechanism is any of its rigid bodies having at least two different joints.
A bar linkage mechanism is any mechanism in which all its rigid bodies are bars and
at least one of them is a link. The study of the relative motion that occurs between
each pair of connected bars within one such a mechanism enables its characterization.
In this regard, the degree of freedom of a joint connecting two bars is defined as the
number of independent parameters that are required to determine the relative position
of one of the bars with respect to the other one. This has influence on the different
coupler curves that are generated by the joints within each bar. The study and anal-
ysis of such curves enable one to design optimal devices and give rise, therefore, to
important applications in Technology and Engineering. Since coupler curves can be
described as loci of points satisfying certain geometrical constraints derived from the
lengths and connections of bars within a mechanism, DGSs constitute an interesting
tool to investigate and characterize them from a visual and dynamical point of view.

In this work, we focus on the use of DGSs to deal with those bar linkage mech-
anisms such that the distance matrix defined by their joints constitutes a unipotent
partial Latin square satisfying certain conditions. Recall that a partial Latin square
of order n is an n×n array in which each cell is either empty or contains an element
of a finite set of n symbols so that each symbol occurs at most once in each row and
in each column. Let PLS(n) denote the set of partial Latin squares of order n having
[n] := {0, 1, . . . , n − 1} as set of symbols. The rows and columns of every array in
PLS(n) are supposed to be naturally indexed by the elements of the set [n]. Through-
out our study, we focus on the subset of partial Latin squares L = (lij) ∈ PLS(n)
that are also

i. reduced, that is, such that l0i = i and lj0 = j, for all i, j ∈ [n] satisfying that
the cells (0, i) and (j, 0) in L are non-empty;

ii. zero-diagonal, that is, lii = 0, for all i ∈ [n]; and

iii. symmetric, that is, lij = lji, for all i, j ∈ [n].



To avoid degeneracy and disjoint unions of disconnected mechanisms, we also sup-
pose that

iv. every row and every column of L must contain at least one symbol of the set
[n] \ {0};

v. for each pair (i, j) ∈ [n]× [n] such that lij ∈ [n], there exists a positive integer
k ∈ [n] such that either lkj ∈ [n] or lik ∈ [n]. This involves every bar in the
mechanism to be connected to at least one other bar by a joint.

Finally, in order to get linkage mechanisms, the following condition is also required:

vi. If every symbol in [n] \ {0} appears exactly twice in L, then they cannot be all
of them in a same row and column of L.

LetMn denote the set of partial Latin squares of order n satisfying Conditions
(i)–(vi). This set is preserved by isomorphisms. Recall that two partial Latin squares
L = (lij) and L′ = (l′ij) in PLS(n) are isomorphic if there exists a permutation π
on the set [n] such that π(lij) = l′π(i)π(j), for all i, j ∈ [n] such that lij ∈ [n]. To
be isomorphic constitutes an equivalence relation among partial Latin squares. The
distribution of partial Latin squares into isomorphism classes is known [2, 3, 5], for
order n ≤ 6.

LetM(L) denote the set of bar linkage mechanisms that are associated to a given
partial Latin square L = (lij) ∈Mn as follows:

1. There exists a bar Bij within the mechanism, for each pair (i, j) ∈ [n] × [n]
such that i < j and lij ∈ [n] \ {0}.

2. Two different bars Bij and Bi′j′ within the mechanism are connected by a
joint Jk if and only {i, j} ∩ {i′, j′} = {k} 6= ∅. This joint is placed in the
corresponding extreme of each bar.

3. Two different bars Bij and Bi′j′ within the mechanism have the same length if
and only if lij = li′j′ .

DGSs constitutes an interesting tool to deal with the study, analysis and charac-
terization of the bar linkage mechanisms in the set M(L). To this end, we consider
each symbol k ∈ [n] \ {0} to be uniquely associated to a slider sk so that the length
of each bar Bij such that lij = k is the value given by such a slider sk (see Figure 1).

In this work, we make use of the mentioned sliders to teach, investigate properties
and formulate conjectures about lengths of bars and coupler curves related to those
mechanisms associated to partial Latin squares in the setMn, according to their dis-
tribution into isomorphism classes. In this regard, remark the recent study [4] about
loci of points whose distance matrix constitutes a partial Latin square satisfying Con-
ditions (i)–(iii). Further, the inclusion on new sliders within each worksheet under
consideration enables us to deal with different parameters that characterize our bar



Figure 1: Dynamical study of a bar linkage mechanism based on a partial Latin
square.

linkage mechanisms, as the degree of freedom, the transmission ratio, or the mechan-
ical advantage, amongst others. All the constructions that have been developed in
this work are available online in the official repository of GEOGEBRA, at the address
https://www.geogebra.org/m/crvJ7CzX.

Keywords: Linkage systems, dynamic geometry, partial Latin square.
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Exploration of dual curves using dynamic geometry and
computer algebra system

Roman Hašek1

This submission deals with the use of the dynamic mathematics software Ge-
oGebra to determine the dual curve to the given curve and inspect its properties. The
combination of dynamic geometry tools with computer algebra functions allows a
user to take both geometric and algebraic perspectives on this issue. The dual curve
to an algebraic curve is a curve born from the duality between points and lines in the
projective plane. Writing the equation of a curve laying in this plane in homogeneous
coordinates [x0, x1, x2] its tangents can be taken as points in the dual plane written
in the coordinates [y0, y1, y2]. Then the locus of these points is the dual curve to the
given curve, [2].

We will show both the geometric model of the dual curve and the algebraic deriva-
tion of its equation in the talk. The geometric approach to display the dual curve
shape is based on the polar reciprocity which is realized through the inversion in a
circle here, [3, 4], see Fig. 1.

Figure 1: Dual curve to the Cassini oval as an envelope of lines dual to the points of
the oval

The algebraic derivation of the dual curve equation is based on the idea that the
related polynomial in indeterminates y0, y1, y2 is a component of the Gröbner basis
of the ideal of polynomials describing the aforesaid act of transition from a tangent



line of the curve in a projective space to the point in its dual space, [5]. For example,
considering the astroid with the Cartesian equation

27x2y2 + (x2 + y2 − 1)3 = 0, (1)

written in homogeneous coordinates [x0, x1, x2] as

h = x6
0+x6

1−x6
2+3x2

0x
4
1+3x2

0x
4
2+3x4

0x
2
1−3x4

0x
2
2+3x2

1x
4
2−3x4

1x
2
2+21x2

0x
2
1x

2
2 = 0,

(2)
the polynomial defining its dual is such a member of the Gröbner basis of the ideal
of polynomials in indeterminates x0, x1, x2, y0, y1, y2

I = 〈y0 − h′x0 , y1 − h′x1 , y2 − h′x2 , h〉 (3)

that contains only indeterminates y0, y1, y2. Its existence follows from the Elimi-
nation theorem, [1]. To derive the equation in GeoGebra we use the Eliminate
command and, after transformation into the Cartesian equation

x2y2 − x2 − y2 = 0, (4)

we can display the dual curve as shown in Fig. 2.

Figure 2: Dual curve (red) to the astroid (blue)

Apart from modeling the dual curve and the derivation of its equation we will also
focus on the educational potential of this topic in the talk. The history of the notion
of the dual curve is inter alia associated with the story of “the duality paradox” [3],
which is worth mentioning when the concept of duality of projective space is taught.
Moreover, the relation between a curve and its dual reveals concrete examples of
how the duality works, [4]. See for example the correspondence between points and
lines belonging to the dual curves in Figure 3, namely the correspondence between
bitangents of the oval and nodes of its dual curve or the correspondence between
inflexion points of the former and the cusps, more precisely tangents in them, of the
latter. The utilization of dynamic geometry to explore these situations will also be
presented through several particular examples.



Figure 3: The Cassini oval (blue) and its dual curve (red)

Keywords: Computer algebra, dual curve, dynamic geometry, Gröbner basis
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Issues and challenges about instrumental proof

Philippe R. Richard1, Fabienne Venant2, Michel Gagnon3

The notion of instrumental proof is relatively new. If the term is little used in
didactic literature, its natural association with technologies, old and new, seems self-
evident.

On the epistemological side, the discovery of Archimedes’s palimpsest recently
allowed us to better understand how the weighing method was a kind of mechani-
cal proof, which suggests to the point that the association between proof and arti-
facts/tools is rather old. Similarly, computer proofs such as those of the four-colour
theorem –first shown in 1976 by Kenneth Appel and Wolfgang Haken, then for-
mally addressed in 2005 using Coq software by Georges Gonthier and Benjamin
Werner– offer proofs where they are algorithms that base the decision or the verifi-
cation of all cases, reflecting an unavoidable reality of contemporary mathematical
work. Whether they are physical or logical, the use of tools in a validation situation
certainly renews the usual idea that we have between the concepts of proof, modelling
and representation of knowledge.

On the didactic side, there seems to be a constant struggle with paradoxes. The
student is asked to prove propositions, but he or she now has an automated reasoning
tool. It requires him or her to work with meaningful knowledge and to transform
it, but by working more and more at the interface of computer tools that manage
both a part of the representation and treatment, and often even experimenting on
mathematical objects (e.g. dynamic figures) as a physicist does with objects of his
own domain. And all this, without the teacher can refer to mathematics that could
be described as technological, since he was initiated to a deductive science that has
developed traditionally in writing.

It is then by extending ideas that we have already exposed in our work, including
the recent paper [3], The Concept of Proof in the Light of Mathematical Work, and
resuming conclusions of our current research projects (design of the tutorial system
QED-Tutrix in high school geometry [1], the use of the Automated Reasoning Tools
(ART) [2] in teacher training) that we approach the question of instrumental proofs.
With this attitude, the subject-milieu interaction is a unit of epistemic necessity, the
subject can be both a reader, to consider traditional proofs, and the user of software
or a mathematical machine. The notions of reasoning in action and reasoning that
unfold differently than with the discourse will be treated, as well as the theory of
mathematical working spaces in which the question of the coordination of discursive,
semiotic and instrumental geneses arise between an epistemological and a cognitive
plan.



Keywords: Instrumental proof, mathematical working space, instrumented reason-
ing, algorithmic, physics
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Programming in KeTCindy with Combined Use of
Cinderella and Maxima

S. Takato1, S. Yamashita2 J.A. Vallejo1

Printed materials are often distributed to the classes at the college level. For such
materials, line drawing type figures are more suitable. KeTCindy, a macro package of
CindyScript which is a programming language implemented in Cinderella, supports
line drawing of 3D figures. To produce these 3D figures with KeTCindy, it is funda-
mentally important to find intersections of projection curves. The combined use of
KeTCindy, Cinderella, and Maxima is an effective tool to develop such programs.

Keywords: KeTCindy, Cinderella, Maxima

Mathematics teachers at the college level often distribute printed materials to
their alumni. For such materials, figures presented as line drawings are better suited,
because students can write their own remarks over them on the paper. KETCindy, a
macro package of CindyScript (which is a programming language implemented in
Cinderella), can produce fine figures for LATEX. Furthermore, KETCindy supports line
drawing of 3D figures as explained below.

x y

z

1

Fig.0
To produce these 3D figures, KETCindy follows the following steps:

1. To find silhouette lines of the surface, in the figure above those are given by
x = u cos v, y = u sin v, z = 4 − u2. Data are obtained from an implicit
function of the form

J(u, v) =
dX

du

dY

dv
− dX

dv

dY

du
= 0 ,



where (X,Y ) = Proj(x, y, z) is the map to the plane of projection.

2. To find the intersections of silhouette lines and a projection curve.

3. To divide the curve by these intersects, and to decide whether each separation
is hidden by the surface or not.

Of the above, the second item is of fundamental importance, but it represents a
difficult task in the case of contacting curves because curves are numerically polyg-
onal lines. The following figures demonstrate this setting: The right panel shows an
enlarged figure at a contact point presented on the left.

Fig.1

To refine the calculation of item 2, we have adopted an interpolatory scheme
using Bézier curves near the contact point. Then we use a formula developed by
Oshima[1] to decide the control points.

The left in the following is a further enlarged figure. The right shows Bézier
curves in red color.

Fig.2



In this setting, the intersect is represented by a cluster of points. One of them is

P = [−1.65827, 1.20578]. (1)

KETCindy can also call Maxima from Cinderella and return a result back to Cin-
derella. For example, the intersect for Figure 2 is calculable using the following script
in CindyScript. The result is:

P = [−1.656701299244927, 1.210755779027779], (2)

confirming that (1) is a very good approximation to the contact point.

Fig.3

As a conclusion, we could say that the combined use of KETCindy, Cinderella,
and Maxima is an effective tool to develop programs for surface drawing.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 16K01152.

References

[1] Oshima, T., Drawing curves, Symposium MEIS2015: Mathematical Progress
in Expressive Image Synthesis, MI Lecture Notes 2015 64, 117–120, Kyushu
University, 2015



[2] Takato S., What is and how to Use KeTCindy – Linkage Between Dynamic Ge-
ometry Software and Collaborative Use of KetCindy and Free Computer Alge-
bra Systems and LATEX Graphics Capabilities –, Mathematical Software –ICMS
2016, LNCS 9725, 371–379, Springer, 2016.

1Department of Science,
Toho University
2-2-1, Miyama, Funabashi, 274-8510, Japan
takato@phar.toho-u.ac.jp

2Department of Natural Science,
National Institute of Technology, Kisarazu College
2-11-1, Kiyomidai-Higashi, Kisarazu, 292-0041, Japan
yamasita@kisarazu.ac.jp

3Faculty of Science,
Universidad Autónoma de San Luis Potos
Av. Salvador Nava s/n 78290, San Luis Potosí, MEXICO
jvallejo@fciencias.uaslp.mx

mailto:takato@phar.toho-u.ac.jp
mailto:yamasita@kisarazu.ac.jp
mailto:jvallejo@fciencias.uaslp.mx


S9
Computer Algebra in Coding Theory and
Cryptography

This session aims to bring together from all areas related to computer algebra (both
theoretical and algorithmic) applied to Coding Theory and Cryptography.

Since much of the work related to these topic is recent or is still ongoing, this
session will provide a stimulating forum where experts will be able to not only re-
port their recent results, but also to propose new lines of research and discuss open
questions.

It will also give us the opportunity to present the interest and the potential appli-
cations of these topics to the rest of the scientific community

Expected topics of presentations include (but are not limited to):

• Computer Algebra and Coding Theory
Codes and applications. Combinatorial structures. Algebraic-geormetric codes.
Network coding. Quantum codes. Group codes. . .

• Computer Algebra in Cryptography
Algebraic Cryptanalysis. Post-quantum cryptography. (Code, Lattice and Hash)–
based PKC. Multivariate PKC. . .

• simulation of quantum computation

• Synergies between Computer Algebra, Coding Theory and Cryptography.

197



Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

The enumeration of Hermitian self-dual cyclic codes over
finite chain rings

Arunwan Boripan1, Somphong Jitman2, and Patanee Udomkavanich3

Let Fq2 be a finite field of order q2 and let R := Fq2 [u]/〈ut〉 be a finite chain
ring, where t ≥ 2 is an integer. Cyclic codes over R have been of interest due
to their rich algebraic structures and wide applications. Here, the characterization
and enumeration of Hermitian self-dual cyclic codes of length n over R have been
given based on self-conjugate-reciprocal irreducible monic(SCRIM) factors of xn−1
over Fq2 . Subsequently, the number of SCRIM factors of xn − 1 over Fq2 has been
investigated. Finally, some computational results obtained from computer algebra
MAGMA have been discussed.

Keywords: Cyclic codes, Hermitian self-dual cyclic code, Finite chain ring
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Binary Isodual Codes Having an Automorphism of Odd
Prime Order∗

Stefka Bouyuklieva1, Radka Russeva2, Emine Karatash2

The purpose of this talk is to describe the structure and properties of the binary
isodual codes having automorphisms of odd prime order and to present a method for
their construction. If a code C is equivalent to its orthogonal complement C⊥, then
it is termed isodual, and if C = C⊥, C is a self-dual code. Recently, there has been
growing interest in the isodual codes, and the authors use different methods for their
construction (see for example [5]).

A linear code C is formally self-dual if C and its dual C⊥ have the same weight
enumerator. While self-dual codes contain only even weight vectors, formally self-
dual codes may contain odd weight codewords as well. Many authors consider only
even formally self-dual codes because their weight enumerators are combinations
of Gleason polynomials. The class of isodual codes is between the self-dual and
formally self-dual (fsd) codes. Since all isodual codes are also formally self-dual,
they possess all the properties of the fsd codes.

The minimum weight d of a formally self-dual even code of length n is bounded
by d ≤ 2[n/8] + 2. An fsd even code meeting this upper bound is called extremal.
Self-dual codes meeting this bound exist only for lengths n = 2, 4, 6, 8, 12, 14, 22
and 24 [3]. Extremal formally self-dual even codes which are not self-dual exist only
for lengths 6, 10, 12, 14, 18, 20, 22, 28 and 30, and all these codes are classified
[2]. For some lengths, there are odd fsd codes with higher minimum weight than
the even ones. For example, the unique linear [16, 8, 5] code has dual distance 5 and
therefore it is formally self-dual, but the highest possible minimum weight of an even
code of the same length is 4 (see [6]). The smallest length for which a fsd code is not
isodual is 14, and there are 28 such codes amongst 6 weight enumerators. The even
fsd [30, 15, 8] codes are classified (see [2]) but it is still not known whether odd fsd
codes with these parameters exist.

In the eighties of the last century, Huffman and Yorgov proposed a method for
constructing and classifying binary self-dual codes with an automorphism of odd
prime order (see [4, 7]). This method can be modified and applied to other linear
codes. The closest class is the class of binary isodual codes, and therefore we study
the structure of those isodual codes that have an automorphism of odd prime order.
Let C be a binary linear code of length n and σ be an automorphism of C of odd
prime order p with c independent p-cycles. Without loss of generality we can assume
∗This research is supported by Bulgarian Science Fund under Contract DN-02-2/13.12.2016 and by

Shumen University, Project RD-08-111/ 05.02.2018



that σ = Ω1 . . .ΩcΩc+1 . . .Ωc+f , where Ωi = ((i − 1)p + 1, . . . , ip), i = 1, . . . , c,
are the cycles of length p, and Ωc+i = (cp + i), i = 1, . . . , f , are the fixed points.
Obviously, cp+ f = n.

Let Fσ(C) = {v ∈ C : vσ = v} and Eσ(C)={v ∈ C : wt(v|Ωi) ≡ 0
(mod 2), i = 1, . . . , c + f}, where v|Ωi is the restriction of v on Ωi. Then the code
C is a direct sum of the subcodes Fσ(C) (fixed subcode) and Eσ(C) (even subcode).

Consider first the fixed subcode. Clearly, v ∈ Fσ(C) if and only if v ∈ C and
v is constant on each cycle. Let π : Fσ(C) → F c+f2 be the projection map, so if
v ∈ Fσ(C), (vπ)i = vj for some j ∈ Ωi, i = 1, 2, . . . , c+ f . Denote by Cπ the code
π(Fσ(C)).

For v ∈ Eσ(C) and 1 ≤ i ≤ c, we identify v|Ωi = (v0, v1, · · · , vp−1) with the
polynomial v0 + v1x + · · · + vp−1x

p−1 from P , where P is the set of even-weight
polynomials in F2[x]/(xp − 1). Thus we obtain the map φ : Eσ(C) → P c. Denote
φ(Eσ(C)) by Cφ. Obviously, Cφ is a P-module, and if P is a field then Cφ is a linear
code. On Pc, we use the Hermitian inner product:

〈u, v〉 =
c∑
j=1

ujvj , (1)

where vj = vj(x
−1) = vj(x

p−1), u = (u1, . . . , uc), v = (v1, v2, . . . , vc).
For the equivalence we use the following theorem

Theorem 1: The following transformations preserve the decomposition and send
the code C to an equivalent one:

a) the substitution x→ xt in Cϕ, where t is an integer, 1 ≤ t ≤ p− 1;
b) multiplication of the jth coordinate of Cϕ by xtj where tj is an integer, 0 ≤

tj ≤ p− 1, j = 1, 2, . . . , c;
c) permutation of the first c cycles of C;
d) permutation of the last f coordinates of C.
If σ ∈ Aut(C), σ ∈ Aut(C ′), and p2 does not divide the orders of both groups,

then the codes C and C ′ are equivalent if and only if C ′ can be obtained from C by
applying a sequence of the given transformations.

The proof is similar to the proof of Theorem 3 in [7].
Now let C be a binary isodual code, so C ∼= C⊥. Since Aut(C) = Aut(C⊥),

the permutation σ is an automorphism of C⊥, too. Hence C⊥ = Fσ(C⊥)⊕Eσ(C⊥).
Let C ′π = π(Fσ(C⊥)), and C ′φ = φ(Eσ(C⊥)∗).

If 2 is a multiplicative root modulo p then P is a field with 2p−1 elements and Cφ
is a linear code over this field. Therefore here we consider only such primes p. We
say that two codes over P are equivalent if one of them can be obtain from the other
one after a sequence of transformations of types a), b) and c) from Theorem 1. Using
this theorem, we obtain the following results.

Theorem 2: The binary codes Cπ and C ′π are equivalent. The same is true for
the codes Cφ and C ′φ over the field P .



Theorem 3: Let C be a binary linear [2k, k, d] code having an automorphism σ
of odd prime order p. If 2 is a multiplicative root modulo p and p2 does not divide
the order of Aut(C) then C is an isodual code if and only if the codes Cπ and Cφ are
isodual.

As an application of the presented structure we focus on the isodual [30, 15,≥ 7]
codes with an automorphism of order 5 with 6 independent 5-cycles. If C is such a
code, then C is a direct sum of a [30, 3,≥ 10] fixed subcode projected in a binary
[6, 3,≥ 2] isodual code Cπ, and a [30, 12,≥ 8] even code Eσ(C). There exist exactly
six binary isodual codes of length 6, one of them has minimum distance 3, and the
other five codes have minimum distance 2, including the only self-dual [6, 3, 2] code.
The only isodual [6, 3, 3] code has weight enumerator 1 + 4y3 + 3y4 [6].

The image of the even subcode under the map φ is a [6, 3, dφ] linear code over the
field P ∼= GF (16). For the field we have P∗ = {αiδj , i = 0, 1, . . . , 4, j = 0, 1, 2},
where e = x + x2 + x3 + x4 is the identity element, α = xe is an element of order
5, and δ = x+ x4 is of order 3.

First, we constructed all [6, 3, dφ] linear codes over P such that d(φ−1(M)) ≥ 8.
There are 61 [6, 3, 3] and 326 [6, 3, 4] inequivalent codes with the needed properties.
Then we combined these codes with all codes π−1(C ′) where C ′ is equivalent to any
of the isodual [6, 3,≥ 2] binary codes. After that we check all these binary isodual
codes of length 30 for minimum weight and also for equivalence, using the program
Q-EXTENSION [1]. In this way we obtained exactly 642 binary isodual [30, 15,≥ 7]
inequivalent codes having an automorphism of order 5 with 6 independent 5-cycles.
Only 13 of these codes have minimum weight 8. All constructed [30, 15, 8] codes
have the same weight enumerator 1 + 450y8 + · · ·+ y30 and so they are even isodual
codes.
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Multiplying Dimension in Abelian Codes
José Joaquín Bernal1, Diana H. Bueno-Carreño2 , Juan Jacobo Simón1

In [1], we improve the notion and computation of the apparent distance for abelian
codes given in [4] and [7] by means of the q-orbit structure of defining sets of abelian
codes. These results allows us to design, based on a suitable election of q-orbits,
abelian codes having nice bounds and parameters. In this note, we apply those tech-
niques to construct bivariate BCH codes from cyclic codes, in such a way that we
preserve apparent distance but multiplying their dimension; in particular, this drives
us to multiply Reed-Solomon codes to abelian codes. As it happens with others
families of abelian codes, there are alternative constructions to get this one (see, for
example [6]); however, we think that this point of view allows us to determine many
structural properties, parameters and even true minimum distance, in a better way.

We denote I = Zr1 × Zr2 and for i = 1, 2, we denote by Uri the set of all ri-th
primitive roots of unity and define U = Ur1 ×Ur2 . It is a known fact that, for a fixed
α̂ = (α, β) ∈ U , any abelian code C is determined by its defining set, with respect
to α̂, which is defined as

Dα̂ (C) =
{

(a, b) ∈ I : c(αa, βb) = 0, ∀c ∈ C
}
.

In [1], we introduced the notion of strong apparent distance of polynomials and
hypermatrices and we applied it to define and study a notion of multivariate BCH
bound and BCH abelian codes. As it was pointed out in the mentioned paper, the
notion of strong apparent distance was based in the ideas and results in [4] and [7].

We use those results and techniques to prove the following results, among others.

Theorem 5. Let n and r be positive integers such that gcd(q, nr) = 1. Let C be
a nonzero cyclic code in Fq(r) = Fq[y]/(yr − 1) with sd∗(C) = δ > 1 and α̂ =
(α1, α2) ∈ Un × R(C). Then, the abelian code Cn in Fq(n, r) = Fq[x, y]/(xn −
1, yr − 1) with defining set Dα̂(Cn) = Zn ×Dα2(C) verifies that sd∗(Cn) = δ and
dimFq(Cn) = n dimFq(C).

Proposition 6. Let n and r be positive integers with gcd(q, nr) = 1 and let C
be a nonzero cyclic code in Fq(r) such that sd∗(C) = d(C). Then there exists
α̂ = (α1, α2) ∈ Un ×R(C) such that the abelian code Cn in Fq(n, r) with defining
set Dα̂(Cn) = Zn ×Dα2(C) verifies the equality d(Cn) = d(C).

BCH multivariate codes have also been defined in [1, Definition 33]. Following
this definition we prove the following result.



Proposition 7. Let α ∈ Ur and let R = Bq(α, δ, b) be a Reed-Solomon code. Then,
for each positive integer n and any α′ ∈ Un, there exists a multivariate BCH code,
C = Bq ((α′, α), {2}, {δ}, {b}), such that dim(C) = (r − δ + 1)n = n · dim(R)
and d(C) = sd∗α̂(C) = δ.

Some examples and applications will be presented.

Keywords: Abelian codes, Multiplying dimension, Cyclic codes, Reed-Solomon
codes

References

[1] J.J. Bernal, D.H. Bueno-Carreño, J.J. Simón, Apparent distance and a notion of
BCH multivariate codes. IEEE Trans. Inform. Theory, 62(2), 655-668, 2016.

[2] J.J. Bernal, D.H. Bueno-Carreño, J.J. Simón, Cyclic and BCH Codes whose
Minimum Distance Equals their Maximum BCH bound, Adv Math Comm, 10
(2016), 459-474.

[3] J. J. Bernal, M. Guerreiro, J. J. Simón, From ds-bounds for cyclic codes to true
minimum distance for abelian codes. Submitted.

[4] P. Camion, Abelian Codes, MRC Tech. Sum. Rep. # 1059, University of Wiscon-
sin, 1971.

[5] H. Imai, A theory of two-dimensional cyclic codes. Information and Control
34(1) (1977) 1-21.

[6] J. M. Jensen, The concatenated structure of cyclic and abelian codes, IEEE Trans.
Inform. Theory, vol. IT-31, pp. 788-793, 1985.

[7] R. Evans Sabin, On Minimum Distance Bounds for Abelian Codes, Applicable
Algebra in Engineering Communication and Computing, Springer-Verlag, 1992.

1Departamento de Matemáticas
Universidad de Murcia, 30100 Murcia, Spain.
{josejoaquin.bernal, jsimon}@um.es

2Departamento de Ciencias Naturales y Matemáticas
Pontificia Universidad Javeriana, Cali, Colombia
dhbueno@javerianacali.edu.co

mailto:dhbueno@javerianacali.edu.co


Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

On the skew cyclic codes and the reversibility problem for
DNA 4-bases

Yasemin CENGELLENMIS1, Abdullah DERTLI2

The skew cyclic codes over the finite ring R = F4 + uF4 + vF4 + uvF4, where
u2 = u, v2 = v, uv = vu are introduced, by defining a non trivial automorphism
over R. DNA 4-bases are matched with the elements 256 of the finite ring R. With
the method as in [3], the reversible DNA codes are obtained. Moreover, the Gray
images of the skew cyclic codes over the finite ring R are determined.
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Quantum codes from constacyclic codes over the finite ring
Fp + uFp + vFp

Abdullah Dertli1, Yasemin Cengellenmis2

In this paper, the quantum codes over Fp from constacyclic codes over the finite
ring Fp + uFp + vFp, where u2 = u, v2 = v, uv = vu = 0, p is an odd prime are
studied. A constacyclic codes over the finite ring Fp+uFp+vFp is decomposed into
three codes over Fp in order to determine the parameters of the corresponding quan-
tum codes. Finally, we have constructed some examples of quantum error-correcting
codes.
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Self-dual codes over chain rings

Simon Eisenbarth1, Gabriele Nebe1

Let F be a finite field of characteristic p and : F → F be some automorphism
of order one or two. A code C in Fn is called self-dual if it coincides with its dual
code with respect to the standard Hermitian inner dot product

v · w :=

n∑
i=1

viwi.

In [4], upper bounds for the minimum distance of several families of self-dual codes
were given. Self-dual codes which achieve those bounds are called extremal. In [1]
and [2], a generel decomposition theory for self-dual codes over F admitting permuta-
tion automorphisms of order prime to p has been developed. This has been frequently
used, for example to classify ternary extremal codes with an automorphism of prime
order≥ 5 (see [3], [5]). In a recent work (together with G. Nebe), we developed tech-
niques to classify F-linear, self-dual codes with an automorphism g of order q = pe,
where it can w.l.o.g. be assumed that g ∈ Sn.

The group ring F〈g〉 is an Artinian chain ring with ideals 〈(1 − g)i〉, 0 ≤ i ≤ q
and it carries a natural involution defined by

q−1∑
i=0

αigi :=

q−1∑
i=0

αig
−i.

Our work focused on the case where g has no fix points on {1, . . . , n = pt} and C is
a free F〈g〉-module. Then the map

Fn → F〈g〉t, (c1, . . . , cpt) 7→

(
p∑
i=1

cig
i−1, . . . ,

p∑
i=1

c(t−1)p+ig
i−1

)

is a bijection between the self-dual codes in Fn and the self-dual codes in F〈g〉t with
respect to an inner product defined in the next section. This motivated the analysis of
the structure of self-dual codes over chain rings.

Let R be a commutative Artinian chain ring with 1 and let : R → R be an
involution, i.e. a ring automorphism of order one or two. If m ≤ R denotes the
maximal ideal of R, then induces an involution of the residue field F = R/m



which we again denote by . If this involution is the identity on the residue field,
then there is ε ∈ {1,−1} such that x ≡ εx (mod Rx2) for any generator x of m. If

has order 2 on F (which we refer to as the hermitian case) then by Hilbert 90 we
may choose a generator x of m such that x ≡ x (mod Rx2). We fix such a generator
x of the maximal ideal R such that

x ≡ εx (mod Rx2)

with ε = 1 in the Hermitian case. Let a ∈ N0, such that

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}

is the complete chain of ideals in R. Then all indecomposable R-modules are of the
form

Sb := Rxb for some 0 ≤ b ≤ a

where S0 = R is the free module of rank 1 and Sa is the unique simple R-module.
To consider codes let t ∈ N and

V := Rt = {(v1, . . . , vt) | vi ∈ R}

denote the freeR-module of rank t. We define the -Hermitian standard inner product

〈·, ·〉 : V × V → R, 〈v, w〉 :=

t∑
j=1

vjwj .

on V . We call an R-submodule C of V a code of length t (over R). Then by the
theorem of Krull, Remak, Schmidt, there are unique t0, t1, . . . , ta ∈ Z≥0 such that

C = St00 ⊕ S
t1
1 ⊕ · · · ⊕ S

ta
a .

Now let C = C⊥ be a self-dual code of even length t which is a free R-module, i.e.
t0 = t/2 and t1 = · · · = ta = 0. Then the subcodes

C(i) := Cxi

form the following chain:

V = Rt ⊃ C(a)⊥ ⊃ · · · ⊃ C(1)⊥ ⊃ C = C⊥ ⊃ C(1) ⊃ · · · ⊃ C(a) ⊃ {0}.

We now want to iteratively construct the codes C(a), C(a−1), . . . , C, starting with
the socle soc(C) = C(a).

The multiplication by xa defines an isomorphism between the residue field and
the socle of R, and the map

ϕ : F = R/Rx
∼−→ Rxa = Sa, r +Rx 7→ rxa



can be naturally extended to the socle soc(V ) = V xa of V , i.e.

π : soc(V )→ Ft, (v1, . . . , vt) 7→ (ϕ−1(v1), . . . , ϕ−1(vt))

is an F-linear isomorphism.
In our initial setting, this means that the fixcode of g is generated by some matrix

M ⊗
(
1 . . . 1

)
,

where M generates a self-dual code in Ft with respect to the standard Hermitian in-
ner product. Using the classification of self-dual codes of moderat lengths, one can
therefore find all possibilities for C(a).

For the iteration process, let 0 ≤ i < a and fix some C(i+1). We want to find all
admissible C(i), i.e. all codes D which are self-orthogonal and Dx = C(i+1). We
put

Wi := C(i+1)⊥xi/C(i+1) ∼= Ft

and define

(·, ·)i : Wi ×Wi → F, (Axi, Bxi)i := ϕ−1(〈A,B〉xi).

Then (·, ·)i is a well-defined, non-degenerate inner product which is Hermitian in the
Hermitian case and ε(i+a)-symmetric bilinear otherwise.
With respect to this inner product, Xi := (soc(V ) + C(i+1))/C(i+1) ≤ Wi is self-
dual code (Wi, (·, ·)i). Moreover, C(i)/C(i+1) is a self-dual code as well that com-
plements Xi, i.e.

Wi = C(i)/C(i+1) ⊕Xi.

By constructing all complements of Xi, we can find all lifts of C(i+1).

This theory has been used to show in an exhaustive search that every extremal
ternary code of length 36 with an automorphism of order 3 is isomorphic to the Pless
Code P36, strengthening the result given in [3].
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Constacyclic and Cyclic Codes over the Class of Finite
Rings F2k + uF2k + u2F2k + vF2k

G.Gozde GUZEL1, Abdullah DERTLI2, Yasemin CENGELLENMIS3

In this paper, a new class of finite rings includes the finite ring which is presented
in [9] is given. It is shown that these rings are semilocal, principally ideal and Frobe-
nious rings. It is studied the units and the ideals of the ring. It is introduced a Gray
map on it. The Gray images of both cyclic and (1 + u)-constacyclic codes over the
finite ring are obtained.
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Cyclic structures in convolutional codes and free distance∗

José Gómez-Torrecillas1, F. J. Lobillo1, Gabriel Navarro2

The results of this talk are included in [6].
A rate k/n convolutional code C over a finite field F can be modeled as a rank k

direct summand of F[z]n, i.e. C = im(·G) where G =
∑m

i=0 z
iGi ∈Mk×n(F[z]) is

basic. One of the main parameters of convolutional codes is the free distance, which
is directly related with the correction capability of a convolutional code. The free
distance is defined as

dfree(C) = min {wH(f) : f ∈ C, f 6= 0} ,

see [7, Ch. 3], where the Hamming weight of a polynomial over Fn is the coefficient-
wise extension of the Hamming weight in Fn. The free distance of a convolutional
code can be calculated computing the classic associated column and row distances
until they coincide. Both sequences must be computed since there is not regularity in
their respectively increase and decrease.

Cyclic structures on convolutional codes can be provided enriching the algebraic
structure of Fn. Concretely, let A be an n-dimensional F-algebra, σ : A → A an
F-automorphism and v : A[z;σ]→ Fn[z] the canonical isomorphism associated to a
fixed basis ofA. A convolutional code C is said to be skew cyclic, see [2], if C = v(I)
for some left ideal I ≤ A[z;σ] = R. If, in addition, I is a direct summand as left
ideal, i.e. I = R(1− e) = Ann`R(e) for some idempotent e =

∑m
i=0 z

iei ∈ R, then
C is called an idempotent convolutional code, see [4, 5].

Let
Eck =

[
σ−j(ej−i)

]
0≤i,j≤k

∈Mk+1(A).

We introduce the kth cyclic column distance of C as

δck = min {w(a0, . . . , ak) | (a0, . . . , ak) ∈ ker(·Ecl ), a0 6= 0} .

The main result of this talk is

Theorem. Let A be an n-dimensional F-algebra and let σ be an isometry on A with
respect to a fixed basis. Let R = A[z;σ] and v : R → Fn[z]. Let C = v(Ann`R(e))
for some idempotent e =

∑m
i=0 z

iei ∈ R. Let Eck and δck be as before. Then δck ≤
δck+1 ≤ dfree C. If δck = δck+m, then dfree(C) = δck.

The theorem allows to compute the free distance by using the cyclic column
distance sequence. No row distance is needed.
∗Research partially supported by grant MTM2016-78364-P from Agencia Estatal de Investigación

and from FEDER.
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Generalized Hamming Weights of Binary Linear Codes

I. Márquez-Corbella1, E. Martínez-Moro2

We can associate to each linear code C defined over a finite field the matroid
M [H] of its parity check matrixH . For any matroidM one can define its generalized
Hamming weights which are the same as those of the code C. In [1] the authors show
that the generalized Hamming weights of a matroid are determined by the N-graded
Betti numbers of the Stanley-Reisner ring of the simplicial complex whose faces are
the independent set of M . In this talk we go a step further. Our practical results
indicate that the generalized Hamming weights of a linear code C can be obtained
from the monomial ideal associated with a test-set for C. Moreover, recall that in [2]
we use the Gröbner representation of a linear code C to provide a test-set for C.

Our results are still a work in progress, but its applications to Coding Theory and
Cryptography are of great value.

Keywords: Generalized Hamming Weights, Test Set
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On additive cyclic codes over chain rings

E. Martínez-Moro1, K. Otal2 and F. Özbudak2

Additive codes are a direct and useful generalization of linear codes, and they
have applications in quantum error correcting codes. There are several studies using
different approaches on them and their applications. On the other hand cyclic codes
are one of the most attractive code families thanks to their rich algebraic structure
and easy implementation properties. In this talk we will investigate the structure of
Additive cyclic codes over finite (commutative) chain rings. When we focus on non-
Galois finite commutative chain rings, we observe two different kinds of additivity.
One of them is a natural generalization of precedding studies whereas the other one
has some unusual properties especially while constructing dual codes. We interpret
the reasons of such properties and illustrate our results giving concrete examples.

Keywords: Cyclic codes, Additive codes, Codes over rings
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On varieties and codes defined by quadratic equations

Ruud Pellikaan1

We will review the work on algebraic geometry codes C = CL(X , P, E) that
have a unique representation (X , P, E), where X is an algebraic curve, P is an n-
tuple of mutually distinct points and E is a divisor. See [1, 2, 4, 5]. As a consequence
algebraic geometry codes with certain parameters are not secure for the code based
McEliece public crypto system.

One of the key ingredients of these results is the classical fact that certain curves
embedded in projective space are defined by quadratic equations. We consider gen-
eralizations to higher dimensional varieties [6] and order domains [3] and their cor-
responding codes.

Keywords: McEliece public crypto system, algebraic geometry codes
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Computer algebra tales on
Goppa codes and McEliece cryptography

Narcís Sayols1, Sebastià Xambó-Descamps2

Abstract

The fourty-year old McEliece public-key crypto-system is revisted with the
help of recently developed resources: an improved Peterson-Gorenstein-Zierler
decoder for alternant error-correcting codes; PYECC, a purely Python CAS; a
package of PYECC functional utilities for the computations involved in defin-
ing, coding and decoding error-correcting codes; a web page with free-access
to the materials generated by the project.

Keywords: Error-correcting codes, Classical Goppa codes, Post-quantum cryptog-
raphy

One of the motivations for this work was the development of a purely Python CAS
environment to cover the computational needs of a book such as [11] and the con-
fidence gained in implementing decoders like the old Peterson-Gorenstein-Zierler
[7, 3, 8], including the improvements presented in [2], and the computations for [5].
Further developments led to the CAS system that is now available at https://mat-
web.upc.edu/people/sebastia.xambo/PyECC.htmlPyECC. The revisiting of the McEliece
public-key crypto-system [4], which is based in a class of binary classical Goppa
codes, was a further test of these tools. One friendly feature of the environment is the
availability of the source code through Jupyter notebooks.∗

The main purpose of our talk is to present an overview of those developments
and will be structured as follows: A brief introduction to Goppa codes, particularly
to their decoding (see [11, 2]); a detailed description of the McEliece system [4] and
analysis of its security levels (see [1, 6]); a report on the structure and functionality of
PYECC, with emphasis on the utilities needed for the implementation of that system.
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On the rank and kernel of new HFP-codes

E. Suárez-Canedo1

Hadamard codes with a subjacent group structure were principally studied from
the point of view of cocyclic Hadamard matrices, Hadamard groups, and relative
difference sets [1, 2, 3]. Propelinear codes, introduced in 1989 [4], also played an
important role on the computation of Hadamard codes; indeed, they allow to classify
Hadamard codes with a subjacent Z2Z4 and Z2Z4Q8 group structure attending to
the values of the rank and dimension of the kernel [5]. In [6] we define the family
of HFP-codes and we prove the equivalences between them and Hadamard groups.
Furthermore, constructions on HFP-codes with a subjacent Cn×Q8 and the dicyclic
Q8n group structure appear in [7, 8]. Now we classify new families of HFP-codes
attending to the values of the rank and dimension of the kernel.

Keywords: Rank, kernel, HFP-codes.
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Satisfiability modulo theory in finding the distance
distribution of binary constrained arrays

Putranto Utomo1

Despite of the hardness of finding the distance distribution of a code, it is one of
the important topics in coding theory. By knowing the distance distribution of a code,
we can measure the performance of the code.

The development in satisfiability (SAT) theory has been improved recently. The
modern SAT solver is performing much better in terms of computational efficiency.
Unfortunately not all problems could easily be expressed as a propositional satisfib-
iality problem, and some could lead to a very complex representation. This problem
gives rise to a new topic called satisfiability modulo theory (SMT). The idea is to
restrict the fragment of first order logic to some logical background theory. By doing
this, it can solve more varied problems efficiently using the SAT solver engine.

The constrained system, especially the 1-D constraint, has proved to be beneficial 
for the magnetic tape recording. Recent developments in data recording technology 
allows us to store data in 2-D format, such as the holographic recording technol-
ogy. However, in contrast with the constrained sequence, the theory is not yet well 
developed.

In this paper, we utilize the power of the SMT solver to find the distance distri-
bution of 2-D binary constrained systems.

Keywords: Constrained arrays, Distance distribution
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S10
Parametric Polynomial Systems

Parametric polynomial system solving is a challenge coming from many applications,
such as biology, control theory, robotics, deformation of hypersurface singularities,
etc. When a problem can be modelled by a parametric system, the main issue is
not only to return its solutions, but also to describe them. The design of algorithms
to solve parametric systems has recently become an active and expanding research
field. Manipulating parametric systems is at the heart of computer algebra. It calls
upon a wide range of methods, such as comprehensive Gröbner bases, Cylindrical
Algebraic Decomposition, Quantifier Elimination, Comprehensive Triangular Sets,
Comprehensive Involutive Systems, Parametric Local Cohomology System, etc.

This session is focused on the art of parametric system solving, for general class
of systems or dedicated to specific application problems, including the following
topics:

• Comprehensive Gröbner bases (systems)

• Quantifier elimination

• Comprehensive triangular sets

• Deformation of hypersurface singularities

• Modelisation of parametric problems

• Optimization of parametric systems

• Resolution of sparse parametric systems

• Low-level computation with multivariate polynomial coefficients

• Resolution of polynomial systems with boolean parameters

• Description of the real solutions of a parametric system

• Description of the parameter space of a polynomial system

• Extension of algorithms from non parametric to parametric systems

227
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An overview on marked bases and applications
Cristina Bertone1

The Hilbert scheme was introduced by Grothendieck in the 60s. One can simply
think of the Hilbert scheme Hilbn

p(t) as a set containing all the saturated homogeneous
ideals I in a certain polynomial ring k[x0, . . . , xn] = k[x], with k a field, such that
k[x]/I has a given Hilbert polynomial p(t). Grothendieck proved that Hilbn

p(t) is
not just a set, but it has a projective scheme structure. Although expert researchers
investigated it, the Hilbert scheme is a mysterious object. Few properties are known,
for instance Hartshorne proved connectedness in his Ph.D. Thesis.

A natural appealing application of Gröbner bases in Algebraic Geometry is the
possibility to investigate families of ideals, and understand whether there is a scheme
parameterizing them. In this framework, several authors tried to investigate the
Hilbert Scheme by Gröbner techniques, see for instance [8]. The family of ideals
having a certain initial ideal J for a given term order ≺ is called Gröbner Stratum.
Imposing conditions for a suitable monic set of parametric polynomials to be a Gröb-
ner basis gives the structure of closed scheme to the Gröbner Stratum of J in an
affine space. Applying this construction to J≥r, where J is a monomial ideal such
that k[x]/J has Hilbert polynomial p(t) and r is the Gotzmann number of p(t), one
can obtain a stratification of the Hilbert scheme by means of Gröbner Strata. Each of
these Gröbner Strata is isomorphic to a locally closed subset (in general not an open
subset) of Hilbn

p(t) [8, Theorem 6.3 (i)].
From the point of view of Algebraic Geometry, the fact that a Gröbner Stratum

is not in general an open subset of Hilbn
p(t) is a big issue. This means that Gröbner

Strata are not suitable to locally study Hilbn
p(t). Furthermore, it is not possible to

obtain the ring of coordinates of Hilbn
p(t), as a subscheme of a suitable projective

space, by “glueing” the affine schemes of the Gröbner Strata that cover Hilbn
p(t).

In order to overcome the flaws of Gröbner strata with respect to the investigation
of Hilbert schemes, a successful idea is to replace the use of a term order by consid-
ering special monomial ideals with strong combinatorial structure. Geometrically, it
is totally reasonable to focus on this sort of monomial ideals: for instance Hartshorne
proved the connectedness of the Hilbert scheme using strongly stable monomial ide-
als.

We construct families of ideals by suitable parametric polynomial generators
which are monic in the terms generating a quasi-stable ideal. By imposing condi-
tion on these generators in order to have a marked basis, we describe an open subset
of Hilbn

p(t) around the quasi-stable ideal.



1 Marked bases over a quasi-stable ideal

Here is a summary of the construction of marked bases over a quasi-stable ideal. The
main references are [4, 7, 1].

Assume that x0 > · · · > xn. If σ is a term, we denote by min(σ) (resp. max(σ))
the index of the smallest (resp. biggest) variable dividing σ. We choose a quasi-
stable monomial ideal J ⊂ k[x]. This monomial ideal has a special set of monomial
generators, a Pommaret basis P(J), such that: for every σ ∈ J , there is a unique
η ∈ P(J) such that σ = η · δ where δ is a term and min(η) ≥ max(δ).

Let A be a Noetherian k-algebra. We construct a set of (monic) marked poly-
nomials over J , GP(J), in the following way: for every η ∈ P(J), we define
fη := η −

∑
τ /∈J cηττ , where cητ ∈ A. The term η is the head term of fη. The

set GP(J) is a marked basis if the terms of degree s outside J are a basis of the mod-
ule A[x]s/(GP(J))s, for every s. Thanks to the quasi-stability of J , it is possible to
define a polynomial reduction process.

Definition 8. We denote by
GP(J)−−−−→ the transitive closure of the following reduc-

tion relation in A[x]: g and g′ are in relation if g′ = g − cδfη, with δη ∈ J is a
term appearing in g with coefficient c 6= 0A, fη belongs to GP(J), δ is a term and
min(η) ≥ max(δ).

The reduction
GP(J)−−−−→ is Noetherian and confluent: for every g ∈ A[x], there is a

unique h such that g
GP(J)−−−−→ h and every term appearing with non-zero coefficient in

h does not belong to J (the support of h is outside J).

Theorem 9. [Buchberger-like criterion] For every η ∈ P(J), for every i > max(η),

we compute hη,i such that xifη
GP(J)−−−−→ hη,i and the support of hη,i is outside J .

GP(J) is a marked basis over J if and only if hη,i = 0 for every η ∈ P(J), for every
i > min(η).

We can construct a marked set GP(J), replacing cητ ∈ A by a parameter Cητ .
Let C be the set of paramters Cητ . By Theorem 9, we impose conditions in k[C] for
GP(J) to be a marked basis: in this way we obtain a marked scheme. More precisely:

Theorem 10. For every η ∈ P(J), for every i > min(η), compute hη,i as in Theorem
9. Let R ⊂ k[C] be the ideal generated by the x-coefficients of the polynomials
hη,i. The affine scheme MP(J) := Spec(k[C]/R) paramaterizes the ideals in A[x]
generated by a marked basis over J , for every Noetherian k-algebra A. We call
MP(J) marked scheme over J .

Marked schemes give an open cover of Hilbn
p(t) as follows. We compute the

complete list L of saturated quasi-stable ideals J having Hilbert polynomial p(t), and
for each of them we compute the marked scheme over J≥r, where r is the Gotzmann
number of p(t). Each of these marked schemes is an open subset of Hilbn

p(t) [7,



Theorem 1.13].
Furthermore, we consider the usual action of PGL = PGLk(n + 1) on A[x], and
extend it to the points of Hilbn

p(t). Up to this action of PGL, we get an open cover of
Hilbn

p(t) by means of the computed marked schemes [7, Theorem 2.5]:

Hilbn
p(t) =

⋃
g∈PGL,J∈L

g ·M(J≥r). (1)

This open cover is actually functorial: the marked schemes glue together, and it is
possible to explicitely compute equations that define the projective scheme Hilbn

p(t)
in a suitable projective space. This gives a new proof of the existence of the Hilbert
scheme. The complete proof is in [6] for the Hilbert scheme, in [2] for the locus with
bounded regularity, and in [1] this is generalized to Quot Schemes.

2 Some Applications

(1) The parametric system of equations we use to compute the conditions in k[C] for
a marked basis is also used in order to study the liftings of a projective scheme. In [3],
we prove that the liftings of a projective scheme with a given Hilbert polynomial are
parameterized by a closed subscheme of a union of some marked schemes. Although
Gröbner strata are sufficient to complete a first part of the investigation (xn-liftings),
marked schemes turn out to be the suitable approach to geometric liftings, due to the
reasonable geometric assumption that the scheme to lift is in general position and to
the openness of marked schemes in Hilbn

p(t).
(2) We can use marked schemes as open neighbourhoods of interesting points of
Hilbn

p(t), not only those defined by monomial ideals: for instance, we use them in [5]
in order to prove the smoothability of the Gorenstein graded k-algebras with Hilbert
function (1, 7, 7, 1) (and as a byproduct of the computations we obtain that Hilb7

16

has at least 3 irreducible components).
(3) As already mentioned, from the open cover (1), it is possible to compute the
equations defining the Hilbert scheme as a subscheme of a suitable projective space
[6]. This construction is generalized in [2] for the locus with bounded regularity, and
in [1] to the case of Quot Schemes. These equations allow the direct study of Hilbert
and Quot schemes. For instance, a paper on the Quot scheme of modules in k[x, y]2

with Hilbert polynomial p(z) = 2 is in progress.

Keywords: quasi-stable ideal, polynomial reduction process, Hilbert scheme
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Fitting a Sphere to Point Cloud Data via Computer Algebra

Robert H. Lewis1, B. Paláncz2 J. Awange3

To determine orientation using different kinds of sensors requires reference ob-
jects. One of the most frequently employed reference object is a sphere with known
radius R and center coordinates (x, y, z).

In this paper we investigate the identification of these parameters from point cloud
data contaminated by outliers and corrupted by low sensor resolution. Our main tools
are Gröbner basis and the Dixon resultant. First the deterministic subsystems of the
overdetermined system are solved. Algebraic computations show that when R is
known, but the center coordinates are unknown, the algebraic and geometric fittings
provide two solutions, while in the case of unknown R, the geometric fitting gives a
unique solution.

The raw data of the point cloud were filtered using a Self Organized Map neural
network. The overdetermined system was solved via a simplified Gauss-Jacobi tech-
nique using the results of the algebraic computations. This involves a polynomial
system with 20 parameters. Our method is illustrated by a symbolic-numeric exam-
ple based on real field measurement data using Mathematica and Fermat computer
algebra systems.

Keywords: point cloud, polynomial system, resultant, symbolic-numeric, Gröbner
basis
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Resultants, Implicit Parameterizations, and Intersections of
Surfaces

Robert H. Lewis1,

A classic problem in computer graphics and computer aided design is to derive
an implicit equation for a surface given a parameterization of it. Since our surfaces
are in three-dimensional space, we conventionally have three equations

x =f(s, t)

y =g(s, t)

z =h(s, t)

If homogeneous coordinates are being used, there is a fourth equation for w.
The implicit equation is produced by eliminating the s and t. As a very simple

two-dimensional example, for a circle of radius r, the parametric equations are x =
r cos(θ), y = r sin(θ). It is easy to eliminate θ by squaring and adding:

x2 + y2 = r2 cos2(θ) + r2 sin2(θ) = r2

yielding the familiar equation for a circle. (r is not a variable, but a parameter in
the other sense of the word “parameter.") Real examples of interest are much more
complicated than this, and sophisticated elimination techniques are needed.

The simple example illustrates an important idea. Parametric systems frequently
involve trig functions, usually sine and cosine. Elimination techniques usually require
polynomial (or rational) functions. A system with sine and cosine is easily converted
to a polynomial system by replacing cosine with, say, ct, sine with st, and adding a
new equation ct2 + st2 − 1 = 0.

The theory of eliminating variables from a system of equations has a long history,
starting with Bezout around 1760. A key idea is the resultant of a system of polyno-
mial equations [2], [8]. Bezout did this for one-variable polynomials. Dixon in 1908
extended it to multivariate polynomials, and proved it would work in a certain ideal
situation. However, for real problems the ideal situation rarely applies and often the
method seems to fail. Kapur, Saxena, and Yang showed how to get around all those
problems in 1994 [3]. Lewis refined and greatly improved the method in 2008 [4] to
what is called Dixon-EDF. Gröbner bases can also be used to eliminate variables [8].

In spite of the 1994 publication, the Kapur-Saxena-Yang (KSY) method seems
to have not been noticed by the computer graphics community. In 2000 the authors
of [1] explicitly reject resultants as unworkable. In 2004 Wang [9] was aware of



the Bezout-Dixon method but not KSY. He develops a new method to implicitize
surfaces and tests fifteen examples with his method, resultants, and Gröbner bases.
As in [1] he reports that in many cases resultants will not work because the Dixon
method returns 0. This is one of the situations that KSY overcomes!

We compare Wang’s reported time using pre-KSY Dixon, Wang’s method, and
our solution today using Dixon-KSY-EDF. We find our method to be greatly superior.

In 2017 Shen and Goldman [6] also report a new method for certain implicitiza-
tions. They also say that some resultant matrices have a 0 determinant and therefore
resultants cannot be used. They do not refer to KSY.

We compare their reported times and our solutions today using Dixon-EDF work-
ing on some of their examples.

They try resultants in the generalized Sylvester form as found in [7] on their
examples, and they also try Gröbner basis techniques. Gröbner bases failed in every
case, meaning that nothing was returned within 10 minutes. Their resultants failed in
the same way in every case except example 10.

Out techniques always work, are more efficient, and are more general.
In the following, Dixon always denotes the complete combination Dixon-KSY-

EDF.
A second very important problem is to compute the intersection of two surfaces.

Many papers have addressed this question. Virtually all the papers assume that the
surfaces are quadric, i.e., degree 2. This means that the implicit equation is of the
form

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0

We describe here an apparently new way to compute intersections so long as
at least one of the surfaces is given by a conventional parameterization, as in the
previous section. There is no restriction on the degrees of the surfaces, at least theo-
retically. Suppose surface one is given by

x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1)

and surface two is

x = f2(s2, t2), y = g2(s2, t2), z = h2(s2, t2)

For the intersection simply combine this to form a system of six equations. Use Dixon
to eliminate five variables, say y, z, t1, s2, t2. That yields one equation (resultant)
involving x and s1. If this is linear in x, solve for x and obtain the parametric equation
for the x-coordinate of the intersection curve. Repeat for y and z. One could just as
well express x in terms of s2, t1 or t2. That might have computational advantages.

The process described above also works if one surface has a parameterization and
the second has an implicit definition, say p(x, y, z) = 0. We then have four equations
x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1), p(x, y, z) = 0 and we eliminate three
variables, say y, z, t1.



If the resultant is degree 2 in x, one can easily use the quadratic formula to get
two possible expressions for x in terms of s1. Numerical testing could determine
which is correct. Of course, degree 3 or 4 could also be handled by formulas, but the
expressions would no doubt become daunting.

What if the degrees are higher than 2 or we don’t want to deal with messy formu-
las? This leads to a new concept:
Definition: An implicit parameterization of a curve in 3-space is a set of three equa-
tions

f(x, s) = 0, g(y, s) = 0, h(z, s) = 0

whose solution set includes the curve. s is called the curve parameter.
Theorem Given two surfaces defined as above with polynomial functions, the Dixon
resultant will produce an implicit parameterization of their intersection.

This follows immediately from the above discussion. The only possible flaw is
if the set of six (or four) equations does not have a zero-dimensional solution space.
That means for some values of the parameter s1 there are infinitely many values of
x. Dixon can fail in that case.

We will illustrate our techniques with many examples.
In summary,

• Computing an implicitization with Dixon is straightforward and routine. No
special conditions on the surfaces are needed.

• The concept introduced here of “implicit parameterization" is easy to compute
with Dixon. No special conditions on the surfaces are needed.

• Implicit parameterizations can be dealt with in fairly straightforward ways with
commercial software.

Keywords: surface, polynomial system, resultant, Dixon, parameters, intersection,
Gröbner basis
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Presentation of "The Gröbner Cover"
Antonio Montes1

I present the book “The Gröbner Cover" [6], that will be published during the
present year. The contents are the following:

Preface
1. Preliminaries

Part 1. Theory
2. Constructible sets
3. Comprehensive Gröbner Systems
4. I-regular functions on a locally closed set
5. The Canonical Gröbner Cover

Part 2. Applications
6. Automatic Deduction of Geometric Theorems
7. Geometric Loci
8. Geometric Envelopes

Appendix
Bibliography

The genesis of this book is paper [7] for studying parametric polynomial systems.
Part 1 Theory: contains all the necessary tools to prove the existence and compu-

tation methods for obtaining the Canonical Gröbner Cover of a parametric polyno-
mial system; Particularly, in Chapter 3, we provide the definitions and computation
methods for obtaining all the canonical representations of constructible sets [3] and
locally closed sets, that are used in Chapter 5 to obtain the Gröbner Cover, as well as
for defining and computing all the algorithms provided in Part 2.

Part 2 Applications: contains three natural and interesting applications. Chapter 6
develops a new algorithm for Automatic Deduction of Geometric Theorems (ADGT)
that, given a common geometric proposition of the form (H∧¬H1)⇒ (T∧¬T1), de-
termines complementary hypothesis for the proposition to become a Theorem. The
approach to this application was initiated in [5], but the new algorithm has not yet
been published. Concerning Chapter 7, we introduced in [1] the taxonomy of the
irreducible components of a Geometric Locus, which is determined by our locus
algorithm. The content of Chapter 8, which has not yet been published either, gen-
eralizes the classical definitions, theorems and algorithms [2] for determining the



envelope of a family of hyper-surfaces with more degrees of freedom than usual.
Moreover, a new algorithm for determining the irreducible algebraic components of
the envelope, as well as two other algorithms for approaching the real projection of
the envelope are provided.

All the algorithms described in the text are implemented in the Singular library
“grobcov.lib" [8], whose latest implementation can be downloaded from the web [4].
The book can also be used as a User Manual for the library.

In the talk I will present some examples using the new algorithms to show their
utility and I will give a general outlook about the book.

Keywords: Parametric Polynomial System, Canonical Discussion, Parametric Gröb-
ner System, Gröbner System.
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Computation methods of b-functions
associated with µ-constant deformations

– Case of inner modality 2 –

Katsusuke Nabeshima1, Shinichi Tajima2

In this talk, computation methods of parametric b-functions are introduced for µ-
constant deformation of quasihomogeneous singularities. The methods of b-functions
associated with µ-constant deformations are constructed by using comprehensive
Gröbner systems and the set of candidates of roots. In the cases of iner modality
2 ([7]), all b-funtions of associated with µ-constant deformations, can be obtained by
our computation methods.

Let C〈x, ∂x〉 denote the Weyl algebra, the ring of linear partial differential oper-
ators with coefficients in C, where x = (x1, . . . , xn), ∂x = (∂1, . . . , ∂n), ∂i = ∂

∂xi
.

Let f be a non-constant polynomial in C[x]. Then, the annihilating ideal of fs is
Ann(fs) := {p ∈ C〈s, x, ∂x〉|pfs = 0} where s is an indeterminate. The b-function
or the Bernstein-Sato polynomial of f is defined as the monic generator bf (s) of
(Ann(fs) + Id(f)) ∩ C[s] where Id(f) is the ideal generated by f . It is known that
the b-function of f always has s + 1 as a factor and has a form (s + 1)b̃f (s), where
b̃f (s) ∈ C[s]. The polynomial b̃f (s) is called the reduced b-function of f .

It is known that a basis of the ideal Ann(f s) can be computed by utilizing a
Gröbner basis in C〈x, ∂x〉 or PWB algebra ([5]). Moreorver, the reduced b-function
b̃f (s) can be obtained by computing a Gröbner basis of Ann(f s)+ Id( ∂f∂x1 , . . . ,

∂f
∂xn

).
Let f be a parametric polynomial in (C[u])[x] where u = (u1, . . . , um) and u

are parameters. In our previous paper [4], a computation method of comprehensive
Gröbner systems (CGS) has been introduced in Poincare-Birkhoff-Witt (PBW) alge-
bras. Thus, theoretically, a CGS of the ideal Ann(f s) can be computed by utilizing
the computation method. Moreover, a CGS of the ideal Ann(fs) + Id(f) can be
computed, too. Hence, parametric b-functions can be computed by the following al-
gorithm.

Algorithm 1.
Input: f : a parametric polynomial.
Output: reducded b-functions of f .
STEP 1: Compute a CGS of Ann(fs).
STEP 2: Compute a CGS of Ann(fs) + Id( ∂f∂x1 , . . . ,

∂f
∂xn

).

Algorithm 1 has been implemented in the computer algebra system Risa/Asir.



Table 1: reduced b-functions of x2z + yz2 + y6 + u1y
4z + u2z

3

strata reduced b-function
C2\V(u1) B(s)(s+ 9

8)(s+ 23
24)

V(u1)\V(u1, u2) B(s)(s+ 9
8)(s+ 47

24)

V(u1, u2) B(s)(s+ 17
8 )(s+ 47

24)

The Milnor number µ of the singularity x2z+yz2 +y6 = 0 is 17 (S17 singularity,
the inner modality is 2), and the µ-constant deformation is given by f = x2z+yz2 +
y6 + u1y

4z + u2z
3 where u1, u2 are parameters. Our implementation can output

Table 1 as the parametric reduced b-function of f within 5 hours where

B(s) = (s+ 3
2)(s+ 4

3)(s+ 7
6)(s+ 11

6 )(s+ 7
8)(s+ 11

8 )(s+ 13
8 )

×(s+ 25
24)(s+ 29

24)(s+ 31
24)(s+ 35

24)(s+ 37
24)(s+ 41

24)(s+ 43
24).

Let us consider another example. The Milnor number of µ of the singularity
x2z + yz2 + xy4 = 0 is 16 (S16 singularity, the inner modality is 2), and the µ-
constant deformation is given by f = x2z + yz2 + xy4 + u1y

6 + u2z
3 where u1, u2

are parameters. In this case, our implementation of Algorithm 1 cannot return the
parametric reduced b-function of f within “2 months”. However, the implementation
returns a CGS of Ann(fs) within 1 day. Thus, we can infer that the computational
complexity of Ann(fs) + Id( ∂f∂x1 , . . . ,

∂f
∂xn

) is quite big.
In order to avoid the big computation, Levandovskyy and Martin-Morales [3]

have introduced a smart idea. We adopt the idea for computing b-functions of µ-
constant deformations. However, the idea is not good enough to decide b-functions
of µ-constant deformations. We need a further computation step that is checking
local cohomology solutions of each holonomic D-module associted with a root of
b̃(s) = 0, to compute b-functions of µ-constant deformations.

In this talk, we introduce the further computation step and the new algorithm for
computing b-functions associated with µ-constant deformations.

Let f(u, x) = f0 + g ∈ (C[u])[x] be a semi-quasihomogeneous polynomial,
where f0 is the quasihomogeneous part (or weighted homogeneous part) and g is a
linear combination of upper monomials with parameters u. Then, f can be regard as
a µ-constant deformation of f0 with an isolated singularity at the origin. We have the
foolowing classical results.

Theorem 1 Let Ef0 = {γ ∈ Q|b̃f0(γ) = 0} where b̃f0 is the reduced b-function
of f0 on the origin. Then, for e ∈ Cm, the set of roots of b-function of f(e, x), on
the origin, the set Ef(e,x) = {γ|bf(e,x)(γ) = 0} becomes a subset of E = {γ − ` ∈
Q|γ ∈ Ef0 , ` ∈ Z,−n < γ − ` < 0} where Z is the set of integers. That is,
Ef(e,x) ⊂ E, for e ∈ Cm.

Theorem 2 Let f be a non-constant polynomial in C[x], H a basis of Ann(f s) in
C〈s, x, ∂x〉, γ ∈ Q and r ∈ N. Let G be a minimal Gröbner basis of Id(H ∪



{f, ∂f∂x1 ,
∂f
∂x2

, . . . , ∂f
∂xn
} ∪ {(s − γ)r}) w.r.t. a block term order � s.t. x ∪ ∂x � s.

Then, if (s− γ)r ∈ G, (s− γ)r is a factor of the b-function of f .

The outline of the new algorithm is the following.

Algorithm 2.
Input: f : a parametric polynomial.
Output: reducded b-functions of f .
STEP 1: Compute a set E of candidates of roots of b̃f (s) = 0.
STEP 2: Compute a CGS of Ann(fs).
STEP 3: Compute a minimal Gröbner basis G of Ann(fs) + Id((s − γ)r, f) (or
Id((s− γ)r,
f, ∂f∂x1 ,

∂f
∂x2

, . . . , ∂f∂xn )) in C[s]〈x, ∂x〉 where γ ∈ E and r ∈ N>0.
If (s− γ)r ∈ G, then (s− γ)r is a factor of the b-function of f .
STEP 4: For each stratum, check local cohomology solutions of each holonomic
D-module associated with the root of b̃f (s) = 0.

By executing Algorithm 2, we can obtain Table 2 as the parametric reduced b-
function of f = x2z + yz2 + xy4 + u1y

6 + u2z
3 within 4 hours where

B(s) = (s+ 15
17)(s+ 18

17)(s+ 20
17)(s+ 21

17)(s+ 22
17)(s+ 23

17)(s+ 24
17)(s+ 25

17)
×(s+ 26

17)(s+ 27
17)(s+ 28

17)(s+ 29
17)(s+ 30

17)(s+ 31
17).

Table 2: reduced b-functions of x2z + yz2 + xy4 + u1y
6 + u2z

3

strata reduced b-function
C2\V(u1) B(s)(s+ 16

17)(s+ 19
17)

V(u1)\V(u1, u2) B(s)(s+ 19
17)(s+ 33

17)

V(u1, u2) B(s)(s+ 33
17)(s+ 36

17)

In this talk, we present mainly Algorithm 2 and show all b-functions of µ-constant
deformation of inner modality 2.

Keywords: b-functions, comprehensive Gröbner systems, local cohomology
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An algorithm for computing Grothendieck local residues II
— general case —

Katsuyoshi Ohara1, Shinichi Tajima2

We will give an algorithm for exactly evaluating Grothendieck local residues for
rational n-forms of n variables under general condition and show an implementation
on a computer algebra system Risa/Asir. Grothendieck local residue is a natural gen-
eralization of the well-known residue for complex functions of single variable. The
local residue was firstly described in Hartshorne [3] via the local duality in terms of
derived category in much greater generality. The local duality can be also interpreted
as a perfect pairing in terms of homological algebra. When a point is fixed, it can
be realized as an integration of a meromorphic n-form of complex n variables on a
real n-cycle around the point. Griffiths-Harris [2] described the following analytic
definition of Grothendieck local residues.

Definition. Denote byO(U) a ring of holomorphic functions on a ball U ⊂ Cn.
Suppose that f1(x), . . . , fn(x) ∈ O(U) make regular sequence and have only one
isolated common zero β ∈ U . Let Γ(β) be a real n-cycle around β defined by
Γ(β) = {x ∈ U | ‖f1(x)‖ = ε, . . . , ‖fn(x)‖ = ε} and oriented by d(arg f1) ∧
· · · ∧ d(arg fn) ≥ 0. Denote τF = (f1(x) · · · fn(x))−1dx1 ∧ · · · ∧ dxn, where x =
(x1, . . . , xn). For any ϕ(x) ∈ O(U), the integration

Resβ(ϕ(x)τF ) =

(
1

2π
√
−1

)n ∫
Γ(β)

ϕ(x)τF

is called the Grothendieck local residue of meromorphic n-form ϕ(x)τF .

The integration certainly gives an explicit representation of the local residue at
the point β. However, in general, it is very hard to directly evaluate the integration
because of complicated geometric shape of the real n-cycle in the 2n-dimensional
real space. To solve this problem, we use a method based on D-modules.

Let K be a subfield of C and denote K[x] = K[x1, . . . , xn]. We suppose that a
polynomial sequence F = {f1, . . . , fn} with K-coefficients is regular. The polyno-
mial ideal I generated by F is zero-dimensional. The zero set VC(I) = {a ∈ Cn |
g(a) = 0, ∀g ∈ I} is finite and it consists of isolated common zeros of the regular
sequence F .

We introduce the n-th algebraic local cohomology group with support on Z =
VC(I) by

Hn
[Z](K[x]) = lim

k→∞
ExtnK[x](K[x]/(

√
I)k,K[x]).



The algebraic local cohomology group Hn
[Z](K[x]) can be regarded as a collection

of equivalent classes of rational functions whose denominator has zero only on Z.
Here the equivalence is given by cutting holomorphic parts of rational functions in a
cohomlogical way.

According to the primary decomposition I =
⋂`
λ=1 Iλ, the zero set also can

be written as union of irreducible affine varieties: Z =
⋃`
λ=1 Zλ, where Zλ =

VC(
√
Iλ). Then Hn

[Z](K[x]) is decomposed to direct sum

Hn
[Z](K[x]) = Hn

[Z1](K[x])⊕ · · · ⊕Hn
[Zλ](K[x])⊕ · · · ⊕Hn

[Z`]
(K[x]).

Therefore an algebraic local cohomology class σF =
[

1
f1···fn

]
∈ Hn

[Z](K[x]) has
unique decomposition

σF = σF,1 + · · ·+ σF,λ + · · ·+ σF,`,

where σF,λ ∈ Hn
[Zλ](K[x]). Note that supp (σF,λ) ⊂ Zλ. The decomposition above

is a kind of partial fractional expansion of 1
f1···fn in terms of local cohomology.

Let β ∈ Zλ and ϕ(x) ∈ O(U) where U is a small neighborhood of β. We want
to evaluate the local residue Resβ(ϕτF ) where τF = (f1(x) · · · fn(x))−1dx and
dx = dx1∧ · · · ∧dxn. If j 6= λ, then each σF,j vanishes on U because supp (σF,j)∩
U = ∅. Thus Resβ(ϕτF ) = Resβ(ϕσF,λdx) for β ∈ Zλ. We denote by δZλ the
local cohomology class which represents the delta function with the support Zλ.

The algebraic local cohomology group can be naturally endowed with a structure
of D-module. On the support Zλ, from general theory, it follows Hn

[Zλ](K[x]) =
DnδZλ . In other words, there exists a linear differential operator TF,λ ∈ Dn such
that σF,λ = T ∗F,λ • δZλ where T ∗F,λ stands for the formal adjoint of TF,λ. Since the
local residue can be described in terms of local cohomology, we have Resβ(ϕτF ) =

Resβ(
[

ϕdx
f1···fn

]
). Therefore

Resβ(

[
ϕdx

f1 · · · fn

]
) = Resβ(ϕσFdx)

= Resβ(ϕ · (T ∗F,λ • δZλ)dx)

= Resβ((TF,λ • ϕ) · δZλdx)

= (TF,λ • ϕ)|x=β.

That is, the mapping ϕ 7→ Resβ(ϕτF ) is determined by the differential operator
TF,λ. Since the set {(TF,λ, Zλ) | λ = 1, 2, . . . , `} gives the Grothendieck local
residue mapping, the local residue of any meromorphic n-forms can be evaluated
by differential operators TF,λ. Our purpose is to find the differential operator TF,λ
without the use of an explicit representative element of the local cohomology class
σF,λ.

Under certain condition for the regular sequence F , we already gave an algorithm
for computing differential operators TF,λ (see [6]). We have extended the method



for more general setting. In this talk, we will describe new algorithm and show
an implementation on the computer algebra system. Our algorithm consists of the
following steps.

1. Find the primary decomposition I =
⋂`
λ=1 Iλ.

2. Find the annihilating left-ideal AnnDn(σF ).

3. For each λ, find the vector space Vλ over K[x]/
√
Iλ spanned by Noether dif-

ferential operators of the associated prime
√
Iλ.

4. For each λ, find a “monic” operator S∗λ ∈ Vλ such that AnnDn(σF )S∗λ ⊂
AnnDn(δF,λ).

5. For each λ, determine the differential operator T ∗F,λ from S∗λ.

Keywords: Local residues, Local Cohomology, Holonomic System
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A canonical representation of continuity of the roots of a
parametric zero dimensional multi-variate polynomial ideal

Yosuke Sato1, Ryoya Fukasaku2, Hiroshi Sekigawa3

In [2, 3], we introduced the following result Theorem 1 which gives a sufficient
condition of a generator of a multivariate parametric zero dimensional ideal for the
continuity property of its roots. In [3], using the result we also give a correctness
proof of an algorithm for real quantifier elimination one of the authors has recently
developed and implemented in [1]. In this talk, using the theory introduced in [4],
we show the following results Theorem 2 and Theorem 3 which enable us both to
describe and to compute a canonical representation form of continuity of the roots of
a given parametric zero dimensional multi-variate polynomial ideal.

In what follows, Ā = A1, . . . , Am and X̄ = X1, . . . , Xn denote variables, we
consider Ā as parameters X̄ as main variables. The symbol � denotes an admissible
term order on the set of all terms of X̄ , for a polynomial f in Q[Ā, X̄], LM(f),
LT (f) and LC(f) denote the leading monomial, the leading term and the leading
coefficient of f respectively regarding f as a member of the polynomial ring over the
coefficient ring Q[Ā], i.e. f ∈ (Q[Ā])[X].

Definition 1. Let S be an algebraically constructible subset of an affine space Cm
for some natural number m. A finite set {S1, . . . ,Sk} of non-empty subsets of S is
called an algebraic partition of S if it satisfies the following properties 1, 2 and 3:

1. ∪ki=1Si = S.

2. Si ∩ Sj = ∅ if i 6= j.

3. Si is a locally closed set for each i, that is Si = VC(I1)\VC(I2) for the varieties
VC(I1), VC(I2) of some ideals I1, I2 of Q[Ā].

Each Si is called a segment.

Definition 2. Let S be an algebraically constructible subset of Cm. For a finite subset
F of Q[Ā, X̄], a finite set G = {(S1, G1), . . . , (Sk, Gk)} satisfying the following
properties 1, 2, 3 and 4 is called a comprehensive Gröbner system of F over S with
parameters Ā w.r.t. �:

1. Each Gi is a finite subset of Q[Ā, X̄].

2. {S1, . . . ,Sk} is an algebraic partition of S.



3. For each c̄ ∈ Si, Gi(c̄) = {g(c̄, X̄)|g(Ā, X̄) ∈ Gi} is a Gröbner basis of the
ideal 〈F (c̄)〉 in C[X̄] w.r.t. �, where F (c̄) = {f(c̄, X̄)|f(Ā, X̄) ∈ F}.

4. For each c̄ ∈ Si, LC(g)(c̄) 6= 0 for any element g of Gi.

In addition, if each Gi(c̄) is a minimal (reduced) Gröbner basis, G is said to be
minimal (reduced). Being monic is not required. When S is the whole space Cm, the
words “over S” is usually omitted.

The following fact is one of the most important properties of a minimal compre-
hensive Gröbner system.

Fact 1. LT (Gi(c̄, X̄)) is identical for each c̄ ∈ Si. Hence, the dimension of a C-
vector space C[X̄]/〈Gi(c̄, X̄)〉 is invariant for c̄ ∈ Si if it is finite. Consequently,
when the C-vector space has dimension l for each c̄ ∈ Si, the ideal 〈Gi(c̄, X̄)〉 has l
number of roots in Cn counting their multiplicities.

Considering the above roots as a l size multiset and introducing a natural topology
on a set of the same size multisets, we have the following property.

Theorem. Let G = {(S1, G1), . . . , (Sk, Gk)} ⊂ Q[X̄, Ā] be a minimal compre-
hensive Gröbner system with parameters Ā w.r.t. an arbitrary term order of main
variables X̄ . If the ideal 〈Gi(c̄)〉 is zero dimensional for each c̄ ∈ Si, then the set of
all roots of the system of the parametric polynomial equations g(Ā, X̄) = 0, g ∈ Gi
is continuous in the segment Si as a function of the parameters Ā.

Note that the multisets of the roots of two ideals 〈Gi(ā)〉 and 〈Gj(b̄)〉 for ā ∈ Si
and for b̄ ∈ Sj may have the same size for some different i, j, even whenLT (Gi(c̄, X̄))
and LT (Gj(c̄, X̄)) are distinct. For such a case we still have the following property.

Theorem. Using the same notations in the previous theorem, if the multisets of the
roots of two ideals 〈Gi(c̄)〉 and 〈Gj(c̄)〉 have the same size but LT (Gi(c̄, X̄)) and
LT (Gj(c̄, X̄)) are distinct, then two segments Si and Sj are not path-connected.

This property enables us to describe a canonical representation form of continuity
of the roots of a given parametric multi-variate polynomial ideal as follows.

Theorem. Given a finite set F of Q[Ā, X̄] and a term order�. There exists a unique
partition {A1,A2, . . . ,Ak} of Cm such that the following properties hold.

1. Each Ai is an algebraically constructible set.

2. LT (〈F (c̄, X̄)〉) is invariant for c̄ on each Ai.

3. LT (〈F (ā, X̄)〉) and LT (〈F (b̄, X̄)〉) are distinct if ā ∈ Ai and b̄ ∈ Aj for
different i, j.

4. If 〈F (c̄, X̄)〉 has finite zeros in Cn for c̄ on Ai, the map from Ai to the set of
multisets of such zeros is continuous.



5. If C[X̄]/〈F (ā, X̄)〉 and C[X̄]/〈F (b̄, X̄)〉 have the same finite dimension as
C vector space for ā ∈ Ai and b̄ ∈ Aj (i 6= j), then Ai and Aj are not
path-connected.

Remark 1. Using the theory of [4], we can also compute such a partition {A1,A2, . . . ,Ak}
from a given finite set F of Q[Ā, X̄].

Remark 2. The partition {A1,A2, . . . ,Ak} depends on the choice of a term order,
however, it seems to be independent, though we have not shown it yet.

Keywords: Comprehensive Gröbner System, Representation of Continuity, Quan-
tifier Elimination
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An effective method for computing
Grothendieck point residues

Shinichi Tajima1, Katsusuke Nabeshim2

In this talk, we present an effective algorithm for computing Grothendieck local
residues associated to semi-quasi homogeneous hypersurface isolated singularities.
The key idea of our approach is the use of Grothendieck local duality.

The theory of Grothendieck local residue is a cornerstone of algebraic geometry 
and complex analysis. It has been used in diverse problems of several different fields 
of mathematics. It is known theoretically that the classical transformation law 
given in [2] can be used to compute its values. Whereas computing Grothendieck 
local residue is quite difficult even if one uses computer algebra systems, because 
of the cost of computation in local rings. Developing effective methods for 
computing has been desired in many applications.

We consider in this talk Grothendieck point residues associated to a µ-constant
deformation of quasi-homogeneous hypersurface isolated singularity. Based on the
theory of local cohomology and Grothendieck local duality, we propose a new ef-
fective method for computing Grothendieck local residues. A key innovation of the
resulting algorithm is an improvement of a previous algorithm on extended ideal
membership problems in the ring of convergent power series [5].

To be more precise, let f(x, t) = f0(x) + g(x, t) be a semi-quasi homogeneous
polynomial, where f0(x) is the quasi-homogeneous part, g(x, t) =

∑`
j=1 tjx

βj is a
sum of upper monomials with x = (x1, x2, ..., xn) main variables, t = (t1, t2, ..., t`)

deformation parameters. SetF = [ ∂f∂x1 ,
∂f
∂x2

, ..., ∂f∂xn ] and let τF = [
1

∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

]

denote the local cohomology class inHn{O}(OX) with parameters twhere [
1

∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

]

is the Grothendieck symbol.
Let res{O}(h, τFdx) denote the Grothendieck point residue at the origin O in

Cn of the differential form

h(x)
∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

dx1 ∧ dx2 ∧ · · · ∧ dxn,

where h(x) is a germ of holomorphic function. The linear map which assigns to each
holomorphic function h(x) the Grothendieck point residue

h(x) −→ res{O}(h, τFdx)



can be expressed in terms of partial differential operators. Namely there exists a
linear partial differential operator T , s.t.

(Th)(O) = res{O}(h, τFdx)

By using algorithm for computing algebraic local cohomology classes with pa-
rameters ([4]) , we introduce an effective method for computing the linear partial dif-
ferential operator T . We also show the resulting algorithm for computing Grothendieck
point residues associated to a µ-constant deformation of quasi homogeneous hyper-
surface isolated singularity.

We present some examples of computation.

Keywords: Grothendieck local residue, local cohomology, Grothendieck local
duality
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S11
Algorithms for Zero-Dimensional Ideals

In the last decades, a lot of progress has been made on the study of efficient algo-
rithms related to zero-dimensional ideals, including for solving polynomial systems,
i.e. determining the finite set of roots common to a given collection of multivariate
polynomials. During this process, it has turned out that these algorithms heavily rely
on some routines from linear algebra. This session will focus on the design and the
implementation of algorithms specifically tailored for the particular linear algebra
problems encountered in this kind of computations. Applications of these techniques
will also be considered, such as algebraic cryptanalysis and decoding algorithms for
algebraic geometry codes.

Polynomial system solving often involves computing a first Groebner basis, typ-
ically with the F5 algorithm, and then working on finding a representation of the
sought roots, using for example the FGLM algorithm. In the first step, one has to deal
with matrices of large dimension which are sparse and exhibit a noticeable structure.
The second step corresponds to finding the nullspace of a matrix with a multi-Krylov
structure: the matrix is formed by some vector and its images by successive powers
of the so-called multiplication matrices.

It has been observed that these multiplication matrices are most often sparse, a
feature that one wants to exploit to obtain faster algorithms. So far, two approaches
have been used to achieve this. One is inspired from the block Wiedemann algorithm,
involving the computation of the generator for a linearly recurrent matrix sequence;
the other one relies on the computation of generators for a multi-dimensional lin-
early recurrent sequence. This revived interest into the latter problem, with the goal
of designing algorithms which outperform the Sakata algorithm, known for its ap-
plications to the decoding of algebraic geometry codes. Some approaches have al-
ready been described, involving computations with matrices that have a multi-layered
block-Hankel structure.

This session aims at gathering the main actors behind the recent advances, and
naturally all researchers interested in this topic and its future
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Border basis, Hilbert Scheme of points and flat
deformations

Mariemi Alonso1, Jerome Brachat2, Bernard Mourrain3

A natural question when studying systems of polynomial equations is how to
characterize the family of ideals which defines a fixed number µ of points counted
with multiplicities. Understanding the allowed perturbations of a zero-dimensional
algebra, which keep the number of solutions constant, is an actual challenge, in the
quest for efficient and stable numerical polynomial solvers.

From a theoretical point of view, this question is related to the study of the Hilbert
Scheme of µ points introduced by Grothendieck.

Many works were developed to analyze its geometric properties, (eg. Hartshorne 
(1965), [3] and many others). Though the Hilbert functor is known to be repre-
sentable its effective representation is still under investigation. Using the persistence 
theorem of Gotzmann (1978), a global explicit description of the Hilbert scheme is 
given in [4] as a sub-scheme of a product of two Grassmannians. Equations defining 
Hilbµ(Pn) in a single Grassmannian are also given in [4]. These equations, obtained 
from rank conditions in the vector space of polynomials in successive “degrees”, have 
a high degree in the Plücker coordinates.

In the last years the problem of representation is also studied through sub-functor 
constructions and open covering of charts of the Hilbert scheme. Covering charts 
corresponding to subsets of ideals with a fixed initial ideal for a given term ordering.  
These ideas, starting with the proof of the irreducibility of Hartshorne (1965), and 
Bayer’s PhD (1982)), were analyzed in several works, from the 80’s; Carrá-Ferro 
(1988), Mark Haiman (1994), Huibregtse (2002), and more recent in [5] and [7].

These open subsets can be embedded into affine o pen s ubsets o f t he Hilbert 
scheme, corresponding to ideals associated to quotient algebras with a given mono-
mial basis. Explicit equations of these affine varieties are developed for some special 
cases in the references above, and using syzygies or in more general setting in [5]. 
Their methods rely on simple algebraic construction and avoid the usual embeddings 
into high dimensional spaces. In this way, in [6] the authors obtain equations of low 
degree in a Grassmaniann for general Hilbert schemes.

In this talk, we concentrate in the punctual Hilbert scheme, and we show how to 
use Boorder basis to get new equations of it, of degree two in the Plucker coordinates 
of a Grassmaniann, which are simpler than Bayer and Iarrobino-Kanev equations 
[1]. Next, using Border basis we get an easy description of the tangent space at a 
point of Hilbµ(Pn) [1]. We give also an effective criterion to test if a perturbed 
system



remains on the Hilbert scheme of the initial equations (test for a flat deformation),
which involves a particular formal reduction with respect to border bases [2].

Finally, we introduce a “Newton Method” in the Hilbert scheme of points to find
(numerically) a Border basis of a system of equations by using the knowledge of a
border basis for some values of the coefficients nearby the ones of the given equations
[2].

Keywords: Border basis, punctual Hilbert scheme, effective flat deformation of
points
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On the decoding of interleaved and folded
Reed-Solomon codes

Daniel Augot1

In 2006, great progress has been made in algebraic coding theory, where codes
reaching the so-called list decoding capacity were constructed by Guruswami and
Rudra [4], elaborating on the ideas of Parvaresh and Vardy [5]. At the heart of these
constructions lies the simple notion of folding the codes, which is a very simple
construction, at the cost of shortening the underlying Reed-Solomon codes and aug-
menting the size of the alphabet.

Later, Guruswami proposed another decoding method, call “linear algebraic” [3],
which appears to be easier to deal with, from the computer algebra point of view.

Both these methods rely heavily on finite fields and their properties, a fact which
is strange in this area, since the simple, classical, Guruswami-Sudan list decoding al-
gorithm [1] works over any field, and all the arguments for proving its validity, study-
ing its list size and decoding radius does not depend on the field. In other words, the
Guruswami-Sudan list decoding algorithm can be said to be of “geometric” nature,
while the decoding algorithms of folded Reed-Solomon have an “arithmetic” nature.

At the heart of the basic Guruswami-Sudan algorithm lies a bivariate interpola-
tion problem, i.e. one has to find the vanishing ideal of a set of points given by the
instance of decoding problem. Then it is followed by the so-called root-finding step:
the codewords which are looked for correspond to components to a curve. Similarly,
when generalizing to interleaved codes, the vanishing ideal of points in a higher di-
mensional space has to be computed. But in that case, the root-finding is ill-founded,
and one should look for a zero dimensional ideal over the field of rational functions
(or equivalently, a bivariate curve). This problem is circumvented using folding, and
root-finding then involves a lot properties of finite fields.

In this talk, I will describe a potential path to new ideas for having a decoding
algorithm of folded Reed-Solomon codes which does not assume the finiteness of the
field, and may be more natural, with better list size. But first, for didactic purposes,
I will recall the basic problems and settings posed by list decoding, recalling the
“Shannon” versus “Hamming” opposed situations, and why list decoding bridges
them [2].
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Computing and Using Minimal Polynomials

John Abbott1, Anna M. Bigatti1, Elisa Palezzato2, Lorenzo Robbiano1

Given a zero-dimensional ideal I in a polynomial ring, many computations start
by finding univariate polynomials in I . Searching for a univariate polynomial in I is a
particular case of considering the minimal polynomial of an element in P/I . It is well
known that minimal polynomials may be computed via elimination, therefore this is
considered to be a “resolved problem”. But being the key of so many computations,
it is worth investigating its meaning, its optimization, its applications.

IfK is a field andR is a zero-dimensional affineK-algebra, i.e. a zero-dimensional
algebra of typeR = K[x1, . . . , xn]/I , thenR is a finite-dimensionalK-vector space.
Consequently, it is not surprising that minimal and characteristic polynomials can be
successfully used to detect properties of R. This point of view was taken systemati-
cally in the book [7] where the particular importance of minimal polynomials (rather
greater than that of characteristic polynomials) emerged quite clearly. That book also
described several algorithms which use minimal polynomials as a crucial tool. The
approach taken there was a good source of inspiration for our research, so we decided
to delve into the theory of minimal polynomials, their uses, and their applications (for
the details, see the full paper [6]).

First, we describe some algorithms for computing the minimal polynomial of
an element of R and of a K-endomorphism of R. They refine similar algorithms
examined in [7], and have been implemented and compared in CoCoALib [2].

We also address the problem of using a modular approach for computing min-
imal polynomials of elements of an affine Q-algebra. As always with a modular
approach, various obstacles have to be overcome (see for instance the discussion
contained in [4] and in [5]). In particular, we deal with the notion of reduction of an
ideal modulo p, and we introduce the σ-denominator of an ideal (for a term-ordering
σ). Then we show that almost all primes are good which paves the way to the con-
struction of the modular algorithm, and we reconstruct the rational polynomial using
fault-tolerant rational reconstruction [1].

Minimal polynomials can be successfully and efficiently used to compute several
important invariants of zero-dimensional affine K-algebras. More specifically, we
describe some algorithms which show respectively how to determine whether a zero-
dimensional ideal is radical, and how to compute the radical of a zero-dimensional
ideal. Then we present some algorithms which determine whether a zero-dimensional
ideal is maximal or primary. The techniques used depend very much on the field K.
The main distinction is between small finite fields and fields of characteristic zero or



big fields of positive characteristic. In particular, it is noteworthy that in the first case
Frobenius spaces play a fundamental role.

Finally, we describe how to compute the primary decomposition of a zero-dimensional
affine K-algebra. They are inspired by the content of Chapter 5 of [7], but they
present many novelties.

All these algorithms have been implemented in CoCoALib [2], and are accessible
from CoCoA [3]. Their merits are also illustrated by good timings.

This research was partly supported by the project H2020-FETOPN-2015-CSA_712689
of the European Union

Keywords: Minimal polynomial, Gröbner bases, elimination, primary decomposi-
tion, radical.
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Combinatorics of ideals of points: a
Cerlienco-Mureddu-like approach for an iterative lex game.

Michela Ceria1, Teo Mora2

In 1990 Cerlienco and Mureddu [4] gave a combinatorial algorithm which, given
an ordered set of points X = [P1, ..., PN ] ⊂ kn, k a field, returns the lexicographical
Gröbner escalier N(I(X)) ⊂ T := {xγ := xγ11 · · ·x

γn
n | γ := (γ1, ..., γn) ∈ Nn}

of the vanishing ideal I(X) := {f ∈ P : f(Pi) = 0, ∀i ∈ {1, ..., N}} ⊂
P := k[x1, ..., xn]. Such algorithm actually returns a bijection (labelled Cerlien-
co-Mureddu correspondence in [9, II,33.2]) ΦX : X → N(I(X)). The algorithm
is inductive and thus has complexity O

(
n2N2

)
, but it has the advantage of be-

ing iterative, in the sense that, given an ordered set of points X = [P1, ..., PN ],
its related escalier N(I(X)) and correspondence ΦX, for any point Q /∈ X it re-
turns a term τ ∈ T such that, denoting Y the ordered set Y := [P1, ..., PN , Q],
N(I(Y)) = N(I(X)) t {τ}, ΦY(Pi) = ΦX(Pi) for all i and τ = ΦY(Q). In
order to produce the lexicographical Gröbner escalier with a better complexity, [6]
gave a completely different approach (Lex Game): given a set of (not necessarily
ordered) points X = {P1, ..., PN} ⊂ kn they built a trie (point trie) representing
the coordinates of the points and then used it to build a different trie, the lex trie,
which allows to reed the lexicographical Gröbner escalier N(I(X)). Such algorithm
has a very better complexity, O (nN +N min(N,nr)), where r < n is the maximal
number of edges from a vertex in the point tree, but in order to obtain it, [6] was
forced to give up iterativity. In 1982 Buchberger and Möller [2] gave an algorithm
(Buchberger-Möller algorithm) which, for any term-ordering < on T and any set of
(not necessarily ordered) points X = {P1, ..., PN} ⊂ kn iterating on the <-ordered
set N(I(X)), returns the Gröbner basis of I(X) with respect to <, the set N(I(X))
and a family [f1, · · · , fN ] ⊂ P of separators of X id est a set of polynomials such
that

fi(Pj) = δij =

{
0 i 6= j

1 i = j.
.

Later Möller [8] extended the same algorithm to any finite set of functionals defin-
ing a 0-dimensional ideal, thus absorbing also the FGLM-algorithm [5] and, on the
other side, proving that Buchberger-Möller algorithm has the FGLM-complexity
[5] O(n2N3f) where f is the average cost of evaluating a functional at a term∗.

∗A more precise evaluation was later given by Lundqvist, namelyO(min(n,N)N3+nN2+nNf+
min(n,N)N2f).



Möller [8] gave also an alternative algorithm (Möller algorithm) which, for any term-
ordering < on T , given an ordered set of points† [P1, ..., PN ] ⊂ kn, for each σ ≤ N ,
denoting Xσ = {P1, ..., Pσ} returns, with complexity O(nN3 + fnN2)

• the Gröbner basis of the ideal I(Xσ);

• the correlated escalier N(I(Xσ));

• a term tσ ∈ T such that N(I(Xσ) = N(I(Xσ−1)) t {τ},

• a triangular set {q1, · · · , qσ} ⊂ P s.t. qi(Pj) =

{
0 i < j

1 i = j,

• whence a family of separators can be easily deduced by Gaussian reduction,

• a bijection Φσ such that Φσ(Pi) = τi for each i ≤ σ, which moreover if < is
lexicographical, then coincides with Cerlienco-Mureddu correspondence.

Later, Mora [9, II,29.4] remarked that, since the complexity analysis of both Buch-
berger-Möller and Möller algorithms were assuming to perform Gaussian reduc-
tion on an N -square matrix and to evaluate each monomial in the set B(I(X)) :=
{τxj , τ ∈ N(I(Xσ)), 1 ≤ j ≤ n} over each point Pi ∈ X, within that complex-
ity one can use all the informations which can be deduced by the computations
τ(Pi), τ ∈ B(I(X)), 1 ≤ i ≤ N ; he therefore introduced the notion of structural
description of a 0-dimensional ideal [9, II.29.4.1] and gave an algorithm which com-
putes such structural description of each ideal I(Xσ). Also anticipating the recent
mood of degroebnerizing effective ideal theory, Mora, in connection with Auzinger-
Stetter matrices and algorithm [1], proposed to present a 0-dimensional ideal I ⊂ P
and its quotient algebra P/I by giving its Gröbner representation [9, II.29.3.3] id
est the assignment of a k-linearly independent ordered set [q1, . . . , qN ] ⊂ P/I and n
N -square matrices

(
a

(h)
lj

)
, 1 ≤ h ≤ n, which satisfy

1. P/I ∼= Spank{q1, . . . , qN},

2. xhql =
∑

j a
(h)
lj qj , 1 ≤ j, l ≤ N, 1 ≤ h ≤ n.

Since Möller algorithm and Mora’s extension is inductive, our aim is to give an al-
gorithm which given an ordered set of points X = [P1, ..., PN ] ⊂ kn produces for
each σ ≤ N the lexicographical Gröbner escalier N(I(Xσ)), the related Cerlien-
co-Mureddu correspondence, a family of squarefree separators for Xσ, and the n
N -square Auzinger-Stetter matrices

(
a

(h)
lj

)
, 1 ≤ h ≤ n, which satisfy condition

2. above with respect the linear basis N(I(Xσ)). The advantage is that, any time

†Actually the algorithm is stated for an ordered finite set of functionals [`1, ..., `N ] ⊂ Homk(P,k)
such that for each σ ≤ N the set {f ∈ P : `i(f) = 0, ∀i ≤ s} is an ideal.



a new point is to be considered, the old data do not need to be modified and actu-
ally can simplify the computation of the data for the new ideal. Since the Lex Game
approach which has no tool for considering the order of the points has no way of
using the data computed for the ideal I(Xσ−1) in order to deduce those for I(Xσ),
while Möller algorithm and Mora’s extension are iterative on the ordered points and
intrinsically produce Cerlienco-Mureddu correspondence, in order to achieve our
aim, we need to obtain a variation of Cerlienco-Mureddu algorithm which is not
inductive. Our tool is the Bar Code [3], essentially a reformulation of the point trie
which describes in a compact way the combinatorial structure of a (non necessarily
0-dimensional) ideal; the Bar Code allows to remember and read those data which
Cerlienco-Mureddu algorithm is forced to inductively recompute. Actually, once the
point trie is computed as in [6] with inductive complexity O(N · N log(N)n), the
application of the Bar Code allows to compute the lexicographical Gröbner escaliers
N(I(Xσ)) and the related Cerlienco-Mureddu correspondences, with iterative com-
plexity O(N · (n + min(N,nr))) ∼ O(N · nr). The families of separators can be
iteratively obtained using Lagrange interpolation via data easily deduced from the
point trie as suggested in [6] with complexity O(N ·min(N,nr)). The computation
of the Auzinger-Stetter matrices is based on Lundqvist result [7, Lemma 3.2] and can
be inductively performed with complexity‡ O

(
N · (nN2)

)
.

Keywords: zero-dimensional ideal, Cerlienco-Mureddu algorithm, lex game

References

[1] W. AUZINGER; H.J. STETTER, An Elimination Algorithm for the Computation
of all Zeros of a System of Multivariate Polynomial Equations. I.S.N.M. 86, 11–
30 (1988).

[2] H.M. MÖLLER; B. BUCHBERGER, The construction of multivariate polynomi-
als with preassigned zeros, L. N. Comp. Sci. 144, 24–31 (1982).

[3] M. CERIA, Bar Code for monomial ideals, submitted to Journal of Symbolic
Computations, special issue for MEGA 2017.

[4] L. CERLIENCO L.; M. MUREDDU, From algebraic sets to monomial linear bases
by means of combinatorial algorithms. Discrete Math. 139, 73-87 (1995).

[5] J.C. FAUGÈRE; P. GIANNI; D. LAZARD D; T. MORA, Efficient Computation
of Zero-dimensional Gröbner Bases by Change of Ordering. J.S.C. 16, 329–344
(1993).
‡Naturally, our decision of giving an algorithm which can produce data for  the vanishing ideal

when a new point is considered forbid us of using the new better algorithms for matrix multiplication;
thus our complexity is O

(
N3
)

and not O (Nω) , ω < 2.39.



[6] B. FELSZEGHY; B. RÁTH; L. RÓNYAI The lex game and some applications.
J.S.C. 4, 663-681 (2006).

[7] S. LUNDQVIST, Vector space bases associated to vanishing ideals of points.
J.P.A.A. 214(4), 309-321 (2010).

[8] M.G. MARINARI; T. MORA; H.M. MÖLLER, Gröbner bases of ideals defined
by functionals with an application to ideals of projective points. J. AAECC 4,
103-145 (1993).

[9] T. MORA Solving Polynomial Equation Systems (4 Vols.). Cambridge Univ.
Press, Cambridge, 2003–16.

1Department of Computer Science
University of Milan
Via Comelico 39, Milano, Italy
michela.ceria@gmail.com

2Department of Mathematics
University of Genoa
Via Dodecaneso 35
theomora@disi.unige.it

mailto:michela.ceria@gmail.com
mailto:theomora@disi.unige.it


Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

Subschemes of the Border Basis Scheme
Martin Kreuzer1, Le Ngoc Long1, Lorenzo Robbiano2

All 0-dimensional ideals in a polynomial ring P = K[x1, . . . , xn] over a field K
having a fixed colength µ are parametrized by the Hilbert scheme Hilbµ(An). Since
it is not easy to find the equations defining these moduli schemes, we may opt to
study border basis schemes. They are open subschemes of the Hilbert scheme which
cover it and can be defined using easily computable quadratic equations.

More precisely, let O = {t1, . . . , tµ} be an order ideal, i.e. a divisor closed
finite subset of the set of terms in P , and let ∂O = {b1, . . . , bν} be the border
of O which is defined by ∂O = (x1O ∪ · · · ∪ xnO) \ O. After introducing new
indeterminates cij for 1 ≤ i ≤ µ and 1 ≤ j ≤ ν, we form the generic O-border
prebasis G = {g1, . . . , gν}, where gj = bj −

∑µ
i=1 cij ti, and the generic formal

multiplication matrices Ar = (a
(r)
ij ) ∈ Matµ(K[cij ]), where

a
(r)
ij =

{
δim if xrtj = tm

cim if xrtj = bm

for r = 1, . . . , n. It is well-known that the substitution of concrete values cij 7→
γij with γij ∈ K into G yields an O-border basis GΓ, i.e. a system of generators
of IΓ = 〈GΓ〉 such that the terms in O represent a vector space basis of P/IΓ if and
only if the commutators of A1, . . . ,An vanish at the point Γ = (γij) ∈ Kµν . Hence
the ideal I(BO) generated by the entries of these commutators defined a subscheme
BO of Aµν whose K-rational points correspond 1–1 to the 0-dimensional ideals of
colength µ having an O-border basis. This scheme is called the O-border basis
scheme, and given O, its vanishing ideal is easy to compute. It has been studied
previously in [1] and [2].

Having a good parametrization of all 0-dimensional ideals of a given colength
invites the question how one can describe the loci of ideals with certain additional
properties, e.g. algebraic properties such as defining a Gorenstein ring, or geometric
properties such as the Cayley-Bacharach property. Based on the algorithms devel-
oped in [3] and on further characterizations, e.g. of the properties of being strictly
Gorenstein or a strict complete intersection, we develop algorithms for computing
the defining ideals of a number of subschemes of the border basis scheme BO.

The first and most straightforward one is the locus of all 0-dimensional ideals IΓ

such that P/IΓ is a (locally) Gorenstein ring. It was given in [3], Alg. 5.4 and uses
the facts that this property is characterized by having a cyclic canonical module and
that the multiplication maps on the canonical module are given by the transposes of
the multiplication maps on the ring.



A more tricky case is the property of P/IΓ to be a strict Gorenstein ring, i.e. of its
graded ring grF (P/IΓ) with respect to the degree filtrationF to be a Gorenstein local
ring. In this case we can use the characterization which says that P/IΓ has to have
a symmetric affine Hilbert function and the Cayley-Bacharach property. However,
both of these conditions require us to fix the Hilbert function.

The closed subscheme of BO whose K-rational points Γ correspond to rings
P/IΓ whose affine Hilbert function is dominated by a given Hilbert function H is
called the H-subscheme of BO and is denoted by BO(H). The open subscheme of
BO(H) whoseK-rational points Γ correspond to rings P/IΓ having exactly the affine
Hilbert function H is denoted by BO(H). Both for BO(H) and for the complement
of BO(H) inside BO(H) we provide explicit algorithms to calculate their defining
equations. Thus we may operate on the set of ideals having a fixed Hilbert function.

The most useful of these sets is the degree filtered O-border basis scheme Bdf
O

which corresponds to the Hilbert function of O itself. In this setting we provide
explicit algorithms for calculating the locus of all points Γ such that P/IΓ has the
Cayley-Bacharach property, and then the locus corresponding to the strict Gorenstein
rings P/IΓ mentioned above.

Finally, we consider the locus corresponding to all strict complete intersection
ideals IΓ, i.e. to all such ideals for which the degree form ideal DF(IΓ) is generated
by a homogeneous regular sequence. To characterize this locus, we use a suitable
version of an old result by Wiebe (see [4], Satz 3) which says that a local ring R with
maximal ideal m is a complete intersection if and only if the 0-th Fitting ideal of m
satisfies Fitt0(m) 6= 〈0〉. Based on a parametrization of all rings P/DF(IΓ) using
the homogeneous O-border basis scheme, we succeed in constructing a version of
Wiebe’s result which works for families of 0-dimensional ideals and allows us to
describe the locus of all strict complete intersections in the moduli space via explicit
polynomial equations.

Keywords: border basis, Gorenstein ring, complete intersection
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Fast Gröbner basis computation and polynomial reduction
in the generic bivariate case

Joris van der Hoeven1, Robin Larrieu1

Let A,B ∈ K[X,Y ] be two bivariate polynomials over an effective field K, and
let G be the reduced Gröbner basis of the ideal I := 〈A,B〉 generated by A and B
with respect to the usual degree lexicographic order. Assuming A and B sufficiently
generic, we design a quasi-optimal algorithm for the reduction of P ∈ K[X,Y ]
modulo G, where “quasi-optimal” is meant in terms of the size of the input A,B, P .
Immediate applications are an ideal membership test and a multiplication algorithm
for the quotient algebra A := K[X,Y ]/〈A,B〉, both in quasi-linear time. Moreover,
we show that G itself can be computed in quasi-linear time with respect to the output
size.

Keywords: Polynomial reduction, Gröbner basis, Complexity, Algorithm
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De Nugis Groebnerialium 5:
Noether, Macaulay, Jordan∗

Teo Mora1

The true power of Lasker-Noether decomposition theorem grants that
each ideal in a Noetherian ring has an irredundant (and reduced) repre-
sentation as finite intersection of irreducible primary ideals and, in the
polynomial ring over a field, there is an algorithm (due to Macaulay)
which effectively computes such decomposition. Moreover, once a frame
of coordinates is fixed, such decomposition is unique. I am wondering
since years whether this result could allow to define (if and when it ex-
ists) an intrinsic coordinate frame for primary ideals. Recently I realized
that generalized eigenvectors could be a potential solution, thus allowing
me to give a potential definition.

In connection with Lasker-Noether primary decomposition, Emmy Noether stated
[4] that

Definition 1 (Noether). Let R be a commutative ring with unity and let a ⊂ R be an
ideal.

a is said to be

• reducible if there are two ideals b, c ⊂ R such that a = b ∩ c, b ⊃ a, c ⊃ a;

• irreducible if it is not reducible.

Proposition 2 (Lasker–Noether). In a Noetherian ring R each ideal f ⊂ R is a finite
intersection of irreducible ideals: f = ∩ri=1ii.

Definition 3 (Noether). Let R be a Noetherian ring and f ⊂ R an ideal. A represen-
tation f = ∩ri=1ii, of f as intersection of finite irreducible ideals is called a reduced
representation if, for each I, 1 ≤ I ≤ r,

• iI 6⊇
r⋂
i=1
i6=I

ii, and

• there is no irreducible ideal i′I ⊃ iI such that f =

 r⋂
i=1
i6=I

ii

⋂ i′I .

∗This note was devised while attending to the CIRM, Luminy, Workshop Symmetry and Computa-
tional; thanks to the organizers for the hospitality and stimulation. I am also grateful to Elisa Gorla
which pointed me to Jordan blocks and Michela Ceria for fruitable discussions.



Proposition 4 (Noether). In a Noetherian ring R, each ideal f ⊂ R has a reduced
representation as intersection of finite irreducible ideals.

Let us denote P := K[X1, · · · , Xn] the polynomial ring over the field K and

T := {Xa1
1 , · · · , Xan

n : (a1, · · · , an) ∈ N}.

Example 5 (Hentzelt). 1. The decompositions

(X2, XY ) = (X) ∩ (X2, XY, Y λ), for each λ ∈ N, λ ≥ 1,

where
√

(X2, XY, Y λ) = (X,Y ) ⊃ (X), show that embedded components
are not unique; however, (X2, Y ) ⊇ (X2, XY, Y λ), for each λ > 1, shows
that (X2, Y ) is a reduced embedded irreducible component and that (X2, XY ) =
(X) ∩ (X2, Y ) is a reduced representation.

2. The decompositions (X2, XY ) = (X) ∩ (X2, Y + aX), for each a ∈ Q,
where

√
(X2, Y + aX) = (X,Y ) ⊃ (X), and, clearly, each (X2, Y + aX)

is reduced, show that also reduced representation is not unique; remark that,
setting a = 0 we find again the decomposition (X2, XY ) = (X) ∩ (X2, Y )
found above.

This set of examples suggested Emmy Noether to intersect all irreducible com-
ponents which share the same associated prime and to distinguish primaries between
embedded and isolated in order to give her uniqueness result on irredundant primary
representation.

Some time before, Macaulay [3], through his theory of inverse systems and dia-
lytic arrays studied the inner structure of (X1, . . . , Xn)-primary ideals at the origin
in the polynomial ring K[X1, · · · , Xn] =: P giving an efficient algorithm which
later Gröbner [2, pp.177–178] realized was computing the reduced representation of a
(X1, . . . , Xn)-primary ideal and which can be easily generalized to [5, II.Corollary 32.3.3]
produce a reduced representation of each (X1, . . . , Xn)-closed ideal.

Example 6. Given the monomial ideal I := (X3, XY, Y 3) Macaulay starts with the
functionals M(t)(·), t ∈ T which associate to each polynomial the coefficient of t in
its expansion, the escalier T /I and the “corners” X3, Y 3 getting the two modules

SpanK{M(X2), XM(X2), X2M(X2)} = SpanK{M(X2),M(X),M(1)}

and SpanK{M(Y 2), Y M(Y 2), Y 2M(Y 2)} = SpanK{M(Y 2),M(Y ),M(1)}which
are dual to the ideals (X3, Y ) and (X,Y 3) whence I = (X3, Y ) ∩ (X,Y 3).

Notwithstanding Hentzelt’s example, Macaulay’s solution in a sense is “unique”;
namely it depends on a precise frame of coordinates, since each component is com-
puted by Macaulay essentially by repeatedly multiplying some functionals by the
variables.



Example 7. The ideal (X1, X2)2 has all the irreducible decompositions

(X1, X2)2 = ((aX + bY )2, cX + dY ) ∩ (aX + bY, (cX + dY )2), ad− cb = 1.

Example 8. Apparently, Example 7 is all one needs to dismiss the question posed on
the title; however if we consider any linear form ` ∈ K[X1, X2, X3] s.t. SpanK =
{X1, X2, `} = SpanK = {X1, X2, X3} we realize that in the (X1, X2, X3)-primary
ideal

J := (X1, X2, X3)2 ∩ (X1, X2, `
3)

= (X2
1 , X1X2, X

2
2 , X1X3, X2X3, X

3
3 )

= ((aX + bY )2, cX + dY,X3) ∩ (aX + bY, (cX + dY )2, X3) ∩ (X1, X2, `
3)

the coordinate X3 plays a rôle at least as the direction of the plane (X1, X2).

Let us consider a (X1, . . . , Xn)-primary ideal I ⊂ K[X1, · · · , Xn] =: P , the
unique order ideal N(I) ⊂ T such that SpanK{N(I)} = P/I , a linear form

` ∈ SpanK{X1, · · · , Xn} =: B1,

the Auzinger-Stetter[1] matrix A describing the effect of the morphism A → A :
f 7→ `f on N(I) and its Jordan normal form J .

Denoting, for k, 1 ≤ k ≤ #N(J), ρk := rank(Ak−1) − rank(Ak), µ0 := ρ1

and µi := ρi − ρi+1 for each i, 1 ≤ i < l := max(k : ρk 6= 0). Note that
µ0 =

∑
i>0 µi = #B1 = n is the number of Jordan blocks of J . Note also that the

following conditions are equivalent

1. there are n values i1 > i2 > . . . > in with µij = 1,

2. µi ∈ {0, 1} for each i.

If this happens we can choose n generalized eigenvectors vj each of ranks ij in
a such way that the eigenvectors wj := Aij−1vj satisfy SpanK{w1, · · · , wn} =: B1

and we can inductively choose each wj in such a way that the basis {w1, · · · , wn} is
orthogonal.

Definition 9. If the conditions above are satisfied the ordered set {w1, · · · , wn} is
called the intrinsic coordinate frame for the (X1, . . . , Xn)-primary ideal I .

Of course this definition requires to settle technical problems which Numerical
Analysis can answer, starting from the crucial questions: is this frame “unique” and
in which sense? ` must be “generic” in some sense, but in which sense? Example 8
suggests that we can assume to have ` in a Zariski open.

The other problem is to consider a (X1, . . . , Xn)-closed ideal I with the origin as
singular point and study if the application of this tecnique to sufficiently many ideals
I ∩ (X1, . . . , Xn)d can impose an intrinsic coordinate frame at the singular point of
I , following the track of computation for the ideal I = (X3

1 −X2
1 −X2

2 ) performed
in [5, II.Examples 32.4.2,32.7.1].
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Solving and bonding 0-dimensional ideals:
Möller Algorithm and Macaulay Bases

Teo Mora1

Denote by P := k[x1, ..., xn] the polynomial ring over the field k, by k̄ the
algebraic closure of k, by m = (x1, ..., xn) ⊂ P the maximal ideal at the origin and
by

T := {xγ := xγ11 · · ·x
γn
n | γ := (γ1, ..., γn) ∈ Nn}

the semigroup of terms in P which is its “natural” basis as a k-vector space.
The k-vector space of the linear morphisms L : P → k, P̂ = Homk(P,k) has

a natural structure as P-module which is obtained by defining, for each ` ∈ P̂ and
f ∈ P , ` · f ∈ P̂ as

g 7→ (` · f) (g) = `(fg),∀g ∈ P.

Macaulay [4, 5] under the notion of inverse system proposed a representation of
P̂ as a series ring k[[x−1

1 , ..., x−1
n ]] and specialized his approach in order to describe,

under the name of Noetherian equations, the structure of both m-primary ideals at the
origin and m-closed∗ ideals. In order to do so he restricted himself to the polynomial
ring

P = k[x1, ..., xn] ∼= k[x−1
1 , ..., x−1

n ] ⊂ k[[x−1
1 , ..., x−1

n ]] = P̂ = Homk(P,k)

representing it as the k-vector space Spank(M) generated by the set M = {M(τ) :
τ ∈ T } of functionals bihortogonal to the set T defined by

M(τ) : P → k, f =
∑
t∈T

c(f, t)t 7→ c(f, t),∀f ∈ P,

so that each polynomial f ∈ P is represented as f =
∑

τ∈T M(τ)τ. In order to
impose a P-module structure on it, he defined, for each j, 1 ≤ j ≤ n, the linear maps

σj : Spank(M)→ Spank(M), τ 7→ σj(M(τ)) :=

{
M(ω) if τ = xjω

0 if xj - τ ;

since it holds σiσj = σjσi for each pair 1 ≤ i, j ≤ n, this, for each υ = xγ11 · · ·x
γn
n ∈

T , defines a unique map

συ := σγ11 · · ·σ
γn
n : Spank(M)→ Spank(M), τ 7→ συ(M(τ)) :=

{
M(ω) if τ = υω

0 if υ - τ.

∗id est ideals I ⊂ P s.t. I =
⋃
d I +md.



Therefore for each f =
∑

t∈T c(f, t)t ∈ P a map σf : Spank(M) → Spank(M)
is uniquely defined as σf =

∑
t∈T c(f, t)σt and under this definition Spank(M) is

naturally endowed with the P-module structure defined by

` · f := σf (`) ∈ Spank(M),∀` ∈ Spank(M), f ∈ P.

Definition 10. A vector subspace Λ ⊂ Spank(M) is called

• xj-stable if for each ` ∈ Λ, σj(`) ∈ Λ;

• stable if for each ` ∈ Λ and each f ∈ P, σf (`) ∈ Λ.

Lemma 11. Any vector subspace Λ ⊂ Spank(M) is stable iff it is xj-stable, for each
j.

Theorem 12. Let Λ ⊂ Spank(M) ⊂ P̂ be any finite dimensional k-vector subspace.
Then, the following conditions are equivalent:

1. Λ is stable.

2. the vector space I(Λ) := {f ∈ P : `(f) = 0, ∀` ∈ Λ} ⊂ P is an ideal and
I(Λ) ⊂m.

Denoting, for each k-vector subspace P ⊂ P ,

M(P ) := {` ∈ Spank(M) : `(f) = 0, ∀f ∈ P} ⊂ Spank(M)

it holds

Theorem 13. The mutually inverse maps I(·) and M(·) give a biunivocal, inclusion
reversing, correspondence between the set of the m-closed ideals I ⊂ P and the set
of the stable k-sub vector spaces Λ ⊂ Spank(M).

Gröbner[3] gave a natural description of each functional M(τ) ∈ M in terms
of differential operations, setting, for each (i1, . . . , in) ∈ Nn, τ := xi11 . . . x

in
n and

denoting
D(τ) := D(i1, . . . , in) : P → P

the differential operatorD(τ) := D(i1, . . . , in) = 1
i1!···in!

∂i1+···+in

∂x
i1
1 ···∂x

in
n

, so that, for each

τ ∈ P , it holds M(τ)(·) = D(τ)(·)(0, . . . , 0).
Gröbner’s formulation has the only weakness of requiring that (k) = 0, but this

problem is trivially fixed using the Hesse derivatesD(j)
i (xmi ) =

{(
m
j

)
xm−j if m ≥ j

0 if m < j

thus obtaining M(τ)(·) = D
(i1)
1 · · ·D(in)

n (·)(0, . . . , 0).
Given a termordering < on T , for each ` =

∑
υ∈T ξ(υ, `)υ we denote

T<(`) := min
<

(υ : ξ(υ, `) 6= 0) .



Definition 14. [1] Let I ⊂ P be an m-closed ideal. A k-basis {`1, `2, . . . , `i, . . .} of
the stable k-sub vector space Λ := M(I) is called the Macaulay basis of Λ w.r.t. a
termordering < if

• T<{Λ} := {T<(`i)} ⊂ T } is an order ideal;

• `i = M(T<(`i)) +
∑

υ∈T \T<(Λ) ξ(υ, `i)υ for suitable ξ(υ, `i) ∈ k and for
each i.

Given a 0-dimensional ideal I ⊂ P there are different techniques for computing
its roots Z(I) ⊂ k̄n (see [9, III]) and, for each such root a ∈ Z(I), the correlated
primary component of I (see [9, II.ch.35]); given an m-closed ideal through any
finite (not necessarily Gröbner) basis, [7] (see also [1]) computes, for any δ ∈ N, the
Macaulay basis of

⋃
d≤δ I + md.

The procedure given by Macaulay [5] allows to produce the irreducible reduced
decomposition of any m-primary ideal.

The converse problem can be stated as

given a finite set Z ⊂ kn and, for each a = (a1, . . . , an) ∈ Z , denoting

λa : P → P f(x1, . . . , xn) 7→ f(x1 + a1, . . . , xn + an),

a stable k-sub vector spaces Λa ⊂ Spank(M) describe the 0-dimensional
ideal I =

⋂
a∈Z λ

−1
a (I(Λa))

Möller Algorithm [6] solves it; actually given any finite set of linearly indepen-
dent functionals {`1, . . . , `N} properly ordered so that each sub vector space Li =
{`1, . . . , `i}, 1 ≤ i ≤ N is a P-module so that each Ii := I(Li) is a 0-dimensional
ideal, for each i returns the separators of the functionals Li, the Gröbner repre-
santion [9, II.29.3.3;III.pg.xvi] of each ideal Ii, producing in particular the order
ideal (escalier) N(Ii) which is a k-basis of the algebra P/Ii and also [8] the related
Cerlienco–Mureddu Correspondence†
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On the computation of algebraic relations
of bivariate polynomials

Simone Naldi1, Vincent Neiger1, and Grace Younes2

Computing algebraic relations (or syzygies) between multivariate polynomials is
a central topic in computational commutative algebra. Given f1, . . . , fm ∈ K[X],
X = (X1, . . . , Xn), and a zero-dimensional ideal I ⊂ K[X], this problem amounts
to finding p1, . . . , pm ∈ K[X] satisfying

p1f1 + · · ·+ pmfm ∈ I.

More precisely, one goal is to compute a Gröbner basis of the module of all such
relations. In some applications, for instance in decoding algorithms from coding
theory, one just needs to compute one relation satisfying degree bounds which are
given a priori.

A well known particular case is the computation of Padé approximants of poly-
nomial functions h ∈ K[X], namely a, b ∈ K[X] satisfying a = bh in the coordinate
ring K[X]/I . This problem can be interpreted as a structured linear system of equa-
tions.

In the univariate case, iterative algorithms have been developed in [1, 6]. Similar
algorithms appeared for the multivariate case for example in [2, 4], leading to com-
plexity bounds that are cubic in the degree of I and linear in the number of variables.

For the computation of univariate relations, divide-and-conquer variants of the
mentioned algorithms have been given in [1, 3, 5]. However, to the best of our knowl-
edge no similar improvements have been obtained in multivariate settings. In this talk
we will report on ongoing work aiming at algorithmic improvements in the bivariate
case and for ideals I that have some special structure.

Keywords: Padé approximants, syzygies, structured matrices, divide and conquer
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Computing Recurrence Relations of n−dimensional
Sequences Using Dual of Ideals

Angelos Mantzaflaris1, Hamid Rahkooy2, Éric Schost2

We consider the problem of computing the ideal of linear recurrence relations of
a sequence over Nn. We call this ideal the annihilator of the sequence. We restrict
ourselves to the case that the annihilator is m−primary, which allows us to assume
that the values of the sequence is zero outside a finite setM, hence the input is the
values over M. Our algorithm can easily be generalized into arbitrary number of
sequences whose annihilator is zero-dimensional.

Berlekamp and Massey considered the problem for sequences over N and gave
an algorithm for it in 1960s [2, 7]. Sakata generalized the problem into the sequences
over Nn [10]. In terms of Macaulay’s Inverse System [5], the annihilator is the orthog-
onal of the inverse system of a given element. In other words, the problem is to find
the ideal, for which the dual module is given. Marinari, Mora, Möller and Alonso in-
troduced algorithms for this duality problem [1, 6], considering it as a generalization
of FGLM [4].

A first approach to solve this problem is to consider a recurrence relation with
symbolic coefficients and plug in the sequence in order to obtain linear equations.
This leads to solving a Hankel matrix of size s = |M|. Let d be the dimension of
the quotient of the polynomial ring with the annihilator, as a vector space, and δ be
the size of the border of the annihilator. Faugere, et. al. in [3] consider M to be
the set of tuples (a1, · · · , an), with a1 + · · · + an ≤ t, for some t ∈ N, and give
an algorithm of complexity O(sω + δdω), where ω is the constant in the complexity
of matrix multiplication. In a recent work, Mourrain presented an algorithm —in a
more general setting for computing border basis— with complexity O(nd2s) [8].

Motivated by Mourrain’s Integration Method [9] for fast computation of the dual
of an m−primary ideal, we convert the problem of computing the annihilator into the
problem of finding the dual of a certain ideal. Unlike all other algorithms, our algo-
rithm essentially looks for the linear dependencies among the values of the sequence,
going from the largest tuple inM to the smaller ones. The complexity of our algo-
rithm is O

(
n(s− d)3 + n(s− d)C + ns

)
, where C is the cost of the integrations

done during the integration method. We present classes of sequences for which s− d
is small while s and d are large enough, hence our algorithm is faster than all above
algorithms. We have implemented our algorithm in Maple and our experiments show
drastic reduction in the size of the matrices when s− d is small.

Keywords: Linear recurrent sequences; Berlekamp-Massey Algorithm; Sakata’s
Problem; 0-dimensional ideal; n-dimensional sequences; dual of ideals.
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Special Properties of Zero-Dimensional Ideals:
new Algorithms

Lorenzo Robbiano1

An affine 0-dimensional K-algebra is a ring of type P/I where K is a field, I is an
ideal in P = K[x1, . . . , xn], and dimK(P/I) < ∞. In this talk some features of
0-dimensional affine K-algebras will be investigated: having the Cayley-Bacharach
property, being locally Gorenstein, and being locally a complete interesection. In
particular, the history of these properties and the modern approach via computational
methods will be discussed.

Let us have a better look at the content of the presentation.

In book [2] we construct the theory of commuting families of endomorphisms of
a finite dimensionalK-vector space V , i.e., of families of endomorphisms of V which
commute pairwise. In particular, we transfer the concept of commendability from a
single endomorphism to a commuting family. It turns out that is strong enough for a
fundamental theorem: a family is commendable if and only if V is a cyclic module
with respect to the dual family. As abstract this may seem, it is the heart of some of
the most powerful algorithms. The reason is that a zero-dimensional affine algebra R
over a field K is identified with a commuting family via its multiplication family F .
This identification brings the extensive linear algebra preparations to fruition, and
surprising connections between the two fields appear: the generalized eigenspaces
of F are the local factors of R, the joint eigenvectors of F are the separators of R,
there is a commendable endomorphism in F if and only if R is curvilinear, and the
family F is commendable if and only ifR is a locally Gorenstein ring. From this link
a beautiful algorithm can be constructed which checks whether a zero-dimensional
affine algebra is locally Gorenstein or not.

The notion of complete intersection subscheme is ubiquitous in Algebraic Ge-
ometry and Commutative Algebra where it takes the name of ideal generated by a
regular sequence. Surprisingly, an old result by Wiebe (see [6]) can be successfully
used to check whether an affine 0-dimensional local K-algebra is a complete inter-
section or not. And the full process is algorithmic.

The history of the Cayley-Bacharach property (CBP) goes back to Pappus Alexan-
drinus (ca. 320) and keeps going on. Some steps and turns will be illustrated. Re-
cently, it became clear that, in order to study general versions of the CBP, it is prefer-
able to formulate it as a property of the respective coordinate rings rather than sets
of points or 0-dimensional schemes. In this vein, we defined in [2] the CBP for
0-dimensional affine algebras with a fixed presentation with arbitrary K and linear



maximal ideals, and provided several algorithms to check it. A couple of years ago 
the most general definition o f  t he C BP t o  d ate w as g iven b y  L ong i n  [ 5] w here he 
considered it for presentations of arbitrary 0-dimensional affine algebras over arbi-trary 
base fields. The definition in [5] and a clever use of the canonical module is the starting 
point of [3] where we study this very general version of the CBP and find efficient 
algorithms for checking it.

All the examples mentioned in the talk were computed with CoCoA (see [1]).

Keywords: Cayley-Bacharach, Gorenstein, canonical module, complete intersec-
tion
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Signature-based Criteria for Computing Weak Gröbner
Bases over PIDs

Thibaut Verron1, Maria Francis1

The theory of Gröbner bases was introduced by Buchberger in 1965 [2] and has
since become a fundamental algorithmic tool in computer algebra. Over the past
decades, many algorithms have been developed to compute Gröbner bases more and
more efficiently. The latest iteration of such algorithms is the class of signature-
based algorithms, which introduce the notion of signatures and use it to detect and
prevent unnecessary or redundant reductions. This technique was first introduced for
Algorithm F5 [5], and there have been many research works in this direction [3].

All these algorithms are for ideals in polynomial rings over fields. Gröbner bases
can be defined and computed over commutative rings [1, Ch. 4], and can be used in
many applications [7]. An important particular case is that where the coefficient ring
is a Principal Ideal Domain (PID), for example Z or the ring of univariate polynomials
over a field.

If the coefficient ring is not a field, there are two ways to define Gröbner bases,
namely weak and strong bases. Strong Gröbner bases ensure that normal forms can
be computed as in the case of fields. But computing a strong Gröbner basis is more
expensive than a weak one, and if the base ring is not a Principal Ideal Domain (PID),
then some ideals exist which do not admit a strong Gröbner basis. On the other hand,
weak Gröbner bases, or simply Gröbner bases, always exist for polynomial ideals
over a Noetherian commutative ring. They do not necessarily define a unique normal
form, but they can be used to decide ideal membership.

Recent works have focused on generalizing signature-based techniques to Gröb-
ner basis algorithms over rings. First steps in this direction, adding signatures to a
modified version of Buchberger’s algorithm for strong Gröbner bases over Euclidean
rings [6], were presented in [4]. The paper proves that a signature-based Buchberger’s
algorithm for strong Gröbner bases cannot ensure correctness of the result after en-
countering a “signature-drop”, but can nonetheless be used as a prereduction step in
order to significantly speed up the computations.

Here we consider the problem of computing a weak Gröbner basis of a polyno-
mial ideal with coefficients in a PID, using signature-based techniques. The proof-
of-concept algorithm that we present is adapted from that the general algorithm due
to Möller [8], which considers combinations and reductions by multiple polynomi-
als at once. The way the signatures are ordered ensures that no reductions leading
to signature-drops can happen. In particular, we could prove that the algorithm ter-
minates and computes a signature Gröbner basis with elements ordered with non-
decreasing signatures. This property allows us to examine classic signature-based



criteria, such as the syzygy criterion, the F5 criterion and the singular criterion, and
show how they can be adapted to the case of PIDs. In particular, when the input forms
a regular sequence, the algorithm performs no reductions to zero.

We have written a toy implementation in Magma of the algorithms presented, 
with the F5 and singular criteria. Möller’s algorithm, without signatures, works for 
polynomial systems over any Noetherian commutative ring. The signature-based 
algorithm is only proved to be correct and to terminate for PIDs, but with minimal 
changes, it can be made to accommodate inputs with coefficients in a more general 
ring. Interestingly, early experimental data with coefficients in a multivariate 
polynomial ring (a Unique Factorization Domain which is not a PID) suggest that 
the signature-based algorithm might work over more general rings than just PIDs.

Keywords: Gröbner bases, Signature-based algorithms, Principal Ideal Domains
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S12
Numerical Differential and Polynomial
Algebra

The aim of this session is bring together researchers and practitioners working with 
systems of polynomials and also those working with systems of polynomially nonlin-
ear differential equations. A particular emphasis of our session is on approximate 
methods for such systems. There have been many recent developments which yield 
homotopy based methods for determining approximate points on solution compo-
nents of such systems. The session will also encourage contributions on the much 
less developed area of approximate differential algebra, fundamentally important in 
applications to dynamical models. We invite participants in both theory and appli-
cations to this session. This session has an overlap with the session Computational 
Differential and Difference Algebra. Expected topics of presentations include (but 
are not limited to):

• Numerical Polynomial Algebra

• Approximate Differential Algebra

• Numerical homotopy methods for witness points of polynomial systems

• Approximate geometric involutive differential systems

• PDAE and DAE and their applications

• Numerical methods for approximate critical points of real polynomial systems
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Symbolic-numeric methods for simulation of cosserat rods

Dmitry Lyakhov 1

We derive a combined analytical and numerical scheme to solve differential Kirch-
hoff system. Here the object is to obtain an accurate as well as an efficient solution
process. Purely numerical algorithms typically have the disadvantage that the qual-
ity of the solutions decreases enormously with increasing temporal step sizes, which
results from the numerical stiffness of the underlying partial differential equations.
To prevent that, we apply a differential Thomas decomposition and a Lie symmetry
analysis to derive explicit analytical solutions to specific parts of the Kirchhoff sys-
tem. These solutions are general and depend on arbitrary functions, which we set up
according to the numerical solution of the remaining parts. In contrast to a purely nu-
merical handling, this reduces the numerical solution space and prevents the system
from becoming unstable. The differential Kirchhoff equation describes the dynamic
equilibrium of one-dimensional continua, i.e. slender structures like fibers. We eval-
uate the advantage of our method by simulating different scenarios, relevant in visual
computing.
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A symbolic-numeric method to determine symmetry of
approximate differential equations

Zahra Mohammadi1, Greg Reid1

We extended a critical point method based on penalty function introduced by Reid
and Wu [1] to determining symmetry properties of general class of Differential Alge-
braic Equations DAE. This method interplay between geometric involutive form and
numerical algebraic geometry which is based on homotopy methods.
There has been considerable progress on exploiting exact symmetry of exact system
of DAE which using powerful symbolic packages such as rifsimp to get the involutive
form of the system. These methods are less suited in applications since the coordinate
dependency on ordering the variables can lead to numerical instability, especially on
approximate systems. Our method applies a combination of geometric involutive
form and critical point methods on the symmetry defining equations.
This work is sequel to [3] in which Numerical Linear Algebra is used to obtain an
involutive of the system. In this work, we obtain useful information related all com-
ponents of the involutive form of the DAE system and symmetry properties, by finding
a witness points on each connected component. The approach exploits aspects of the
termination of Cartan- Kuranishi theory of partial differential equations together with
method of numerical algebraic geometry.

Keywords: Critical point, Numerical Algebraic Geometry, Symmetry.
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Challenges in Numerical Differential Algebra

Greg Reid1, Zahra Mohammadi1

Much recent progress has been made in numerical polynomial algebra with the
advent of homotopy-based methods and methods based on numerical linear algebra.

In this talk we review some of these developments, in the context of develop-
ing analogous methods for numerical differential algebra. A selecta of applications is
given, including region dependent approximate symmetry, and determination of miss-
ing constraints in over and under-determined systems of partial differential equations
with constraints. Geometric methods for such systems, together with stable methods
form numerical linear algebra underly such approaches. Animations illustrating the
application to approximate symmetries will be shown.
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