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Guardo a tua voz dentro de mim.
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Canta, rula:
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Na nenez
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Chapter 1

Introduction

This thesis has two main parts. The first one is devoted to show that, for any infinite
connected (repetitive) graph X with finite maximum vertex degree degX < ∞, there
exists a (repetitive) limit-aperiodic coloring by at most degX colors. Several direct
consequences of this theorem are also derived, like the existence of (repetitive) limit-
aperiodic colorings of any (repetitive) tiling of a Riemannian manifold. The second part
is devoted to prove that any (repetitive) Riemannian manifold of bounded geometry can
be isometrically realized as leaf of a Riemannian (minimal) matchbox manifold, whose
leaves have no holonomy. This also uses the previous result about colorings, but it also
requires much more technical work concerning the space of pointed Riemannian manifolds
with the topology defined by the C∞ convergence. The following sections contain more
precise descriptions.

1.1 Graph colorings

The results of this section will be in the publication [7].

1.1.1 Estimates of the distinguishing number

Let X ≡ (X,E) be a simple (undirected countable) graph (with finite vertex degrees).
Assume that X is connected and consider its natural distance. The degree of X, denoted
degX, is the supremum of its vertex degrees.

Consider a (vertex) coloring φ : X → F (the set of colors F is usually assumed to be
a subset of N). It is said that φ (or (X,φ)) is aperiodic or distinguishing if there is no
nontrivial automorphism of (X,φ). The distinguishing number of X is

D(X) = min{n ∈ Z+ | X has some aperiodic coloring by n colors } .

This concept was introduced by Albertson and Collins [2], and the calculation of D(X)
(or bounds thereof) for many families of graphs has been the subject of much research
in recent years (see e.g. [41, 42]). This ended up with following sharp estimate for finite
graphs, where Kn, Kn,n and Cn denote the complete graph on n vertices, the (n, n)-
bipartite graph and the cyclic graph with n vertices, respectively.

1



2 Chapter 1. Introduction

Theorem 1.1.1 (Collins-Trenk [27], Klavžar-Wong-Zhu [46]). If X is a finite connected
simple graph different from Kn, Kn,n and C5 (n ≥ 2), then D(X) ≤ degX. If X is Kn,
Kn,n or C5 (n ≥ 2), then D(X) = degX + 1.

For infinite graphs, the following result has been recently proved. It is easy to check
that the bound it provides is sharp.

Theorem 1.1.2 (Lehner-Piĺsniak-Stawiski [47]). Let X be an infinite connected simple
graph with degX ≥ 3. Then D(X) ≤ degX − 1.

It is clear that D(X) = 2 if X is an infinite graph of degree two. Also very recently,
Hüning et al. have provided a complete classification of all connected graphs X with
degX = D(X) = 3 [40].

1.1.2 Space of colored graphs

Consider pointed connected colored simple graphs, (X, x, φ), with colors in N. Their

isomorphism classes, [X, x, φ], form a Polish space Ĝ∗ with a canonical topology (Sec-

tion 2.1.4). For any such graph (X,φ), there is a canonical map ι̂X,φ : X → Ĝ∗ defined
by ι̂X,φ(x) = [X, x, φ]. The images of the maps ι̂X,φ, denoted by [X,φ], form a canonical

partition of Ĝ∗. We have [X,φ] ≡ Aut(X,φ)\X, where Aut(X,φ) is the group of color-
preserving automorphisms of (X,φ). Every closure [X,φ] is saturated. It is said that
(X,φ) is:

aperiodic when Aut(X,φ) = {idX} (ι̂X,φ is injective);

limit aperiodic when ι̂(Y,ψ) is injective for all [Y, ψ, y] ∈ [X,φ]; and,

repetitive if, roughly speaking, every colored disk of (X,φ) is repeated uniformly in M .

The closure [X,φ] is compact if and only if degX, | imφ| < ∞ (Proposition 2.1.21).
Moreover [X,φ] is minimal if (X,φ) is repetitive, and the reciprocal holds when [X,φ] is
compact.

By forgetting the colorings φ, we get a Polish space G∗, with a partition defined by
the images of maps ιX : X → G∗, obtaining obvious versions without colorings of the
above properties. In this way, limit aperiodicity and repetitivity become similar to the
definitions of strong aperiodicity and strong limit aperiodicity of colorings on groups. But,
in Theorem 1.1.4, the minimality does not follow directly from the limit aperiodicity, like
in Theorem 1.1.3, because [X] may contain elements [Y, y] with Y 6∼= X.

1.1.3 Strongly aperiodic colorings of groups

Let G be a countable group, and F a finite set equipped with the discrete topology.
Then the F -valued colors on G form the compact second countable space FG, which has
a canonical left action of G, defined by (g ·φ)(h) = φ(g−1h). This G-space is called a shift
(space), and any non-empty G-invariant closed subset of FG is called a subshift (space).
In particular, the orbit closure G · φ of any φ ∈ FG is a subshift. If the action of G on
G · φ is free (respectively, minimal), then φ is said to be strongly aperiodic (respectively,
strongly repetitive). The existence of such colorings is guaranteed by the following sharp
result.



1.1. Graph colorings 3

Theorem 1.1.3 (Gao-Jackson-Seward [31]; see also [12]). Every countable group admits
a strongly aperiodic and strongly repetitive coloring by 2 colors.

Indeed, the original statement in [31] only gives strong aperiodicity, but then strong
repetitivity follows immediately with the following short argument. The existence of a
strongly aperiodic coloring on G means that G acts freely on some subshift X ⊂ {0, 1}G.
Then there is a minimal subset Y ⊂ X, and any coloring in Y is strongly aperiodic and
strongly repetitive.

Suppose from now on that G is finitely generated, and let S be a minimal set of
generators such that all elements of S∩S−1 are of order two. Consider the (left-invariant)
Cayley graph defined by S, also denoted by G, where the degree of every vertex is |S|. Up
to isomorphisms, the only possible limit of the graph G is G. Thus FG is closed by taking
limits of colors in the sense of Section 1.1.4. But, in this setting, it is natural to modify
the definition of a limit of a coloring φ ∈ FG by using only graph isomorphisms between
disks given by left translations of G. The “limits by left translations” obtained in this way
are just the elements of G · φ, and the corresponding notion of “limit aperiodicity by left
translations” means strong aperiodicity. Similarly, we can also define “repetitivity by left
translations,” which turns out to be strong repetitivity. By definition, limit aperiodicity
is stronger than “limit aperiodicity by left translations” (strong aperiodicity), whereas
repetitivity is weaker than “repetitivity by left translations” (strong repetitivity).

The Cayley graph of G induced by S is also equipped with a G-invariant edge coloring
ψ0 by colors in S, assigning to an edge between vertices a, b ∈ G the unique element s ∈ S
satisfying as±1 = b. Moreover, if the order of s is not 2, then the choice of ±1 in the
above exponent defines an orientation of the edge. This defines a canonical partial G-
invariant direction O0 of G. The left translations are just the graph isomorphisms of
G that preserve ψ0 and O0. Consider the obvious extensions of the concepts of limit
aperiodicity and repetitivity to triples (φ, ψ,O), where φ is a vertex coloring, ψ an edge
coloring and O a partial direction. Then, using the interpretation of strong aperiodicity
and strong repetitivity as “limit aperiodicity by left translations” and “repetitivity by
left translations”, we get that a coloring φ ∈ {0, 1}G is strongly aperiodic (respectively,
strongly repetitive) if and only if (φ, ψ0,O0) is limit aperiodic (respectively, repetitive).
Thus, in this case, Theorem 1.1.3 can be restated by saying that G admits a coloring
φ ∈ {0, 1}G such that (φ, ψ0,O0) is limit aperiodic and repetitive.

1.1.4 Main theorem about colorings

The distinguishing number can be refined as follows. The limit distinguishing number of
X is

DL(X) = inf{n ∈ Z+ | X has a limit aperiodic coloring by n colors } .
When X is repetitive, its repetitive limit distinguishing number is

DRL(X) = inf{n ∈ Z+ | X has a repetitive limit aperiodic coloring by n colors } .

It only makes sense to consider these concepts when X is infinite because, if X is fi-
nite, then limit aperiodicity means aperiodicity, and repetitivity always holds, obtaining
DRL(X) = DL(X) = D(X). Our main result is the following estimate of DL(X) and
DRL(X), which can be considered as a refined version of Theorem 1.1.1.
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Theorem 1.1.4. If X is an infinite connected simple graph, then DL(X) ≤ degX. If
moreover X is repetitive, then DRL(X) ≤ degX.

With this generality, the estimates of Theorem 1.1.4 are sharp, as shown by the
Cayley graph of Z (defined with the generating set {1}). For degX ≥ 3, the estimates of
Theorem 1.1.4 might not be optimal, according to Theorem 1.1.2. An obvious approach
to get that optimal estimate would be to try to somehow incorporate the idea of the proof
of Theorem 1.1.2 in [47] into our techniques. However, we divide X into finite pieces and
work locally. This becomes a problem since the assumption that X is infinite is crucial
in their proof, as they make use of a geodesic ray going to infinity. In any case, like in
Theorem 1.1.2, it is obvious that the optimal estimates in Theorem 1.1.4 are at least
degX − 1 if degX ≥ 3.

Theorem 1.1.4 will be derived from Theorem 2.1.26, which is actually stronger in the
following sense. The conditions of being limit aperiodic and repetitive can be restated
quantitatively, so that the coloring has to satisfy certain statements for some choice of
constants. We prove that these constants can be chosen “uniformly”, depending on ∆
and not on the particular choice of X, which does not follow from Theorem 1.1.4. The
precise statement of this dependence can be found in Theorem 2.1.26. The same can be
said for finite graphs, where the analogue of Theorem 2.1.26 would give a quantitative
result stronger than Theorem 1.1.1.

In the case of a group G finitely generated by S (Section 1.1.3), Theorem 1.1.4 states
that G has a repetitive limit aperiodic vertex coloring by |S| colors. Since the total
number of colors of (φ, ψ0,O0) is 2 + |S|, without taking into account the additional
values of O0, it can be said that Theorem 1.1.4 somehow improves Theorem 1.1.3 in this
case.

1.1.5 An idea of the proof

We have to prove that, if degX <∞, then X has a limit aperiodic coloring φ by degX
colors, which is repetitive if X is repetitive.

First, we divide the graph X = X−1 into finite connected clusters of bounded size,
such that their centers form a Delone set X0 ⊂ X−1. Moreover X0 can be endowed with
a connected graph structure with degX0 < ∞. On every cluster with center x ∈ X0,
the method of the proof of Theorem 1.1.1 is used to construct a large enough amount of
different colorings ψi0,x by degX colors breaking its symmetry. Any assignment of such
colorings, x 7→ ψi0,x, is considered as a coloring, x 7→ i, of X0. For these colorings of
X0, we have enough avaliable colors to be able to proceed in the same way. Thus X0 is
divided into clusters, defining a graph X1 ⊂ X0. The above type of colorings of X0 are
considered in the new clusters. Again, for every x ∈ X1, we can break the symmetry
of the corresponding cluster with a large enough amount of different colors ψi1,x of the
above kind. Any assignment of such colorings, x 7→ ψi1,x, is considered a coloring, x 7→ i,
of X1. This process is continued indefinitely, producing a sequence of graphs Xn, divided
into clusters whose centers form Xn+1, and colorings ψin+1,x breaking the symmetry in
the cluster of Xn with center x ∈ Xn+1. We use these data for 0 ≤ n ≤ N to define a
coloring φN preventing isomorphisms between disks centered at points within a certain
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distance; namely, given any ε ∈ Z+, there is some N, δ ∈ Z+ such that

0 < d(x, y) < ε =⇒ [D(x, δ), x, φN ] 6= [D(y, δ), y, φN ] (1.1.1)

for all x, y ∈ X. By taking a subsequence if necessary, we can assume that the sequence
φN is eventually constant on finite sets, converging in this sense to a coloring φ. This
coloring φ is limit aperiodic because it satisfies (1.1.1). Indeed δ depends only on ∆ and
ε in (1.1.1), as stated in Theorem 2.1.26, the indicated refinement of Theorem 1.1.4.

The definition of every Xn resembles very much the notion of a shallow minor of Xn−1

at certain depth (see [52] and other references therein).

In the above process, there is a sequence of integers rn that provides a lower bound for
the “radii” of the clusters in Xn−1. Two crucial quantities that one needs to control are
the number of suitable aperiodic colorings on each cluster, which depends exponentially
on the cardinality of the cluster, and the number of clusters that are close to each other
(depending on εn), which is always lower than the maximum cardinality of a disk of radius
O(rn). If our graph has a uniform growth function, then we can choose rn large enough
so that there are enough different colorings on each cluster compared to the number of
neighbouring clusters. At first glance, a similar argument could not work if the growth of
the graph is not uniform, since for any choice of rn there could be points x ∈ Xn such that
there are not enough colorings compared to the number of nearby clusters. However, the
crucial observation is that, if there are many neighbouring clusters, then the disk of radius
O(rn) has large enough cardinality, and we can construct sufficiently many aperiodic
colorings on a cluster containing the disk. This observation makes the argument more
involved, since we need to divide every Xn into two subsets, X±n , and different definitions
and estimates are used in each of them. Besides this difficulty, the proof becomes quite
complex with the arguments about repetitivity. It may be interesting to focus in the limit
aperiodicity at first reading, omitting the arguments about repetitivity (Section 2.3 and
its further use).

For the sake of brevity, a preliminary part of the construction of Xn, concerning
repetitivity, is shown in the companion paper [5]; actually, a version for Riemannian
manifolds is proved there, and the case of graphs involves simpler arguments.

Despite its complexity, the proof only uses elementary tools, and it would be much
simpler without achieving the optimal number of colors.

1.1.6 First applications

As first straightforward applications, we derive some versions of Theorem 1.1.4 for edge
colorings and for more general graphs, and the existence of limit aperiodic and repetitive
tilings. In Chapter 3, we will give a more involved application of Theorem 1.1.4 concerning
the realization of manifolds as leaves of compact foliated spaces.

1.1.6.1 Limit aperiodic and repetitive edge colorings

The notions of aperiodicity, limit aperiodicity and repetitivity have obvious analogues for
edge colorings of a connected simple graph X. The analogue of D(X) for edge colorings
is called the distinguishing index [15], and denoted by DI(X). When X is infinite, it
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makes sense to consider the obvious versions of DL(X) and DRL(X) for edge colorings,
denoted by DIL(X) and DIRL(X), and called (repetitive) limit distinguishing index.

Recall that the line graph X ′ of X is defined as follows: the vertices of X ′ are the
edges of X, and two vertices of X ′ are joined by an edge if they are edges of X meeting
at some vertex; thus the edges of X ′ can be also identified to the vertices of X. Note
that X ′ is connected and simple, degX ′ ≤ 2(degX − 1), and

DI(X) = D(X ′) , DIL(X) = DL(X ′) , DIRL(X) = DRL(X ′) .

Then the following is a direct consequence of Theorem 1.1.4.

Corollary 1.1.5. If X is an infinite connected simple graph, then DIL(X), DIRL(X) ≤
2(degX − 1).

However, Corollary 1.1.5 is not very satisfactory. Its estimate can be surely improved
by adapting the proof of Theorem 1.1.4, probably obtaining DIL(X), DIRL(X) ≤ degX.
We hope to prove this in another publication.

1.1.6.2 Extension to general graphs

Now, let Y be a (countable) general graph (with finite vertex degrees); namely, Y may
have a partial direction, multiple edges, and loops. Assuming that Y is connected, there
are obvious extensions of the concepts of Sections 1.1.4 and 1.1.6.1 to this general setting.
There is an induced undirected simple graph Y with the same vertex set, where the partial
orientation and loops are forgotten, and with a single edge between every pair of adjacent
vertices in Y . Clearly, D(Y ) ≤ D(Y ) and DL(Y ) ≤ DL(Y ).

Corollary 1.1.6. If Y is an infinite connected general graph, then DL(Y ), DRL(Y ) ≤
deg Y .

The inequalityDL(Y ) ≤ deg Y is a direct consequence of Theorem 1.1.4 sinceDL(Y ) ≤
DL(Y ).

The inequality DRL(Y ) ≤ deg Y follows with a small modification of the proof of
Theorem 2.1.27. Namely, the sets Ωn must be defined using isometries between disks of Y
induced by isomorphisms between subgraphs of Y . Then the isometries hn,x between disks
of Y , constructed according to Section 2.3, can be assumed to be induced by isomorphisms
between subgraphs of Y . The rest of the proof can be obviously adapted.

For example, with the notation of Section 1.1.3, we can consider the Schreier graph
Y defined by G, S and any subgroup H < G. It is a general graph whose vertex set is
H\G, where the edges between vertices Ha and Hb are given by the elements s ∈ S with
Has±1 = Hb. By Corollary 1.1.6, Y has some limit aperiodic vertex coloring by deg Y
colors. Note that deg Y ≤ |S|.

1.1.6.3 Limit aperiodic and repetitive tilings

Let us recall the general definition of tiling given in [14] (see also [28]). We use the
term n-complex for a connected topological space with a simplicial complex structure of
dimension n. A set of prototiles T ≡ (T,F) consists of a finite collection T of compact
metric n-complexes, called prototiles, and a collection F of subcomplexes of dimension
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< n, called faces, together with an opposition involution o : F → F. A tiling or tessellation
α of a metric space X by T is a collection of isometries aλ : tλ ⊂ X → t′λ ∈ T, where
every tλ is called a tile with faces defined via aλ, such that:

• X =
⋃
λ tλ;

• the complement in tλ of its faces is Int(tλ) in X;

• if Int(tλ ∪ tλ′) 6= Int(tλ)∪ Int(tλ′), then tλ and tλ′ intersect along a face, f in tλ and
o(f) in tλ′ ; and

• there are no free faces of tλ.

Similarly, we can define a set of colored prototiles by endowing T with a coloring φ,
and a set of prototiles with colored faces by endowing F with a coloring ψ preserved by
the opposition map. Then we get the corresponding definitions of (tile-) colored tiling by
(T, φ) ≡ (T,F, φ) and face-colored tiling by (T, ψ) ≡ (T,F, ψ). These concepts can be also
described by colorings of {tλ}, and colorings of the set of intersections tλ∩ tλ′ along faces.

Like G∗ and Ĝ∗ (Section 1.1.2), the sets of tilings of X by T, colored tilings of X by (T, φ)
and face-colored tilings of X by (T, ψ) can be endowed with topologies after choosing a
distinguished point of X, and there are obvious versions of aperiodicity, limit aperiodicity
and repetitivity for tilings, colored tilings and face-colored tilings, using isometries of the
ambient metric spaces [13, 28, 56]. Like in the case of groups (Section 1.1.3), refined
versions of these concepts can be given using some subgroup of isometries, obtaining a
weaker version of (limit) aperiodicity and a stronger version of repetitivity; for instance,
if X is a Lie group, it is natural to use its left translations.

Every tiling α of X by T defines a connected undirected simple graph G whose vertices
are the tiles of α, with an edge between two tiles if they meet along a face. Thus G is
infinite just when X is not compact, and degG is bounded by the maximum number of
faces of the prototiles in T, which is bounded by |F|. Therefore the following is a direct
consequence of Theorem 1.1.4 and Corollary 1.1.5.

Corollary 1.1.7. Suppose that X is not compact, and let ∆ denote the maximum number
of faces of the prototiles in T. Then any (repetitive) tiling of X by T has a (repetitive)
limit aperiodic tile-coloring by ∆ colors, and a (repetitive) limit aperiodic face-coloring
by 2(∆− 1) colors.

Since the face-colorings can be geometrically realized by dovetailing the faces, we get
the following.

Corollary 1.1.8. With the notation and conditions of Corollary 1.1.7, if X has a (repet-
itive) tiling by T, then it has a (repetitive) limit aperiodic tiling by at most |T|∆2(∆− 1)
prototiles.

For example, let M̃ be any regular covering of a compact Riemannian n-manifold M ,
let Γ denote its group of deck transformations, and let t be a fundamental domain. Then
the Γ-translates of t form a repetitive periodic tiling of M̃ by the prototile t. Here, every
face f of t corresponds to an element γf ∈ Γ such that t ∩ γf t = f . These elements γf
form a generating set S of Γ. By Corollary 1.1.8, it follows that M̃ has a repetitive limit
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aperiodic tiling by at most 2|S|(|S| − 1) prototiles; in particular, every hyperbolic space
Hn has a repetitive limit aperiodic tiling by finitely many prototiles (cf. [14, 28]).

With more generality, let Γ be a discrete group acting by isometries properly and
cocompactly on a metric space X. For any fixed x ∈ X, the orbit Γx is a Delone set in
X, and the corresponding Voronoi cells,

Vγx = { y ∈ X | d(y, γx) ≤ d(y,Γx) } (γ ∈ Γ) ,

form a repetitive periodic tiling of X by one prototile (all tiles are isometric). Let ∆
denote the number of faces of these tiles. Then, by Corollary 1.1.7, X has a repetitive
limit aperiodic tiling by at most 2∆(∆− 1) prototiles (cf. [28]).

In Corollaries 1.1.7 and 1.1.8, and in the previous examples, the number of colors or
prototiles would be improved by the expected improvement of Corollary 1.1.5.

1.2 Realizability of manifolds as leaves

The results of this section will be also in the publication [5], which are the main application
of Theorem 1.1.4.

1.2.1 Realization of manifolds as leaves

Sondow [64] and Sullivan [65] began the fundamental study of which connected manifolds
can be realized as leaves of foliations on compact manifolds. A manifold is called a leaf or
non-leaf if the answer is positive or negative, respectively. In codimension one, Cantwell
and Conlon [22] have shown that any open connected surface is a leaf, whereas Ghys [32],
Inaba et al. [43], and Schweitzer and Souza [61] constructed non-leaves of dimension 3
and higher. Other non-leaves in codimension one, with exotic differential structures, were
constructed by Meniño Cotón and Schweitzer [50].

Any leaf of a foliation on a compact Riemannian manifold M is of bounded geometry,
and its quasi-isometry type is independent of the metric on the ambient manifold. Thus
it is also natural to study which connected Riemannian manifolds of bounded geometry
are quasi-isometric to leaves of foliations on compact manifolds. This metric version of
the realization problem was studied by Phillips and Sullivan [54], Januszkiewicz [44],
Cantwell and Conlon [19–21], Cass [23], Schweitzer [59, 60], Attie and Hurder [11], and
Zeghib [66], constructing examples of non-leaves in codimension one and higher.

This realization problem can be also considered using compact (Polish) foliated spaces.
On foliated spaces, differentiable structures or Riemannian metrics refer to the leafwise
direction, keeping continuity on the ambient space. Like in the case of foliations, any
leaf of a compact Riemannian foliated space is of bounded geometry. The converse
statement is also true, in contrast with the case of foliations; actually, any connected
Riemannian manifold of bounded geometry is isometric to a leaf without holonomy in
some compact Riemannian foliated space [6, Theorem 1.1] (see also [8, Theorem 1.5]).
Another interesting realization of hyperbolic surfaces as leaves of compact foliated spaces
was achieved in [4].
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1.2.2 Space of pointed connected complete Riemannian mani-
folds and their smooth functions

Let us recall some concepts and properties used in our main results and their proofs,
and already used in [6]. They are manifold versions of the concepts used in Section 1.1.2
for graphs. Consider triples (M,x, f), where M is a complete connected Riemannian
n-manifold, x ∈ M , and f : M → H is a C∞ function to a fixed separable (real)
Hilbert space (of finite or infinite dimension). An equivalence (M,x, f) ∼ (M ′, x′, f ′) is
defined when there is a pointed isometric bijection φ : (M,x)→ (M ′, x′) with φ∗f ′ = f .

Let M̂n
∗ be the Polish space of equivalence classes [M,x, f ] of triples (M,x, f), with

the topology induced by the C∞ convergence of pointed Riemannian manifolds and C∞

topology on smooth functions (Section 3.1.3). For any M and f as above, there is a

map ι̂M,f : M → M̂n
∗ defined by ι̂M,f (x) = [M,x, f ]. The images [M, f ] of all possible

maps ι̂M,f form a canonical partition of M̂n
∗ , which is considered when using saturations

or minimal sets in M̂n
∗ . The saturation of any open subset of M̂n

∗ is open, and therefore

the closure of any saturated subset of M̂n
∗ is saturated. It is said that (M, f) (or f) is:

aperiodic if ι̂M,f is injective (idM is the only isometry of M that preserves f);

limit aperiodic if (M ′, f ′) is aperiodic for all [M ′, x′, f ′] ∈ [M, f ]; and

repetitive if, roughly speaking, every ball with the restriction of f is approximately
repeated uniformly in M .

When [M, f ] is compact, the repetitivity of (M, f) means that [M, f ] is minimal (Propo-
sition 3.1.10).

If we only use immersions f : M → H, we get a subspace M̂n
∗,imm ⊂ M̂n

∗ , which is a
Riemannian foliated space with the canonical partition such that the maps ι̂M,f : M →
[M, f ] are local isometries. Moreover these maps are the holonomy covers of the leaves.

If H is of finite dimension, then [M, f ] is a compact subspace of M̂n
∗,imm if and only

if M is of bounded geometry, |∇mf | is uniformly bounded for all m ∈ N, and |∇f | is
uniformly bounded away from 0 (Propositions 3.1.12 and 3.1.15).

Different versions of this space can be defined with other structures, with similar basic
properties. For instance, by forgetting the functions f in the construction of M̂n

∗ , we get
a partitioned Polish space Mn

∗ . In [1], a partitioned Polish space CMn
∗ is defined like

Mn
∗ by using distinguished closed subsets of the Riemannian manifolds, whose topology

also involves the Chabauty (or Fell) topology on the families of closed subsets. An easy

refined version ĈMn
∗ of CMn

∗ can be defined by using locally constant colorings of closed

subsets. In Section 2.1.4, we have also used similar partitioned Polish spaces, G∗ and Ĝ∗,
defined with connected simple (colored) graphs. In this sense, we will also use (limit)
aperiodicity and repetitiveness for complete connected Riemannian manifolds, for their
(colored) Delone subsets, and for (colored) graphs.

1.2.3 Main results about realization of manifolds as leaves

In this paper, we realize manifolds as leaves of matchbox manifolds, which are the compact
connected foliated spaces with zero-dimensional local transversals. Moreover we trivialize
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the holonomy group of all leaves, and characterize the possibility of minimality. The
following is our main result.

Theorem 1.2.1. Any (repetitive) connected Riemannian manifold of bounded geometry
is isometric to a leaf in a (minimal) Riemannian matchbox manifold without holonomy.

Besides achieving realization in matchbox manifolds, Theorem 1.2.1 improves [6, The-
orem 1.1] by removing holonomy from all leaves, and achieving minimality in the case of
repetitive manifolds. Thus Theorem 1.2.1 implies the converse of the following implica-
tion: in any minimal compact Riemannian foliated space, all leaves without holonomy
are repetitive (Proposition 3.1.16).

For example, Theorem 1.2.1 can be applied to any complete connected hyperbolic
manifold with positive injectivity radius. It can be also applied to any connected Lie
group with a left invariant metric. Some of them are not coarsely quasi-isometric to
any finitely generated group [24,30], obtaining compact, minimal, Riemannian matchbox
manifolds without holonomy whose leaves are isometric to each other, but not coarsely
quasi-isometric to any finitely generated group.

Since any smooth C∞ manifold admits a metric of bounded geometry [34], it follows
from Theorem 1.2.1 that any C∞ connected manifold can be realized as a leaf of a C∞

matchbox manifold without holonomy. For instance, this is true for the exotic 4-manifolds
that are non-leaves in codimension one [50].

In Theorem 1.2.1, the realization of leaves in smooth matchbox manifolds without
holonomy is relevant because they are homeomorphic to a projective limit of maps be-
tween compact branched manifolds [3, 26]. This was generalized to arbitrary matchbox
manifolds in [48], but the proof has a gap, even though the result might be correct.

In the following consequences of Theorem 1.2.1, the realization of a Riemannian man-
ifold as a leaf is achieved with some additional properties, but losing the density of that
leaf.

Corollary 1.2.2. Any non-compact connected Riemannian manifold of bounded geometry
is isometric to a leaf in some Riemannian matchbox manifold without holonomy that has
a complete transversal homeomorphic to a Cantor space.

Since minimal matchbox manifolds have complete Cantor transversals, Corollary 1.2.2
is a direct consequence of Theorem 1.2.1 if the manifold is repetitive. Otherwise its proof
needs some work.

Corollary 1.2.3. Let M be a connected Riemannian manifold of bounded geometry, and
let M̃ be a regular covering of M . Then M is isometric to a leaf with holonomy covering
M̃ in a compact Riemannian matchbox manifold.

A more difficult problem is the description the pairs (M, M̃) that satisfy the statement
of Corollary 1.2.3 with a minimal compact foliated space. In this sense, Cass [23] has
given a quasi-isometric property satisfied by the leaves of compact minimal foliated spaces
without restriction on the holonomy.

Additional properties have been considered in the realization problem: Schweitzer
and Souza [62] constructed connected Riemannian manifolds of bounded geometry that
are not quasi-isometric to leaves in compact equicontinuous foliated spaces; Hurder and
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Lukina used a coarse quasi-isometric invariant, the coarse entropy, to estimate the Haus-
dorff dimension of local transversals when applied to leaves of compact foliated spaces;
and Lukina [49] has studied the Hausdorff dimension of local transversals in a foliated
space.

1.2.4 Ideas of the proofs

The proof of Theorem 1.2.1 has two steps. In the first one (Theorem 3.4.1), we realize M
as a dense leaf of a (minimal) compact Riemannian foliated space X without holonomy.
According to Section 1.2.2, this is achieved with X = [M, f ] for some (repetitive) limit
aperiodic C∞ function f : M → H, where H is of finite dimension, such that |∇mf | is
bounded for all m ∈ N, and |∇f | is bounded away from zero. This idea was already
used in the proof of [6, Theorem 1.1], with less conditions on f . In the construction of
f (Proposition 3.4.3), an important role is played by a Delone subset X ⊂ M , which
becomes a (repetitive) connected graph of finite degree by attaching an edge between any
pair of close enough points. Then f is defined using normal coordinates at the points
of X, and a (repetitive) limit aperiodic coloring φ of X by finitely many colors. The
existence of φ is guaranteed by Theorem 1.1.4. Actually, (M,X, φ) must be repetitive
when M is repetitive, which requires a closer look at the proof of Theorem 1.1.4 for this
particular graph X (Proposition 3.4.2).

At this point, there is an interdependence between this chapter and Chapter 2, kept for
the sake of brevity. The proof of Proposition 3.4.2 uses Theorem 1.1.4 (its graph version)
and some preliminary results about repetitivity on Riemannian manifolds (Section 3.2).
Graph versions of those preliminary results are also needed in Chapter 2, but their proofs
are simpler than in the manifold versions (Section 3.3). Therefore those proofs are only
given in this chapter for manifolds.

In the second step of the proof, we construct a (minimal) matchbox manifold M
without holonomy and a foliated projection π : M→ X whose restrictions to the leaves are
diffeomorphisms (Theorem 3.4.4). Then X can be replaced with M by considering the lift
of the Riemannian metric of X to M. The construction of M uses simple expressions of the
local transversals of X as quotients of zero-dimensional spaces. This idea is implemented
by using again the space M̂n

∗,imm.
The proofs of Corollaries 1.2.2 and 1.2.3 use the following common procedure. Given a

compact foliated space X and a Polish flat bundle E over some leaf M with non-compact
locally compact fibers, we can attach E to X, obtaining a new compact foliated space X′

(Section 3.4.3). This is applied to the matchbox manifold M given by Theorem 1.2.1,
using an aproprite choice of E to get the additional property stated in each corollary.





Chapter 2

Graph colorings

2.1 Preliminaries

Let us recall some basic definitions and elementary results about graphs and its metric
properties. Short proofs are indicated for completeness.

2.1.1 Partitioned spaces

Let X be a topological space equipped with an equivalence relation R. It may be said
that (X,R) is a partitioned space.

Lemma 2.1.1. If the saturation of any open subset of X is open, then the closure of any
saturated subset of X is saturated.

Proof. For any saturated A ⊂ X, let x ∈ A and y ∈ R(x). For every open neighborhood
U of y, its saturation R(U) is an open neighborhood of x, and therefore R(U) ∩ A 6= ∅.
Since A is saturated, it follows that U ∩ A 6= ∅. This shows that y ∈ A, and therefore A
is saturated.

The properties indicated in Lemma 2.1.1 are well known for the equivalence relations
defined by continuous group actions or foliated structures.

Like in the case of group actions or foliations, a minimal set A in X is a non-empty
closed saturated subset that is minimal among the sets with these properties—this min-
imality is achieved just when every equivalence class in A is dense in A.

Given another partitioned space (Y, S), a map f : X → Y is said to be relation-
preserving if f(R(x)) ⊂ S(f(x)) for all x ∈ X. The notation f : (X,R) → (Y, S) is used
in this case.

2.1.2 Metric spaces

Let X be a metric space. For x ∈ X and r ∈ R, let S(x, r) = { y ∈ X | d(x, y) = r },
B(x, r) = { y ∈ X | d(x, y) < r } and D(x, r) = { y ∈ X | d(x, y) ≤ r } (the sphere,
and the open and closed balls of center x and radius r) (the sphere and disk of center x
and radius r). For s ≥ r ≥ 0, the set C(x, r, s) = D(x, s) \ D(x, r) is called a corona.

13
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For Q ⊂ X, its closed penumbra1 of radius r is CPen(Q, r) = { y ∈ X | d(Q, y) ≤ r };
in particular, CPen(B(x, r), t) ⊂ B(x, r + t) and CPen(D(x, r), t) ⊂ D(x, r + t) for all
r, t > 0, and the equalities hold when X is a length space [16, 36]. We may add X as a
subindex to all of this notation if necessary. It is said that Q is (K-) separated if there
is some K > 0 such that d(x, y) ≥ K for all x 6= y in Q. On the other hand, Q is said
to be (C-) relatively dense2 in X if there is some C > 0 such that CPen(Q,C) = X. A
separated relatively dense subset is called a Delone subset.

Lemma 2.1.2. If X =
⋃∞
n=0 Qn, where Q0 ⊂ Q1 ⊂ · · · and every Qn is K-separated,

then X is K-separated.

Proof. Given x 6= y in X, we have x, y ∈ Qn for some n, and therefore d(x, y) ≥ K.

Lemma 2.1.3 (Álvarez-Candel [9, Proof of Lemma 2.1]). A maximal K-separated subset
of X is K-relatively dense.

Lemma 2.1.3 has the following easy consequence using Zorn’s lemma.

Corollary 2.1.4 (Cf. [10, Lemma 2.3 and Remark 2.4]). Any K-separated subset of X
is contained in some maximal K-separated K-relatively dense subset.

Recall that X is said to be proper is its bounded sets are relatively compact; i.e., the
map d(x, ·) : X → [0,∞) is proper for any x ∈ X.

Definition 2.1.5. For A ⊂ X and ε > 0, a subset B ⊂ X is called an ε-perturbation of
A if there is a bijection h : A→ B such that d(x, h(x)) ≤ ε for every x ∈ A.

The following result is an elementary consequence of the triangle inequality.

Lemma 2.1.6. Let A ⊂ X and let B ⊂ X be an ε-perturbation of A. If A is η-relatively
dense in X for η > 0, then B is (η + ε)-relatively dense in X. If A is τ -separated for
τ > 2ε, then B is (τ − 2ε)-separated.

2.1.3 Graphs

An (undirected) simple graph X ≡ (X,E) is a set X and a family E of subsets e ⊂ X
with cardinality |e| = 2. The term “simple” refers to the existence of no loops and of at
most one edge joining any pair of vertices. The elements of X and E are called vertices
and edges , respectively. If an edge e contains a vertex x, it is said that e connects to x
(or e meets x, or e and x are incident). The degree (or valency) deg x of a vertex x is
the number of edges connecting to x. The degree of X is degX = supx∈X deg x. Two
different vertices are adjacent if they define an edge. Two different edges are consecutive
if they have a common vertex. For n ∈ N (we assume that 0 ∈ N), a path of length n
from x to y in X is a sequence of n consecutive edges joining x to y; in terms of their
vertices, it can be considered as a sequence (z0, . . . , zn), where z0 = x, zn = y, and zi−1

1The penumbra Pen(Q, r) usually has a similar definition with an strict inequality. On graphs it is
more practical to use non-strict inequalities.

2A C-net is similarly defined with the penumbra. If reference to C is omitted, both concepts are
equivalent.
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and zi are adjacent vertices for all i = 1, . . . , n. If any two vertices of X can be joined
by a path, then X is called connected . The topological and geometric properties of X
indeed refer to its geometric realization.

On any Y ⊂ X, we get the induced graph structure E|Y = { {x, y} ∈ E | x, y ∈ Y }.
Then Y ≡ (Y,E|Y ) is called a subgraph of X. By Zorn’s lemma, there are maximal
connected subgraphs of X, called connected components , which form a partition of X.
Any connected subgraph of X is contained in some connected component of X.

Let X ′ ≡ (X ′, E ′) be another graph. An bijection X → X ′ is an isomorphism (of
graphs) if it induces a bijection E → E ′. Given distinguished points, x0 ∈ X and x′0 ∈ X ′,
a (pointed) isomorphism f : (X, x0)→ (X ′, x′0) is an isomorphism f : X → X ′ satisfying
f(x0) = x′0. If there is an isomorphism X → X ′ (respectively, (X, x0) → (X ′, x′0)), then
these structures are called isomorphic, and the notation X ∼= X ′ (respectively, (X, x0) ∼=
(X ′, x′0)) may be used. The composition of isomorphisms is another isomorphism. An
isomorphism X → X (respectively, (X, x0) → (X, x0)) is called an automorphism of
X (respectively, (X, x0)). The group of automorphisms of X (respectively, (X, x0)) is
denoted by Aut(X) (respectively, Aut(X, x0)).

Assume from now on that X is connected. Then we get a metric space X ≡ (X, d),
where d is the N-valued metric defined by declaring d(x, y) to be the minimum length of
paths in X from x to y. The following property is easily verified:

∀x, y ∈ X, ∀m,n ∈ N, d(x, y) = m+ n =⇒ ∃z ∈ X | d(x, z) = m, d(y, z) = n . (2.1.1)

Note that E = { {x, y} | x, y ∈ X, d(x, y) = 1 }. Therefore E and d are equivalent
objects; in fact, this correspondence defines a bijection between the families of connected
graph structures and N-valued metrics satisfying (2.1.1). Thus an isomorphism between
connected graphs is the same as an isometry, and both of these terms will be indistinctly
used. A path (u0, . . . , un) in X is called a minimizing geodesic segment if d(u0, un) = n.
By (2.1.1), there exists a minimizing geodesic segment joining any pair of vertices.

The terminology and notation of Section 2.1.2 is adopted here. Now CPen(D(x, r), t) =
D(x, r + t) for r, t ∈ N by (2.1.1). Note that D(x, r) is connected. More gener-
ally, CPen(Q, r) is connected if Q is connected. Note also that |S(x, 0)| = 1 and
|S(x, 1)| = deg x. Since the metric is now N-valued, Lemma 2.1.3 and Corollary 2.1.4 can
be restated for graphs as follows.

Lemma 2.1.7. A maximal K-separated subset Q is (K − 1)-relatively dense in X.

Corollary 2.1.8. Any K-separated subset of X is contained in some maximal K-separated
(K − 1)-relatively dense subset.

On any connected Y ⊂ X, two canonical metrics can be considered, dY (defined by
E|Y ) and the restriction of dX . Clearly, dX ≤ dY on Y .

Lemma 2.1.9. Let Y = CPen(Y0, r) for a connected Y0 ⊂ X and r ∈ N. Then dY (x, y) =
dX(x, y) for all x, y ∈ Y0 with dX(x, y) ≤ 2r.

Proof. Let (u0, . . . , un) be a minimizing geodesic segment of X between x, y ∈ Y0 of
length n ≤ 2r. Then dX(x, ui), dX(y, uj) ≤ r if i, n − j ≤ r, yielding u0, . . . , un ∈ Y . So
(u0, . . . , un) is a path in Y , and therefore dY (x, y) ≤ n = dX(x, y).
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Corollary 2.1.10. With the notation of Lemma 2.1.9, let A ⊂ Y0 and 2r ≥ K ∈ Z+.
Then A ⊂ Y0 is K-separated with respect to dY if and only if it is K-separated in dX .

Definition 2.1.11. For connected Y, Z ⊂ X and m ∈ N, a map f : X → Y is called an
m-short scale isometry if dZ(f(x), f(y)) = dY (x, y) for all x, y ∈ Y with dY (x, y) ≤ m.

The above definition is also valid for maps between arbitrary metric spaces.

Corollary 2.1.12. Let Y = CPen(Y0, r) and Z = CPen(Z0, r) for connected Y0, Z0 ⊂ X
and r ∈ N, and let 2r ≥ m ∈ N. If f : Y → Z is a graph isomorphism with f(Y0) = Z0,
then f : Y0 → Z0 is an m-short scale isometry with respect to the restrictions of dX .

Proof. For x, y ∈ Y0 with dX(x, y) ≤ m ≤ 2r, we have dY (x, y) = dX(x, y) by Lemma 2.1.9.
So dY (x, y) = dZ(f(x), f(y)) since f : Y → Z is an isomorphism. Thus dZ(f(x), f(y)) ≤
2r, and therefore dZ(f(x), f(y)) = dX(f(x), f(y)) by Lemma 2.1.9 because f(x), f(y) ∈
Z0. Finally, we get dX(x, y) = dX(f(x), f(y)).

Corollary 2.1.13. For x, y ∈ X and r ∈ N, if h : (D(x, 2r), x) → (D(y, 2r), y) is a
pointed isomorphism, then h : D(x, r) → D(y, r) is an isometry with respect to the re-
strictions of dX .

Lemma 2.1.14. If every vertex of X is adjacent to a countable set of vertices, then X
is countable.

Proof. Given any x ∈ X, since X =
⋃∞
r=0 S(x, r), it is enough to prove that S(x, r) is

countable for all r ∈ N. This is done by induction on r. We have S(x, 0) = {x}, and
S(x, 1) is countable by hypothesis. If S(x, r) is countable for some r ∈ N, then S(s, r+1)
is also countable because it is contained in

⋃
y∈S(x,r) S(y, 1).

Lemma 2.1.15. The vertices of X have finite degree if and only if its disks are finite.

Proof. The “if” part is true because |D(x, 1)| = 1 + deg x for all x ∈ X. Now, assume
that the vertices have finite degree, and let us show that |D(x, r)| < ∞ for all x ∈ X
and r ∈ Z+. This follows by induction on r using that D(x, r + 1) = CPen(D(x, r), 1)
by (2.1.1).

The disks of X are finite just when X is a proper metric space, in the sense that its
closed disks are compact.

Lemma 2.1.16. If X is unbounded, then |S(x, r)| ≥ 1 for all x ∈ X and r ∈ N.

Proof. By (2.1.1) and since X is unbounded, we have S(x, r) 6= ∅ for all r ∈ N.

Corollary 2.1.17. If X is unbounded, then |D(x, r)| ≥ r+ 1 and |C(x, r, s)| ≥ s− r for
all x ∈ X and r < s in N.

Proof. Apply Lemma 2.1.16 to the expressions3 D(x, r) =
⋃
· ri=0 S(x, i) and C(x, r, s) =⋃

· si=r+1 S(x, i).

Now, suppose also that ∆ := degX < ∞. Since X is connected, it is a singleton if
∆ = 0, and it has two vertices if ∆ = 1. Thus assume ∆ ≥ 2.

3A dotted union symbol is used for unions of disjoint sets.
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Lemma 2.1.18. |S(x, r)| ≤ ∆(∆− 1)r−1 for all x ∈ X and r ∈ Z+.

Proof. The vertex x is adjacent with at most ∆ vertices, which form S(x, 1). For all
r ∈ Z+, any y ∈ S(x, r) is adjacent with at least one vertex in S(x, r − 1) by (2.1.1),
and therefore y is adjacent to at most ∆− 1 vertices in S(x, r + 1). Then the inequality
|S(x, r)| ≤ ∆(∆− 1)r−1 follows easily by induction on r.

Corollary 2.1.19. Let x ∈ X and r ∈ Z+. Then

|D(x, r)| ≤


1 + 2r if ∆ = 2

3 · 2r if ∆ = 3

4(∆− 1)r if ∆ > 3 .

Proof. Applying Lemma 2.1.18 to the disjoint union D(x, r) =
⋃
· ri=0 S(x, i), we get

|D(x, r)| ≤ 1 + 2r if ∆ = 2, and

|D(x, r)| ≤ 1 +
∆((∆− 1)r − 1)

∆− 2
=

∆(∆− 1)r − 2

∆− 2

if ∆ ≥ 3. But
∆(∆− 1)r − 2

∆− 2
= 3 · 2r − 2 < 3 · 2r

if ∆ = 3, and

∆(∆− 1)r − 2

∆− 2
< 2

∆(∆− 1)r − 1

∆− 1
< 4

∆(∆− 1)r

∆
= 4(∆− 1)r

if ∆ > 3 because

u ≥ v ≥ 1 =⇒ 2
u+ 1

v + 1
>
u

v
.

Lemma 2.1.20. If A is a K-separated (K − 1)-relatively dense subset of X for some
K ∈ Z+, then |A| > |X|/∆K.

Proof. We have X ⊂
⋃
a∈AD(a,K − 1), yielding |X| ≤

∑
a∈A |D(a,K − 1)|. By Corol-

lary 2.1.19, for a ∈ A,

|D(a,K − 1)| ≤ 1 + 2(K − 1) < 2K if ∆ = 2 ,

|D(a,K − 1)| ≤ 3 · 2K−1 < 3K if ∆ = 3 ,

|D(a,K − 1)| ≤ 4(∆− 1)K−1 ≤ ∆(∆− 1)K−1 < ∆K if ∆ > 3 .

2.1.4 Colorings

A coloring of a set X (by a set F “of colors”) is a map φ : X → F . The pair (X,φ)
is called a colored set . The sets of colors F will usually be a finite initial segmen4 of N,
denoted by [M ] = {0, . . . ,M − 1} for some M ∈ N.

4Recall that a subset S of an ordered set (Z,≤) is called an initial segment if, for all s ∈ S and z ∈ Z,
z ≤ s implies z ∈ S.
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Let X be a simple graph. A coloring of its vertex set, φ : X → F , is called an (F -)
(vertex ) coloring of X, and (X,φ) is called an (F -) colored graph. If x0 ∈ Y ⊂ X, then
the simplified notation (Y, φ) = (Y, φ|Y ) will be used. The following concepts for colored
graphs are the obvious extensions of their graph versions: (pointed) isomorphisms , de-
noted by f : (X,φ) → (X ′, φ′) and f : (X, x0, φ) → (X ′, x′0, φ

′), isomorphic (pointed)
colored graphs, denoted by (X,φ) ∼= (X ′, φ′) and (X, x0, φ) ∼= (X ′, x′0, φ

′), and automor-
phism groups of (pointed) colored graphs, denoted by Aut(X,φ) and Aut(X, x0, φ).

Consider only colorings by F . Let Ĝ∗ = Ĝ∗(F ) be the set5 of isomorphism classes,
[X, x, φ], of pointed connected colored graphs, (X, x, φ), whose vertices have finite degree.
For each R ∈ Z+, let

ÛR = { ([X, x, φ], [Y, y, ψ]) ∈ Ĝ2
∗ | (DY (y,R), y, ψ) ∼= (DX(x,R), x, φ) } .

These sets form a base of entourages of a uniformity on Ĝ∗, which is easily seen to be
complete. Moreover this uniformity is metrizable because this base is countable.

Note that the degree map deg : Ĝ∗ → Z+, [X, x, φ] 7→ deg x, and the evaluation map

ev : Ĝ∗ → F , [X, x, φ] 7→ φ(x), are continuous. Suppose that F is countable. Then Ĝ∗ is
separable because the elements [X, x, φ], where X is finite, form a countable dense subset.

Thus Ĝ∗ becomes a Polish space.
For any connected simple colored graph (X,φ), there is a canonical map ι̂X,φ : X → Ĝ∗

defined by ι̂X,φ(x) = [X, x, φ]. its image, denoted by [X,φ], has an induced connected

colored graph structure, and all of these images form a canonical partition of Ĝ∗. As we
will see in Lemma 3.1.8 for a similar space, we get that the saturation of any open subset
of Ĝ∗ is open, and therefore the closure operation preserves saturated subsets of Ĝ∗; in
particular, [X,φ] is saturated. The following result indicates the role played by graphs
with finite degrees, colored by finitely many colors.

Proposition 2.1.21. The closure [X,φ] is compact if and only if degX, | imφ| <∞.

Proof. The “if” part follows using that, if degX, | imφ| < ∞, then, for each R ∈ Z+,
the pointed colored disks (DX(x,R), x, φ) (x ∈ X) represent finitely many pointed iso-
morphism classes [DX(x,R), x, φ]. The “only if” part follows using the continuity of

deg : Ĝ∗ → Z+ and ev : Ĝ∗ → F .

It is said that (X,φ) (or φ) is aperiodic (or non-periodic) if Aut(X,φ) = {idX}, which
means that ι̂X,φ is injective; otherwise, it is said that (X,φ) (or φ) is periodic. More

strongly, (X,φ) (or φ) is called limit aperiodic if (Y, ψ) is aperiodic for all [Y, y, ψ] ∈ [X,φ].
If X is finite, aperiodicity is equivalent to its limit aperiodicity, and an aperiodic coloring
of X by finitely many colors can be easily given. If X is infinite, limit aperiodic colorings
by finite finitely many colors are much more difficult to construct. The following lemma
will be useful for that purpose.

Lemma 2.1.22. (X,φ) is limit aperiodic if and only if, for all sequences, xi, yi in X and
Ri, Si ↑ ∞ in Z+, and pointed isomorphisms,

fi : (D(xi, Ri), xi, φ)→ (D(xi+1, Ri), xi+1, φ) ,

hi : (D(xi, Si), xi, φ)→ (D(yi, Si), yi, φ) ,

5The graphs X are countable (Lemma 2.1.14), and therefore we can assume that their underlying sets

are contained in N. In this way, Ĝ∗ becomes a well defined set.
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such that d(xi, yi) + Si ≤ Ri, fi(yi) = yi+1, and the diagram

D(xi+1, Si+1)
hi+1−−−→ D(yi+1, Si+1)

fi

x xfi
D(xi, Si)

hi−−−→ D(yi, Si)

(2.1.2)

is commutative, we have that, either xi = yi for i large enough, or lim supi d(xi, yi) =∞.

Proof. This follows easily from the definition of the topology of Ĝ∗.

Remark 1. In Lemma 2.1.22, the case of bounded sequences xi, yi characterizes the ape-
riodicity of X. Thus the case of unbounded sequences xi, yi describes when (Y, ψ) is
aperiodic for all [Y, y, ψ] ∈ [X,φ] \ [X,φ].

On the other hand, (X,φ) (or φ) is called repetitive if there is some point p ∈ X and
a sequence Ri ↑ ∞ in Z+ such that the sets

{x ∈ X | [D(p,Ri), p, φ] = [D(x,Ri), x, φ] }

are relatively dense in X. This property is clearly independent of the choice of p. If
(X,φ) is repetitive, then [X,φ] is minimal, and the reciprocal also holds when [X,φ] is
compact, as we will see in Proposition 3.1.10 for an analogous setting.

There are obvious versions without colorings of the above definitions and properties,
which can be also described by taking |F | = 1. Namely, we get: a Polish space G∗,
canonical continuous maps ιX : X → G∗, ιX(x) = [X, x], whose images, denoted by
[X], define a canonical partition of G∗, and the concepts of non-periodic (or aperiodic),

limit aperiodic) and repetitive graphs. The forgetful (or underlying) map u : Ĝ∗ → G∗,
u([X, x, φ]) = [X, x], is continuous. If X is repetitive, then [X] is minimal, and the
reciprocal also holds when [X] is compact. The closure [X] is compact if and only if
degX < ∞. Then, as we will see in Proposition 3.1.12 for a similar setting, we obtain
that [X,φ] is compact if and only if degX <∞ and imφ is compact. By Lemma 2.1.15,
the space G∗ is a subspace of the Gromov space of isomorphism classes of pointed proper
metric spaces [35], [36, Chapter 3]. The obvious versions of Lemma 2.1.22 and Proposi-
tion 2.1.21 in this setting follow by considering a constant coloring.

For R ≥ 0 and λ ≥ 1, an (R, λ)-pointed partial quasi-isometry (shortly, an (R, λ)-
p.p.q.i.) between pointed graphs, (X, x) and (Y, y), is a λ-bilipschitz pointed partial map
h : (X, x)� (Y, y) such that D(x,R) = domh and D(y,R/λ) ⊂ imh.

Proposition 2.1.23. Let h : (X, x) � (X, y) be an (R, λ)-p.p.q.i. and h′ : (X, x) �
(X, y′) an (R′, λ′)-p.p.q.i. Then h−1 : (X, y) � (X, x) is n (λ−1R, λ)-p.p.q.i. If Rλ +
d(x, y) ≤ R′, then h′ ◦ h : (X, x)� (X, h′(y)) is an (R, λλ′)-p.p.q.i.

The following is a simple consequence of the fact that graph metrics take integer
values.

Proposition 2.1.24. Let 1 ≤ λ < 2 and R ≥ 0. Any (R, λ)-p.p.q.i. h : (X, x)� (Y, y)
between pointed graphs defines a pointed graph isomorphism h : (domh, x) → (imh, y).
In particular, it defines an (R/λ, 1)-p.p.q.i. (X, x)� (Y, y).
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Corollary 2.1.25. A colored graph (X,φ) is repetitive if and only if (M, f) (or f) is
said to be repetitive if, given any p ∈ X, for all R > 0 and λ > 1, the set

{x ∈ X | ∃ a color preserving (R, λ)-p.p.q.i. h : (X, p, φ)� (M,x, φ) }

is relatively dense in M .

2.1.5 A refinement of the main theorem

Using Lemma 2.1.22, Theorem 1.1.4 follows from the following.

Theorem 2.1.26. Let X be an infinite connected simple graph with ∆ := degX < ∞.
Then the following properties hold for any sequence εn ↑ ∞ in Z+:

(i) There are:

• a sequence δn in Z+, with every δn depending only on ∆, εm for m ≤ n, and
δm for m < n; and

• a coloring φ of X by ∆ colors, depending on the sequence εn;

such that, for all x, y ∈ X and n ∈ N,

0 < d(x, y) < εn =⇒ [D(x, δn), x, φ] 6= [D(y, δn), y, φ] .

(ii) Suppose that, for some p ∈ X and some sequences rn ↑ ∞ and ωn in Z+, with every
rn large enough depending on ∆ and εm for m ≤ n, the sets

Ωn = {x ∈ X | [D(x, rn), x, dX ] = [D(p, rn), p, dX ] }

are ωn-relatively dense in X. Then there are:

• a sequence rn ↑ ∞ in Z+, with every rn depending on ∆, εm and ωm for m ≤ n,
and rm for m < n;

• a sequence αn in Z+, with every αn depending on ∆, εm and ωm for m ≤ n,
and rm and αm for m < n; and

• a coloring φ by ∆ colors, depending on the sequences εn and rn;

such that φ satisfies (i) with some sequence δn, and the sets

Ω̂n = {x ∈ X | [D(x,
∑n

i=0 ri), x, φ] = [D(p,
∑n

i=0 ri), p, φ] }

are αn-relatively dense in X.

As indicated in Section 1.1.4, Theorem 2.1.26 is stronger than Theorem 1.1.4 because
δn, rn and αn are independent of the choice of X satisfying the hypothesis.

In Theorem 2.1.26, the assumption that X is infinite can be disposed of. The same
ideas work with minor tweaks when X is a finite graph large enough depending on degX,
refining also Theorem 1.1.1. Since the proof is already quite involved, we leave the details
to the interested reader.

Theorem 2.1.26 is equivalent to the following finitary version, where every coloring
can be explicitly constructed in a finite number of steps.
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Theorem 2.1.27. Let X be a connected infinite simple graph with ∆ := degX < ∞.
Then the following properties hold for any sequence εn ↑ ∞ in Z+:

(i) There are:

• a sequence δn in Z+, with every δn depending only on ∆, εm for m ≤ n, and
δm for m < n; and

• a sequence of colorings φN of X by ∆ colors, with every φN depending on εm
for m ≤ N ;

such that, for all x, y ∈ X, N ∈ N and 0 ≤ n ≤ N ,

0 < d(x, y) < εn =⇒ [D(x, δn), x, φN ] 6= [D(y, δn), y, φN ] .

(ii) Suppose that, for some p ∈ X and some sequence rn ↑ ∞ and ωi in Z+, with every
rn large enough depending on ∆ and εm for m ≤ n, the sets

Ωn = {x ∈ X | [D(x, rn), x, dX ] = [D(p, rn), p, dX ] }

are ωn-relatively dense in X. Then there are:

• a sequence rn ↑ ∞ in Z+, with every rn depending on ∆, εm and ωm for m ≤ n,
and rm for m < n;

• a sequence αn in Z+, with every αn depending on ∆, εm and ωm for m ≤ n,
and rm and αm for m < n; and

• a sequence of colorings φN by ∆ colors, with every φN depending on εm and
rm for m ≤ N ;

such that φN satisfies (i) with some sequence δn, and the sets

Ω̂n = {x ∈ X | [D(x,
∑n

i=0 ri), x, φ
N ] = [D(p,

∑n
i=0 ri), p, φ

N ] }

are αn-relatively dense in X for 0 ≤ n ≤ N .

Let us derive Theorem 2.1.26 from Theorem 2.1.27. Let X be a graph and εn be
an increasing sequence of positive integers satisfying the conditions of Theorem 2.1.27.
Then this result gives a sequence of colorings φN . The set of colorings of X by ∆
colors is endowed with the topology of convergence over finite subsets of X. Since the
set [∆] of colors is finite, possibly passing to a subsequence, we can suppose that the
sequence of colorings φN converges to some coloring φ. This means that, on any finite
A ⊂ X, the colorings φ and φN coincide for N large enough. Let us prove that φ satisfies
Theorem 2.1.26.

Assume by absurdity that there are some n ∈ N and x, y ∈ X so that 0 < d(x, y) < εn
and [D(x, δn), x, φ] 6= [D(y, δn), y, φ]. By the convergence of φN , there is some N ≥ n
such that [D(x, δn), x, φ] = [D(x, δn), x, φN ] and [D(y, δn), y, φ] = [D(y, δn), y, φN ], con-
tradicting Theorem 2.1.27 (i). Therefore φ satisfies Theorem 2.1.26 (i), with the same
choice of sequence δn.

Suppose that, additionally, the family φN satisfies the conditions of Theorem 2.1.27 (ii),
with a distinguished point p. Then, for any n ≤ N and x ∈ X, there is some y ∈ X such



22 Chapter 2. Graph colorings

that d(x, y) ≤ αn and [D(y,
∑n

i=0 ri), y, φ
N ] = [D(p,

∑n
i=0 ri), p, φ

N ]. Assume by absurdity
that there are some n ∈ N and x ∈ X such that [D(y,

∑n
i=0 ri), y, φ] 6= [D(p,

∑n
i=0 ri), p, φ]

for all y ∈ D(x, αn). By the convergence of φN , we have that φ and φN coincide over
D(p,

∑n
i=0 ri) and D(y,

∑n
i=0 ri) for every y ∈ D(x, αn) and N large enough, contradicting

Theorem 2.1.27 (ii). Therefore the sets

{x ∈ X | [D(x,
∑n

i=0 rj), x, φ] = [D(p,
∑n

i=0 rj), p, φ] }

are αn-relatively dense in X. So φ satisfies Theorem 2.1.26 (ii), with the same choice of
sequence αn.

The rest of the paper is devoted to prove Theorem 2.1.27.

2.2 Constants

In order to prove our result, we need to define quantities depending on the sequences
appearing in the statements of Theorem 2.1.26 that will function as a priori upper bounds
for parameters that arise in the definition of φ. They depend on each other in non-trivial
ways, so their definitions are quite involved, which makes this section rather technical.

Let X be a graph satisfying the conditions of Theorem 2.1.26, and let εn be an
increasing sequence of positive integers. By induction on n ∈ N, we are going to de-
fine sequences of positive integers, sn, r̂n, r̂±n , r̄n and r̄±n , and sequences of functions,
η̄n,R

±
n ,λn,Kn,Kn : N→ N and Λn,Γ

±
n ,∆n : Nn+1 → N. First, set

s0 = 27 + ε0 , ∆−1 = degX = ∆ . (2.2.1)

The notation degX, ∆ and ∆−1 will be used indistinctly, depending on the convenience.
Define η̄0 : N→ Q by

η̄0(a) = exp2

(⌊
(a−∆11 − 1)/∆3

⌋)
, (2.2.2)

where we use the notation exp2(r) = 2r for r ∈ R. Let r̂0 be the smallest positive integer
such that

η̄0

(√
η̄0(r̂0)− 6

)
>
(

4(∆− 1)r̂0s
2
0(3s0+1) + 6

)2

. (2.2.3)

Note that this is well-defined since there is a double exponential in the left-hand side of
the inequality, whereas there is a single exponential on the right-hand side. Observe also
that (2.2.2) and (2.2.3) yield

r̂0 > 211 (2.2.4)

because ∆ ≥ 2 since X is infinite. Let

r̄0 = r̂0(3s0 + 1) . (2.2.5)

From (2.2.3) and the fact that η̄0 is an increasing function we get

η̄0

(√
η̄0(r̄0)− 6

)
> η̄0

(√
η̄0(r̂0)− 6

)
>
(

4(∆− 1)r̂0s
2
0(3s0+1) + 6

)2

=
(

4(∆− 1)r̄0s
2
0 + 6

)2

. (2.2.6)
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Define the remaining functions for n = 0 as follows:

R−0 (a) = 4a− 1 , R+
0 (a) = a(2s0 + 3) , λ0(a) = 2R+

0 (a) + 1 ,

∆0(a) = 4(∆− 1)2R+
0 (a) , Λ0(a) = λ0(a) , Γ±0 (a) = R±0 (a) .

}
(2.2.7)

Now, given n > 0, suppose that we have defined the desired constants and functions
for integers 0 ≤ m < n. Let r̄n−1 denote the n-tuple (r̄0, . . . , r̄n−1). Then define

sn = 27 + 10Λn−1(r̄n−1) + 2Γ+
n−1(r̄n−1) + εn . (2.2.8)

Let η̄n : N→ Q be defined by

η̄n(a) = exp2

(⌊(
a−∆11

n−1(r̄n−1)− 1
)
/∆

r̄2n−1sn−1

n−2 (r̄n−2)
⌋)

. (2.2.9)

Then, let r̂n be the smallest positive integer so that

η̄n

(√
η̄n(r̂n)− 6

)
>
(

4(∆n−1(r̄n−1)− 1)r̂ns
2
n(3sn+1) + 6

)2

. (2.2.10)

This is well-defined like in the case of r̂0. Let

r̄n = r̂n(3sn + 1) . (2.2.11)

From (2.2.3), (2.2.10) and the fact that η̄n is an increasing function, we get

η̄n

(√
η̄n(r̄n)− 6

)
> η̄n

(√
η̄n(r̂n)− 6

)
>
(

4(∆n−1(r̄n−1)− 1)r̂ns
2
n(3sn+1) + 6

)2

=
(

4(∆n−1(r̄n−1)− 1)r̄ns
2
n + 6

)2

. (2.2.12)

For n ∈ N, let an and an−1 denote the (n+1) and n-tuples (a0, . . . , an) and (a0, . . . , an−1).
Let

R−n (a) = 4a− 1 , R+
n (a) = a(2sn + 3) , λn(a) = 2R+

n (a) + 1 ,

∆n(an) = 4 (∆n−1(an−1)− 1)2R+
n (an) ,

Λn(aN) =
n∏
i=0

λi(ai) , Γ±n (aN) = R±n (an) ·Λn−1(aN−1) + Γ+
n−1(aN−1) .

 (2.2.13)

Note that R−n is independent of n. Also, by a simple induction argument, we get, for
l = 0, . . . , N ,

Γ±n (aN) ≥ R±l (al) . (2.2.14)

Lemma 2.2.1. Let n ∈ N, and let a = (a0, . . . , an) be an (n + 1)-tuple such that, for
0 ≤ m ≤ n, we have am ≤ r̄m. Then

ansn ≥ 2Γ−n (an) + εn , ans
2
n ≥ 2Γ+

n (an) + εn .
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Proof. By definition of sn, we have

ansn = an(10Λn−1(r̄n−1) + 2Γ+
n−1(r̄n−1) + εn)

> 10anΛn−1(r̄n−1) + 2Γ+
n−1(r̄n−1) + εn .

On the other hand, using (2.2.13) and the fact that Λn−1 and Γ±n−1 are monotone in-
creasing functions on every coordinate, we have

Γ±n (an) ≤ R±n (an) ·Λn−1(r̄n−1) + Γ+
n−1(r̄n−1) .

Then the proof follows by showing that 10an > 2R−n (an) and 10ansn > 2R+
n (an), which

is an easy consequence of the definitions.

Let K−1 = K−1 ≡ K−1 = K−1 = 0, and continue defining Kn and Kn by induction
on n ∈ N as follows:

Kn(an) = Kn−1(an−1) + Λn(an)(ans
2
n + an(2sn + 1)) , (2.2.15)

Kn(an) = Kn(an) + Λn(an)(sn+1R
+
n+1(r̄n+1) + Γ+

n (r̄n) + 2R+
n (r̄n)) . (2.2.16)

Finally, for all n ∈ N, let

r̄−n = r̄n , r̄+
n = snr̄n , r̂−n = r̂n , r̂+

n = snr̂n .

2.3 Construction of Xn

This section is devoted to the construction of subsets Xn ⊂ X, which will be used later to
achieve the repetitiveness of φ under the assumptions of Theorem 2.1.26 (ii). Hence we
suppose that X satisfies the hypothesis of Theorem 2.1.26 (ii) throughout this section.
Therefore we have a distinguished point p ∈ X, some sequences rn ↑ ∞ and ωn in Z+,
with every rn large enough depending on ∆ and εm for m ≤ n, such that every set

Ωn = {x ∈ X | [D(p, rn), p, dX ] = [D(x, rn), x, dX ] }

is ωn-relatively dense in X. Thus, for each x ∈ Ωn, there is a pointed isometry fn,x :
(D(p, rn), p)→ (D(x, rn), x).

Some of the results of the present section will be direct applications of the results
in [5, Section 2]. For notational convenience, let also r−1 = s−1 = t−1 = ω−1 = 0. We
will now define sequences sn, tn ↑ ∞ and 2 > λn ↓ 1. Assuming this divergence is fast
enough, and possible taking a subsequence of rn, we can assume that they satisfy

rn >Kn(r̄n) + s2
n4Λn(r̄n)(Γ+

n (r̄n) + n) , (2.3.1)

sn > Λn−1(r̄n−1)(2rn +Kn−1(r̄n−1)), 3Λn(r̄n)Γ+
n+1(r̄n+1) , (2.3.2)

tn >Kn(r̄n) , (2.3.3)
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in addition to the following inequalities, which are the graph versions of Eqs. (3.2.1)
to (3.2.6) of Section 3.2:

rn >
λ5

0

λ0 − 1
(rn−1 + sn−1 + ti−1 + 2ωn−1 + 1) ,

sn > 2λ5
0(rn + sn−1 + ωn) ,

tn > λ3
0(5tn−1 + rn + sn−1 + 2ωn−1 + 1) ,

tn > 4
λ4
n + λ2

n − 1

λ2
n

rn + tn−1 + Λn(sn−1 + 2ωn−1 + ωn) ,

λ2
n < λn−1 ,

22−n

>
rn(λ5

n − 1)λ2
n−1

rn−1(λ5
n−1 − 1)λ2

n

,
rn(λ6

n − 1)λ2
n−1

rn−1(λ6
n−1 − 1)λ2

n

.

We also assume
∞∏
n=0

λn < 2 .

For n ∈ N, define Xn
n = {p} and hnn,p = idD(x,rn). In Proposition 3.2.2, we will continue

defining subsets Xm
n ⊂ X for 0 ≤ n < m, and pointed isometries hmn,z : (D(p, rn), p) →

(D(z, rn), z) for z ∈ Xm
n . We will use the following notation:

Pm
m = { (l, z) ∈ N×X | n < l < m, z ∈ Xm

l } .

Let < denote the binary relation on Pm
m defined by declaring (l, z) < (l′, z′) if l < l′

and z ∈ hml′,z′(X
l′

l ), and let ≤ denote its reflexive closure of <. This is actually a partial

order relation, as explained in Section 3.3 with more generality. Let P
m

n denote the
subset of maximal elements of Pm

n . For every (l, z) ∈ Pm
n , there is a unique (l′, z′) ∈ P

m

n

such that (l, z) ≤ (l′, z′) (see Section 3.3). The following result is a particular case of
Proposition 3.3.1, which will be proved independently of this chapter.

Proposition 2.3.1. For 0 ≤ n < m, there are sets Xm
n ⊂ X, and for each z ∈ Xm

n there is
a pointed isometry hmn,z : (D(p, rn), p)→ (D(z, rn), z), satisfying the following properties:

(i) The set Xm
n is an sn-separated subset of Ωn ∩D(p, rn − tn).

(ii) For every (l, z) ∈ Pm
m and x ∈ Xm

n ∩D(z, rl) we have hmn,x = hml,z ◦ hln,x′ on D(p, rn),
where x′ := (hml,z)

−1(x).

(iii) For any (l, z) ∈ Pm
m, one has Xm

n ∩D(z, rl′ + sn) = hml,z(X
l
n).

(iv) For any x ∈ Xm
n and (l, z) ∈ Pm

m, either d(x, z) ≥ rl + sn, or x ∈ hml,z(X
l
n).

(v) Consider integers 0 ≤ k ≤ l such that either l < m and k ≥ n, or l = m and k > n.
Then Xl

k ⊂ Xm
n , and for any z ∈ Xl

k we have hmn,z = hlk,z|D(p,rn).

(vi) We have p ∈ Xm
n and hmn,p = idD(p,rn).
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For n < m, let cmn : D(p, rm)→ {n+ 1, . . . ,m} be defined by

cmn (x) = min{n ∈ Z | n < l ≤ m, ∃z ∈ Xm
l , x ∈ D(z, rl) } .

Since the set Xm
l is 2rl-separated by Proposition 2.3.1 (i) and (3.2.2), if x ∈ D(z, rl)

for some z ∈ Xm
l , then z is the unique point in Xm

l that satisfies this condition. Let
pmn : Xm

n → X be defined by assigning to every x ∈ Xm
n the unique point pmn (x) in Xm

cmn (x)

satisfying x ∈ D(pmn (x), rcmn (x)).
For n ∈ N, let �nn be the trivial order relation on Xn

n = {p}.

Proposition 2.3.2. For 0 ≤ n < m, there is an order6 relation �mn on Xm
n such that:

(i) p is the least element of (Xm
n ,�mn );

(ii) for x, y ∈ Xm
n , if cmn (x) < cmn (y), then x ≺mn y (meaning x �mn y and x 6= y); and,

(iii) for any (l, z) ∈ Pm
m, the map hml,z : (Xl

n,�ln)→ (Xm
n ∩D(z, rl),�mn ) is order preserv-

ing.

Proof. We proceed by induction. Let �n+1
n be an arbitrary ordering of Xn+1

n whose least
element is p. For m = n + 1, we have cmn (x) = m for every x ∈ Xm

n if Pm
m = ∅. Thus (ii)

and (iii) are trivially satisfied in this case.
Suppose now that we have defined �lk when either l > n, or l = n and k < m. Let

Emn be an arbitrary ordering of D(p, rn) \
⋃

(l,z)∈Pm
m
D(z, rl). Then we define �mn using

several cases as follows:

(a) if cmn (x) < cmn (y), then x ≺mn y;

(b) if cmn (x) = cmn (y) < m and pmn (x) = pmn (y), then x �mn y if and only if(
hmcmn (x),pmn (x)

)−1
(x) �cmn (x)

n

(
hmcmn (x),pmn (x)

)−1
(y) ;

(c) if cmn (x) = cmn (y) < m and pmn (x) 6= pmn (y), then x ≺mn y if and only if pmn (x) ≺mcmn (x)

pmn (y); and,

(d) if cmn (x) = cmn (y) = m, then x �mn y if and only if x Emn y.

It can be easily checked that this is indeed an order relation, and it is obvious that it
satisfies (i) and (ii). Let us prove that it also satisfies (iii). Suppose first that (l, z) ∈ P

m

n .
For any x, y ∈ D(z, rl) we have cmn (x) = cmn (y) = l and pmn (x) = pmn (y) = z, and therefore
hml,z is order preserving by (b).

Suppose now that (l, z) ∈ Pm
m \ P

m

n , and let (l′, z′) ∈ P
m

n be the unique maximal
element such that (l, z) < (l′, z′). Let z′′ = (hml′,z′)

−1(z). By the induction hypothesis, the
map

hml,z′′ :
(
Xl
n,�ln

)
→
(
Xl′

n ∩D(z′′, rl),�l
′

n

)
is order preserving, and

hml′,z′ :
(
Xl′

n,�l
′

n

)
→
(
Xm
n ∩D(z′, rl′),�mn

)
6In the order relations, it is assumed that any pair of elements is comparable. When this property is

not satisfied, we use the term partial order relation.
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is order preserving because (l′, z′) ∈ P
m

n . Therefore

hml,z = hml′,z′ ◦ hml,z′′ :
(
Xl
n,�ln

)
→
(
Xm
n ∩D(z, rl),�mn

)
is also order preserving.

Define

Xn =
⋃
m≥n

Xm
n ,

Pn =
⋃
m≥n

Pm
m = { (m,x) ∈ N×X | n < m, x ∈ Xm } . (2.3.4)

For n ∈ N and x ∈ Xn, there is some m ≥ n such that x ∈ Xm
n . Let hn,x =

hmn,x : (D(p, rn), p)→ (D(x, rn), x), which is independent of m by Proposition 2.3.1 (v).
Let < be the binary relation on Pn defined by declaring (m,x) < (m′, x′) if m < m′

and D(x, rn) ⊂ D(x′, rm′), and let ≤ be the reflexive closure of <.
Consider the choice of rn, sn and tn given at the beginning of the present section. The

following is a particular case of Proposition 3.3.2, which will be proved independently of
this chapter.

Proposition 2.3.3. For n ∈ N, the following properties hold:

(i) The set Xn is an sn-separated subset of Ωn containing p.

(ii) For any (l, z) ∈ Pn, we have Xn ∩D(z, rl) = hl,z(X
l
n).

(iii) For any x ∈ Xn and (l, z) ∈ Pn such that x ∈ Xn∩D(z, rl), we have hn,x = hl,z◦hn,x′
for x′ = h−1

l,z (x).

(iv) For any x ∈ Xn and (l, z) ∈ Pn, either d(x, z) ≥ rl + sn, or x ∈ hl,x(Xl
n).

(v) For n ≤ m, we have Xm ⊂ Xn, and hn,x = hm,x|D(p,rn) for x ∈ Xm.

(vi) We have p ∈ Xn and hn,p = idD(p,rn).

Remark 2. As we will see in Remark 23, if we choose relatively dense subsets

Ωn ⊂ {x ∈ X | [D(p, rn), p, dX ] = [D(x, rn), x, dX ] }

and, for every x ∈ Ωn, we choose a pointed isometry fn,x : (D(x, rn), p) → (D(x, rn), p),
then we may assume that Xn ⊂ Ωn and every map hn,x is a composition of the form
fnm,xm · · · fn1,x1 . Note that in this case the constant ωn may change. The following is a
particular case of Proposition 3.3.3, which will be proved independently of this chapter.

Proposition 2.3.4. Xn is relatively dense in X and the implied constant depends only
on ∆, εm and ωm for m ≤ n, and rn for m < n.

By Propositions 2.3.1 (vi) and 2.3.2 (iii), the order relations �mn , m ≥ n, define an
order relation �n on Xn. The following is a consequence of Proposition 2.3.2.

Proposition 2.3.5. For n ∈ N, the following properties hold:
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(i) The point p is the least element.

(ii) For x, y ∈ Xn, if cn(x) < cn(y), then x ≺n y.

(iii) For any (l, z) ∈ Pn, the map hl,z : (Xl
n,�ln)→ (Xn∩D(z, rl),�n) is order preserving.

For m ∈ N, let

Pm
−1 = { (l, z) ∈ N×X | 0 ≤ l < m, z ∈ Xm

l } ,
P−1 = { (m,x) ∈ N×X | x ∈ Xm } . (2.3.5)

We can define on both of these sets the relation < by declaring (l, z) < (l′, z′) if l < l′

and D(z, rl) ⊂ D(z′, rl′). The induced reflexive closures ≤ are partial order relations. Let
P
m

−1 denote the subset of maximal elements of Pm
−1. For every (l, z) ∈ Pm

−1, there is a

unique (l′, z′) ∈ P
m

−1 such that (l, z) ≤ (l′, z′).

2.4 Construction of Xn

In this section we define a sequence of nested subsets Xn ⊂ X that will constitute
the centers of the clusters used in the construction of the colorings φN , as explained in
Section 1.1.5. This will be used to prove Theorem 2.1.26 in full generality, so we will
assume that X satisfies the hypothesis of Theorem 2.1.26 (ii). If X does not satisfy this,
the same proof applies to Theorem 2.1.26 (i) by taking Xn = ∅, and therefore omitting
the use of the sets Pn, numbers rn, and maps hmn,z and hn,x.

For notational convenience, let

(X−1, E−1) = (X,E) , d−1 = d , r−1 = s−1 = R±−1 = 0 , λ−1 = Λ−1 = 1 . (2.4.1)

For n ∈ N, we will continue defining constants rn, subsets Xn ⊂ X containing Xn, and
a connected graph structure En on every Xn with induced metrics dn. Also, for x ∈ Xn

and l ∈ N, let Dn(x, l) and Sn(x, l) denote the disks and spheres of center x and radius
l in (Xn, dn). (Recall that, in connected graphs, we use disks defined with non-strict
inequalities.) With this notation, let ηn : N→ Q be given by

ηn(a) =

{
exp2

(⌊(
a− (degX−1)11 − 1

)
/(degX−1)3

⌋)
if n = 0

exp2

(⌊(
a− (degXn−1)11 − 1

)
/(degXn−2)r

2
n−1sn−1

⌋)
if n > 0 .

(2.4.2)

Suppose that, for n ∈ N, the graphs (Xm, Em) and constants rm have been defined
for integers −1 ≤ m < n. Then let rn be defined as follows:

(A) If there is some x ∈ Dn−1(p, r̂n(2sn + 1)) such that

(|Dn−1(x, r̂nsn)|+ 6)2 ≥ ηn(|Dn−1(x, r̂n)|) ,

then let rn = r̄n (see (2.2.11)).

(B) Otherwise, let rn = r̂n (see (2.2.3) and (2.2.10)).
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Observe that
r0 > 211 (2.4.3)

by (2.2.4), (2.2.5), (A) and (B). Moreover, let

∆n = ∆n(r0, . . . , rn) , Λn = Λn(r0, . . . , rn) ,

Γ±n = Γ±n (r0, . . . , rn) , Kn = Kn(r0, . . . , rn) ,

Kn = Kn(r0, . . . , rn) , R±n = R±(rn) , λn = λn(rn) .

 (2.4.4)

All functions in (2.4.4) are monotone increasing on every coordinate. So, if r̂n denotes
the (n+ 1)-tuple (r̂0, . . . , r̂n), we get

∆n(r̂n) ≤ ∆n ≤∆n(r̄n) , R±n (r̂n) ≤ R±n ≤ R±n (r̄n) , (2.4.5)

and so on. From (2.2.14), (3.2.1) and (2.4.4), it follows that

rn > Γ±n ≥ R±m (2.4.6)

for m = 0, . . . , n. Finally, let

r−n = rn , r+
n = rnsn . (2.4.7)

By (2.2.7), (2.2.13), (2.4.4) and (2.4.7), we have

r±n ≤ R±n . (2.4.8)

Proposition 2.4.1. For n ∈ N, there are disjoint subsets X+
n , X

−
n ⊂ X and a graph

structure En on Xn := X−n ∪· X+
n such that the following properties are satisfied:

(i) Xn ⊂ Xn ⊂ Xn−1.

(ii) For all (m,x) ∈ Pn−1, we have

hj,x
(
X±n ∩D−1(p, rm −Kn)

)
= X±n ∩D−1(x, rm −Kn) .

(iii) For all x ∈ X±n , we have

ηn(|Dn−1(x, r±n )|) ≥ (6 + |Dn−1(x, r±n sn)|)2 .

(iv) Xn is (2r+
n + 1)-separated and R+

n -relatively dense in (Xn−1, dn−1).

(v) (Xn, En) is a connected graph. Let dn denote the induced metric.

(vi) We have dn ≤ dn−1 ≤ λndn and dn ≤ d−1 ≤ Λndn.

(vii) We have

degXn ≤ ∆n, 4(degXn−1 − 1)2R+
n .

(viii) For any (m,x) ∈ Pn−1, the restriction of hj,x to Xn ∩ D−1(p, rm − Kn) is an
(sn+1R

+
n+1 + Γ+

n )-short scale isometry with respect to dn.
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Remark 3. Note that Kn < tn, rn by (3.2.1), (3.2.3) and the fact that r̄n > rn. This and
the inequality Kn > Kn yield rn −Kn, rn −Kn > 0 in (ii) and (viii).

Remark 4. In accordance with the discussion at the beginning of the section, to prove
Theorem 2.1.26, if X does not satisfy the hypothesis of Theorem 2.1.26 (ii), items (ii)
and (viii) must be omitted, and only the inclusion “Xn ⊂ Xn−1” must be considered
in (i).

The rest of this section is devoted to the proof of the above proposition. We proceed by
induction on n. The following lemma follows from Proposition 2.3.3, (2.4.1) and (2.3.5).
The items are irregularly numbered so that there is an obvious correspondence with those
of Proposition 2.4.1.

Lemma 2.4.2. The following properties hold:

(i’) X0 ⊂ X−1.

(ii’) For all (m,x) ∈ P−1, we have

hj,x (X−1 ∩D−1(p, rm)) = X−1 ∩D−1(x, rm) .

(iv’) X−1 is (2r−1s−1 + 1)-separated and R+
−1-relatively dense in X.

(v’) (X−1, E−1) is a connected graph.

(vi’) We have d−1 = d = λ−1d−1 = Λ−1d−1.

(vii’) We have degX−1 = ∆−1.

(viii’) For any (m,x) ∈ P−1, the restriction of hj,x to Xn∩D−1(p, rm) is an (s0R
+
0 + Γ+

0 )-
short scale isometry with respect to d−1.

This lemma can be considered the extension to n = −1 of properties (i), (ii) and
(iv)–(viii) of Proposition 2.4.1. In this way, we include the case n = 0 in the induction
step. Thus suppose that, for n ≥ 0, we have already defined Xm, Em, dm and rm for
m < n, satisfying all required properties. When we invoke the induction hypothesis with
some item, e.g. (i), it will refer to Lemma 2.4.2 (i’) if n = 0, and to Proposition 2.4.1 (i)
if n > 0.

By (2.4.5), we have ∆n−1 ≤ ∆n−1(r̄n−1). From this inequality, and the definitions of
ηn and ηn in (2.2.9) and (2.4.2), we obtain, for a ∈ N,

ηn(a) ≥ ηn(a) . (2.4.9)

Let ĉn : Xn−1 → {n, n+ 1, . . . } be defined by

ĉn(x) = min{ l ∈ N | l ≥ n, ∃y ∈ Xl so that (l, y) ∈ Pn−1

and x ∈ D−1(y, rl −Kn−1) }. (2.4.10)

This map is well-defined because rl → ∞ as l → ∞ by (3.2.1) and (3.2.3). By Propo-
sition 2.3.3 (i), for each x ∈ Xn−1, there is a unique point p̂n(x) ∈ Xĉn(x) such that
x ∈ Dn−1(p̂n(x), rĉn(x) −Kn−1). This defines a map p̂n : ĉ−1

n ({n, n+ 1, . . . })→ Xn.
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Lemma 2.4.3. For m ≥ n, there are ordered sets (Y m
n ,≤mn ) such that the following

properties hold:

(a) Y m
n is a maximal 2rn-separated subset of (D−1(p, rm−Kn−1)∩Xn−1, dn−1) containing
p.

(b) If m > n, then Y m−1
n ⊂ Y m

n , and the map (Y m−1
n ,≤m−1

n ) ↪→ (Y m
n ,≤mn ) is order-

preserving.

(c) For any (l, z) ∈ Pm
n−1, we have hml,z(Y

l
n) = Y m

n ∩D−1(z, rl −Kn−1), and the map

hml,z :
(
Y l
n,≤ln

)
→ (Y m

n ∩D−1(z, rl −Kn−1),≤mn )

is order-preserving.

(d) For all x, y ∈ Y m
n , we have x <m

n y if one of the following conditions holds:

(1) ĉn(x) < ĉn(y);

(2) ĉn(x) = ĉn(y) and d−1(p̂n(x), p) < d−1(p̂n(y), p); or

(3) ĉn(x) = ĉn(y), p̂n(x) = p̂n(y) and d−1(x, p̂n(x)) < d−1(y, p̂n(x)).

Proof. We proceed by induction on m. Let Y n
n be any maximal 2rn-separated subset of

(D−1(p, rn −Kn−1) ∩Xn−1, dn−1) containing p. Let ≤nn be any order relation on Y n
n such

that, if d−1(x, p) < d−1(y, p), then x <n
n y. Since ĉn(x) = n and p̂n(x) = p for all x ∈ Y n

n ,
this relation satisfies the properties of the statement for m = n.

Suppose that we have defined Y l
n and ≤ln for n ≤ l < m, satisfying the stated proper-

ties. Let
Ỹ m
n =

⋃
·

(l,z)∈Pm
n−1

hml,z(Y
l
n) .

By the induction hypothesis with (viii), for every (l, z) ∈ P
m

n−1, the set hl,z(Y
l
n) = hml,z(Y

l
n)

is contained in Xn−1 and is 2rn-separated with respect to dn−1. Arguing like in the proof
of Proposition 2.3.1 (i), we get that Ỹ m

n is a maximal 2rn-separated subset of⋃
·

(l,z)∈Pm
n−1

D−1(z, rl −Kn−1) ,

with respect to dn−1, containing p. Now, let Y m
n be any maximal 2rn-separated subset of

(D−1(p, rn −Kn−1) ∩Xn−1, dn−1) containing Ỹ m
n ; in particular, Y m

n safisfies (a).

Let ≤̃mn be any ordering of Ỹ m
n satisfying the analogues of (b), (1) and (2) with Ỹ m

n

instead of Y m
n . Then, by the induction hypothesis with (3) and the definition of Ỹ m

n , the

order ≤̃mn also satisfies the analogue of (3). Let ≤̂mn be any ordering of Ŷ m
n := Y m

n \ Ỹ m
n

satisfying the analogue of (3) with Ŷ m
n instead of Y m

n . Let ≤mn be the order relation on

Y m
n defined by ≤̃mn and ≤̂mn on Ỹ m

n and Ŷ m
n , respectively, and satisfying x ≤mn y for all

x ∈ Ỹ m
n and y ∈ Ŷ m

n . It is easy to check that ≤mn satisfies the stated properties.

Let Yn =
⋃
m≥n Y

m
n . Like in the case of the relations �mn (Section 2.3), the order

relations ≤mn define an order relation ≤n on Yn.
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Lemma 2.4.4. The ordered sets (Yn,≤n) satisfy the following properties:

(a) Yn is a maximal 2rn-separated subset of (Xn−1, dn−1) containing p, and therefore it
is 2rn-relatively dense in (Xn−1, dn−1).

(b) For any (l, z) ∈ Pn−1, we have hl,z(Y
l
n) = Yn ∩D−1(z, rl −Kn−1), and the map

hl,z : (Y l
n,≤ln)→ (Yn ∩D−1(z, rl −Kn−1),≤n)

is order-preserving.

(c) For all x, y ∈ Yn, we have x <n y if one of the following conditions holds:

(1) ĉn(x) < ĉn(y);

(2) ĉn(x) = ĉn(y) and d−1(p̂n(x), p) < d−1(p̂n(y), p); or

(3) ĉn(x) = ĉn(y), p̂n(x) = p̂n(y) and d−1(x, p̂n(x)) < d−1(y, p̂n(x)).

(d) (Yn,≤n) is well-ordered.

Proof. Properties (a)–(c) follow from Lemma 2.4.3 (a)–(c) and the definition of (Yn,≤n).
So let us prove (d). By (1), it is enough to prove that, for each m ≥ n, the ordered subset
(Yn∩ĉ−1

n (m),≤n) is well-ordered. By (2), the subsets { y ∈ Yn∩ĉ−1
n (m) | d−1(p̂(y), p) ≤ l },

with l ∈ N, form an increasing sequence of finite initial segments of (Yn ∩ ĉ−1
n (m),≤n)

covering Yn ∩ ĉ−1
n (m). Since

{ y ∈ Yn ∩ ĉ−1
n (m) | d−1(p̂(y), p) ≤ l } ⊂

⋃
y∈Yn, d−1(y,p)≤l

D−1(y, rm −Kn−1)

⊂ D−1(p, l + rm −Kn−1) ,

all sets { y ∈ Yn∩ĉ−1
n (m) | d−1(p̂(y), p) ≤ l } are finite, and therefore well-ordered with ≤n.

Then it easily follows that Yn ∩ ĉ−1
n (m) is well-ordered, completing the proof of (d).

Remark 5. Note that {n} × Xn ⊂ Pn−1 by definition. By Lemma 3.2.15 (a),(b), for any
x ∈ Xn, we have x = hn,x(p) ⊂ Yn, yielding Xn ⊂ Yn.

Remark 6. For any x ∈ D−1(p, rn−Kn−1), we have ĉn(x) = n and p̂n(x) = p by definition.
So, by (2), D−1(p, rn−Kn−1) is an initial segment of Yn. Therefore p is the least element
of Yn by (3).

Let now

Y −n = { y ∈ Yn | ηn(|Dn−1(y, r+
n )|) < (6 + |Dn−1(y, r+

n sn)|)2 } ,
Y +
n = { y ∈ Yn | ηn(|Dn−1(y, r+

n )|) ≥ (6 + |Dn−1(y, r+
n sn)|)2 } .

Lemma 2.4.5. We have

y ∈ D−1(p, rl −Kn−1 − Λn−1rns
2
n) =⇒ Dn−1(y, r+

n sn) ⊂ D−1(p, rl −Kn−1) .

Proof. By the induction hypothesis with Proposition 2.4.1 (vi), we have

d−1(x, p) ≤ d−1(x, y) + d−1(y, p) ≤ Λn−1dn−1(x, y) + dn−1(y, p)

≤ Λn−1rns
2
n + rl −Kn−1 − Λn−1rns

2
n = rl −Kn−1 .
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Lemma 2.4.6. For any (l, z) ∈ Pn−1 and y ∈ Yn ∩ D−1(p, rl − Kn−1 − Λn−1rns
2
n), we

have that y ∈ Y ±n if and only if hl,z(y) ∈ Y ±n .

Proof. By Lemma 2.4.5, we have Dn−1(y, rns
2
n) ⊂ D−1(p, rl − Kn−1) ⊂ dom hl,z. Then

|Dn−1(y, rns
i
n)| = |Dn−1(hl,z(y), rns

i
n)| for i = 1, 2 because hl,z is a snR

+
n -short scale

isometry on (D−1(p, rl −Kn−1), dn−1).

Using that (Yn,≤n) is a well-ordered set (Lemma 3.2.15 (d)), let X+
n ⊂ Y +

n be the
subset inductively defined as follows:

• If y0 is the least element of (Y +
n ,≤n), then y0 ∈ X+

n .

• For all y ∈ Y +
n such that y >n y0, we have y ∈ X+

n if and only if dn−1(y, y′) > 2rnsn
for all y′ ∈ X+

n with y′ <n y.

Remark 7. Observe that X+
n is (2rnsn + 1)-separated and 2rnsn-relatively dense in

(Y +
n , dn−1).

Remark 8. Note that Lemma 3.2.15 (b) yields Y l
n = Yn ∩ D−1(p, rl − Kn−1) because

hl,p = id by Proposition 2.3.3 (vi).

Lemma 2.4.7. For all z ∈ Xn and y ∈ Yn ∩ D−1(p, rn − Kn−1 − Λn−1rns
2
n), we have

y ∈ X+
n if and only if hn,z(y) ∈ X+

n .

Proof. By Lemma 2.4.6, it is enough to prove the statement for points y ∈ Y +
n . We

proceed by induction on the elements of Y +
n ∩ D−1(p, rn −Kn−1 − Λn−1rns

2
n) using ≤n.

Let y1 be the least element of Y +
n ∩ D−1(p, rn − Kn−1 − Λn−1rns

2
n). We first show that

y1, hn,z(y1) ∈ X+
n , establishing the desired property for y1.

By absurdity, suppose that y1 /∈ X+
n . This means that y1 >n y0 and there is some

u ∈ X+
n such that u <n y1 and dn−1(y1, u) ≤ 2rnsn. Since sn > 2 by (2.2.1) and (2.2.8),

it follows from Lemma 2.4.5 that u ∈ D−1(p, rn − Kn−1). Then ĉn(y1) = ĉn(u) = n
and p̂n(y1) = p̂n(u) = p. Lemma 3.2.15 (3) and the assumption that u <n y1 yield
d−1(p, u) ≤ d−1(p, y1). So, in fact, u ∈ D−1(p, rn −Kn−1 − Λn−1rns

2
n), contradicting the

hypothesis that y1 is the least element of D−1(p, rn−Kn−1−Λn−1rns
2
n). This shows that

y1 ∈ X+
n .

By Lemma 3.2.15 (b) and Remark 8, the map hn,z preserves ≤n over D−1(p, rn−Kn−1).
So, using the same argument, we get hn,z(y1) ∈ X+

n .
Now, given y ∈ Y +

n ∩ D−1(p, rn − Kn−1 − Λn−1rns
2
n) so that y1 <n y, suppose that

the result is true for all y′ ∈ Y +
n ∩ D−1(p, rn − Kn−1 − Λn−1rns

2
n) with y′ <n y. By

definition, we have y /∈ X+
n if and only if there is some u ∈ X+

n such that u <n y and
dn−1(u, p) ≤ 2rnsn. Using the same argument as before, we obtain that, necessarily,
u ∈ D−1(p, rn −Kn−1 − Λn−1rns

2
n). By the induction hypothesis, we have hn,z(u) ∈ X+

n .
Then y /∈ X+

n if and only if there is some u ∈ D−1(rn − Kn−1) with hn,z(u) ∈ X+
n and

dn−1(hn,z(u), hn,z(y)) ≤ 2rnsn. But, by the induction hypothesis with (viii), we have
dn−1(hn,z(u), hn,z(y)) = dn−1(u, y) ≤ 2rnsn. So y ∈ X+

n if and only if hn,z(y) ∈ X+
n , as

desired.

Proposition 2.4.8. For all (l, z) ∈ Pn−1 and y ∈ Yn∩D−1(p, rl−Kn−1−Λn−1rns
2
n), we

have y ∈ X+
n if and only if hl,z(y) ∈ X+

n .
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Proof. We proceed by induction on l ≥ n. The case l = n is precisely the statement of
Lemma 2.4.7. Therefore take any l > n and suppose that the result is true for n ≤ l′ < l.

By Lemma 2.4.6, it is enough to prove the statement for points y ∈ Y +
n . We proceed

by induction on the elements of Y +
n ∩D−1(p, rl −Kn−1 − Λn−1rns

2
n) using ≤n. Let y1 be

the least element of Y +
n ∩D−1(p, rl −Kn−1 − Λn−1rns

2
n). We will prove that y1 /∈ X+

n if
and only if hl,z(y1) /∈ X+

n , establishing the desired property for y1.

The condition y1 /∈ X+
n means that y1 >n y0 and there is some u ∈ X+

n such that
u <n y1 and dn−1(y1, u) ≤ 2rnsn. Since sn > 2 by (2.2.1) and (2.2.8), it follows from
Lemma 2.4.5 that u ∈ D−1(p, rl −Kn−1), and therefore ĉ(y1), ĉ(u) ≤ l. We will consider
several cases about u.

Suppose that ĉn(u) > ĉn(y1). Then y1 <n u by Lemma 3.2.15 (1), contradicting the
assumption that u <n y1.

Suppose then that ĉ(y1) = ĉ(u) = l. Thus p̂(y1) = p̂(u) = p. Lemma 3.2.15 (3)
and the assumption that u <n y1 yield d−1(p, u) ≤ d−1(p, y1). Therefore u ∈ Y +

n ∩
D−1(p, rl −Kn−1 − Λn−1rns

2
n), contradicting the hypothesis that y1 is the least element

in Y +
n ∩D−1(p, rl −Kn−1 − Λn−1rns

2
n).

Suppose finally that ĉ(u) < l. Then hĉ(u),p̂(u)(u) ∈ X+
n by the induction hypothesis

with l. But, by the induction hypothesis with (viii), we have dn−1(hl,z(u), hl,z(y1)) =
dn−1(u, y1) ≤ 2rnsn. So hl,z(y1) /∈ X+

n .

Thus far, we have proved that y1 /∈ X⊂D−1(n+ implies hl,z(y1) /∈ X+
n . The proof of

the converse implication is similar

Now, given y ∈ Y +
n ∩ D−1(p, rl − Kn−1 − Λn−1rns

2
n) so that y1 <n y, suppose that

the result is true for all y′ ∈ Y +
n ∩ D−1(p, rl − Kn−1 − Λn−1rns

2
n) with y′ <n y. By

definition, y /∈ X+
n if and only if there is some u ∈ X+

n such that u <n y and dn−1(u, p) ≤
2rnsn. Using the same argument as before, we obtain that, either ĉn(u) < l, or u ∈
D−1(p, rl − Kn−1 − Λn−1rns

2
n). If ĉn(u) < l, we get hl,z(y) /∈ X+

n arguing as before.
If u ∈ D−1(p, rl − Kn−1 − Λn−1rns

2
n), then hl,z(u) ∈ X+

n by the induction hypothesis in
Y +
n ∩D−1(p, rl−Kn−1−Λn−1rns

2
n). Thus y /∈ X+

n if and only if there is some u ∈ D−1(rl−
Kn−1) with hl,z(u) ∈ X+

n and dn−1(hl,z(u), hl,z(y)) ≤ 2rnsn. But dn−1(hl,z(u), hl,z(y)) =
dn−1(u, y) ≤ 2rnsn by the induction hypothesis with (viii). So y ∈ X+

n if and only if
hl,z(y) ∈ X+

n , as desired.

Let

X−n = { y ∈ Y −n | dn−1(y,X+
n ) > rn(2sn + 1) } . (2.4.11)

Lemma 2.4.9. We have p ∈ Xn.

Proof. Suppose first that condition (A) is satisfied in the definition of rn, and consequently
rn = r̄n. Then there is some point x ∈ Dn−1(p, r̂n(2sn + 1)) such that

(|Dn−1(x, r̂nsn)|+ 6)2 ≥ ηn(|Dn−1(x, r̂n)|) . (2.4.12)

So Dn−1(x, r̂nsn) ⊂ Dn−1(p, r̂n(3sn + 1)), and therefore

|Dn−1(p, rn)| = |Dn−1(p, r̂n(3sn + 1))| ≥ |Dn−1(x, r̂nsn)| . (2.4.13)
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Using (2.2.11), (2.2.12), (2.4.9), (2.4.12) and (2.4.13), we get

ηn(|Dn−1(p, rnsn)|) ≥ ηn(|Dn−1(x, r̂nsn)|) ≥ ηn
(√

ηn(|Dn−1(x, r̂n)|)− 6
)

≥ ηn
(√

ηn(|Dn−1(x, r̂n)|)− 6
)
> ηn

(√
ηn(r̂n))− 6

)
≥
(

4(∆n−1(r̄n−1)− 1)r̄ns
2
n + 6

)2

.

The assumption rn = r̄n implies r̄n−1 = (r0, . . . , rn−1) and ∆n−1(r̄n−1) = ∆n−1 according
to (2.4.4). Hence, by Corollary 2.1.19,

ηn(|Dn−1(p, rnsn)|) ≥
(

4(∆n−1(r̄n−1)− 1)r̄ns
2
n + 6

)2

=
(

4(∆n−1 − 1)rns
2
n + 6

)2

≥ (|Dn−1(p, rns
2
n)|+ 6)2 ,

and therefore p ∈ Y +
n . Thus the statement follows in this case from Remark 6 and the

definition of X+
n .

Suppose now that condition (B) holds. Then p ∈ Y −n and Y +
n ∩Dn−1(p, rn(2sn+1)) =

∅, and the statement also follows in this second case.

By (2.2.15), (2.2.16) and (2.4.4), we have

Kn = Kn−1 + Λn(rns
2
n + rn(2sn + 1)) , (2.4.14)

Kn = Kn + Λn(sn+1R
+
n+1 + Γ+

n + 2R+
n ) . (2.4.15)

Lemma 2.4.10. For all (l, z) ∈ Pn−1 and y ∈ Yn ∩D−1(p, rl −Kn), we have y ∈ X−n if
and only if hl,z(y) ∈ X−n .

Proof. Let y ∈ Yn ∩D−1(p, rl −Kn). Then, by (2.4.14),

y ∈ Yn ∩D−1(p, rl −Kn−1 − Λn−1(rns
2
n + rn(2sn + 1))) .

By Lemma 2.4.6, we can assume y, hl,z(y) ∈ Y −n . Hence, by definition, y /∈ X−n if
and only if there is some x ∈ X+

n with dn−1(y, x) ≤ rn(2sn + 1). In this case, by the
induction hypothesis with (vi), we have d−1(x, y) ≤ Λn−1rn(2sn + 1). Therefore, by the
triangle inequality, x ∈ D−1(p, rl −Kn−1 − Λn−1rns

2
n) ⊂ D−1(p, rm −Kn). Applying now

Proposition 2.4.8, we get hl,z(x) ∈ X+
n . Also, by the induction hypothesis with (viii), hl,z

is a snR
+
n -short scale isometry on (Xn−1∩D−1(p, rm−Kn), dn−1). Therefore hl,z(x) ∈ X+

n

and dn−1(hl,z(x), hl,z(y)) ≤ rn(2sn + 1), obtaining hl,z(y) /∈ X−n .
The proof of the converse implication is similar.

Let us prove (i). By Lemma 2.4.9, we have p ∈ Xn and (n, x) ∈ Pn−1 for each
x ∈ Xn,. Proposition 2.4.8 and Lemma 2.4.10 then imply x = hn,x(p) ∈ Xn for all
x ∈ Xn, obtaining Xn ⊂ Xn. The inclusion Xn ⊂ Xn−1 follows from Lemma 3.2.15 (a)
and the fact that Xn ⊂ Yn. This completes the proof of (i).

For all (m,x) ∈ Pn−1, the map hm,x : (D−1(p, rm), p) → (D−1(x, rm), x) is a pointed
isometry by definition. Therefore hm,x(D−1(p, rm − Kn)) = D−1(x, rm − Kn). Then
property (ii) follows from Proposition 2.4.8 and Lemma 2.4.10.
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Let us prove (iii). For x ∈ X+
n , the result is an immediate consequence of the definition

of Y +
n and the fact that X+

n ⊂ Y +
n . So assume x ∈ X−n . By absurdity, suppose that

(|Dn−1(x, rnsn)|+ 6)2 > ηn(|Dn−1(x, rn)|) .

Since ηn is an increasing function, and using (2.4.9), (2.2.12), (2.4.4) and Corollary 2.1.19,
we get

ηn(|Dn−1(x, rnsn)|) ≥ ηn
(√

ηn(|Dn−1(x, rn)|)− 6
)
≥ ηn

(√
ηn(|Dn−1(x, rn)|)− 6

)
> ηn

(√
ηn(rn)− 6

)
>
(

4(∆n−1(r̄n−1)− 1)r̄ns
2
n + 6

)2

=
(

4(∆n−1 − 1)r̄ns
2
n + 6

)2

≥ (|Dn−1(x, rns
2
n)|+ 6)2 .

Therefore x /∈ Y −n by definition, contradicting the assumption that x ∈ X−n , which
completes the proof of (iii).

Let us prove (iv). First, define

Z−n−1 = { z ∈ Xn−1 | dn−1(z,X+
n )− 2rnsn > dn−1(z,X−n )− rn } , (2.4.16)

Z+
n−1 = { z ∈ Xn−1 | dn−1(z,X+

n )− 2rnsn ≤ dn−1(z,X−n )− rn } . (2.4.17)

Thus Xn−1 = Z−n−1∪· Z+
n−1. On the other hand, using (2.2.7), (2.2.13), (2.4.1) and (2.4.4),

we get
R−n = 4rn − 1 , R+

n = rn(2sn + 3) .

Lemma 2.4.11. X+
n is (2rnsn + 1)-separated and R+

n -relatively dense in (Z+
n−1, dn−1).

Proof. By Remark 7, we only need to show that X+
n is R+

n -relatively dense in (Z+
n−1, dn−1).

Take an arbitrary point z ∈ Z+
n−1. Since Yn is 2rn-relatively dense in (Xn−1, dn−1) by

Lemma 3.2.15 (a), there is some y ∈ Yn with dn−1(x, z) ≤ 2rn.
If y ∈ Y +

n , then, by Remark 7, there is some x ∈ X+
n with dn−1(y, x) ≤ 2rnsn. Using

the triangle inequality, we get

d(z, x) ≤ d(z, y) + d(y, x) ≤ 2rn + 2rnsn < rn(2sn + 3) = R+
n .

If y ∈ X−n , we have dn−1(z,X−n ) ≤ 2rn. Then (2.4.17) implies dn−1(z,X+
n )− 2rnsn ≤

rn, obtaining dn−1(z,X+
n ) ≤ rn(2sn + 1) < R+

n .
Finally, suppose that y ∈ Y −n \ X−n . By (2.4.11), there is some point x ∈ X+

n with
dn−1(x, y) ≤ rn(2sn + 1), and the lemma follows applying the triangle inequality:

d(z, x) ≤ d(z, y) + d(y, x) ≤ 2rn + rn(2sn + 1) = rn(2sn + 3) = R+
n .

Lemma 2.4.12. X−n is (2rnsn + 1)-separated and R−n -relatively dense in (Z−n−1, dn−1).

Proof. Let z ∈ Z−n−1. Like in Lemma 2.4.11, there is some y ∈ Yn with dn−1(z, y) ≤ 2rn.
In the case where y ∈ X−n , the lemma is trivial.
If y ∈ X+

n , then dn−1(z,X+
n ) ≤ 2rn, yielding dn−1(z,X+

n ) − 2rnsn ≤ 2rn(1 − sn).
Using (2.4.16), we get dn−1(y,X−n ) − rn < 2rn(1 − sn), and therefore dn−1(y,X−n ) <
2rn(2 − sn). However, by (2.2.1) and (2.2.8), we have sn > 2, reaching a contradiction.
Therefore y /∈ X+

n .
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Now, suppose y ∈ Y +
n \X+

n . By Remark 7, there is some x ∈ X+
n with dn−1(x, y) ≤

2rnsn, and we get dn−1(z, x) ≤ 2rn(sn + 1) using the triangle inequality. Then (2.4.16)
yields

dn−1(z,X−n ) < dn−1(z,X+
n )− 2rnsn + rn ≤ dn−1(z, x)− 2rnsn + rn

≤ 2rn(sn + 1)− 2rnsn + rn = 3rn ≤ R−n .

Finally, suppose y ∈ Y −n \ X−n . By (2.4.11), there is some point x ∈ X+
n with

dn−1(x, y) ≤ rn(2sn + 1), obtaining dn−1(z,X+
n ) ≤ rn(2sn + 3) by the triangle inequal-

ity. Therefore dn−1(z,X+
n ) − 2rnsn ≤ 3rn, obtaining dn−1(z,X−n ) < 4rn by (2.4.16); i.e.,

dn−1(z,X−n ) ≤ 4rn − 1 = R−n .

To finish the proof of Proposition 2.4.1 (iv), it remains to show that dn−1(X−n , X
+
n ) ≥

2rnsn + 1, which follows from (2.4.11).
To prove the next items of Proposition 2.4.1, we need some more preliminary results.

Lemma 2.4.13. For all z ∈ Xn−1, we have z ∈ Z+
n−1 if and only if

dn−1(z,X+
n ∩Dn−1(z, R+

n ))− 2rnsn ≤ dn−1(z,X−n ∩Dn−1(z,R+
n ))− rn . (2.4.18)

Proof. Suppose first that z ∈ Z+
n−1. Lemma 2.4.11 implies X+

n ∩ Dn−1(z, R+
n ) 6= ∅, and

therefore

dn−1(z,X+
n ∩Dn−1(z,R+

n )) = dn−1(z,X+
n ) .

Then (2.4.16) implies (2.4.18).
Suppose now that (2.4.18) holds for some z ∈ Xn−1. Property (iv) implies that at

least one of the inequalities dn−1(z,X−n ) ≤ R+
n or dn−1(z,X+

n ) ≤ R+
n is satisfied. So at

least the left-hand side of (2.4.18) is finite. Therefore (2.4.18) yields (2.4.16).

Corollary 2.4.14. For all u ∈ Xn−1 ∩D−1(p, rl −Kn − Λn−1R
+
n ) and (l, z) ∈ Pn−1, we

have u ∈ Z±n−1 if and only if hl,z(u) ∈ Z±n−1.

Proof. Let u ∈ Xn−1 ∩ D−1(p, rl − Kn − Λn−1R
+
n ) and (l, z) ∈ Pn−1. Since Xn−1 =

Z−n−1 ∪· Z+
n−1, it is enough to prove that u ∈ Z+

n−1 if and only if hl,z(u) ∈ Z+
n−1.

The induction hypothesis with (vi) and the triangle inequality yield Dn−1(u,R+
n ) ⊂

D−1(p, rl−Kn) ⊂ dom hl,z. Proposition 2.4.8, Lemma 2.4.10 and the induction hypothesis
with (viii) imply that the restriction of hl,z to D−1(p, rl − Kn) preserves X±n and is an
R+
n -partial isometry with respect to dn−1. Then the result follows from Lemma 2.4.13.

Remark 9. Note that (2.4.14) yields Kn ≥ Kn + Λn−1R
+
n . Then rl −Kn − Λn−1R

+
n > 0

in Corollary 2.4.14 by (3.2.1).

Recall the definition of r±n given in (2.4.7).

Lemma 2.4.15. If x ∈ X±n , then Dn−1(x, r±n ) ⊂ Z±n−1.

Proof. For x ∈ X−n , suppose on the contrary that there is some z ∈ Dn−1(x, rn) such that

dn−1(z,X+
n )− 2rnsn ≤ dn−1(z,X−n )− rn .
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In particular, dn−1(z,X+
n ) ≤ 2rnsn because dn−1(z,X−n ) ≤ dn−1(z, x) ≤ rn. By the

triangle inequality, it follows that

dn−1(x,X+
n ) ≤ dn−1(x, z) + dn−1(z,X+

n ) ≤ rn + 2rnsn = rn(2sn + 1) ,

contradicting the definition of X−n in (2.4.11).
The proof when x ∈ X+

n is similar.

For every x ∈ X±n , let

Cn,n−1(x) = { z ∈ Z±n−1 | dn−1(z, x) = dn−1(z,X±n ) } . (2.4.19)

Remark 10. Observe that the sets Cn,n−1(x), for x ∈ Xn, cover Xn−1.

Lemma 2.4.16. For x ∈ X±n , we have Cn,n−1(x) ⊂ Dn−1(x,R±n ).

Proof. This is a direct consequence of Lemmas 2.4.11 and 2.4.12.

Define a graph structure En on Xn by declaring that x, y ∈ Xn are joined by an edge
if

dn−1(Cn,n−1(x), Cn,n−1(y)) ≤ 1 . (2.4.20)

To prove (v), let x, y ∈ Xn. By the induction hypothesis with (v), Xn−1 is connected,
and, by construction, Xn ⊂ Xn−1. So there is some path in (Xn−1, En−1) of the form
(u0 = x, u1, . . . , ua = y). By Remark 10, for each i = 0, . . . , a, there is some zi ∈ Xn such
that ui ∈ Cn,n−1(zi), z0 = x and za = y. Clearly, dn−1(Cn,n−1(zi−1), Cn,n−1(zi)) ≤ 1 for
i = 1, . . . , a. Thus (z0, . . . , za) is a path in Xn connecting x to y.

Let us prove (vi). For x, y ∈ Xn with dn(x, y) = a, there is a finite sequence (x0 =
x, x1, . . . , xa = y) in Xn such that dn(Cn,n−1(xi−1), Cn,n−1(xi)) ≤ 1 for i = 1, . . . , a. By
Lemma 2.4.16, (2.2.7) and (2.4.4), we have dn−1(xi−1, xi) ≤ 2R+

n + 1 = λn. Then (vi)
follows from the triangle inequality, using (2.2.13), (2.4.1) and (2.4.4).

Let us prove (vii). For x, y ∈ Xn, if xEny, then dn−1(x, y) ≤ 2R+
n + 1 by (2.4.20) and

Lemma 2.4.16. So

|Sn(x, 1)| ≤ |Dn−1(x, 2R+
n + 1)| ≤ 4(degXn−1 − 1)2R+

n

by Corollary 2.1.19. Then the bound degXn ≤ ∆n follows by induction with (vii),
using (2.2.7), (2.2.13) and (2.4.4).

Let us prove (viii). Let (m, z) ∈ Pn−1 and x ∈ Xn ∩D−1(p, rm−Kn− 2ΛnR
+
n ). Then

Cn,n−1(x) ⊂ D−1(p, rm −Kn − ΛnR
+
n ) ⊂ dom hm,z (2.4.21)

by Lemma 2.4.16, Proposition 2.3.3 (v), and the induction hypothesis with (vi) and (viii).
Recall that Pn−1 ⊂ Pn−2 by (2.3.4) and (2.3.5). Furthermore, from the induction hypoth-
esis with (viii), Proposition 2.3.3 (v), Corollary 2.4.14, (2.4.19) and (2.4.21), it follows
that

hm,z
(
Cn,n−1(x)

)
= Cn,n−1 (hm,z(x)) . (2.4.22)

So, for x, y ∈ Xn ∩D−1(p, rm −Kn − 2ΛnR
+
n ), (2.4.20) holds if and only if

dn−1(Cn,n−1(hm,z(x)), Cn,n−1(hm,z(y))) ≤ 1 .

Therefore xEny if and only if hm,z(x)Enhm,z(y). Then (viii) is a consequence of Corol-
lary 2.1.12, (2.4.15) and the induction hypothesis with (vi). This completes the proof of
Proposition 2.4.1.
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2.5 Clusters

In order to define the colorings satisfying the conditions of Theorem (2.1.26), we will
divide the sets Xn−1 into “clusters”, denoted by Cn,n−1(x) and indexed by x ∈ Xn. These
will be used in Section 2.6 to construct the suitable colorings locally on this family of
sets.

In Section 2.4, we have defined well-ordered sets (Yn,≤n) for n ∈ N, whose restrictions
to the subsets Xn determine a family of well-orders ≤n. For n ∈ N, let π±n : Z±n−1 → X±n
be defined by

π±n−1(u) = inf{x ∈ X±n | dn−1(u, x) = dn−1(u,X±n ) } , (2.5.1)

with respect to ≤n. For each n ∈ N and x ∈ X±n , let Cn,n−1(x) = (π±n )−1(x). These sets
form a partition of Xn−1, and satisfy

Cn,n−1(x) = Cn,n−1(x) \
⋃

x′∈X±n , x′<nx

Cn,n−1(x′) (2.5.2)

for x ∈ X±n , by (2.4.19) and (2.5.1). For −1 ≤ m < n − 1, we continue defining sets
Cn,m(x) and Cn,m(x) by reverse induction on m, taking

Cn,m(x) =
⋃

u∈Cn,m+1(x)

Cm+1,m(u) , Cn,m(x) =
⋃

u∈Cn,m+1(x)

Cm+1,m(u) .

It is straightforward to check that, for −1 ≤ l1 < l2 < l3 ≤ n,

Cl3,l1(x) =
⋃

u∈Cl3,l2
(x)

Cl2,l1(u) , C l3,l1(x) =
⋃

u∈Cl3,l2
(x)

C l2,l1(u) . (2.5.3)

By (2.2.13) and (2.4.4), we have

Γ±0 = R±0 , Γ±n = R±nΛn−1 + Γ±n−1 . (2.5.4)

Lemma 2.5.1. Cn,−1(x) ⊂ Cn,−1(x) ⊂ D−1(x,Γ±n ).

Proof. We proceed by induction on n. For n = 0 and x ∈ X±0 , we have C0,−1(x) ⊂
D−1(x,R±0 ) by Lemma 2.4.16 and (2.5.2). Now take any n > 0 and suppose that
Cm,−1(y) ⊂ Cm,−1(y) ⊂ D−1(y,Γ±m) for 0 ≤ m < n and y ∈ X±m. By (2.5.3),

Cn,−1(x) =
⋃

u∈Cn,n−1(x)

Cn,n−1(u) , Cn,−1(x) =
⋃

u∈Cn,n−1(x)

Cn,n−1(u) .

We get dn−1(x, u) ≤ R+
n for all u ∈ Cn,n−1(x) by Lemma 2.4.16 and (2.5.2). So d−1(x, u) ≤

Λn−1R
+
n by Proposition 2.4.1 (vii). Then the result follows easily from the induction

hypothesis using the triangle inequality.

Lemma 2.5.2. For every n ∈ N and x ∈ X±n , we have Dn−1(x, r±n ) ⊂ Cn,n−1(x).

Proof. For u ∈ Dn−1(x, r±n ), we have u ∈ Z±n−1 by Lemma 2.4.15, and dn−1(u,Xn) ≤ r±n by
definition. Then the result follows from (2.5.1) and the fact that X±n is (2r+

n +1)-separated
by Proposition 2.4.1 (iv).
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The following result follows from Lemma 2.5.2 by induction.

Corollary 2.5.3. For every n ∈ N and x ∈ Xn, we have D−1(x,
∑n

i=0 ri) ⊂ Cn,n−1(x).

The following lemma states that every Cn,n−1(x) is a star-shaped subset of (Xn−1, En−1)
with center x.

Lemma 2.5.4. For x ∈ X±n and u ∈ Cn,n−1(x), any geodesic segment in (Xn−1, En−1) of
the form τ = (x = τ0, . . . , τl = u) is a path in Cn,n−1(x).

Proof. We prove that τk ∈ Cn,n−1(x) by reverse induction on k = 0, . . . , l. We have
τl = u ∈ Cn,n−1(x) by hypothesis. Now, suppose that τk+1 ∈ Cn,n−1(x) for some k =
0, . . . , l − 1. Assume by absurdity that τk /∈ Cn,n−1(x). Since τ is a geodesic segment,

dn−1(τk, X
±
n ) ≤ dn−1(τk, x) = dn−1(τk+1, x)− 1

= dn−1(τk+1, X
±
n )− 1 ≤ dn−1(τk, X

±
n ) ,

and therefore τk ∈ Cn,n−1(x). So, according to (2.5.1), there must be some y ∈ X±n
such that dn−1(τk, y) = dn−1(τk, x) = k and y <n x. But then dn−1(τk+1, y) ≤ k + 1 =
dn−1(τk+1, x), yielding τk+1 /∈ Cn,n−1(x) by (2.5.1), a contradiction.

Lemma 2.5.5. Let x ∈ Xn ∩ D−1(p, rm −Kn−1 − 2Λn−1R
+
n ) and (m, z) ∈ Pn−1. Then

Cn,n−1(x) ⊂ dom hm,z and hm,z(Cn,n−1(x)) = Cn,n−1(hm,z(x)).

Proof. It is an immediate consequence of (2.4.21), (2.4.22), (2.5.2) and Lemma 3.2.15 (b).

2.6 Colorings

2.6.1 Colorings χn

Given a ∈ N, let [a] = {0, . . . , a− 1}. For n ∈ N and x ∈ X±n , let

Hn,x =
[
ηn
(∣∣Dn−1

(
x, r±n

)∣∣)] , In,x =
[
5 +

∣∣Dn−1

(
x, r±n sn

)∣∣] . (2.6.1)

The standard ordering of N and the calligraphic ordering of I2
n,x can be used to realize

I2
n,x as an initial segment of N. Since |In,x|2 ≤ |Hn,x| by Proposition 2.4.1 (iii), the sets
In,x and I2

n,x become initial segments of Hn,x. For n ∈ N, let

Hn =
⋃
x∈Xn

Hn,x , In =
⋃
x∈Xn

In,x . (2.6.2)

From now on, when referring to a coloring φ : Xn → Hn (respectively, φ : Xn → In), we
assume φ(x) ∈ Hn,x (respectively, φ(x) ∈ In,x) for all x ∈ Xn.

Proposition 2.6.1. For every n ∈ N, there is a coloring χn : Xn → In satisfying the
following conditions:

(i) We have χn(x) = 0 if and only if x ∈ Xn.
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(ii) For all x, y ∈ X±n with dn−1(x, y) ≤ r±n sn, we have χn(x) < χn(y) if and only if
x <n y. In particular, if 0 < dn−1(x, y) ≤ r±n sn, then χn(x) 6= χn(y).

(iii) For every (m, z) ∈ Pn−1, the map hm,z : (Dn(p,Γ+
m), χn)→ (Dn(z,Γ+

m), χn) is color-
preserving.

Proof. First, set χn(x) = 0 for all x ∈ Xn. Then we define χn(x) for x ∈ X±n \ Xn by
induction using ≤n. Let A±x := { y ∈ X±n | y <n x }, and let

χn(x) = min
(
In,x \ ({0} ∪ χn(A±x ∩Dn−1(x, r±n sn)))

)
. (2.6.3)

Note that this is well defined since

|A±x ∩Dn−1(x, r±n sn)| ≤ |Dn−1(x, r±n sn)| − 1 ≤ |In,x| − 1 .

With this definition, it is obvious that χn satisfies (i) and (ii).
To prove (iii), we show by induction on (Xn \ Xn,≤n) that, if x ⊂ Dn(z,Γ+

m) for
(m, z) ∈ Pn−1, then χn(x) = χn(h−1

m,z(x)). By Remark 6, the set Xn ∩D−1(p, rn −Kn−1)
is an initial segment of (Xn,≤n). For x ∈ Xn ∩ D−1(p, rn − Kn−1), the result is trivial
since hm,p is the identity. Suppose x ∈ Xn ∩ Dn(z,Γ+

m) for some (m, z) ∈ Pn−1 with
z 6= p. By (3.2.1) and (2.4.4), we have Dn−1(x, r±n sn) ⊂ D−1(z, rn −Kn−1). Thus

hm,z : (Dn−1(h−1
m,z(x), r±n sn),≤n)→ (Dn−1(x, r±n sn),≤n) (2.6.4)

is order-preserving and an r±n sn-short scale isometry with respect to dn−1 by Proposi-
tion 2.4.1 (viii) and Lemma 3.2.15 (b). Therefore

A±x ∩Dn−1(x, r±n sn) = hm,z(A
±
h−1
m,z(x)

∩Dn−1(h−1
m,z(x), r±n sn)) .

Then, by the induction hypothesis, we have

χn(A±x ∩Dn−1(x, r±n sn)) = χn(A±
h−1
m,z(x)

∩Dn−1(h−1
m,z(x), r±n sn)) .

Moreover In,x = In,h−1
m,y(x) because (2.6.4) is order-preserving and an r±n sn-short scale

isometry with respect to dn−1. Then the result follows from (2.6.3).

2.6.2 Equivalences

We will define, by induction on n ∈ N, the notion of n-equivalence between points
x, y ∈ Xn. In addition, an explicit family of n-equivalences will be constructed, together
with an induced equivalence relation.

Consider the restriction of the graph structure En−1 to Cn,n−1(x), for every n ∈ N
and x ∈ Xn.

Definition 2.6.2. For x, y ∈ X0, a 0-equivalence from x to y, denoted by f : x→ y, is a
pointed graph isomorphism

f : (C0,−1(x), x)→ (C0,−1(y), y)

such that f(C0,−1(x)) = C0,−1(f(x)).
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Let ∼±0 be the equivalence relation on X±0 defined by declaring x ∼±0 y for x, y ∈ X±0
if there is some 0-equivalence (C0,−1(x), x) → (C0,−1(y), y). Let Φ0 be the map defined
on X0 = X+

0 ∪· X−0 that sends each point x ∈ X±0 to its equivalence class with respect to
∼±0 . The range of this map is obviously finite.

Lemma 2.6.3. For n ∈ N, there are disjoint subsets X−,Φ0 , X+,Φ
0 ⊂ X0 satisfying the

following properties:

(a) The sets X±,Φ0 are maximal among the subsets of X±0 where Φ0 is injective.

(b) For u ∈ X±,Φ0 and v ∈ X±0 , if Φ0(u) = Φ0(v), then d0(u, p) ≤ d0(v, p).

Proof. Take in each ∼±0 -equivalence class a representative that minimizes the d0-distance
to p.

By Lemma 2.6.3, for every point x ∈ X±0 , there is a unique element u ∈ X±,Φ0 satisfying
Φ0(x) = Φ0(u). Let rep±0 : X±0 → X±,Φ0 be the maps determined by this correspondence,
and let rep0 : X0 → XΦ

0 := X+,Φ
0 ∪· X−,Φ0 be their union.

Lemma 2.6.4. For all (m, y) ∈ P−1 and x ∈ X±0 ∩ D0(p,Γ+
0 ), the following properties

hold:

(a) C0,−1(x) ⊂ dom hm,y.

(b) The restriction

hm,y : (C0,−1(x), x)→ (C0,−1(hm,y(x)), hm,y(x))

is a 0-equivalence; in particular, x ∼0 hm,y(x) and p ∼0 y.

Proof. By Lemma 2.5.1 and the triangle inequality,

C0,−1(x) ⊂ D−1(x,Γ+
0 ) ⊂ D−1

(
p,Λ0Γ+

m + Γ+
0

)
. (2.6.5)

By (3.2.1) and (2.4.4),
rm > 4ΛmΓ+

m +Km .

The assumption (m, y) ∈ P−1 implies m ≥ 0 according to (2.3.5). So Λm ≥ Λ0 ≥ Λ−1 = 1
by (2.2.13) and (2.4.4), Km ≥ K0 > K−1 = 0 by (2.2.15), (2.2.16) and (2.4.4), and
Γ+
m ≥ R+

0 by (2.4.6). Therefore

rm −K−1 − 2Λ−1R
+
0 > 4ΛmΓ+

m +Km − 2R+
0 > Λ0Γ+

m +R+
0 .

Then (2.6.5) yields

C0,−1(x) ⊂ D−1

(
p, rm −K−1 − 2Λ−1R

+
0

)
, (2.6.6)

completing the proof of (a) because dom hm,y = D−1(p, rm).
Property (b) follows from (2.4.22) and Proposition 2.4.1 (viii).

Proposition 2.6.5. For x ∈ X±0 , there is a 0-equivalence

h0,x :
(
C0,−1 (rep0(x)) , rep0(x)

)
→
(
C0,−1(x), x

)
satisfying the following properties:
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(i) If x ∈ X±,Φ0 , then h0,x is the identity on C0,−1(x).

(ii) For (m, y) ∈ P−1 and x ∈ X0 ∩D0(y,Γ+
0 ), we have h0,x = hm,y ◦ h0,h−1

m,y(x).

(iii) If x ∈ X0, then h0,x = h0,x|C0,−1(x).

Proof. First, set h0,x = idC0,−1(x) for every x ∈ X±,Φ0 , so that (i) is satisfied. Now, we
define h0,x independently for x ∈ Am \ Am−1, where

Am =
⋃
·

y∈Xm

Dn(y,Γ+
m) ∩X0 \XΦ

0

for m ≥ n, and A−1 = ∅. Note that Am is a union of disjoint subsets by Proposi-
tion 2.3.3 (i), since sm ≥ Γ+

m by (3.2.2) and (2.4.4). This completes the definition of
h0,x for all x ∈ X0 because X0 =

⋃
m≥0Am since p ∈ Xm (Proposition 2.3.3 (i) and

Γ+
m ↑ ∞. Moreover (iii) is a direct consequence of (i) and (ii), and therefore we only have

to check (ii).
Let x ∈ Am \ Am−1 for m ≥ 0. On the one hand, if

x ∈
(
D0(p,Γ+

m) \XΦ
0

)
\ Am−1 ,

then let h0,x be any 0-equivalence (C0,−1(rep0(x)), rep0(x))→ (C0,−1(x), x). On the other
hand, if

x ∈
(
D0(y,Γ+

m) \XΦ
0

)
\ Am−1

for some y ∈ Xm \ {p}, then rep0(x) ∈ D0(p,Γ+
m) by Lemma 2.6.3 (b), and let h0,x =

hm,y ◦ h0,h−1
m,y(x). Note that this composite is well defined because

imh0,h−1
m,y(x) = D−1(x, r±0 ) ⊂ D−1(x,R±0 ) ⊂ dom hm,y

by Lemma 2.6.4 (a) and (2.4.8). Property (ii) is obvious with this definition of h0,x.

Now, given any integer n > 0, suppose that we have already defined the equivalence
relations ∼m, the sets XΦ

m, and maps repm and hm,x for 0 ≤ m < n. Let

Cn,−1(x) =
⋃

v∈Dn(x,n)

Cn,−1(v) , Cn,n−1(x) =
⋃

v∈Dn(x,n)

Cn,n−1(v) .

Definition 2.6.6. For n ∈ N and x, y ∈ X±n , a pointed graph isomorphism

f : (Cn,−1(x), x)→ (Cn,−1(y), y)

is called an n-equivalence from x to y, denoted by f : x → y, if it satisfies the following
properties for 0 ≤ m < n and v ∈ Dn(x, n):

(i) We have f(Dn(x, n)) = Dn(f(x), n).

(ii) We have f(Cn,n−1(v)) = Cn,n−1(f(v)) and f(Cn,n−1(v)) = Cn,n−1(f(v)).
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(iii) We have
f
(
X±n−1 ∩ Cn,n−1(x)

)
= X±n−1 ∩ Cn,n−1(y) ,

and
f : (Cn,n−1(x), χn−1)→ (Cn,n−1(y), χn−1)

is a color-preserving graph isomorphism with respect to En−1.

(iv) We have
f (Xn−1 ∩ Cn,n−1(x)) = Xn−1 ∩ Cn,n−1(y) .

(v) For all u ∈ Penn−1(Cn,n−1(x), 1), the restriction f : Cn−1,−1(u) → Cn−1,−1(f(u))
equals hn−1,f(u) ◦ h−1

n−1,u; in particular, it is an (n− 1)-equivalence.

Remark 11. Note that X±n−1 ∩ Cn,n−1(x), Cn−1,−1(u) ⊂ Cn,−1(x) by (2.5.3).

Remark 12. For u ∈ Penn−1(Cn,n−1(x), 1) and v ∈ Dn−1(u, n − 1), dn(x, πn(v)) ≤ n
by Proposition 2.4.1 (vi) and the definition of En. So Cn−1,−1(v) ⊂ dom f in Defini-
tion 2.6.6 (v).

The following lemma is an immediate consequence of Definitions 2.6.6 and 2.6.16.

Lemma 2.6.7. For n ∈ N, the family of n-equivalences between points of X±n is closed
by the operations of composition and inversion of maps.

According to Lemma 2.6.7, for n ∈ N, an equivalence relation ∼±n on X±n is defined
by declaring x ∼±n y if there is some n-equivalence between x and y. Let Φn be the map
defined on Xn = X+

n ∪· X−n that sends each point x ∈ X±n to its equivalence class with
respect to ∼±n . The range of each of these maps is obviously finite.

Lemma 2.6.8. For n ∈ N, there are disjoint subsets X−,Φn , X+,Φ
n ⊂ Xn satisfying the

following properties:

(a) The sets X±,Φn are maximal among the subsets of X±n where Φn is injective.

(b) For u ∈ X±,Φn and v ∈ X±n , if Φn(u) = Φn(v), then dn(u, p) ≤ dn(v, p).

Proof. This follows by taking in each∼±n -equivalence class a representative that minimizes
the dn-distance to p.

By Lemma 2.6.8, for every point x ∈ X±n , there is a unique element u ∈ X±,Φn satisfying
Φn(x) = Φn(u). Let rep±n : X±n → X±,Φn be the maps determined by this correspondence,
and let repn : Xn → XΦ

n := X+,Φ
n ∪· X−,Φn be their union.

Lemma 2.6.9. For all (m, y) ∈ Pn−1 and x ∈ X±n ∩Dn(p,Γ+
m), the following properties

hold:

(a) Cn,−1(v) ⊂ dom hm,y.

(b) The restriction

hm,y : (Cn,−1(x), x)→ (Cn,−1(hm,y(x)), hm,y(x))

is an n-equivalence; in particular, x ∼n hm,y(x) and p ∼n y.
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Proof. By Lemma 2.5.1, Cn,−1(v) ⊂ D−1(v,Γ+
n ) for every v ∈ Dn(x, n). Using the triangle

inequality, we get

Cn,−1(v) ⊂ D−1(x,Γ+
n + nΛn) ⊂ D−1

(
p,Λn(Γ+

m + n) + Γ+
n

)
. (2.6.7)

By (3.2.1) and (2.4.4), we have

rm > 4Λm(Γ+
m +m) +Km .

The assumption (m, y) ∈ Pn−1 implies m ≥ n according to (3.2.20). So Λm ≥ Λn > Λn−1

by (2.2.13) and (2.4.4), Km ≥ Kn > Kn−1 by (2.2.15), (2.2.16) and (2.4.4), and Γ+
m ≥ R+

n

by (2.4.6). Therefore

rm −Kn > 4Λm(Γ+
m +m) +Km −Kn > Λn(Γ+

m + n) + Γ+
n .

Then (2.6.7) yields

Cn,−1(v) ⊂ D−1 (p, rm −Kn) , (2.6.8)

completing the proof of (a) because dom hm,y = D−1(p, rm).
Let us prove (b). We proceed by induction on n. For n = 0, the result follows

from Lemma 2.6.4 (b). So suppose that, given some n > 0, the result is true for
0 ≤ m < n. Definition 2.6.6 (i) follows from Proposition 2.4.1 (viii) and (2.6.8).
By Lemma 2.5.5, (2.4.22) and (2.6.8), we get hm,y(Cn,n−1(u)) = Cn,n−1(hm,y(u)) and
hm,y(Cn,n−1(u)) = Cn,n−1(hm,y(u)) for every v ∈ Dn(x, n) and u ∈ Cn,l(v). Thus Defini-
tion 2.6.6 (ii) is satisfied. The map hm,y : Cn,n−1(v)→ Cn,n−1(w) is a graph isomorphism
that preserves χn−1 by Propositions 2.4.1 (viii) and 2.6.1 (iii). Therefore

hm,y(X
±
m ∩ Cn,n−1(x)) = X±m ∩ Cn,n−1(y)

by Proposition 2.4.1 (ii),(viii). Hence hm,y satisfies Definition 2.6.6 (iii). Definition 2.6.6 (v)
follows by the induction hypothesis. By Proposition 3.2.9 (iii), we have Xn−1∩D(y, rl) =
hm,y(X

m
n−1) for each (m, y) ∈ Pn−1. In particular, for (m, y) = (m, p), we obtain

Xm
n−1 = Xn−1 ∩D(p, rm). So

Xn−1 ∩D(y, rl) = hm,y(Xn−1 ∩D(p, rl)) ,

and Definition 2.6.6 (iv) follows using (2.6.7) and (a), since rm ≥ R+
n ≥ r±n according

to (2.4.6)–(2.4.8). Therefore hm,y satisfies Definition 2.6.6 (iv). This completes the proof
of (b).

Proposition 2.6.10. For n ∈ N and x ∈ Xn, there is an n-equivalence hn,x : repn(x)→
xsatisfying the following properties:

(i) If x ∈ XΦ
n , then hn,x is the identity on Cn,−1(x).

(ii) For (m, y) ∈ Pn−1 and x ∈ Xn ∩Dn(y,Γ+
m), we have hn,x = hm,y ◦ hn,h−1

m,y(x).

(iii) If x ∈ Xn, then hn,x = hn,x on Cn,−1(x).
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Proof. First, define hn,x as the identity on Cn,−1(x) for every x ∈ XΦ
n , so that (i) is

satisfied. Now, we define hn,x independently for x ∈ Am \ Am−1, where

Am =
⋃
·

y∈Xm

Dn(y,Γ+
m) ∩Xn \XΦ

n

for m ≥ n, and An−1 = ∅. Note that Am is a union of disjoint subsets by Proposi-
tion 2.3.3 (i), since sm ≥ Γ+

m by (3.2.2) and (2.4.4). This completes the definition of
hn,x for all x ∈ Xn because Xn =

⋃
m≥nAm since p ∈ Xm (Proposition 2.3.3 (i) and

Γ+
m ↑ ∞. Moreover (iii) is a direct consequence of (i) and (ii), and therefore we only have

to check (ii).
Let x ∈ Am \ Am−1 for m ≥ n. On the one hand, if

x ∈
(
Dn(p,Γ+

m) ∩Xn \XΦ
n

)
\ Am−1 ,

then let hn,x : repn(x) → x be any n-equivalence, whose existence is guaranteed by the
definition of repn. On the other hand, if

x ∈
(
Dn(y,Γ+

m) ∩Xn \XΦ
n

)
\ Am−1

for some y ∈ Xm \ {p}, then repn(x) ∈ Dn(p,Γ+
m) by Lemmas 2.6.3 (b) and 2.6.8 (b), and

let hn,x = hm,y ◦ hn,h−1
m,y(x). Note that this composite is well defined because, for x ∈ X±n ,

imhn,h−1
m,y(x) = Dn−1(x, r±n ) ⊂ Dn−1(x,R±n ) ⊂ dom hm,y

by Lemma 2.6.9 (a) and (2.4.8). Property (ii) is obvious with this definition of hn,x.

Remark 13. In accordance with the discussion at the beginning of Section 2.4, only
Proposition 2.6.10 (i) is needed to prove Theorem 2.1.26 (i), whereas the whole Proposi-
tion 2.6.10 is needed to prove Theorem 2.1.26 (ii).

Remark 14. Note that the definitions of ∼±n , Φn e rep±n , and the properties of X±,Φn

already guarantee the existence of n-equivalences hn,x. Moreover there is no problem to
assume (i) and (iii). So the really new contribution of Proposition 2.6.10 is (ii).

2.6.3 Weak equivalences

Next we introduce another notion of equivalence very similar to that of n-equivalence.
We need both concepts due to how we prove the crucial Lemma 2.6.42. In this result we
first prove that a certain map is an n-weak equivalence, and use that to conclude that it
is in fact an n-equivalence over a smaller domain.

Definition 2.6.11. For x, y ∈ X0, a 0-weak equivalence from x to y, denoted f : x→ y,
is a pointed graph isomorphism (D−1(x, r±n ), x)→ (D−1(y, r±n ), y)

Let ∼̂±0 be the equivalence relation on X±0 defined by declaring x∼̂±0 y for x, y ∈ X±0 if

there is some 0-weak equivalence (D−1(x, r±0 ), x) → (D−1(y, r±0 ), y). Let Φ̂0 be the map
defined on X0 = X+

0 ∪· X−0 that sends each point x ∈ X±0 to its equivalence class with
respect to ∼̂±0 . The range of this map is obviously finite.
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Lemma 2.6.12. Let f : x→ y be a 0-equivalence. Then the restriction of f to D−1(x, r±0 )
is a 0-weak equivalence; in particular, x ∼0 y implies x∼̂0y.

Lemma 2.6.13. For n ∈ N, there are disjoint subsets X−,Φ̂0 , X+,Φ̂
0 ⊂ X0 satisfying the

following properties:

(a) The sets X±,Φ̂0 are maximal among the subsets of X±0 where Φ̂0 is injective.

(b) For u ∈ X±,Φ̂0 and v ∈ X±0 , if Φ̂0(u) = Φ̂0(v), then d0(u, p) ≤ d0(v, p).

(c) We have X±,Φ̂0 ⊂ X±,Φ0 .

Proof. Take in each ∼̂±0 -equivalence class a representative that minimizes the d0-distance
to p.

By Lemma 2.6.3, for each point x ∈ X±0 , there is a unique element u ∈ X±,Φ̂0 satisfying

Φ̂0(x) = Φ̂0(u). Let r̂ep±0 : X±0 → X±,Φ̂0 be the maps determined by this correspondence,

and let r̂ep0 : X0 → X Φ̂
0 := X+,Φ̂

0 ∪· X−,Φ̂0 be their union.
The following lemma follows from Lemmas 2.6.4 and 2.6.12.

Lemma 2.6.14. For all (m, y) ∈ P−1 and x ∈ X±0 ∩D0(p,Γ+
0 ), the following properties

hold:

(a) D−1(x, r±0 )(x) ⊂ dom hm,y.

(b) The restriction

hm,y : (D−1(x, r±0 )(x), x)→ (D−1(x, r±0 )(x), hm,y(x))

is a 0-weak equivalence; in particular, x ∼̂0 hm,y(x) and p ∼̂0 y.

Proposition 2.6.15. For x ∈ X±0 , there is a 0-weak equivalence

ĥ0,x :
(
D−1(r̂ep0(x), r±0 ), r̂ep0(x)

)
→
(
D−1(x, r±0 ), x

)
satisfying the following properties:

(i) If x ∈ X±,Φ̂0 , then ĥ0,x is the identity on D−1(x, r±0 )(x).

(ii) For all x ∈ X±0 , ĥ0,x = h0,x ◦ ĥ0,rep0(x).

Proof. First, for every x ∈ X±,Φ̂0 , let ĥ0,x be the identity on D−1(x, r±0 ). Then, for points

x ∈ X±,Φ0 \ X±,Φ̂0 , let ĥ0,x : r̂ep0(x) → x be any 0-weak equivalence. Finally, for every

x ∈ X0 \X±,Φ0 , let ĥ0,x = h0,x ◦ ĥ0,rep0(x).

Now, given any integer n > 0, suppose that we have already defined the equivalence
relations ∼̂m, the sets X Φ̂

m, and maps r̂epm and ĥm,x for 0 ≤ m < n. Let

Cn(x) =
⋃

u∈Dn−1(x,r±n )

Cn−1,−1(u) .
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Definition 2.6.16. For n ∈ N and x, y ∈ X±n , a pointed graph isomorphism

f : (Cn(x), x)→ (Cn(y), y)

is called an n-weak equivalence from x to y, denoted f : x→ y, if it satisfies the following
properties for 0 ≤ m < n and v ∈ Dn(x, n):

(i) We have f(Dn−1(x, r±n )) = Dn−1(y, r±n ).

(ii) We have
f
(
X±n−1 ∩Dn−1(x, r±n )

)
= X±n−1 ∩Dn−1(y, r±n ) ,

and
f :
(
Dn−1(x, r±n ), χn−1

)
→
(
Dn−1(y, r±n ), χn−1

)
is a color-preserving graph isomorphism with respect to En−1.

(iii) We have
f
(
Xn−1 ∩Dn−1(x, r±n )

)
= Xn−1 ∩Dn−1(x, r±n ) .

(iv) For every u ∈ Dn−1(x, r±n − 1), the restriction f : Cn−1(u) → Cn−1(f(u)) equals
hn−1,f(u) ◦ h−1

n−1,u; in particular, it is an (n− 1)-equivalence.

Remark 15. Note that, for n > 0, x ∈ Xn and u ∈ Dn−1(x, r±n − 1), we have Cn−1(u) ⊂
Cn(x) because Dn−1(u, 1) ⊂ Dn−1(x, r±n ).

The following lemma is an immediate consequence of Definitions 2.6.6 and 2.6.16.

Lemma 2.6.17. The family of n-weak equivalences between points of X±n is closed by
the operations of composition and inversion of maps. Moreover the composition of an
n-weak equivalence and an n-equivalence is an n-weak equivalence; in particular, every
n-equivalence is an n-weak equivalence.

According to Lemma 2.6.17, for n ∈ N, an equivalence relation ∼̂±n on X±n is defined

by declaring x∼̂±n y if there is some n-equivalence between x and y. Let Φ̂n be the map
defined on Xn = X+

n ∪· X−n that sends each point x ∈ X±n to its equivalence class with
respect to ∼̂±n . The range of each of these maps is obviously finite.

Lemma 2.6.18. For n ∈ N, there are disjoint subsets X−,Φ̂n , X+,Φ̂
n ⊂ Xn satisfying the

following properties:

(a) We have X±,Φ̂n ⊂ X±,Φ̂n .

(b) The sets X±,Φ̂n are maximal among the subsets of X±n where Φ̂n is injective.

(c) For u ∈ X±,Φ̂n and v ∈ X±n , if Φ̂n(u) = Φ̂n(v), then dn(u, p) ≤ dn(v, p).

Proof. Take in each ∼̂±n -equivalence class a representative that minimizes the dn-distance
to p.

By Lemma 2.6.8, for each point x ∈ X±n , there is a unique element u ∈ X±,Φ̂n satisfying

Φ̂n(x) = Φ̂n(u). Let r̂ep±n : X±n → X±,Φ̂n be the maps determined by this correspondence,

and let r̂epn : Xn → X Φ̂
n := X+,Φ̂

n ∪· X−,Φ̂n be their union.
The following result follows from Lemmas 2.6.14 and 2.6.17.
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Lemma 2.6.19. For all (m, y) ∈ P−1 and x ∈ X±n ∩Dn(p,Γ+
0 ), the following properties

hold.

(a) Cn(x) ⊂ dom hm,y.

(b) The restriction

hm,y : (Cn(x), x)→ (Cn−1,−1(hm,y(x)), hm,y(x))

is a n-weak equivalence; in particular, x ∼̂n hm,y(x) and p ∼̂n y.

Proposition 2.6.20. For x ∈ X±n , there is a n-weak equivalence ĥn,x : r̂epn(x) → x
satisfying the following properties:

(i) If x ∈ X±,Φ̂n , then ĥn,x is the identity on Dn−1(x, r±n ).

(ii) For all x ∈ X±n , ĥn,x = hn,x ◦ ĥn,repn(x).

Proof. The proof is identical to that of Proposition 2.6.15.

2.6.4 BFS-orderings

We introduce a special kind of orderings on graphs that are used to produce aperiodic
colorings. They are essentially a reformulation of the breadth-first search spanning trees
in [27].

Definition 2.6.21. Let (A, x) be a pointed connected graph with finite vertex degrees
endowed with an order relation ≤. Define the parent map, Pa: A \ {x} → A, by

Pa(u) = minS(u, 1) . (2.6.9)

For v ∈ A, its children set, denoted by Ch(v), is

Ch(v) = Pa−1(v) = S(v, 1) \
( ⋃
w<v

S(w, 1) ∪ {x}
)
. (2.6.10)

Definition 2.6.22. A BFS-ordering on a pointed connected graph (A, x) is an order E
on A satisfying the following conditions for all u, v ∈ A:

(i) If d(x, u) < d(x, v), then u C v.

(ii) If u, v 6= x and Pa(u) C Pa(v), then u C v.

There exists a BFS-ordering E on any pointed connected graph (A, x) with finite
vertex degrees. It can be defined on D(x, n) by induction on n ∈ N as follows. First,
declare x to be the least element in A. Then the restriction of E to S(x, 1) is any order,
and declare the points in D(x, 1) to be an initial segment of E. Next, the restriction of
E to S(x, 2) is any order such that u / v if

min(S(1, u) ∩D(1, x)) /min(S(1, v) ∩D(1, x)) ,

and so on. This argument gives the following result.
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Lemma 2.6.23. Let a ∈ N, let (A, x) be a pointed connected graph with finite vertex
degrees. Then there is a BFS-ordering E on (A, x).

Given an isomorphism of graphs, f : A → B, and an order relation ≤A on A (≤A ⊂
A × A), the corresponding push-forward order relation on B is (f × f)(≤A) ⊂ B × B,
simply denoted by f(≤A).

Recall that Cn,n−1(x) is a connected subgraph of (Xn−1, En−1) by Lemma 2.5.4. Con-
sider the n-equivalences hn,x, for n ∈ N and x ∈ Xn, given by Proposition 2.6.10.

Proposition 2.6.24. For n ∈ N and x ∈ Xn, there is a BFS-ordering En,x on the pointed
connected graph (Cn,n−1(x), x) satisfying En,x= hn,repn(x)(En,repn(x)).

Proof. Take any BFS-ordering En,x on (Cn,n−1(x), x) for x ∈ XΦ
n (Lemma 2.6.23). Then

define En,x= hn,repn(x)(En,repn(x)) for x ∈ Xn \XΦ
n .

From now on, for every n ∈ N and x ∈ Xn, the notation Pan,x and Chn,x is used for
the parent map and children sets on the pointed connected graph (Cn,n−1(x), x), with the
BFS-ordering En,x given by Proposition 2.6.24.

Lemma 2.6.25. Let n ∈ N and x ∈ Xn. The following properties hold for every u ∈
Cn,n−1(x):

(a) If u 6= x, then dn−1(x,Pan,x(u)) = dn−1(x, u)− 1.

(b) We have ⋃
·

v∈Cn,n−1(x)

Chn,x(v) = Cn,n−1(x) \ {x} .

(c) If u 6= x, then |Chn,x(u)| ≤ ∆n−1 − 1.

Proof. Property (a) is an easy consequence of Definitions 2.6.21 and 2.6.22 (i). Prop-
erty (c) follows from (a) and Definition 2.6.21, whereas (b) is obvious.

2.6.5 Adapted colorings for n = 0

When we sketched the outline of the proof in Section 1.1.5, it was said that we needed
to construct many colorings ψin,x on the clusters Cn,n−1(x) that break the symmetries of
the cluster. These are the building blocks that we will use to construct the colorings in
the statement of Theorem 2.1.26.

Definition 2.6.26. For x ∈ X0, a coloring ψ : C0,−1(x)→ [∆] is said to be adapted if it
satisfies the following two conditions:

(i) There is a geodesic segment in (X−1, E−1) of the form τ = (x = τ0, . . . , τ5) such
that

ψ−1(0) ∩D−1(x, 7) =

{
{τ0, τ1, τ2, τ5} if x ∈ X−0
{τ0, τ1, τ2, τ4, τ5} if x ∈ X+

0 .

(ii) For all u ∈ C0,−1(x), the coloring ψ is injective on Ch0,x(u).
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It is said that ψ is strongly adapted if it is adapted and moreover the following property
holds:

(iii) We have ψ−1(0) \D−1(x, 7) = ∅.

Lemma 2.6.27. For every x ∈ X±0 , there is a strongly adapted coloring ψx : C0,−1(x)→
[∆].

Proof. First, choose a geodesic segment in (X−1, E−1) of the form τ = (x = τ0, . . . , τ5),
which is contained in C0,−1(x) because D−1(x, r±0 ) ⊂ C0,−1(x) (Lemma 2.5.2), and r±0 >
211 by (2.4.3) and (2.4.7). Consider the set

T−0 = {τ0, τ1, τ2, τ5} if x ∈ X−0 , or

T+
0 = {τ0, τ1, τ2, τ4, τ5} if x ∈ X+

0 .

Color the corresponding set T±0 with the color 0, depending on whether x ∈ X−0 or
x ∈ X+

0 . In both cases ψx(x) = 0. The sets Ch0,x(u), for u ∈ C0,−1(x), form a par-
tition of C0,−1(x) \ {x} by Lemma 2.6.25 (b). Moreover |Ch0,x(u) \ T±n | ≤ ∆ − 1 by
Lemma 2.6.25 (c). So, for each u ∈ C0,−1(x), we can color the points in Ch0,x(u)\T±n with
different colors from {1, . . . ,∆−1}. This procedure defines a coloring ψx : C0,−1(x)→ [∆]
satisfying all conditions of Definition 2.6.26.

For a colored graph, (X,φ), and a graph isomorphism, h : X → Y , the notation h(φ)
is used for the corresponding pushforward coloring of Y .

Proposition 2.6.28. There is a family of strongly adapted colorings, ψ0
0,x : C0,−1(x) →

[∆], for x ∈ X0, satisfying ψ0
0,x = h0,x(ψ

0
0,rep0(x)).

Proof. If x ∈ XΦ
0 , take any strongly adapted coloring (Lemma 2.6.27). If x ∈ X0\XΦ

0 , let
ψ0

0,x = h0,x(ψ
0
0,rep0(x)). It is trivial to check that h0,x(ψ

0
0,rep0(x)) satisfies the properties (i)

and (iii) of Definition 2.6.26, whereas its property (ii) follows from Proposition 2.6.24.

Proposition 2.6.29. There is a family of colorings, ψi0,x : C0,−1(x) → [∆], for x ∈ X0

and i ∈ H0,x, satisfying the following properties:

(i) The coloring ψ0
0,x is strongly adapted.

(ii) We have ψi0,x = h0,x(ψ
i
0,rep0(x)).

(iii) For i ∈ H0,x, the coloring ψi0,x is adapted.

(iv) For x ∈ X0 and i, j ∈ H0,x, let A = C0,−1(x) (respectively, A = D−1(x, r±n )), and
let f : (A, x, ψi0,x) → (A, x, ψj0,x) be a color-preserving 0-equivalence (respectively,
0-weak equivalence). Then f is the identity map on A, and i = j.

Proof. First, for i = 0, we take the strongly adapted colorings ψ0
0,x constructed in Propo-

sition 2.6.28. So (i) is satisfied.
For every x ∈ X±,Φ0 , choose a maximal 3-separated subset N0,x of C−1(x, 10, r±0 ),

together with an enumeration of its powerset,

P(N0,x) = {N0
0,x = ∅, N1

0,x, . . . } .
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We have |D−1(x, 10)| ≤ ∆11 by Corollary 2.1.19. Thus |C−1(x, 10, r±0 )| ≥ |D−1(x, r±0 )| −
∆11 (recall that r±0 > 211). By Lemma 2.1.7, N0,x is 2-relatively dense in C−1(x, 10, r±0 ).
So

|N0,x| ≥
⌊(
|D−1(x, r±n )| −∆11

)
/∆3

⌋
≥
⌊(
|D−1(x, r±n )| −∆11 − 1

)
/∆3

⌋
(2.6.11)

by Lemma 2.1.20. Therefore

|P(N0,x)| ≥ exp2

(⌊(
|D−1(x, r±n )| −∆11 − 1

)
/∆3

⌋)
= η0(|D−1(x, r±n )|) .

Thus an injective map H0,x → P(N0,x) is well defined by i 7→ Ni
0,x.

If x /∈ XΦ
0 , let N0,x = h0,x(N0,rep0(x)) and Ni

0,x = h0,x(N
i
0,rep0(x)), so that N0,x satis-

fies (2.6.11). Then define

ψi0,x(u) =

{
ψ0

0,x(u) if u /∈ Ni
0,x

0 if u ∈ Ni
0,x .

Note that this definition agrees with the previous one in the case i = 0. Property (ii)
follows immediately from Proposition 2.6.28 and the fact that Ni

0,x = h0,x(N
i
0,rep0(x)).

To prove (iii), note that ψi0,x = ψ0
0,x on D−1(x, 10) by construction. So Defini-

tion 2.6.26 (i) is trivially satisfied by ψi0,x. For every u ∈ C0,−1(x), we have Ch0,x(u) ⊂
D−1(u, 1), which yields d(v, w) ≤ 2 for all v, w ∈ Ch0,x(u). Hence N0,x ∩ Ch0,x(u) has
at most one point because N0,x is 3-separated, and therefore Ni

0,x ∩ Ch0,x(u) has at
most one point. The coloring φ0

0,x assigns different colors to all points in Ch0,x(u) (Def-
inition 2.6.26 (ii). If u ∈ D−1(x, 9), then Ch0,x(u) ⊂ D−1(x, 10), and therefore ψi0,x
also assigs different colors to all points in Ch0,x(u) since ψi0,x = ψ0

0,x on D−1(x, 10). If
u ∈ C0,−1(x) \D−1(x, 9), then ψ0

0,x assigns different colors to all points in Ch0,x(u), all of
them different from 0, and it follows from the definition that ψi0,x assigns different colors
to those points too. Thus Definition 2.6.26 (ii) is satisfied by ψi0,x, and the coloring ψi0,x
is adapted.

To prove (iv), suppose first that A = C0,−1(x) and f is a 0-equivalence. For all
u ∈ C0,−1(x), we show that f is the identity map on Chn,x(u), and that Ni

0,x∩Chn,x(u) =

N
j
0,x ∩ Chn,x(u), using induction on u with E0,x. This will complete the proof because it

follows that f is the identity map and Ni
0,x = N

j
0,x, yielding i = j.

First, we have f(x) = x by Definition 2.6.26 (i), since x is the unique point having
the correct coloring pattern on some geodesic segment of the form τ = (x = τ0, . . . , τ5).
Also, we have

Ni
0,x ∩ Chn,x(x) = N

j
0,x ∩ Chn,x(x) = ∅

since N0,x ∩D(x, 10) = ∅.
Suppose now that, for some u ∈ C0,−1(x) with d−1(u, x) > 0, f is the identity map

on Ch0,x(v) and Ni
0,x ∩ Chn,x(v) = N

j
0,x ∩ Chn,x(v) for all v C0,x u. In particular, f is

the identity map on Chn,x(Pan,x(u)), and therefore f(u) = u. Furthermore this implies
f(Ch0,x(u)) = Ch0,x(u) by (2.6.10). By definition, for l = i, j, we have ψl0,x = ψ0

0,x on
Ch0,x(u) \ N0,x, and ψl0,x(u) = 0 if u ∈ Nl

0,x. Recall that N0,x ∩ Ch0,x(u) has at most
one point, which is denoted by w. By (iii) and Definition 2.6.26 (ii), ψ0

0,x is injective on

Ch0,x(u)\{w}. Thus ψi0,x and ψj0,x agree and are injective on Ch0,x(u)\{w}, and therefore
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f is the identity on Ch0,x(u) \ {w}. But this yields f(w) = w, and f is color preserving
only if Ch0,x(u) ∩Ni

0,x = Ch0,x(u) ∩N
j
0,x.

The proof of (iv) when A = D−1(x, r±0 ) and f is a 0-weak equivalence is similar.

Corollary 2.6.30. Let x, y ∈ X0, i ∈ H0,x and j ∈ H0,y, let A = C0,−1(x) (respectively,
A = D−1(x, r±n )), and let f : (A, x, ψi0,x)→ (A, x, ψj0,x) be a color-preserving 0-equivalence
(respectively, 0-weak equivalence). Then i = j and f = hn,y ◦ h−1

n,x on A.

Proof. Suppose that A = C0,−1(x). Since there is a 0-equivalence between x and y, we
have Φ0(x) = Φ0(y) and rep0(x) = rep0(y) =: z. So h∗0,xψ

l
0,x = ψl0,z for l = i, j by

Proposition 2.6.29 (ii). Then

h−1
0,y ◦ f ◦ h0,x : (C0,−1(z), z, ψi0,z)→ (C0,−1(z), z, ψj0,z)

is a color-preserving 0-equivalence. The result follows from Proposition 2.6.29 (iv).
The case where A = D−1(x, r±n ) is similar.

2.6.6 Adapted colorings for n > 0

Definition 2.6.31. Let x ∈ Xn. A coloring ψ : Cn,n−1(x)→ In−1 is said to be adapted if
the following conditions are satisfied:

(i) We have ψ−1(0) = Xn−1 ∩ Cn,n−1(x).

(ii) We have

ψ−1(1) =

{
{x} if x ∈ X−n \ Xn−1

∅ otherwise .

(iii) We have

ψ−1(2) =

{
{x} if x ∈ X+

n \ Xn−1

∅ otherwise .

(iv) If x ∈ Xn−1∩X+
n , then ψ−1(3) = {y} for some y ∈ Sn−1(x, 1), otherwise ψ−1(3) = ∅.

(v) If x ∈ Xn−1∩X−n , then ψ−1(4) = {y} for some y ∈ Sn−1(x, 1), otherwise ψ−1(4) = ∅.

The coloring ψ is strongly adapted if it is adapted and, additionally, it satisfies the fol-
lowing condition:

(vi) ψ−1(5) = ∅.

Recall that the sets Cn,n−1(x), for x ∈ Xn, form a partition of Xn−1 by definition.

Lemma 2.6.32. Consider a family of adapted colorings, ψx : Cn,n−1(x) → In−1, for
x ∈ Xn, whose combination is denoted by ψ. For every u ∈ Xn−1, we have u ∈ Xn if
and only if, either ψ(u) ∈ {1, 2}, or ψ(u) = 0 and there is some v ∈ Sn−1(u, 1) such that
ψ(v) ∈ {3, 4}.
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By Proposition 2.4.1 (vi), and Lemmas 2.4.16 and 2.5.1 , we have d−1(u, v) ≤ 2Λn−1R
+
n

for any u, v ∈ Cn,n−1(x). On the other hand, if u, v ∈ Xn−1, then d−1(u, v) ≥ sn−1 by
Proposition 2.3.3 (i). Since sn−1 > 3Λn−1Γ+

n ≥ 3Λn−1R
+
n by (3.2.2), (2.4.4) and (2.4.6),

it follows that

|Cn,n−1(x) ∩ Xn−1| ≤ 1 . (2.6.12)

Lemma 2.6.33. For every x ∈ Xn, there is a strongly adapted coloring ψx : Cn,n−1(x)→
In−1.

Proof. First, note that [7] ⊂ In−1,u for all u ∈ Cn,n−1(x) by (2.6.1). Define ψx(u) = 0 for
every u ∈ Cn,n−1(x)∩Xn−1. In the case where x ∈ Xn−1, choose some y ∈ Sn−1(x, 1) and
define

ψx(y) =

{
3 if x ∈ X−n
4 if x /∈ X+

n .

If x /∈ Xn−1, set

ψx(x) =

{
1 if x ∈ X−n
2 if x /∈ X+

n .

Let A be the set of points in Cn,n−1(x) that have been already colored at this point.
For u ∈ Cn,n−1(x) \ A, let φx(u) be any color in In−1,u \ [6].

Proposition 2.6.34. There is a family of strongly adapted colorings, ψ0
n,x : Cn,n−1(x)→

In−1, for x ∈ Xn, satisfying ψ0
n,x = hn,x(ψ

0
n,repn(x)).

Proof. This follows from Lemma 2.6.33 like Proposition 2.6.28.

Proposition 2.6.35. There is a family of colorings, ψin,x : Cn,n−1(x)→ In−1, for x ∈ Xn

and i ∈ Hn,x, satisfying the following properties:

(i) The coloring ψ0
n,x is strongly adapted.

(ii) We have ψin,x = hn,x(ψ
i
n,repn(x)).

(iii) Each coloring ψin,x is adapted.

(iv) There are sets Ni
n,x ⊂ Cn−1(x, 10, r±n − 1), for x ∈ Xn and i ∈ Hn,x, satisfying:

(a) Ni
n,x = ĥn,x(N

i
n,r̂epn(x));

(b) (ψin−1,x)
−1(4) = Ni

n,x; and

(c) Ni
n,x 6= Nj

n,x if i 6= j.

Proof. First, for i = 0, we take the strongly adapted colorings φ0
0,x constructed in Propo-

sition 2.6.28, so that (i) is satisfied.

For every x ∈ X±,Φ̂n , let Nn,x be a maximal subset of Cn−1(x, 10, r±n ) \ Xn−1 that is
r2
n−1sn−1-separated with respect to dn−2. Choose an enumeration of the powerset P(Nn,x),

P(Nn,x) = {N0
n,x := ∅, N1

n,x, . . . } .



2.6. Colorings 55

We have |Dn−1(x, 10)| ≤ (degXn−1)11 and |Cn,n−1(x) ∩ Xn−1| ≤ 1 by Corollary 2.1.19
and (2.6.12). Therefore

|Cn−1(x, 10, r±n ) \ Xn−1| ≥ |Dn−1(x, r±n )| − (degXn−1)11 − 1 .

By Lemma 2.1.7, Nn,x is (r2
n−1sn−1 − 1)-relatively dense in |Cn−1(x, 10, r±n )| with respect

to dn−2, so

|Nn,x| ≥
⌊(
|Dn−1(x, r±n )| − (degXn−1)11 − 1

)
/(degXn−2)r

2
n−1sn−1

⌋
(2.6.13)

by Lemma 2.1.20. Therefore, by (2.4.2),

|P(Nn,x)| ≥ exp2

(⌊(
|Dn−1(x, r±n )| − (degXn−1)11 − 1

)
/(degXn−2)r

2
n−1sn−1

⌋)
= ηn(|Dn−1(x, r±n )|) .

Thus an injective map Hn,x → P(Nn,x) is well defined by i 7→ Ni
n,x.

If x /∈ X Φ̂
0 , let Nn,x = ĥn,x(Nn,repn(x)) and Ni

n,x = ĥn,x(N
i
n,repn(x)), so that Nn,x satis-

fies (2.6.13). Then define

ψin,x(u) =

{
ψ0
n,x(u) if u /∈ Ni

n,x

4 if u ∈ Ni
n,x .

With this definition, (i) is obvious because N0
n,x = ∅. Property (ii) follows immediately

from Proposition 2.6.34 and the fact that Ni
0,x = h0,x(N

i
0,rep0(x)) if x /∈ XΦ

0 . Finally, (iv)

follows since Ni
n,x 6= Nj

n,x for i 6= j.

Remark 16. In Section 2.6.1, it was said that I2
n,x is considered as an initial segment of

Hn,x for every x ∈ Xn. Let ιn,x denote the inclusion I2
n,x ↪→ Hn,x. From now on, the

notation ψi,jn,x will refer to the coloring ψ
ιn,x(i,j)
n,x .

2.6.7 Colorings φNn

In this subsection we proceed to define the colorings φNn , which will give us the colorings
φN in the statement of Theorem 2.1.27. First we define the notion of a rigid coloring,
which are those obtained by combining different colorings ψi0,x over clusters C0,−1(x).

Definition 2.6.36. Let n ∈ N and x ∈ Xn. A coloring φ : Cn,−1(x)→ [∆] is called rigid
if, for all u ∈ Cn,0(x), there is some i ∈ Hn,x such that the restriction of φ to C0,−1(u)
equals ψi0,x.

Lemma 2.6.37. For all x1, x2 ∈ X+
n , if dn(x1, x2) ≤ 2, then dn−1(x1, x2) < r+

n sn.

Proof. By the definition of En, there is a point x3 ∈ Xn and points, u1 ∈ Cn,n−1(x1), u2 ∈
Cn,n−1(x2) and u3, u

′
3 ∈ Cn,n−1(x3), such that u1En−1u3 and u′3En−1u2. By Lemma 2.4.16,

the triangle inequality, (2.2.13) and (2.4.4), we get

dn−1(x1, x2) ≤ 4R+
n + 2 = 4(rn(2sn + 3)) + 2 ≤ 20rnsn < rns

2
n ,

since sn > 20 by (2.2.1) and (2.2.8).
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Lemma 2.6.38. For all x1, x2, x3 ∈ X−n , if x1Enx2Enx3, then dn−1(x1, x3) < r−n sn.

Proof. By the definition of En, there are points, u1 ∈ Cn,n−1(x1), u2, u
′
2 ∈ Cn,n−1(x2)

and u3 ∈ Cn,n−1(x3), such that u1En−1u2 and u′2En−1u3. By Lemma 2.4.16, the triangle
inequality, (2.2.13) and (2.4.4), we get

dn−1(x1, x2) ≤ 4R−n + 2 = 4(4rn + 2) + 2 ≤ 26rn < rnsn ,

since sn > 26 by (2.2.1) and (2.2.8).

Proposition 2.6.39. For n ∈ N and x ∈ X±n , let A = Cn,−1(x) (respectively, A =
Dn−1(x, r±n − 1)), let ζ :

⋃
a∈ACn−1,−1(a) → [∆] be a rigid coloring, and let f : x → x

be an n-equivalence (respectively, an n-weak equivalence) preserving ζ. Then f is the
identity map on A.

Proof. We proceed by induction on n ∈ N. If n = 0, then the result follows from
Proposition 2.6.29 (iv). Therefore suppose that n > 0 and the result is true for 0 ≤ m < n.
By hypothesis, f is an n-(weak) equivalence and f(x) = x. Thus, f(Cn−1,n−2(x)) =
Cn−1,n−2(x) and f : x→ x is an (n−1)-equivalence by Definitions 2.6.6 (v) and 2.6.16 (iv).
Hence f is the identity on Cn−1,n−2(x) by the induction hypothesis.

Let us prove that f is the identity on Cn−1,n−2(u) by induction on u ∈ A, using En,x.
The case u = x was proved in the previous paragraph. Thus suppose u 6= x. By the in-
duction hypothesis, we have f(Pan,x(u)) = Pan,x(u). Then we have (f(u), f(Pan,x(u))) ∈
En−1 by Definitions 2.6.6 (iii) and 2.6.16 (ii), and therefore (f(u),Pan,x(u)) ∈ En−1. We
consider the following cases.

If u, f(u) ∈ X+
n−1, then dn−2(u, f(u)) < r+

n−1sn−1 by Lemma 2.6.37. If u,Pan,x(u) ∈
X−n−1, then f(u) ∈ X−n−1 by Definitions 2.6.6 (iii) and 2.6.16 (ii), obtaining dn−2(u, f(u)) <
r−n−1sn−1 by Lemma 2.6.38. By Definitions 2.6.6 (iii) and 2.6.16 (ii), we have χn−1(u) =
χn−1(f(u)). Thus Proposition 2.6.1 (ii) yields f(u) = u in these two cases.

Finally, suppose that u, f(u) ∈ X−n−1 and Pan,x(u) ∈ X+
n−1. By the definition of En−1,

there is some u′ ∈ X+
n−1 ∩ Dn−1(Pan,x(u), 1) such that there are v ∈ Cn−1,n−2(u) and

v′ ∈ Cn−1,n−2(u′) with vEn−2v
′. Note that this implies dn−1(x, u′) ≤ dn−1(x, u). If f is

an n-equivalence, then this implies u′ ∈ Cn,n−1(x), whereas if f is an n-weak equivalence,
we obtain u′ ∈ Dn−1(x, r±n − 1). In any case, using Definitions 2.6.6 and 2.6.16 we get
that f restricts to a (n− 1)-equivalence from u′ to f(u′). Since (u′,Pan,x(u)) ∈ En−1 and
f(Pan,x(u)) = Pan,x(u), we obtain dn−2(u, f(u)) < r+

n−1sn−1, and the same argument of
the previous paragraph gives us f(u′) = u′. Then the induction hypothesis (on n) yields
f(v′) = v′. Therefore dn−2(v, f(v)) ≤ 2, and we obtain dn−2(u, f(u)) ≤ 2R−n + 2. Then
f(u) = u as before, and we get that f is the identity on Cn−1,−1(u) by the induction
hypothesis.

Corollary 2.6.40. For n ∈ N and x, y ∈ X±n , let A = Cn,−1(x) (respectively, A =

Dn−1(x, r±n − 1)), let ζ :
⋃
a∈ACn−1,−1(a) → [∆] and ζ̂ :

⋃
b∈f(A) Cn−1,−1(b) → [∆] be

rigid colorings, and let f : x → y be an n-equivalence (respectively, n-weak equivalence)
satisfying f ∗ζ̂ = ζ. Then f = hn,y ◦ h−1

n,x (respectively, f = ĥn,y ◦ ĥ−1
n,x).

Definition 2.6.41. For N ∈ N, let φNn : Xn → I2
n and ψN−1 : X−1 → [∆] be defined by

reverse induction on n = −1, . . . , N as follows:
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• For n = N , let φNN = (χN , 0).

• For 0 ≤ n < N , define φNn so that, for every x ∈ Xn+1,

φNn |Cn+1,n(x) =
(
ψ
φNn+1(x)
n,x , χn(x)

)
. (2.6.14)

• Finally, define φN−1 so that, for every x ∈ X0,

φN−1|C0,−1(x) = ψ
φN0 (x)
−1,x . (2.6.15)

Remark 17. It follows from Proposition 2.6.1 (ii) that φNn (x) 6= φNn (y) for x, y ∈ X±n if
0 < dn−1(x, y) < r±n sn.

Remark 18. By Definitions 2.6.1 (i) and 2.6.31 (i), for all 0 ≤ m ≤ N and x ∈ Xm, the
value φNm(x) determines whether x ∈ Xm.

We now prove the crucial lemma from which we will derive Theorem 2.1.27. Let
W0 = 10 and Wi = 2 for i > 0, and let Υn be recursively defined by

Υ−1 = 0 , Υn = Υn−1 + Λn−1(Wn + 3R+
n + 1) + Γ+

n + Λn . (2.6.16)

Lemma 2.6.42. Fix 0 ≤ n ≤ N and R > Υn. Let A ⊂ X and x ∈ A be such that
D−1(x,R) ⊂ A, and let f : (A, x, φN−1) → (f(A), f(x), φN−1) be a pointed colored graph
isomorphism with respect to the restriction of E−1. Then the following properties hold for
0 ≤ m ≤ n and 0 ≤ l ≤ n+ 1:

(a) The restriction

f :
(
Xl−1 ∩D−1(x,R−Υl−1), x, φNl−1

)
→
(
Xl−1 ∩D−1(f(x), R−Υl−1), f(x), φNl−1

)
is a pointed colored graph isomorphism with respect to El−1.

(b) For any z ∈ Xm−1 ∩D−1(x,R−Υm−1 − Λm−1Wm), we have z ∈ X±m if and only if
f(z) ∈ X±m.

(c) For all z ∈ Xm ∩ D−1(x,R − Υm−1 − Λm−1(Wm + r+
m)), the restriction of f is an

m-weak equivalence.

(d) For any z ∈ Xm∩D−1(x,R−Υm−1−Λm−1(Wm+r+
m)), we have φNm(z) = φNm(f(z)).

(e) For any z ∈ Xm ∩D−1(x,R−Υm−1−Λm−1(Wm + r+
m + 1)), we have z ∈ Xm if and

only if f(z) ∈ Xm.

(f) For all z ∈ Xm−1 ∩ D−1(x,R − Υm−1 − Λm−1(Wm + 2R+
m)), we have z ∈ Z±m−1 if

and only if f(z) ∈ Z±m−1.

(g) For any z ∈ Xm∩D−1(x,R−Υm−1−Λm−1(Wm + 3R+
m)), we have f(Cm,m−1(z)) =

Cm,m−1(f(z)).

(h) For any z ∈ Xm∩D−1(x,R−Υm−1−Λm−1(Wm+3R+
m)−Λm), we have f(Cm,m−1(z)) =

Cm,m−1(f(z)).
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(i) For all z, z′ ∈ Xm∩D−1(x,R−Υm−1−Λm−1(Wm+3R+
m+1)−Γ+

m), we have zEmz
′

if and only if f(z)Emf(z′).

(j) For all z ∈ Xm∩D−1(x,R−Υm−1−Λm−1(Wm+3R+
m+1)−Γ+

m−Λm), the restriction
of f to

⋃
u∈Dm(z,1)Cm,−1(u) is an m-equivalence.

Proof. We proceed by induction on m and l. For l = 0, (a) is true by hypothesis. When
l > 0, (a) follows from (2.6.16) and the induction hypothesis for m = l − 1 with (d)
and (i). For m = 0, . . . , n, we are going to derive (b)–(i) from (a), completing the proof
of the lemma.

Let us prove (b). The coloring φNm−1 is adapted by Remark 17. For every z ∈ Xm−1,
we have z ∈ X±m if and only if the colored set (Dm−1(z,Wm/2), φNm−1) has one of the
patterns described in Definition 2.6.26 (i) and Lemma 2.6.32. By Proposition 2.4.1 (vi)
and the triangle inequality, we get

Dm−1(z,Wm) ⊂ D−1(z,Λm−1Wm) ⊂ D−1(x,R−Υm).

Therefore the restriction f : Dm−1(z,Wm/2) → Dm−1(f(z),Wm/2) is an isometry by
Corollary 2.1.13. The induction hypothesis with (a) implies that the set Dm−1(z,Wm/2)
has one of the patterns of Definition 2.6.26 (i) and Lemma 2.6.32 if and only if the set
Dm−1(f(z),Wm/2) does. Then (b) follows from (a).

To prove (c), let z ∈ X±m. If m = 0, (c) is obvious. Thus suppose m > 0. We have
f(z) ∈ X±m by (b). By Proposition 2.4.1 (vi),

Dm−1(z, r±m) ⊂ D−1(z,Λm−1r
+
m) ⊂ D−1(x,R−Υm−1 − Λm−1Wm) .

Now, in Definition 2.6.16, the properties (i) and (ii) follow from (a), the property (iii) holds
by the induction hypothesis with (e), and the property (iv) follows from the induction
hypothesis with (j).

Let us prove (d). By Definition 2.6.41, the restriction of φNm−1 to Cm,m−1(z) equals
(ψim−1,z, χm−1(z)) for some i ∈ Hm,z. Then φNm(z) = φNm(f(z)) if and only if the re-
strictions of φNm−1 to Cm,m−1(z) and Cm,m−1(f(z)) are equal to (ψim−1,z, χm−1(z)) and
(ψim−1,f(z), χm−1(f(z))), respectively. Furthermore i is determined by (φNm−1)−1(4) ∩
Dm−1(z, r±m − 1) = Ni

m,x if m > 0, or by (φN−1)−1(0) ∩ C−1(z, 10, r±0 − 1) = Ni
0,x if m = 0.

By (a),

f((φNm−1)−1(4) ∩Dm−1(z, r±m − 1)) = (φNm−1)−1(4) ∩Dm−1(f(z), r±m − 1)

if m > 0, and

f((φN−1)−1(0) ∩ C−1(z, 10, r±0 − 1)) = (φN−1)−1(0) ∩ C−1(f(z), 10, r±0 − 1)

if m = 0. Since χm−1(z) = χm−1(f(z)) by (c) and Definition 2.6.16 (ii), property (d)
follows from Proposition 2.6.35 (a).

Property (e) follows from (d) and Remark 18.
Let us prove (f). Let z ∈ Dm−1(x,R − Υm−1 − Λm−1(Wm + 2R+

m)). By (a), Proposi-
tion 2.4.1 (vi) and Corollary 2.1.12, the restriction of f to Dm−1(x,R−Υm−1−Λm−1(Wm+
R+
m)) preserves X±n and is an R+

m-short scale isometry with respect to Em−1. Then z sat-
isfies (2.4.18) if and only if f(z) does, and (f) follows.



2.6. Colorings 59

To prove (g), let z ∈ Xm∩Dm−1(x,R−Υm−1−Λm−1(Wm+3R+
m)). By Lemma 2.4.16,

we have Cm,m−1(z) ⊂ Dm−1(z,R+
n ). Using Proposition 2.4.1 (vi) and the triangle inequal-

ity, we get
Cm,m−1(z) ⊂ Dm−1(x,R−Υm−1 − Λm−1(Wm + 2R+

m)) .

Therefore, for all u ∈ Cm,m−1(z), we have u ∈ Z±m−1 if and only if f(u) ∈ Z±m−1 by (f).
Let y ∈ Xm such that dm−1(u,Xm) = dm−1(u, y). Thus dm−1(u, y) ≤ R+

m by Propo-
sition 2.4.1 (iv), yielding d−1(u, y) ≤ Λm−1R

+
m by Proposition 2.4.1 (vi). By (a), (b)

and Corollary 2.1.12, we get f(y) ∈ X±m if and only if y ∈ X±m and dm−1(u, y) =
dm−1(f(u), f(y)). Then (g) follows by (2.4.19).

Let us prove (h). By Proposition 2.4.1 (vi) and the triangle inequality, we get

Dm(z, 1) ⊂ D−1(z,Λm) ⊂ D−1(x,R−Υm−1 − Λm−1(Wm + 3R+
m))) .

Therefore f(Cn,n−1(u)) = Cn,n−1(f(u)) for all u ∈ Dm(z, 1) by (g). Moreover φNm(u) =
φNm(f(u)) for all u ∈ Dm(z, 1) by (d). In particular, this yields χm(u) = χm(f(u)). Then
the result follows from Proposition 2.6.1 (ii) and (2.5.2).

Property (i) follows easily from (g), Corollary 2.1.12 and the definition of Em.
Finally, (j) follows from (a), (b), (d), (e) and the induction hypothesis with (j).

We are now in position to complete the proof of Theorem 2.1.27. Consider the in-
creasing sequence of positive integers εn of the statement of Theorems 2.1.26 and 2.1.27,
used in Section 2.2. Let δn = 4Γ+

n + Υn + 2Λn.

Proposition 2.6.43. For 0 ≤ n ≤ N and u ∈ X, let

f :
(
D−1 (u, δn) , u, φN−1

)
→
(
D−1 (f(u), δn) , f(u), φN−1

)
be a color-preserving pointed graph isomorphism with respect to E−1. Then, either f(u) =
u, or d−1(u, f(u)) > εn.

Proof. Let x ∈ X±n such that u ∈ Cn,−1(x). We have d−1(u, x) ≤ Γ+
n by Lemma 2.5.1, and

D−1(x, 3Γ+
n +Υn+2Λn) ⊂ dom f by the triangle inequality. By Lemma 2.6.42 (b),(d), we

obtain f(x) ∈ X±n and φNn (x) = φNn (f(x)). In particular, χn(x) = χn(f(x)). Therefore,
either f(x) = x, or dn−1(x, f(x)) ≥ r±n sn by Proposition 2.6.1 (ii).

If f(x) = x, then f(u) = u by Proposition 2.6.39 and the result follows. So suppose
dn−1(x, f(x)) ≥ 2r±n sn. By Lemma 2.5.1, d−1(u, x) = d−1(f(u), f(x)) ≤ Γ±n . Then, by
the triangle inequality, d(u, f(u)) ≥ r±n sn − 2Γ±n . Applying now Lemma 2.2.1, we get
d(u, f(u)) ≥ εn.

This completes the proof of Theorem 2.1.27 (i) taking φN = φN−1.

Proposition 2.6.44. For n = 0, . . . , N , x ∈ Xn and u ∈ Cn,m(p), we have φNm(u) =
φNm(hn,x(u)) for −1 ≤ m ≤ n.

Proof. We proceed by inverse induction on m. For m = N , we have φNN = (χN , 0). So
φNN(u) = φNN(hn,x(u)) by Proposition 2.6.1 (iii).

Suppose that, for 0 ≤ m < N − 1, the result is true for m + 1. Let u ∈ Cn,m(p)
and z ∈ Cn,m+1(p) such that u ∈ Cm+1,m(z). By the induction hypothesis, φNm+1(z) =
φNm+1(hn,x(z)). By the definition of φNm+1, Lemmas 2.6.4 and 2.6.9, and Corollary 2.6.40,
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this means that the restrictions of φNm+1 to Cm+1,m(z) and Cm+1,m(hn,x(z)) equal ψi,jm,x
and ψi,jm,hn,x(z) for some (i, j) ∈ I2

m,x ⊂ Hm,x (see Remark 16). But ψi,jm,hn,x(z) = hn,x(ψ
i,j
m,x)

by Proposition 2.6.35 (ii).

Propositions 2.4.1 and 2.6.44 (i), together with Corollary 2.5.3, yield Xn ⊂ Ω̂n for

n ≤ N by taking φN = φN−1, with the set Ω̂n defined in Theorem 2.1.27 (ii). Then
Theorem 2.1.27 (ii) follows from Propositions 2.3.4 and 2.4.1 (i) taking αn = 2sn+tl+3ωn.



Chapter 3

Realization of Riemannian manifolds
as leaves

3.1 Preliminaries

3.1.1 Riemannian manifolds

Let M be a connected complete Riemannian n-manifold, g its metric tensor, d its distance
function, ∇ its Levi-Civita connection, R its curvature tensor, inj(x) its injectivity radius
at x ∈M , and inj = infx∈M inj(x) (its injectivity radius). If necessary, we may add “M”
as a subindex or superindex to this notation, or the subindex or superindex “i” when a
family of Riemannian manifolds Mi is considered. Since M is complete, it is proper as
metric space.

Let T (0)M = M , and T (m)M = TT (m−1)M for m ∈ Z+. If l < j, then T (l)M is
sometimes identified with a regular submanifold of T (m)M via zero sections. Any Cm map
between Riemannian manifolds, h : M → M ′, induces a map h

(m)
∗ : T (m)M → T (m)M ′

defined by h
(0)
∗ = h and h

(m)
∗ = (h

(m−1)
∗ )∗ for m ∈ Z+.

The Levi-Civita connection determines a decomposition T (2)M = H ⊕ V, as direct
sum of the horizontal and vertical subbundles. Consider the Sasaki metric g(1) on TM ,
which is the unique Riemannian metric such that H ⊥ V and the canonical identities
Hξ ≡ TξM ≡ Vξ are isometries for every ξ ∈ TM . For m ≥ 2, consider the Sasaki metric
g(m) = (g(m−1))(1) on T (m)M . The notation d(m) is used for the corresponding distance
function, and the corresponding open and closed balls of center v ∈ T (m)M and radius
r > 0 are denoted by B(m)(v, r) and D(m)(v, r). For l < j, T (l)M is totally geodesic in
T (m)M and g(m)|T (l)M = g(l).

Let D ⊂M be a compact domain1 and m ∈ N. The Cm tensors on D of a fixed type
form a Banach space with the norm ‖ ‖Cm,D,g defined by

‖A‖Cm,D,g = max
0≤l≤m, x∈D

|∇lA(x)| .

By taking the projective limit as m→∞, we get the Fréchet space of C∞ tensors on D of
that type equipped with the C∞ topology (see e.g. [39]). Similar definitions apply to the

1A regular submanifold of the same dimension as M , possibly with boundary.
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space of Cm or C∞ functions on M with values in an Euclidean space or in a separable
Hilbert space H.

Recall that a C1 map between Riemannian manifolds, h : M → M ′, is called a (λ-)
quasi-isometry if there is some λ ≥ 1 such that λ−1 |v| ≤ |h∗(v)| ≤ λ |v| for all v ∈ TM .

For m ∈ N, a partial map h : M � M ′ is called a Cm local diffeomorphism if
domh and imh are open in M and M ′, respectively, and h : domh → imh is a Cm

diffeomorphism. If moreover h(x) = x′ for distinguished points, x ∈ domh and x′ ∈ imh,
then h is said to be pointed, and the notation h : (M,x) � (M ′, x′) is used. The term
(pointed) local homeomorphism is used in the C0 case.

For m ∈ N, R > 0 and λ ≥ 1, an (m,R, λ)-pointed partial quasi-isometry2 (or simply
an (m,R, λ)-p.p.q.i.) is a pointed partial map h : (M,x) � (M ′, x′), with domh =
D(x,R), which can be extended to a Cm+1-diffeomorphism h̃ between open subsets such

that D
(m)
M (x,R) ⊂ dom h̃

(m)
∗ and h̃

(m)
∗ is a λ-quasi-isometry of some neighborhood of

D
(m)
M (x,R) in T (m)M to T (m)M ′. The following result has an elementary proof.

Proposition 3.1.1. Let h : (M,x) � (M, y) be an (m,R, λ)-p.p.q.i. and h′ : (M,x) �
(M, y′) an (m′, R′, λ′)-p.p.q.i. Then h−1 : (M, y)� (M,x) is an (m,λ−1R, λ)-p.p.q.i. If
m′ ≥ m and Rλ+d(x, y) ≤ R′, then h′ ◦h : (M,x)� (M,h′(y)) is an (m,R, λλ′)-p.p.q.i.

In the following two results, E is a (real) Hilbert bundle over M , equipped with
an orthogonal connection ∇. Let Cm(M ;E) denote the space of its Cm sections (m ∈
N ∪ {∞}), and Ex its fiber over any x ∈M .

Proposition 3.1.2 (Cf. [8, Proposition 3.11]). Let S ⊂ Cm+1(M ;E) for m ∈ N, and let
x0 ∈M . Then S is precompact in Cm(M ;E) if

(i) sups∈S supD |∇ks| <∞ for every compact subset D ⊂M and 1 ≤ k ≤ m+ 1; and

(ii) { (∇ks)(x0) | s ∈ S } is precompact in Ex0 ⊗
⊗

k T
∗
x0
M for all 0 ≤ k ≤ m.

Proof. We proceed by induction on m. Consider the case m = 0. From (i) for k = 1,
it follows that S is equicontinuous on the interior of D, and therefore on M because D
is an arbitrary compact subset. Moreover (ii) for k = 0 states that { s(x0) | s ∈ S } is
precompact in Ex0 . So S is precompact in C(M ;E) by the Arzelà-Ascoli theorem.

Now assume that m ≥ 1 and the result is true for m− 1. Given x ∈ M , 0 ≤ t, u ≤ 1
and a piecewise smooth path c : [0, 1] → M from x0 to x, let P u

c,t : Ec(t) → Ec(u) be the
∇-parallel transport along c from u to v. For any e ∈ Ex0 and α ∈ Cm−1(M ;E ⊗ T ∗M),
let

Qc(e, α) = P 1
c,0(e) +

∫ 1

0

P 1
c,tα(c′(t)) dt ∈ Ex .

This expression defines a continuous map Qc : Ex0 × Cm−1(M ;E ⊗ T ∗M) → Ex. In
particular, for any s ∈ Cm(M ;E), we have

Qc(s(x),∇s) = s(y) (3.1.1)

2The extension h̃ is an (m,R, λ)-pointed local quasi-isometry, as defined in [6]. On the other hand, any
(m,R, λ)-pointed local quasi-isometry defines an (m,R, λ)-pointed partial quasi-isometry by restriction.
Thus both notions are equivalent.
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because

P 1
c,t∇c′(t)s =

d

du
P t
c,usc(u)|u=t

if c is smooth at t.
Let

T : Cm(M ;E)→ Ex0 × Cm−1(M ;E ⊗ T ∗M)

be defined by T (s) = (s(x0),∇s), and let Ω(M,x0) denote the set of piecewise smooth
loops d : [0, 1]→M based at x0.

Claim 1. The following properties hold:

(a) We have

imT = { (e, α) ∈ Ex0 × Cm−1(M ;E ⊗ T ∗M) | Qd(e, α) = e ∀d ∈ Ω(M,x0) } .

(b) T is a closed embedding, and T−1 : imT → Cm(M ;E) is given by T−1(e, α)(x) =
Qc(e, α), where c : [0, 1]→M is any piecewise smooth path from x0 to x.

If (e, α) ∈ imT , then Qd(e, α) = e for all d ∈ Ω(M,x0) by (3.1.1).
Now suppose that Qd(e, α) = e for all d ∈ Ω(M,x0). Then a section s ∈ Cm(M ;E) is

well defined by s(x) = Qc(e, α), where c : [0, 1]→ M is any piecewise smooth path from
x0 to x. By choosing the constant path at x0, it follows that s(x0) = e. On the other
hand, given x ∈ M and X ∈ TxM , there is a piecewise smooth path c : [0, 1]→ M from
x0 to x with c′(1) = X. Hence

∇Xs =
d

du
P 1
c,usc(u)|u=1 =

d

du
P 1
c,u

(
P u
c,0(e) +

∫ u

0

P u
c,tα(c′(t)) dt

)∣∣∣
u=1

=
d

du

(
P 1
c,0(e) +

∫ u

0

P 1
c,tα(c′(t)) dt

)∣∣∣
u=1

= α(X) .

So ∇s = α, and therefore Ts = (e, α). Thus (e, α) ∈ imT , completing the proof of (a).
The above argument also shows that T is injective, and T−1 : imT → Cm(M ;E) is

given by T−1(e, α)(x) = Qc(e, α), where c : [0, 1]→M is any piecewise smooth path from
x0 to x. Thus T−1 : imT → Cm(M ;E) is continuous, showing that T is an embedding.

Finally, imT is closed by (a) and the continuity of Qd : Ex0 ×Cm−1(M ;E⊗T ∗M)→
Ex0 for every d ∈ Ω(M,x0). Thus T is also a closed map, and the proof of Claim 1 is
finished.

By Claim 1, it is enough to prove that T (S) is precompact in Ex0×Cm−1(M ;E⊗T ∗M).
But

T (S) ⊂ { s(x0) | s ∈ S } × ∇(S) ,

where the first factor is already known to be precompact in Ex0 . On the other hand,
we have ∇(S) ⊂ Cm(M ;E ⊗ T ∗M), and this subspace satisfies (i) for 1 ≤ k ≤ m
and (ii) for 0 ≤ k ≤ m − 1. So ∇(S) is precompact in Cm−1(M ;E ⊗ T ∗M) by the
induction hypothesis. Thus T (S) is precompact in Ex0 ×Cm−1(M ;E ⊗ T ∗M) because it
is contained in a precompact subspace.

Corollary 3.1.3. Let S ⊂ C∞(M ;E) and x0 ∈M . Then S is precompact in C∞(M ;E)
if and only if conditions (i) and (ii) in Proposition 3.1.2 are satisfied for all k ∈ N.
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Proof. The “only if” part follows from the continuity of

∇k : C∞(M ;E)→ C∞
(
M ;E ⊗

⊗
k

T ∗M
)

for all k ∈ N. The “if” part is true by Proposition 3.1.2 since C∞(M ;E) =
⋂
mC

m(M ;E)
with the inverse limit topology.

Recall that M is said to be of bounded geometry if injM > 0 and supM |∇mRM | <∞
for all m ∈ N. For a given manifold M of bounded geometry, the optimal bounds of the
previous inequalities will be referred to as the geometric bounds of M . Let Br = BRn(0, r)
(r > 0).

Proposition 3.1.4 (See [57, Theorem A.1], [58, Theorem 2.5], [55, Proposition 2.4], [29]).
M is of bounded geometry if and only if there is some 0 < r0 < injM such that, for normal
parametrizations κx : Br0 → BM(x, r0) (x ∈ M), the corresponding metric coefficients,
gij and gij, as a family of C∞ functions on Br0 parametrized by x, i and j, lie in a
bounded subset of the Fréchet space C∞(Br0).

Proposition 3.1.5 (See the proof of [58, Proposition 3.2], [63, A1.2 and A1.3]). Suppose
that M is of bounded geometry. For every τ > 0, there is some map c : R+ → N, depending
only on τ and the geometric bounds of M , such that, for any τ -separated subset X ⊂M ,
and all x ∈M and δ > 0, we have |D(x, δ) ∩X| ≤ c(δ).

Proposition 3.1.6. Let X be a τ -separated η-relatively dense subset of a manifold of
bounded geometry M for some 0 < τ < η. Given 0 < ε < τ/2 and σ > 0, let τ ′ = τ − 2ε
and η′ = η + ε. Then there is some 0 < P = P (ε) < σ, depending only on τ , ε, σ and
the geometric bounds of M , with P (ε)→ 0 as ε→ 0, and such that, for every 0 < ρ < P
and A ⊂ X satisfying d(a, b) /∈ (σ − ρ, σ + ρ) for all a, b ∈ A, there is an ε-perturbation
X ′ ⊂ M of X such that A ⊂ X ′ and d(x′, y′) /∈ (σ − ρ, σ + ρ) for all x′, y′ ∈ X ′. In
particular, X ′ is τ ′-separated and η′-relatively dense by Lemma 2.1.6.

Proof. By Propositions 3.1.4 and 3.1.5, the following properties hold:

(a) There are C,P0 > 0 such that every τ ′-separated subset Y ⊂ M satisfies |Y ∩
D(y, σ + ρ+ τ/2)| ≤ C for all y ∈ Y and 0 < ρ < P0.

(b) There is some K = K(ε) > 0, with K(ε)→ 0 as ε→ 0, and such that volB(x, ε) ≥
K for all x ∈M .

(c) Given 0 < L < K/C, there is some 0 < P = P (ε) ≤ P0, with P (ε) → 0 as ε → 0,
and such that volC(x, σ − ρ, σ + ρ) ≤ L for x ∈M and 0 < ρ < P .

Take any 0 < ρ < P .

Claim 2. Let X ′ ⊂M be a τ ′-separated subset, and let

A = {x ∈ X ′ | d(x, y) /∈ (σ − ρ, σ + ρ) ∀y ∈ X ′ } .

Then, for all x ∈ X ′ \ A, there is some x̂ ∈M such that d(x, x̂) < ε and

((X ′ \ {x}) ∪ {x̂}) ∩ C(x̂, σ − ρ, σ + ρ) = ∅ .
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By (a), the subset

Z = { z ∈ X | B(x, ε) ∩ C(z, σ − ρ, σ + ρ) 6= ∅ } ⊂ X ∩ C(z, σ − ρ, σ + ρ+ τ/2)

has cardinality at most C. Thus, by (c) and (b), for all x ∈ X ′ \ A,

vol
(
B(x, ε) ∩

⋃
z∈Z

C(z, σ − ρ, σ + ρ)
)
≤
∑
z∈Z

volC(z, σ − ρ− ε, σ + ρ+ ε)

≤ CL < K ≤ volB(x, ε) .

So there is some x̂ ∈ B(x, ε) such that x̂ /∈ C(y, σ − ρ, σ + ρ) for every y ∈ Z. Therefore
x̂ /∈ C(y, σ − ρ, σ + ρ) for all y ∈ X ′, and Claim 2 follows.

Let x1, x2, . . . be a (finite or infinite) sequence enumerating the elements of X \ A.
Then X ′ is defined as the union of A and a set of elements x′i defined by induction on i
as follows. Equivalently, taking X0 = X, we construct the sets Xi = (Xi−1 \ {xi})∪ {x′i}
by induction on i. Assuming that Xi−1 is defined for some i, by Claim 2, there is some
x′i such that d(xi, x

′
i) < ε and Xi ∩ C(x′i, σ − ρ, σ + ρ) = ∅. These conditions yield the

desired properties of X ′; in particular, it is a τ ′-separated η′-relatively dense subset of M
by the triangle inequality.

Proposition 3.1.7. Let X be an ε-relatively dense subset of M for some ε > 0, and let
h be an isometry of M . If ε is small enough and h = id on X, then h = id on M .

Proof. Fix any x0 ∈M and 0 < r0 < injM(x0). For 0 < r ≤ r0, let B̌(r) denote the open
ball B(0, r) in Tx0M . Moreover let X̌ = exp−1

x0
(X) ⊂ Tx0M . There is some λ ≥ 1 such

that expx0 : B̌(r0) → BM(x0, r0) is a λ-bi-Lipschitz diffeomorphism. Since X is an ε-
relatively dense subset of M , for all x ∈ BM(x0, r0− ε), there is some y ∈ X ∩BM(x0, r0)
with dM(x, y) < ε. Hence, for all v ∈ B̌(r0 − ε), there is some w ∈ X̌ ∩ B̌(r0) with
|v − w| < λε. If ε is small enough, it follows that X̌ ∩ B̌(r0) generates Tx0M . Since
h∗ = id on X̌ ∩ B̌(r0) because h = id on X, we get h∗ = id on Tx0M , yielding h = id on
M .

3.1.2 Foliated spaces

A foliated space X ≡ (X,F) of dimension n is a Polish space X equipped with a partition
F (foliated structure or lamination) into injectively immersed manifolds (leaves) so that
X has an open cover {Ui} with homeomorphisms φi : Ui → Bi × Ti, for some open
balls Bi ⊂ Rn and Polish spaces Ti, such that the slices Bi × {∗} correspond to open
sets in the leaves (plaques); every (Ui, φi) is called a foliated chart and U = {Ui, φi} a
foliated atlas. The corresponding changes of foliated coordinates are locally of the form
φi ◦ φ−1

j (y, z) 7→ (fij(y, z), hij(z)). Let pi : Ui → Ti denote the projection defined by
every φi, whose fibers are the plaques. The subspaces transverse to the leaves are called
transversals ; for instance, the subspaces φ−1

i ({∗} × Ti) ≡ Ti are local transversals. A
transversal is said to be complete if it meets all leaves. X is called a matchbox manifold
if it is compact and connected, and its local transversals are totally disconnected.

We can assume that U is regular in the sense that it is locally finite, every φi can be
extended to a foliated chart whose domain contains Ui, and every plaque of Ui meets at
most one plaque of Uj. In this case, the the maps hij define unique homeomorphisms
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hij : pj(Ui ∩Uj)→ pi(Ui ∩Uj) (elementary holonomy transformations), which generate a
pseudogroup H on T :=

⊔
i Ti. This H is unique up to Haefliger’s equivalences [37,38], and

its equivalence class is called the holonomy pseudogroup. The H-orbits are equipped with
a connected graph structure so that a pair of points is joined by an edge if they correspond
by some hij. The projections pi define an identity between the leaf space X/F and the
orbit space T/H. Moreover we can choose points yi ∈ Bi so that the corresponding
local transversals φ−1

i ({yi} × Ti) are disjoint. Then their union is a complete transversal
homeomorphic to T, and the H-orbits are given by the intersection of the complete
transversal with the leaves. If X is compact, then U is finite, and therefore the vertex
degrees of the H-orbits is bounded by the finite number of maps hij. Moreover the coarse
quasi-isometry class of the H-orbits is independent of U in this case.

If the functions y 7→ fij(y, z) are C∞ with partial derivatives of arbitrary order de-
pending continuously on z, then U defines a C∞ structure on X, which is called a C∞

foliated space when equipped with such structure. In this case, C∞ bundles and sections
also make sense on X, defined by requiring that their local descriptions are C∞ in a sim-
ilar sense. For instance, the tangent bundle TX (or TF) is the C∞ vector bundle on X
that consists of the vectors tangent to the leaves, and a Riemannian metric on X consists
of Riemannian metrics on the leaves that define a C∞ section on X. This gives rise to
the concept of Riemannian foliated space. If X is a compact C∞ foliated space, then
the differentiable quasi-isometry type of every leaf is independent of the choice of the
Riemannian metric on X, and is coarsely quasi-isometric to the corresponding H-orbits
(see e.g. [10, Section 10.3]).

Many of the concepts and properties of foliated spaces are direct generalizations from
foliations. Several results about foliations have obvious versions for foliated spaces, like
the holonomy group and holonomy cover of the leaves, and the Reeb’s local stability
theorem. This can be seen in the following standard references about foliated spaces:
[51], [17, Chapter 11], [18, Part 1] and [33].

3.1.3 The spaces Mn
∗ and M̂n

∗

For any n ∈ N, consider triples (M,x, f), where (M,x) is a pointed complete connected
Riemannian n-manifold and f : M → H is a C∞ function to a separable (real) Hilbert
space (of finite or infinite dimension). Two such triples, (M,x, f) and (M ′, x′, f ′), are said
to be equivalent if there is a pointed isometry h : (M,x)→ (M ′, x′) such that h∗f ′ = f .

Let3 M̂n
∗ = M̂n

∗ (H) be the set4 of equivalence classes [M,x, f ] of the above triples (M,x, f).

A sequence [Mi, xi, fi] ∈ M̂n
∗ is said to be C∞ convergent to [M,x, f ] ∈ M̂n

∗ if, for any
compact domain D ⊂ M containing x, there are pointed C∞ embeddings hi : (D, x) →
(Mi, xi), for large enough i, such that h∗i gi → gM |D and h∗i fi → f |D as i → ∞ in the
C∞ topology5. In other words, for all m ∈ N, R, ε > 0 and λ > 1, there is an (m,R, λ)-

3In [6,8,10], the notation M∗(n) and M̂∗(n) was used instead of Mn
∗ and M̂n

∗ , adding the superindex
“∞” when equipped with the topology defined by the C∞ convergence.

4The cardinality of each complete connected Riemannian n-manifold is less than or equal to the
cardinality of the continuum, and therefore it may be assumed that its underlying set is contained in R.
With this assumption, M̂n

∗ is a well defined set.
5The Cm+1 embeddings and Cm convergence of [8, Definition 1.1] and [6, Definition 1.2], for arbitrary

order m, can be assumed to be C∞ embeddings and C∞ convergence [39, Theorem 2.2.7].
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p.p.q.i. hi : (M,x)� (Mi, xi), for i large enough, with |∇l(f−h∗i fi)| < ε on DM(x,R) for
0 ≤ l ≤ m [8, Propositions 6.4 and 6.5]. The C∞ convergence describes a Polish topology

on M̂n
∗ [6, Theorem 1.3]. The evaluation map ev : M̂n

∗ → H, ev([M,x, f ]) = f(x), is
continuous.

For any connected complete Riemannian n-manifold M and any C∞ function f :
M → H, there is a canonical continuous map ι̂M,f : M → M̂n

∗ defined by ι̂M,f (x) =
[M,x, f ], whose image is denoted by [M, f ]. Note that [M, f ] = [N, y] if (M, f) and
(N, y) are pointed isometric, and [M, f ] ∩ [N, y] = ∅ otherwise. We have [M, f ] ≡
Iso(M, f)\M , where Iso(M, f) denotes the group of isometries of M preserving f . The

images of these maps form a canonical partition of M̂n
∗ , which is considered when using

saturations or minimal sets in M̂n
∗ . Any bounded linear map between Hilbert spaces,

Φ : H → H′, induces a relation-preserving continuous map Φ∗ : M̂n
∗ (H) → M̂n

∗ (H
′), given

by Φ∗([M,x, f ]) = [M,x,Φ ◦ f ], which defines a functor.

Lemma 3.1.8. The saturation of any open subset of M̂n
∗ is open, and therefore the closure

of any saturated subset of M̂n
∗ is saturated.

Proof. Let V be the saturation of some open U ⊂ M̂n
∗ , and let [M,x, f ] ∈ V. Then there is

some y ∈M such that [M, y, f ] ∈ U. Since U is open, there are m ∈ N, R, ε > 0 and λ > 1

so that, for all [M ′, y′, f ′] ∈ M̂n
∗ , if there is an (m,R, λ)-p.p.q.i. h : (M, y) � (M ′, y′)

with |∇l(f − h∗f ′)| < ε on DM(y,R) for 0 ≤ l ≤ m, then [M ′, y′, f ′] ∈ U. We can
assume that R > dM(x, y). Take any convergent sequence [Mi, xi, fi] → [M,x, f ] in

M̂n
∗ . For i large enough, there is some (m, 2R, λ)-p.p.q.i. hi : (M,x) � (Mi, xi) with
|∇l(f − h∗i fi)| < ε on DM(x, 2R) for 0 ≤ l ≤ m. Since DM(y,R) ⊂ DM(x, 2R), it follows
that [Mi, hi(y), fi] ∈ U for i large enough. Therefore [Mi, xi, fi] ∈ V for i large enough,
showing that V is open.

The last part of the statement follows from the first part and Lemma 2.1.1.

Let d̂ : (M̂n
∗ )

2 → [0,∞] be the metric with possible infinite values induced by dM on
every equivalence class [M, f ] ≡ Iso(M, f)\M , and equal to ∞ on non-related pairs.

Lemma 3.1.9. For every open U ⊂ M̂n
∗ , the map d̂(·,U) : M̂n

∗ → [0,∞] is upper semi-
continuous.

Proof. To prove the upper semicontinuity of d̂(·,U) at any point [M,x, f ], we can assume
that d̂([M,x, f ],U) < ∞, and therefore there is some y ∈ M such that [M, y, f ] ∈ U.

Take a convergent sequence [Mi, xi, fi] → [M,x, f ] in M̂n
∗ , and let ε > 0. We can also

suppose that

d̂([M,x, f ], [M, y, f ]) < d̂([M,x, f ],U) + ε/3 ,

dM(x, y) < d̂([M,x, f ], [M, y, f ]) + ε/3 .

Since U is open, there are m ∈ N, R > dM(x, y)+ε, 1 < λ < (dM(x, y)+ε/3)/dM(x, y) and

0 < δ < ε so that, for all [M ′, y′, f ′] ∈ M̂n
∗ , if there is an (m,R, λ)-p.p.q.i. h : (M, y) �

(M ′, y′) with |∇l(f −h∗f ′)| < δ on DM(y,R) for 0 ≤ l ≤ m, then [M ′, y′, f ′] ∈ U. By the
convergence [Mi, xi, fi] → [M,x, f ], for i large enough, there is some (m, 2R, λ)-p.p.q.i.
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hi : (M,x) � (Mi, xi) with |∇l(f − h∗i fi)| < δ on DM(x, 2R) for 0 ≤ l ≤ m. Since
DM(y,R) ⊂ DM(x, 2R), it follows that [Mi, yi, fi] ∈ U for yi = hi(y), and

d̂([Mi, xi, fi], [Mi, yi, fi]) ≤ di(xi, yi) ≤ λdM(x, y) < dM(x, y) + ε/3

< d̂([M,x, f ],U) + ε .

Hence d̂([Mi, xi, fi],U) < d̂([M,x, f ],U) + ε for i large enough.

It is said that (M, f) (or f) is (locally) non-periodic (or (locally) aperiodic) if ι̂M,f

is (locally) injective; i.e., aperiodicity means Iso(M, f) = {idM}, and local aperiodicity
means that the canonical projection M → Iso(M, f)\M is a covering map. More strongly,
(M, f) (or f) is said to be limit aperiodic if (M ′, f ′) is aperiodic for all [M ′, x′, f ′] ∈ [M, f ].
On the other hand, (M, f) (or f) is said to be repetitive if, given any p ∈M , for all m ∈ N,
R, ε > 0 and λ > 1, the set

{x ∈M | ∃ an (m,R, λ)-p.p.q.i. h : (M, p)� (M,x)

with |∇l(f − h∗f)| < ε on DM(p,R) ∀l ≤ m } (3.1.2)

is relatively dense in M . Clearly, this property is independent of the choice of p.

Proposition 3.1.10. The following holds for any connected complete Riemannian n-
manifold M :

(i) If (M, f) is repetitive, then [M, f ] is minimal.

(ii) If [M, f ] is compact and minimal, then (M, f) is repetitive.

Proof. By Lemma 3.1.8, [M, f ] is saturated, and therefore its minimality can be consid-
ered.

Item (i) follows by showing that [M, f ] ⊂ [M ′, f ′] for every equivalence class [M ′, f ′] ⊂
[M, f ]. In fact, it is enough to prove that [M, f ]∩[M ′, f ′] 6= ∅ because [M ′, f ′] is saturated.
Fix any p ∈ M , and let m ∈ N, R, ε > 0 and λ > 1. By the repetitiveness of (M, f), for
some c > 0, there is a c-relatively dense subset X ⊂ M such that, for all x ∈ X, there
is an (m,R, λ1/2)-p.p.q.i. hx : (M, p)� (M,x) with |∇l(f − h∗xf)| < ε/2 and |∇lh∗xφ| <
3
2
h∗x|∇lφ| on DM(x,R) for 0 ≤ l ≤ m and φ ∈ C∞(M). On the other hand, since

[M ′, f ′] ⊂ [M, f ], given any y′ ∈M ′, there are some y ∈M and an (m,λ1/2c+ λR, λ1/2)-
p.p.q.i. h : (M ′, y′)� (M, y) so that |∇l(f−(h−1)∗f ′)| < ε/3 on h(DM ′(x, λ

1/2c+λR)) for
0 ≤ l ≤ m. Take some x ∈ X with dM(x, y) ≤ c. We have DM(y, c) ⊂ h(DM ′(y

′, λ1/2c)),
and therefore there is some x′ ∈ DM ′(y

′, λ1/2c) with h(x′) = x. By Proposition 3.1.1, the
composite h−1hx defines an (m,R, λ)-p.p.q.i. (M, p)� (M ′, x′). Moreover

|∇l(f − (h−1hx)
∗f ′)| ≤ |∇l(f − h∗xf)|+ |∇l(h∗xf − (h−1hx)

∗f ′)|

≤ |∇l(f − h∗xf)|+ 3

2
h∗x|∇l(f − (h−1)∗f ′)| < ε

2
+

3

2

ε

3
= ε

on DM(p,R) for 0 ≤ l ≤ m. Since m, R, ε and λ are arbitrary, we get [M, p, f ] ∈
[M, f ] ∩ [M ′, f ′].
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To prove (ii), fix any p ∈M , and take m ∈ N, R, ε > 0 and λ > 1. The set

U = { [M ′, x′, f ′] ∈ M̂n
∗ | ∃ an (m,R, λ)-p.p.q.i. h : (M, p)� (M ′, x′)

with |∇l(f − h∗f ′)| < ε on DM(p,R) ∀l ≤ m }

is an open neighborhood of [M, p, f ] in M̂n
∗ . By Lemma 3.1.9, and the compactness and

minimality of [M, f ], we have d̂(·,U) ≤ c on M̂n
∗ for some c > 0. So (3.1.2) is a c-relatively

dense subset of M . Since m, R, ε and λ are arbitrary, we get that (M, f) is repetitive.

The non-periodic and locally non-periodic pairs (M, f) define saturated subspaces

M̂n
∗,np ⊂ M̂n

∗,lnp ⊂ M̂n
∗ . The pairs (M, f) where f is an immersion define a saturated

Polish subspace M̂n
∗,imm ⊂ M̂n

∗,lnp. The following properties hold [6, Theorem 1.4]:

• M̂n
∗,imm is open and dense in M̂n

∗ .

• M̂n
∗,imm is a foliated space with the restriction of the canonical partition.

• The foliated space M̂n
∗,imm has unique C∞ structure such that ev : M̂n

∗ → H is

C∞. Furthermore ι̂M,f : M → M̂n
∗ is also C∞ for all pairs (M, f) where f is an

immersion.

• Every map ι̂M,f : M → [M, f ] ≡ Iso(M, f)\M is the holonomy covering of the leaf

[M, f ]. Thus M̂n
∗,np ∩ M̂n

∗,imm is the union of leaves without holonomy.

• The C∞ foliated space M̂n
∗,imm has a Riemannian metric so that every map ι̂M,f :

M → [M, f ] ≡ Iso(M, f)\M is a local isometry.

By forgetting the functions f , we get a Polish space Mn
∗ [8, Theorem 1.2]. We have

Mn
∗ ≡ M̂n

∗ (0), using the zero Hilbert space. The forgetful or underlying map u : M̂n
∗ →

Mn
∗ , u([M,x, f ]) = [M,x], is continuous. We also have a canonical partition defined by the

images [M ] of canonical continuous maps ιM : M →Mn
∗ , ιM(x) = [M,x], giving rise to the

conditions on M of being (locally) non-periodic (or (locally) aperiodic), and the subspaces
Mn
∗,np ⊂ Mn

∗,lnp ⊂ Mn
∗ . The condition on M to be repetitive is also defined by forgetting

about the functions, and the obvious version without functions of Proposition 3.1.10 is
true. Then the following properties hold for n ≥ 2 [8, Theorem 1.3]:

• Mn
∗,lnp is open and dense in Mn

∗ .

• Mn
∗,lnp is a foliated space with the restriction of the canonical partition.

• The foliated space Mn
∗,lnp has a unique C∞ and Riemannian structures such that

every map ιM : M → [M ] ≡ Iso(M)\M is a local isometry. Furthermore u :

M̂n
∗,imm →Mn

∗,lnp is a C∞ foliated map.

• Every map ιM : M → [M ] ≡ Iso(M)\M is the holonomy covering of the leaf [M ].
Thus Mn

∗,np is the union of leaves without holonomy.
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Moreover [M ] is compact if and only if M is of bounded geometry [8, Theorem 12.3] (see
also [25], [53, Chapter 10, Sections 3 and 4]).

For m ∈ N, consider quadruples (M,x, f, ξ), where (M,x, f) is like in the defini-

tion of M̂n
∗ and ξ ∈

⊗
m T

∗
xM with |ξ| = 1. An equivalence between such quadruples,

(M,x, f, ξ) ∼ (M ′, x′, f ′, ξ′), means that there is an isometry h : M → M ′ defining an
equivalence (M,x, f) ∼ (M ′, x′, f ′) with h∗ξ′ = ξ. The corresponding equivalence classes,

denoted by [M,x, f, ξ], define a set SmM̂n
∗ = SmM̂n

∗ (H), like in the case of M̂n
∗ . More-

over the C∞ convergence [Mi, xi, fi, ξi]→ [M,x, f, ξ] in SmM̂n
∗ means that, for all m ∈ N,

R, ε > 0 and λ > 1, there is an (m,R, λ)-p.p.q.i. hi : (M,x)� (Mi, xi), for i large enough,
such |∇l(f − h∗i fi)| < ε on DM(x,R) for 0 ≤ l ≤ m and h∗i ξi → ξ. Like in the case of

M̂n
∗ , it can be proved that this convergence defines a Polish topology on SmM̂n

∗ . Moreover

there are continuous maps ι̂M,f,ξ : M → SmM̂n
∗ , defined by ι̂M,f,ξ(x) = [M,x, f, ξ], whose

images [M, f, ξ] form a canonical partition of SmM̂n
∗ satisfying the same basic properties

as the canonical partition of M̂n
∗ . We also have a continuous forgetful or underlying map

u : SmM̂n
∗ → M̂n

∗ given by u([M,x, f, ξ]) = [M,x, f ].

Proposition 3.1.11. The map u : SmM̂n
∗ → M̂n

∗ is proper.

Proof. For any compact subset K ⊂ M̂n
∗ , take a sequence [Mi, xi, fi, ξi] in u−1(K). Since

K is compact, after taking a subsequence if necessary, we can assume that [Mi, xi, fi]
converges to some element [M,x, f ] in K. Thus there are sequences, mi ↑ ∞ in N,
0 < Ri ↑ ∞, 0 < εi ↓ 0 and 1 < λi ↓ 1, such that, for every i, there is some an (mi, Ri, λi)-
p.p.q.i. hi : (M,x) � (Mi, xi) with |∇l(f − h∗i fi)| < εi on DM(x,Ri) for 0 ≤ l ≤ mi.
Since λ−mi ≤ |h∗i ξi| ≤ λmi for all i, some subsequence h∗ikξik is convergent in

⊗
m T

∗
xM to

some ξ with |ξ| = 1. Using hik , it follows that the subsequence [Mik , xik , fik , ξik ] converges
to [M,x, f, ξ] in u−1(K), showing that u−1(K) is compact.

For every m ∈ N, a well-defined continuous map ∇m : SmM̂n
∗ → H is given by

∇m([M,x, f, ξ]) = (∇mf)(x, ξ).

Proposition 3.1.12. Let M be a complete connected Riemannian n-manifold, and let
f ∈ C∞(M,H) and x0 ∈ M . Then [M, f ] is compact if and only if M is of bounded
geometry and ∇m(u−1([M, f ])) is precompact in H for all m ∈ N.

Proof. Assume that [M, f ] is compact to prove the “only if” part. The map u : M̂n
∗,imm →

Mn
∗ defines a map u : [M, f ] → [M ] with dense image because ιM = u ◦ ι̂M,f . By

the compactness of [M, f ], it follows that this map is surjective, and therefore [M ] is
compact. So M is of bounded geometry. Furthermore ∇m(u−1([M, f ])) is compact in H
by Proposition 3.1.11.

The “if” part follows by showing that any sequence [M, f, xp] in [M, f ] has a subse-

quence that is convergent in M̂n
∗ . Since [M ] is compact and u : M̂n

∗ → Mn
∗ continuous,

we can suppose that [M,xp] converges to some point [M ′, x′] in Mn
∗ . Take a sequence of

compact domains Dq in M ′ such that BM ′(x
′, q+ 1) ⊂ Dq. For every q, there are pointed

C∞ embeddings hq,p : (Dq, x
′) → (M,xp), for p large enough, such that h∗q,pgM → gN

on Dq with respect to the C∞ topology. Let f ′q,p = h∗q,pf on Dq. From the compactness

of ∇m(u−1([M, f ])), it easily follows that, for all q,m, we have supp supDq
|∇mf ′q,p| <∞,
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and the elements (∇mf ′q,p)(x
′) form a precompact subset of H ⊗

⊗
m Tx′M

∗. Hence the
functions f ′q,p form a precompact subset of C∞(Dq,E) with the C∞ topology by Corol-

lary 3.1.3. So some subsequence f ′q,p(q,`) is convergent to some f ′q ∈ C∞(Ω̃q,E) with
respect to the C∞ topology. In fact, arguing inductively on q, it is easy to see that we
can assume that each f ′q+1,p(q+1,`) is a subsequence of f ′q,p(q,`), and therefore f ′q+1 extends

f ′q. Thus the functions f ′q can be combined to define a function f ′ ∈ C∞(M ′,E). Take
sequences `q,mq ↑ ∞ in N so that

‖f ′ − h∗q,p(q,`q)f‖Cmq ,Dq ,gN = ‖f ′q − f ′q,p(q,`q)‖Cmq ,Ω̃q ,gN
→ 0 .

Considering f ′ as an H-valued function, we get that [M, f, xp(q,`q)]→ [M ′, f ′, x′] in M̂n
∗ as

q →∞.

The following is an elementary consequence of Proposition 3.1.12.

Corollary 3.1.13. Let M be a complete connected Riemannian n-manifold, and let f ∈
C∞(M,H). Suppose that dimH < ∞. Then [M, f ] is compact if and only if M is of
bounded geometry and supM |∇mf | <∞ for all m ∈ N.

Corollary 3.1.14. Let M be a complete connected Riemannian n-manifold, let fH =
H1 ⊕ H2 be a direct sum decomposition of Hilbert spaces, and let

f ≡ (f1, f2) ∈ C∞(M,H) ≡ C∞(M,H1)⊕ C∞(M,H2) .

Then [M, f ] is compact if and only if [M, f1] and [M, f2] are compact.

Proof. Assume that [M, f ] is compact to prove the “only if” part. Let Πa : H → H2

(a = 1, 2) denote the factor projections. The induced maps Πa∗ : M̂n
∗ (H) → M̂n

∗ (Ha)
define continuous maps Πa∗ : [M, f ] → [M, fa], whose images are dense because ι̂M,fa =

Πa∗ ◦ ι̂M,f . By the compactness of [M, f ], it follows that these maps are surjective and

the spaces [M, fa] are compact.
Now assume that every space [M, fa] (a = 1, 2) is compact to prove the “if” part. By

Proposition 3.1.12, this means that M is of bounded geometry and, for all m ∈ N, each
set ∇m(u−1([M, fa])) is precompact in Ha. Since

∇m(u−1([M, f ])) ⊂ ∇m(u−1([M, f1]))×∇m(u−1([M, f2]))

for every m because (∇mf)(x, ξ) = ((∇mf1)(x, ξ), (∇mf2)(x, ξ)) for all x ∈ M and ξ ∈⊗
m T

∗
xM , we get that ∇m(u−1([M, f ])) is precompact in H for all m. Hence [M, f ] is

compact by Proposition 3.1.12.

Proposition 3.1.15. Let M be a complete connected Riemannian n-manifold, and let
f ∈ C∞(M,H). Then the following properties hold:

(i) If [M, f ] is a compact subspace of M̂n
∗,imm, then infM |∇f | > 0.

(ii) If infM |∇f | > 0, then [M, f ] ⊂ M̂n
∗,imm.

Proof. This holds because the mapping [M ′, x′, f ′] 7→ |(∇f ′)(x′)| is well defined and

continuous on M̂n
∗ .
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Proposition 3.1.16. In any minimal compact Riemannian foliated space, all leaves with-
out holonomy are repetitive.

Proof. This is a direct consequence of the Reeb’s local stability theorem and the fact that
L∩U is relatively dense in L for all leaf L and open U 6= ∅ in a minimal compact foliated
space [10, Second proof of Theorem 1.13, p. 123].

Example 3.1.17. For any compact C∞ foliated space X, there is a C∞ embedding into
some separable Hilbert space, h : X → H [17, Theorem 11.4.4]. Suppose that X is
transitive and without holonomy, and endowed with a Riemannian metric. Let M be
a dense leaf of X, which is of bounded geometry, and let f = h|M ∈ C∞(M,H). We
have infM |∇f | = minX |∇h| > 0. So X′ := [M, f ] is a Riemannian foliated subspace of

M̂n
∗,imm (Proposition 3.1.15 (ii)). Since X is compact and without holonomy, and M is

dense in X, it follows from the Reeb’s local stability theorem that the leaves of X′ are
the subspaces [L, h|L], for leaves L of X, and the combination of the corresponding maps
maps ι̂L,h|L is an isometric foliated surjective map ι̂X,h : X→ X′. Using that ev ◦ι̂X,h = h,
we get that ι̂X,h : X → X′ is an isometric foliated diffeomorphism, and ev : X′ → H
is a C∞ embedding whose image is h(X). Thus X′ is compact and without holonomy,
and (M, f) is limit aperiodic. If moreover X is minimal, then (M, f) is repetitive by
Proposition 3.1.16.

3.1.4 The spaces CMn
∗ and ĈMn

∗

Like in Section 3.1.3, using distinguished closed subsets C ⊂M instead of C∞ functions
f : M → H, we get set CMn

∗ of equivalence classes [M,x,C] of triples (M,x,C), where
the equivalence (M,x,C) ∼ (M ′, x′, C ′) means that there is a pointed isometry h :
(M,x) → (M ′, x′) with h(C) = C ′. A sequence [Mi, xi, Ci] ∈ CMn

∗ is said to be C∞-
Chabauty convergent to [M,x,C] ∈ CMn

∗ if, for any compact domain D ⊂ M containing
x, there are pointed C∞ embeddings hi : (D, x) → (Mi, xi), for large enough i, such
that h∗i gi → gM |D in the C∞ topology and h−1

i (Ci) → C ∩D in the Chabauty (or Fell)
topology [1, Section A.4]. In other words, this convergence also means that, for all m ∈ N,
R > ε > 0 and λ > 1, there is some (m,R, λ)-p.p.q.i. hi : (M,x)� (Mi, xi), for i large
enough, such that:

(a) for all y ∈ DM(x,R−ε)∩C, there is some yi ∈ h−1
i (Ci) ⊂ DM(x,R) with dM(y, yi) <

ε; and,

(b) for all yi ∈ DM(x,R− ε)∩h−1
i (Ci), there is some y ∈ DM(x,R) with dM(y, yi) < ε.

The C∞-Chabauty convergence describes a Polish topology on CMn
∗ [1, Theorem A.17],

and the forgetful or underlying map u : CMn
∗ → Mn

∗ , u([M,x,C]) = [M,x], is continu-
ous. There are also canonical continuous maps ιM,C : M → CMn

∗ , ιM,C(x) = [M,x,C],
whose images, denoted by [M,C], form a canonical partition of CMn

∗ . We have [M,C] ≡
Iso(M,C)\M , where Iso(M,C) denotes the group of isometries of M preserving C. There
are obvious versions of Lemmas 3.1.8 and 3.1.9 in this setting, as well as obvious versions
of (limit) aperiodicity for (M,C). Similarly, the repetitivity of (M,C) can be defined like
in the case of (M, f) in Section 3.1.3, using (a) and (b) instead of the condition on f
in (3.1.2). The obvious version of Proposition 3.1.10 holds in this setting.
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Now fix some countable set F like in Section 2.1.4. A set ĈMn
∗ = ĈMn

∗ (F ) can be
defined like CMn

∗ , using equivalence classes [M,x,C, φ] of quadruples (M,x,C, φ), for
closed subsets C ⊂ M with locally constant colorings φ : C → F , where the equivalence
(M,x,C, φ) ∼ (M ′, x′, C ′, ψ′) means that there is a pointed isometry h : (M,x)→ (M ′, x′)

with h(C) = C ′ and h∗φ′ = φ. The convergence [Mi, xi, Ci, φi] → [M,x,C, φ] in ĈMn
∗

can be defined like in the case of CMn
∗ , adding the condition φ(y) = φihi(yi) in (a)

and (b). Like in [1, Theorem A.17], it can be probed that this convergence defines

a Polish topology on ĈMn
∗ , and the forgetful or underlying map u : ĈMn

∗ → CMn
∗ ,

u([M,x,C, φ]) = [M,x,C], is continuous. There are also canonical continuous maps

ι̂M,C,φ : M → ĈMn
∗ , ι̂M,C,φ(x) = [M,x,C, φ], whose images, denoted by [M,C, φ], form

a canonical partition of CMn
∗ satisfying the obvious versions of Lemmas 3.1.8 and 3.1.9.

Similarly, the concepts of (limit) aperiodicity and repetitivity have obvious versions for
(M,C, φ), satisfying the obvious version of Proposition 3.1.10.

3.2 Repetitive Riemannian manifolds

LetM be a complete connected Riemannian manifold and fix a distinguished point p ∈M .
For i ∈ N, R > 0, and λ ≥ 1, let

Ω(i, R, λ) = {x ∈M | ∃ an (i, R, λ)-p.p.q.i. f : (M, p)� (M,x) } .

Suppose that M is repetitive; i.e., the sets Ω(i, R, λ) are relatively dense in M . We will
hereafter consider sequences 0 < ri, si, ti ↑ ∞ and λi ↓ 1 satisfying a list of conditions
that can be achieved by assuming that these divergences and convergence are fast enough.
For integers i, j ≥ 0, we will use the notation

Λi,j =

j∏
k=i

λk , Λi =
∏
k≥i

λk ;

in particular,6 Λi,j = 1 if j < i. Let ωi denote the smallest positive real such that the
set Ωi = Ω(i, ri, λi) is ωi-relatively dense in M . For notational convenience, let also
r−1 = s−1 = t−1 = ω−1 = 0, and fix any λ−1 > 1. For i ≥ 0, we can assume

ri >
λ5

0

λ0 − 1
(ri−1 + si−1 + ti−1 + 2ωi−1 + 1) , (3.2.1)

si > 2λ5
0(ri + si−1 + ωi) , (3.2.2)

ti > λ3
0(5ti−1 + ri + si−1 + 2ωi−1 + 1) , (3.2.3)

ti > 4
λ4
i + λ2

i − 1

λ2
i

ri + ti−1 + Λi(si−1 + 2ωi−1 + ωi) , (3.2.4)

λ2
i < λi−1 , (3.2.5)

22−i

>
ri(λ

5
i − 1)λ2

i−1

ri−1(λ5
i−1 − 1)λ2

i

,
ri(λ

6
i − 1)λ2

i−1

ri−1(λ6
i−1 − 1)λ2

i

. (3.2.6)

6An empty product is assumed to be 1.
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When i < j, (3.2.5) yields

Λi,j < Λi <
∏
k≥i

λ2i−k

i = λ2
i . (3.2.7)

Finally, let Ω̃i = Ω(i, ri,Λi) and Ω̃i,j = Ω(i, ri,Λi,j).

Lemma 3.2.1. For i < j,

rj
λjΛ

2
j − 1

Λj

< 4
λ5
i − 1

λ2
i

ri , rj
λ2
jΛ

2
j − 1

Λj

< 4
λ6
i − 1

λ2
i

ri . (3.2.8)

Proof. We will prove the first inequality, the proof of the second one being similar. For
i ≤ k ≤ j, let

f(k) =
λ5
k − 1

λ2
k

rk .

We have to show that

rj
λjΛ

2
j − 1

Λj

≤ 4f(i) . (3.2.9)

By (3.2.7),
λ3
jΛ

2
j − λ2

j ≤ λ5
jΛj − Λj ,

and therefore

rj
λjΛ

2
j − 1

Λj

≤ rj
λ5
j − 1

λ2
j

= f(l) . (3.2.10)

On the other hand, (3.2.6) yields

f(l) =
f(l)

f(l − 1)

f(l − 1)

f(l − 2)
· · · f(i+ 1)

f(i)
f(i) < 22−l

22−l+1 · · · 22−i+1

f(i) < 4f(i) , (3.2.11)

and (3.2.9) follows from (3.2.10) and (3.2.11).

For i ∈ N, let M i
i = {p} and let hii,p = idD(p,ri). In Proposition 3.2.2, for integers

0 ≤ i < j, we will continue defining subsets M j
i ⊂ M and an (i, ri,Λi,j−1)-p.p.q.i.

hji,z : (M, p)→ (M, z) for every z ∈M j
i . Using this notation, let

P j
i = { (l, z) ∈ N×M | i < l < j, z ∈M j

l } . (3.2.12)

Note that P j
k ⊂ P j

i if i ≤ k < j. Moreover, let < be the binary relation on P j
i defined by

declaring (l, z) < (l′, z′) if l < l′ and z ∈ hjl′,z′(M l′

l ), and let ≤ denote its reflexive closure.

We will prove that ≤ is in fact a partial order relation (Lemma 3.2.3 (b)). Let P
j

i denote
the set of maximal elements of (P j

i ,≤), which is nonempty because all chains in P j
i are

finite.

Proposition 3.2.2. For all integers 0 ≤ i < j, there is a set7 M j
i = M̂ j

i ∪· M̃
j
i ⊂M and,

for every x ∈ M j
i , there is an (i, ri,Λi,j−1)-p.p.q.i. hji,x : (M, p) � (M,x) satisfying the

following properties:

7The dotted union symbol denotes a union of disjoint subsets.
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(i) M̂ j
i is a maximal si-separated subset of

Ωi ∩D(p, rj − ti) \
⋃
·

(l,z)∈P j
i

D(z, λlΛl,j−1(rl + si)) .

(ii) M j
i is an si/Λi+1,j−1-separated subset of Ω̃i,j−1 ∩D(p, rj − ti).

(iii) For every (l, z) ∈ P j
i and x ∈ M j

i ∩ h
j
l,z(D(p, rl)), we have hji,x = hjl,z ◦ hli,x′, where

x′ = (hjl,z)
−1(x).

(iv) For any (l, z) ∈ P j
i , we have M j

i ∩ h
j
l,z(D(p, rl)) = hjl,z(M

l
i ).

(v) For any x ∈M j
i and (l, z) ∈ P j

i , either d(x, z) ≥ λlΛj(rl + si) or x ∈ hjl,z(M l
i ).

(vi) For all integers 0 ≤ k ≤ l such that either l < j and k ≥ i, or l = j and k > i, we
have M l

k ⊂M j
i and hji,z = hlk,z|D(p,ri) for any z ∈M l

k.

(vii) We have p ∈M j
i and hji,p = idD(p,ri).

Remark 19. In Proposition 3.2.2 (iii), the equality hji,x = hjl,z ◦ hli,x′ holds on D(p, ri)
because

hli,x′(D(p, ri)) ⊂ D(x′,Λi,j−1ri) ⊂ D(p, rl) . (3.2.13)

Here, the last inclusion is true since, for all y ∈ D(x′,Λi,j−1ri),

d(y, p) ≤ d(y, x′) + d(x′, p) ≤ Λi,j−1ri + rl − ti < rl

because x′ ∈M l
i ⊂ D(p, rl − ti) by (ii) and (iv), and ti > Λi,j−1ri by (3.2.3) and (3.2.7).

The proof of Proposition 3.2.2 is long and has several intermediate steps. By Re-
mark 19, for integers 0 ≤ i < j, Items (i) to (vii) refer only to points z ∈ M l

k or pointed
quasi-isometries hlk,z where either l < j, or l = j and k ≥ i. This allows us to proceed

inductively in the following way: First, for i ≥ 0, we define M i+1
i and hi+1

i,z for z ∈M i+1
i .

Then, for 0 ≤ i < j − 1, we construct M j
i and hji,z for z ∈M j

i under the assumption that

we have already defined M l
k and hlk,z when either l < j, or l = j and k > i.

For i ≥ 0, let M̂ i+1
i = M i+1

i be any maximal si-separated subset of Ωi ∩D(p, rj − ti)
containing p, and let M̃ i+1

i = ∅. Let hi+1
i,p = idB(p,ri) and, for each x ∈ M i+1

i \ {p}, let

hi+1
i,x : (M, p)� (M, z) be any pointed (i, ri, λi)-p.p.q.i. These definitions satisfy Items (i)

to (vii) in Proposition 3.2.2 because P i+1
i = ∅.

Now, given 0 ≤ i < j − 1, suppose that M l
k and hlk,z are defined if either l < j, or

l = j and k > i.

Lemma 3.2.3. We have the following:

(a) For (l, z), (l, z′) ∈ P j
i , any of the following properties yields z = z′:

(1) d(z, z′) ≤ 2rl + 2si,

(2) d(z, z′) < sl/Λl+1,j−1, or
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(3) (l, z) ≤ (l, z′).

(b) (P j
i ,≤) is a partially ordered set.

Proof. Let us prove (a). It is obvious that (3) yields z = z′ since ≤ is the reflexive closure
of <. Item (1) implies (2) because, since i < l, we get 2rl + 2si < sl/λ

5
0 < sl/Λl+1,j−1

by (3.2.2) and (3.2.7). According to (3.2.12), we have l > i and z, z′ ∈ M j
l , so (2) yields

z = z′ because M j
l is sl/Λl+1,j−1-separated by the induction hypothesis.

Let us prove (b). First, let us show that the reflexive relation ≤ is also transi-
tive. Suppose (l, z) < (l′, z′) < (l′′, z′′), which means l < l′ < l′′, z ∈ hjl′,z′(M

l′

l ),

and z′ ∈ hjl′′,z′′(M
l′′

l′ ). By the induction hypothesis with (iv), it is enough to show

z ∈ hjl′′,z′′(D(p, rl′′)) in order to obtain z ∈ hjl′′,z′′(M
l′′

l ) and thus (l, z) < (l′′, z′′), so
let us prove it.

By hypothesis, we have z = hjl′,z′(y) for some y ∈M l′

l , which is contained in D(p, rl′)

by the induction hypothesis with (ii). We also have z′′ ∈ P j
l′ by (3.2.12), so the induction

hypothesis with (iii) yields hjl′,z′ = hjl′′,z′′ ◦ hl
′′

l′,y′ on D(p, rl′), where y′ = (hjl′′,z′′)
−1(z′). By

Remark 19,
y′′ := hl

′′

l′,y′(y) ∈ hl′′l′,y′(D(p, rl′)) ⊂ D(p, rl′′) .

Thus z = hjl′′,z′′(y
′′) ∈ hjl′′,z′′(D(p, rl′′)), proving the transitivity of ≤.

Finally, let us prove that ≤ is antisymmetric. Let (l, z), (l′, z′) ∈ P j
i be such that

(l, z) ≤ (l′, z′) and (l′, z′) ≤ (l, z). By the definition of ≤, we get l = l′. Thus z = z′

by (a), and therefore (l, z) = (l′, z′).

Lemma 3.2.4. The following properties hold:

(a) For (l, z), (l′, z′) ∈ P j
i , if l < l′ and d(z, z′) < λlΛj(rl′ + sl), then (l, z) ≤ (l′, z′).

(b) For every

x ∈
⋃

(l,z)∈P j
i

hjl,z(D(p, rl))

there is a unique (l, z) ∈ P
j

i such that x ∈ hjl,z(D(p, rl)). In particular, for all

(k, y) ∈ P j
i , there is a unique (l, z) ∈ P j

i satisfying (k, y) ≤ (l, z).

(c) For (l, z), (l′, z′) ∈ P j
i , we have

D(z, λlΛl,j−1(rl + si)) ⊂ D(z′, λlΛl′,j−1(rl′ + si))

if (l, z) < (l′, z′).

Proof. Item (a) follows from a simple application of the induction hypothesis with (v).

Let us prove (b). Suppose by absurdity that there are (l, z) 6= (l′, z′) in P
j

i such
that hjl,z(D(p, rl)) and hjl′,z′(D(p, rl′)) intersect at some point x ∈ M . By the induction

hypothesis, hjl,z and hjl′,z′ are (l, rl,Λl,j−1) and (l, rl,Λl,j−1)-p.p.q.i., respectively. In the
case where l < l′, then (3.2.2) and (3.2.7) yield

d(z, z′) ≤ d(z, x) + d(x, z′) ≤ Λl,j−1rl + Λl′,j−1rl′ < Λl(rl′ + sl) < λ2
0(rl′ + sl) .
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Thus (l, z) < (l′, z′) by (a), contradicting the maximality of (l, z). If, on the other hand,
l = l′, then the induction hypothesis with (ii) yields

sl/Λl+1,j−1 ≤ d(z, z′) ≤ d(z, x) + d(x, z′) ≤ 2Λl,j−1rl .

In particular, sl ≤ 2λ2
0rl by (3.2.7), contradicting (3.2.2). The second assertion of (b)

follows from the first one because (k, y) ≤ (l, z) yields y ∈ hjl,z(D(p, rl)) ∩ hjl′,z′(D(p, rl′)).

Let us prove (c). We are assuming that (l, z) < (l′, z′), so z ∈ hjl′,z′(M
l′

l ). Since

hjl′,z′ : (M, p) � (M, z′) is an (l′, rl′ ,Λl′,j−1)-p.p.q.i., we have d(z′, z) ≤ Λl′,j−1rl′ by the
induction hypothesis with (ii), so

D(z, λlΛl,j−1(rl + si)) ⊂ D(z′,Λl′,j−1rl′ + λlΛl,j−1(rl + si)) .

But now (3.2.1) yields

λlΛl′,j−1(rl′ + si) > Λl′,j−1rl′ + (λl − 1)Λl′,j−1rl′ ≥ Λl′,j−1rl′ + λlΛl,j−1(rl + si) .

Let us define the disjoint sets M̃ j
i and M̂ j

i , whose union is the definition of M j
i . First,

let
M̃ j

i =
⋃

(l,z)∈P j
i

hjl,z(M
l
i ) . (3.2.14)

Note that this set is well-defined since M l
i ⊂ D(p, rl) = domhjl,z by the induction hypoth-

esis with (ii). Second, take any maximal si-separated subset

M̂ j
i ⊂ Ωi ∩D(p, rj − ti) \

⋃
·

(l,z)∈P j
i

D(z, λlΛl,j−1(rl + si)) . (3.2.15)

We have M̃ j
i ∩ M̂

j
i = ∅ since, for all (l, z) ∈ P j

i ,

hjl,z(M
l
i ) ⊂ hjl,z(D(p, rl)) ⊂ D(z,Λl,j−1rl) ⊂ D(z, λlΛl,j−1(rl + si))

because hjl,z : (M, p)� (M, z) is an (l, rl,Λl,j−1)-p.p.q.i. by the induction hypothesis.

The definition of the partial maps hji,x depends on whether x ∈ M̂ j
i or x ∈ M̃ j

i . If

x ∈ M̂ j
i , let hji,x be any (i, ri, λi)-p.p.q.i. (M, p) � (M,x), which exists because x ∈ Ωi.

If x ∈ M̃ j
i , then the induction hypothesis with (ii) yields

x ∈
⋃

(k,y)∈P j
i

hjk,y(M
k
i ) ⊂

⋃
(k,y)∈P j

i

B(y,Λk,j−1rk) .

By Lemma 3.2.4 (b), there is a unique (l, z) ∈ P j

i such that x ∈ hjl,z(D(p, rl)). Then define

hji,x = hjl,z ◦ hli,x′ , where x′ = (hjl,z)
−1(x). Note that im(hli,x′) ⊂ dom(hjl,z), as explained in

Remark 19.

Lemma 3.2.5. If (l, z) ∈ P j

i , then z ∈ M̂ j
l .

Proof. The statement is true for l = j − 1 because M̂ j
j−1 = M j

j−1 by definition. Suppose

by absurdity that l < j − 1 and z ∈ M̃ j
l . Then, by (3.2.14), there is some (l′, z′) ∈ P j

i

with l′ > l and z ⊂ hjl′,z′(M
l′

l ). Thus (l, z) < (l′, z′), a contradiction.
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Lemma 3.2.6. The following properties hold for every x ∈M j
i :

(a) If x ∈ M̂ j
i , then the partial map hji,x is an (i, ri, λi)-p.p.q.i. (M, p)� (M,x).

(b) The partial map hji,x can be expressed as a product hjiL,xL · · ·h
jL
i,x1

(1 ≤ L ≤ j − i),

where i1 > · · · > iL = i, j = j1 > · · · > jL and xl ∈ M̂ jl
il

(1 ≤ l ≤ L).

(c) The partial map hji,x is an (i, ri,Λi,j−1)-p.p.q.i. (M, p)� (M,x).

Proof. Item (a) holds by the definition of hji,x when x ∈ M̂ j
i , so let us prove Items (b)

and (c) by induction. When j = i + 1, we have M j
i = M̂ j

i and so Items (b) and (c)
hold trivially. Suppose the result is true when either either l < j, or l = j and k > i.

We only have to consider the case where x ∈ M̃ j
i . Let (l, z) ∈ P

j

i be the unique pair
satisfying x ∈ B(z, rl) (Lemma 3.2.4 (b)), and let x′ = (hjl,z)

−1(x). By the induction

hypothesis, hli,x′ : (M, p) � (M,x′) is an (i, ri,Λi,l−1)-p.p.q.i. and can be written as a

product hjKiK ,xK · · ·h
j
i1,x1

(1 ≤ L ≤ l − i), where i1 < · · · < iK = i, j = j1 > · · · > jK = l

and xk ∈ M̂ jk
ik

(1 ≤ k ≤ K). By the definition of hji,x when x ∈ M̃ j
i , we have

hji,x = hjl,zh
l
i,x′ = hjl,zh

l
iK ,xK

· · ·hj1i,x1 ,

and Item (b) follows from Lemma 3.2.5. Finally, Item (c) follows from the equality
hji,x = hjl,zh

l
i,x′ , the induction hypothesis and Proposition 3.1.1.

Once we have made the relevant definitions, let us show that they satisfy the properties
listed in Proposition 3.2.2. Item (i) is guaranteed by the definition of M̂ j

i , so we really
start by proving (ii).

The inclusion M j
i ⊂ Ω̃i,j−1 is obvious by Lemma 3.2.6 (c). Let us prove that M j

i ⊂
D(p, rj − ti). We have M̂ j

i ⊂ D(p, rj − ti) by construction, so let us show that M̃ j
i ⊂

D(p, rj − ti). By the induction hypothesis with (ii), we have z ∈ D(p, rj − tl) for all

(l, z) ∈ P j

i . Then D(z, λlrl) ⊂ D(p, rj − ti) because, for any y ∈ D(z, λlrl),

d(y, p) ≤ d(y, z) + d(z, p) < λlrl + rj − tl < rj − ti

by (3.2.3). Thus M̃ j
i ⊂ D(p, rj − ti) according to (3.2.14), since hjl,z : (M, p)� (M, z) is

an (l, rl, λl)-p.p.q.i. for all (l, z) ∈ P j

i by Lemmas 3.2.5 and 3.2.6, and M l
i ⊂ D(p, rl) by

the induction hypothesis with (ii).
The proof of (ii) is concluded by showing that M j

i is si/Λi,j−1-separated. To begin

with, we prove that M̃ j
i is si/Λi,j−1-separated. Let (l, z) ∈ P j

i . By the induction hypothe-
sis, M l

i is si/Λi,l−1-separated and hjl,z : (M, p)� (M, z) is an (l, rl,Λl,j−1)-quasi-isometry.

Thus hjl,z(M
l
i ) is si/Λi,j−1-separated. Moreover hjl,z(M

l
i ) ⊂ D(z,Λl,j−1rl) by the induction

hypothesis with (ii). By (3.2.14), it is enough to show that

d(z, z′) ≥ Λl,j−1rl + Λl′,j−1rl′ + si/Λi,j−1 (3.2.16)

for (l, z) 6= (l′, z′) in P
j

i . If l = l′, then, by (3.2.2) and (3.2.7),

sl/Λl+1,j−1 > sl/λ
2
0 > λ0(2rl + si) > 2Λi,l−1rl + si/Λi,j−1 . (3.2.17)
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Thus (3.2.16) follows from the induction hypothesis with (ii) applied to M j
l . If l < l′,

then (3.2.2) yields
sl ≥ λ0(rl + si) ≥ Λl,j−1rl + si/Λi,j−1 .

So, applying Lemma 3.2.4 (a) and (3.2.7), we get

d(z, z′) ≥ λlΛj(rl′ + sl) ≥ Λl′,j−1rl′ + Λl,j−1rl + si/Λi,j−1 .

The set M̂ j
i is si-separated by construction. Thus, to prove that M j

i = M̂ j
i ∪· M̃

j
i

is si/Λi,j−1-separated, it suffices to show that d(M̃ j
i , M̂

j
i ) ≥ si/Λi,j−1. Let x̃ ∈ M̃ j

i

and x̂ ∈ M̂ j
i . By (3.2.13), (3.2.14) and (3.2.15), there is some (l, z) ∈ P

j

i such that
x̃ ∈ D(z,Λl,j−1rl) and x̂ /∈ D(z, λlΛl,j−1(rl + si)). By the triangle inequality, we get
d(x̃, x̂) ≥ si, which concludes the proof of (ii).

Let us prove (iii). Let (l, z) ∈ P j
i and x ∈M j

i ∩ h
j
l,z(D(p, rl)). We have

M̂ j
i ∩D(z,Λl(rl + si)) = ∅ (3.2.18)

by (3.2.15) and Lemma 3.2.4 (b),(c), so x ∈ M̃ j
i . Consider first the case where (l, z) ∈ P j

i .
Then the equality hji,x = hjl,z ◦ hli,x′ , for x′ = (hjl,z)

−1(x), is precisely the definition of

hji,z. Therefore we can suppose that (l, z) ∈ P j
i \ P

j

i . According to Lemma 3.2.4 (b),

there is a unique (l′, z′) ∈ P
j

i such that (l, z) < (l′, z′) and x ∈ im(hjl′,z′). We have

already proved that hji,x = hjl′,z′ ◦ hl
′

i,x′ for x′ = (hjl′,z′)
−1(x). Moreover, by the induction

hypothesis with (iii), if y = (hjl′,z′)
−1(z) and x′′ = (hjl,z)

−1(x), we have (hl
′

l,y)
−1(x′) = x′′,

hjl,z = hjl′,z′ ◦ hl
′

l,y and hl
′

i,x′ = hl
′

l,y ◦ hli,x′′ . Therefore

hji,x = hjl′,z′ ◦ h
l′

i,x′ = hjl′,z′ ◦ h
l′

l,y ◦ hli,x′′ = hjl,z ◦ h
l
i,x′′ .

Let us prove (iv). Let (l, z) ∈ P j
i . By (3.2.18), we only have to show that

M̃ j
i ∩ h

j
l,z(D(p, rl)) = hjl,z(M

l
i ) . (3.2.19)

Consider first the case where (l, z) ∈ P j

i . For (l′, z′) ∈ P j

i \ {(l, z)}, by (ii) and (3.2.16),

hjl,z(D(p, rl)) ∩ hjl′,z′
(
M l′

i

)
⊂ D(z,Λl,j−1rl) ∩D(z′,Λl′,j−1rl′) = ∅

and M l
i ⊂ D(p, rl), yielding (3.2.19), as desired.

Suppose now that (l, z) ∈ P j
i \ P

j

i . Then, according to Lemma 3.2.4 (b), there is a

unique (l′, z′) ∈ P j

i such that (l, z) < (l′, z′). We have already proved that

M j
i ∩ h

j
l′,z′(D(p, rl′)) = hjl′,z′(M

l′

i ) .

Let y = (hjl′,z′)
−1(z). By the induction hypothesis with (iv), we know that M l′

i ∩
hl
′

l,y(D(p, rl)) = hl
′

l,y(M
l
i ). Thus (3.2.19) follows using (iii):

M j
i ∩ h

j
l,z(D(p, rl)) = M j

i ∩ h
j
l′,z′ ◦ h

l′

l,y(D(p, rl)) = hjl′,z′
(
M l′

i

)
∩ hjl′,z′ ◦ h

l′

l,y(D(p, rl))

= hjl′,z′
(
M l′

i ∩ hl
′

l,y(D(p, rl))
)

= hjl′,z′
(
hl
′

l,y(M
l
n)
)

= hjl,z(M
l
i ) .
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Let us prove (v). If (l, z) ∈ P j

i , then the result follows from (3.2.14) and (3.2.15). So

suppose (l, z) /∈ P j

i . Consider first the case where x ∈ M̂ j
i . By Lemma 3.2.4 (b), there is

a unique (l′, z′) ∈ P j

i such that (l, z) < (l′, z′), and so Lemmas 3.2.5 and 3.2.6, and (ii)
give

z ∈ hjl′,z′(M
l′

l ) ⊂ hjl′,z′(D(z′, rl′ − tl)) ⊂ D(z′, λl′(rl′ − tl)) .
Then (3.2.15), (3.2.3) and (3.2.7) yield

d(x, z) ≥ d(x, z′)− d(z′, z) ≥ λlΛl′,j−1(rl′ + si)− λl′(rl′ − tl) > tl > λlΛj(rl + si) .

Consider now the case where x ∈ M̃ j
i . Then there is a unique (l′, z′) ∈ P j

i such that
x ∈ hjl′,z′(M

l′
i ). If (l, z) = (l′, z′), then x ∈ hjl,z(M

l
i ). If (l, z) 6= (l′, z′) and l = l′, then

d(z, z′) ≥ sl/Λl+1,j−1 by (ii). Thus (3.2.2) and (3.2.7) yield

d(x, z) ≥ d(z, z′)− d(x, z′) ≥ sl/Λl+1,j−1 − Λl,j−1rl ≥ λlΛj(rl + si) .

If l < l′ and (l, z) � (l′, z′), then Lemma 3.2.4 (a), (3.2.2) and (3.2.7) yield

d(x, z) ≥ d(z, z′)− d(x, z′) ≥ λlΛj(rl′ + sl)− Λl′,j−1rl′ > sl > λlΛj(rl + si) .

This holds since λlΛj − Λl′,j−1 > 0 by (3.2.7). If l > l′, then Lemma 3.2.4 (a), (3.2.2)
and (3.2.7) yield

d(x, z) ≥ d(z, z′)− d(x, z′) ≥ λl′Λj(rl + sl′)− λl′rl′
> λl′Λjrl + sl′ − λl′rl′ > λlΛj(rl + si) .

At this point, only the case (l, z) < (l′, z′) remains to be considered; i.e., l < l′ and
z ∈ hjl′,z′(M l′

l ). Let x′ = (hjl′,z′)
−1(x) ∈ M l′

i and y = (hjl′,z′)
−1(z) ∈ M l′

l . By the induction

hypothesis with (v), either x′ ∈ hl′l,y(M l
i ), or d(x′, y) ≥ λlΛl′(rl + si). In the first case, we

have x ∈ hjl′,z′ ◦ hl
′

l,y(M
l
i ) = hjl,z(M

l
i ) by (iii). In the second case, the fact that hjl′,z′ is an

(l′, rl′ ,Λl′,j−1)-p.p.q.i. (M, p)� (M, z′) gives

d(x, z) ≥ d(x′, y)

Λl′,j−1

≥ λl
Λl′

Λl′,j−1

(rl + si) = λlΛj(rl + si) .

Lemma 3.2.7. M j−1
i ⊂M j

i , and hji,z = hj−1
i,z for all z ∈M j−1

i .

Proof. Let z ∈ M j−1
i . By (ii) and the induction hypothesis with (vii), we have z ∈

B(p, rj−1), p ∈ M j
j−1 and hjj−1,p = idB(p,rj−1). By the definitions of P j

i in (3.2.12) and <,

it is immediate that (j − 1, p) ∈ P j

i . Then z ∈ M j−1
i = hjj−1,p(M

j−1
i ) ⊂ M̃ j

i . Using (iii),
we see that

hji,z = hjj−1,p ◦ h
j−1
i,z = idB(p,rj−1) ◦hj−1

i,z = hj−1
i,z .

Lemma 3.2.8. M j
i+1 ⊂M j

i , and hji,z = hji+1,z|B(p,ri) for every z ∈M j
i+1.

Proof. Let z ∈ M j
i+1. Then (i + 1, z) ∈ P j

i . Moreover p ∈ M i+1
i and hi+1

i,p = idB(p,ri) by
definition, and

z = hji+1,z(p) ⊂ hji+1,z(M
i+1
i ) ⊂M j

i

by (iv). Therefore, by (iii),

hji,z = hji+1,z ◦ hi+1
i,p = hji+1,z ◦ idB(p,ri) = hji+1,z|B(p,ri) .
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Now (vi) follows from Lemmas 3.2.7 and 3.2.8 by induction.
Finally, (vii) follows from (vi) and the definitions of M i

i and hii,p, completing the proof
of Proposition 3.2.2.

Remark 20. Refining Proposition 3.2.2 (vii), note that p ∈ M̂ i+1
i by definition, and p ∈ M̃ j

i

for j > i+ 1 by the argument of Lemma 3.2.7.

Remark 21. Note that, in the course of the proof of Proposition 3.2.2, the only properties
needed from the sets Ωi are Ωi ⊂ Ω(i, ri, λi) and the fact that Ωi is relatively dense in
M . Therefore Proposition 3.2.2 also holds by substituting the sets Ωi with a prescribed
family of subsets of M satisfying the above conditions, after possibly changing the value
of ωi. Similarly, the choice of (i, ri, λi)-p.p.q.i. hji,x for x ∈ M̂ j

i is arbitrary. So, if we have
for every x in Ωi a prescribed (i, ri, λi)-p.p.q.i. fx : (M, p) � (M,x), then we can also

assume that hji,x = fx for every x ∈ M̂ j
i . Thus every map hji,x is a composition of the

form fI · · · f1 by Lemma 3.2.6.

For i ∈ N, let

Mi =
⋃
j≥i

M j
i , Pi =

⋃
j>i

P j
i = { (j, x) ∈ N×M | j > i, x ∈M j

i } . (3.2.20)

For every x ∈ Mi, there is some j ≥ i such that x ∈ M j
i . Then let hi,x = hji,x, which

is independent of j by Proposition 3.2.2 (vi). Thus the order relations ≤ on the sets P j
i

(j ≥ i) fit well to define an order relation ≤ on Pi; more precisely, ≤ is the reflexive closure

of the relation < on Pi defined by setting (j, x) < (j′, x′) if j < j′ and x ∈ hj′,x′(M j′

j ).
The following result is a direct consequence of Proposition 3.2.2.

Proposition 3.2.9. The following properties hold:

(i) Mi is an si/Λi+1-separated subset of Ω̃i.

(ii) For every x ∈Mi, hi,x is an (i, ri,Λi)-p.p.q.i. (M, p)� (M,x).

(iii) For any (l, z) ∈ Pi, we have Mi ∩ hl,z(D(p, rl)) = hl,z(M
l
i ).

(iv) For every (j, y) ∈ Pi and x ∈ Mi ∩ hj,y(D(p, rj)), we have hi,x = hj,y ◦ hi,x′, where
x′ = h−1

j,y(x).

(v) For any x ∈Mi and (j, y) ∈ Pi, either d(x, z) ≥ λl(rl + si), or x ∈ hl,z(M l
i ).

(vi) For i ≤ j, we have Mj ⊂Mi, and hi,x = hj,x|D(p,ri) for x ∈Mj.

(vii) We have p ∈Mi and hi,p = idD(p,ri) .

For integers 0 ≤ i < j, let

Iji = D(p, rj − ti − ωn) \
⋃
·

(l,z)∈P j
i

D(z, λlΛl,j−1(rl + si) + ωn); . (3.2.21)

Lemma 3.2.10. The set S(p, rj − ti − ωi) is contained in Iji .
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Proof. Since
S(p, rj − ti − ωi) ⊂ D(p, rj − ti − ωi) ,

the lemma follows by proving that, for (l, z) ∈ P j

i ,

S(p, rj − ti − ωi) ∩D(z, λlΛl,j−1(rl + si) + ωi) = ∅ . (3.2.22)

On the one hand, d(p, z) ≤ rj− tl by Proposition 3.2.2 (ii). On the other hand, by (3.2.3)
and (3.2.7),

tl > ti + λlΛl,j−1(rl + si) + 2ωi ,

and therefore
rj − tl + λlΛl,j−1(rl + si) + ωi < rj − ti − ωi .

Thus
D(z, λlΛl,j−1(rl + si) + ωi) ⊂ B(p, rj − ti − ωi) ,

and (3.2.22) follows.

Lemma 3.2.11. For all z ∈ Iji , we have d(z,M j
i ) ≤ ωi + si.

Proof. Let z ∈ Iji . Since Ωi is ωi-relatively dense in M , there is some y ∈ Ωi with
d(y, z) ≤ ωi. Thus, by (3.2.21),

y ∈ D(p, rj − ti) \
⋃
·

(l,u)∈P j
i

D(u, λlΛl,j−1(rl + si)) .

Then, by Proposition 3.2.2 (i), the set M̂ j
i ∪ {y} cannot be si-separated and properly

contain M̂ j
i . So, either y ∈ M̂ j

i , or there is some x ∈ M̂ j
i \ {y} with d(x, y) < si. In

the former case d(z,M j
i ) ≤ d(z, y) ≤ ωi, whereas in the latter d(z,M j

i ) ≤ d(z, x) ≤
d(z, y) + d(y, x) ≤ ωi + si.

For i ∈ N, let

Ii =
⋃

(j,z)∈Pi

hj,z(I
j
i ) .

Lemma 3.2.12. Ii is relatively dense in M , where the implied constant depends only on
ri, si, ti, ωi, λi, and λ0.

Proof. Let x ∈ M . We have D(x, ωi) ⊂ D(p, rj − ti) for j large enough. If x /∈ Ii, then
x /∈ hj,p(Iji ) = Iji . So, according to (3.2.21), there is some (l, z) ∈ P j

i such that

x ∈ D(z, λlΛl,j−1(rl + si) + ωi) . (3.2.23)

We can suppose that the pair (l, z) minimizes d(x, z) among the elements in P j
i satisfy-

ing (3.2.23). Moreover we can assume that l is the least value such that (l, z) is in P j
i

and satisfies the above properties.
Consider first the case where x /∈ hl,z(B(p, rl − ti − ωi)). Let τ : [0, 1] → M be a

minimizing geodesic segment with τ(0) = x and τ(1) = z. There is some a ∈ [0, 1) such
that

τ(a) ∈ hl,z(S(p, rl − ti − ωi)) ⊂ C(z, (rl − ti − ωi)/Λl,Λl(rj − ti − ωi)) ,
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where the last inclusion holds because hl,z : (M, p)� (M, z) is an (l, rl,Λl)-p.p.q.i. Then,
by (3.2.23), (3.2.5) and (3.2.7),

d(x, τ(a)) = d(x, z)− d(τ(a), z) ≤ λlΛl(rl + si) + ωi − (rl − ti − ωi)/Λl

< rl(λlΛ
2
l − 1)/Λl + λ2

0si + ti + 2ωi .

Using Lemma 3.2.1, we get

d(x, hl,z(S(p, rl − ti − ωi))) < 4ri
λ5
i − 1

λ2
i

+ λ3
0si + ti + 2ωi ,

and then the result follows from Lemma 3.2.10.
Suppose now that x ∈ hl,z(B(p, rl − ti − ωi)). Then h−1

l,z (x) /∈ I li because hl,z(I
l
i) ⊂ Ii.

Therefore

h−1
l,z (x) ∈ D(z′, λl′Λl′,l−1(rl′ + si) + ωi) (3.2.24)

for some (l′, z′) ∈ P l
i , according to (3.2.21). Assume first z′ 6= p, and let us prove that

z 6= p. Suppose by absurdity that z = p. We have h−1
l,z (x) = x by Proposition 3.2.9 (vii).

So now (3.2.24) gives

x ∈ D(z′, λl′Λl′,l−1(rl′ + si) + ωi) ⊂ D(z′, λl′Λl′,j−1(rl′ + si) + ωi) .

Since d(x, z) ≤ d(x, z′), we get x ∈ D(z, λl′Λl′,j−1(rl′ + si) + ωi), contradicting our choice
of (l, z) because l′ < l.

Since p ∈ Ml′ by Proposition 3.2.9 (vii), we have d(p, z′) ≥ sl′/Λl′+1 by Proposi-
tion 3.2.9 (i). So, by (3.2.24),

d(p, h−1
l,z (x)) ≥ d(p, z′)− d(z′, h−1

l,z (x)) ≥ sl′/Λl′+1 − λl′Λl′,l−1(rl′ + si)− ωi . (3.2.25)

Note that z′ ∈ M l
l′ ⊂ D(p, rl − tl′) ⊂ domhl,z by Proposition 3.2.2 (ii). Moreover

(l′, hl,z(z
′)) ∈ P j

i according to (3.2.12) because hl,z(z
′) = hjl,z(z

′) ∈ hjl,z(M
l
l′) ⊂ M j

l′ by
Proposition 3.2.2 (iv), using that (l, z) ∈ Pm

l′ . Since hl,z : (M, p)� (M, z) is an (l, rl,Λl)-
p.p.q.i., and using (3.2.25), (3.2.2), (3.2.5), (3.2.7) and (3.2.24), it follows that

d(z, x) ≥ Λ−1
l (sl′/Λl′+1 − λl′Λl′,l−1(rl′ + si)− ωi)

> 2λ3
0(rl′ + si + ωi)− λl′Λl′,l−1(rl′ + si)− ωi

> λ3
0(rl′ + si) + ω̃i > Λlλl′Λl′,l−1(rl′ + si) + ωi > d(hl,z(z

′), x) .

This contradicts the assumption that (l, z) minimizes d(z, x) because (l′, hl,z(z
′)) ∈ P j

i .
At this point, only the case z′ = p remains to be considered. Then, since hl,z : (M, p)�

(M, z) is an (l, rl,Λl)-p.p.q.i., and using (3.2.24), (3.2.5) and (3.2.7), we get

d(x, z) ≤ Λld(h−1
l,z (x), p) ≤ Λl

(
λl′Λl′,l−1(rl′ + si) + ωi

)
< λ2

l′Λl′(rl′ + si) + λ0ωi .

Note that Proposition 3.2.2 (vi) yields (l′, z) ∈ P j
i since i < l′ < l. Thus the minimality

of l gives

d(x, z) ≥ λl′Λl′,l−1(rl′ + si) + ω̃i > rl′ − ti − ωi ,
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using (3.2.23). Then, arguing like in the second paragraph of the proof, we construct a
minimizing geodesic segment τ from x to z that meets hl′,z(S(z, rl′ − ti − ωi)) at a point
τ(a) satisfying

d(x, τ(a)) = d(x, z)− d(τ(a), z) ≤ λ2
l′Λl′(rl′ + si) + λ0ωi − (rl′ − ti − ωi)/Λl

< rl′
λ2
l′Λ

2
l′ − 1

Λl′
+ λ2

0si + ti + (1 + λ0)ωi .

Using Lemma 3.2.1, we get

d(x, hl′,z(S(z, rl′ − ti − ωi))) ≤ 4ri
λ6
i − 1

λ2
i

+ λ2
0si + ti + (1 + λ0)ωi ,

and then the result follows from Lemma 3.2.10.

Proposition 3.2.13. Mi is relatively dense in M , where the implied constant depends
only on ri, si, ti, ωi, λi, and λ0.

Proof. Note that Mi ⊂ Ii since, for all x ∈ Mi, we have x ∈ hi+1,x(D(p, ri+1 − ti)) =
hi+1,x(I

i+1
i ). By Lemma 3.2.12, it is enough to show that Mi is relatively dense in Ii.

Let y ∈ Ii. By definition of Ii, there is some (l, z) ∈ Pi such that y ∈ hl,z(I
l
i). By

Lemma 3.2.11, there is some x ∈ M l
i ⊂ domhl,z such that d(h−1

l,z (y), x) ≤ ωi + si. By
Proposition 3.2.9 (iii), we have hl,z(x) ∈Mi. Then the fact that hl,z : (M, p)� (M, z) is
an (l, rl,Λl)-p.p.q.i. gives

d(y,Mi) ≤ d(y, hl,z(x)) ≤ Λl(ωi + si) ≤ Λi(ωi + si) .

Proposition 3.2.14. For every η > 0, there is a separated η-relatively dense subset
X ⊂M such that p ∈ X and

X ∩ hl,z(D(p, rl)) = hl,z(X ∩D(p, rl)) (3.2.26)

for all (l, z) ∈ P0.

We will derive this result from the following auxiliary lemma.

Lemma 3.2.15. For any η > 0 and 0 < δ < η/Λ1, there are sets X1 ⊂ X2 ⊂ · · · ⊂ M
containing p such that:

(a) every Xi is δ/Λ1,i−1-separated and δΛ1,i−1-relatively dense in D(p, ri); and,

(b) for all (l, z) ∈ P i
0,

Xi ∩ hl,z(D(p, rl)) = hl,z(Xl) .

Proof. We proceed by induction on i ∈ Z+. Let X1 be a maximal δ-separated subset
of D(p, r1) containing p, given by Zorn’s lemma. By Lemma 2.1.3, it is also δ-relatively
dense in D(p, r1).

Now, given any i > 1, suppose that we have already defined Xk for 1 ≤ k < i
satisfying (a) and (b). Let

X̃i =
⋃
·

(l,z)∈P i
0

hil,z(Xl) .

Note that Xi−1 ⊂ X̃i by Proposition 3.2.2 (vii). The following assertion follows from the
induction hypothesis with (a) and Proposition 3.2.9 (ii).
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Claim 3. X̃i is δ/Λ1,i−1-separated δΛ1,i−1-relatively dense in⋃
·

(l,z)∈P i
0

hil,z(D(p, rl)) .

Let Xi be a maximal δ/Λ1,i−1-separated subset of D(p, ri) satisfying

Xi ∩
⋃
·

(l,z)∈P i
0

hil,z(D(p, rl)) = X̃i , (3.2.27)

whose existence is guaranteed by Zorn’s lemma and Claim 3. To establish (a), we still
have to prove that d(x,Xi) ≤ δΛ1,i−1 for every x ∈ D(p, ri). If

x ∈
⋃
·

(l,z)∈P i
0

hil,z(D(p, rl)) ,

then this inequality follows from Claim 3 and (3.2.27), so assume the opposite. Suppose by
absurdity that d(x,Xi) > δΛ1,i−1. Then {x}∪Xi is a δΛ1,i−1-separated subset of D(p, ri)
that still satisfies (3.2.27) and properly contains Xi, contradicting the maximality of Xi.

Let us prove (b). If (l, z) ∈ P i

0, then the result follows from (3.2.27). If (l, z) /∈ P i

0,

then Lemma 3.2.4 (b) states that there is a unique (l′, z′) ∈ P i

0 such that (l, z) < (l′, z′).
Proposition 3.2.2 (iii) yields hl,z = hil,z = hil′,z′ ◦ hl

′

l,z′′ , where z′′ = (hil′,z′)
−1(z). By the

induction hypothesis, we have Xl′ ∩ hl,z′′(D(p, rl)) = hl,z′′(Xl), and therefore

hl′,z′ (Xl′) ∩ hl,z(D(p, rl)) = hl′,z′ (Xl′ ∩ hl,z′′(D(p, rl))) = hl′,z′ (hl,z′′(Xl)) = hl,z(Xl) .

Thus the result follows by showing that

hl′,z′ (Xl′) ∩ hl,z(D(p, rl)) = Xi ∩ hl,z(D(p, rl)) . (3.2.28)

First, note that Xi ∩ hl,z(D(p, rl)) = X̃i ∩ hl,z(D(p, rl)) by (3.2.27). Then, by the

definition of X̃i, (3.2.28) follows if we prove that hl′,z′(D(p, rl′)) ∩ hj,y(D(p, rj)) = ∅ for

all (j, y) ∈ P
i

0 \ {(l′, z′)}. Recall that hl′,z′ : (M, p) � (M, z′) is an (l′, rl′ , λl′)-p.p.q.i.
and hj,y : (M, p) � (M, y) a (j, rj, λj)-p.p.q.i. by Claims 3.2.5 and 3.2.6; in particu-
lar, hl′,z′(D(p, rl′)) ⊂ D(z′, λl′rl′) and hj,y(D(p, rj)) ⊂ D(y, λjrj). But D(z, λl′rl′) ∩
D(y, λjrj) = ∅, as follows with the following argument. If l′ = j, Proposition 3.2.2 (ii)
and (3.2.17) give

d(y, z) ≥ sj/Λj,i−1 > 2Λ0,j−1rj + s0/Λ0,i−1 > 2λjrj .

In the case l′ < j, we have (j, y) ∈ P i
l′ and z′ /∈ hij,y(M

j
l′) since (l′, z′) is maximal. Therefore

Proposition 3.2.2 (v) and (3.2.2) give

d(y, z) ≥ λjΛi(rj + sl′) > λjrj + λl′rl′ .

The case m < l′ is similar, completing the proof of (3.2.28).
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Proof of Proposition 3.2.14. For any δ < η/Λ1, let X be the union of the sets Xi given
by Lemma 3.2.15. By Lemma 3.2.15 (a) and since ri ↑ ∞, this set is δ/Λ1-separated
and δΛ1-relatively dense in M ; in particular, it is η-relatively dense in M since δΛ1 < η.
Finally, (3.2.26) follows easily from (3.2.20), Lemma 3.2.15 (b) and Proposition 3.2.9 (vii).

Remark 22. According to the proofs of Proposition 3.2.14 and Lemma 3.2.15, we can
assume the separating constant of X to be any τ < η/Λ2

1. Therefore we can take s1 as
large as desired and Λ1 as close to 1 as desired, and still assume that X is η-relatively
dense and τ -separated. This follows because, according to (3.2.1)–(3.2.7), enlarging si
only forces Λ1 to be smaller.

Proposition 3.2.16. In Proposition 3.2.14, given any σ > 0, we can assume that there
is some 0 < ρ < σ such that, for all l ∈ Z+ and x, y ∈ X,

{x, y} ⊂ D(p, rl)⇒ d(x, y) /∈ [(σ − ρ)/Λl,Λl(σ + ρ)] . (3.2.29)

In particular, d(x, y) /∈ (σ − ρ, σ + ρ) for all x, y ∈ X.

Proof. Given η > η′ > 0, take someX ′ ⊂M satisfying the statement of Proposition 3.2.14
with η′. For i ∈ Z+, let X ′i, X̃

′
i and δ be like in the statement and proof of Lemma 3.2.15

with η′.

Claim 4. There are subsets Xi (i ∈ Z+) satisfying (3.2.29), and there are bijections
fi : X

′
i → Xi such that:

(a) d(y, fi(y)) ≤ 3Λ1,i−1ε/2 for all x, y ∈ X ′i;

(b) Xi is (δ − 3ε)/Λ1,i−1-separated and (δ + 3ε/2)Λ1,i−1-relatively dense in B(p, ri);

(c) Xi ⊂ Xl and fi = fl|X′i for all 1 ≤ l ≤ i; and,

(d) for all (l, z) ∈ P i
0,

Xi ∩ hl,z(D(p, rl)) = hl,z(Xl) .

We proceed by induction on i ∈ Z+. First, for ε > 0 small enough and since δ < η′/Λ1,
we have

3εΛ1/2 < η/Λ1 − δ < (η − η′)/Λ1 . (3.2.30)

There is also an assignment ε 7→ P (ε) > 0 given by Proposition 3.1.6 such that σ >
P (ε) ↓ 0 as ε ↓ 0. Choose ρ, ρ1 > 0 satisfying ρ < ρ1 < P (ε/2). Once r1 is fixed, we can
choose λ1 close enough to 1 so that

ρ1 > (1− 1/Λ1)σ + ρ/Λ1, (Λ1 − 1)σ + Λ1ρ . (3.2.31)

Let Z1 be any ε-perturbation of X ′1 such that Z1 ⊂ B(p, r1 − ε/2). Then, using Proposi-
tion 3.1.6, let X1 be an ε/2-perturbation of Z1 such that, for all x, y ∈ X1,

d(x, y) /∈ [σ − ρ1, σ + ρ1] . (3.2.32)

Let f1 : X ′1 → X1 be the induced bijection, so that (a) is satisfied for i = 1. This can be
done since we chose ρΛ1 < ρ1 < P (ε/2). Then (3.2.31) implies (3.2.29) for x, y ∈ X1,
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whereas (b) follows from Proposition 3.1.6. Items (c) and (d) are vacuous for i = 1. Note
that we also have X1 ⊂ B(p, r1).

Now, given any integer i > 1, assume that we have sets Xj and bijections fj : X ′i → Xi

for 1 ≤ j < i satisfying the properties of Claim 4. Let

X̃i =
⋃
·

(l,z)∈P i
0

hil,z(Xl) ,

like in the proof of Lemma 3.2.15. We get

d(x, y) /∈ [(σ − ρ)/Λi,Λi(σ + ρ)]

for (l, z) ∈ P
i

0 and x, y ∈ h̃il,z(Xl) by Proposition 3.2.9 (ii). By Remark 22, we may
assume that s0λ0 > σ + ρ1 > σ + ρi. By (3.2.16), we have

d(z, z′) ≥ Λl,i−1rl + Λl′,i−1rl′ + s0/λ0

for all (l, z), (l′, z′) ∈ P i

0, (l, z) 6= (l′, z′). So, by the triangle inequality, we have

d(x, y) > s1/Λ1,i−1 > Λi(σ + ρ)

for x ∈ hil,z(Xl) and y ∈ hil′,z(X ′l). This shows that (3.2.29) is satisfied for every x, y ∈ X̃i.
Note that

X ′i ∩
⋃
·

(l,z)∈P i
0

hl,z(D(p, rl)) = X̃ ′i .

Since X ′i is finite, it follows that there is some 0 < εi < ε such that

CPen(X ′i \ X̃ ′i, εi) ⊂ D(p, ri) \
⋃
·

(l,z)∈P i
0

hl,z(D(p, rl)) .

Choose ρi such that ρ < ρi < ρ1 < P (εi/2) < P (ε/2). Once we have fixed ri, we can
choose λi close enough to 1 that

ρi > (1− 1/Λi)σ + ρ/Λi, (Λi − 1)σ + Λiρ . (3.2.33)

Let Ẑi be an εi-perturbation of X ′i \ X̃ ′i such that

Ẑi ⊂ B(p, ri − εi/2) , CPen(Ẑi, εi/2) ∩
⋃
·

(l,z)∈P i
0

hl,z(D(p, rl)) = ∅ .

Now, by Proposition 3.1.6, there is an εi/2-perturbation Xi of Ẑi ∪ X̃i satisfying

d(x, y) /∈ [σ − ρl, σ + ρl]

for all x, y ∈ Xi and X̃i ⊂ Xi. Let ĥi : X
′
i \ X̃ ′i → X̂i denote the induced bijection. Note

that
X̂i ⊂ B(p, ri) \

⋃
·

(l,z)∈P i
0

hl,z(D(p, rl)) . (3.2.34)
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Now (3.2.33) implies (3.2.29) for all x, y ∈ Xi.

Let f̃i : X̃
′
i → X̃i be given by h̃i(y) = hl,zfl(h

−1
l,z (y)), where (l, z) is the only element

in P
i

0 such that y ∈ hl,z(D(p, rl)). By Proposition 3.2.9 (ii) and the induction hypothesis

with (a), this map satisfies d(y, f̃i(y)) ≤ 3Λ1,i−1ε/2 for all y ∈ X ′i \ X̃ ′i. The combination

of f̂i and f̃i into a map fi : X
′
i → Xi is the desired bijection, and trivially satisfies both (a)

and (c). Item (b) follows from (a) and Proposition 3.1.6, whereas (d) follows from the

definition of X̃i and (3.2.34), completing the proof of Claim 4.
By Claim 4 (b), the set X =

⋃
iXi is (δ−3ε)/Λ1-separated and (δ+3ε/2)Λ1-relatively

dense inX. Therefore it is also η-relatively dense by (3.2.30). According to Claim 4 (d), X
satisfies all the requirements of Proposition 3.2.14. Moreover X satisfies (3.2.29) because
every Xi does.

3.3 Repetitive colored graphs

The results of Section 3.2 have obvious versions for (colored) connected graphs with finite
vertex degrees, using (colored) graph repetitivity with respect to pointed partial quasi-
isometries and graph-theoretic geodesic segments (Section 2.1.3). By Corollary 2.1.25,
the proofs are essentially the same, omitting the use of m and taking Λ0 < 2. Moreover
Corollary 2.1.25 shows that Ω̃i = Ωi and Ω̃i,j = Ωi,j in this version by taking λ0 close
enough to 1. Note that the version for (colored) graphs of Proposition 3.2.14 is trivial. The
versions for colored graphs of Propositions 3.2.2, 3.2.9 and 3.2.13, and other observations,
are explicitly stated here because they will be used in the proof of Theorem 1.2.1. Their
versions without colorings can be considered as the particular case of colorings by one
color.

Let (X,φ) be a colored connected graph with finite vertex degrees. Fix any p ∈ X. For
i ∈ N and R > 0, let Ω(i, R) be the set of elements x ∈ X such that there exists a pointed
color-preserving graph isomorphism (DX(p,R), p, φ) → (DX(x,R), x, φ). Suppose that
(X,φ) is repetitive; i.e., the sets Ω(i, R) are relatively dense in X. Take sequences 0 <

ri, si, ti ↑ ∞, and let ωi denote the smallest positive real such that the set Ω̃i := Ω(i, ri)
is ωi-relatively dense in X. Let also r−1 = s−1 = t−1 = ω−1 = 0. Suppose that ri, si
and ti satisfy Eqs. (3.2.1) to (3.2.4). For i ∈ N, let X i

i = {p} and hii,p = idD(p,ri). In

Proposition 3.3.1, we will continue defining a subset Xj
i ⊂ X for every 0 ≤ i < j, and

a pointed color-preserving graph isomorphism hji,z : (D(p, ri), p, φ) → (D(z, ri), z, φ) for

every z ∈M j
i . Using this notation, let

P j
i = { (l, z) ∈ N×M | n < l < m, z ∈Mm

l } .

Note that P j
k ⊂ P j

i if i ≤ k < j. Moreover, let < be the binary relation on P j
i defined by

declaring (l, z) < (l′, z′) if l < l′ and z ∈ hjl′,z′(M l′

l ), and let ≤ denote its reflexive closure,

which is a partial order relation (the analogue of Lemma 3.2.3 (b)). Let P
j

i denote the
set of maximal elements of (P j

i ,≤), which is nonempty since all chains in P j
i are finite.

For every (k, y) ∈ P j
i , there is a unique (l, z) ∈ P j

i so that (k, y) ≤ (l, z) (the analogue of
Lemma 3.2.4 (b)).



3.3. Repetitive colored graphs 89

Proposition 3.3.1. For all integers 0 ≤ i < j, there is a set Xj
i = X̂j

i ∪· X̃
j
i ⊂ X

and, for every z ∈ Xj
i , there is a pointed color-preserving graph isomorphism hji,z :

(D(p, ri), p, φ)→ (D(z, ri), z, φ) satisfying the following properties:

(i) X̂j
i is a maximal si-separated subset of

Ωi ∩D(p, rj − ti) \
⋃
·

(l,z)∈P j
i

D(z, rl + si) .

(ii) Xj
i is an si-separated subset of Ωi ∩D(p, rj − ti).

(iii) For every (l, z) ∈ P j
i and x ∈ Xj

i ∩ D(z, rl), we have hji,x = hjl,z ◦ hli,x′, where

x′ = (hjl,z)
−1(x).

(iv) For any (l, z) ∈ P j
i , we have Xj

i ∩D(z, rl) = hjl,z(X
l
i).

(v) For any x ∈ Xj
i and (l, z) ∈ P j

i , either d(x, z) ≥ rl + si, or x ∈ hjl,z(X l
i).

(vi) For all integers 0 ≤ k ≤ l such that either l < j and k ≥ i, or l = j and k > i, we
have X l

k ⊂ Xj
i and hji,z = hlk,z|D(p,ri) for any z ∈ X l

k.

(vii) We have p ∈ Xj
i and hji,p = idD(p,ri).

For i ∈ N, let

Xi =
⋃
j≥i

Xj
i , Pi =

⋃
j>i

P j
i = { (j, x) ∈ N×X | j > i, x ∈ Xj

i } .

For all x ∈ Xi, there is some j ≥ i such that x ∈ Xj
i . Thus let hi,x = hji,x, which is

independent of j by Proposition 3.3.1 (vi). Hence the order relations ≤ on the sets P j
i

(j ≥ i) define an order relation ≤ on Pi, which is the reflexive closure of the relation <

on Pi given by setting (j, x) < (j′, x′) if j < j′ and x ∈ hj′,x′(Xj′

j ).

Proposition 3.3.2. The following properties hold:

(i) Xi is an si-separated subset of Ωi.

(ii) For all x ∈ Xi, hi,x : (D(p, ri), p, φ) → (D(x, ri), x, φ) is a pointed color-preserving
graph isomorphism.

(iii) For any (l, z) ∈ Pi, we have Xi ∩D(z, rl) = hl,z(X
l
i).

(iv) For every (j, y) ∈ Pi and x ∈ Xi ∩ D(y, rj), we have hi,x = hj,y ◦ hi,x′, where
x′ = h−1

j,y(x).

(v) For any x ∈ Xi and (j, y) ∈ Pi, either d(x, z) ≥ rl + si, or x ∈ hl,z(X l
i).

(vi) For i ≤ j, we have Xj ⊂ Xi, and hi,x = hj,x|D(p,ri) for x ∈ Xj.

(vii) We have p ∈ Xi and hi,p = idD(p,ri).
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Remark 23. Using the same argument as in Remark 21, we can assume that Ωi (i ∈ N) is

any family of relatively dense subsets of Ω(i, ri), so that X̂j
i ⊂ Ωi. If, for every x ∈ Ωi, we

have a prescribed (i, ri)-p.p.q.i. fi,x : (X, p)� (X, x), then we may assume that hji,x = fi,x

for every x ∈ X̂j
i . Finally we have that, for every x ∈ Xi, h

j
i,x is a composition of the

form fiI ,xI · · · fi1,x1 by the analogue of Lemma 3.2.6.

The following result is the analogue for colored graphs of Lemma 3.2.12.

Proposition 3.3.3. Xi is relatively dense in X, where the implied constant depends only
on ri, si, ti, ωi.

3.4 Realization of manifolds as leaves

3.4.1 Realization in compact foliated spaces without holonomy

Theorem 3.4.1. For any (repetitive) connected Riemannian manifold M of bounded
geometry, there is a (minimal) compact Riemannian foliated space X without holonomy
with a leaf isometric to M .

To prove this theorem, the construction of X begins with the following result.

Proposition 3.4.2. Let M be a (repetitive) connected Riemannian manifold of bounded
geometry. For every η > 0, there is some separated η-relatively dense subset X ⊂ M ,
and some coloring φ of X by finitely many colors such that (M,X, φ) is (repetitive and)
limit aperiodic.

Proof. Let 0 < τ < η. When M is not assumed to be repetitive, choose 0 < ε < η − τ
and take any (τ + 2ε)-separated (η− ε)-relatively dense subset X̂ ⊂M (Corollary 2.1.4).
By Proposition 3.1.6, there are ρ > 0, σ ≥ 3η and a τ -separated η-relatively dense subset
X such that

dM(x, y) /∈ (σ − ρ, σ + ρ) ∀x, y ∈ X . (3.4.1)

The set X becomes a graph by declaring that there is an edge connecting points x and y
if 0 < dM(x, y) ≤ σ.

Claim 5. The graph X is connected, and X ∩DM(x, r) ⊂ DX(x, br/ηc+ 1) for all x ∈ X
and r > 0.

Let x, y ∈ X and k = bd(x, y)/ηc+ 1. Since M is connected, there is a finite sequence
x = u0, u1, . . . , uk = y such that dM(ui−1, ui) < η (i = 1, . . . , k). Using that X is η-
relatively dense in M , we get another finite sequence x = z0, z1, . . . , zk = y in X so that
dM(ui, zi) < η for all i. Then

dM(zi−1, zi) ≤ dM(zi−1, ui−1) + dM(ui−1, ui) + dM(ui, zi) < 3η ≤ σ .

So, either zi−1 = zi, or there is an edge between zi−1 and zi. Thus, omitting consecutive
repetitions, z0, z1, . . . , zk gives rise to a graph-theoretic path between x and y in X. This
shows that X is a connected graph and dX(x, y) ≤ k, as desired.

By Proposition 3.1.5, there is some c ∈ N such that, for all x ∈M , the disk DM(x, σ)∩
X has at most c points, obtaining that degX ≤ c. Now Theorem 1.1.4 ensures that there
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exists a limit aperiodic coloring φ : X → {1, . . . , c}. By the definition of the graph
structure of X, we also get

DX(x, r) ⊂ DM(x, rσ) (3.4.2)

for all x ∈ X and r ∈ N.
For n = dimM , take a class [M ′, X ′, φ′] ⊂ [M,X, φ] in ĈMn

∗ ({1, . . . , c}) (Section 3.1.4).
Consider the graph structure on X ′ defined by declaring that there is an edge connecting
points x′ and y′ if 0 < dM ′(x

′, y′) ≤ σ.

Claim 6. We have that:

(a) X ′ is τ -separated and η-relatively dense in M ′,

(b) X ′ is a connected graph and X ′ ∩ DM ′(x
′, r) ⊂ DX′(x

′, br/ηc + 1) for all x′ ∈ X ′
and r > 0,

(c) degX ′ ≤ c, and

(d) [X ′, φ′] ⊂ [X,φ] in Ĝ∗({1, . . . , c}).

Given x′ ∈ X ′, m ∈ Z+, R > δ > 0 and λ ≥ 1, there are some x ∈ X and an
(m,R, λ)-p.p.q.i. h : (M ′, x′)� (M,x) such that:

• for all u ∈ D(x′, R− δ)∩X ′, there is some v ∈ h−1(X) ⊂ D(x′, R) with d(u, v) < δ
and φ′(u) = φh(v); and,

• for all v ∈ D(x′, R− δ) ∩ h−1(X), there is some u ∈ X ′ ∩D(x′, R) with d(u, v) < δ
and φ′(u) = φh(v).

For the sake of simplicity, let ȳ = h−1(y) for every y ∈ imh. Since X ∩h(DM ′(x
′, R)),

X ′ ∩ DM ′(x
′, R) and h(DM ′(x

′, R)) are compact, given any 0 < τ ′ < τ , we can assume
that λ− 1 and δ are so small that

2λδ < τ . (3.4.3)

For any y′ ∈ X ′∩DM ′(x
′, R−δ), there is some y ∈ X∩h(DM ′(x

′, R)) such that dM ′(y
′, ȳ) <

δ and φ′(y′) = φ(y). If z ∈ X∩h(DM ′(x
′, R)) also satisfies dM ′(y

′, z̄) < δ, then, by (3.4.3),

dM(y, z) ≤ λdM ′(ȳ, z̄) ≤ λ(dM ′(y
′, z̄) + dM ′(y

′, ȳ)) < 2λδ < τ ,

yielding y = z because X is τ -separated. So y is uniquely associated to y′, and therefore
the assignment y′ 7→ y defines a color-preserving map

h̃ : X ′ ∩DM ′(x
′, R− δ)→ X ∩ h(DM ′(x

′, R)) ;

in particular, h̃(x′) = h(x′) = x. Since h is an (m,R, λ)-p.p.q.i., for all y′, z′ ∈ X ′ ∩
DM ′(x

′, R− δ),

(dM ′(y
′, z′)− 2δ)/λ < dM(h̃(y′), h̃(z′)) < λ(dM ′(y

′, z′) + 2δ) . (3.4.4)

Furthermore, either dM(h̃(y′), h̃(z′)) = 0, or dM(h̃(y′), h̃(z′)) ≥ τ becauseX is τ -separated.
So, either dM ′(y

′, z′) < 2δ, or dM ′(y
′, z′) > τ/λ − 2δ by (3.4.4). Since the choice of δ, λ
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and R was arbitrary, we infer that X ′ is a τ -separated subset of M ′. In particular, h̃ is
injective by (3.4.3) and (3.4.4).

By taking δ and λ− 1 small enough, we can also assume that

λ(σ − ρ+ 2δ) < σ < (σ + ρ− 2δ)/λ . (3.4.5)

Given y′, z′ ∈ X ′ ∩DM ′(x
′, R − δ), let y = h̃(y′) and z = h̃(z′) in X ∩ h(DM ′(x

′, R)). If
dM ′(y

′, z′) < σ − ρ, then, by (3.4.5),

dM(y, z) ≤ λdM ′(ȳ, z̄) < λ(dM ′(y
′, z′) + 2δ) < σ .

If dM ′(y
′, z′) ≥ σ + ρ, then, by (3.4.5),

dM(y, z) ≥ dM ′(ȳ, z̄)/λ > (dM ′(y
′, z′)− 2δ)/λ > σ .

These inequalities, (3.4.4), and the injectivity of h̃ show that

h̃ : X ′ ∩DM ′(x
′, R− δ)→ h̃(X ′ ∩DM ′(x

′, R− δ)) (3.4.6)

is a color-preserving graph isomorphism.
Like in (3.4.4), for all y′ ∈ X ′ ∩DM ′(x

′, R− δ),

(dM ′(x
′, y′)− δ)/λ < dM(x, h̃(y′)) < λ(dM ′(x

′, y′) + δ) . (3.4.7)

We use these inequalities to show that

X ∩DM(x, (R− 2δ)/λ) ⊂ h̃(X ′ ∩DM ′(x
′, R− δ)) ⊂ X ∩DM(x, λR) . (3.4.8)

Here, the second inclusion is a direct consequence of (3.4.4). To show the first inclusion,
observe that DM(x, (R − 2δ)/λ) ⊂ h(DM ′(x,R − 2δ)) because h : (M ′, x′) � (M,x) is
an (m,R, λ)-p.p.q.i. Thus, for any y ∈ X ∩DM(x, (R− 2δ)/λ), we have ȳ ∈ DM ′(x

′, R−
2δ) with h(ȳ) = y. Moreover there is some y′ ∈ X ′ such that dM ′(y

′, ȳ) ≤ δ. Then
dM ′(x

′, y′) ≤ dM ′(x
′, ȳ) + δ ≤ R − δ, and h̃(y′) = y by the definition of h̃. So y ∈

h̃(X ′ ∩DM ′(x
′, R− δ)), completing the proof of (3.4.8).

Now, for any y′ ∈ DM ′(x
′, (R− 2δ)/(λ− η)λ), we get h(y′) ∈ DM(x, (R− 2δ)/λ− η)

because h : (M ′, x′)� (M,x) is an (m,R, λ)-p.p.q.i. Since X is η-relatively dense, there
is some y ∈M such that d(h(y′), y) ≤ η. We have y ∈ DM(x, (R− 2δ)/λ) by the triangle
inequality. Moreover y ∈ im h̃ by (3.4.8). So h̃−1(y) ∈ X ′ and

d(y′, h̃−1(y)) < d(y′, ȳ) + δ ≤ λd(h(y′), y) + δ ≤ λη + δ .

Since R is arbitrarily large, and δ and λ − 1 are arbitrarily small, it follows that X ′ is
η-relatively dense in M ′, completing the proof of (a).

Item (b) follows from (a) with the same argument as in Claim 5. Finally, (c) and (d)
follow using (3.4.8) and the color-preserving graph isomorphisms (3.4.6). This completes
the proof of Claim 6.

Claim 7. If η is small enough, then (M,X, φ) is limit aperiodic.
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Consider any class [M ′, X ′, φ′] ⊂ [M,X, φ] in ĈMn
∗ ({1, . . . , c}), and let h be an isom-

etry of M ′ preserving X ′ and φ′. Then h defines a color-preserving graph automorphism
(X ′, φ′) with the above graph structure. By Claim 6 and since (X,φ) is limit aperiodic,
we get that h = id on X ′. By Proposition 3.1.7, it follows that h = id on M ′ if η is small
enough. So (M ′, X ′, φ′) is aperiodic, completing the proof of Claim 7.

Now assume that M is repetitive, and take the separated η-relatively dense subset
X ⊂ M given by Proposition 3.2.14. Moreover assume that X satisfies the additional
conditions of Proposition 3.2.16 for any given σ ≥ 3η and with some 0 < ρ < σ. Define
a graph structure on X using σ and ρ like in the previous case. According to Proposi-
tion 3.2.14, for every (l, z) ∈ P0, we have a pointed bijection

hl,z : (X ∩DM(p, rl), p)→ (X ∩ hl,z(DM(p, rl)), z) (3.4.9)

for every (l, z) ∈ P0, which are pointed graph isomorphisms by (3.2.29) in Proposi-
tion 3.2.16. As before, the graph X is connected, there is some c ∈ N such that degX ≤ c,
there is a repetitive limit aperiodic coloring φ : X → {1, . . . , c}, and (M,X, φ) is limit
aperiodic if η is small enough.

Let us prove that we can assume that (M,X, φ) is repetitive in this case. To construct
φ and prove its limit aperiodicity and repetitivity, the argument of Theorem 1.1.4 uses
the versions without colorings of Propositions 3.3.1 to 3.3.3. Given other sequences
0 < r′i, s

′
i, t
′
i ↑ ∞ satisfying Eqs. (3.2.1) to (3.2.4), we can also suppose in Section 3.2 that

ri ≥ Λσr′i, yielding DX(x, r′i) ⊂ X ∩DM(x, ri) for all x ∈ X and i ∈ N. So, according to
Remark 2, the versions without colorings of Propositions 3.3.1 and 3.3.2 hold with the
maps

hl,z : (DX(p, r′l), p)→ (DX(z, r′l)), z) . (3.4.10)

induced by the pointed graph isomorphisms (3.4.9). Then the proof of Theorem 1.1.4
describes the repetitivity of the colored graph (X,φ) using the pointed graph isomor-
phisms (3.4.10). By Claim 5, any sequence 0 < r′′l →∞ with br′lc ≥ br′′l /ηc+ 1 if r′l ≥ 1
satisfies X ∩DM(p, r′′l ) ⊂ DX(p, r′l). Thus the (l, r′′l ,Λl)-p.p.q.i. (M, p)� (M, z) defined
by hl,z can be used to describe the repetitivity of (M,X, φ)

As explained in Section 3.1.3, Theorem 3.4.1 holds with the Riemannian foliated
subspace X = [M, f ] ⊂ M̂n

∗,imm (n = dimM), where f ∈ C∞(M,H) is given by the
following result.

Proposition 3.4.3 (Cf. [6, Proposition 7.1]). Let M be a (repetitive) connected Rie-
mannian manifold. There is some (repetitive) limit aperiodic f ∈ C∞(M,H), where
H is a finite-dimensional Hilbert space, so that supM |∇mf | < ∞ for all m ∈ N and
infM |∇f | > 0.

Proof. Take r0 > 0 and normal parametrizations κx : Br0 → BM(x, r0) (x ∈ M) like in
Proposition 3.1.4. For any 0 < r < r0, take X, c and φ like in Proposition 3.4.2 with
η = 2r/3. Write X = {xi | i ∈ I } for some index set I, and let κi = κxi : Br →
BM(xi, r) and φi = φ(xi) (i ∈ I). Consider the graph structure on X defined in the
proof of Proposition 3.4.2, using σ = 3η = 2r. Since degX ≤ c, there is a coloring
α : X → {1, . . . , c+1} such that adjacent vertices have different colors. Let Xk = α−1(k)
and Ik = { i ∈ I | xi ∈ Xk } (k = 1, . . . , c+ 1).
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For n = dimM , let S be an isometric copy in Rn+1 of the standard n-dimensional
sphere so that 0 ∈ S. Choose some function ρ ∈ C∞c (Rn) such that ρ(x) depends only
on |x|, 0 ≤ ρ ≤ 1, ρ(x) = 1 if |x| ≤ r/2, and ρ(x) = 0 if |x| ≥ r. Take also some C∞

map τ : Rn → Rn+1 that restricts to a diffeomorphism Br → S \ {0} and maps Rn \ Br

to 0. Let V = τ(Br/2) ⊂ S and y0 = τ(0) ∈ V . Let ρi = ρ ◦ κ−1
i and τi = τ ◦ κ−1

i . For
k = 1, . . . , c + 1, let fk = (fk1 , f

k
2 ) : M → Rn+2 = R × Rn+1 be the extension by zero

of the combination of the compactly supported functions (ρi · φi, ρi · τi) on the disjoint
balls BM(xi, r), for i ∈ Ik. Let f = (f 1, . . . , f c+1) : M → (Rn+2)c+1 ≡ R(c+1)(n+2) =:
H. Note that supM |∇mf | < ∞ for all m ∈ N and infM |∇f | > 0. We can write
f = (f1, f2) : M → H ≡ H1 ⊕ H2, where f1 = (f 1

1 , . . . , f
c+1
1 ) : M → Rc+1 =: H1 and

f2 = (f 1
2 , . . . , f

c+1
2 ) : M → (Rn+1)c+1 ≡ R(c+1)(n+1) =: H2.

Claim 8. If r is small enough, then f is limit aperiodic.

Take any class [M ′, f ′] ∈ [M, f ]. Then [M ′] ∈ [M ], obtaining that injM ′ ≥ injM >
r0 and M ′ satisfies the property stated in Proposition 3.1.4. We can consider f ′ =
(f ′ 1, . . . , f ′ c+1) : M ′ → (Rn+2)c+1 ≡ R(c+1)(n+2) = H with f ′ k = (f ′ k1 , f ′ k2 ) : M ′ →
R× Rn+1 ≡ Rn+2. Given x′ ∈ M ′, there are sequences, 0 < Rp ↑ ∞, 0 < ηp ↓ 0, mp ↑ ∞
in N, of smooth compact domains Dp ⊂M ′ with BM ′(x

′, Rp) ⊂ Dp ⊂ BM ′(x
′, Rp+1), and

of C∞ embeddings hp : Dp →M , such that

q ≥ p =⇒ ‖h∗qgM − gM ′‖Cmq ,Dp,gM′
, ‖h∗qf − f ′‖Cmq ,Dp,gM′

< ηq .

Let X ′k = (f ′ k2 )−1(y0) ⊂M ′ and X ′ = X ′1∪· · ·∪X ′c+1. Write X ′ = {x′a | a ∈ A } for some
index set A, and let Ak = { a ∈ A | x′a ∈ X ′k }. For any a ∈ Ak, we have DM ′(x

′
a, r) ⊂ Dp

for p large enough. Let x̄a,q = hq(x
′
a) for q ≥ p. Then fk2 (x̄a,q) → f ′ k2 (x′a) = y0 as

q → ∞. By the definition of fk2 , it follows that there is a sequence ia,q ∈ Ik such that
dM(xia,q , x̄a,q) → 0. Given 0 < θ < r/2, we get hq(DM ′(x

′
a, θ)) ⊂ BM(xia,q , r/2) for

q ≥ p large enough, and κ−1
ia,q
hq = τ−1fk2 hq → τ−1f ′ k2 with respect to the C∞ topology on

DM ′(x
′
a, θ). Thus there is some normal parametrization κ′a : Br → BM ′(x

′
a, r) such that

τ−1f ′ k2 = κ′ −1
a on DM ′(x

′
a, θ). Since θ is arbitrary, we get f ′ k2 = τκ′ −1

a on BM ′(x
′
a, r/2);

in particular, f ′ k2 : BM ′(x
′
a, r/2)→ V is a diffeomorphism.

Now, using the properties of X and the convergence dM(xia,q , x̄a,q) → 0, it easily
follows that X ′ is also separated and η-relatively dense in M ′, and, for all x′ ∈ M ′,
the ball BM ′(x

′, σ) ∩ X ′ has at most c points. Hence, like in the case of X, the set X ′

becomes a connected graph with degX ′ ≤ c by attaching an edge between x′a and x′b
(a, b ∈ A) if 0 < dM ′(x

′
a, x
′
b) < σ. Let D̃p denote the set of points x′a in X ′ such that

DM ′(x
′
a, r) ⊂ Dp. From the convergence dM(xia,q , x̄a,q) → 0, we also get that, if p and q

are large enough with q ≥ p, then, for all a, b ∈ A with x′a, x
′
b ∈ D̃p, there is an edge in

X between xia,q and xib,q if and only if there is an edge in X ′ between x′a and x′b. Thus

an injection h̃p,q : D̃p → X is defined by h̃p,q(x
′
a) = xia,q , and h̃p,q : D̃p → h̃p,q(D̃p) is a

graph isomorphism. Moreover, for any N ∈ Z+ and a ∈ A, we have DX′(x
′
a, N) ⊂ D̃p if

DM ′(x
′
a, 2Nr) ⊂ Dp, which holds for p large enough. Then there is a pointed isomorphism

(BX′(x
′
a, N), x′a) → (BX(xia,q , N), xia,q) if p and q are large enough with q ≥ p, yielding

[X ′, x′a] ∈ [X], and therefore [X ′] ⊂ [X]. Furthermore, fk1 (x̄a,q) = fk1 (xia,q) = φia,q =

(F̃ ∗p,qφ)(x′a) if dM(xia,q , x̄a,q) < r/2 and ia,q ∈ Ik, and fk1 (x̄a,q) = (h∗qf
k
1 )(x′a) → f ′ k1 (x′a)

as q → ∞. So a coloring φ′ : X ′ → {1, . . . , c} is defined by taking φ′ = f ′ k1 on every
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X ′k, and we have h̃p,qφ = φ′ on DX′(x
′
a, N). Hence [X ′, x′a, φ

′] ∈ [X,φ], and therefore

[X ′, φ′] ⊂ [X,φ]. Moreover (X ′, φ′) is aperiodic because (X,φ) is limit aperiodic.
Let us prove that (M ′, f ′) is aperiodic. Let h be an isometry of M ′ such that h∗f ′ = f ′.

Then h∗f ′ kj = f ′ kj for all k = 1, . . . , c + 1 and j = 1, 2. So h(X ′) = X ′ and h : X ′ → X ′

is a graph isomorphism preserving φ′. Since (X ′, φ′) is aperiodic, it follows that h is the
identity on X ′. So h = id on M ′ if r is small enough by Proposition 3.1.7. This completes
the proof of Claim 8.

When M is repetitive, the repetitivity of f is a direct consequence of the repetitivity
of (M,X, φ).

3.4.2 Replacing compact foliated spaces with matchbox mani-
folds

Theorem 3.4.4. For any (minimal) transitive compact C∞ foliated space X without
holonomy, there is a C∞ (minimal) matchbox manifold M without holonomy, and there
is a C∞ surjective foliated map π : M→ X that restricts to diffeomorphisms between the
leaves of M and X.

Proof. Fix any dense leaf M of X, an auxiliary Riemannian metric on X, and a C∞

embedding h : X→ H1 into some separable Hilbert space. Let f1 = h|M and M1 = [M, f1]

in M̂n
∗ (H1) (n = dimM). Then (M, f1) is limit aperiodic, M1 is compact, and we have

an induced isometric diffeomorphism between Riemannian foliated spaces ι̂X,h : X→M1

(Example 3.1.17).

There are regular foliated atlases U = {Ui, φi} and Ũ = {Ũi, φ̃i} of X (i = 1, . . . , c),

with foliated charts φi : Ui → Bi × Ti and φ̃i : Ũi → B̃i × T̃i, such that Ui ⊂ Ũi and
φi = φ̃i|Ui

. Thus Bi ⊂ B̃i in Rn (n = dimX), and every Ti is a relatively compact

subspace of T̃i. Moreover the projections p̃i = pr2 φ̃i : Ũi → T̃i extend the projections

pi = pr2 φi : Ui → Ti, and the elementary holonomy transformations h̃ij : p̃i(Ũi ∩
Ũj) → p̃j(Ũi ∩ Ũj) defined by Ũ extend the elementary holonomy transformations hij :
pi(Ui ∩ Uj) → p̃j(Ui ∩ Uj) defined by U. Let I denote the set of all finite sequences of
indices in {1, . . . , c}. For every I = (i0, i1, . . . , ik) ∈ I, let h̃I = h̃ik−1ik · · · h̃i1i0 and hI =
hik−1ik · · ·hi1i0 , which may be empty maps. There are points yi ∈ Bi such that the local

transversals φ̃−1
i ({yi}× T̃i) ≡ T̃i have disjoint closures in X, and therefore we can realize

T̃ :=
⊔
i T̃i as a complete transversal in X (Section 3.1.2). Hence φ−1

i ({yi}×Ti) ≡ Ti and
T :=

⊔
i Ti also have these properties.

Since X is Polish and compact, it is locally compact and second countable, and there-
fore T̃ is also locally compact and second countable. Then there is a countable base
of relatively compact open subsets Vk (k ∈ N) of T̃. Fix any relatively compact open

subset Si of every T̃i containing Ti, and let S =
⊔
iSi. Given a metric on T̃ inducing

its topology, we can suppose that there is a sequence 0 = k0 < k1 < · · · in N such that
the sets Vkm , . . . , Vkm+1−1 cover S and have diameter < 1/(m + 1) for all m ∈ N. Using

K = {0, 1}N as a model of the Cantor space, let ψ : T̃→ K be defined by

ψ(x)(k) =

{
0 if x /∈ Vk
1 if x ∈ Vk .



96 Chapter 3. Realization of Riemannian manifolds as leaves

Since I is countable, KI is homeomorphic to K. Let Ψ : T̃→ KI be the map defined by

Ψ(x)(I) =

{
ψh̃I(x) if x ∈ dom h̃I

0 if x /∈ dom h̃I ,

where 0 ≡ (0, 0, . . . ) ∈ K. Observe that Ψ(x) determines Ψh̃I(x) for all x ∈ T̃ and I ∈ I

with x ∈ dom h̃I .

Claim 9. For any sequence xa in S, if ψ(xa) is convergent in K, then xa is convergent in

T̃, and lima xa depends only on lima ψ(xa).

The convergence of ψ(xa) inK means that, for everym ∈ N, there is some am ∈ N such
that ψ(xa)(k) = ψ(xb)(k) for all k < km+1 and a, b ≥ am. Since the sets Vkm , . . . , Vkm+1−1

cover S, it follows that there is a sequence lm ∈ N such that km ≤ lm < km+1 and
xa ∈ Vlm for all a ≥ am. Thus the limit set

⋂
k {xa | a ≥ am } is a nonempty subset of⋂

m Vlm , which consists of a unique point of S because every Vlm is compact with diameter

< 1/(m+ 1). Thus xa is convergent in T̃.
Now let ya be another sequence in S such that ψ(ya) is convergent inK and lima ψ(ya) =

lima ψ(xa). We have already proved that ya is convergent in T̃. Moreover, taking am large
enough in the above argument, we also get ψ(ya)(k) = ψ(xa)(k) for all k < km+1 and
a ≥ am. This yields ya ∈ Vlm for all a ≥ am, and therefore lima ya = lima xa. This
completes the proof of Claim 9.

According to Claim 9, a continuous map $ : ψ(S) → S is defined by $(ξ) = x if
{x} =

⋂
k∈ξ−1(1) Vk, and we have $ψ = id on S. Let Xi = Ti∩M and X =

⋃
iXi = T∩M ,

which is a Delone set in M (see e.g. [10, Proposition 10.5]).
For every i, let λi : X → [0, 1] be a C∞ function with λi = 1 on Ti and λi = 0 on

T̃ \Si. Fix an embedding σ : KI → R, and let f2 = (f 1
2 , . . . , f

c
2) : M → Rc =: H2, where

f i2(x) = λi(x) · σΨp̃i(x). We have supM |∇mf2| = maxi supX |∇mλi| < ∞ for all m ∈ N.
So M2 := [M, f2] is compact by Corollary 3.1.13.

Consider the C∞ function f = (f1, f2) : M → H := H1 ⊕ H2, and M = [M, f ] in

M̂n
∗ (H). Since M1 and M2 are compact, we get that M is also compact by Corollary 3.1.14.

We have infM |∇f | ≥ infM |∇f1| = infX |∇h̃| > 0, and therefore M ⊂ M̂n
∗,imm(H) by

Proposition 3.1.15 (ii). The function (M, f) is limit aperiodic because (M, f1) is limit
aperiodic, and therefore M has no holonomy (Section 3.1.3).

For a = 1, 2, let Πa : H → Ha denote the corresponding factor projection. Then
Π1∗ : M → M1 is a surjective C∞ foliated map restricting to isometries between the
leaves, and therefore π := (ι̂X,h1)

−1 ◦ Π1∗ : M → X is also a surjective C∞ foliated map
restricting to isometries between the leaves. Thus every leaf of M is of the form [M ′, f ′],
where M ′ is a leaf of X and f ′ = (f ′1, f

′
2) : M ′ → H, where f ′1 = h|M ′ and [M ′, f ′2] ⊂M2.

Let p′i : U ′i := π−1(Ui)→ T′i := π−1(Ti) be defined by p′i([M
′, x′, f ′]) = [M ′, pi(x

′), f ′],
for leaves M ′ of X, and let φ′i = (pr1 φiπ, p

′
i) : U ′i → Bi×T′i, where pr1 : Bi×Ti → Bi is the

first factor projection. Using the description of the C∞ foliated structure of M̂n
∗,imm(H)

given in [6, Section 5], it is easy to check that {U ′i , φ′i} is a C∞ foliated atlas of M. Thus
T′ =

⋃
i T
′
i ≡

⊔
i T
′
i is a complete transversal of M.

Claim 10. The map ev : T′ → H is an embedding whose image if f(X).

Since ev : T′ → H is a continuous map defined on a compact space, and { [M,x, f ] |
x ∈ X } is dense in T′, it is enough to prove that ev : T′ → H is injective. Let



3.4. Realization of manifolds as leaves 97

[M ′, x′, f ′], [M ′′, x′′, f ′′] ∈ T′ with f ′(x′) = f ′′(x′′). We can assume that M ′ and M ′′

are leaves of X, x′ ∈ M ′ ∩ T, x′′ ∈ M ′′ ∩ T, f ′ = (f ′1, f
′
2) with f ′1 = h|M ′ , and

f ′′ = (f ′′1 , f
′′
2 ) with f ′′1 = h|M ′′ . Then h(x′) = h(x′′), yielding x′ = x′′ and M ′ = M ′′.

On the other hand, there are sequences x′m and x′′m in M ∩ T converging to x′ in T
such that (M,x′m, f2) and (M,x′′m, f2) are C∞-convergent to (M ′, x′, f ′2) and (M ′, x′, f ′′2 ),
respectively. If x′ ∈ Ti, we can assume that x′m, x

′′
m ∈ M ∩ Ti for all m. Writing

f ′2 = (f ′12 , . . . , f
′c
2 ) and f ′′2 = (f ′′12 , . . . , f ′′c2 ), we get

lim
m
σΨ(x′m) = f ′i(x′) = f ′′i(x′) = lim

m
σΨ(x′′m) .

So limm Ψ(x′m) = limm Ψ(x′′m), yielding limm ΨhI(x
′
m) = limm ΨhI(x

′′
m) for all I ∈ I. Since

hI(x
′
m) and hI(x

′′
m) converge to h̃I(x

′) in T, using the Reeb’s local stability theorem and
the definition of f2, it follows that both (M,x′k, f2) and (M,x′′k, f2) are C∞-convergent to
the same triple with first components (M ′, x′). Therefore f ′2 = f ′′2 , yielding [M ′, x′, f ′] =
[M ′′, x′′, f ′′], as desired.

According to Claim 10, T′ is homeomorphic to the subspace

f(X) = { (f1(x), f2(x)) | x ∈ X } ⊂ f1(T)× (σ(KI))c .

By the conditions on the functions λi, this subspace is homeomorphic to the subspace⊔
i

{ (x,Ψ(x)) | x ∈ Xi } =
⊔
i

{ ($(ξ), ξ) | ξ ∈ Ψ(Xi) }

=
⊔
i

{
($(ξ), ξ) | ξ ∈ Ψ(Xi)

}
⊂
⊔
i

Ti ×KI ≡ T×KI ,

which in turn is homeomorphic to the subspace
⋃
i Ψ(Xi) ⊂ KI because $ is continuous.

So T′ and T′ are zero-dimensional, obtaining that M is a matchbox manifold.
Now suppose that X is minimal. Then (M, f1) is repetitive (Example 3.1.17). A simple

refinement of the proof of Proposition 3.1.16 also shows that (M, f2) is repetitive. In both
cases, this property can be described with the same partial pointed quasi-isometries given
by the Reeb’s local stability theorem. So (M, f) is also repetitive, and therefore M is
minimal by Proposition 3.1.10 (i).

As explained in Section 1.2.4, Theorem 1.2.1 is a direct consequence of Theorems 3.4.1
and 3.4.4.

3.4.3 Attaching flat bundles to foliated spaces

Let X ≡ (X,F) be a compact C∞ foliated space of dimension n, and let M be a leaf
of X. On the other hand, let ρ : E → M be a locally compact flat bundle with typical
fiber F and horizontal foliated structure H. It can be described as the suspension of its
holonomy homomorphism h : π1M → Homeo(F ), whose image is its holonomy group G;
they are well defined up to conjugation in Homeo(F ). Any foliated concept of E refers
to H. The C∞ differentiable structure of M induces a C∞ differentiable structure of H.
Assume that F is a non-compact locally compact Polish space; then E also has these
properties. The notation Ex = ρ−1(x) and EX = ρ−1(X) will be used for x ∈ M and
X ⊂M .
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The one-point compactifications E+
x = {x}tEx of the fibers Ex (x ∈M) are the fibers

of another C∞ flat bundle ρ+ : E+ → M ; thus E+ ≡ M t E as sets. Its typical fiber is
the one-point compactification F+ = {∞} ∪ F of F , the leaves of its horizontal foliation
H+ are M and the leaves of H, its holonomy homomorphism h+ : π1M → Homeo(F+)
is induced by h, and its holonomy group is denoted by G+. The more specific notation
h+
x : π1(M,x)→ Homeo(F+) and G+

x will be used to indicate the base point x ∈M .
Let X′ = X t E, equipped with the following topology. Take any foliated chart U ≡

B×T of X, for some ball B ⊂ Rn and some local transversal T. We have M ∩U ≡ B×D
for some countable subset D ⊂ T. Since the plaques of U are contractible, ρ has a local
trivialization EM∩U ≡ (M ∩ U)× F of flat bundle. Let T′ = T t (D× F ), endowed with
the topology with basic open sets of the form

V = ∅ t
(⋃

z

({z} ×Rz)
)
≡
⋃
z

({z} ×Rz) , W = T t
(⋃

z

({z} × Sz)
)
,

where z runs in D, Rz and Sz are open in F , Rz is compact for all z, Rz = ∅ for all but
finitely many z, F \Sz is compact for all z, and Sz = F for all but finitely many z. Then
X has a topology with basic open sets of the form

V ≡ ∅ t
(
B ×

⋃
z

({z} ×Rz)
)
≡ B ×V , W ≡ U t

(
B ×

⋃
z

({z} × Sz)
)
≡ B ×W ,

for all possible foliated charts U ≡ B × T of X. Using these basic open sets, it is easy
to check that X′ is Hausdorff, second countable and compact. So X′ is metrizable [45,
Proposition 4.6], hence Polish. In particular, the sets

U ′ = U t EM∩U ≡ (B × T) t (B ×D × F ) = B × T′

are open in X′, and the fibers B × {∗} correspond to open subsets of leaves of F or H.
Thus these identities are foliated charts of a foliated structure F′ on X′, and its leaves are
the leaves of F and H. As sets, we can write X′ ≡ X∪idM

E+ and T′ ≡ T∪idD
(D×F+),

where we consider D ≡ D×{∞} ⊂ D×F+; we can also write T′ = TtED ≡ T∪idD
E+
D.

Consider a regular foliated atlas of X consisting of charts Ui ≡ Bi × Ti, for balls
Bi ⊂ Rn and local transversal Ti. As before, take local trivializations EM∩Ui

≡ (M ∩
Ui) × F of the flat bundle ρ, write M ∩ Ui ≡ Bi × Di for countable subsets Di ⊂ Ti,
and consider the induced foliated charts U ′i ≡ Bi × T′i of F′, where U ′i = Ui t EM∩Ui

and T′i = Ti t (Di × F ), endowed with Polish topologies. The changes of coordinates
of the foliated charts Ui ≡ Bi × Ti are of the form (y, z) 7→ (fij(y, z), hij(z)), where
every mapping y 7→ fij(y, z) is C∞ with all of its partial derivatives of arbitrary order
depending continuously on z. On the other hand, the changes of the local trivializations
EM∩Ui

≡ (M ∩ Ui) × F ≡ Bi × Di × F are of the form (y, z, u) 7→ (y, gij(z, u)), where
the maps gij are independent of y by the compatibility with H. Then the changes of
coordinates of the foliated charts U ′i ≡ Bi × T′i are of the form

(y, z′) 7→

{
(fij(x, z

′), hij(z
′)) ∈ Bj × Tj if z′ ∈ Ti

(fij(x, z), (hij(z), gij(z, u))) ∈ Bj × (Dj × F ) if z′ = (z, u) ∈ Di × F .

Thus the charts U ′i ≡ Bi×T′i define a C∞ structure on X′ ≡ (X′,F′). The corresponding
elementary holonomy transformations h′ij are combinations of maps hij and gij. Using
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these foliated charts, it also follows that X and E are embedded C∞ foliated subspaces
of X′, E+ is an injectively immersed C∞ foliated subspace of X′, and the combination
π : X′ → X of idX and ρ (or ρ+) is a C∞ foliated retraction. The fibers of π are

π−1(x) =

{
{x} t ∅ ≡ {x} if x ∈ X \M
{x} t Ex = E+

x if x ∈M .

Lemma 3.4.5. Suppose that the restrictions of ρ to the leaves of H are regular coverings
of the leaves of F, and that the leaf M of F has no holonomy. Then the holonomy group of
the leaf M of F′ is isomorphic to the group of germs at ∞ of the elements of the subgroup
G+ ⊂ Homeo(F+).

Proof. With the above notation, fix an index i0 and some point x0 ∈ Di0 ≡ Ti0 ∩M ≡
T′i0 ∩ M , considering Ti0 ⊂ X and T′i0 ⊂ X′. Let c : [0, 1] → M be a loop based at
x0. Since the holonomy group of M in X is trivial, there is a family of leafwise loops
cx : [0, 1]→ X, depending continuously on x in some open neighborhood T0 of x0 in Ti0 ,
such that cx0 = c. Let D0 = Di0 ∩ T0. From the above description of the elementary
holonomy transformations h′ij, it follows that the holonomy defined by [c] ∈ π1(M,x0) is
the germ at x0 ≡ (x0,∞) of the homeomorphism gc of T′i0 = Ti0 t (Di0 × F ) given by

gc(z
′) =

{
z′ if z′ ∈ T0

(x, hx([cx])(u)) if z′ = (x, u) ∈ D0 × F ,

using [cx] ∈ π1(M,x). Since the restrictions of ρ to the leaves of H are regular coverings
of M , we easily get that h+

x ([cx])(u) = u for some x ∈ D0 and u ∈ F+ close enough to ∞
if and only if h+

x0
([c])(u) = u for u ∈ F+ close enough to ∞. So, by restricting every gc

to {x0} × F+ ≡ F+, we get an isomorphism from the holonomy group of the leaf M of
F′ at x0 to the group of germs of the elements of G+

x0
at ∞.

Proofs of Corollaries 1.2.2 and 1.2.3. LetM be non-compact connected Riemannian man-
ifold of bounded geometry. By Theorem 1.2.1, M is isometric to a leaf in some Rieman-
nian matchbox manifold M without holonomy. Now Corollaries 1.2.2 and 1.2.3 follow by
considering the foliated space M′ constructed as above with M and an appropriate flat
bundle E over M , and lifting the Riemannian metric of M to M′.

In the case of Corollary 1.2.2, we can use the trivial flat bundle E = M × K over
M , where K is the Cantor space. By the density of M in M, it follows that M′ has a
compact zero-dimensional complete transversal T′ without isolated points, and therefore
T′ is homeomorphic to the Cantor space.

In the case of Corollary 1.2.3, let Γ denote the group of deck transformations of the
given regular covering M̃ of M , equipped with the discrete topology. If Γ is infinite, we
can take E = M̃ , whose typical fiber is F = Γ. If Γ is finite, we can take E = M̃ × Z,
whose typical fiber is F = Γ× Z. In any case, F is non-compact, and the action of Γ on
itself by left translations induces a canonical action of Γ on F , which in turn induces an
action on F+. By Lemma 3.4.5 and the regularity of the covering M̃ of M , the holonomy
group of M in M′ is isomorphic to the group of germs at∞ of the action of the elements
of Γ on F+, which is itself isomorphic to Γ.
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49–95. MR 1760843

[34] R.E. Greene, Complete metrics of bounded curvature on noncompact manifolds, Arch.
Math. (Basel) 31 (1978), 89–95. MR 510080

[35] M. Gromov, Groups of polynomial growth and expanding maps. Appendix by Jacques
Tits, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534

[36] , Metric structures for Riemannian and non-Riemannian spaces, Progress
in Mathematics, vol. 152, Birkhäuser Boston Inc., Boston, MA, 1999, Based on
the 1981 French original [MR0682063], With appendices by M. Katz, P. Pansu and
S. Semmes, Translated from the French by Sean Michael Bates. MR 1699320

[37] A. Haefliger, Pseudogroups of local isometries, Differential geometry (Santiago de
Compostela, 1984), Res. Notes in Math., vol. 131, Pitman, Boston, MA, 1985,
pp. 174–197. MR 864868

[38] , Leaf closures in Riemannian foliations, A fête of topology, Academic Press,
Boston, MA, 1988, pp. 3–32. MR 928394

[39] M.W. Hirsch, Differential topology, Graduate Texts in Mathematics, no. 33, Springer-
Verlag, New York-Heidelberg, 1976. MR 0448362
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