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Introduction

A central problem in pseudo-Riemannian geometry is the existence of “optimal metrics”, mean-
ing those whose curvature has the property of being most evenly distributed about the manifold.
The approach to determine such metrics usually focuses on finding critical metrics for some
natural curvature functionals.

Let M be compact and τg denote the scalar curvature of a pseudo-Riemannian metric g on
M . The simplest and most natural curvature functional defined on the space of metrics is the
one given by the integral of the scalar curvature: S : g 7→ S(g) =

∫
M
τg dvolg, where dvolg is

the volume element determined by the metric g. A metric g is S-critical if its Einstein tensor
ρg − 1

2
τgg vanishes, where ρg denotes the Ricci tensor of (M, g). Since the curvature functional

S is sensitive to scalings of the metric, one restricts its action to metrics within constant volume.
The corresponding critical metrics are the Einstein ones. Hence one could argue that Einstein
metrics, i.e., those whose Ricci tensor is proportional to the metric, are the most natural optimal
metrics on a pseudo-Riemannian manifold.

Einstein metrics are somehow meaningless in dimension two. The Gauss-Bonnet Theorem
shows that S(g) = 4πχ[M ], where χ[M ] denotes the Euler characteristic of M , and thus all
metrics are S-critical in dimension two. The three-dimensional case is very rigid and Einstein
metrics are just those of constant sectional curvature. Hence they are locally isometric to a
pseudo-sphere, to a pseudo-Euclidean space or to a pseudo-hyperbolic space. The first non-
trivial situation occurs in dimension four, where non-trivial examples exist. The classification
of four-dimensional Einstein metrics is a widely open problem and a central question is the
existence of such metrics.

There are several strategies to construct Einstein metrics. A classical one consists on de-
forming a given metric by a conformal factor so that the metric becomes Einstein after a suitable
conformal rescaling. In this case (M, g) is said to be conformally Einstein, i.e., if there is an Ein-
stein representative of the conformal class [g]. A second more recent strategy makes use of the
Ricci flow which under suitable conditions converges to an Einstein metric. There are however
metrics which remain invariant (up to scaling and diffeomorphisms) by the Ricci flow: the Ricci
solitons.

Brinkmann showed in [14] that an n-dimensional manifold (M, g) is conformally Einstein if
and only if the equation

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (1)

has a positive solution. Even though in dimension 2 the equation is trivial, in higher dimensions
the integration is surprisingly difficult and the equation above is overdetermined in most cases.

11



12 Introduction

Furthermore the conformally Einstein metric, if exists, it is unique up to homotheties in the Rie-
mannian setting [14, 106]. An important issue is, therefore, to characterize conformally Einstein
spaces by some more manageable tensorial equations.

Let (M, g) be conformally Einstein and assume g = e2σg to be Einstein. Since Einstein
metrics have harmonic Weyl tensor one trivially has divW = 0, where W denotes the Weyl
conformal curvature tensor of (M, g). The fact that the Weyl tensor rescales under conformal
transformations gives that

(div4W )(X, Y, Z) +W (X, Y, Z,∇σ) = 0

is a necessary condition for (M, g) to be conformally Einstein. A second necessary condition
is obtained as follows. Let W : g 7→ W(g) =

∫
M
‖W‖2 dvolg be the curvature functional

determined by the L2-norm of the Weyl conformal curvature tensor. W-critical metrics where
characterized by Bach in [6], showing that a four-dimensional metric is W-critical if and only

if the Bach tensor B = div2 div4W +
1

2
W [ρ] vanishes identically. Clearly any Einstein metric

is Bach-flat (B = 0). Moreover, a specific feature of dimension four is that W is conformally
invariant and thus conformally Einstein metrics are Bach-flat in dimension four.

Kozameh, Newman and Tod showed in [72] that the two necessary conditions:

(i) B = 0, (ii) (div4W )(X, Y, Z) +W (X, Y, Z,∇σ) = 0, (2)

are also sufficient to be conformally Einstein if (M, g) is weakly-generic, i.e., the Weyl tensor
viewed as a map TM →

⊗3 TM is injective. In the Kähler case the situation is simpler, since
any Bach-flat Riemannian Kähler metric is conformally Einstein [48]. Despite all these results,
the classification of conformally Einstein manifolds is an open question nowadays, with only
partial results available. See for example [75] for a recent classification of conformally Einstein
product manifolds.

Our purpose on Part I of this thesis is to address the classification of four-dimensional con-
formally Einstein metrics in the homogeneous case. The homogeneity assumption allows a sim-
plification of the conformally Einstein equation, reducing Equation (1) to a system of algebraic
equations by using the conditions in Equation (2). Four-dimensional homogeneous Einstein met-
rics were described by Jensen [70], who showed that they are symmetric in the Riemannian case.
Hence they are locally a real or complex space form or locally a product of two surfaces of
constant equal Gauss curvature. The conformally Einstein situation is richer and Chapter 2 is
devoted to prove the following classification result.

Theorem 2.1. Let (M, g) be a four-dimensional complete and simply connected conformally
Einstein homogeneous Riemannian manifold. Then (M, g) is locally symmetric or otherwise it
is homothetic to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .

(ii) The Lie algebra gα = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = e1 − αe2, [e4, e2] = αe1 + e2, [e4, e3] = 2e3 .
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(iii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Here {e1, . . . , e4} is an orthonormal basis. Moreover, the Lie groups (Gα, 〈 · , · 〉) in Asser-
tion (ii) are half conformally flat.

In addition to four-dimensional conformally Einstein metrics, the Hirzebruch signature for-
mula shows that self-dual and anti-self-dual metrics are also Bach-flat. As a consequence of
the analysis in Chapter 2 we obtain a classification of homogeneous metrics which are strictly
Bach-flat, i.e., those which are neither half conformally flat nor conformally Einstein, as follows:

Theorem 2.4. Let (M, g) be a four-dimensional complete and simply connected strictly Bach-
flat homogeneous Riemannian manifold. Then (M, g) is homothetic to one of the Lie groups
determined by the following solvable Lie algebras:

(i) The Lie algebra g = Re4 n e(1, 1) given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .

(ii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Here {e1, . . . , e4} is an orthonormal basis.

It is worth emphasizing that the two examples in Theorem 2.4 were previously constructed
by Abbena, Garbiero and Salamon [1].

A crucial step in the proof of Theorem 2.1 and Theorem 2.4 is the description of four-
dimensional homogeneous Riemannian manifolds by Bérard-Bergery [9]: they are either sym-
metric or a Lie group with a left-invariant Riemannian metric. An analogous statement clearly
fails in the Lorentzian and neutral signature cases, since pseudo-Riemannian homogeneous spaces
are not necessarily reductive.

Non-reductive four-dimensional homogeneous spaces were classified by Fels and Renner
[54], and we explicitly use their classification to determine all non-reductive conformally Ein-
stein metrics in Chapter 3 as follows:

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive homoge-
neous space. Then (M, g) is Einstein, locally conformally flat, or locally isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.
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(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary constants
with ab 6= 0 and b 6= −q, or

(R4, g−) with metric given by

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which is unique
(up to an homothety) only in Case (i). Otherwise the space of conformally Ricci-flat metrics is
either two or three-dimensional.

A second more recent approach to the construction of Einstein metrics is given by the Ricci
flow, i.e., a one-parameter family of metrics g(t) on a manifold M which satisfies the equation
∂
∂t
g(t) = −2ρg(t). The Ricci flow is well-posed in the Riemannian context in the sense that for

any closed manifold M and any initial metric g(0), there is a unique solution g(t) for sufficiently
small t. Hamilton [64] showed that the Ricci flow converges to an Einstein metric under suitable
conditions thus showing the existence of Einstein metrics. It is an important observation that, if
the initial metric g(0) is Einstein, then it remains invariant under the flow (up to homothetical
scaling). Furthermore a solution of the flow is said to be self-similar if it remains invariant
up to scalings and diffeomorphisms. Such solutions –usually referred to as Ricci solitons– are
characterized by the existence of a vector field X on M so that

LXg + ρ = λg, (3)
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where L denotes the Lie derivative and λ is a real constant. Ricci solitons are therefore gener-
alizations of Einstein metrics and their classification is an important issue in understanding the
Ricci flow. If X is a gradient, then Equation (3) becomes

Hesf +ρ = λg, (4)

for some potential function f and (M, g, f) is called a gradient Ricci soliton. The geometry
of the Ricci tensor strongly depends on the sign of the Ricci curvatures. While positive Ricci
curvature is a strong condition with topological consequences, Lohkamp [80] showed that any
manifold admits complete metrics with negative Ricci curvature. Correspondingly, the study of
Ricci solitons depends on the sign of the soliton constant λ; a Ricci soliton (M, g,X) is called
shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively.

While there exist several classification results for gradient Ricci solitons, the generic case (3)
is still pretty unknown. Even in the homogeneous case a complete classification is not yet avail-
able in dimension four. Since all Bach-flat left-invariant Riemannian metrics are realized on
solvable Lie groups (cf. Theorem 2.1 and Theorem 2.4) one has the following description of
homogeneous Bach-flat Ricci solitons.

Theorem 2.16. Let (M, g) be a four-dimensional complete and simply connected Bach-flat Rie-
mannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally conformally flat gradient
Ricci soliton N3(c) × R, where N3(c) is a space form, or homothetic to one of the algebraic
Ricci solitons determined by the following solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .

(ii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

The gradient Ricci soliton Equation (4) encodes geometric information of the manifold in
terms of the Ricci curvature and the second fundamental form of the level sets of the potential
function f . Since the Ricci tensor completely determines the curvature in the locally conformally
flat case, substantial progress have been made towards a classification of gradient Ricci solitons
under some assumptions on the Weyl curvature. Locally conformally flat gradient Ricci solitons
are locally warped products with one-dimensional base in the Riemannian case [55] and a com-
plete description is available in the complete shrinking and steady cases [35,94]. The Lorentzian
situation allows another family of examples whose underlying structure is that of a plane wave
[17].
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Weaker assumptions on the Weyl conformal tensor have been investigated, half conformal
flatness being an important example. While (anti-)self-dual gradient Ricci solitons are locally
conformally flat in the Riemannian setting [39], the neutral signature case allows non-trivial
examples [16] given by Riemannian extensions of affine gradient Ricci solitons. Generalizing the
half conformally flat situation, Bach-flat gradient Ricci solitons have been investigated in [34].
Complete Bach-flat shrinking gradient Ricci solitons, as well as steady gradient Ricci solitons
of positive Ricci curvature whose scalar curvature attains a maximum at some interior point, are
locally conformally flat in the Riemannian category.

Our purpose in Part II of this thesis is to show the existence of strictly Bach-flat gradient
Ricci solitons in the neutral signature case. This question is motivated by the existence of self-
dual gradient Ricci solitons which are not locally conformally flat [16]. The desired metrics are
constructed by a perturbation of the classical Riemannian extensions introduced by Patterson and
Walker [92]. Let (Σ, D) be an affine surface and let T and Φ be a parallel (1, 1)-tensor field and
an arbitrary symmetric (0, 2)-tensor field on Σ, respectively. The data (Σ, D, T,Φ) determines a
neutral signature metric on the cotangent bundle T ∗Σ given by

gD,Φ,T = ιT ◦ ιT + gD + π∗Φ, (5)

where ι denotes the evaluation map on the cotangent bundle, π : T ∗Σ → Σ is the canonical
projection and gD is the Patterson-Walker’s Riemannian extension.

In Chapter 4, we show that the metrics in Equation (5) provide a large family of strictly
Bach-flat manifolds. Indeed:

Theorem 4.1. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel (1, 1)-
tensor field T . Let Φ be an arbitrary symmetric (0, 2)-tensor field on Σ. Then the Bach tensor of
(T ∗Σ, gD,Φ,T ) vanishes if and only if T is either a multiple of the identity or nilpotent.

If T is a multiple of the identity, then the metrics gD,Φ,T are self-dual and thus we are specially
interested in the nilpotent case (T 2 = 0, T 6= 0). Moreover, since the deformation tensor field
Φ does not play any role in Theorem 4.1 it may be used to construct an infinite family of non-
isometric Bach-flat metrics for any given data (D,T ) on Σ. A suitable choice of Φ enables the
construction of the desired new examples of Bach-flat gradient steady Ricci solitons, where as a
matter of notation, Φ̂(X, Y ) = Φ(TX, TY ) in Equation (6).

Theorem 4.6. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-tensor
field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let h ∈ C∞(Σ) be a smooth function.
Then (T ∗Σ, gD,Φ,T , f = h ◦π) is a Bach-flat gradient Ricci soliton if and only if dh(ker(T )) = 0
and

Φ̂ = −HesDh −2ρDs . (6)

Moreover the soliton is steady and isotropic.

We emphasize that the corresponding potential function has degenerate level set hypersur-
faces and their underlying structure is never locally conformally flat, in sharp contrast with the
Riemannian situation. The pseudo-Riemannian metrics in Theorem 4.1 are never self-dual, but
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they can be anti-self-dual in some cases. This fact allows the construction of anti-self-dual gra-
dient Ricci solitons which are not locally conformally flat, just requiring that both T and Φ are
parallel.

Theorem 4.12. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci tensor equipped with
a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric (0, 2)-tensor field Φ.

(i) The (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if
(T ∗Σ, gD,Φ̂,T , f = h ◦ π) is an anti-self-dual steady gradient Ricci soliton which is not
locally conformally flat.

(ii) The (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if there
exist local coordinates (u1, u2) on Σ so that the only non-zero Christoffel symbol is given
by uΓ11

2 = P (u1) + u2Q(u1) and the potential function h(u1) is determined by h′′(u1) =
−2Q(u1), for any P,Q ∈ C∞(Σ).

The constructions in Chapter 4 require the existence of affine surfaces admitting a parallel
nilpotent tensor field, which is a rather restrictive condition. We therefore investigate in Chapter 5
the existence of parallel (1, 1)-tensor fields on affine surfaces. One says that a tensor field T is
a Kähler (resp. para-Kähler) structure if T is parallel and T 2 = − Id (resp. T 2 = Id). T is
nilpotent Kähler if T 2 = 0 and DT = 0. Since the trace of any parallel tensor is constant, one
may express T = 1

2
tr(T ) Id +(T − 1

2
tr(T ) Id) so that it decomposes into a scalar multiple of

the identity and a trace free tensor field.
If (Σ, D) is an affine surface with skew-symmetric Ricci tensor ρDsk 6= 0, then ρDsk defines a

volume element. Moreover, ρDsk is said to be recurrent, i.e.,DρDsk = ω⊗ρDsk for some one-form ω.
Parallel trace free (1, 1)-tensor fields can be rescaled to be either Kähler, para-Kähler or nilpotent
Kähler with a recurrent condition as follows:

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recurrent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is recurrent.

(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and recurrent.

Surfaces with skew-symmetric Ricci tensor (equivalently, ρDs = 0) admit Kähler, para-Kähler
and nilpotent Kähler structures simultaneously (see Lemma 5.6). We use homogeneous affine
surfaces to illustrate Theorem 5.1, showing that all the different possibilities are realizable. The
results in Section 5.3 give explicit expressions of all parallel nilpotent Kähler structures on ho-
mogeneous surfaces.

Finally in Chapter 6, we consider some generalizations of Theorem 4.1 to construct Rie-
mannian extensions with non-parallel tensor field T which are Bach-flat. Theorem 6.1 extends
the construction in Theorem 4.1, showing that the modified Riemannian extension (T ∗Σ, gD,Φ,T )
determined by a non-parallel nilpotent tensor field T remains Bach-flat under some conditions
on the affine connection. The underlying question relies on determining the conditions on the
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connection once the nilpotent endomorphism is given. Conversely, one may consider the reverse
problem of constructing nilpotent endomorphisms on Σ such that the modified Riemannian ex-
tension (5) is Bach-flat once the connection D is given. We use the Cauchy-Kovalevski Theorem
to show that any Patterson-Walker Riemannian extension may be locally deformed by a suitable
nilpotent endomorphism field to be Bach-flat in the real analytic category.

Theorem 6.7. Let (Σ, D) be a real analytic affine surface. Then there exist locally defined
nilpotent (1, 1)-tensor fields T such that the modified Riemannian extension (T ∗Σ, gD,Φ,T ) is
Bach-flat.

It is a remarkable fact that modified Riemannian extensions (5) have vanishing scalar curva-
ture invariants if and only if T is nilpotent (cf. Theorem 6.8). Hence we introduce some new
invariants in Section 6.3 which are not of Weyl type. These invariants, which strongly depend
on the Ricci curvature of (Σ, D), allow one to distinguish some isometry classes of Bach-flat
metrics.



Chapter 1
Preliminaries

Throughout this chapter we will introduce some concepts and notation that will be necessary in
the development of this thesis. We shall omit most of the proofs and instead provide references
for more details.

1.1 Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold (M, g) is a smooth manifold M of dimension n equipped with
a metric tensor, i.e., with a symmetric and non-degenerate (0, 2)-tensor field. A non-zero vector
v ∈ TpM is called timelike if g(v, v) < 0, spacelike if g(v, v) > 0 or null if g(v, v) = 0. We
denote by S−p (M), S+

p (M), S0
p(M) the set of timelike unit vectors, spacelike unit vectors and

null vectors, respectively, at a point p ∈M .
Recall that the signature of the metric g is the pair (n − ν, ν) such that n − ν is the number

of negative eigenvalues and ν is the number of positive eigenvalues in the associated matrix. For
example, an n-dimensional pseudo-Riemannian manifold (M, g) is Riemannian if the signature
is (0, n) and Lorentzian if the signature is (1, n− 1). Moreover, if n is even and the signature of
g is (n

2
, n

2
) then the manifold has neutral signature. We denote by TM and T ∗M the tangent and

the cotangent fiber bundles of the corresponding manifold. Let X(M) be the space of tangent
vector fields toM . We represent vector fields byX, Y, Z, . . . and tangent vectors at a given point
by x, y, z, . . . .

For any pseudo-Riemannian manifold (M, g) there exists a unique adapted linear connection
∇ which is torsion free and parallel, i.e.,

∇XY −∇YX − [X, Y ] = 0 and ∇g = 0 .

Such connection is called the Levi-Civita connection. The Koszul formula gives the following
expression of the Levi-Civita connection:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]),

where X, Y, Z ∈ X(M) and [·, ·] represents the Lie bracket. The connection can be character-
ized by means of the Christoffel symbols. Let (x1, . . . , xn) be local coordinates. We define the
Christoffel symbols of the first kind by

Γij` =
1

2

(
∂g`j
∂xi

+
∂g`i
∂xj
− ∂gij
∂x`

)
19



20 1 Preliminaries

and the Christoffel symbols of the second kind by

Γij
k = gk`Γij`,

where (gαβ) denote the inverse matrix of (gαβ). Therefore, we obtain

∇∂xi
∂xj = Γij

k∂xk ,

where we use the notation ∂xi := ∂
∂xi

to represent the locally defined coordinate vector fields.

1.1.1 Differentiable operators
Let (M, g) be a pseudo-Riemannian manifold and let f : M → R be a differentiable function.
We define the gradient operator ∇ : C∞(M)→ X(M) on M as follows:

g(∇f,X) = X(f), for all X ∈ X(M) .

In a system of local coordinates (x1, . . . , xn), the gradient of the function f is given by:

∇f =
n∑

i,k=1

gik
∂f

∂xk
∂xi .

The Hessian operator of f is defined by the endomorphism hf : X(M) → X(M) given by
the second covariant derivative

hf (X) = ∇X∇f .
Now, we can define a new symmetric tensor field of type (0, 2), the Hessian tensor Hesf , given
by

Hesf (X, Y ) = g(hf (X), Y ) = g(∇X∇f, Y ) = XY f − (∇XY )f .

In terms of a local coordinate system the Hessian tensor is given by:

Hesf (∂xi , ∂xj) =
∂2f

∂xi∂xj
+

1

2
gk`
(
∂gij
∂x`
− ∂g`j
∂xi
− ∂g`i
∂xj

)
∂f

∂xk

=
∂2f

∂xi∂xj
− Γij

k ∂f

∂xk
.

We define the divergence of a vector field X by the function divX = tr(∇X). Considering
an orthonormal frame {E1, . . . , En} we have

divX =
∑

εig(∇EiX,Ei),

where εi = g(Ei, Ei). In general, if T is a tensor field of type (0, s), we define the divergence on
the r-th argument as the (0, s− 1)-tensor field given by

(divr T )(X1, . . . , Xs−1) =
n∑
i=1

εi(∇EiT )(X1, . . . , Xr−1, Ei, Xr, . . . , Xs−1),

for all X1, . . . , Xs−1 ∈ X(M). Since r-divergence of T is given by the r-th trace of ∇T the
definition above does not depend on the choice of the local frame.



1.1.2 The curvature tensor 21

1.1.2 The curvature tensor
The Levi-Civita connection having been defined, we introduce the curvature operator, denoted
by R, or curvature tensor of type (1,3) by setting

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z .

In local coordinates (x1, . . . , xn) the components of the curvature tensor are given by

R(∂xi , ∂xj)∂xk = Rijk
`∂x` .

The curvature tensor of type (0,4) is given by

R(X, Y, Z, V ) = g(R(X, Y )Z, V ) .

Hence its components are given by Rijk` = g`rRijk
r.

The curvature tensor has the following algebraic symmetries:

a) R(X, Y, Z, V ) = −R(Y,X,Z, V ) = −R(X, Y, V, Z),

b) R(X, Y, Z, V ) +R(Y, Z,X, V ) +R(Z,X, Y, V ) = 0, (1.1)

c) R(X, Y, Z, V ) = R(Z, V,X, Y ),

and the differential identity

d) (∇XR)(Y, Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X, Y, U, V ) = 0 .

Identities b) and d) are known as the first Bianchi identity and the second Bianchi identity, re-
spectively. A tensor of type (0, 4), A : V × V × V × V → R, on a vector space V is called an
algebraic curvature tensor if it satisfies the identities (1.1).

The sectional curvature of a given Riemannian manifold (M, g) is the real function κ defined
on the Grassmannian of 2-planes by

κ(π) =
R(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2
,

where π = 〈{X, Y }〉 is a two-dimensional subspace of TpM .
In the pseudo-Riemannian setting one must consider the restriction to the Grassmannian of

non-degenerate planes, i.e., those where

g(X,X)g(Y, Y )− g(X, Y )2 6= 0 .

If κ(π) is independent of π ⊂ TpM , then the curvature tensor is given by

R(X, Y, Z, V ) = κR0(X, Y, Z, V ),
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where R0 is the standard algebraic curvature tensor given by

R0(X, Y, Z, V ) = g(X,Z)g(Y, V )− g(X, V )g(Y, Z) .

If M is connected and dim(M) ≥ 3, then the second Bianchi identity guarantees that κ
is necessarily a global constant if it is pointwise constant. A pseudo-Riemannian manifold of
constant sectional curvature is locally isometric to a pseudo-sphere Snν , to a pseudo-Euclidean
space Enν or to a pseudo-hyperbolic space Hn

ν depending on the sign κ > 0, κ = 0 or κ < 0 and
the signature ν (see [88]).

We denote by ρ the Ricci tensor defined by

ρ(X, Y ) = tr(Z 7→ R(X,Z)Y )

and the Ricci operator, Ric, which is the associated (1, 1)-tensor field defined by g(Ric(X), Y ) =
ρ(X, Y ). The curvature identities (1.1) show that the Ricci tensor is symmetric, or equivalently,
the Ricci operator is self-adjoint. Moreover the scalar curvature τ is given by

τ = tr(Ric) .

The Ricci tensor and the scalar curvature can be expressed in coordinates by

ρij = gr`Rirj`, τ = gijρij .

Any two-dimensional pseudo-Riemannian manifold satisfies ρ = τ
2
g. A pseudo-Riemannian

manifold of dimension n ≥ 3 is called an Einstein space if its Ricci tensor is a constant multiple
of the metric, ρ = λg. Tracing on the previous expression one gets

ρ =
τ

n
g, (1.2)

and using the second Bianchi identity we obtain that τ is constant, when M connected and
dim(M) ≥ 3.

In dimension 3, the Einstein condition is equivalent to constant sectional curvature. In di-
mension n ≥ 4, there exist Einstein metrics which are not of constant sectional curvature. For
instance S2 × S2 is Einstein but the sectional curvature is clearly not constant. Dimension four
appears therefore as the first non-trivial case for consideration.

1.1.3 The Weyl tensor
LetD andB be two symmetric bilinear forms on a vector space V . The Kulkarni-Nomizu product
D �B is the (0, 4)-tensor on V defined as follows:

(D �B)(x, y, z, v) = D(x, z)B(y, v) +D(y, v)B(x, z)

−D(x, v)B(y, z)−D(y, z)B(x, v),
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where x, y, z, v ∈ V . An easy calculation shows that D � B is an algebraic curvature tensor on
(V, 〈·, ·〉), i.e., a (0,4)-tensor on V satisfying the algebraic identities (1.1) of the curvature tensor.
As a basic example, the standard algebraic curvature tensor R0 is given by R0 = 1

2
〈·, ·〉 � 〈·, ·〉.

The Schouten tensor, S, of an algebraic curvature tensor A on an n-dimensional inner pro-
duct vector space (V, 〈·, ·〉) is the symmetric tensor field of type (0, 2) defined by

SA =
1

n− 2

(
ρA −

τA
2(n− 1)

〈·, ·〉
)
,

where ρA and τA are the Ricci tensor and the scalar curvature associated to A.
The Weyl tensor arises from the Kulkarni-Nomizu product of the Schouten tensor and the

metric tensor; WA = A − SA � 〈 · , · 〉. Hence the Weyl tensor, W , of a pseudo-Riemannian
manifold (M, g) is defined by:

W = R−S� g,

or equivalently at each point p ∈M

W (x, y, z, v) = R(x, y, z, v) + τ
(n−1)(n−2)

{
g(x, z)g(y, v)− g(x, v)g(y, z)

}
− 1

(n−2)

{
ρ(x, z)g(y, v)− ρ(x, v)g(y, z) + ρ(y, v)g(x, z)− ρ(y, z)g(x, v)

}
,

for all x, y, z, v ∈ TpM .
An important property of the Weyl tensor to be used in this work is that it is trace free. Indeed,

one has:

Lemma 1.1. The Ricci curvature of the Weyl conformal tensor vanishes identically.

Proof. Let {E1, E2, . . . , En} be a pseudo-orthonormal frame, where g(Ei, Ej) = εiδij and εi ∈
{±1}. We denote by ρW (X, Y ) = tr(Z → W (X,Z)Y ) the Ricci tensor of the Weyl conformal
tensor. Then,

ρW =
∑
i

εiW (X,Ei, Y, Ei)

= ρ(X, Y ) + τ
(n−1)(n−2)

{
n g(X, Y )− g(X, Y )

}
− 1
n−2

{
n ρ(X, Y )− ρ(X, Y ) + τ g(X, Y )− ρ(X, Y )

}
= ρ(X, Y ) + τ

n−2
g(X, Y )− ρ(X, Y )− τ

n−2
g(X, Y ) = 0 .

A pseudo-Riemannian manifold (M, g) is called locally conformally flat if for each point
p ∈ M there exists an open neighborhood U of p and a smooth function σ : U → R so that the
metric ḡ = e2σg is flat.

The vanishing of the Weyl tensor characterizes locally conformally flat spaces in dimension
n ≥ 4. Observe that W = 0 in dimension n = 3. In fact, 3-dimensional locally conformally
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flat manifolds are characterized by the total symmetry of the covariant derivative of the Schouten
tensor (∇XS)(Y, Z) = (∇YS)(X,Z) [73]. Explicitly one has:

(∇XS)(Y, Z)− (∇YS)(X,Z)

= 1
(n−2)

{
(∇Xρ)(Y, Z)− (∇Y ρ)(X,Z)

− 1
2(n−1)

(X(τ)g(Y, Z)− Y (τ)g(X,Z))
}
.

At the level of local differential geometry, the most important invariant of a conformal structure
is given by the conformal Weyl tensor, which satisfies W̄ = e2σW for any two conformally
related metrics ḡ = e2σg.

1.2 Curvature decomposition

Given an n-dimensional real vector space V with basis {e1, . . . , en}, a bivector of V is an element
of the form

n∑
i,j=1

aijei ∧ ej,

where aij ∈ R. The set of all elements of this form is called the bivector space Λ2V . It has the
following properties:

• ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0 ∀i, j ∈ {1, . . . , n}.

• The set e1 ∧ e2, . . . , e1 ∧ en, e2 ∧ e3, . . . , en−1 ∧ en is a basis of Λ2V.

In consequence, Λ2V has a vector space structure of dimension n(n−1)
2

. We define the wedge
product of two elements x, y ∈ V , with x = xiei and y = yjej , by:

x ∧ y =

(
n∑
i=1

xiei

)
∧

(
n∑
j=1

yjej

)
=
∑
i<j

(xiyj − xjyi)ei ∧ ej ∈ Λ2V .

Let 〈·, ·〉 be an inner product on V . Then, it naturally extends to an inner product 〈〈·, ·〉〉 on
Λ2V as follows (see for example [73]):

〈〈x ∧ y, z ∧ t〉〉 = 〈x, z〉〈y, t〉 − 〈x, t〉〈y, z〉 . (1.3)

Moreover, if {e1, . . . , en} is a 〈·, ·〉-orthonormal basis of V , then ei ∧ ej (i < j) is a 〈〈·, ·〉〉-
orthonormal basis of Λ2V .

Each algebraic curvature tensor in (V, 〈·, ·〉) induces a unique self-adjoint endomorphism in
(Λ2V, 〈〈·, ·〉〉) as follows. Given a curvature tensor A, we define the endomorphism Ã : Λ2V →
Λ2V by

〈〈Ã(x ∧ y), z ∧ w〉〉 = A(x, y, z, w) for all x, y, z, w ∈ V .
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The converse is not true in general since a given self-adjoint endomorphism of Λ2V may fail
to satisfy the first Bianchi identity. There exists a bijective correspondence between the set of
algebraic curvature tensors A and the set Ã of self-adjoint endomorphisms of Λ2V satisfying

〈〈Ã(X ∧ Y ), Z ∧ T 〉〉+ 〈〈Ã(Y ∧ Z), X ∧ T 〉〉+ 〈〈Ã(Z ∧X), Y ∧ T 〉〉 = 0 .

In particular, the standard curvature tensor R0 corresponds to the endomorphism R̃0 = IdΛ2 .
The following result provides a decomposition of any algebraic curvature tensor. It is also a

motivation for the previously described tensors previously.

Theorem 1.2. [73] Let A be an algebraic curvature tensor in an n-dimensional inner product
vector space (V, 〈·, ·〉). Then it decomposes as:

A = UA + ZA +WA,

where
UA =

τA
2n(n− 1)

〈·, ·〉 � 〈·, ·〉, ZA =
1

n− 2

(
ρA −

τA
n
〈·, ·〉

)
� 〈·, ·〉

and WA = A − UA − ZA = A − SA � 〈·, ·〉 is the Weyl tensor associated to the algebraic
curvature tensor A.

The components UA,ZA,WA in Theorem 1.2 correspond to the following:

• UA is the orthogonal projection on the space of algebraic curvature tensors of constant
sectional curvature.

• The vanishing of the component ZA corresponds with Einstein algebraic curvature tensors.

• In dimension ≥ 4, the vanishing of the component WA represents locally conformally flat
algebraic curvature tensors.

1.3 Self-duality and anti-self-duality

We work at the purely algebraic setting and assume dim(V ) = 4. Let {e1, . . . , e4} be an or-
thonormal basis of (V, 〈·, ·〉). Then it follows from Equation (1.3) that

〈〈e1 ∧ e2, e1 ∧ e2〉〉 = 〈e1, e1〉〈e2, e2〉 − 〈e1, e2〉〈e2, e1〉 = ε1ε2,

〈〈e1 ∧ e3, e1 ∧ e3〉〉 = 〈e1, e1〉〈e3, e3〉 − 〈e1, e3〉〈e3, e1〉 = ε1ε3,

〈〈e1 ∧ e4, e1 ∧ e4〉〉 = 〈e1, e1〉〈e4, e4〉 − 〈e1, e4〉〈e4, e1〉 = ε1ε4,

〈〈e2 ∧ e3, e2 ∧ e3〉〉 = 〈e2, e2〉〈e3, e3〉 − 〈e2, e3〉〈e3, e2〉 = ε2ε3,

〈〈e2 ∧ e4, e2 ∧ e4〉〉 = 〈e2, e2〉〈e4, e4〉 − 〈e2, e4〉〈e4, e2〉 = ε2ε4,

〈〈e3 ∧ e4, e3 ∧ e4〉〉 = 〈e3, e3〉〈e4, e4〉 − 〈e3, e4〉〈e4, e3〉 = ε3ε4,
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where εi = 〈ei, ei〉. If 〈·, ·〉 is positive definite then so is 〈〈·, ·〉〉, while if 〈·, ·〉 has neutral signature
then 〈〈·, ·〉〉 is an inner product of signature (4, 2) on Λ2V .

Now, let vol := e1 ∧ e2 ∧ e3 ∧ e4 be a volume element on V and define the Hodge-star
operator ? : Λ2V → Λ2V by α∧ ?β = 〈〈α, β〉〉 · vol for all α, β ∈ Λ2V . This operator satisfies the
following properties in Riemannian or neutral signature:

(i) ?2 = IdΛ2V ,

(ii) ? is a self-adjoint operator.

The case when (V, 〈·, ·〉) is of Lorentzian signature is essentially different since in this setting
one has ?2 = − IdΛ2V , thus defining a complex structure on Λ2V and the induced inner product
is of neutral signature (3, 3).

The action of the Hodge-star operator on the basis {ei ∧ ej} is determined by:

?(e1 ∧ e2) = ε3ε4e3 ∧ e4, ?(e1 ∧ e3) = −ε2ε4e2 ∧ e4, ?(e1 ∧ e4) = ε2ε3e2 ∧ e3,

where the remaining elements are obtained using that ?2 = ± IdΛ2V , depending on the signature
of (V, 〈·, ·〉).

In the Riemannian and neutral signature cases, since ?2 = IdΛ2V , the eigenspaces corre-
sponding to the eigenvalues ±1 of ? decompose Λ2V as Λ2V = Λ2

+ ⊕ Λ2
−, where

Λ2
+V = {α ∈ Λ2V | ?α = α}, Λ2

−V = {α ∈ Λ2V | ?α = −α} .

The space Λ2
+V is called the space of self-dual 2-forms and Λ2

−V is called the space of anti-
self-dual 2-forms. Furthermore, for any algebraic curvature tensor A on (V, 〈·, ·〉) the associated
Weyl tensor satisfies ?W̃A = W̃A? and thus the endomorphism W̃A decomposes accordingly.

Hence an algebraic curvature tensor A on (V, 〈·, ·〉) is said to be self-dual (resp. anti-self-
dual) if W̃A(Λ2

−V ) ≡ 0 (resp. W̃A(Λ2
+V ) ≡ 0). Further, A is said to be locally conformally flat

if WA = 0. Whenever the orientation is not specified, we will say that A is half conformally flat
if A is either self-dual or anti-self-dual.

The half conformally flat condition can now be stated in terms of the components of the
Weyl tensor in an orthonormal basis as follows. The existence of a field of 2-planes on a four-
dimensional manifold determines a natural orientation on itself, for that reason self-dual and
anti-self-dual conditions have a clear meaning.

Lemma 1.3. [21] (V, 〈·, ·〉, A) is half conformally flat if and only if

WA(e1, ei, x, y) = σijkεjεkWA(ej, ek, x, y),

for each x, y ∈ V , where {i, j, k} = {2, 3, 4}, σijk is the signature of the corresponding permu-
tation and {e1, e2, e3, e4} is an orthonormal basis of (V, 〈·, ·〉).

Since we are interested in pseudo-Riemannian manifolds, we can reformulate the half con-
formally flat condition in the previous lemma for a pseudo-orthonormal basis {t, u, v, w}, i.e., a
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basis of (V, 〈·, ·〉) so that the inner product expresses as

〈·, ·〉 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (1.4)

i.e., the only non-zero products are given by 〈t, v〉 = 〈v, t〉 = 〈u,w〉 = 〈w, u〉 = 1.

Lemma 1.4. [21] (V, 〈·, ·〉, A) is half conformally flat if and only if

WA(t, v, x, y) = WA(u,w, x, y), WA(t, w, x, y) = 0, WA(u, v, x, y) = 0,

for all x, y ∈ V , where {t, u, v, w} is a pseudo-orthonormal basis of (V, 〈·, ·〉).

Let (M, g) be an oriented four-dimensional pseudo-Riemannian manifold of Riemannian or
neutral signature. Then, M is called self-dual (resp. anti-self-dual) if (TpM, gp, Rp) is self-dual
(resp. anti-self-dual) for all p ∈ M . If any of the previous cases occur then (M, g) is called half
conformally flat.

1.4 Conformal transformations and Einstein manifolds
In this section we consider conformal deformations of pseudo-Riemannian metrics with special
attention to their influence on the curvature.

1.4.1 Conformal transformations

A conformal map between two pseudo-Riemannian manifolds (M, g) and (M, g) is a smooth
map F : (M, g) → (M, g) such that F ∗g = ϕ−2g, for a non-zero smooth function ϕ : M → R,
i.e.,

gF (p)(F∗(p)X,F∗(p)Y ) = ϕ−2(p)gp(X, Y ) for all p ∈M,

and any X, Y ∈ X(M). Moreover, two pseudo-Riemannian manifolds are conformal if there is
a conformal map between them. Conformallity defines an equivalence relation in the space of
metrics and we denote by [g] the conformal class of a pseudo-Riemannian metric g.

Weyl showed in [103] that, although the definition of W evidently depends on the metric
g, the Weyl tensor W actually depends on the conformal class of the metric. If two metrics
g = ϕ−2g are conformally equivalent, then the Weyl conformal tensors W and W of type (1,3)
are equal to each other. However, the corresponding Weyl conformal tensors of type (0,4) rescale
asW = ϕ−2W . The converse is true ifW = 0 in which case both metrics are locally conformally
flat, but not in general. Hall [63] showed that in dimension four the following partial converse
holds.

Theorem 1.5. [63] Let (M, g) be a four-dimensional Riemannian manifold. Let g be a Riemann-
ian metric on M so that the Weyl conformal curvature tensors of type (1, 3) satisfy W = W on
some open set U ⊂M where W 6= 0. Then g and g are conformally related on U .
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Since we are interested in Einstein metrics one may wonder how the Einstein condition be-
haves under conformal transformations. The following lemma follows after some standard cal-
culations.

Lemma 1.6. [73] Let (M, g) be a pseudo-Riemannian manifold of dimension n and let ϕ : M →
R be a non-zero smooth function. If we consider in M the metric given by g = ϕ−2g then one
has:

(i) If∇ and∇ denote the Levi-Civita connections of g and g, respectively, then

∇XY −∇XY = −X(logϕ)Y − Y (logϕ)X + g(X, Y )∇(logϕ) . (1.5)

(ii) If R and R denote the curvature tensors of type (0, 4) of g and g, respectively, then

R(X, Y )Z −R(X, Y )Z =〈∇X∇(logϕ), Z〉Y + 〈∇Y∇(logϕ), Z〉X

− 〈X,Z〉∇Y∇(logϕ) + 〈Y, Z〉∇X∇(logϕ)

+ (Y logϕ)(Z logϕ)X − (X logϕ)(Z logϕ)Y

− 〈∇(logϕ),∇(logϕ)〉 ·R0(X, Y )Z

+ ((X logϕ)〈Y, Z〉 − (Y logϕ)〈X,Z〉)∇ logϕ .

(iii) If ρ and ρ denote the Ricci tensors of g and g, respectively, then

ρ− ρ = ϕ−2((n− 2) · ϕHesϕ +(ϕ∆ϕ− (n− 1)‖∇ϕ‖2)g),

where ∆ϕ = trg(Hesϕ) is the Laplacian.

Assertion (iii) in Lemma 1.6 shows that the Einstein condition is not necessarily preserved
by a conformal transformation. The following result was originally proven by Brinkmann [15]
(see also [74]).

Theorem 1.7. Let (M, g) be an Einstein manifold of dim(M) = n ≥ 3. A conformal metric

g = ϕ−2g is Einstein if and only if Hesϕ =
∆ϕ

n
g.

It follows from the work of Brinkmann that a Riemannian four-dimensional Einstein met-
ric admits a conformally related Einstein deformation if and only if it is of constant sectional
curvature. On the other hand, the indefinite setting allows the existence of conformally-related
Einstein metrics which are of non-constant sectional curvature. Examples of this situation will
appear in Chapter 3.
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1.4.2 Conformally Einstein manifolds
Einstein metrics are among the most privileged ones, since they are considered optimal metrics,
i.e., those whose curvature has the property of being most evenly distributed on the manifold.
For that reason, Einstein metrics are central in geometry. One strategy to construct an Einstein
metric consists in deforming an initial metric by a conformal factor so that the resulting metric
becomes Einstein. We make this more precise as follows.

Definition 1.8. A pseudo-Riemannian manifold (M, g) is called locally conformally Einstein if
for any point p ∈ M there exists a neighborhood U of p ∈ M and a smooth function ϕ : U → R
so that g = ϕ−2g is a locally defined Einstein metric.

An application of Lemma 1.6–(iii) gives the following:

Theorem 1.9. [14] A pseudo-Riemannian manifold (M, g) is conformally Einstein if and only
if the following equation has a positive solution

(n− 2) Hesϕ +ϕρ =
1

n
((n− 2)∆ϕ+ ϕτ)g, (1.6)

where n = dim(M).

Equation (1.6) will be called the conformally Einstein equation. Observe that the conformally
Einstein equation is generically overdetermined. Moreover solutions (if exist) are unique as
shown by Brinkmann and Yau in the Riemannian setting.

Theorem 1.10. [15, 106] Let M and N be two connected Riemannian Einstein manifolds of
dimension≥ 3 and let F : M → N be a conformal diffeomorphism. Then either F is a homothety
or both M and N have constant curvature.

It is relevant to emphasize that uniqueness of Einstein metrics in the conformal class is not
true in higher signatures. In Chapter 3 we will show the existence of non-reductive homogeneous
conformally Einstein pseudo-Riemannian manifolds (of neutral or Lorentzian signature) where
the space of conformally Einstein metrics has dimension 2 or 3.

Equation (1.6) is trivial in dimension two, but its integration is surprisingly difficult in higher
dimensions. Three-dimensional manifolds are locally conformally Einstein if and only if they
are locally conformally flat. Hence this dimension is exceptional and there is a tensorial charac-
terization of the conformally Einstein property. However, in dimension ≥ 4, there are examples
which are conformally Einstein but not locally conformally flat. The conformally Einstein equa-
tion implies that the eigenspaces of the Hessian operator hϕ must coincide with the eigenspaces
of the Ricci operator. Moreover, the eigenvalues of hϕ are determined by the eigenvalues of Ric
and conversely.

In what follows of this section, we will show some consequences of the conformally Einstein
Equation (1.6) aimed to obtain a tensorial characterization of the conformally Einstein property.
The following is an important observation.
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Lemma 1.11. Let (M, g) be a pseudo-Riemannian manifold. Then

(divW )(X, Y, Z) = (n− 3)
{

(∇XS)(Y, Z)− (∇YS)(X,Z)
}
,

where S = 1
n−2

(
ρ− τ

2(n−1)
g
)

is the Schouten tensor. In particular divW = 0 if (M, g) is
Einstein.

Proof. Fix a point p ∈ M and specialize a local orthonormal frame {E1, . . . , En} so that
∇EiEj |p= 0. Further let X , Y , Z be vector fields on M and assume that∇EiX |p =∇EiY |p =
∇EiZ |p = 0. Then the divergence of the Weyl tensor is given by:

(divW )(X, Y, Z) =
∑
i

εi(∇EiW )(X, Y, Z,Ei) .

Recall that the expression of the Weyl tensor W = R−S� g is given by

W (X, Y, Z, T ) =
{
R + τ

(n−1)(n−2)
R0 − 1

n−2
(ρ� g)

}
(X, Y, Z, T ) . (1.7)

Now, we compute the covariant derivative of each term in Equation (1.7). First of all we apply
the second Bianchi identity to compute∑

i εiEiR(X, Y, Z,Ei) = −
∑

i εiXR(Y,Ei, Z, Ei)−
∑

i εiY R(Ei, X, Z,Ei)

= Y ρ(X,Z)−Xρ(Y, Z) .

Since the standard algebraic curvature tensor R0 is parallel, the derivative of the second term in
Equation (1.7) becomes

1
(n−1)(n−2)

∑
i εiEi (τR

0(X, Y, Z,Ei))

= 1
(n−1)(n−2)

R0(X, Y, Z,Ei)εiEi(τ)

= 1
(n−1)(n−2)

{
g(X,Z)Y (τ)− g(Y, Z)X(τ)

}
.

Proceeding in an analogous way with the derivative of the third term in Equation (1.7) one has

1
n−2

∑
i εiEi(ρ� g)(X, Y, Z,Ei)

= 1
n−2

∑
i εi

{
g(Y,Ei)Eiρ(X,Z)− g(Y, Z)Eiρ(X,Ei)

+ g(X,Z)Eiρ(Y,Ei)− g(X,Ei)Eiρ(Y, Z)
}

= 1
n−2
{Y ρ(X,Z)− g(Y, Z) div ρ(X) + g(X,Z) div ρ(Y )−Xρ(Y, Z)}

= 1
2(n−2)

{
2Y ρ(X,Z)− g(Y, Z)X(τ) + g(X,Z)Y (τ)− 2Xρ(Y, Z)

}
.
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Now, adding all the expressions above one gets:

(divW )(X, Y, Z)

= Y ρ(X,Z)−Xρ(Y, Z) + 1
(n−2)(n−1)

{
g(X,Z)Y (τ)− g(Y, Z)X(τ)

}
− 1

2(n−2)

{
2Y ρ(X,Z)− g(Y, Z)X(τ) + g(X,Z)Y (τ)− 2Xρ(Y, Z)

}
= n−3

n−2

{
Y ρ(X,Z)−Xρ(Y, Z)− 1

2(n−1)
(g(X,Z)Y (τ)− g(Y, Z)X(τ))

}
= (n− 3)

{
(∇XS)(Y, Z)− (∇YS)(X,Z)

}
.

Finally observe that if (M, g) is Einstein, then ρ = τ
n
g with τ ∈ R, and thus the Schouten tensor

S =
1

n− 2

(
ρ− τ

2(n− 1)
g

)
is parallel. Hence divW = 0.

Let g and g be conformally related so that g = ϕ−2g and, for sake of simplicity, we set
σ = −logϕ. Let W and div4W denote the Weyl tensor and its divergence with respect to the
metric g. Then one has:

Lemma 1.12. Let g = e2σg be two conformally related metrics. Then

(div4W )(X, Y, Z) = (div4W )(X, Y, Z) + (n− 3)W (X, Y, Z,∇σ) (1.8)

for all vector fields X, Y, Z on M .

Proof. Let {E1, E2, . . . , En} be a local g-orthonormal frame and set Ei = 1
eσ
Ei such that

{E1, E2, . . . , En} is a local ḡ-orthonormal frame, where g(Ei, Ej) = εiδij . Then

(div4W )(X,Y, Z)

=
∑
i

εi(∇EiW )(X,Y, Z,Ei)

=
∑
i

εi
1

e2σ

{
∇EiW (X,Y, Z,Ei)−W (∇EiX,Y, Z,Ei)−W (X,∇EiY, Z,Ei)

−W (X,Y,∇EiZ,Ei)−W (X,Y, Z,∇EiEi)
}
.

Next, we expand separately each one of the five terms above to obtain:

∇EiW (X,Y, Z,Ei) = Ei(e
2σW (X,Y, Z,Ei))

= 2e2σEi(σ)W (X,Y, Z,Ei) + e2σ∇EiW (X,Y, Z,Ei),
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W (∇EiX,Y, Z,Ei)

= e2σW (∇EiX + Ei(σ)X +X(σ)Ei − g(Ei, X)∇σ, Y, Z,Ei)

= e2σ
{
W (∇EiX,Y, Z,Ei) +W (Ei(σ)X,Y, Z,Ei) +W (X(σ)Ei, Y, Z,Ei)

− g(Ei, X)W (∇σ, Y, Z,Ei)
}

= e2σ
{
W (∇EiX,Y, Z,Ei) +W (X,Y, Z, g(∇σ,Ei)Ei)

+X(σ)W (Ei, Y, Z,Ei)−W (∇σ, Y, Z, g(Ei, X)Ei)
}
,

W (X,∇EiY,Z,Ei)

= e2σW (X,∇EiY + Ei(σ)Y + Y (σ)Ei − g(Ei, Y )∇σ, Z,Ei)

= e2σ
{
W (X,∇EiY,Z,Ei) +W (X,Ei(σ)Y, Z,Ei) +W (X,Y (σ)Ei, Z,Ei)

− g(Ei, Y )W (X,∇σ, Z,Ei)
}

= e2σ
{
W (X,∇EiY,Z,Ei) +W (X,Y, Z, g(∇σ,Ei)Ei)

+ Y (σ)W (X,Ei, Z,Ei)−W (X,∇σ, Z, g(Ei, Y )Ei)
}
,

W (X,Y,∇EiZ,Ei)

= e2σW (X,Y,∇EiZ + Ei(σ)Z + Z(σ)Ei − g(Ei, Z)∇σ,Ei)

= e2σ
{
W (X,Y,∇EiZ,Ei) +W (X,Y,Ei(σ)Z,Ei) +W (X,Y, Z(σ)Ei, Ei)

− g(Ei, Z)W (X,Y,∇σ,Ei)
}

= e2σ
{
W (X,Y,∇EiZ,Ei) +W (X,Y, Z, 〈∇σ,Ei〉Ei)

+ Z(σ)W (X,Y,Ei, Ei)−W (X,Y,∇σ, g(Ei, Z)Ei)
}
,

W (X,Y, Z,∇EiEi)

= e2σW (X,Y, Z,∇EiEi + Ei(σ)Ei + Ei(σ)Ei − g(Ei, Ei)∇σ)

= e2σ
{
W (X,Y, Z,∇EiEi) + 2W (X,Y, Z,Ei(σ)Ei)

− g(Ei, Ei)W (X,Y, Z,∇σ)
}
.
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Hence,

(div4W )(X,Y, Z)

=
∑
i

εie
2σ
{
∇EiW (X,Y, Z,Ei)−W (∇EiX,Y, Z,Ei)−W (X,∇EiY,Z,Ei)

−W (X,Y,∇EiZ,Ei)−W (X,Y, Z,∇EiEi)
}

+ (n− 3)W (X,Y, Z,∇σ)

+W (∇σ, Y, Z,X) +W (X,∇σ, Z, Y ) +W (X,Y,∇σ, Z)

= (div4 W )(X,Y, Z) + (n− 3)W (X,Y, Z,∇σ),

which finishes the proof.

An immediate consequence of Lemma 1.11 and Lemma 1.12 is that, if g = ϕ−2g is Einstein,
then

(div4W )(X, Y, Z)− (n− 3)W (X, Y, Z,∇σ) = 0 (1.9)

for all vector fields X, Y, Z on M where ϕ = e−σ [74, 79]. Observe that the tensorial condition
involves∇σ, which makes (1.9) in a certain way unmanageable since the conformal deformation
σ is unknown.

Remark 1.13. The identity in Equation (1.9) is satisfied for any divergence, i.e.,

(div3W )(X, Y, Z)− (n− 3)W (X, Y,∇σ,X) = 0.

Next we compute the divergence in Equation (1.9). As a matter of notation, let W [Φ] denote
the action of the Weyl conformal curvature tensor on the space of symmetric (0, 2)-tensor fields
by (see [10])

W [Φ](X, Y ) =
∑
i,j

εiεjW (Ei, X, Y, Ej)Φ(Ej, Ei) .

Lemma 1.1 shows that, for any function f ∈ C∞(M), one has W [f g] = 0 since W is trace free
and W [g] = ρW = 0.

Now, fix a point p ∈M and let {E1, E2, . . . , En} be a local g-orthonormal frame around p ∈
M such that ∇EiEj|p = 0 for any i, j and let X , Y , and Z be vector fields such that∇EiX|p =
∇EiY |p = ∇EiZ|p = 0 for all i. We set T (X, Y, Z) = W (X, Y, Z,∇σ) and compute div2 T in
Equation (1.9) to get:

0 = div2 div4W (X, Y ) + (n− 3) div2 T (X, Y ) . (1.10)
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Furthermore

div2 T (X,Y )

=
∑

i(∇EiT )(X,Ei, Y ) =
∑
i

∇EiW (X,Ei, Y,∇σ)

=
∑
i,j

∇Ei (〈∇σ,Ej〉W (X,Ei, Y, Ej)) =
∑
i,j

{
〈∇Ei∇σ,Ej〉W (X,Ei, Y, Ej)

}
=
∑
i,j

Hesσ(Ei, Ej)W (X,Ei, Y, Ej) +
∑
j

〈∇σ, Ej〉
∑
i

∇EiW (X,Ei, Y, Ej)

= W [Hesσ] +
∑
j

〈∇σ,Ej〉div2W (X,Y,Ej) .

Now, by Remark 1.13 one gets

div2 T (X,Y )

= W [Hesσ]− (n− 3)
∑
j

〈∇σ,Ej〉W (X,∇σ, Y,Ej)

= W [Hesσ]− (n− 3)
∑
i,j

〈∇σ,Ei〉〈∇σ,Ej〉W (X,Ei, Y, Ej)

= W [Hesσ]− (n− 3)W [dσ ⊗ dσ],

and thus

div2 div4W (X, Y ) + (n− 3)W [Hesσ]− (n− 3)2W [dσ ⊗ dσ] = 0 . (1.11)

Since ϕ = e−σ, one has dϕ = −e−σdσ and Hesϕ = e−σ (−Hesσ +dσ ⊗ dσ). Hence
(n − 2) Hesϕ +ϕρ = (n − 2)e−σ (−Hesσ +dσ ⊗ dσ) + e−σρ, and the conformally Einstein
Equation (1.6) becomes

Hesσ =
1

n− 2
ρ+ dσ ⊗ dσ − eσ · ξ · g,

where ξ = 1
n(n−2)

{(n−2)∆ϕ+ϕτ}. Finally, substituting in Equation (1.11) and using Lemma 1.1,
one gets

0 = div2 div4W (X,Y )+(n− 3)W
[

1
n−2ρ+dσ ⊗ dσ−eσ ξ g

]
− (n− 3)2W [dσ ⊗ dσ]

= div2 div4W + n−3
n−2W [ρ] + (n− 3)

{
W [dσ ⊗ dσ]− (n− 3)W [dσ ⊗ dσ]

}
= div2 div4W + n−3

n−2W [ρ]− (n− 3)(n− 4)W [dσ ⊗ dσ] .

In the special case of dim(M) = 4, one obtains the necessary conditions (i) and (ii) in
Theorem 1.14 to be conformally Einstein. Moreover, these conditions are also sufficient in some
special cases as the following shows.
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Theorem 1.14. [72] Let (M, g) be a four-dimensional manifold such that the conformal metric
ḡ = ϕ−2g is Einstein. Then

(i) div2 div4W + 1
2
W [ρ] = 0,

(ii) (div4W )(X, Y, Z)−W (X, Y, Z,∇σ) = 0,

where σ = − logϕ, for some function ϕ ∈ C∞(M).
Conversely, conditions (i) and (ii) above are also sufficient if (M, g) is assumed to be weakly-

generic, i.e., the Weyl curvature operator (viewed as a map W : TM →
⊗3 TM ) is injective.

Observe that condition (i) in Theorem 1.14 is a tensorial equation on (M, g) which is inde-
pendent of the conformal factor.

1.5 Additional structures on manifolds
In this section we briefly review some basic notation on Kähler and para-Kähler structures that
will appear in subsequent chapters.

Kähler structures

A complex manifold is a differentiable manifold with a holomorphic atlas. If a real manifold M
of dimension n = 2m admits a globally defined tensor field J of type (1, 1) such that

J2 = − Id, (1.12)

then (M,J) is called an almost complex manifold and J is an almost complex structure on M .
As the word indicates, almost complex means that it is “not quite” complex. If the almost com-
plex structure corresponds to the underlying structure of a complex manifold, then it is said to
be integrable and a fundamental result of Newlander and Nirenberg [85] shows that an almost
complex structure J on M is integrable if and only if the Nijenhuis tensor NJ vanishes, where

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X, Y ] .

A pseudo-Riemannian metric g onM is called an almost Hermitian metric if the almost complex
structure J is an isometry in each tangent space, i.e.,

g(JX, JY ) = g(X, Y ) for all X, Y ∈ X(M) . (1.13)

The triple (M, g, J) is called almost Hermitian manifold. An almost Hermitian manifold (M, g, J)
is said to be Hermitian if the almost complex structure is integrable.

Associated to any almost Hermitian structure (g, J) there exists a non-degenerate 2-form,
called the Kähler form and given by:

Ω(X, Y ) = g(JX, Y ) .
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The covariant derivative of the almost complex structure, the Nijenhuis tensor and the differential
of the Kähler 2-form Ω are related by (see [105]).

2g((∇XJ)Y, Z) + 3dΩ(X, Y, Z)− 3dΩ(X, JY, JZ)− g(JX,NJ(Y, Z)) = 0 .

A symplectic manifold (M,Ω) is a manifold equipped with a closed and non-degenerate two
form (i.e., dΩ = 0 and Ωm = Ω

m
∧ · · · ∧ Ω 6= 0). If (M, g, J) is an almost Hermitian manifold

with closed Kähler form, then M is said to be almost Kähler. If M is a complex manifold with
an Hermitian metric and Ω is closed then M is called a Kähler manifold with Kähler metric
g. In other words, Kähler manifolds are characterized by the parallelizability of their complex
structure,∇J = 0, and their curvature tensor satisfies

R(X, Y, Z,W ) = R(JX, JY, Z,W ) .

A consequence of the previous identity is that any Kähler manifold of constant sectional curva-
ture is necessarily flat. We define the holomorphic sectional curvature as the restriction of the
sectional curvature to non-degenerate holomorphic planes π (i.e., non-degenerate planes invari-
ant by the complex structure; J(π) ⊂ π) and it is given by

H(π) =
R(X, JX,X, JX)

g(X,X)2
.

It is important to emphasize that the holomorphic sectional curvature determines the curva-
ture tensor in the Kähler case. Moreover, a Kähler manifold has constant holomorphic sectional
curvature c if and only if the curvature tensor is given by

R =
c

4
(R0 +RJ),

where R0 is the standard algebraic curvature tensor and

RJ(X, Y )Z = g(JX,Z)JY − g(JY, Z)JX + 2g(JX, Y )JZ .

A Kähler manifold of constant holomorphic sectional curvature is locally isometric to the com-
plex space Cm

ν (if c = 0), to the complex projective space CPmν (if c > 0) or to the complex
hyperbolic space CHm

ν (if c < 0) [8].
An almost Hermitian manifold (M, g, J) is said to be locally conformally Kähler (resp. lo-

cally conformally symplectic) if there is a local conformal deformation ḡ = e2σg so that (M, ḡ, J)
becomes Kähler (resp. symplectic). One has the following characterizations (see [52, 101] and
references therein).

• (M, g, J) is locally conformally Kähler if and only if J is integrable and dΩ = θ∧Ω, dθ =
0, where θ is a closed 1-form.

• (M, g, J) is locally conformally symplectic if and only if dΩ = θ ∧ Ω, dθ = 0, where θ is
a closed 1-form.
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Let (M, g, J) be a four-dimensional Kähler manifold and orient it so that the Kähler 2-form
is self-dual (Ω ∈ Λ2

+). Then the self-dual Weyl curvature operator satisfies

W+ =
τ

12
diag[2,−1,−1] .

Hence the self-dual part of the Weyl tensor of any locally conformally Kähler metric has two-
equal eigenvalues. The following converse, proven by Derdziński, is important for our purposes
in Chapter 2.

Theorem 1.15. [48] Let (M, g) be an oriented four-dimensional Riemannian Einstein manifold
such that W+ has at most two different eigenvalues at each point. Then g = (24‖W+‖2)

1
3 g is

Kähler on the open set where W+ 6= 0.

Para-Kähler structures

A (1,1)-tensor field J on a 2m-dimensional manifold M is said to be an almost product struc-
ture if J2 = Id. In this case the pair (M, J) is called an almost product manifold. An almost
para-complex manifold is an almost product manifold such that the bundles T+M and T−M
associated with the two eigenvalues ±1 of J have the same rank.

An almost para-Hermitian manifold (M, g, J) is a manifold M endowed with an almost
para-complex structure J and a metric tensor g such that g(JX, JY ) = −g(X, Y ). We define the
non-degenerate 2-form of the almost para-Hermitian manifold by

Ω(X, Y ) = g(JX, Y ),

for any vector fields X, Y on M .
Let Ω be a 2-form on M . Ω is called an almost symplectic form if it is non-degenerate,

i.e., Ωm 6= 0 and the pair (M,Ω) is said to be an almost symplectic manifold. Let L ⊂ M
be an m-dimensional submanifold of an almost symplectic manifold. If Ω|L = 0 then L is a
Lagrangian submanifold. An almost symplectic manifold is an almost para-Hermitian manifold
if its tangent bundle decomposes as a Whitney sum of Lagrangian subbundles. Observe that
TM = L1 ⊕ L2 and the (1, 1)-tensor field defined by J = πL1 − πL2 (where πL1 and πL2 are the
projections of TM on L1 and L2, respectively) determines an almost para-complex structure on
M . Furthermore the metric tensor is determined by the para-complex structure and the 2-form Ω
as g(X, Y ) = Ω(JX, Y ).

A para-Kähler manifold is a symplectic manifold which is diffeomorphic to a product of
Lagrangian submanifolds. One has the following relationship between Ω, the integrability of J
and the covariant derivative of J:

2g((∇XJ)Y, Z) + 3dΩ(X, Y, Z) + 3dΩ(X, JY, JZ) + g(JX,NJ(Y, Z)) = 0,

where NJ(X, Y ) = [JX, JY ] − J[JX, Y ] − J[X, JY ] + J2[X, Y ] is the Nijenhuis tensor of the
almost para-complex structure. This relationship allows to characterize para-Kähler manifolds
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through the parallelism of J. Hence one has that (M, g, J) is a para-Kähler manifold if and only
if

J2 = Id, g(JX, JY ) = −g(X, Y ) and ∇J = 0 .

We refer to [44, 46] for more details and references. In this case, the curvature tensor satisfies

R(X, Y, Z,W ) = −R(JX, JY, Z,W ) .

We define the para-holomorphic sectional curvature by the restriction of the sectional curva-
ture to non-degenerate para-holomorphic planes, i.e.,
non-degenerate planes π such that J(π) ⊂ π:

H(π) = −R(X, JX,X, JX)

g(X,X)2
.

As in the Kähler case, the para-holomorphic sectional curvature determines the curvature of a
para-Kähler manifold and it is constant if and only if

R = − c
4

(R0 +RJ),

where R0 is the standard algebraic curvature tensor and

RJ(X, Y )Z = g(JX,Z)JY − g(JY, Z)JX + 2g(JX, Y )JZ .

A para-Kähler manifold of constant para-holomorphic sectional curvature is locally isometric
(or anti-isometric) to R2m if c = 0 or to the para-complex projective space Pm(B) if c 6= 0 [58].
Further, observe that the para-complex projective space is locally isometric to the cotangent
bundle of a flat affine manifold equipped with a suitable Riemannian extension [29].

1.6 The Bach tensor

The Bach tensor arises as the gradient of the quadratic curvature functional given by the L2-
norm of the Weyl curvature tensor. The purpose of this section is to introduce the Bach tensor in
dimension four and give some examples of Bach-flat metrics (we refer to [6] for more details).
We have already encountered the Bach tensor in Theorem 1.14–(i).

Definition 1.16. Let (M, g) be a four-dimensional pseudo-Riemannian manifold. The Bach
tensor is the symmetric (0, 2)-tensor field defined by

B = div2 div4W +
1

2
W [ρ] .

The Bach tensor in dimension four is symmetric, trace free, divergence free and conformally
invariant [95, 96]. Clearly locally conformally flat metrics are Bach-flat. Moreover, a straight-
forward calculation shows that the Bach tensor of any Einstein metric vanishes identically and
Theorem 1.14–(i) shows that conformally Einstein metrics are Bach-flat as well.
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It is important to emphasize that Bach flatness is a necessary but not sufficient condition for a
manifold to be conformally Einstein. For instance the left-invariant Bach-flat metrics constructed
by Abbena, Garbiero and Salamon in [1] fail to satisfy Equation (1.9) and thus they are not
locally conformally Einstein. However, Bach flatness is also a sufficient condition to conformally
Einstein in some special cases as shown by Derdziński [48] (see also [77]).

Theorem 1.17. Let (M, g, J) be a four-dimensional positive definite Kähler manifold. Then it is
conformally Einstein if and only the Bach tensor vanishes.

An additional motivation for studying the Bach tensor with a different geometrical flavor is
as follows. LetW be the quadratic curvature functional given by the L2-norm of the conformal
Weyl tensor

W : g 7→ W(g) =

∫
M

‖Wg‖2 dvolg . (1.14)

It quantifies the deflection of a Riemannian metric g from being locally conformally flat. A
remarkable property is that W is conformally invariant in dimension four. Indeed, if g = e2σg
and n = 4, then

‖W‖2 dvolg = W ijk`W
ijk`

dvolg

= e2σWijk`e
2σe−8σW ijk`e4σ dvolg = ‖W‖2 dvolg .

The Euler-Lagrange equations for W-critical metrics were obtained by Bach [6], who showed
that a metric isW-critical if and only if B = 0.

Remark 1.18. In addition to conformally Einstein manifolds, half conformally flat metrics are
also Bach-flat. Let M be an oriented four-dimensional manifold. Recall from the Hirzebruch
signature formula that (see [48] and [5])

τ [M ] =
1

12π2

∫
M

(‖W+‖2 − ‖W−‖2)dV, (1.15)

where τ [M ] denotes the Hirzebruch signature of M . Hence

W(g) =

∫
M

‖W‖2 dvolg =

∫
M

(
‖W+‖2 + ‖W−‖2

)
dvolg

= ±12π2τ [M ] + 2

∫
M

‖W∓‖2 dvolg,

which shows that half conformally flat metrics are extremal for the functionalW , and thus Bach-
flat.

1.7 Affine geometry

An affine manifold is a pair (M,D) of a manifold M and an affine torsion free connection D.
The Ricci tensor ρD is defined by setting ρD(X, Y ) := tr(Z → RD(X,Z)Y ). Since the Ricci
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tensor need not be symmetric in general, we introduce the symmetrization ρDs and the skew-
symmetrization ρDsk by setting:

ρDs (X, Y ) := 1
2
{ρD(X, Y ) + ρD(Y,X)},

ρDsk(X, Y ) := 1
2
{ρD(X, Y )− ρD(Y,X)} .

(1.16)

An affine manifold (M,D) is flat if the associated curvature tensor RD vanishes. In this
case, there exists local coordinates where the Christoffel symbols are zero. Two connections D
and D are said to be projectively equivalent if there is a 1-form ω such that DXY = DXY +
ω(X)Y +ω(Y )X for all vector fields X, Y on M . One says that (M,D) is projectively flat if the
connection D is projectively equivalent to a flat affine connection. Two-dimensional projectively
flat affine structures are characterized as follows

Theorem 1.19. [87] Let (M,D) be an affine surface. Then (M,D) is projectively flat if and
only if ρD, DρD are totally symmetric.

An affine manifold is curvature recurrent (resp. Ricci recurrent) if DRD = ω ⊗ RD (resp.
DρD = ω ⊗ ρD) for some 1-form ω, and (M,D) is said to be locally symmetric if DRD = 0.
Since the curvature tensor of any affine surface is determined by the Ricci tensor asRD(X, Y )Z =
ρD(X,Z)Y − ρD(Y, Z)X , one has that curvature recurrent and Ricci recurrent conditions are
equivalent in the two-dimensional case.

Curvature recurrent surfaces appear in a natural way in the study of affine connections with
skew-symmetric Ricci tensor since any affine surface with skew-symmetric Ricci tensor is cur-
vature recurrent around any point where the curvature is non-zero. We refer to Wong [104] for a
classification of curvature recurrent surfaces. The following results will be used in this memory:

(i) Let (Σ, D) be a curvature recurrent affine surface with symmetric Ricci tensor of rank one.
Then there exist local coordinates (x1, x2) where the unique non-zero component of D is
given by

D∂x1
∂x1 = a(x1, x2)∂x2

for some smooth function a(x1, x2) [104].

(ii) Let (Σ, D) be a curvature recurrent affine surface with non-degenerate symmetric Ricci
tensor. Then, there is a pseudo-Riemannian metric g on M such that D is the Levi-Civita
connection of g [104].

(iii) Let (Σ, D) be a curvature recurrent affine surface with skew-symmetric Ricci tensor. Then
there exist local coordinates (x1, x2) where the unique non-zero components ofD are given
by

D∂x1
∂x1 = −∂x1θ(x1, x2)∂x1 , D∂x2

∂x2 = ∂x2θ(x
1, x2)∂x2 ,

for some smooth function θ(x1, x2) [49, 104].
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1.7.1 Riemannian extensions
The existence of a parallel distribution on a Riemannian manifold (M, g), i.e., a distribution V
such that ∇V ⊂ V, leads to a local de Rham decomposition. This local decomposition extends
to the pseudo-Riemannian setting whenever the parallel distribution V is non-degenerate. We say
that a pseudo-Riemannian manifold is a Walker manifold if it admits a parallel and degenerate
distribution V. Walker showed in [102] the existence of local coordinates where the metric takes
a simple form as follows (see [19] for more information on Walker manifolds).

Theorem 1.20. [102] LetM be an n-dimensional Walker manifold and let V be an r-dimensional
parallel and degenerate distribution. Then, there exist adapted coordinates on the Walker mani-
fold M , (x1, . . . , xn−r, xn−r+1, . . . , xn), such that the metric is given by

(gij) =

 B H Idr
H t A 0

Idr 0 0

 ,

where Idr is the identity matrix of order r and A, B, H are matrices whose coefficients are
functions of the coordinates verifying:

(i) A and B are symmetric matrices of order (n− 2r)× (n− 2r) and r × r, respectively. H
is a matrix of order r × (n− 2r) matrix and H t denotes its transposed.

(ii) A and H do not depend on the coordinates (xn−r+1, . . . , xn).

Moreover, the null parallel distribution V is locally generated by the coordinate vector fields
{∂xn−r+1 , . . . , ∂xn}.

The canonical form in the previous theorem simplifies if the parallel distribution has full
dimension and the manifold has even dimension n = 2m. In this case, there exist Walker
coordinates (x1, . . . , xm, x1′ , . . . , xm′) such that the metric is given by the matrix (see [19]):

(gij) =

(
B Idm

Idm 0

)
, (1.17)

where B is an m ×m symmetric matrix whose entries are functions of the coordinates. When
the metric is in the form (1.17) the Christoffel symbols and the curvature operator are given as
follows:

Lemma 1.21. [29] Let (M, g,V) be a Walker manifold of dimension n = 2m, where dim(V) =
m. Then, the non-zero Christoffel symbols are given by

Γij
k = −1

2
∂xk′gij, Γi′j

k′ = 1
2
∂xi′gjk,

Γij
k′ = −1

2
(∂xkgij + ∂xjgik + ∂xigjk +

∑
s gks∂xs′gij),

where the sum is taken for all s = 1, . . . ,m.
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For any Walker manifold the curvature tensor satisfies the following conditions (see [50]):

R(V,V⊥, ·, ·) = 0, R(V,V, ·, ·) = 0, R(V⊥,V⊥,V, ·) = 0 .

Moreover, the non-zero components of the curvature tensor are as follows.

Lemma 1.22. [29] Let (M, g,V) be a Walker manifold of dimension n = 2m, where dim(V) =
m. Then, the non-zero components of the curvature tensor of type (1,3) are given by (up to
symmetries):

Rh
jik = −1

2
(∂xi∂xh′gjk − ∂xj∂xh′gik)−

1
4
(∂xs′gik∂xh′gjs − ∂xs′gjk∂xh′gis),

Rh′

jik = −1
2
(∂xj∂xkgih − ∂xj∂xhgik + ∂xi∂xhgjk − ∂xi∂xkgjh)

− 1
4

{
∂xs′gik(∂xhgjs − ∂xsgjh − ∂xjgsh − ght∂xt′gjs)

− ∂xs′gjk(∂xhgis − ∂xsgih − ∂xigsh − ght∂xt′gis)
− ∂xs′gjh(∂xsgik − ∂xkgis − ∂xigks − gst∂xt′gik)
+ ∂xs′gih(∂xsgjk − ∂xkgjs − ∂xjgks − gst∂xt′gjk)

+ 2∂xj(ghs∂xs′gik)− 2∂xi(ghs∂xs′gjk)
}
,

Rh
ji′k = −1

2
∂xi′∂xh′gjk,

Rh′

jik = −1
2
(∂xh∂xi′gjk − ∂k∂xi′gjh)

− 1
4
(∂xs′gjk∂xi′gsh + ∂xs′gjh∂xi′gsk − 2∂xi′ (ghs∂xs′gjk)),

Rh′

jik′ = −1
2
(∂xj∂xk′gih − ∂xi∂xk′gjh)−

1
4
(∂xk′gis∂xs′gjh − ∂xk′gjs∂xs′gih),

Rh′

ji′k′ = 1
2
∂xi′∂xk′gjh,

where 1 ≤ s ≤ m.

The study of the geometry in dimension four is central in this thesis. In this case, we take
coordinates (x1, x2, x1′ , x2′) such that the metric (1.17) takes the form:

g =


a c 1 0
c b 0 1
1 0 0 0
0 1 0 0

 ,

where a, b and c are functions in the coordinates (x1, x2, x1′ , x2′).
A special class of Walker metrics is given by the Riemannian extensions and their mod-

ifications. A feature of these metrics is that they provide a link between affine and pseudo-
Riemannian geometry. Hence one may use pseudo-Riemannian techniques to investigate affine
problems and vice versa.
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The Riemannian extensions are a family of distinguished metrics on the cotangent bundle
of an affine manifold. Let T ∗M be the cotangent bundle of an m-dimensional manifold M and
let π : T ∗M → M be the projection. Let p̃ = (p, ω) denote a point of T ∗M , where p ∈ M
and ω ∈ T ∗pM . Local coordinates (x1, . . . , xm) in an open set U of M induce local coordinates
(x1, . . . , xm, xi′ , . . . , xm′) in π−1(U), where one sets for any 1-form

ω =
∑

xi′dx
i .

For each vector field X on M , the evaluation of X is the real valued function ιX : T ∗M → R
given by ιX(p, ω) = ω(Xp). Setting X = X i∂xi one has

ιX(xi, xi′) =
∑

xi′X
i .

Vector fields on T ∗M are characterized by their action on evaluations ιX and one defines
the complete lift to T ∗M of a vector field X on M by Xc(ιZ) = ι[X,Z] for all vector fields
Z ∈ X(M). Moreover, (0, s)-tensor fields on T ∗M are characterized by their action on complete
lifts of vector fields on M . Hence, for any (1, 1)-tensor field T on M , its evaluation is the 1-
form ιT on T ∗M characterized by ιT (Xc) = ι(TX). In induced local coordinates one has the
expression ιT = xk′T

k
i dx

i.
Considering a torsion free connection D on M , the cotangent bundle T ∗M can be equipped

with a pseudo-Riemannian metric gD of signature (m,m), which is called the Riemannian ex-
tension of D [92], characterized by

gD(Xc, Y c) = −ι(DXY +DYX),

where Xc, Y c denote the complete lifts to T ∗M of vector fields X, Y on M . In induced local
coordinates (x1, . . . , xm, xi′ , . . . , xm′) on T ∗M , the Riemannian extension has the expression

gD = 2 dxi ◦ dxi′ − 2xk′
DΓij

kdxi ◦ dxj, (1.18)

where DΓij
k are the Christoffel symbols ofD with respect to (x1, . . . , xm) onM and “◦” denotes

the symmetric product ω1 ◦ ω2 := 1
2
(ω1 ⊗ ω2 + ω2 ⊗ ω1). In matrix form:

gD =

(
−2xk′

DΓij
k Idm

Idm 0

)
.

Riemannian extensions are a particular class of Walker metrics with parallel degenerate distribu-
tion V = ker(π∗) = span{∂x1′ , . . . , ∂xm′}.

Modified Riemannian extensions

A generalization of Riemannian extensions can be constructed as follows. Consider (M,D) an
n-dimensional affine manifold where D is a torsion free connection on M . Let Φ be a symmetric
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(0, 2)-tensor field on M . Then the deformed Riemannian extension, gD,Φ = gD + π∗Φ, is a first
perturbation of the Riemannian extension and is characterized by

gD,Φ(Xc, Y c) = −ι(DXY +DYX) + Φ(X, Y ) ◦ π,

where Xc and Y c denote the complete lifts to T ∗M of vector fields X, Y on M . In local coordi-
nates one has

gD,Φ = 2 dxi ◦ dxi′ − {2xk′DΓij
k − Φij}dxi ◦ dxj .

A second perturbation is as follows. Let T = T ki dx
i ⊗ ∂xk and S = Ski dx

i ⊗ ∂xk be
(1, 1)-tensor fields on M . The evaluations ιT and ιS define 1-forms on T ∗M . The modified
Riemannian extension, gD,Φ,T,S is the neutral signature metric on T ∗M defined by (see [29])

gD,Φ,T,S = ιT ◦ ιS + gD + π∗Φ, (1.19)

where Φ is a symmetric (0, 2)-tensor field on M . In local coordinates one has

gD,Φ,T,S = 2 dxi ◦ dxi′

+{1
2
xr′xs′(T

r
iS

s
j + T rjS

s
i)− 2xk′

DΓij
k + Φij}dxi ◦ dxj .

Modified Riemannian extensions are characterized among Walker metrics by their curvature as
follows (see [2]):

(i) A Walker manifold satisfies R(V, ·)V = 0 if and only if it is locally a deformed Riemann-
ian extension.

(ii) A Walker manifold satisfies (∇VR)(V, ·)V = 0 if and only if it is locally a modified
Riemannian extension. Hence, locally symmetric Walker metrics are modified Riemannian
extensions.

The case when T is a multiple of the identity (T = c Id, c 6= 0) and S = Id is of special
interest. It was shown in [29] that for any affine manifold (M,D), the modified Riemannian
extension gD,Φ,c Id,Id is an Einstein metric on T ∗M if and only if the deformation tensor Φ is the
symmetric part of the Ricci tensor of (M,D).

Theorem 1.23. The modified Riemannian extension gD,Φ,c Id,Id on the cotangent bundle T ∗M of
an m-dimensional affine manifold (M,D) is Einstein if and only if Φ = 4

c(m−1)
ρDs , with c 6= 0.

Proof. Let gD,Φ,c Id,Id = cι Id ◦ι Id +gD + π∗Φ be a modified Riemannian extension and let τ be
its scalar curvature. The trace free Ricci tensor is given by ρ0 = ρ− τ

2m
gD,Φ,c,Id and determined

by

ρ0 = 2π∗ρDs −
1

2
c(m− 1)π∗Φ,

from where the result follows.

A slight generalization of the modified Riemannian extension allowed a complete description
of self-dual Walker metrics as follows.
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Theorem 1.24. [29, 51] A four-dimensional Walker metric is self-dual if and only if it is locally
isometric to the cotangent bundle T ∗Σ of an affine surface (Σ, D), with metric tensor

g = ιX(ι Id ◦ι Id) + ι Id ◦ιT + gD + π∗Φ,

where X , T , D and Φ are a vector field, a (1, 1)-tensor field, a torsion free affine connection and
a symmetric (0, 2)-tensor field on Σ, respectively.

1.8 The Ricci flow: Ricci solitons
The Ricci flow was introduced by Hamilton in [64] aimed to solve the Poincaré conjecture: any
three-dimensional closed and simply connected manifold is homeomorphic to S3. The Ricci flow
is defined by the evolution equation

∂

∂t
g(t) = −2ρg(t), (1.20)

where g(t) is a 1-parameter family of Riemannian metrics on M . For any C∞ metric g0 on a
closed manifold M , there is a unique solution g(t), t ∈ [0, ε), to the Ricci flow equation for
some ε > 0, with g(0) = g0. The idea of the Ricci flow is to deform the original metric g(0)
into a distinguished one by its Ricci curvature (see for example [42]). For example, if M is
two-dimensional, the Ricci flow deforms a metric conformally to one of constant curvature and
thus gives a proof of the two-dimensional uniformization theorem [38].

The first example of solution to the Ricci flow equation is given by Einstein metrics, where
the solution is

g(t) = (1− 2λt)g0, where


t ∈ (−∞, 1

2λ
) if λ > 0,

t ∈ ( 1
2λ
,∞) if λ < 0,

t ∈ (−∞,∞) if λ = 0,

for an Einstein initial metric g(0) such that ρg(0) = λg(0). Moreover, in any of the cases g(0)
remains invariant modulo homotheties.

Generalizing the behaviour of Einstein metrics, and allowing the initial metric to change not
only by homotheties but also by diffeomorphisms, a solution g(t) of the Ricci flow is said to be
self-similar if there exists a positive function σ(t) and a one-parameter group of diffeomorphisms
ψ(t) : M →M such that

g(t) = σ(t)ψ(t)∗g(0) . (1.21)

Remark 1.25. If Equation (1.21) defines a solution of the Ricci flow, then differentiating (1.21)
yields

− 2 ρ(g(t)) = σ′(t)ψ(t)∗g0 + σ(t)ψ(t)∗(LXg0), (1.22)

where g0 = g(0), X is the time-dependent vector field such that X(ψ(t)(p)) = d
dt

(ψ(t)(p)) for
any p ∈M , and σ′ = dσ

dt
.



46 1 Preliminaries

Since ρ(g(t)) = ψ(t)∗ρ(g0), one can drop the pull-backs in Equation (1.22) and get:

− 2 ρ(g0) = σ′(t)g0 + LX̃(t)g0, (1.23)

where X̃(t) = σ(t)X(t). Put λ = −1
2
σ̇(0) and X0 = 1

2
X̃(0), so that Equation (1.23) becomes

−2 ρ(g0) = −2λ g0 + 2LX0g0 at t = 0 .

This shows that for any self-similar solution of the Ricci flow there exists a vector field on M
satisfying

LXg + ρ = λ g .

Conversely, let X be a complete vector field on a pseudo-Riemannian manifold (M, g) and
denote by ψ(t) : M → M with ψ(0) = IdM the family of diffeomorphisms generated by X
according to

∂

∂t
ψ(t)(p) =

1

1− 2λt
X(ψ(t)(p)),

which is defined for all t < 1
2λ

if λ > 0 and for all t > 1
2λ

if λ < 0. Considering now the
one-parameter family of metrics

g(t) = (1− 2λt)ψ(t)∗g,

one has
∂
∂t
g(t) = −2λψ(t)∗g + (1− 2λ)ψ(t)∗

(
L 1

1−2λt
Xg
)

= ψ(t)∗
(
−2λ g + LX(ψ(t)(p))g

)
.

Now, if LXg + ρ = λg, then

∂

∂t
g(t) = ψ(t)∗(−2 ρ) = −2ψ(t)∗ρ = −2 ρ(ψ(t)∗g) = −2 ρ(g(t)),

which shows that g(t) is a solution of the Ricci flow.

The above motivates the following definition.

Definition 1.26. A triple (M, g,X) where (M, g) is a pseudo-Riemannian manifold and X is a
vector field on M satisfying

LXg + ρ = λ g (1.24)

is called a Ricci soliton. A Ricci soliton is said to be shrinking, steady or expanding if λ > 0,
λ = 0 or λ < 0, respectively.

A Ricci soliton whose vector field can be written as the gradient of some function f : M → R
is called a gradient Ricci soliton. In this case, we may compute LXg0 = 2 Hesg0(f) and we have

Hesg0(f) + ρ(g0) = λg0 . (1.25)
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We call the function f the potential function. If the potential function is constant, then the gradi-
ent Ricci soliton is trivial since Equation (1.25) reduces to the Einstein equation. In consequence,
gradient Ricci solitons are natural extensions of Einstein manifolds.

Gradient Ricci solitons codify geometric information of the manifold in terms of the Ricci
curvature and the second fundamental form of the level sets of the potential function f . More-
over, they appear as singularities of the Ricci flow [41], so it is important to understand the
geometry and topology of gradient Ricci solitons and their classification.

As a result of several works, the classification of complete locally conformally flat gradient
shrinking Ricci solitons has been finally achieved [83, 94]. Since the Ricci tensor determines
the curvature tensor in the locally conformally flat case, it follows that a locally conformally flat
gradient Ricci soliton, not necessarily complete, is locally a warped product in the Riemannian
case [55]. Four-dimensional half conformally flat (i.e., self-dual or anti-self-dual) gradient Ricci
solitons have been investigated in the Riemannian and neutral signature cases [16,39]. While they
are locally conformally flat in the Riemannian situation, neutral signature allows other examples
given by Riemannian extensions of affine gradient Ricci solitons.

On the other hand, since Bach-flat metrics contain half conformally flat and conformally Ein-
stein metrics as special cases, a natural problem is to classify Bach-flat gradient Ricci solitons.
The Riemannian case was investigated in the shrinking and steady cases in [34, 36]. In all sit-
uations the Bach-flat condition reduces to the locally conformally flat one under some natural
assumptions. In Chapter 4 we construct new examples of Bach-flat gradient Ricci solitons in
the neutral signature case where the corresponding potential functions have degenerate level set
hypersurfaces and their underlying structure is never locally conformally flat, in sharp contrast
with the Riemannian situation. These metrics are realized as modified Riemannian extensions
on the cotangent bundle T ∗Σ of an affine surface (Σ, D).

Self-dual gradient Ricci solitons

Let (M, g, f) be a gradient Ricci soliton. The level set hypersurfaces of the potential function
play a distinguished role in analyzing the geometry of gradient Ricci solitons. Hence we say that
the soliton is non-isotropic if∇f is a nowhere null vector (i.e., ‖∇f‖2 6= 0), and that the soliton
is isotropic if ‖∇f‖2 = 0, but∇f 6= 0.

Non-isotropic gradient Ricci solitons lead to local warped product decompositions in the
locally conformally flat and half conformally flat cases, and their geometry resembles the Rie-
mannian situation [16, 17]. The isotropic case is, however, in sharp contrast with the positive
definite setting since∇f gives rise to a Walker structure. Self-dual gradient Ricci solitons which
are not locally conformally flat are isotropic and steady. Moreover, they are described in terms
of Riemannian extensions as follows.

Theorem 1.27. [16] Let (M, g, f) be a four-dimensional self-dual gradient Ricci soliton of
neutral signature which is not locally conformally flat. Then (M, g) is locally isometric to the
cotangent bundle T ∗Σ of an affine surface (Σ, D) equipped with a deformed Riemannian exten-
sion gD,Φ = gD + π∗Φ.

Moreover any such gradient Ricci soliton is steady and the potential function is given by



48 1 Preliminaries

f = h ◦ π for some h ∈ C∞(Σ) satisfying the affine gradient Ricci soliton equation

HesDh +2ρDs = 0, (1.26)

for any symmetric (0, 2)-tensor field Φ on Σ.

An affine surface (Σ, D) is an affine gradient Ricci soliton if there is a function h ∈ C∞(Σ)
satisfying Equation (1.26).

The previous result relates affine geometry of (Σ, D) and pseudo-Riemannian geometry of
(T ∗Σ, gD,Φ), allowing the construction of an infinite family of steady gradient Ricci solitons on
T ∗Σ for any initial data (Σ, D, h) satisfying Equation (1.26). It is important to remark here that
the existence of affine gradient Ricci solitons imposes some restrictions on (Σ, D), as shown
in [18] in the locally homogeneous case. Moreover, note that Equation (1.26) does not depend
on the deformation tensor Φ. In consequence any affine gradient Ricci soliton gives rise to an
infinite family of self-dual gradient Ricci solitons just varying the deformation tensor Φ.

1.9 Homogeneous spaces
Homogeneity is central in differential geometry. In pseudo-Riemannian geometry, roughly speak-
ing, homogeneity means that for any two points there exists an isometry sending one point to
another. Thus geometry is the same at each point. In affine geometry, the notion of homogeneity
means that for any two points there exists an affine transformation sending one point into the
other. It is important to emphasize that a pseudo-Riemannian manifold may be affine homoge-
neous for the Levi-Civita connection but not homogeneous. In this section, we treat homogeneity
from the point of view of pseudo-Riemannian and affine geometry.

Riemannian homogeneous spaces

A connected Riemannian manifold (M, g) is said to be homogeneous if the group of isometries
acts transitively on M . This means that if p, q ∈ M are any two points then there exists an
isometry ϕ of (M, g) such that ϕ(p) = q. Note that, in this case, the connected component of the
identity of the isometry group acts transitively on M as well. This definition of homogeneity is
equivalent to the existence of a connected Lie group G and a smooth map

G×M −→ M

(q, p) 7→ q p = Lq(p)

such that for all q1, q2 ∈ G it satisfies:

(i) Lq1 is an isometry of (M, g).

(ii) Lq1 Lq2 = Lq1q2 .

(iii) For p1, p2 ∈M there exists an element q1 ∈ G such that Lq1(p1) = p2.
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Now, we suppose that G acts effectively on M , i.e., Lq is the identity transformation of M if
and only if q is the identity element e ∈ G. Note that we can always replace G by the quotient
group G/K, where K is the kernel of the map q 7→ Lq of G in the isometry group. Thus, if G
is a connected Lie group which acts on (M, g) as a transitive and effective group of isometries,
then G can be identified with a Lie subgroup of the isometry group.

Let p ∈ M and let H = {q ∈ G| qp = p} be the isotropy subgroup of p. Then M is
diffeomorphic to the quotient G/H and we have the canonical projection

π : G −→ G/H .

It is a principal fiber bundle over M with structure group H . The subgroup H is closed but
not necessarily connected. A Riemannian metric g on G/H is called G-invariant if the action
tq : G/H → G/H with tq(sH) = qsH is an isometry, for all q ∈ G. In this case (G/H, g) is
called a homogeneous Riemannian space. One says that (M, g) is locally homogeneous if for
each p, q ∈ M , there exist neighborhoods U of p and V of q, and a local isometry ϕ : U → V
such that ϕ(p) = q.

Simply connected homogeneous Riemannian manifolds of dimension 2 are symmetric. Three-
dimensional complete and simply connected homogeneous Riemannian manifolds are either
symmetric spaces or Lie groups with a left-invariant Riemannian metric [97] (see [81] for a
modern exposition and [23] for an extension to the three-dimensional Lorentzian setting). The
same result holds true in the four-dimensional case, as shown by Bérard-Bergery:

Theorem 1.28. [9] Let (M, g) be a four-dimensional complete and simply connected Riemann-
ian homogeneous manifold. Then either (M, g) is symmetric or it is isometric to a Lie group with
a left-invariant metric.

In particular, either M is one of the groups ˜SL(2,R) × R, SU(2) × R or it is a solvable
Lie group. Four-dimensional solvable Lie algebras are obtained as extensions of the three-
dimensional unimodular Lie algebras: the abelian Lie algebra r3, the Heisenberg algebra h3,
the Poincaré algebra e(1, 1) of the group of rigid motions of the Minkowski 2-space and the
Euclidean algebra e(2) of the group of rigid motions of the Euclidean 2-space. Moreover, the
solvable and simply connected four-dimensional Lie groups are the following:

(i) The non-trivial semi-direct products Rn E(2) and Rn E(1, 1).

(ii) The semi-direct products Rn R3.

(iii) The non-nilpotent semi-direct products RnH3, where H3 is the Heisenberg group.

Let (M, g) be a connected n-dimensional Riemannian manifold. Further let M = G/H ,
where G is a group of isometries of M acting transitively and effectively on M . We denote by
H the isotropy group at a point p ∈ M . Let g denote the Lie algebra of G and h the Lie algebra
of H .
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Definition 1.29. M = G/H is called reductive if there exists a vector subspace m of g such that

g = h⊕m, (1.27)

where m is the Ad(H)-invariant subspace on g, i.e., Ad(H)m ⊂ m (see [71, 100]).

Note that when H is connected Ad(H)m ⊂ m is equivalent to [h,m] ⊂ m, and that H is
always connected if M is simply connected. Moreover, if H is compact, the decomposition
always exists since we can take m = h⊥ with respect to an Ad(H)-invariant inner product on g.

If G/H is a homogeneous reductive space which admits a pseudo-Riemannian metric with
G acting by isometries, then the curvature tensor R takes a simpler form, which facilitates the
study of the geometry of these spaces. It is important to emphasize that reductivity is not an
intrinsic property of (M, g) but of the description of M as a coset space G/H . For example, in
neutral or Lorentzian signature reductive decompositions may not exist. Fels and Renner [54]
classified four-dimensional non-reductive homogeneous spaces, and their work will be essential
in the development of Chapter 3.

Half conformally flat homogeneous manifolds

De Smedt and Salamon [47] classified half conformally flat left-invariant Riemannian metrics on
Lie groups, showing the following.

Theorem 1.30. [47] A four-dimensional homogeneous manifold is strictly anti-self-dual if and
only if it is a complex space form or a simply connected Lie group Gα corresponding to the
solvable Lie algebra gα given by

[e1, e2] = e2 − αe3, [e1, e3] = αe2 + e3, [e1, e4] = 2e4, [e2, e3] = −e4, (1.28)

where {e1, . . . , e4} is an orthonormal basis.

Note that the choice of orientation has no role at all in Theorem 1.30 so that one may replace
anti-self-duality by self-duality.

Homogeneous affine surfaces

We say that an affine surface (Σ, D) is locally homogeneous if given any two points p and q of Σ,
there exists a local diffeomorphism Ψ intertwining p and q such that Ψ∗D = D. The following
result was proved by Opozda [90] (see [22] for a different proof). It is fundamental in the subject.

Theorem 1.31. [90] Let (Σ, D) be a locally homogeneous affine surface which is not flat. Then
at least one of the following three possibilities holds which describe the local geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols DΓij
k are constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form

DΓij
k = (x1)−1Cij

k,

for Cijk constant and x1 > 0.
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(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Surfaces of Type A and Type B have different geometric properties. For example, the Ricci
tensor of any Type A surface is symmetric and this may fail for a Type B surface. Indeed, the
Ricci tensor of a Type B surface may even be skew-symmetric; this is closely related to the
existence of non-flat affine Osserman structures [60]. The geometry of Type B surfaces is not so
rigid as that of the Type A surfaces. On the other hand, any Type A surface is projectively flat
and again this may fail for a Type B surface.

Remark 1.32. The different types A, B and C are not exclusive (see [18]).

(i) There are no non-flat surfaces which are both of Type A and Type C.

(ii) The only non-flat surfaces which are of both Type B and Type C are the hyperbolic
plane and the Lorentzian analogue realized as the half plane models with metrics ds2 =

1
(x1)2
{(dx1)2 + (dx2)2} and ds2 = 1

(x1)2
{(dx1)2 − (dx2)2}, respectively.

(iii) A Type B affine surface is also of Type A if and only if it is flat or the Christoffel symbols
satisfy DΓ12

1 = DΓ22
1 = DΓ22

2 = 0.
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Conformally Einstein homogeneous
manifolds





Chapter 2
Conformally Einstein homogeneous

Riemannian manifolds

The existence of conformally Einstein metrics amounts to understand a rather complicated PDE
as Brinkmann showed in [14]. Homogeneity allows a reduction of the problem to a system
of algebraic equations and our purpose in this chapter is to provide a complete description of
homogeneous conformally Einstein metrics in dimension four. Previous work of Jensen [70]
showed that four-dimensional homogeneous Einstein metrics are symmetric and thus locally a
product of two surfaces of constant sectional curvature or a real or a complex space form. Our
main result provides a classification of conformally Einstein and Bach-flat homogeneous four-
manifolds. In this chapter we report on work investigated in [28].

Theorem 2.1. Let (M, g) be a four-dimensional complete and simply connected conformally
Einstein homogeneous Riemannian manifold. Then (M, g) is locally symmetric or otherwise it
is homothetic to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .

(ii) The Lie algebra gα = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = e1 − αe2, [e4, e2] = αe1 + e2, [e4, e3] = 2e3 .

(iii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Here {e1, . . . , e4} is an orthonormal basis. Moreover, the Lie groups (Gα, 〈 · , · 〉) in Asser-
tion (ii) are half conformally flat.

Remark 2.2. Following the notation in [4], the underlying Lie algebras in Theorem 2.1 are r′
4,1, 1

4α

if α 6= 0 or r4, 1
4
, 1
4

if α = 0 in Assertion (i), d′
4, 1
α

if α 6= 0 or d4, 1
2

if α = 0 in Assertion (ii) and
r4,(α+1)2,α2 in Assertion (iii).

Remark 2.3. Recall that if two Riemannian metrics are conformally equivalent, g̃ = e2σg, then
their Weyl tensors of type (1, 3) coincide and thus W̃ = e2σW for the Weyl tensors of type
(0, 4). The converse does not hold in general, but it is true in dimension four on any open set
where W 6= 0 (see [63]). Furthermore, if the conformal manifolds (M, g) and (M, g̃) are both
homogeneous, then ‖W‖2 and ‖W̃‖2 are constant and, since ‖W̃‖2 = e−4σ‖W‖2, either g and g̃
are homothetic or otherwise both metrics are locally conformally flat. We will make extensively
use of these facts to obtain the different homothety classes in Theorem 2.1.

55
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Theorem 2.4. Let (M, g) be a four-dimensional complete and simply connected strictly Bach-
flat homogeneous Riemannian manifold. Then (M, g) is homothetic to one of the Lie groups
determined by the following solvable Lie algebras:

(i) The Lie algebra g = Re4 n e(1, 1) given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .

(ii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Here {e1, . . . , e4} is an orthonormal basis.

Remark 2.5. The underlying Lie algebras in Theorem 2.4 are aff(R) × aff(R) in Case (i) and
d4,µ with µ = 1

10
(5− 3

√
5) in Case (ii), following again the notation in [4].

The chapter is organized as follows. In Section 2.1 we give the coordinate expressions of the
metrics as well as the underlying structure of conformally Einstein and strictly Bach-flat mani-
folds. In Section 2.2 locally symmetric Bach-flat four-manifolds are shown to be either Einstein
or locally conformally flat (cf. Lemma 2.8). Hence the analysis of the Bach-flat condition is
considered separately for the different four-dimensional Lie groups through Sections 2.4–2.7.
The components of the Bach tensor give polynomials in the corresponding structure constants.
Therefore, determining the Bach-flat Lie groups equals to solve some rather complicated poly-
nomial systems. We make use of Gröbner bases theory previously introduced in Section 2.3.
The proofs of Theorems 2.1 and 2.4 are completed in Section 2.8 and in Section 2.9. Finally
in Section 2.10, as an application of the previous results, we determine the four-dimensional
homogeneous Bach-flat Ricci solitons.

2.1 Coordinate expressions

As a matter of notation, for a given orthonormal basis {e1, . . . , e4} on a Lie algebra g, we denote
by {E±i } the corresponding orthonormal basis of self-dual and anti-self-dual two-forms in Λ2

±(g)
given by:

E±1 =
1√
2

(
e1 ∧ e2 ± e3 ∧ e4

)
,

E±2 =
1√
2

(
e1 ∧ e3 ∓ e2 ∧ e4

)
,

E±3 =
1√
2

(
e1 ∧ e4 ± e2 ∧ e3

)
,

where {ei} is the dual basis of {ei}.
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Conformally Einstein homogeneous metrics in Theorem 2.1–(i)

The structure equations of gα corresponding to Theorem 2.1–(i):

[e4, e1] = e1, [e4, e2] =
1

4
e2 + αe3, [e4, e3] = −αe2 +

1

4
e3

are given in the dual basis {ek} by

de4 = 0, de1 = e1 ∧ e4,

de2 = 1
4
e2 ∧ e4 − αe3 ∧ e4, de3 = αe2 ∧ e4 + 1

4
e3 ∧ e4 .

(2.1)

Integrating the expressions above gives coordinates (x, y, z, t) on R4 where

e1 = e−tdx, e2 = e−
1
4
t(dy − αzdt), e3 = e−

1
4
t(dz + αydt), e4 = dt,

so that the metric expresses as

gα = e−2tdx2 + e−
1
2
t(dy − αzdt)2 + e−

1
2
t(dz + αydt)2 + dt2 . (2.2)

Now, a straightforward calculation shows that the conformal metric g̃α = e
3
2
tgα is Ricci-flat.

Observe that W± = 1
8

diag[1, 1,−2]. Therefore, the self-dual and anti-self-dual Weyl curva-
ture operators have a distinguished eigenvalue with one-dimensional corresponding eigenspace,
which define an almost Hermitian structure and an opposite one. The structure Equations (2.1)
show that the underlying almost complex structures (J±e1 = e4, J±e2 = ±e3) are integrable
and moreover the corresponding Kähler forms satisfy dΩ± = θ ∧ Ω± with θ = −1

4
e4. Hence

(Gα, 〈 · , · 〉, J±) is conformally Kähler and opposite-Kähler since both J± are integrable. Al-
ternatively, results in [48] show that, since g̃α is Einstein and W̃+ = W̃−, the conformal metric
gcα = (24‖W̃+‖2)

1
3 g̃α is Kähler with respect to both orientations, where ‖W̃+‖2 = 3

32
e−3t in the

coordinates (x, y, z, t) of Equation (2.2). Finally, observe that the Kähler metric gcα is locally a
product N × R2, where N is a warped product.

Conformally Einstein homogeneous metrics in Theorem 2.1–(ii)

A direct calculation shows that the Weyl tensor of (Gα, 〈 · , · 〉) corresponding to Theorem 2.1–
(ii) satisfies W+ = 0 and W− = diag[−2, 1, 1]. Hence, the distinguished eigenvalue of W−

with corresponding one-dimensional eigenspace defines a two-form E−1 on Gα. The structure
equations

de4 = 0, de1 = e1 ∧ e4 + αe2 ∧ e4,

de2 = −αe1 ∧ e4 + e2 ∧ e4, de3 = 2e3 ∧ e4 − e1 ∧ e2,
(2.3)

show that the underlying almost complex structure (J−e1 = e2, J−e3 = −e4) is integrable and
moreover dE−1 = θ ∧ E−1 with θ = e4. Hence (Gα, 〈 · , · 〉, J−) is conformally opposite-Kähler,
since J− induces an opposite orientation on Gα. Alternatively, results in [48] show that, since
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g̃α is Einstein, the conformal metric gcα = (24‖W̃−‖2)
1
3 g̃α is Kähler with respect to the opposite

orientation, where ‖W̃‖2 = 6e−12t in the coordinates (x, y, z, t) where the metric expresses as:

gα = e−2t(dx+ αydt)2 + e−2t(dy − αxdt)2

+ e−4t(dz + 1
2
(xdy − ydx)− 1

2
α(x2 + y2)dt)2 + dt2 .

(2.4)

Let V be a vector space equipped with an inner product 〈·, ·〉 and let A be an algebraic
curvature tensor on V . Fix z ∈ V . The associated Jacobi operator is defined by the linear map

JA(z) : V → V, JA(z)(x) 7→ (A(z, ·)z)x = A(z, x)z .

It is possible to restrict the domain of this operator to z⊥ by the curvature identities (1.1).
Observe that this operator is self-adjoint. Indeed:

〈JA(z)(x), y〉 = 〈A(z, x)z, y〉 = A(z, x, z, y) = 〈A(z, y)z, x〉 = 〈x,JA(z)(y)〉 .

Let z ∈ V be a unit vector and let JA(z) be the associated Jacobi operator. If {x1, . . . , xn−1} is
an orthonormal basis for z⊥, then

tr(JA(z)) =
n−1∑
i=1

εi〈JA(z)xi, xi〉 =
n−1∑
i=1

εi〈A(z, xi)z, xi〉 = ρA(z, z) .

If x ∈ z⊥ is a unit non-zero vector, then π = 〈{x, z}〉 is a non-degenerate plane of V , i.e., the
restriction of 〈·, ·〉 to π is non-degenerate. In consequence, the sectional curvature of π is given
by:

κA(π) =
〈A(z, x)z, x〉

〈x, x〉〈z, z〉 − 〈x, z〉2
=
〈JA(z)x, x〉
〈x, x〉〈z, z〉

.

In particular, if we restrict to the definite positive case, the eigenvalues of the Jacobi operator
JA(z) represent the extremal values of the sectional curvature of all planes containing z.

Let A be an algebraic curvature tensor in a vector space equipped with an inner product
(V, 〈 · , · 〉) of signature (ν, n− ν). We say that (V, 〈 · , · 〉, A) is spacelike Osserman (resp. time-
like Osserman) if the (possibly complex) eigenvalues of the associated Jacobi operator JA are
constant in the spacelike pseudo-sphere S+(V ) (resp. in the timelike pseudo-sphere S−(V )).
Assuming ν > 0 and n − ν > 0, both conditions are equivalent [59] and we will say that
(V, 〈 · , · 〉, A) is Osserman.

In a purely geometric context, we must differentiate between pointwise Osserman and global
Osserman conditions. A pseudo-Riemannian manifold (M, g) is called pointwise Osserman if
the eigenvalues of the Jacobi operators J (x) = R(x, ·)x do not depend on the unit vector x ∈
S±p (M) but they can change from point to point. If the eigenvalues of the Jacobi operators do
not vary from point to point then (M, g) is called globally Osserman. Observe that any isotropic
pseudo-Riemannian manifold is globally Osserman. Therefore, real, complex and para-complex
space forms are examples of globally Osserman manifolds.

Since the Ricci tensor of a pseudo-Riemannian manifold is obtained from the trace of the
Jacobi operators, ρ(x, x) = tr(J (x)), any pointwise Osserman manifold is necessarily Einstein
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and then it has constant sectional curvature in dimension 3. In this case, pointwise and globally
Osserman conditions are equivalent. Moreover, Osserman condition is non-trivial for dimen-
sion ≥ 4. Although the description of Osserman manifolds is still an open question, in certain
situations it is known a complete classification (see [11, 12, 40] and [59] for more information).

Remark 2.6. Let (M, g) be a four-dimensional pseudo-Riemannian globally Osserman mani-
fold. It was shown in [12] that, if the Jacobi operators are diagonalizable, then (M, g) is locally
isometric to a real, complex or para-complex space form. Note that there are many pointwise
Osserman manifolds in dimension four which do not correspond to the situation above [61].

Observe that in Theorem 2.1–(ii) the conformal metric (R4, g̃α = e3tgα) is Ricci-flat and
anti-self-dual. Hence we obtain a pointwise Osserman manifold [61]. Furthermore, for any unit
vector field X , the Jacobi operator J (X) = R(X, · )X has eigenvalues µ = 0, µ = −e−3t and
µ = 1

2
e−3t, the latter with multiplicity two. Since the non-zero eigenvalues are in a ratio −1 : 1

2

they do not correspond to the eigenvalue structure of any globally Osserman manifold.

Conformally Einstein homogeneous metrics in Theorem 2.1–(iii)

The eigenvalue structure of the self-dual and anti-self-dual Weyl curvature tensors corresponding
to Theorem 2.1–(iii) is given by:

W+
α = α(α + 1) diag[α,−(α + 1), 1] = W−

α . (2.5)

This shows that {E+
i , E

−
i }, i = 1, 2, 3, define pairs of two-forms on Gα so that E+

i ∧ E−i = 0
and E+

i ∧ E+
i = −E−i ∧ E−i for all i = 1, 2, 3. Furthermore, writing the structure equations of

the Lie algebra (gα, 〈 · , · 〉α) as

de4 = 0, de1 = e1 ∧ e4, de2 = (α + 1)2e2 ∧ e4, de3 = α2e3 ∧ e4, (2.6)

one has dE±i = θi ∧ E±i with θ1 = −(α2 + 2α + 2)e4, θ2 = −(α2 + 1)e4 and θ3 = −(2α2 +
2α + 1)e4. Therefore {E+

i , E
−
i } is a conformal symplectic pair on Gα for all i = 1, 2, 3 (see [7]

for more information about symplectic pairs). In particular the six two-forms E±i are confor-
mally symplectic. Furthermore, integrating the expressions in Equation (2.6) gives coordinates
(x, y, z, t) on R4 where

e1 = e−tdx, e2 = e−(α+1)2tdy, e3 = e−α
2tdz, e4 = dt,

so that the metric expresses as

gα = e−2tdx2 + e−2(α+1)2tdy2 + e−2α2tdz2 + dt2 . (2.7)

As a consequence, (R4, gα) has the structure of a multiply warped space of the form R ×f1
R ×f2 R ×f3 R. Finally, a straightforward calculation shows that the conformal metric g̃α =
e2(α2+α+1)tgα is Ricci-flat.

Remark 2.7. Bach-flat Kähler metrics are conformally Einstein [48]. Due to the conformal
invariance of the Bach tensor, any Bach-flat conformally Kähler manifold is also conformally
Einstein. The converse result is certainly not true. For instance, the eigenvalue structure of W±

shows that the homogeneous spaces corresponding to Theorem 2.1–(iii) cannot be Kähler with
respect to any conformal metric.
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2.2 Conformally Einstein symmetric spaces
Four-dimensional homogeneous Einstein manifolds are locally symmetric [70]. Furthermore,
any locally conformally flat homogeneous manifold is locally symmetric [99].

Lemma 2.8. A four-dimensional locally symmetric Bach-flat manifold is Einstein or locally con-
formally flat.

Proof. Let (M4, g) be locally symmetric. Then it is an Einstein manifold or it is locally a product
of the form R×N3(c), R2×N2(c) orN2

1 (c1)×N2
2 (c2), whereNk(c) is a k-dimensional manifold

of constant curvature c. In the case R×N3(c), (M, g) is locally conformally flat since N3(c) is
of constant curvature. An explicit calculation of the Bach tensor shows that R2 ×N2(c), where
N2(c) is a surface of constant curvature, is Bach-flat if and only if c = 0, thus (M, g) being flat.
Finally, the Bach tensor of N2

1 (c1)×N2
2 (c2) vanishes if and only if c2

1 − c2
2 = 0, thus leading to

locally conformal flatness (c1 = −c2) or to an Einstein manifold (c1 = c2).

The above lemma shows that four-dimensional locally symmetric Bach-flat metrics are either
Einstein or locally conformally flat. The existence of left-invariant Riemannian metrics with zero
Bach tensor which are neither conformally Einstein nor half conformally flat was established
in [1]. We will show that the examples constructed by Abbena, Garbiero and Salamon are the
only possible ones within the framework of four-dimensional homogeneous manifolds.

2.3 Gröbner bases
Gröbner bases were introduced by Bruno Buchberger around the 1960’s. Ever since, dozens of
applications have been found for Gröbner bases. Nonetheless, to the best of our knowledge, this
topic had never been applied in Riemannian geometry. This section contains a short introduction
to the theory of Gröbner bases. In the rest of the chapter, Gröbner bases will play an important
role.

2.3.1 Monomial order and ideals
The notion of order of terms in polynomials is the principal ingredient in the division algorithm
and Gaussian elimination, where the success of both algorithms depends on working systemat-
ically with the leading terms of polynomials. Furthermore, we might intuit that when we work
with arbitrary polynomials in several variables, where there is no standard order, the order we
choose is fundamental. Based on this fact, what properties should this order have?

Given a monomial xα = xα1
1 · · ·xαnn , the exponents α = (α1, . . . , αn) are elements of

Zn≥0 and this observation establishes a one-to-one correspondence between the monomials in
R[x1, . . . , xn] and Zn≥0. A monomial order > on R[x1, . . . , xn] is a relation > on Zn≥0, or equiva-
lently, a relation on the set of monomials xα where α ∈ Zn≥0, satisfying:

(i) > is a total order on Zn≥0.
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(ii) If α > β and γ ∈ Zn≥0, then α + γ > β + γ.

(iii) > is a well-order on Zn≥0.

We are specially interested in the following monomial orderings:

• Lexicographical Order: We say that α >lex β if in the vector α − β ∈ Zn, the leftmost
non-zero entry is positive.

• Graded Lexicographical Order: We say that α >grlex β if |α| > |β| or |α| = |β| and
α >lex β, where |α| =

∑
i αi.

• Graded Reverse Lexicographical Order: We say that α >grevlex β if |α| > |β| or |α| = |β|
and the rightmost non-zero entry of α− β ∈ Zn is negative.

The lexicographical order is analogous to the order of words used in dictionaries: a > b >
· · · > y > z or x1 > x2 > · · · > xn. Observe that a variable dominates any monomial involving
only smaller variables, regardless of its total degree. Hence, we could take the total degrees of
the monomials into account and order monomials of bigger degree first and, after that, one may
use the graded lexicographical order.

Let P =
∑

α aαx
α be a non-zero polynomial in R[x1, . . . , xn] and let > be a monomial

order. The multidegree of P is the maximum α ∈ Zn≥0 so that aα 6= 0, where the maximum
is taken with respect to the given monomial order. The corresponding monomial is called the
leading term LT (P) = aαx

α. A monomial ideal is a polynomial ideal that can be generated
by monomials. Therefore, a polynomial P belongs to a monomial ideal I if and only if every
term of P lies in I. Let I ⊂ R[x1, . . . , xn] be a non-zero ideal and fix a monomial order on
R[x1, . . . , xn]. We denote by LT (I) the set of leading terms of non-zero elements of I, i.e.,

LT (I) = {cxα : there exists P ∈ I \ {0} with LT (P) = cxα},

and we denote by 〈LT (I)〉 the ideal generated by the elements ofLT (I). Observe thatLT (Pi) ∈
LT (I) ⊂ 〈LT (I)〉 which implies 〈LT (P1), . . . , LT (Pk)〉 ⊂ 〈LT (I)〉. However, it is impor-
tant to emphasize that if I = 〈P1, . . . ,Pk〉, then 〈LT (I)〉 may be strictly larger than the ideal
〈LT (P1), . . . , LT (Pk)〉.

For example, consider I = 〈P1,P2〉 the ideal generated by P1 = x3 − 2xy and P2 =
x2y−2y2+x, where we fix the graded lexicographical order on monomials. Then x·P2−y·P1 =
x2, so x2 ∈ I. Therefore, x2 = LT (x2) ∈ 〈LT (I)〉 but x2 /∈ 〈LT (P1), LT (P2)〉. Hence,
〈LT (I)〉 6= 〈LT (P1), LT (P2)〉.

The next result is crucial and it is known as the Hilbert Basis Theorem:

Theorem 2.9. [66] Every ideal I ⊂ R[x1, . . . , xn] has a finite generating set.

For monomial ideals this result is called Dickson’s Lemma.
The importance of the above result is not only that every ideal has a finite basis, but also that

its proof is based on 〈LT (g1), . . . , LT (gν)〉 = 〈LT (I)〉 (see for example [45]).
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Definition 2.10. Fix a monomial order on the polynomial ring R[x1, . . . , xn]. A finite subset
G = {g1, . . . ,gν} of an ideal I is said to be a Gröbner basis (or Gröbner-Shirshov basis) with
respect to some monomial order if

〈LT (g1), . . . , LT (gν)〉 = 〈LT (I)〉 .

The Hilbert Basis Theorem guarantees that any non-zero ideal I ⊂ R[x1, . . . , xn] has a
Gröbner basis. Furthermore, any Gröbner basis for an ideal I is a basis of I. However, how
can we know that a given basis of an ideal is a Gröbner basis? Buchberger’s algorithm (among
others) provides a constructive algorithm to find one such basis. This rather simple notion allows
us to have simple algorithmic solutions to different problems.

• The remainder of the division algorithm applied to a polynomial P divided by a Gröbner
basis G of an ideal I is zero if and only if P belongs to I, a property that does not neces-
sarily hold if G is not a Gröbner basis. Therefore, this fact provides an algorithm to check
the Ideal Membership Problem.

• As another example, when the set of solutions of a polynomial system is not too large,
the calculation of a Gröbner basis with respect to the lexicographical order gives rise to
elimination theory, simplifying the problem of finding all common roots, thus generalizing
the classical Gaussian method of the linear case.

Just as a matter of curiosity, let us mention that Gröbner bases even generalize the simplex
method used in mathematical optimization. We refer the interested reader to [45] for more infor-
mation on the theory of Gröbner bases.

2.3.2 Gröbner basis in homogeneous manifolds

One of the most important applications of Gröbner bases is to eliminate variables. We pleasantly
found out that these methods can be very useful to classify homogeneous geometric structures
such as Einstein metrics, Bach-flat structures or Ricci solitons.

The components of the Bach tensor for a left-invariant metric on a Lie group give polyno-
mials on the structure constants. Hence, to obtain a full classification of Bach-flat Lie groups,
one needs to solve the corresponding polynomial system of equations. When the system under
consideration is simple, it is an elementary problem to get all common roots, but if the number of
equations and their degrees increase, it may become a quite unmanageable assignment. Gröbner
bases theory provides very powerful tools to solve large polynomial systems of equations. The
basic idea is to use elimination theory. But, how does elimination work? Consider the following
polynomial system:

x2 + y + z = 1, x+ y2 + z = 1, x+ y + z2 = 1, (2.8)

and let I = 〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉 ⊂ R[x, y, z] be the ideal. We
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compute a Gröbner basis G of I with respect to the lexicographical order and we obtain:

g1 = x+ y + z2 − 1,

g2 = y2 − y − z2 + z,

g3 = z2(2y + z2 − 1),

g4 = z2(z4 − 4z2 + 4z − 1) .

(2.9)

The equations in (2.8) and g1 = g2 = g3 = g4 = 0 given by (2.9) have the same solutions and g4

involves only z, then the possible z’s are 0, 1 and −1±
√

2. Now, substituting these values into
g2 and g3 one can determine all possible solutions for y. Finally, g1 gives the corresponding x’s.

Given I = 〈P1, . . . ,Pk〉 ⊂ R[x1, . . . , xn], the ν-th elimination ideal Iν is the ideal of
R[xν+1, . . . , xn] defined by Iν = I ∩ R[xν+1, . . . , xn]. Therefore, Iν consists of all P1 = · · · =
Pk = 0. In other words, eliminating x1, . . . , xν means finding non-zero polynomials in the ν-th
elimination ideal Iν . It is important to emphasize that different order of the variables leads to
different elimination ideals. Note that if two sets of polynomials generate the same ideal, the
corresponding zero sets must be identical.

Proposition 2.11. [45] Let I ⊂ R[x1, . . . , xn] be an ideal and let G be a Gröbner basis of I with
respect to the lexicographical order. Then, for every 0 ≤ ν ≤ n, the set Gν = G ∩ R[x1, . . . , xn]
is a Gröbner basis of the ν-th elimination ideal Iν .

The above result shows that a Gröbner basis for the lexicographical order eliminates not only
the first variable, but also the first two variables, the first three variables, and so on. There-
fore, our strategy for solving the rather large polynomial systems consists of obtaining “better”
polynomials that belong to the ideals generated by the corresponding polynomial systems.

2.4 Left-invariant metrics on Re4 n E(1, 1) and Re4 n E(2)

Let g = R n g3 be a semi-direct extension of the unimodular Lie algebra g3 = e(1, 1) or
g3 = e(2). Let 〈·, ·〉 be an inner product on g and 〈·, ·〉3 its restriction to g3. Following the work
of Milnor [82], there exists an orthonormal basis {v1,v2,v3} of g3 such that

[v2,v3] = λ1v1, [v3,v1] = λ2v2, [v1,v2] = 0, (2.10)

where λ1, λ2 ∈ R and λ1λ2 6= 0. Moreover, the associated Lie group corresponds to E(2) (resp.
E(1, 1)) if λ1λ2 > 0 (resp. λ1λ2 < 0). The algebra of derivations of g3 is given by

der(g3) =


 b a c

−λ2
λ1
a b d

0 0 0

 ; a, b, c, d ∈ R

 .

Let {v1,v2,v3,v4} be a basis of g, with {v1,v2,v3} given by Equation (2.10), and g = Rv4⊕g3.
Since Rv4 needs not to be orthogonal to g3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let ê4 = v4 −
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∑
i kivi and normalize it to get an orthonormal basis {e1, . . . , e4} of g = R⊕ g3 so that

[e2, e3] = λ1e1,

[e3, e1] = λ2e2,

[e4, e1] = 1
R
{be1 − λ2( a

λ1
+ k3)e2},

[e4, e2] = 1
R
{(a+ k3λ1)e1 + be2},

[e4, e3] = 1
R
{(c− k2λ1)e1 + (d+ k1λ2)e2}, R > 0 .

(2.11)

Lemma 2.12. The Lie group Re4 n E(1, 1) admits a non-symmetric Bach-flat left-invariant
metric if and only if it is isomorphically homothetic to a Lie group determined by the solvable
Lie algebra given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3)e2,

[e4, e1] =
√

6 + 3
√

3e1, [e4, e2] =
√

6 + 3
√

3e2 .

Moreover, the Lie group Re4 n E(2) does not admit any non-symmetric Bach-flat left-invariant
metric.

Proof. We start analyzing the Bach tensor of Re4nE(1, 1) and Re4nE(2). In order to simplify
the expressions we use the notation A = a

λ1
+ k3, C = c − k2λ1 and D = d + k1λ2. Moreover,

since the structure constants of g3 satisfy λ1λ2 6= 0, one may work with a homothetic basis
ẽk = 1

λ1
ek so that we may assume λ1 = 1. A long but straightforward calculation shows that the

components of the Bach tensor, with the structure constants in Equation (2.11), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = λ2

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 1
12R3P34, B44 = 1

24R4P44,

(2.12)

where the polynomials Pij’s correspond to:

P11 = 12(A2 +R2)2λ4
2 − 4(A2 +R2)2λ3

2 − (20b2 − C2 − 8D2)(A2 +R2)λ2
2

+ (12A4 − 4(2b2 − 3C2 −D2 − 6R2)A2 − 42bCDA− 4R2(2b2 − 3C2 −D2 − 3R2))λ2

− 20A4 + (28b2 − 40C2 + 3D2 − 40R2)A2 − 42bCDA− 20R4 + (3D2 − 40C2)R2

− 4(C2 +D2)(5C2 +D2) + b2(43C2 +D2 + 28R2),

P12 = −16b(A2 +R2)Aλ3
2 − 8CD(A2 +R2)λ2

2 − (5CDA2 − b(5C2 − 16D2)A+ 5CDR2)λ2

+ 16bA3 − 8CDA2 + b(16C2 − 5D2 + 16R2)A+ CD(21b2 − 8(C2 +D2 +R2)),

P13 = −8AD(A2 +R2)λ3
2 + (4AD(A2 +R2)− 3bCR2)λ2

2

+ (DA3 − 9bCA2 +D(12b2 +R2 − 8(C2 +D2))A− 12bCR2)λ2

+ 3b(8CA2 + 3bDA− 3b2C + 8C(C2 +D2 +R2)),
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P14 = −8D(A2 +R2)λ2
2 + (4DA2 + 3bCA+ 4DR2)λ2

+DA2 + 3bCA+D(3b2 +R2 − 8(C2 +D2)),

P22 = −20(A2 +R2)2λ4
2 + 12(A2 +R2)2λ3

2 + (28b2 + 3C2 − 40D2)(A2 +R2)λ2
2

− (4A4 + 4(2b2 − C2 − 3D2 + 2R2)A2 − 42bCDA+ 4R2(2b2 − C2 − 3D2 +R2))λ2

+ 12A4 − (20b2 − 8C2 −D2 − 24R2)A2 + 42bCDA

+ 12R4 + (8C2 +D2)R2 − 4(C2 +D2)(C2 + 5D2) + b2(C2 + 43D2 − 20R2),

P23 = −(AC − 24bD)(A2 +R2)λ2
2 − (4(AC + 3bD)R2 +A(4CA2 + 9bDA+ 9b2C))λ2

+ 8CA3 + 4C(2(C2 +D2 +R2)− 3b2)A− 3bD(3b2 +R2 − 8(C2 +D2)),

P24 = −C(A2 +R2)λ2
2 − (4CA2 − 3bDA+ 4CR2)λ2

+ 8CA2 + 3bDA− 3b2C + 8C(C2 +D2 +R2),

P33 = −4(A2 − 3R2)(A2 +R2)λ4
2 + 4(A2 − 3R2)(A2 +R2)λ3

2

− ((12b2 + C2 − 8D2)A2 + 3(4b2 + C2 − 8D2)R2)λ2
2

+ 2(2A4 + 2(6b2 − C2 −D2 − 2R2)A2 + 9bCDA+ 6R2(2b2 − C2 −D2 −R2))λ2

− 4A4 − (12b2 − 8C2 +D2 − 8R2)A2 − 18bCDA

+ 12R4 − 3(4b2 − 8C2 +D2)R2 + 3(C2 +D2)(4(C2 +D2)− 19b2),

P34 = −8A(A2 +R2)λ4
2 + 8A(A2 +R2)λ3

2 +A(C2 − 8D2)λ2
2

+ (8A3 + 4(C2 +D2 + 2R2)A+ 9bCD)λ2

− 8A3 − 9bCD −A(8C2 −D2 + 8R2),

P44 = 4(3A2 −R2)(A2 +R2)λ4
2 − 4(3A4 + 2R2A2 −R4)λ3

2

+ ((4b2 − 3C2 + 24D2)A2 + (4b2 − C2 + 8D2)R2)λ2
2

+ (4R4 − 4(2A2 + 2b2 + C2 +D2)R2 − 2A(6A3 + 4b2A+ 6(C2 +D2)A+ 9bCD))λ2

+ 12A4 + (4b2 + 24C2 − 3D2 + 8R2)A2 + 18bCDA

− 4R4 + (4b2 + 8C2 −D2)R2 + (C2 +D2)(13b2 + 12(C2 +D2)) .

Hence, Re4 nE(1, 1) or Re4 nE(2) admit a Bach-flat left-invariant metric if and only if the
structure constants in Equation (2.11) satisfy the equations {Pij = 0}.

Let I ⊂ R[A, b, λ2, C,D,R] be the ideal generated by the polynomials Pij . We compute
a Gröbner basis G of I with respect to the lexicographical order and a detailed analysis of that
basis shows that the polynomial

g0 = D6(C2 +D2)(2D2 +R2)(25D2 + 4R2)(16D2 + 5R2)

×(9D2 + 16R2)(25D2 + 24R2)(80D4 +R4 − 16D2R2)
(2.13)

belongs to G. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide, then necessarily
D = 0.
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Next, we compute a Gröbner basis G1 of the ideal generated by G ∪ {D} with respect to the
lexicographical order and we get that the polynomial

g1 = C4(9C2 + 4R2)(25C2 + 16R2)(49C2 + 24R2)λ3
2

belongs to G1. Thus, since λ2 6= 0, we get C = 0.
Now, for C = D = 0, Equation (2.12) implies that

P34 = −8(λ2 − 1)2A(A2 +R2)(λ2
2 + λ2 + 1)

and therefore we are led to the following possibilities:

(1)λ2 = 1, (2)A = 0 .

Case (1):
C = 0, D = 0, λ2 = 1. In this case, a direct calculation shows that the corresponding Lie group
given by Equation (2.11) is locally conformally flat and therefore a symmetric manifold [99].

Case (2):
C = 0, D = 0, A = 0. Excluding λ2 = 1 solved in the previous case, Equation (2.12) implies
that the Bach-flat condition is equivalent to

b2 −R2(λ2
2 + λ2 + 1) = 0, 3R2 − b2(λ2 + 4) = 0,

from where it easily follows that

b = ±R, λ2 = −1,

in which case a straightforward calculation shows that the manifold is Einstein and thus locally
symmetric [70], or otherwise

b = ±R
√

6 + 3
√

3, λ2 = −2−
√

3, or (2.14)

b = ±R
√

6− 3
√

3, λ2 = −2 +
√

3 . (2.15)

Now, considering the isometry e4 7→ −e4 one has b > 0 in both cases. Setting ē1 = (2 +√
3)e2, ē2 = (2 +

√
3)e1, ē3 = (2 +

√
3)e3, ē4 = (2 +

√
3)e4 one interchanges the brackets

given by Equations (2.15) and (2.14). Moreover since this isomorphism transforms the original
metric 〈·, ·〉 into a homothetic one 〈·, ·〉∗ = (2 +

√
3)2〈·, ·〉 and we work modulo homotheties,

we change the metric so that ēi remains an orthonormal basis. Hence we reduce this case to the
homothetically isomorphic Lie algebra given by b = R

√
6 + 3

√
3 with λ2 = −2−

√
3.

Note that λ1λ2 = λ2 < 0; hence the group is Re4 nE(1, 1) and a straightforward calculation
shows that this case is not locally symmetric. This finishes the proof.
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2.5 Left-invariant metrics on Re4 nH3

Let g = R n h3 be a semi-direct extension of the Heisenberg algebra h3. Let 〈·, ·〉 be an inner
product on g and 〈·, ·〉3 its restriction to h3. Then, there exists an orthonormal basis {v1,v2,v3}
of h3 such that (see [82])

[v3,v2] = 0, [v3,v1] = 0, [v1,v2] = λ3v3, (2.16)

where λ3 6= 0 is a real number. The algebra of all derivations of h3 is given with respect to the
basis {v1,v2,v3} by

der(h3) =


 α11 α12 0

α21 α22 0

ĥ f̂ α11 + α22

 ; αij, f̂ , ĥ ∈ R

 .

We rotate the basis elements {v1,v2} so that the matrix A = (αij) decomposes as the sum of a
diagonal matrix and a skew-symmetric matrix. Hence

der(h3) =


 a c 0

−c d 0

h f a+ d

 ; a, c, d, f, h ∈ R

 ,

and consider the Lie algebra g = Rv4 ⊕ h3 given by

[v3,v2] = 0, [v3,v1] = 0,

[v1,v2] = γv3, [v4,v1] = av1 − cv2 + hv3,

[v4,v2] = cv1 + dv2 + fv3, [v4,v3] = (a+ d)v3 .

Since Rv4 needs not to be orthogonal to h3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let ê4 = v4 −∑
i kivi and normalize it to get an orthonormal basis {e1, . . . , e4} of g = R⊕ h3 so that

[e1, e2] = γe3,

[e4, e1] = 1
R
{ae1 − ce2 + (h+ k2γ)e3},

[e4, e3] = 1
R

(a+ d)e3,

[e4, e2] = 1
R
{ce1 + de2 + (f − k1γ)e3}, R > 0 .

(2.17)

Lemma 2.13. The group Re4nH3 admits a non-symmetric Bach-flat left-invariant metric if and
only if it is isomorphically homothetic to a Lie group determined by one of the following solvable
Lie algebras:

(i) The Lie algebra given by

[e1, e2] = e3, [e4, e1] = e1 − α e2,

[e4, e2] = α e1 + e2, [e4, e3] = 2 e3 .

In this case Re4 nH3 is half conformally flat.
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(ii) The Lie algebra given by

[e1, e2] = e3, [e3, e4] =
√

5
2
√

2
e3,

[e4, e1] = 1
4

√
7− 3

√
5 e1, [e2, e4] = 1

4

√
7 + 3

√
5 e2 .

Proof. First we obtain the Bach tensor of Re4 nH3. In order to simplify the expressions we use
the notation F = f−k1γ andH = h+k2γ. Moreover, since the structure constant of h3 satisfies
γ 6= 0, one may work with a homothetic basis ẽk = 1

γ
ek so that we may assume γ = 1. A long

but straightforward calculation shows that the components of the Bach tensor, with the structure
constants in Equation (2.17), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = 1

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 0, B44 = 1
24R4P44,

(2.18)

where the polynomials Pij’s correspond to:

P11 = 24ac2d− 16a3d+ 48ad3 + 84a2c2 + 16a2d2 − 108c2d2

+ (F 2 − 20(H2 +R2))a2 − 21(F 2 −H2)c2 − 3(4F 2 + 19H2 + 4R2)d2

+ 78FHac− 4(22H2 + 7R2)ad+ 78FHcd− 4(F 2 +H2 +R2)(F 2 − 3(H2 +R2)),

P12 = −58a2cd+ 58acd2 − 18a3c+ 24ac3 − 24c3d+ 18cd3 − 12FHa2 + 21FHc2 − 12FHd2

+ (31F 2 − 2(4H2 +R2))ac− 53FHad+ (8F 2 − 31H2 + 2R2)cd+ 8FH(F 2 +H2 +R2),

P13 = 53Facd− 3Fc3 − 9Hd3 + 33Fa2c− 28Ha2d+ 3Hac2 − 48Had2 + 24Hc2d− 9Fcd2

+ 16H(F 2 +H2 +R2)a− 8F (F 2 +H2 +R2)c+ 24H(F 2 +H2 +R2)d,

P14 = −3Fa2 + 3Fc2 + 3Hac− 14Fad− 15Hcd+ 8F (F 2 +H2 +R2),

P22 = 24ac2d+ 48a3d− 16ad3 − 108a2c2 + 16a2d2 + 84c2d2

− 3(19F 2 + 4(H2 +R2))a2 + 21(F 2 −H2)c2 − (20F 2 −H2 + 20R2)d2

− 78FHac− 4(22F 2 + 7R2)ad− 78FHcd+ 4(F 2 +H2 +R2)(3F 2 −H2 + 3R2),

P23 = −53Hacd− 9Fa3 + 3Hc3 + 9Ha2c− 48Fa2d+ 24Fac2 − 28Fad2 + 3Fc2d− 33Hcd2

+ 24F (F 2 +H2 +R2)a+ 8H(F 2 +H2 +R2)c+ 16F (F 2 +H2 +R2)d,

P24 = −3Hc2 + 3Hd2 − 15Fac+ 14Had+ 3Fcd− 8H(F 2 +H2 +R2),

P33 = 24ac2d− 16a3d− 16ad3 − 12a2c2 − 48a2d2 − 12c2d2

+ (43F 2 + 28(H2 +R2))a2 − 9(F 2 +H2)c2 + (28F 2 + 43H2 + 28R2)d2

− 54FHac+ (104(F 2 +H2) + 44R2)ad+ 54FHcd− 20(F 2 +H2 +R2)2,

P44 = −72ac2d− 16a3d− 16ad3 + 36a2c2 + 16a2d2 + 36c2d2
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+ (13F 2 + 4(H2 +R2))a2 + 9(F 2 +H2)c2 + (4F 2 + 13H2 + 4R2)d2 + 54FHac

− (16(F 2 +H2)− 12R2)ad− 54FHcd+ 4(3(F 2 +H2)−R2)(F 2 +H2 +R2) .

Therefore, Re4 n H3 admits a Bach-flat left-invariant metric if and only if the structure
constants given in Equation (2.17) satisfy the equations {Pij = 0}. Let I ⊂ R[a, c, d,H, F,R]
be the ideal generated by the polynomials Pij . We compute a Gröbner basis G of I with respect to
the lexicographical order and a detailed analysis of the Gröbner basis shows that the polynomial

g0 = FR4(2F 2+R2)4(4F 2+R2)(F 2+H2+R2)2(4F 2+9R2)(9F 2+11R2)

× ((F 2 −H2)2 + F 2R2 +H2R2)(10000F 4 + 10200F 2R2 + 3087R4)

× (606208F 4 + 861952F 2R2 + 144669R4)

belongs to G. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide and R > 0, then
necessarily F = 0.

Next, we compute a Gröbner basis G ′ of the ideal generated by G ∪ {F} with respect to the
lexicographical order and we get that the polynomial

g′0 = H(H2 +R2)(4H2 +R2)(4H2 + 9R2)(9H2 + 11R2)

belongs to G ′. Thus, we get H = 0.
Now, computing a Gröbner basis G ′′ of the ideal generated by G ′ ∪ {H} with respect to the

graded reverse lexicographical order we find that the polynomial

g′′0 = (a− d)(24c2 − 8ad−R2)R4

belongs to G ′′ and therefore we are led to the following possibilities:

(1) a = d, (2) 24c2 − 8ad−R2 = 0 .

Case (1):
F = 0, H = 0, a = d. In this case, Equation (2.18) implies that the Bach-flat condition is
equivalent to

4d4 +R4 − 5d2R2 = 0,

from where we easily get

d = ±R or d = ±R
2
.

If d = ±R
2

, the manifold is half conformally flat and Einstein, thus locally symmetric and ho-
mothetic to the complex hyperbolic plane. For d = ±R, the isometry e4 7→ −e4 lets us to take
d = R. Now, a direct calculation shows that the manifold is half conformally flat and non-
symmetric, hence obtaining Assertion (i) in Lemma 2.13. Furthermore, it follows from [47] that
all the Lie groups in Lemma 2.13–(i) are isometric.
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Case (2):

F = 0, H = 0, 24c2 − 8ad−R2 = 0. Equation (2.18) implies that

P12 = −(a− d)c(18a2 + 18d2 + 68ad+R2) .

Since a = d was already solved in the previous case, we compute a Gröbner basis G2 of the
ideal generated by G ′′ ∪ {c(18a2 + 18d2 + 68ad+R2)} ⊂ R[R, a, c, d,H, F ] with respect to the
lexicographical order and we get that the polynomial

g2 = cd4(25c4 + 18c2d2 + d4)(961c4 + 1298c2d2 + 121d4)

belongs to G2. Thus, we have two possibilities:

(2.i) d = 0, (2.ii) c = 0 .

Case (2.i):

F = 0, H = 0, 24c2 − 8ad− R2 = 0, d = 0. In this case, from Equation (2.18) we get that the
Bach-flat condition is equivalent to

33a2c2 −R4 = 0, ac(3a2 + 4c2) = 0,

which does not hold since R > 0.

Case (2.ii):

F = 0, H = 0, 24c2 − 8ad − R2 = 0, c = 0. Since d = 0 was solved in the previous case, we
have a = −R2

8d
and Equation (2.18) implies that the Bach-flat condition is equivalent to

64d4 − 56d2R2 +R4 = 0 .

Thus, it follows that

d = ±1

4
R

√
7− 3

√
5 or (2.19)

d = ±1

4
R

√
7 + 3

√
5, (2.20)

and a straightforward calculation shows that none of these cases is locally symmetric. Note that
if we take e4 7→ −e4 one may assume that d > 0 in both cases. Moreover, taking ē1 = −e2,
ē2 = −e1, ē3 = −e3, ē4 = −e4, one reduces this case to an only homothetically isomorphic Lie
algebra. For d = −1

4
R
√

7 + 3
√

5 we get Assertion (ii) in Lemma 2.13, finishing the proof.
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2.6 Left-invariant metrics on Re4 nR3

Let g = R n r3 be a semi-direct extension of the abelian Lie algebra r3. Let 〈·, ·〉 be an inner
product on g and 〈·, ·〉3 its restriction to r3. The algebra of all derivations D of r3 is gl(3,R). If we
fix D ∈ gl(3,R), there exists a 〈·, ·〉3-orthonormal basis {v1,v2,v3} of r3 where D decomposes
as a sum of a diagonal matrix and a skew-symmetric matrix. Hence

der(r3) =


 a −b −c

b f −h
c h p

 ; a, b, c, f, h, p ∈ R

 .

Now, the corresponding semi-direct product g = Rn r3, is given by

[v1,v2] = 0, [v1,v3] = 0,

[v2,v3] = 0, [v4,v1] = av1 + bv2 + cv3,

[v4,v2] = −bv1 + fv2 + hv3, [v4,v3] = −cv1 − hv2 + pv3,

with respect to some basis {v1,v2,v3,v4} so that g = Rv4⊕span{v1,v2,v3}. Since Rv4 needs
not to be orthogonal to r3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let ê4 = v4−

∑
i kivi and normalize

it to get an orthonormal basis {e1, . . . , e4} of g = R⊕ r3 so that

[e4, e1] = 1
R
{ae1 + be2 + ce3}, [e4, e2] = 1

R
{−be1 + fe2 + he3},

[e4, e3] = 1
R
{−ce1 − he2 + pe3}, R > 0 .

(2.21)

Lemma 2.14. The group Re4 nR3 admits a non-symmetric Bach-flat left-invariant metric if and
only if it is isomorphically homothetic to a Lie group determined by one of the following solvable
Lie algebras:

(i) [e4, e1] = e1, [e4, e2] = 1
4
e2 + α e3, [e4, e3] = 1

4
e3 − α e2 .

(ii) [e4, e1] = e1, [e4, e2] = (α + 1)2e2, [e4, e3] = α2 e3, α > 0 .

Proof. A long but straightforward calculation shows that the components of the Bach tensor of
Re4 nR3, with the structure constants in Equation (2.21), are given by

B11 = 1
6R4P11, B12 = 1

6R4P12, B13 = 1
6R4P13, B14 = 0,

B22 = 1
6R4P22, B23 = 1

6R4P23, B24 = 0, B33 = 1
6R4P33,

B34 = 0, B44 = 1
6R4P44,

(2.22)

where the polynomials Pij’s correspond to:

P11 = a4 + 9a2b2 + 9a2c2 − (f + p)a3 + 6(f + 2p)ab2 + 6(2f + p)ac2 − (2f2 + 2p2 + 7fp)a2

− 3f(5f + 4p)b2 − 3p(4f + 5p)c2 + 18h(f − p)bc+ 3(f + p)(f2 + p2)a
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− (f − p)2(f2 + 3h2 + p2 + fp),

P12 = −12abc2 − 2a3b− 12ab3 + 12fb3 + 2(9f + 5p)a2b+ 6ha2c+ 3(f + 3p)bc2

− (18f2 + 3h2 − p2)ab+ 6h(2f − p)ac+ (2f3 + 12fh2 − 10f2p− fp2 − 9h2p)b

+ 6h(f + p)(f − 2p)c,

P13 = −12ab2c− 2a3c− 12ac3 + 12pc3 − 6ha2b+ 2(5f + 9p)a2c+ 3(3f + p)b2c

+ 6h(f − 2p)ab+ (f2 − 3h2 − 18p2)ac+ 6h(f + p)(2f − p)b
+ (2p3 − 9fh2 − f2p− 10fp2 + 12h2p)c,

P22 = −a4 − 15a2b2 − 3a2c2 − 18habc+ (3f + p)a3 + 6(f − 2p)ab2 + 6pac2

− f(2f − 3p)a2 + 3f(3f + 4p)b2 − 3p2c2 + 18hpbc

− (f3 − p3 − 12fh2 + 7f2p− 3fp2 + 12h2p)a+ (f − p)(f3 + p3 + 9fh2 − 2fp2 + 15h2p),

P23 = −12a2bc− 6(f + p)abc+ 9hab2 − 9hac2 + h(f − p)a2 − 3h(4f − p)b2

− 3h(f − 4p)c2 + 6(f + p)2bc+ 10h(f2 − p2)a− 2h(f − p)(f2 − 8pf + 6h2 + p2),

P33 = −a4 − 3a2b2 − 15a2c2 + 18habc+ (f + 3p)a3 + 6fab2 − 6(2f − p)ac2

+ p(3f − 2p)a2 − 3f2b2 + 3p(4f + 3p)c2 − 18fhbc

+ (f3 − p3 + 3f2p− 7fp2 − 12fh2 + 12h2p)a− (f − p)(f3 + p3 − 2f2p+ 15fh2 + 9h2p),

P44 = a4 + 9a2b2 + 9a2c2 − 3(f + p)a3 − 18fab2 − 18pac2 + (4f2 + 4p2 + fp)a2

+ 9f2b2 + 9p2c2 − (f + p)(3f2 + 3p2 − 4fp)a+ (f − p)2(f2 + 9h2 + p2 − fp) .

Hence, Re4 nR3 admits a Bach-flat left-invariant metric if and only if the structure constants
in Equation (2.21) satisfy the equations {Pij = 0}. We consider separately the cases a = 0 and
a 6= 0.

Case a = 0

Let I0 ⊂ R[b, f, c, h, p] be the ideal generated by the seven polynomials Pij in Equation (2.22).
We compute a Gröbner basis G0 of I0 with respect to the graded reverse lexicographical order
and get that it contains the polynomial

g0 = p8(f − p)2 .

Since the zero sets of {Pij = 0} and I0 = 〈Pij〉 = 〈G0〉 coincide, we are led to the following
cases:

(1) p = 0, (2) f = p .
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Case (1):

a = 0, p = 0. In this case, one checks using Equation (2.22) that

P44 = f 2(9b2 + f 2 + 9h2)

and therefore necessarily f = 0. Now, a direct calculation shows that, in such a case, the
manifold is Einstein and therefore symmetric [70].

Case (2):

a = 0, f = p. Equation (2.22) implies that

P44 = 9(b2 + c2)p2 .

Since p = 0 corresponds to Case (1), we have b = c = 0 and a direct calculation shows that the
manifold is locally conformally flat and thus symmetric [99].

Case a 6= 0

Taking a 6= 0 in Equation (2.21), we may work with a homothetic basis ẽk = 1
a
ek so that we may

assume, without loss of generality, a = 1.
Let I ⊂ R[p, f, b, c, h] be the ideal generated by the seven polynomials Pij in Equation (2.22).

Computing a Gröbner basis G of I with respect to the lexicographical order we find that the fol-
lowing polynomial is in the basis:

g = (f − 1)ch2(24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216)(16h2 + 9)

× (16h2+81)(80h4+95h2+32)(464h4+2175h2+1824)(2116h4+4884h2+1089)

× (49532953600h12 + 100931329200h10 + 67210421265h8 + 16039857600h6

+ 1904414976h4 + 177168384h2 + 11943936)

× (14705175456768h12−11441136851376h10+3165906982755h8

+ 580502490560h6 + 263837594880h4 + 2944180224h2 + 127844352) .

Note that only the first five factors provide real roots, so we consider the following cases:

(1) f = 1, (2) c = 0, (3)h = 0,

(4) (24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216) = 0 .

Case (1):

a = 1, f = 1. We compute a Gröbner basis G1 of the ideal generated by G ∪ {f − 1} ⊂
R[p, f, b, c, h] with respect to the lexicographical order, and we get that

g1 = (p− 1)c2 and g′1 = (p− 1)h2
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belong to G1. Thus, we have two possibilities:

(1.i) p = 1, (1.ii) c = h = 0 .

Case (1.i): a = 1, f = 1, p = 1. In this case, a direct calculation shows that the manifold is
Einstein and therefore symmetric [70].

Case (1.ii): a = 1, f = 1, c = h = 0. Equation (2.22) implies that

P44 = (p− 1)2p(p− 4) .

Note that p = 1 corresponds to the previous case and for p = 0 a direct calculation shows that
the manifold is locally conformally flat and thus symmetric [99]. Now, if p = 4, Equation (2.22)
shows that the manifold is Bach-flat and, moreover, one easily checks that it is non-symmetric.
This is a particular case of Assertion (ii) in Lemma 2.14 if b = 0 (taking α = 1 and using
the homothetic isomorphism ē1 = e1, ē2 = e3, ē3 = e2, ē4 = e4). If b 6= 0, it corresponds
to Assertion (i) just considering the homothetic isomorphism e1 = 1

4
e3, e2 = 1

4
e2, e3 = 1

4
e1,

e4 = 1
4
e4.

Case (2):

a = 1, c = 0. We consider the ideal generated by G ∪ {c} ⊂ R[p, h, f, b, c] and compute a
Gröbner basis G2 for it with respect to the lexicographical order, obtaining that the polynomial

g2 = (f − 1)b2(b4 + 90b2 + 81)(5b4 + 5b2 + 2)(25b4 + 2b2 + 1)

×(49b4 +138b2 +9)(725b4 +8613b2 +2850)(2116b4 +4884b2 +1089)

belongs to G2. Excluding f = 1 solved in Case (1), the only real root for g2 corresponds to the
factor b2, so necessarily b = 0.

Next, we compute a new Gröbner basis G ′2 for the ideal generated by G2∪{b} ⊂ R[p, f, b, c, h]
with respect to the lexicographical order and we find that the polynomials

g′2 = (f − 1)(4f − 1)h2(8h2 − 1)(8h2 + 3)(8h2 + 9),

g′′2 = (f − 1)(4f − 1)h2(320fh4+128h4+320fh2+40f 2+152h2−5f+4)

belong to G ′2. As a consequence, and since f = 1 was solved in Case (1), one easily checks that
we have two possibilities:

(2.i) f = 1
4
, (2.ii)h = 0 .

Case (2.i): a = 1, c = 0, b = 0, f = 1
4
. Computing a Gröbner basis G21 for the ideal generated

by G ′2 ∪ {4f − 1} ⊂ R[p, f, b, c, h] with respect to the lexicographical order we get that the
polynomial

g21 = (4p− 1)(4p− 9)

belongs to G21. Now, we have:
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• If p = 1
4
, Equation (2.22) implies that the manifold is Bach-flat and, moreover, one easily

checks that it is non-symmetric, corresponding to Assertion (i) in Lemma 2.14.

• If p = 9
4
, then we use again Equation (2.22) to get that the Bach-flat condition is equivalent

to h = 0 and, in such a case, a direct calculation shows that the manifold is non-symmetric.
This is a particular case of Assertion (ii) in Lemma 2.14, just taking α = 1

2
and considering

the homothetic isomorphism ē1 = e1, ē2 = e3, ē3 = e2, ē4 = e4.

Case (2.ii): a = 1, c = 0, b = 0, h = 0. We compute a Gröbner basis G22 for the ideal generated
by G ′2 ∪ {h} ⊂ R[p, f, b, c, h] with respect to the lexicographical order and we find that the
polynomial

g22 = (f − 1)((f − p)2 − 2f − 2p+ 1)(f 2 + f + 1)

belongs to G22. Excluding f = 1 solved in Case (1), it follows that necessarily

f = (1 +
√
p)2 or (2.23)

f = (−1 +
√
p)2 (2.24)

and Equation (2.22) shows that the manifold is Bach-flat in both cases. Now, we set p = α2 with
f = (1 + α)2 in the first possibility and p = β2 with f = (−1 + β)2 in the last one. Taking
α = −1 + β and considering e1 = e1, e2 = e3, e3 = e2, e4 = e4, we get that the two possibilities
are homothetic so we identify both cases. Moreover, a straightforward calculation shows that
if f = 0 or p = 0 the manifold is locally conformally flat and thus symmetric [99], while it is
non-symmetric if f · p 6= 0. This last case corresponds to Assertion (ii) in Lemma 2.14.

Case (3):

a = 1, h = 0. We consider the ideal generated by G ∪ {h} ⊂ R[p, f, b, c, h] and compute a
Gröbner basis G3 for it with respect to the lexicographical order, obtaining that the polynomial

g3 = (f − 1)cb(14c2 + 33)(5c4 − 25c2 + 32)(1421c4 + 28623c2 + 45600)

belongs to G3. Since f = 1 and c = 0 were solved in the previous cases, we get that necessarily
b = 0.

Next, we compute a Gröbner basis G ′3 for the ideal generated by G3 ∪ {b} ⊂ R[p, f, b, c, h]
with respect to the lexicographical order and the polynomial

g′3 = (f − 1)c2(f − 4)f(c4 + 90c2 + 81)(25c4 + 2c2 + 1)(49c4 + 138c2 + 9)

belongs to G ′3. As a consequence, we must consider the following two possibilities:

(3.i) f = 0, (3.ii) f = 4 .

Case (3.i): a = 1, h = 0, b = 0, f = 0. Equation (2.22) implies that the Bach-flat condition
is equivalent to p = 1 and, in that case, a direct calculation shows that the manifold is locally
conformally flat, and thus symmetric [99].
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Case (3.ii): a = 1, h = 0, b = 0, f = 4. Assuming c 6= 0, since it was solved in Case (2), a
straightforward calculation using Equation (2.22) shows that the Bach-flat condition is equivalent
to p = 1. Moreover, a direct calculation shows that, in such a case, the manifold is not symmetric.
If one takes e1 = 1

4
e2, e2 = 1

4
e1, e3 = 1

4
e3, e4 = 1

4
e4, then it corresponds to a homothetic case

of Assertion (i) in Lemma 2.14.

Case (4):

a = 1, (24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216) = 0. In this last case, it is hard
to get a good Gröbner basis if we use G as the starting point as in the previous cases. Instead,
we analyze in detail the polynomials in G (39 specifically) and we find that excluding the factors
previously solved (i.e., factors involving f − 1, c and h), just one of those polynomials depends
only on c and h and has the form

g4 = (f − 1)ch2Q(c, h)

where Q(c, h) = δc4 + S(h)c2 + T (h), with δ > 0 and where S(h), T (h) are polynomials with
only even powers of h.

In the last step, we use the polynomial Q(c, h) to compute a Gröbner basis G4 of the ideal
generated by

Q(c, h) ∪ {(24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216)} ⊂ R[c, h]

with respect to the graded reverse lexicographical order and we find that

g′4 = 9408954328h8+3490462417c4h4+8504049964c2h6+631105440c6

+48352913472h6+4976629248c4h2+38523345312c2h4+5583229368c4

+72029134968h4+37011199020c2h2+10563992784c2+38487215664h2

+5890415904

belongs to G4. Therefore we conclude that there is no solution in this case, finishing the proof.

2.7 Left-invariant metrics on ˜SL(2,R)× R and SU(2)× R
Let g = g3 ×R be a direct extension of the unimodular Lie algebra g3 = sl(2,R) or g3 = su(2).
Let 〈·, ·〉 be an inner product on g and let 〈·, ·〉3 denote its restriction to g3. Following the work
of Milnor [82], there exists an orthonormal basis {v1,v2,v3} of g3 such that

[v2,v3] = λ1v1, [v3,v1] = λ2v2, [v1,v2] = λ3v3, (2.25)

where λ1, λ2, λ3 ∈ R and λ1λ2λ3 6= 0. Moreover, the associated Lie group corresponds to SU(2)
(resp. SL(2,R)) if λ1, λ2, λ3 are all positive (resp. if any of λ1, λ2, λ3 is negative).
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Let {v1,v2,v3,v4} be a basis of g such that {v1,v2,v3} are given by Equation (2.25) and
g = g3 ⊕ Rv4. Since Rv4 needs not to be orthogonal to g3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let
ê4 = v4 −

∑
i kivi and normalize it to get an orthonormal basis {e1, . . . , e4} of g = g3 ⊕ R so

that
[e1, e2] = λ3e3, [e2, e3] = λ1e1,

[e3, e1] = λ2e2, [e1, e4] = 1
R

(k3λ2e2 − k2λ3e3),

[e2, e4] = 1
R

(k1λ3e3 − k3λ1e1), [e3, e4] = 1
R

(k2λ1e1 − k1λ2e2),

(2.26)

where R > 0.

Lemma 2.15. The Lie groups ˜SL(2,R) × R and SU(2) × R do not admit any non-symmetric
Bach-flat left-invariant metric.

Proof. Since the structure constants of g3 satisfy λ1λ2λ3 6= 0, one may work with a homothetic
basis ẽk = 1

λ1
ek so that we may assume λ1 = 1. A long but straightforward calculation shows that

the components of the Bach tensor of ˜SL(2,R)× R or SU(2)× R, with the structure constants
in Equation (2.26), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = 1

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 1
12R3P34, B44 = 1

24R4P44,

(2.27)

where the polynomials Pij’s correspond to:

P11 = −4(λ2 − λ3)2(λ2
2 + λ2

3 + λ2λ3)k4
1

+ 4(3λ4
3 − λ3

3 + 3λ3 − 5)k4
2

+ 4(3λ4
2 − λ3

2 + 3λ2 − 5)k4
3

− (((λ3 − 4)λ3 + 24)λ2
2 − (8λ2

3 + 4λ3 + 3)λ2
3 + 2(2λ2

3 + λ3 − 6)λ2λ3)k2
1k

2
2

+ (8λ4
2 − 4(λ3 − 1)λ3

2 − (λ3 − 1)(λ3 + 3)λ2
2 − 24λ2

3 + 4(λ3 + 3)λ2λ3)k2
1k

2
3

+ ((4(6λ3 − 1)λ3 + 1)λ2
2 − 2(2λ2

3 + λ3 − 6)λ2 + (λ3 + 12)λ3 − 40)k2
2k

2
3

+R2(λ2 − λ3)2(8λ2
2 + 8λ2

3 + (8λ3 + 4)λ2 + 4λ3 + 3)k2
1

−R2(λ3 − 1)((3λ3 + 1)λ2
2 + 4((3λ3 + 2)λ3 + 3)λ2 − 8(((3λ3 + 2)λ3 + 2)λ3 + 5))k2

2

−R2(λ2 − 1)((3λ2 + 1)λ2
3 + 4((3λ2 + 2)λ2 + 3)λ3 − 8(((3λ2 + 2)λ2 + 2)λ2 + 5))k2

3

+ 4R4(3λ4
2 − (3λ3 + 1)λ3

2 + (3λ3 − 1)λ3
3 + λ2

2λ3 + ((−3λ2
3 + λ3 − 1)λ3 + 3)λ2 + 3λ3 − 5),

P12 = (λ2 − λ2
3)((8λ2 + 5)λ2 + 8)k1k2k

2
3

− (8λ4
3 − 8λ3

2 − (λ3 − 4)λ2
2λ3 − (4λ3 − 1)λ2λ

2
3)k3

1k2

− (8λ4
3 − 4λ3

3 − λ2
3 + (λ3 + 4)λ2λ3 − 8λ2)k1k

3
2

−R2(8λ4
3 − 4(λ2 + 1)λ3

3 − ((λ2 − 3)λ2 + 1)λ2
3 + 10(λ2 + 1)λ2λ3 − ((8λ2 + 5)λ2 + 8)λ2)k1k2,

P13 = −(λ2
2 − λ3)((8λ3 + 5)λ3 + 8)k1k

2
2k3
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− (8λ4
2 − 8λ3

3 − (4λ2 − 1)λ2
2λ3 − (λ2 − 4)λ2λ

2
3)k3

1k3

+ (8λ3 − (8λ3
2 − 4λ2

2 + λ2λ3 − λ2 + 4λ3)λ2)k1k
3
3

−R2(8λ4
2 − 4(λ3 + 1)λ3

2 − ((λ3 − 3)λ3 + 1)λ2
2 + 10(λ3 + 1)λ2λ3 − ((8λ3 + 5)λ3 + 8)λ3)k1k3,

P14 = −8(λ2 − λ3)2(λ2
2 + λ2

3 + λ3λ2)k3
1

− (8λ4
3 − 4(λ2 + 1)λ3

3 − (λ2 − 1)2λ2
3 + 8λ2

2 − 4(λ2 + 1)λ2λ3)k1k
2
2

− (8λ4
2 − 4(λ3 + 1)λ3

2 − (λ3 − 1)2λ2
2 + 8λ2

3 − 4(λ3 + 1)λ2λ3)k1k
2
3

−R2(λ2 − λ3)2(8λ2
2 + 8λ2

3 + (8λ3 − 4)λ2 − 4λ3 − 1)k1,

P22 = −4(5λ4
2 − 3λ4

3 − 3λ3
2λ3 + λ2λ

3
3)k4

1

− 4(λ4
3 − λ3

3 − λ3 + 1)k4
2

− 4(5λ4
2 − 3λ3

2 + λ2 − 3)k4
3

+ (3((λ3 + 4)λ3 − 8)λ2
2 + (8λ2

3 − 4λ3 − 1)λ2
3 + 2((2λ3 − 1)λ3 + 2)λ2λ3)k2

1k
2
2

− (40λ4
2 − 12(λ3 + 1)λ3

2 − (λ3 − 1)2λ2
2 − 24λ2

3 + 4(λ3 + 1)λ2λ3)k2
1k

2
3

− (3(8λ2
3 − 4λ3 − 1)λ2

2 − (4λ2
3 − 2λ3 + 4)λ2 + (λ3 + 4)λ3 − 8)k2

2k
2
3

−R2(40λ4
2 − 12(2λ3 + 1)λ3

2 + (4λ3 − 1)λ2
2 − 3(8λ2

3 − 4λ3 − 1)λ2
3 − 2(−4λ2

3 + 2λ3 + 1)λ2λ3)k2
1

+R2(λ3 − 1)2(3λ2
2 + 4(λ3 + 1)λ2 + 8(λ2

3 + λ3 + 1))k2
2

+R2(λ2 − 1)((λ2 + 3)λ2
3 + 4((3λ2 + 2)λ2 + 3)λ3 − 8((λ2(5λ2 + 2) + 2)λ2 + 3))k2

3

− 4R4(5λ4
2 − 3(λ3 + 1)λ3

2 + λ2
2λ3 + (λ3 − 1)2(λ3 + 1)λ2 − 3(λ4

3 − λ3
3 − λ3 + 1)),

P23 = (λ2λ3 − 1)(8λ2
2 + 8λ2

3 + 5λ2λ3)k2
1k2k3

+ ((λ3 + (8λ2
3 − 4λ3 − 1)λ2 + 4)λ3 − 8)k3

2k3

+ (((8λ2 − 4)λ2λ3 + λ2 − λ3 + 4)λ2 − 8)k2k
3
3

+R2(8λ3
2λ3 + (5(λ3 − 2)λ3 + 1)λ2

2 + ((2λ3 − 3)(4λ3 + 1)λ3 + 4)λ2 + (λ3 + 4)λ3 − 8)k2k3,

P24 = −8(λ4
3 − λ3

3 − λ3 + 1)k3
2

− (8λ4
3 − 4(λ2 + 1)λ3

3 + 8λ2
2 − (λ2 − 1)2λ2

3 − 4(λ2 + 1)λ2λ3)k2
1k2

− ((8λ2
3 − 4λ3 − 1)λ2

2 − (4λ2
3 − 2λ3 + 4)λ2 − (λ3 + 4)λ3 + 8)k2k

2
3

+R2(λ3 − 1)2(λ2
2 + 4(λ3 + 1)λ2 − 8(λ2

3 + λ3 + 1))k2,

P33 = 4(3λ4
2 − 5λ4

3 − λ3
2λ3 + 3λ2λ

3
3)k4

1

− 4(5λ4
3 − 3λ3

3 + λ3 − 3)k4
2

− 4(λ4
2 − λ3

2 − λ2 + 1)k4
3

− (40λ4
3 − 12(λ2 + 1)λ3

3 − 24λ2
2 − (λ2 − 1)2λ2

3 + 4(λ2 + 1)λ2λ3)k2
1k

2
2

+ (8λ4
2 + 4(λ3 − 1)λ3

2 + (λ3 − 1)(3λ3 + 1)λ2
2 − 24λ2

3 + 4(3λ3 + 1)λ2λ3)k2
1k

2
3

− ((4(6λ3 − 1)λ3 + 1)λ2
2 − 2(2λ3 + 1)(3λ3 − 2)λ2 − (3λ3 + 4)λ3 − 8)k2

2k
2
3

+R2(24λ4
2 − 40λ4

3 − 4(2λ3 + 3)λ3
2 + 12λ3

3 + (4λ3 − 3)λ2
2 + λ2

3 + 2(2(6λ3 − 1)λ3 + 1)λ2λ3)k2
1

+R2(λ3 − 1)((λ3 + 3)λ2
2 + 4((3λ3 + 2)λ3 + 3)λ2 − 8(((5λ3 + 2)λ3 + 2)λ3 + 3))k2

2

+R2(λ2 − 1)2(8λ2
2 + 4(λ3 + 2)λ2 + (3λ3 + 4)λ3 + 8)k2

3
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− 4R4(5λ4
3 − 3(λ2 + 1)λ3

3 + λ2λ
2
3 + (λ2 − 1)2(λ2 + 1)λ3 − 3(λ2 − 1)2(λ2

2 + λ2 + 1)),

P34 = −8(λ4
2 − λ3

2 − λ2 + 1)k3
3

− (8λ4
2 − 4(λ3 + 1)λ3

2 − (λ3 − 1)2λ2
2 + 8λ2

3 − 4(λ3 + 1)λ2λ3)k2
1k3

− ((8λ2
3 − 4λ3 − 1)λ2

2 − (4λ2
3 − 2λ3 + 4)λ2 − (λ3 + 4)λ3 + 8)k2

2k3

−R2(λ2 − 1)2(8λ2
2 − 4(λ3 − 2)λ2 − (λ3 + 4)λ3 + 8)k3,

P44 = 12(λ2 − λ3)2(λ2
2 + λ2

3 + λ3λ2)k4
1

+ 12(λ3 − 1)2(λ2
3 + λ3 + 1)k4

2

+ 12(λ2 − 1)2(λ2
2 + λ2 + 1)k4

3

+ 3(8λ4
3 − 4(λ2 + 1)λ3

3 + 8λ2
2 − (λ2 − 1)2λ2

3 − 4(λ2 + 1)λ2λ3)k2
1k

2
2

+ 3(8λ4
2 − 4(λ3 + 1)λ3

2 − (λ3 − 1)2λ2
2 + 8λ2

3 − 4(λ3 + 1)λ2λ3)k2
1k

2
3

+ 3((8λ2
3 − 4λ3 − 1)λ2

2 − 2(2λ2
3 − λ3 + 2)λ2 − (λ3 + 4)λ3 + 8)k2

2k
2
3

+R2(λ2 − λ3)2(8λ2
2 + 8λ2

3 + (8λ3 − 4)λ2 − 4λ3 − 1)k2
1

−R2(λ3 − 1)2(λ2
2 + 4(λ3 + 1)λ2 − 8(λ2

3 + λ3 + 1))k2
2

+R2(λ2 − 1)2(8λ2
2 − 4(λ3 − 2)λ2 − (λ3 + 4)λ3 + 8)k2

3

− 4R4(λ4
2 − (λ3 + 1)λ3

2 + λ2
2λ3 − (λ3 − 1)2(λ3 + 1)λ2 + (λ3 − 1)2(λ2

3 + λ3 + 1)) .

Therefore, ˜SL(2,R)× R or SU(2)× R admit a Bach-flat left-invariant metric if and only if
the structure constants in Equation (2.26) satisfy the equations {Pij = 0}.

Let I ⊂ R[λ2, λ3, k1, k2, k3, R] be the ideal generated by the polynomials Pij . We compute a
Gröbner basis G of I with respect to the graded reverse lexicographical order. A detailed analysis
of the Gröbner basis shows that the polynomial

g0 = (λ2 − λ3)k1k
2
2k

2
3(k2

2 + k2
3 +R2)(k2

1 + k2
2 + k2

3 +R2) (2.28)

belongs to the basis. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide, we are led
to the following cases:

(1)λ2 = λ3, (2) k1 = 0, (3) k2 = 0, (4) k3 = 0 .

Case (1):

λ2 = λ3. A direct calculation using Equation (2.27) implies that

P14 = −3(λ3 − 1)2k1(k2
2 + k2

3)λ2
3

and therefore we have the following possibilities:

(1.i)λ3 = 1, (1.ii) k1 = 0, (1.iii) k2 = k3 = 0 .
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Case (1.i):

λ2 = λ3, λ3 = 1. In this case we have λ1 = λ2 = λ3 = 1 and a direct calculation shows
that the corresponding Lie group given by Equation (2.26) is locally conformally flat, and thus a
symmetric manifold [99].

Case (1.ii):

λ2 = λ3, k1 = 0. Computing a Gröbner basis of the ideal generated by G ∪ {λ2 − λ3, k1} with
respect to the graded reverse lexicographical order, we find that the polynomial

g12 = (λ3 − 1)(k2
2 + k2

3 +R2)3R2

belongs to the ideal, leading to the solution λ3 = 1 in Case (1.i).

Case (1.iii):

λ2 = λ3, k2 = k3 = 0. A direct calculation using Equation (2.27) shows that

P44 = −4(λ3 − 1)2R4

and thus λ3 = 1, which corresponds to Case (1.i).

Case (2):

k1 = 0. Computing a Gröbner basis G2 of the ideal generated by G ∪ {k1} with respect to the
graded reverse lexicographical order, one has that the polynomial

g2 = k2k3(λ2 − λ3)(k2
3 + 2R2)(k2

2 + k2
3 +R2)2

belongs to the basis. Since λ2 = λ3 was solved in Case (1), we have the following possibilities:

(2.i) k2 = 0, (2.ii) k3 = 0 .

Case (2.i):

k1 = 0, k2 = 0. We compute a Gröbner basis G21 of the ideal generated by G2∪{k2} with respect
to the lexicographical order and we obtain that the polynomial (λ3−1)2λ4

3R
6 belongs to the basis.

Since λ3 6= 0 the only possible solution is λ3 = 1. Now, computing a new Gröbner basis G ′21 of
the ideal generated by G21∪{λ3−1} with respect to the graded reverse lexicographical order we
find that the polynomial (λ2−1)λ2

2R
4 belongs to the basis. Thus we get the solution λ2 = λ3 = 1

which corresponds to Case (1.i).
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Case (2.ii):

k1 = 0, k3 = 0. Considering the ideal G2 ∪ {k3} and computing a Gröbner basis with respect to
the lexicographical order, we find that the polynomial k2(λ3−1)2(k2

2 +R2)3 belongs to the basis.
Since k2 = 0 was treated in the previous case, we have λ3 = 1, which together with k1 = k3 = 0
let us to get P44 = −4(λ2 − 1)2λ2

2R
4 from Equation (2.27). Hence, necessarily λ2 = λ3 = 1

and we are again in Case (1.i).

Case (3):
k2 = 0. Computing a Gröbner basis G3 of the ideal generated by G ∪ {k2} with respect to the
graded reverse lexicographical order, we find that the polynomial

g3 = (λ2 − 1)(λ3 − 1)k3(k2
3 +R2)2(k2

1 + k2
3 +R2)R2

belongs to the basis. Therefore we consider the following possibilities:

(3.i)λ2 = 1, (3.ii)λ3 = 1, (3.iii) k3 = 0 .

Case (3.i):

k2 = 0, λ2 = 1. Adding the polynomial λ2−1 to G3 and computing a Gröbner basis with respect
to the lexicographical order, we find that the polynomial (λ3− 1)k2

1(3k2
3 +R2)R2 belongs to the

basis. Therefore, we are led to the previously considered Case (1) or Case (2).

Case (3.ii):

k2 = 0, λ3 = 1. Adding the polynomial λ3 − 1 to G3 and computing a Gröbner basis with
respect to the lexicographical order, we find that the polynomial (λ2 − 1)k1R

4 belongs to the
basis. Therefore, we are led to the previously considered Case (1) or Case (2).

Case (3.iii):

k2 = 0, k3 = 0. Adding the polynomial k3 to G3 and computing a Gröbner basis with respect to
the lexicographical order, we find in this case that the polynomial (λ3 − 1)2λ2

3R
6 belongs to the

basis. This leads to Case (3.ii).

Case (4):
k3 = 0. Computing a Gröbner basis G4 of the ideal generated by G ∪ {k3} with respect to the
graded reverse lexicographical order, we find that the polynomial

g4 = k1k2(λ3 − 1)(k2
2 +R2)2(k2

1 + k2
2 +R2)(k2

1 + k2
2 + 4R2)R2

belongs to the basis. Since the cases k1 = 0 and k2 = 0 were already considered, one necessarily
has λ3 = 1. Using Equation (2.27), since k3 = 0 and λ3 = 1 we get P24 = −3k2

1k2(λ2 − 1)2.
Therefore, λ2 = 1 = λ3 and this leads again to Case (1), finishing the proof.
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2.8 Conformally Einstein four-dimensional Lie groups
The purpose of this section is to complete the proof of Theorem 2.1 based on the analysis in
sections 2.4–2.7.

Proof of Assertion (i) in Theorem 2.1. Consider the different Lie groups given by Lemma 2.14.
Let 〈 · , · 〉 be the left-invariant metric determined by Lemma 2.14–(i). Considering the homo-
thetic metric 〈 · , · 〉∗ = 27

8
〈 · , · 〉, we obtain that the Ricci operator of 〈 · , · 〉∗ takes the form

Ric = −1
9

diag[4, 1, 1, 3] in the basis {e1, . . . , e4}. Moreover, the self-dual and anti-self-dual
Weyl curvature operators become W± = 1

27
diag[1, 1,−2] in the induced basis of self-dual and

anti-self-dual two-forms. The expressions of W± show that the Weyl curvature operator has
maximal rank. Hence, the necessary condition in Theorem 1.14–(ii) to be conformally Einstein
is also sufficient. Let T ∈ g be an arbitrary vector and set T =

∑
k Tkek. A straightforward

calculation shows that (div4W )(ei, ej, ek)−W (ei, ej, ek,T) = 0 if and only if T = −2
9
e4. This

shows that left-invariant metrics given by Lemma 2.14–(i) are conformally Einstein.
Now, denoting byWij the Weyl endomorphism given byW (ei, ej), the non-zero components

of the Weyl tensor of type (1,3) are given by:

W12 =


0 1

8
0 0

−1
8

0 0 0

0 0 0 0

0 0 0 0

 , W13 =


0 0 1

8
0

0 0 0 0

−1
8

0 0 0

0 0 0 0

 ,

W14 =


0 0 0 −1

4

0 0 0 0

0 0 0 0
1
4

0 0 0

 , W23 =


0 0 0 0

0 0 −1
4

0

0 1
4

0 0

0 0 0 0

 ,

W24 =


0 0 0 0

0 0 0 1
8

0 0 0 0

0 −1
8

0 0

 , W34 =


0 0 0 0

0 0 0 0

0 0 0 1
8

0 0 −1
8

0

 .

Since the Weyl tensor of type (1,3) does not depend on α, then it now follows from the work of
Hall [63] that all the left-invariant metrics in Lemma 2.14–(i) are homothetic (but not necessarily
isomorphic). This completes the proof of Assertion (i) in Theorem 2.1.

Proof of Assertion (ii) in Theorem 2.1. Let (Gα, 〈 · , · 〉) be a half conformally flat Lie group given
by Lemma 2.13–(i) (see also Theorem 1.30). Following [47], let {ek} denote the dual basis of
{ek} so that the structure equations are given by

de4 = 0, de1 = e1 ∧ e4 + αe2 ∧ e4,

de2 = −αe1 ∧ e4 + e2 ∧ e4, de3 = 2e3 ∧ e4 − e1 ∧ e2 .
(2.29)
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Integrating the expressions above gives coordinates (x, y, z, t) on R4 where (see [47])

e1 = e−t(dx+ αydt), e2 = e−t(dy − αxdt),

e3 = −e−2t
(
dz + 1

2
(xdy − ydx)− 1

2
α(x2 + y2)dt

)
, e4 = dt,

so that the metric expresses as

gα = e−2t(dx+ αydt)2 + e−2t(dy − αxdt)2

+ e−4t(dz + 1
2
(xdy − ydx)− 1

2
α(x2 + y2)dt)2 + dt2 .

(2.30)

Now, a straightforward calculation shows that the conformal metric g̃α = e3tgα is Ricci-flat, and
thus (Gα, 〈 · , · 〉) is conformally Einstein. This proves Assertion (ii) in Theorem 2.1.

Proof of Assertion (iii) in Theorem 2.1. Let (gα, 〈 · , · 〉α) be a Lie algebra given by Lemma 2.14–
(ii), and set

[e4, e1] = e1, [e4, e2] = (α + 1)2e2, [e4, e3] = α2e3, α > 0,

where {e1, . . . , e4} is an orthonormal basis.
Considering the homothetic metric 〈 · , · 〉∗α = 6(α2 + α + 1)2〈 · , · 〉α, the Ricci operator of

〈 · , · 〉∗ and the self-dual and anti-self-dual Weyl curvature operators take the forms

Ricα = − 1
3(α2+α+1)

diag[1, (α + 1)2, α2, α2 + α + 1],

W+
α = α(α+1)

6(α2+α+1)2
diag[α,−(α + 1), 1] = W−

α ,
(2.31)

when expressed in the 〈 · , · 〉∗α-orthogonal basis {e1, . . . , e4} and the induced basis of two-forms.
Therefore W±

α has three-distinct eigenvalues unless α = 1.
The necessary condition in Theorem 1.14–(ii) to be conformally Einstein is also sufficient in

this case since by Equation (2.31) the Weyl tensor has maximal rank. Let T ∈ gα be an arbitrary
vector and set T =

∑
k Tkek. A straightforward calculation shows that (div4W )(ei, ej, ek) −

W (ei, ej, ek,T) = 0 if and only if T = − 1
6(α2+α+1)

e4. This shows that left-invariant metrics
given by Lemma 2.14–(ii) are conformally Einstein.

In the special case α = 1, one has that the Ricci is given by Ric = −1
9

diag[1, 4, 1, 3],
W+ = W− = 1

27
diag[1,−2, 1] and considering a new basis ē1 = 1

4
e2, ē2 = 1

4
e1, ē3 = 1

4
e3,

ē4 = 1
4
e4, the non-zero components of the Weyl tensor of type (1,3) are given by:

W12 =


0 1

8
0 0

−1
8

0 0 0

0 0 0 0

0 0 0 0

 , W13 =


0 0 1

8
0

0 0 0 0

−1
8

0 0 0

0 0 0 0

 ,

W14 =


0 0 0 −1

4

0 0 0 0

0 0 0 0
1
4

0 0 0

 , W23 =


0 0 0 0

0 0 −1
4

0

0 1
4

0 0

0 0 0 0

 ,
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W24 =


0 0 0 0

0 0 0 1
8

0 0 0 0

0 −1
8

0 0

 , W34 =


0 0 0 0

0 0 0 0

0 0 0 1
8

0 0 −1
8

0

 .

Now, it follows from the work of Hall [63] that the left-invariant metric for α = 1 is homothetic
to left-invariant metrics in Lemma 2.14–(i). Hence we assume α 6= 1.

Furthermore, replacing α by α−1 in Equation (2.31) one has that e1 7→ e3 defines an orienta-
tion reversing homothety between the left-invariant metrics 〈 · , · 〉α and 〈 · , · 〉α−1 . We therefore
may assume α > 1. Considering the homothetic metric 〈 · , · 〉∗α, a straightforward calcula-
tion shows that τα = −1 and ‖ρα‖2 = 1

3
. Moreover, the norm of the Weyl tensor satisfies

‖Wα‖2 = 4α2(α+1)2

9(α2+α+1)3
. Hence two metrics 〈 · , · 〉α and 〈 · , · 〉β with α, β ∈ (1,+∞) are homoth-

etic if and only if α2(α + 1)2(β2 + β + 1)3 = β2(β + 1)2(α2 + α + 1)3, and thus α = β.

2.9 Strictly Bach-flat four-dimensional Lie groups
The purpose of this section is to complete the proof of Theorem 2.4 based on the analysis in
sections 2.4–2.7.

Proof of Theorem 2.4. Consider the left-invariant metric on Re4nE(1, 1) given in Lemma 2.12.
The Lie brackets are given, with respect to an orthonormal basis {e1, . . . , e4}, by

[e1, e3] = (2 +
√

3)e2, [e2, e3] = e1,

[e4, e1] =
√

6 + 3
√

3e1, [e4, e2] =
√

6 + 3
√

3e2 .

Now, an explicit calculation shows that the Ricci operator, in the basis {e1, . . . , e4}, takes the
form Ric = −(2 +

√
3) diag[6 +

√
3, 6−

√
3, 3, 6].

Let {E±i } be the corresponding orthonormal basis of self-dual and anti-self-dual two-forms:
E±1 = 1√

2
(e1 ∧ e2 ± e3 ∧ e4), E±2 = 1√

2
(e1 ∧ e3 ∓ e2 ∧ e4), and E±3 = 1√

2
(e1 ∧ e4 ± e2 ∧ e3).

Then, the self-dual and anti-self-dual Weyl curvature operators are given by

W+ = 2+
√

3
2

diag[2,−1− 3
√

2−
√

3,−1 + 3
√

2 +
√

3],

W− = 2+
√

3
2

diag[2,−1 + 3
√

2−
√

3,−1− 3
√

2 +
√

3] .

Finally, observe that the metric in Lemma 2.12 is not conformally Einstein. Indeed, consid-
ering the corresponding left-invariant metric 〈·, ·〉, a straightforward calculation shows that, for
any vector T ∈ g, the necessary condition in Theorem 1.14–(ii) gives

(div4W )(e1, e2, e3)−W (e1, e2, e3,T) =
3

2
(5 + 3

√
3) 6= 0,

and thus (G, 〈 · , · 〉) is strictly Bach-flat.
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Consider the left-invariant metrics on Re4 n H3 at Lemma 2.13–(ii). The Lie brackets are
given, with respect to an orthonormal basis {e1, . . . , e4}, by

[e1, e2] = e3, [e3, e4] =
√

5
2
√

2
e3,

[e4, e1] = 1
4

√
7− 3

√
5e1, [e2, e4] = 1

4

√
7 + 3

√
5e2 .

Now, a explicit calculation shows that the Ricci operator, in the basis {e1, . . . , e4}, takes the
form Ric = −3

8
diag[3 −

√
5, 3 +

√
5, 2, 4], and the self-dual and anti-self-dual Weyl curvature

operators are given by

W+ = −1
8

diag[2 +
√

10,−1−
√

7 + 3
√

5,−1 +
√

7− 3
√

5],

W− = −1
8

diag[2−
√

10,−1 +
√

7 + 3
√

5,−1−
√

7− 3
√

5] .

In order to show that the left-invariant metrics in Lemma 2.13–(ii) are strictly Bach-flat, we
consider the necessary condition in Theorem 1.14–(ii) to be conformally Einstein. Let T ∈ g be
an arbitrary vector and set T =

∑
k Tkek. Then one has

(div4W )(e1, e2, e3)−W (e1, e2, e3,T) = 1
16

(3 + 2
√

10T4),

(div4W )(e1, e4, e1)−W (e1, e4, e1,T) = − 1
32

(3
√

3−
√

5 + 4T4),

which are not compatible and thus the Lie group is strictly Bach-flat.

2.10 Bach-flat homogeneous Ricci solitons

Recall from Section 1.8 that Ricci solitons are self-similar solutions of the Ricci flow ∂
∂t
g(t) =

−2ρg(t), i.e., they are fixed points of the flow up to diffeomorphisms and rescaling. On a Lie
group one may consider a stronger condition and search for fixed points of the flow up to au-
tomorphisms of the Lie group instead of diffeomorphisms. This observation led Lauret [76]
to introduce algebraic Ricci solitons as follows. Let G be a Lie group with Lie algebra g. A
left-invariant metric 〈 · , · 〉 on G is called an algebraic Ricci soliton if

D = Ric−λ Id (2.32)

is a derivation of the Lie algebra, i.e., D[X, Y ] = [DX, Y ] + [X,DY ] for all X, Y ∈ g, where
Ric denotes the Ricci operator 〈Ric(X), Y 〉 = ρ(X, Y ) and λ ∈ R. Let D be a derivation
given by Equation (2.32) and let ϕt denote the one-parameter family of automorphisms deter-
mined by dϕt|e = exp t

2
D. Then the vector field X given by X(p) = d

dt
ϕt(p)|t=0 satisfies

Equation (1.24), thus defining a Ricci soliton on G. It is important to recognize that both Equa-
tions (1.24) and (2.32) are invariant by homotheties. Hence, aimed to characterize Bach-flat
homogeneous Ricci solitons we shall work modulo homotheties.

Let ∆Xu = ∆u− g(X,∇u) be the X-Laplacian on a Ricci soliton structure (M, g,X) (see
for example [37]). Then 1

2
∆Xτ = λτ −‖Ric ‖2, which shows that a steady Ricci soliton (λ = 0)
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with constant scalar curvature is Ricci-flat, and hence flat in the homogeneous setting (see [3]
and [98] for an extension to the locally homogeneous setting). Furthermore, four-dimensional
homogeneous shrinking Ricci solitons have bounded curvature and thus they are gradient [84].
Hence, (M, g) is rigid, i.e., it splits as a product N × Rk where N is Einstein and the potential
function is given by the projection into the Euclidean factor [93]. Every homogeneous expanding
Ricci soliton is necessarily non-compact, and all known non-gradient examples are algebraic
Ricci solitons on manifolds isometric to solvable Lie groups with left-invariant metrics [67].

The following result describes all homogeneous Bach-flat Ricci solitons.

Theorem 2.16. Let (M, g) be a four-dimensional complete and simply connected Bach-flat Rie-
mannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally conformally flat gradient
Ricci soliton N3(c) × R, where N3(c) is a space form, or homothetic to one of the algebraic
Ricci solitons determined by the following solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .

(ii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Proof. Let (M, g) be a homogeneous Ricci soliton, i.e., LXg + ρ = λg. If λ = 0, then (M, g) is
flat. Moreover, if λ > 0, thenX is the gradient of a potential function and one has Hesf +ρ = λg.
Homogeneity now means that either f is constant or otherwise∇f is a parallel vector field [93].
Hence (M, g) is Einstein or it splits as a productN×Rk whereN is Einstein. Since dim(N) ≤ 3,
it is of constant sectional curvature and thusN×Rk is locally symmetric. Now Lemma 2.8 shows
that (M, g) is Bach-flat if and only if it is either Einstein or M = N3(c)× R. Next we consider
the expanding case (λ < 0).

First of all observe that all the homogeneous Bach-flat metrics in Theorem 2.1 and Theo-
rem 2.4 are realized on solvable Lie groups. It was shown by Jablonski [68] that if a solvman-
ifold is a Ricci soliton, then it is isometric to a solvsoliton. Hence in what follows we examine
the existence of solutions to Equation (2.32) within the Lie algebras in Theorem 2.1 and Theo-
rem 2.4.

A straightforward calculation shows that half conformally flat Lie groups in Theorem 2.1–(ii)
are not algebraic Ricci solitons. Indeed, if D = Ric−λ Id is a derivation then λ should satisfy
the equations λ+ 6 = 0 and λ+ 3

2
= 0 which are incompatible.

Let gα be a Lie algebra as in Theorem 2.1–(i). Then a straightforward calculation shows
that D = Ric +9

8
Id is a derivation and thus it defines an algebraic Ricci soliton. Analogously,

Lie algebras gα in Theorem 2.1–(iii) are algebraic Ricci solitons, just considering the derivation
D = Ric +2(α2 + α + 1)2 Id.
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The Lie algebra corresponding to Theorem 2.4–(i) is not an algebraic Ricci soliton since λ
should satisfy the incompatible equations λ−

√
3 = 0 and λ + 12 + 7

√
3 = 0. On the contrary

the Lie algebra g = Re4 n h3 given at Theorem 2.4–(ii) is an algebraic Ricci soliton, with
D = Ric +3

2
Id.





Chapter 3
Conformally Einstein non-reductive

homogeneous manifolds

The purpose of this chapter is to analyze the conformally Einstein equation for a class of strictly
pseudo-Riemannian four-dimensional homogeneous spaces, namely the non-reductive ones. We
determine explicitly which non-reductive homogeneous four-manifolds are conformally Einstein
and give all the possible conformally Einstein metrics in each case. It is worth remarking that
all Einstein metrics inside each conformal class are Ricci-flat and, moreover, they are not unique
depending on the cases, allowing the existence of two-parameter and three-parameter families of
Ricci-flat conformal metrics in some cases.

It is important to emphasize that although any locally conformally Einstein metric is Bach-
flat, there are examples of strictly Bach-flat manifolds, i.e., which are neither half conformally
flat nor locally conformally Einstein (see for example [1, 33, 78] and the references therein). In
this chapter we report on work investigated in [32]. Now, our main result can be stated as follows.

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive homoge-
neous space. Then (M, g) is Einstein, locally conformally flat, or locally isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.

(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

89
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(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary constants
with ab 6= 0 and b 6= −q, or

(R4, g−) with metric given by

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which is unique
(up to an homothety) only in Case (i). Otherwise the space of conformally Ricci-flat metrics is
either two or three-dimensional.

This chapter is organized as follows. The classification of the non-reductive four-dimensional
homogeneous spaces given in [54] and the local form of the metrics corresponding to the differ-
ent classes obtained in [25] are briefly reviewed in Section 3.1. The classification of all Bach-flat
non-reductive four-dimensional homogeneous spaces is given in Theorem 3.9. The conformally
Einstein equation is treated in Section 3.3 where Theorem 3.1 is stated, classifying the confor-
mally Einstein non-reductive four-dimensional homogeneous spaces. All the curvature calcula-
tions are carried out in Section 3.2, while the proof of Theorem 3.1 is given in Section 3.3.

3.1 Classification of four-dimensional non-reductive homoge-
neous manifolds

We recall that a pseudo-Riemannian manifold is homogeneous if there is a group of isometries
which acts transitively on M . Let G be such a group of isometries and let H denote the isotropy
group at some fixed point. Then (M, g) can be identified with the quotient space (G/H, g̃),
where g̃ is an invariant metric on G. A homogeneous space G/H is said to be reductive if the
associated Lie algebra admits a decomposition of the form g = h ⊕ m where m is an Ad(H)-
invariant complement of h. While every Riemannian homogeneous space is reductive, there are
pseudo-Riemannian homogeneous spaces without any reductive decomposition. The geometry
of reductive pseudo-Riemannian manifolds presents some similarities with the Riemannian case
(see for example [57]), but little is known about the non-reductive case. The geometry of non-
reductive homogeneous spaces is therefore an important aspect towards a good understanding of
pseudo-Riemannian homogeneous manifolds.

Recall that any homogeneous pseudo-Riemannian manifold is reductive in dimension two
and three. So the first non-trivial examples appear in dimension four. Both Lorentzian and
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neutral signature examples may occur. In dimension four, a complete classification of non-
reductive homogeneous spaces was obtained in [54] (see Section 3.1.1). Later on a coordinate
description was given in [25] which we recall in order to state our results.

3.1.1 Classification of Fels and Renner
We consider M = G/H and denote by (g, h) the pair of Lie algebras corresponding to G and
H , respectively. The Lie algebras in dimension ≤ 4 were classified in [91]. Following the same
notation we introduce the relevant Lie algebras for our purpose.

• A1
4,9 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e3 .

• A5,30 is the solvable Lie algebra determined by:

[e2, e4] = e1, [e3, e4] = e2, [e1, e5] = (α + 1)e1,

[e2, e5] = αe2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

with α ∈ R.

• A5,36 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2,

[e2, e5] = −e2, [e3, e5] = e3 .

• A5,37 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2,

[e3, e4] = e3, [e2, e5] = −e3, [e3, e5] = e2 .

Now, we provide a classification when the signature is Lorentzian.

Theorem 3.2. [54] Let (M = G/H, g) be a four-dimensional homogeneous Lorentzian mani-
fold, where H is connected. If M is non-reductive then the pair (g, h) is isomorphic to one of the
following:

(A.1) The Lie algebra g is the 5-dimensional Lie algebra sl(2,R) ⊕ s(2), where s(2) is the 2-
dimensional solvable Lie algebra. There is a basis {e1, . . . , e5} such that g is determined
by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4 .

The subalgebras are given by h = span{h1 = e3 + e4} and m = span{u1 = e1, u2 =
e2, u3 = e5, u4 = e3− e4}. With respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4}, we
have the description of the left-invariant metric:

g = a(θ1 ◦ θ1 − θ1 ◦ θ3 + 2 θ2 ◦ θ4) + b θ2 ◦ θ2 + 2c θ2 ◦ θ3 + q θ3 ◦ θ3, (3.1)

where a(a− 4q) 6= 0.
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(A.2) The Lie algebra g is the 1-parameter family of 5-dimensional solvable Lie algebras A5,30.
There is a basis {e1, . . . , e5} such that g is determined by:

[e1, e5] = (α + 1)e1, [e2, e4] = e1, [e2, e5] = αe2,

[e3, e4] = e2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

where α ∈ R. The subalgebras are given by h = span{h1 = e4} and m = span{u1 =
e1, u2 = e2, u3 = e3, u4 = e5}. With respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4},
we have the description of the left-invariant metric:

g = a(−2 θ1 ◦ θ3 + θ2 ◦ θ2) + b θ3 ◦ θ3 + 2c θ3 ◦ θ4 + q θ4 ◦ θ4, (3.2)

where aq 6= 0.

(A.3) The Lie algebra g is one of the 5-dimensional Lie algebras A5,37, A5,36. There is a basis
{e1, . . . , e5} such that g is determined by:

[e1, e4] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −εe3, [e3, e4] = e3, [e3, e5] = e2,

with ε = 1 for A5,37 and ε = −1 for A5,36. The subalgebras are given by h = span{h1 =
e3} and m = span{u1 = e1, u2 = e2, u3 = e4, u4 = e5}. With respect to the basis
{θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the left-invariant metric:

g = a(2 θ1 ◦ θ4 + θ2 ◦ θ2) + b θ3 ◦ θ3 + 2c θ3 ◦ θ4 + q θ4 ◦ θ4, (3.3)

where ab 6= 0.

(A.4) The Lie algebra g is the 6-dimensional Lie algebra of Schrödinger sl(2,R) n n(3), where
n(3) is the 3-dimensional Lie algebra of Heisenberg. There is a basis {e1, . . . , e6} such
that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5, [e4, e5] = e6 .

The subalgebras are given by h = span{h1 = e3 + e6, h2 = e5} and m = span{u1 =
e1, u2 = e2, u3 = e3 − e6, u4 = e4}. With respect to the basis {θ1, . . . , θ4}, dual to
{u1, . . . , u4}, we have the description of the left-invariant metric:

g = a(θ1 ◦ θ1 + 2θ2 ◦ θ3 +
1

2
θ4 ◦ θ4) + b θ2 ◦ θ2, (3.4)

where a 6= 0.

(A.5) The Lie algebra g is the 7-dimensional Lie algebra sl(2,R) n A1
4,9. There is a basis

{e1, . . . , e7} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −e5, [e1, e6] = e6,

[e2, e3] = e1, [e2, e5] = e6, [e3, e6] = e5, [e4, e7] = 2e4,

[e5, e6] = e4, [e5, e7] = e5, [e6, e7] = e6 .
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The subalgebras are given by h = span{h1 = e1 + e7, h2 = e3 − e4, h3 = e5} and
m = span{u1 = e1 − e7, u2 = e2, u3 = e3 + e4, u4 = e6}. With respect to the basis
{θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the left-invariant metric:

g = a(θ1 ◦ θ1 +
1

2
θ2 ◦ θ3 +

1

8
θ4 ◦ θ4), (3.5)

where a 6= 0.

The following theorem gives a list when the signature of the manifold is (2, 2).

Theorem 3.3. [54] Let (M = G/H, g) be a homogeneous pseudo-Riemannian manifold of
dimension four and signature (2, 2), where H is connected. If M is non-reductive then the pair
(g, h) is isomorphic to one of the following:

(A.1) – (A.3) The corresponding pairs of Lie algebras in Theorem 3.2.

(B.1) The Lie algebra g is the 5-dimensional Lie algebra sl(2,R) n R2. There is a basis
{e1, . . . , e5} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e2, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5 .

The subalgebras are given by h = span{h1 = e3} and m = span{u1 = e1, u2 = e2, u3 =
e4, u4 = e5}. With respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the
description of the left-invariant metric:

g = 2a(θ1 ◦ θ3 + θ2 ◦ θ4) + b θ2 ◦ θ2 + 2c θ2 ◦ θ3 + q θ3 ◦ θ3, (3.6)

where a 6= 0.

(B.2) The Lie algebra g is the 6-dimensional Lie algebra of Schrödinger sl(2,R) n n(3) as
in (A.4) of Theorem 3.2, with the subalgebras h = span{h1 = e3 − e6, h2 = e5} and
m = span{u1 = e1, u2 = e2, u3 = e3+e6, u4 = e4}. With respect to the basis {θ1, . . . , θ4},
dual to {u1, . . . , u4}, we have the description of the left-invariant metric:

g = a(−θ1 ◦ θ1 + 2θ2 ◦ θ3 +
1

2
θ4 ◦ θ4) + b θ2 ◦ θ2, (3.7)

where a 6= 0.

(B.3) The Lie algebra g is the 7-dimensional Lie algebra sl(2,R) n R2 ⊕ R. There is a basis
{e1, . . . , e7} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5 .
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The subalgebras are given by h = span{h1 = e3, h2 = e5 + e6} and m = span{u1 =
e1, u2 = e2, u3 = e3, u4 = e4}. With respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4},
we have the description of the left-invariant metric:

g = 2a(θ1 ◦ θ3 + θ2 ◦ θ4) + b θ3 ◦ θ3, (3.8)

where a 6= 0.

The following theorem gives a complete classification when the space is simply connected.

Theorem 3.4. [54] If (M = G/H, g) is a four-dimensional homogeneous simply connected and
non-reductive pseudo-Riemannian manifold, then:

(i) M is diffeomorphic to R4.

(ii) IfG is the complete group of isometries then the pair of Lie algebras forG/H is equivalent
to one of the cases in Theorem 3.2 excluding the case (A.5), or to one of the cases in
Theorem 3.3.

Conversely, for any pair of Lie algebras in Theorem 3.2 excluding the case (A.5), or for any
pair of Lie algebras in Theorem 3.3, there is a pseudo-Riemannian metric in R4 (subject to the
signature conditions), where the group of isometries acts transitively on R4. The Lie algebra of
the symmetry group is given by the Lie algebra g and the Lie algebra of the isotropy group at a
point is given by h.

3.1.2 Description in coordinates
Calvaruso, Fino and Zaeim established the following coordinate description, which will be used
in what follows:

Theorem 3.5. [25] Let (M, g) be a non-reductive homogeneous pseudo-Riemannian manifold
of dimension four. Then it is locally isometric to one of the following:

(A.1) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4 + q dx3 ◦ dx3,

where a, b, c and q are arbitrary constants with a(a− 4q) 6= 0.

(A.2) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + b e2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c, q and α are arbitrary constants with aq 6= 0.
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(A.3) An open subset U ⊂ R4 with coordinates (x1, x2, x3, x4) and metric tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and U = {(x1, x2, x3, x4) ∈
R4; cos(x4) 6= 0}, or

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and U = R4.

(A.4) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
a
2
(x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ax2(4 + (x4)2)dx1 ◦ dx3+a(1 + 2x2x3)x4dx1 ◦ dx4+b dx2 ◦ dx2

+ a
2
(4 + (x4)2)dx2 ◦ dx3 + ax3x4dx2 ◦ dx4 + a

2
dx4 ◦ dx4,

where a and b are arbitrary constants with a 6= 0.

(A.5) (R2 \ {(0, 0)})× R2 with coordinates (x1, x2, x3, x4) and metric tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4
dx1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8
dx3 ◦ dx3,

where a 6= 0 is an arbitrary constant.

(B.1) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = (q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2) dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

where a, b, c and q are arbitrary constants with a 6= 0.

(B.2) U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and metric tensor
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g =
(
a− a(x4)2

2
+ 4b(x2)2

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

−ax2((x4)2 − 4)dx1 ◦ dx3−a(1 + 2x2x3)x4dx1 ◦ dx4+b dx2 ◦ dx2

− 1
2
a((x4)2 − 4)dx2 ◦ dx3 − ax3x4dx2 ◦ dx4 − 1

2
a dx4 ◦ dx4,

where a and b are arbitrary constants with a 6= 0.

(B.3) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3,

where a and b are arbitrary constants with a 6= 0.

It is worth emphasizing that the spaces of Types (A.1)–(A.3) admit metrics both of Lorentz-
ian and neutral signature depending on the values of the constants defining the corresponding
metrics. Metrics of Type (A.4) and Type (A.5) are always Lorentzian, while metrics of Types
(B.1)–(B.3) are of neutral signature (2, 2).

3.1.3 Ricci and Weyl tensors of non-reductive four-dimensional homoge-
neous manifolds

We describe the curvature of non-reductive four-dimensional homogeneous manifolds analyz-
ing the Ricci tensor and the Weyl curvature tensor case by case. As a consequence we obtain
Theorem 3.7 and Theorem 3.8. We consider separately all the possibilities in Theorem 3.5.

Type (A.1)

Consider the metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(3.9)

It immediately follows from the above expression that det(g) = 1
4
a3(a− 4q), which shows that

the metric (3.9) is Lorentzian if a(a−4q) < 0 and of neutral signature otherwise. Further observe
that the restriction a(a− 4q) 6= 0 in Theorem 3.5–(A.1) ensures that g is non-degenerate.

The Ricci operator is given by

Ric =
1

a


−2 0 1 0

0 −2 −2x2 0

0 0 0 0
8b(a+4q)x2

a(a−4q)
4b(a+4q)
a(a−4q)

2(ax4−c)
a

−2

 , (3.10)
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showing that the manifold is never Einstein for any a, b, c, q ∈ R. The non-zero components of
the Weyl tensor are (up to the usual symmetries):

W1212 = 8bq−6ab
a−4q

, W1213 = −16bqx2

a−4q
, W1223 = − 8bq

a−4q
,

W1313 = −8bq(x2)2(a+4q)
a(a−4q)

, W1323 = −4bqx2(a+4q)
a(a−4q)

, W2323 = −2bq(a+4q)
a(a−4q)

.
(3.11)

Note that if b = 0 then the manifold is locally conformally flat.

Type (A.2)

Consider the metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + be2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.12)

It immediately follows from the above expression that det(g) = −a3q e6αx4 , which shows that
the metric (3.12) is Lorentzian if aq > 0 and of neutral signature otherwise. Further observe that
the restriction aq 6= 0 in Theorem 3.5–(A.2) ensures that g is non-degenerate.

The Ricci operator is given by

Ric = −3α2

q


1 0 b(3α−2)

3aα2 e−2x4 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (3.13)

Hence (M, g) is Einstein if and only if b = 0 (with scalar curvature τ = −12α
2

q
), or α = 2

3
(with

scalar curvature τ = −16
3q

), or Ricci-flat if α = 0. The non-zero components of the Weyl tensor
are given by

W2323 = −(α− 2)a be2(2α−1)x4

2q
, W3434 =

1

2
(α− 2)be2(α−1)x4 . (3.14)

Note that if α = 2 or b = 0 then the manifold is locally conformally flat.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let U be the open set in R4

determined by U = {(x1, x2, x3, x4) ∈ R4; cos(x4) 6= 0} and the metric tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.15)

Now det(g+) = −a3b cos(x4)2 e6x3 shows that the metric (3.15) is Lorentzian if ab > 0 and of
neutral signature otherwise. Further observe that the restriction ab 6= 0 in Theorem 3.5–(A.3)
ensures that g+ is non-degenerate.
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The Ricci operator is given by

Ric = −3

b


1 0 0 − (b+q)e−2x3

3a

0 1 0 0

0 0 1 0

0 0 0 1

 , (3.16)

and thus (M, g) is Einstein if and only if b = −q. The non-zero components of the Weyl tensor
are:

W2424 =
ae2x3(b+ q) cos (x4)

2

2b
, W3434 = −b+ q

2
. (3.17)

Now we consider the second case for Type (A.3) metrics. Let M be R4 with metric tensor

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.18)

Next det(g−) = −a3b cosh(x4)2 e6x3 shows that the metric (3.18) is Lorentzian if ab > 0 and
of neutral signature otherwise. Further observe that the restriction ab 6= 0 in Theorem 3.5–(A.3)
ensures that g− is non-degenerate.

The Ricci operator is given by

Ric = −3

b


1 0 0 (b−q)e−2x3

3a

0 1 0 0

0 0 1 0

0 0 0 1

 , (3.19)

and thus (M, g) is Einstein if and only if b = q in which case the manifold is locally conformally
flat. The non-vanishing components of the Weyl tensor are:

W2424 = −ae
2x3(b− q) cosh (x4)

2

2b
, W3434 =

b− q
2

. (3.20)

Type (A.4)

Consider the metric tensor

g =
(
a
2
(x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ ax2(4 + (x4)2)dx1 ◦ dx3 + a(1 + 2x2x3)x4dx1 ◦ dx4

+ b dx2 ◦ dx2 + a
2
(4 + (x4)2)dx2 ◦ dx3

+ ax3x4dx2 ◦ dx4 + a
2
dx4 ◦ dx4 .

(3.21)

It follows from the above expression that det(g) = − 1
32
a4(4 + (x4)2)2, which shows that the

metric (3.21) is Lorentzian. Further observe that the restriction a 6= 0 in Theorem 3.5–(A.4)
ensures that g is non-degenerate.
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The Ricci operator is given by

Ric = −3

a


1 0 0 0

0 1 0 0
40bx2

3a((x4)2+4)
20b

3a((x4)2+4)
1 0

0 0 0 1

 , (3.22)

which shows that (M, g) is Einstein if and only if b = 0 in which case the manifold is of constant
sectional curvature taking into account that the non-zero components of the Weyl tensor are given
by

W1212 = 3
4
b ((x4)2 − 2) , W1214 = −3

2
bx2x4, W1224 = −3bx4

4
,

W1414 = 3b(x2)2, W1424 = 3bx2

2
, W2424 = 3b

4
.

(3.23)

Type (A.5)

Let M = (R2 \ {(0, 0)}) × R2 and let (x1, x2, x3, x4) be the coordinates. Consider the metric
tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4
dx1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8
dx3 ◦ dx3 .

(3.24)

Since det(g) = − a4

2048(x2)2
, the metric (3.24) is Lorentzian and the restriction a 6= 0 in Theo-

rem 3.5–(A.5) ensures that g is non-degenerate.
The Ricci tensor is given by

ρ =


0 3x4

2x2
0 −3

2

3x4

2x2
−3((x3)2+2x1x4+2)

2(x2)2
3x3

2x2
3x1

2x2

0 3x3

2x2
−3

2
0

−3
2

3x1

2x2
0 0

 , (3.25)

from where it follows that the corresponding Ricci operator is a multiple of the identity, Ric =
−12

a
Id, and thus Einstein. Moreover, the Weyl tensor vanishes identically. Therefore any Type

(A.5) manifold has constant sectional curvature.

Type (B.1)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = (q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2) dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(3.26)
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Since det(g) = a4 and the component g44 = 0, the metric (3.26) is of neutral signature and
the restriction a 6= 0 in Theorem 3.5–(B.1) ensures that g is non-degenerate.

The Ricci operator is given by

Ric =


3q
2a2

0 0 0

0 3q
2a2

0 0

0 0 3q
2a2

0
15
a3
x2(bq − c2) 15

2a3
(bq − c2) 0 3q

2a2

 , (3.27)

from where it follows that (M, g) is Einstein if and only if c2−bq = 0. The non-zero components
of the Weyl tensor are given by

W1212 =
−6a2(b+2cx4+q(x4)2)+ax3(−7bq+6c2−qx4(2c+qx4))+5q(x3)2(c2−bq)

2a2
,

W1213 =
2x2(a(7bq−6c2+qx4(2c+qx4))+10qx3(bq−c2))−a(6a+qx3)(c+qx4)

4a2
,

W1214 = −2x2(6a+qx3)(c+qx4)+qx3(2a+qx3)
4a

,

W1223 =
a(7bq−6c2+qx4(2c+qx4))+10qx3(bq−c2)

4a2
,

W1224 = −(6a+qx3)(c+qx4)
4a

, W1234 = − q(2a+qx3)
4a

,

W1313 =
q(−a2+2ax2(c+qx4)+20(x2)2(c2−bq))

2a2
,

W1314 =
qx2(−2a+2x2(c+qx4)+qx3)

2a
,

W1323 =
q(a(c+qx4)+20x2(c2−bq))

4a2
, W1324 =

q(x2(c+qx4)−a)
2a

,

W1334 = q2x2

2a
, W1423 =

q(2x2(c+qx4)+qx3)
4a

, W1424 = −qx2,

W1414 = −2q(x2)2, W2334 = q2

4a
, W2424 = − q

2
,

W2323 =
5q(c2−bq)

2a2
, W2324 =

q(c+qx4)
4a

.

(3.28)

Note that if b = c = q = 0 then W = 0.

Type (B.2)

Let U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
a− a(x4)2

2
+ 4b(x2)2

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

− ax2((x4)2 − 4)dx1 ◦ dx3 − a(1 + 2x2x3)x4dx1 ◦ dx4

+ b dx2 ◦ dx2 − 1
2
a((x4)2 − 4)dx2 ◦ dx3

− ax3x4dx2 ◦ dx4 − 1
2
a dx4 ◦ dx4 .

(3.29)
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Since det(g) = 1
32
a4((x4)2 − 4)2 and the component g33 = 0, the metric (3.29) is of neutral

signature and the restriction a 6= 0, x4 6= ±2 in Theorem 3.5–(B.2) ensures that g is non-
degenerate.

The Ricci operator is given by

Ric = −3

a


1 0 0 0

0 1 0 0

− 40bx2

3a((x4)2−4)
− 20b

3a((x4)2−4)
1 0

0 0 0 1

 , (3.30)

which shows that (M, g) is Einstein if and only if b = 0. In this case, the manifold is locally
conformally flat since the non-zero components of the Weyl tensor are determined by

W1212 = −3
4
b ((x4)2 + 2) , W1214 = 3

2
bx2x4, W1224 = 3bx4

4
,

W1414 = −3b(x2)2, W1424 = −3bx2

2
, W2424 = −3b

4
.

(3.31)

Note that W = 0 if and only if the manifold has constant sectional curvature.

Type (B.3)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3 .

(3.32)

Since det(g) = a4e−2x2 and the component g44 = 0, the metric (3.32) is of neutral signature and
the restriction a 6= 0 in Theorem 3.5–(B.3) ensures that g is non-degenerate.

A straightforward calculation shows that the Ricci operator of any Type (B.3) metric vanishes
identically and hence they are all Ricci-flat. The Weyl tensor is not necessarily zero and the only
non-zero component of the Weyl tensor is given by

W2323 = −3b, (3.33)

which shows that (M, g) is flat if and only if b = 0.

Remark 3.6. As a consequence of the expressions of the Ricci and the Weyl tensor in this
section, a metric given by Theorem 3.5 is of constant sectional curvature κ if and only if it
corresponds to one of the following (see also [24, 26, 54]):

Type (A.2) with b = 0, in which case κ = −α2

q
.

Type (A.3) with b = −εq, in which case κ = ε1
q
.
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Type (A.4) with b = 0, in which case κ = − 1
a
.

Type (A.5), in which case κ = − 4
a
.

Type (B.1) with q = c = b = 0, in which case is flat.

Type (B.2) with b = 0, in which case κ = − 1
a
.

Type (B.3) with b = 0, in which case is flat.

Fels and Renner [54] classified the Einstein non-reductive four-dimensional homogeneous
spaces, showing that they must be of Type (A.2) or (B.3) (see also [24, 25, 27]). The following
theorem summarizes all the previous results.

Theorem 3.7. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is Einstein if and
only if it has constant sectional curvature or it corresponds to one of the following:

(i) Type (A.2) with α = 2
3

and aq 6= 0:

g = −2ae
4
3
x4 dx1 ◦ dx3 + ae

4
3
x4dx2 ◦ dx2 + be−

2
3
x4dx3 ◦ dx3

+ 2ce−
1
3
x4dx3 ◦ dx4 + q dx4 ◦ dx4 .

(ii) Type (B.1) with q = c = 0 6= ba:

g = (2ax3 + 4b(x2)2) dx1 ◦ dx1 + 2(2bx2)dx1 ◦ dx2

+ 2a dx1 ◦ dx3 + 4ax2dx1 ◦ dx4 + b dx2 ◦ dx2 + 2a dx2 ◦ dx4.

(iii) Type (B.1) with q 6= 0, b = c2

q
and a 6= 0:

g = (q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4c2

q
(x2)2

)
dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2c2

q
x2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + c2

q
)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3.

(iv) Type (B.3) with ab 6= 0:

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3 .

In all the cases, the manifold is of neutral signature.
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Some generalizations of the Einstein condition were studied in [24] and [26] showing which
of these manifolds admit Ricci solitons.

The main goal of this chapter is to study the conformal geometry of these spaces aimed to
describe all the conformally Einstein non-reductive homogeneous spaces. Clearly the Einstein
cases mentioned above as well as the locally conformally flat cases already described in [27]
should be discarded, since they all are conformally Einstein.

Theorem 3.8. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is locally con-
formally flat if and only if it is of constant curvature or it corresponds to one of the following
cases:

(i) Type (A.1) with b = 0 and a(a− 4q) 6= 0:

g = a dx1 ◦ dx1 − (4ax2x4 − 4cx2 + a) dx1 ◦ dx3

+ 4ax2 dx1 ◦ dx4 − 2(ax4 − c) dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(ii) Type (A.2) with α = 2 and abq 6= 0:

g = −2ae4x4 dx1 ◦ dx3 + ae4x4dx2 ◦ dx2 + be2x4dx3 ◦ dx3

+ 2cex
4
dx3 ◦ dx4 + q dx4 ◦ dx4 .

3.2 Bach-flat non-reductive homogeneous manifolds
In this section we briefly schedule some basic facts about the curvature of non-reductive homoge-
neous spaces. All the curvature expressions are obtained after some straightforward calculations
that we omit. We consider separately all the possibilities in Theorem 3.5 and analyze the Bach
tensor case by case. As a consequence, one obtains the proof of Theorem 3.9.

3.2.1 Non-reductive spaces admitting Lorentzian and neutral signature
metrics

With the notation of Theorem 3.5 at hand, the non-reductive four-dimensional homogeneous
manifolds admitting both Lorentzian and neutral signature metrics are those corresponding to
Types (A.1), (A.2) and (A.3).

Type (A.1)

Consider the metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

(3.34)
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where a(a − 4q) 6= 0. The non-zero components of the divergence of the Weyl tensor are given
by (up to symmetries):

div4W121 = 12bx2(a+4q)
a(a−4q)

,

div4W122 = 6b(a+4q)
a(a−4q)

,

div4W131 = −32bq(x2)2

a2−4aq
,

div4W132 = div4W231 = − 16bqx2

a2−4aq
,

div4W232 = − 8bq
a2−4aq

.

(3.35)

The Bach tensor is given by

B =


−256b q (3a+4q) (x2)2

a2(a−4q)2
−128b q (3a+4q)x2

a2(a−4q)2
0 0

−128b q (3a+4q)x2

a2(a−4q)2
−64b q (3a+4q)

a2(a−4q)2
0 0

0 0 0 0

0 0 0 0

 . (3.36)

An immediate consequence of previous expression is that a Type (A.1) non-reductive homo-
geneous space is Bach-flat if and only if one of the following holds: b = 0, q = 0 or q = −3a

4
.

Moreover:

(1) If b = 0, then Equation (3.11) shows that (M, g) is locally conformally flat.

(2) If b 6= 0, then (M, g) is neither locally conformally flat nor Einstein.

Type (A.2)

Consider the metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + be2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.37)

where aq 6= 0. The only non-zero component of the divergence of the Weyl tensor is given by

div4W343 =
(α− 2)(3α− 2) be2(α−1)x4

2q
. (3.38)

In this case the Bach tensor is expressed with respect to the coordinate basis as

B =


0 0 0 0

0 0 0 0

0 0 (α−2)(α−1)(3α−2)be2(α−1)x4

q2
0

0 0 0 0

 . (3.39)

Hence a non-reductive homogeneous space of Type (A.2) is Bach-flat if and only if b = 0,
α = 2

3
, α = 1 or α = 2. Moreover:
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(1) If b = 0 then Equations (3.13) and (3.14) show that the manifold is of constant sectional
curvature κ = −α2

q
.

(2) If α = 2
3
, then W3434 = −2

3
be−

2x4

3 and hence the manifold is not locally conformally flat,
unless b = 0.

(3) If α = 1 then W3434 = − b
2
, which shows that (M, g) is not locally conformally flat unless

b = 0.

(4) If α = 2, then Equation (3.14) shows that (M, g) is locally conformally flat but not Einstein
unless b = 0.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let U be the open set in R4

determined by U = {(x1, x2, x3, x4) ∈ R4; cos(x4) 6= 0} and the metric tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.40)

where ab 6= 0. The only non-zero component of the divergence of the Weyl tensor is

div4W344 =
b+ q

2b
. (3.41)

Now, a long but straightforward computation shows that (M, g+) is always Bach-flat. More-
over, (M, g+) is locally conformally flat if and only if b = −q by Equation (3.17), in which case
it is Einstein and thus of constant sectional curvature κ = 1

q
.

Now we consider the second case for Type (A.3) metrics. Let M be R4 with metric tensor

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.42)

where ab 6= 0. The only non-zero component of the divergence of the Weyl tensor is

div4W344 =
1

2

(q
b
− 1
)
. (3.43)

Furthermore, a long but straightforward computation shows that (M, g−) is always Bach-flat.
Moreover, (M, g−) is locally conformally flat if and only if b = q by Equation (3.20), in which
case it is Einstein and thus of constant sectional curvature κ = −1

q
.

Hence any Einstein Type (A.3) manifold is necessarily of constant sectional curvature.
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3.2.2 Non-reductive spaces admitting only Lorentzian metrics

Type (A.4)

Consider the metric tensor

g =
(
a
2
(x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ ax2(4 + (x4)2)dx1 ◦ dx3 + a(1 + 2x2x3)x4dx1 ◦ dx4 + bdx2 ◦ dx2

+ a
2
(4 + (x4)2)dx2 ◦ dx3 + ax3x4dx2 ◦ dx4 + a

2
dx4 ◦ dx4,

(3.44)

where a 6= 0. The only non-zero components of the divergence of the Weyl tensor are given by

div4W121 = −15bx2

a
, div4W122 = −15b

2a
. (3.45)

The Bach tensor is given by

B =


−120b(x2)2

a2
−60bx2

a2
0 0

−60bx2

a2
−30b

a2
0 0

0 0 0 0

0 0 0 0

 . (3.46)

Hence, a Type (A.4) metric is Bach-flat if and only if b = 0, in which case (M, g) is locally
conformally flat by Equation (3.23), and thus of constant sectional curvature κ = − 1

a
, as the

Ricci operator shows.

Type (A.5)

Let M = (R2 \ {(0, 0)}) × R2 and let (x1, x2, x3, x4) be the coordinates. Consider the metric
tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4
dx1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8
dx3 ◦ dx3,

(3.47)

where a 6= 0. In this case, the manifold is Einstein and the Weyl tensor vanishes identically.
Therefore, any Type (A.5) metric is always of constant sectional curvature κ = − 4

a
.

3.2.3 Non-reductive spaces admitting only neutral signature metrics.

There exist three different families of non-reductive homogeneous four-manifolds which admit
exclusively neutral signature metrics.
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Type (B.1)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = (q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2) dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

(3.48)

where a 6= 0. In this case, the non-zero components of the divergence of the Weyl tensor are
given by

div4W121 = −15x2(6a−qx3)(c2−bq)
4a3

,

div4W122 = −15(6a−qx3)(c2−bq)
8a3

,

div4W232 = −15q(c2−bq)
8a3

,

div4W131 = 4(x2)2 div4W232,

div4W132 = div4W231 = 2x2 div4W232 .

(3.49)

The Bach tensor is given by

B =


240q(c2−bq)(x2)2

a4
120q(c2−bq)x2

a4
0 0

120q(c2−bq)x2
a4

60q(c2−bq)
a4

0 0

0 0 0 0

0 0 0 0

 . (3.50)

Thus, a Type (B.1) metric is Bach-flat if and only if q = 0 or c2− bq = 0, in the latter case being
Einstein. Moreover,

(1) If q = 0, then the Ricci operator in Equation (3.27) is either zero or two-step nilpotent and
Equation (3.28) gives W1224 = −3

2
c, thus distinguishing the following two cases:

(a) If q = 0 and c = 0, then (M, g) is Ricci-flat and the only non-zero component of the
Weyl tensor is W1212 = −3b. Therefore (M, g) is flat if q = c = b = 0.
Otherwise, if q = c = 0 6= b, then the Jacobi operators J (x)( · ) = R(x, · )x are two-
step nilpotent. Hence (M, g) is Osserman and thus half conformally flat. (See [59]
and the references therein for further information about Osserman manifolds).

(b) If q = 0 and c 6= 0, then (M, g) is not locally conformally flat. Moreover the con-
formal Jacobi operators JW (x)( · ) = W (x, · )x are nilpotent and (M, g) is half
conformally flat. (See [86] and the references therein for further information about
conformally Osserman manifolds).
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(2) If q 6= 0 and b = c2

q
, then Equation (3.28) shows that W1334 = q2x2

2a
and hence (M, g) is

not locally conformally flat. Equation (3.27) shows that (M, g) is Einstein and moreover
the Jacobi operator J (x)( · ) = R(x, · )x associated to any unit vector x has constant
eigenvalues {0, εx q

a2
, εx

q
4a2
, εx

q
4a2
}, where g(x, x) = εx = ±1.

Moreover (M, g) is locally isometric to a para-complex space form of constant para-
holomorphic sectional curvature H = − q

a2
, and thus a modified Riemannian extension

as in [29].

Type (B.2)

Let U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
a− a(x4)2

2
+ 4b(x2)2

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

− ax2((x4)2 − 4)dx1 ◦ dx3 − a(1 + 2x2x3)x4dx1 ◦ dx4 + bdx2 ◦ dx2

− 1
2
a((x4)2 − 4)dx2 ◦ dx3 − ax3x4dx2 ◦ dx4 − 1

2
a dx4 ◦ dx4,

(3.51)

where a 6= 0. The non-zero components of the divergence of the Weyl tensor are given by

div4W121 = −15bx2

a
, div4W122 = −15b

2a
. (3.52)

The Bach tensor is given by

B =


−120b(x2)2

a2
−60bx2

a2
0 0

−60bx2

a2
−30b

a2
0 0

0 0 0 0

0 0 0 0

 . (3.53)

Now it follows from the previous expressions that a metric (3.51) is Bach-flat if and only if
b = 0, in which case it is Einstein and locally conformally flat, and thus of constant sectional
curvature κ = − 1

a
.

Type (B.3)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3,

(3.54)

where a 6= 0. The divergence of the Weyl tensor and the Bach tensor are both zero. Any non-
reductive metric of Type (B.3) with b 6= 0 has two-step nilpotent Jacobi operators and thus it is
Osserman. Therefore, it is Einstein and half conformally flat.
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Bach-flat metrics are critical points for the functional

W : g 7→ W(g) =

∫
M

‖W‖2 dvolg

and one has that locally conformally Einstein metrics are Bach-flat. Hence, aimed to describe
all the non-reductive four-dimensional homogeneous conformally Einstein metrics, one has the
following result.

Theorem 3.9. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is Bach-flat if and
only if it is locally conformally flat, Einstein or one of the following:

(i) Type (A.1) with q = 0 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

(ii) Type (A.1) with q = −3a
4

and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4−c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3 .

(iii) Type (A.2) with α = 1 and abq 6= 0:

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .

(iv) Type (A.3) with metric

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= −q, or with metric

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= q.

(v) Type (B.1) with q = 0 and ac 6= 0:

g = (4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2) dx1 ◦ dx1

+ 2(4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2 + 2(2cx2 + a)dx1 ◦ dx3

+ 4ax2dx1 ◦ dx4 + (2cx4 + b)dx2 ◦ dx2

+ 2c dx2 ◦ dx3 + 2a dx2 ◦ dx4 .
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Half conformally flat non-reductive homogeneous spaces

A special class of Bach-flat spaces is that of half conformally flat manifolds. While half confor-
mally flat Lorentzian metrics are locally conformally flat, there are many strictly half conformally
flat examples in the Riemannian and neutral signature settings. Recall that a four-dimensional
manifold is half conformally flat if and only if is conformally Osserman [13], i.e., the spectrum
of the conformal Jacobi operators JW (x)( · ) = W (x, · )x is constant on the unit pseudo-spheres
S±(TpM) at each point p ∈M (see [86] and the references therein).

An explicit calculation of the conformal Jacobi operators shows that a metric given by The-
orem 3.5 is half conformally flat and not locally conformally flat if and only if it corresponds to
one of the following cases:

Type (A.1) with q = 0 and ab 6= 0.

Type (A.1) with q = −3
4
a and ab 6= 0.

Type (B.1) with q = c = 0 and ab 6= 0.

Type (B.1) with q = 0 and ac 6= 0.

Type (B.1) with aq 6= 0 and b = c2

q
.

Type (B.3) with ab 6= 0.

Note that this agrees with the description of (anti-)self-dual non-reductive homogeneous spaces
in [27]. Moreover, the conformal Jacobi operators are two-step nilpotent in all cases but the one
corresponding to Type (B.1) with aq 6= 0 and b = c2

q
where they diagonalize.

It is worth mentioning that in some of the cases above the manifold is also Einstein and thus
pointwise Osserman, i.e., the spectrum of the Jacobi operators J (x)( · ) = R(x, · )x is constant
on the unit pseudo-spheres S±(TpM) at each point p ∈M (see [59] for further information about
Osserman manifolds).

More precisely, a metric given by Theorem 3.5 is Osserman if and only if it is of constant
sectional curvature (cf. Remark 3.6) or otherwise:

(i) (M, g) is of Type (B.1) with q = c = 0 and ab 6= 0, in which case the Jacobi operators are
two-step nilpotent, or

(ii) (M, g) is of Type (B.1) with aq 6= 0 and b = c2

q
. In this case, for any unit spacelike vector

the corresponding Jacobi operator J (x)( · ) = R(x, · )x is diagonalizable with eigenvalues
{0, εx q

a2
, 1

4
εx

q
a2
, 1

4
εx

q
a2
}, where εx = g(x, x); thus the manifold is locally isometric to a

complex or para-complex space form [59]. A long but straightforward calculation shows
that for any non-null vector x, the vector space span{x} ⊕ ker(J (x) − εx

q
a2

Id) is of
Lorentzian signature. Hence (M, g) is a para-complex space form.

(iii) (M, g) is of Type (B.3) with ab 6= 0, in which case the Jacobi operators are two-step
nilpotent.
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Moreover, it is worth emphasizing that in all the cases above the manifold is locally symmetric.

Remark 3.10. A long but straightforward calculation shows that a metric given by Theorem 3.5
of non-constant sectional curvature is locally symmetric if and only if it is

Type (A.1) with b = 0 and a(a− 4q) 6= 0, in which case (M, g) is locally conformally flat
with diagonalizable Ricci operator. Hence locally isometric to a product R×N , where N
is of constant sectional curvature κN = − 1

a
,

or it corresponds to one of the following cases:

Type (B.1) with q = c = 0 and ab 6= 0, in which case (M, g) is Osserman with two-step
nilpotent Jacobi operators.

Type (B.1) with aq 6= 0 and b = c2

q
, in which case (M, g) is a para-complex space form.

Type (B.3) with ab 6= 0, in which case (M, g) is Osserman with two-step nilpotent Jacobi
operators.

See [59] for a classification of locally symmetric four-dimensional Osserman manifolds and [26]
for a description of gradient Ricci solitons on non-reductive homogeneous spaces, where metrics
of Type (A.1) with b = 0 play a distinguished role.

3.3 Non-reductive conformally Einstein homogeneous mani-
folds

The purpose of this section is to prove Theorem 3.1, determining which non-reductive homo-
geneous four-manifolds contain an Einstein metric in their conformal class. We will exclude
from our analysis the trivial cases of Einstein and locally conformally flat manifolds. Moreover,
we will obtain the explicit form of the conformal Einstein metric. Since any conformally Ein-
stein manifold is necessarily Bach-flat, Theorem 3.9 shows that the analysis of the conformally
Einstein equation

2 Hesϕ +ϕρ =
1

4
{2∆ϕ+ ϕ τ}g (3.55)

must be carried out only for the following cases:

(i) Type (A.1) with q = 0 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

(ii) Type (A.1) with q = −3a
4

and ab 6= 0:



112 3 Non-reductive homogeneous manifolds

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4−c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3 .

(iii) Type (A.2) with α = 1 and abq 6= 0:

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .

(iv) Type (A.3) with metric

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= −q, or with metric

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= q.

(v) Type (B.1) with q = 0 and ac 6= 0:

g = (4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2) dx1 ◦ dx1

+ 2(4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2 + 2(2cx2 + a)dx1 ◦ dx3

+ 4ax2dx1 ◦ dx4 + (2cx4 + b)dx2 ◦ dx2

+ 2c dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive homoge-
neous space. Then (M, g) is Einstein, locally conformally flat, or locally isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.

(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.



3.3.1 Type (A.1) with q = 0 and ab 6= 0 or q = −3a
4

and ab 6= 0 113

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary constants
with ab 6= 0 and b 6= −q, or

(R4, g−) with metric given by

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which is unique
(up to an homothety) only in Case (i). Otherwise the space of conformally Ricci-flat metrics is
either two or three-dimensional.

In what follows we will use the necessary conditions obtained by Kozameh, Newman and Tod
[72] stated in Theorem 1.14. Relating the solutions ϕ of the conformally Einstein Equation (1.6)
and the conformal deformation σ by σ = − log(ϕ), as a matter of notation, we define a (0, 3)-
tensor field C by C = (div4W )(X, Y, Z) + W (X, Y, Z,∇σ). Obviously, Cijk = −Cjik for all
i, j, k ∈ {1, . . . , 4} and C = 0 is equivalent to Theorem 1.14–(ii).

Recall that conditions (i)–(ii) in Theorem 1.14 are also sufficient to be conformally Einstein
if (M, g) is weakly-generic (i.e., the Weyl tensor, viewed as a map TM →

⊗3 TM is injective).
Note that cases (i)–(iii) in Theorem 3.9 are not weakly-generic and thus we must study the
existence of solutions of Equation (3.55) case by case. In opposition, metrics corresponding to
Theorem 3.9–(iv) are weakly-generic.

3.3.1 Type (A.1) with q = 0 and ab 6= 0 or q = −3a
4 and ab 6= 0

We consider the two possibilities separately.

Type (A.1) with q = 0 and ab 6= 0

In this case by Equation (3.35) the non-zero components of the divergence of the Weyl tensor are
given by

div4W121 =
12 bx2

a
, div4W122 =

6 b

a
, (3.56)



114 3 Non-reductive homogeneous manifolds

and, by Equation (3.11), the only non-zero component of the Weyl tensor is given by

W1212 = −6b, (3.57)

which shows that (M, g) is not weakly-generic. For an arbitrary positive functionϕ(x1, x2, x3, x4)
on M , let σ = − log(ϕ). Then a straightforward calculation shows that the gradient of σ is given
in the coordinate basis by

∇σ = 4
a2ϕ
{(ax4 − c)ϕ4 + aϕ3} ∂x1

− 2
a2ϕ
{ϕ4 (a+ 4x2 (ax4 − c)) + 4ax2ϕ3} ∂x2

+ 4
a2ϕ
{a (2ϕ3 − 2x2ϕ2 + ϕ1) + 2ϕ4 (ax4 − c)} ∂x3

+ 2
a3ϕ
{ϕ4 (ab+ 4ax4 (ax4 − 2c) + 4c2) + 2aϕ1 (ax4 − c)

+a (4ϕ3 (ax4 − c) + ϕ2 (4x2 (c− ax4)− a))} ∂x4 ,

where ϕi = ∂
∂xi
ϕ denote the corresponding partial derivatives.

Thus, the only non-zero components of the tensor C = div4W + W (·, ·, ·,∇σ) are those
given by

a2ϕ C121 = −12b (ϕ4 (a− 4x2 (c− ax4)) + 4ax2ϕ3 + 2ax2ϕ) ,

a2ϕ C122 = −12b (−2ϕ4 (c− ax4) + 2aϕ3 + aϕ) .
(3.58)

Since C = 0 is a necessary condition for (M, g) to be conformally Einstein, aϕ(C121 −
2x2C122) = −12bϕ4 must be zero and, since b 6= 0, in this case ϕ does not depend on the
coordinate x4. Then

C122 =
−12b(ϕ+ 2ϕ3)

aϕ
, C121 = 2x2C122 .

Hence, C = 0 shows that
ϕ(x1, x2, x3) = e−

x3

2 φ(x1, x2), (3.59)

for some smooth function φ(x1, x2).
Now, we analyze the existence of solutions of Equation (3.55) for some ϕ as above. In order

to simplify the notation, set

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,

and determine the conditions for E = 0.
Since E(∂x1 , ∂x1) = 2e−

x3

2 φ11(x1, x2), any solution of Equation (3.55) must be of the form
given in Equation (3.59) with φ(x1, x2) = α1(x2) + x1α2(x2) for some smooth functions α1, α2

on M . Taking into account that

E(∂x1 , ∂x2) = −2e−
x3

2 (α′1(x2) + (x1 − 1)α′2(x2)),



3.3.1 Type (A.1) with q = 0 and ab 6= 0 or q = −3a
4

and ab 6= 0 115

we can show that α1(x2) = µ1 and α2(x2) = µ2 for some constants µ1, µ2. Further, the compo-

nent E(∂x2 , ∂x4) = −2µ2e
−x

3

2 shows that µ2 = 0 and hence Equation (3.59) reduces to

ϕ = µ1e
−x

3

2 .

Now, a straightforward calculation shows that E = 0 holds and the conformal metric ḡ = ϕ−2g
is Ricci-flat.

Remark 3.11. Since any non-reductive homogeneous manifold of Type (A.1) with q = 0 and
ab 6= 0 is conformally Osserman with two-step nilpotent conformal Jacobi operators, and this
property is conformally invariant, the metric ḡ is Osserman with two-step nilpotent Jacobi oper-
ators.

Type (A.1) with q = −3a
4

and ab 6= 0.

Proceeding as in the previous case, for an arbitrary positive function ϕ(x1, x2, x3, x4) on M we
consider σ = − log(ϕ). Then

∇σ = 1
a2ϕ

{
a
(
ϕ3 + 3x2ϕ2 − 3

2
ϕ1

)
+ ϕ4 (ax4 − c)

}
∂x1

− 1
a2ϕ
{2ϕ4 (x2 (ax4 − c) + a) + ax2 (2ϕ3 + 6x2ϕ2 − 3ϕ1)} ∂x2

+ 1
a2ϕ
{a (2ϕ3 − 2x2ϕ2 + ϕ1) + 2ϕ4 (ax4 − c)} ∂x3

+ 1
a3ϕ
{2ϕ4 (a2(x4)2 + ab− 2acx4 + c2)

+a (ϕ1 (ax4 − c)−2 (ϕ2 (x2 (ax4 − c) + a)+ϕ3 (c− ax4)))} ∂x4 .

Recall from Equation (3.35) that the non-zero components of the divergence of the Weyl tensor
are given by

div4W121 = −6bx2

a
, div4W122 = −3b

a
, div4W131 = 6b(x2)2

a
,

div4W232 = 3b
2a
, div4W132 = div4W231 = 3bx2

a
.

Equation (3.11) shows that the non-zero components of the Weyl tensor are

W1212 = −3b, W1213 = 3bx2, W1223 = 3b
2
,

W1313 = −3b(x2)2, W1323 = −3bx2

2
, W2323 = −3b

4
.

Then, the non-zero components of the tensor field C are given by

C131 = −x2C121, C231 = −1
2
C121,

C132 = −x2C122, C232 = −1
2
C122,

C133 = −x2C123, C233 = −1
2
C123,
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where
a2ϕ C121 = 6b (x2 (2aϕ+ aϕ1 − 2aϕ3 − 2aϕ4x

4 + 2cϕ4)

−aϕ4 − 2aϕ2(x2)2) ,

a2ϕ C122 = 3b (2aϕ+ aϕ1 − 2aϕ3 − 2aϕ2x
2 − 2aϕ4x

4 + 2cϕ4) ,

a2ϕ C123 = −3abϕ4 .

Since ab 6= 0 and C123 = 0 the function ϕ(x1, x2, x3, x4) does not depend on the coordinate x4

and the tensor field C121 reduces to

C122 =
3b

aϕ

{
2ϕ+ ϕ1 − 2ϕ3 − 2ϕ2x

2
}
, C121 = 2x2C122 .

A solution of the differential equation 2ϕ = 2ϕ3 + 2x2ϕ2 − ϕ1 is necessarily of the form

ϕ(x1, x2, x3) = e−2x1φ(e2x1x2, 2x1 + x3) = e−2x1(φ ◦ ψ)(x1, x2, x3), (3.60)

where ψ(x1, x2, x3) = (e2x1x2, 2x1 + x3) and φ(z, ω) is an arbitrary function for z = e2x1x2 and
ω = 2x1 + x3.

Now, we analyze the existence of solutions of Equation (3.55) for some ϕ as in Equa-
tion (3.60). Setting

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,

one has E(∂x2 , ∂x2) = 2e2x1∂2
z2φ = 0, and hence

ϕ(x1, x2, x3) = e−2x1
(
e2x1x2φ̂(2x1 + x3) + φ̄(2x1 + x3)

)
for some smooth functions φ̂(ω), φ̄(ω). Considering the component E(∂x2 , ∂x3) = 2φ̂′ − φ̂ = 0,
one has that φ̂(2x1 +x3) = µe

1
2

(2x1+x3) for some constant µ. Now the only non-zero components
of the tensor field E are given by

E(∂x1 , ∂x1) = 2E(∂x1 , ∂x3) = 2E(∂x3 , ∂x3) = 4e−2x1
(
φ̄− 3φ̄′ + 2φ̄′′

)
.

Hence E = 0 gives φ̄(2x1 + x3) = µ1e
1
2

(2x1+x3) + µ2e
2x1+x3 and thus any solution of the confor-

mally Einstein equation is of the form

ϕ(x1, x2, x3, x4) = µ1e
x3 + µ2e

1
2
x3−x1 + µ3 x

2 e
1
2
x3+x1 .

Moreover, any of the conformal metrics ḡ = ϕ−2g is Ricci-flat.

Remark 3.12. Since any non-reductive homogeneous manifold of Type (A.1) with q = −3
4
a

and ab 6= 0 is conformally Osserman with two-step nilpotent conformal Jacobi operators, any
conformal Einstein metric ḡ is Osserman with two-step nilpotent Jacobi operators. Moreover,
there is a 3-parameter family of conformally equivalent Osserman metrics. This shows that the
cases q = 0 and q = −3

4
a are essentially different since the space of conformally Einstein metrics

is one-dimensional in the first case and three-dimensional in the second one.
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3.3.2 Type (A.2) with α = 1 and abq 6= 0

Let ϕ(x1, x2, x3, x4) be a positive function on M and σ = −2 log(ϕ). Then

∇σ = 2
a2qϕ

{
ae−2x4 (qϕ3 − cϕ4)− e−4x4ϕ1 (c2 − bq)

}
∂x1

− 2
aϕ
ϕ2e

−2x4 ∂x2 + 2
aϕ
ϕ1e

−2x4 ∂x3 − 1
aqϕ

{
2aϕ4 + 2cϕ1e

−2x4
}
∂x4 .

It follows from Equations (3.14) and (3.38) that the non-zero components of the Weyl tensor
and its divergence are given by

W2323 =
ab

2q
e2x4 , W3434 = − b

2
and div4W343 = − b

2q
,

respectively, from where it follows that (M, g) is not weakly-generic. Therefore, the only non-
zero components of the tensor field C = div4W +W (·, ·, ·,∇σ) are those given by

C232 = − b
q
ϕ1

ϕ
, C233 = − b

q
ϕ2

ϕ
, C344 = − b

a
ϕ1

ϕ
e−2x4 ,

C343 = b
a q ϕ

(
a (ϕ− ϕ4)− cϕ1e

−2x4
)
.

(3.61)

Since a b 6= 0, the first two expressions in Equation (3.61) show that ϕ(x1, x2, x3, x4) does not
depend on the coordinates x1 and x2. Hence, the tensor field C reduces to

C343 =
b (ϕ− ϕ4)

qϕ
,

where ϕ is a smooth function on the coordinates (x3, x4) and it follows from C343 = 0 that
ϕ(x3, x4) = φ(x3)ex

4 , for some smooth function φ(x3).
Considering now the conformally Einstein Equation (3.55), and setting

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,

the only non-zero component of the tensor E is

E(∂x3 , ∂x3) =
ex

4
(2qφ′′ − bφ)

q
.

Integrating E(∂x3 , ∂x3) = 0 we obtain that
ϕ = e

x4−x3
√

b
2q

(
κ1e

x3
√

2b
q + κ2

)
, if b q > 0,

ϕ = ex
4
(
κ1 cos

(
x3
√
− b

2q

)
+ κ2 sin

(
x3
√
− b

2q

))
, if b q < 0 .

(3.62)

Moreover, a long but straightforward computation shows that the metric ḡ = ϕ−2g for any
function ϕ given by Equation (3.62) is Ricci-flat.
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Remark 3.13. For each of the possibilities in Equation (3.62) there are at least two conformal
metrics which are Einstein (indeed, Ricci-flat). Moreover, for any of the conformal Einstein
metrics, there are some conformal deformation of the metric which remains Einsteinian.

Further observe that no metric (A.2) with α = 1 and abq 6= 0 is half conformally flat, and
hence they are not in the conformal class of any Osserman metric.

3.3.3 Type (A.3) with metrics g± and b 6= ∓q, ab 6= 0

We will briefly schedule the proof of the case corresponding to g+. The analysis of g− is
completely analogous. Hence assume b 6= −q and ab 6= 0. As in the previous cases, let
ϕ(x1, x2, x3, x4) be a positive function and set σ = − log(ϕ). Then

∇σ = 1
a2 bϕ

{
2e−4x3

(
ae2x3 (cϕ3 − bϕ4) + ϕ1 (bq − c2)

)}
∂x1

− 2ϕ2

aϕ

{
e−2x3 sec (x4)

2
}
∂x2 + 2

a bϕ

{
cϕ1e

−2x3 − aϕ3

}
∂x3

− 2
aϕ
ϕ1e

−2x3∂x4 .

It follows from Equations (3.17) and (3.41) that the non-zero components of the tensor C =
div4W +W (·, ·, ·,∇σ) are given by

b ϕ C242 = (b+ q) cos (x4)
2
ϕ1, b ϕ C244 = −(b+ q)ϕ2,

aϕ C343 = −(b+ q)e−2x3ϕ1,

a b ϕ C344 = −(b+ q)e−2x3
(
a (ϕ− ϕ3) e2x3 + cϕ1

)
.

(3.63)

Since ab 6= 0 and b 6= −q the first two equations show that ϕ does not depend on the coordinates
x1 and x2 and the tensor field C reduces to

b ϕ C344 = −(b+ q) (ϕ− ϕ3) ,

where ϕ is a smooth function on the coordinates (x3, x4). Now C344 = 0 gives ϕ(x3, x4) =
φ(x4)ex

3 , for some smooth function φ(x4).
Consider now the conformally Einstein equation and set, as in the previous cases, E =

2 Hesϕ +ϕρ − 1
4
{2∆ϕ + ϕ τ}g . A straightforward calculation shows that the only non-zero

component of the tensor field E is given by

E(∂x4 , ∂x4) =
1

b
ex

3

((b− q)φ+ 2bφ′′) ,

which shows that φ(x4) is determined by the equation φ′′ = − b−q
2b
φ. Hence the conformal

deformation ϕ(x3, x4) is given by

ϕ+ = (µ1x
4 + µ2)ex

3
, if b− q = 0,

ϕ+ = ex
3−x4
√

q−b
2b

(
µ1e

x4
√

2(q−b)
b + µ2

)
, if b(q − b) > 0,

ϕ+ = ex
3

(
µ1 cos

(
x4
√

b−q
2b

)
+ µ2 sin

(
x4
√

b−q
2b

))
, if b(q − b) < 0 .

(3.64)
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Moreover in all the cases above the conformal metric ḡ+ = ϕ−2
+ g+ is Ricci-flat.

The case of g− is obtained in a completely analogous way. For any metric g− given by
Equation (3.18), the conformal metric ḡ− = ϕ−2

− g− is Ricci-flat, where

ϕ−=(µ1x
4 + µ2)ex

3
, if b+ q = 0,

ϕ−=ex
3−x4
√

q+b
2b

(
µ1e

x4
√

2(q+b)
b + µ2

)
, if b(q + b) > 0,

ϕ−=ex
3

(
µ1 cos

(
x4
√
− b+q

2b

)
+ µ2 sin

(
x4
√
− b+q

2b

))
, if b(q + b) < 0 .

(3.65)

Remark 3.14. For each of the possibilities in Equations (3.64) and (3.65) there are at least two
conformal metrics which are Einstein. Equivalently, for any conformally Einstein metric, there
are some conformal deformation of the metric which remains to be Einstein.

Further observe that no metric of Type (A.3) with ε = ±1, b 6= ∓q and ab 6= 0 is half
conformally flat, and hence (M, g) is not in the conformal class of an Osserman metric.

3.3.4 Type (B.1) with q = 0 and ac 6= 0

Setting q = 0 in Equations (3.28) and (3.49), the non-zero components of the Weyl tensor and
its divergence are given by

div4W121 = −45c2x2

2a2
, div4W122 = −45c2

4a2
, and

W1212 = 3c2x3

a
− 3 (b+ 2cx4) , W1213 = −3c(a+2cx2)

2a
,

W1214 = −3cx2, W1223 = −3c2

2a
, W1224 = −3c

2
,

respectively. This shows that, in opposition to the previous cases, (M, g) is weakly-generic and
thus C = div4W + W (·, ·, ·,∇σ) = 0 is a necessary and sufficient condition to be conformally
Einstein.

As in the previous cases, consider ϕ(x1, x2, x3, x4) a positive function and set σ = − log(ϕ).
Express the gradient of σ as

∇σ = 2
a2 ϕ
{cϕ4 − aϕ3} ∂x1 + 2

a2 ϕ
{2x2 (aϕ3 − cϕ4)− aϕ4} ∂x2

+ 2
a2 ϕ
{x3 (2aϕ3 − cϕ4)− aϕ1 + 2aϕ2x

2} ∂x3

+ 2
a2 ϕ
{bϕ4 − ϕ2 (a+ 2cx2) + cϕ1 − cϕ3x

3 + 2cϕ4x
4} ∂x4 .

Now, the components C123 and C124 of the tensor field C = div4W +W (·, ·, ·,∇σ) are given by

aϕ C123 = 3cϕ3, a ϕ C124 = 3cϕ4,

and, since c 6= 0 and C123 = C124 = 0, the function ϕ is independent of the coordinates x3 and
x4. Assuming ϕ to be a smooth function on the coordinates (x1, x2), the non-zero components
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of C reduce to

C121 = −3c (aϕ1 − 15cϕx2)

a2ϕ
, C122 =

3c (15cϕ− 2aϕ2)

2a2ϕ
. (3.66)

A straightforward computation shows that C122 = 0 if and only if

ϕ = φ(x1)e
15c
2a
x2 , (3.67)

for some smooth function φ(x1). Then C121 becomes

C121 = −3c (aφ′(x1)− 15cx2φ(x1))

a2φ(x1)
, (3.68)

from where it follows that φ vanishes identically, and hence ϕ ≡ 0, which is a contradiction.
Hence this manifold is not conformally Einstein.

Remark 3.15. Observe that the conformally Einstein metrics in Theorem 3.1–(i) are always of
neutral signature, while metrics corresponding to cases (ii) and (iii) may be either Lorentzian or
of neutral signature (2, 2), depending on the choice of the parameters defining the metrics (3.12),
(3.15) and (3.18).

Remark 3.16. Let (M, g) be a non-reductive and not locally symmetric homogeneous pseudo-
Riemannian manifold of dimension four with g the isometry algebra and h its isotropy subalge-
bra. Then, the pair of Lie algebras (g, h) is isomorphic to one of the following Types: (A.1),
(A.2), (A.3), (A.4), (B.1) or (B.2). Conversely, for every pair of Lie algebras (g, h) in this list
there exits a non-reductive homogeneous pseudo-Riemannian four-dimensional manifold with
isometry algebra g.

Moreover, the Ad(H)-invariant subspace m (excluding (A.3) with ε = 1) is a subalgebra of g
which implies that each case in the list is locally isometric to a Lie group G with a left-invariant
metric as follows:

(i) The Lie group R × ˜SL(2,R) is locally isometric to Type (A.1) with Lie algebra m given
by

[u1, u2] = 2u2, [u1, u4] = −2u4, [u2, u4] = 2u1 .

(ii) The Lie group Rn R3 is locally isometric to Type (A.2) with Lie algebra m given by

[u1, u4] = (α + 1)u1, [u2, u4] = αu2, [u3, u4] = (α− 1)u3, or

to Types (A.4) (B.2) with Lie algebra m given by

[u1, u2] = 2u2, [u1, u4] = u4 .

(iii) The Lie group Rn E(1, 1) is locally isometric to Type (A.3) for ε = −1 with Lie algebra
m given by

[u1, u3] = 2u1, [u2, u3] = u2, [u2, u4] = u2 .

(iv) The Lie group RnH3 is locally isometric to Type (B.1) with Lie algebra m given by

[u1, u2] = 2u2, [u1, u3] = u3, [u1, u4] = −u4, [u2, u4] = u3 .
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New examples of Bach-flat metrics and
Ricci solitons





Chapter 4

Bach-flat isotropic gradient Ricci solitons

Bach-flat structures and Ricci solitons are natural generalizations of Einstein metrics. The Rie-
mannian situation is quite rigid, since Bach-flat four-dimensional complete gradient Ricci soli-
tons are locally conformally flat in the shrinking case [36]. The steady case is more involved and
triviality of complete Bach-flat gradient Ricci solitons is proved in [34] under the assumptions of
positive Ricci tensor and scalar curvature attaining a maximum at some interior point.

The purpose of this chapter is to show the existence of non-trivial examples of Bach-flat
gradient Ricci solitons in neutral signature. For that, we construct a family of Bach-flat metrics
(see Theorem 4.1) analyzing the existence of gradient Ricci solitons. Examples of self-dual
gradient Ricci solitons which are not locally conformally flat were already known in signature
(2, 2). Hence, our description can be considered as a generalization of Theorem 1.27 allowing
to obtain non-trivial anti-self-dual examples at the same time. In this chapter we report on work
investigated in [33].

4.1 Bach-flat Riemannian extensions determined by a parallel
tensor field

Our first main result concerns the construction of Bach-flat metrics:

Theorem 4.1. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel (1, 1)-
tensor field T . Let Φ be an arbitrary symmetric (0, 2)-tensor field on Σ. Then the Bach tensor of
(T ∗Σ, gD,Φ,T ) vanishes if and only if T is either a multiple of the identity or nilpotent.

Proof. In order to compute the Bach tensor of (T ∗Σ, gD,Φ,T ), first of all observe that being T
parallel imposes some restrictions on the components T j i as well as on the Christoffel symbols
of the connection D:

DT = 0⇒



T 1
2
DΓ11

2 − T 2
1
DΓ12

1 = 0,

T 1
2
DΓ12

2 − T 2
1
DΓ22

1 = 0,

T 2
1
DΓ11

1 + (T 2
2 − T 1

1)DΓ11
2 − T 2

1
DΓ12

2 = 0,

T 1
2
DΓ11

1 + (T 2
2 − T 1

1)DΓ12
1 − T 1

2
DΓ12

2 = 0,

T 2
1
DΓ12

1 + (T 2
2 − T 1

1)DΓ12
2 − T 2

1
DΓ22

2 = 0,

T 1
2
DΓ12

1 + (T 2
2 − T 1

1)DΓ22
1 − T 1

2
DΓ22

2 = 0 .

(4.1)

123
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Then, expressing the Bach tensor Bij = B(∂xi , ∂xj) in induced coordinates (xi, xi′), a long
but straightforward calculation shows that

(Bij) =

 B11 B12

B12 B22
B̃

B̃ 0

 , (4.2)

where

B̃ =
1

6
((T 1

1 − T 2
2)2 + 4T 1

2T
2

1) · (T 1
1 + T 2

2) ·
(
T 1

1 − T 2
2 2T 2

1

2T 1
2 T 2

2 − T 1
1

)
and where the coefficients B11, B12 and B22 can be written in terms of d = det(T ) and t = tr(T )
as follows:
B11 = −1

6
{10d3 − 2(t2 + 13T 2

2t− 15(T 2
2)2)d2

+(5t− T 2
2)(t− T 2

2)t2d− (t− T 2
2)2t4}x2

1′

− 1
6
{(T 2

1)2(30d2 + t2d− t4)}x2
2′

− 1
3
{(13t− 30T 2

2)d2 + (3t− T 2
2)t2d− (t− T 2

2)t4}T 2
1 x1′x2′

− 1
3

{
(DΓ11

1 + 2DΓ12
2)(t− 2T 2

2) + 2T 2
1
DΓ22

2
}

(t2 − 4d)tx1′

− 1
3

{
DΓ11

2(t− 2T 2
2) + 2T 2

1
DΓ12

2
}

(t2 − 4d)tx2′

− 1
6
{10d2 + (3t2 − 22T 2

2t + 14(T 2
2)2)d

−(t2 − 4T 2
2t + 2(T 2

2)2)t2}Φ11

− 1
3
{(11t− 14T 2

2)d− 2(t− T 2
2)t2}T 2

1Φ12

+ 1
3
{t2 − 7d} (T 2

1)2Φ22

− 2
3
(∂x2

DΓ11
2 − ∂x1DΓ12

2)(4d− t2),

B12 = −1
6
{(13t− 30T 2

2)d2 + (3t− T 2
2)t2d− (t− T 2

2)t4}T 1
2x

2
1′

+ 1
6
{(17t− 30T 2

2)d2 − (2t + T 2
2)t2d + T 2

2t
4}T 2

1x
2
2′

+ 1
6
{20d3 + 4(4t2 − 15T 2

2t + 15(T 2
2)2)d2

−(3t2 + 2T 2
2t− 2(T 2

2)2)t2d + 2(t− T 2
2)T 2

2t
4}x1′x2′

− 1
3

{
DΓ12

1(t− 2T 2
2) + 2T 2

1
DΓ22

1
}

(t2 − 4d)tx1′

− 1
3

{
DΓ12

2(t− 2T 2
2) + 2T 2

1
DΓ22

2
}

(t2 − 4d)tx2′

− 1
6
{(11t− 14T 2

2)d− 2(t− T 2
2)t2}T 1

2Φ11

+ 1
6
{4d2 + (6t2 − 28T 2

2t + 28(T 2
2)2)d− (t− 2T 2

2)2t2}Φ12

+ 1
6
{(3t− 14T 2

2)d + 2T 2
2t

2}T 2
1Φ22

− 1
3

{
(∂x2

DΓ11
1 − ∂x1DΓ12

1 − ∂x2DΓ12
2 + ∂x1

DΓ22
2)(t2 − 4d)

}
,
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B22 = −1
6
{30d2 − t4 + t2d} (T 1

2)2x2
1′

− 1
6
{10d3 + 2(t2 − 17T 2

2t + 15(T 2
2)2)d2

+(4t + T 2
2)T 2

2t
2d− (T 2

2)2t4}x2
2′

+ 1
3
{(17t− 30T 2

2)d2 − (2t + T 2
2)t2d + T 2

2t
4}T 1

2x1′x2′

− 1
3

{
DΓ22

1(t− 2T 2
2) + 2T 1

2
DΓ22

2
}

(t2 − 4d)tx1′

+ 1
3

{
DΓ22

2(t− 2T 2
2)− 2T 2

1
DΓ22

1
}

(t2 − 4d)tx2′

− 1
3
(7d− t2)(T 1

2)2Φ11

+ 1
3
{(3t− 14T 2

2)T 1
2d + 2T 1

2T
2

2t
2}Φ12

− 1
6
{10d2 − (5t2 + 6T 2

2t− 14(T 2
2)2)d + t4 − 2(T 2

2)2t2}Φ22

− 2
3
(∂x2

DΓ12
1 − ∂x1DΓ22

1)(t2 − 4d) .

Suppose first that the Bach tensor of (T ∗Σ, gD,Φ,T ) vanishes. We start analyzing the case
T 1

2 = 0. In this case, the expression of B̃ in Equation (4.2) reduces to

B̃ =
1

6
(T 1

1 − T 2
2)2 · (T 1

1 + T 2
2) ·
(
T 1

1 − T 2
2 2T 2

1

0 T 2
2 − T 1

1

)
. (4.3)

If T 2
2 = T 1

1, we differentiate the component B11 in Equation (4.2) twice with respect to x2′ to
obtain T 2

1T
1

1 = 0. Thus, either T 2
1 = 0 and T is a multiple of the identity, or T 1

1 = 0 and,
in such a case, T is determined by T∂x1 = T 2

1∂x2 and therefore it is nilpotent. If T 2
2 6= T 1

1,
then Equation (4.3) implies that T 2

2 = −T 1
1. In this case, we differentiate the component B22

in Equation (4.2) twice with respect to x2′ and obtain T 1
1 = 0. Thus, as before, T is nilpotent.

Next we analyze the case T 1
2 6= 0. We use Equation (4.1) to express

DΓ11
1 = T 1

1−T 2
2

T 1
2

DΓ12
1 + T 2

1

T 1
2

DΓ22
1, DΓ11

2 = T 2
1

T 1
2

DΓ12
1,

DΓ12
2 = T 2

1

T 1
2

DΓ22
1, DΓ22

2 = DΓ12
1 − T 1

1−T 2
2

T 1
2

DΓ22
1 .

Considering the component B̃11 in Equation (4.2),

B̃11 =
1

6
(T 1

1 − T 2
2) · (T 1

1 + T 2
2) · ((T 1

1 − T 2
2)2 + 4T 1

2T
2

1),

we analyze separately the vanishing of each one of the three factors in B̃11.
Assume that T 2

2 = T 1
1. In this case, component B̃12 in Equation (4.2) reduces to B̃12 =

8
3
T 1

2(T 2
1)2T 1

1; since we are assuming that T 1
2 6= 0, then either T 2

1 = 0 or T 2
1 6= 0 and

T 1
1 = 0. If T 2

1 = 0, the only non-zero component of the Bach tensor is given by B22 =
−(T 1

2)2(T 1
1)2(3(T 1

1)2x2
1′+Φ11), from where it follows that T 1

1 = 0 and hence T is determined
by T∂x2 = T 1

2∂x1 and is nilpotent. If T 2
1 6= 0 and T 1

1 = 0, then we differentiate the component
B12 in Equation (4.2) with respect to x1′ and x2′ to get T 1

2T
2

1 = 0, which is not possible since
both T 1

2 and T 2
1 are non-null.
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Suppose now that T 2
2 = −T 1

1. In this case, we differentiate the component B22 in Equa-
tion (4.2) twice with respect to x1′ and as a consequence we obtain T 1

2(T 1
2T

2
1 + (T 1

1)2) = 0;
since we are assuming T 1

2 6= 0, it follows that T 2
1 = − (T 1

1)2

T 1
2

. Thus, the (1,1)-tensor field T is

given by T∂x1 = T 1
1∂x1 − (T 1

1)2

T 1
2
∂x2 and T∂x2 = T 1

2∂x1 − T 1
1∂x2 , and therefore it is nilpotent

as well.
Finally, suppose that (T 1

1 − T 2
2)2 + 4T 1

2T
2

1 = 0; since T 1
2 6= 0, this is equivalent to

T 2
1 = − (T 1

1−T 2
2)2

4T 1
2

. Now, we differentiate the component B22 in Equation (4.2) twice with
respect to x1′ to obtain T 1

2(T 1
1 + T 2

2) = 0. Thus, we have that T 2
2 = −T 1

1 and T is given by
T∂x1 = T 1

1∂x1− (T 1
1)2

T 1
2
∂x2 and T∂x2 = T 1

2∂x1−T 1
1∂x2 , which again implies that T is nilpotent.

To conclude the proof we show the “only if” part. If T is a multiple of the identity, then
(T ∗Σ, gD,Φ,T ) is self-dual by Theorem 1.24 and therefore it has vanishing Bach tensor. Thus,
we suppose T is parallel and nilpotent and, in this case, we can choose a system of coordinates
(x1, x2) such that T is determined by T∂x1 = ∂x2 and T∂x2 = 0. Hence, examining Equa-
tion (4.2), clearly B̃ = 0 and, since d = t = 0, one easily checks that B11 = B12 = B22 = 0,
showing that the Bach tensor of (T ∗Σ, gD,Φ,T ) vanishes.

Remark 4.2. We emphasize that even though the Bach tensor of the metrics gD,Φ,T depends on
the choice of Φ (as shown in the proof of Theorem 4.1), the existence of Bach-flat metrics in
Theorem 4.1 is independent of the symmetric (0, 2)-tensor field Φ, thus providing an infinite
family of examples for each initial data (Σ, D, T ). Moreover, note that the metrics gD,Φ,T are
generically non-isometric for different deformation tensor fields Φ.

The Bach-flat modified Riemannian extensions in Theorem 4.1 obtained from a (1, 1)-tensor
field of the form T = c Id are not of interest for our purposes since they all are half conformally
flat (cf. Theorem 1.24). Hence, in what follows we focus on the case when T is a parallel
nilpotent (1, 1)-tensor field and refer to gD,Φ,T as a nilpotent Riemannian extension.

Remark 4.3. The nilpotent Riemannian extensions to be considered in what remains of this
chapter are those induced by a parallel nilpotent (1,1)-tensor field T on an affine surface (Σ, D).
In this case, there exist suitable coordinates (x1, x2) where T∂x1 = ∂x2 and T∂x2 = 0, and it
follows from Equation (4.1) that the Christoffel symbols of D satisfy

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

A straightforward calculation shows that the Ricci tensor satisfies

ρD =

(
∂x2

DΓ11
2 − ∂x1DΓ11

1 ∂x2
DΓ11

1

−∂x2DΓ11
1 0

)
.

Hence, ρDs is either zero or of rank one and one easily gets that ρDs is recurrent, i.e., DρDs =
η ⊗ ρDs , with recurrence one-form

η = {∂x1 ln ρDs (∂x1 , ∂x1)− 2DΓ11
1}dx1 + ∂x2 ln ρDs (∂x1 , ∂x1)dx

2 (4.4)
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(see also Theorem 5.1–(iii)).
Moreover, in the special case that the Ricci tensor is symmetric (ρDsk = 0 or, equivalently,

∂x2
DΓ11

1 = 0), work of Wong [104] shows that ρD is recurrent and of rank one if and only
if there exist local coordinates where the only non-zero Christoffel symbol is DΓ11

2(x1, x2).
Furthermore, in this case one has

ρD = ∂x2
DΓ11

2(x1, x2)dx1 ⊗ dx1

and DρD = ω ⊗ ρD, where the recurrence one-form is given by

ω = (∂x1 ln ρD11)dx1 + (∂x2 ln ρD11)dx2

=
∂x1∂x2

DΓ11
2

∂x2DΓ11
2
dx1 +

∂x2∂x2
DΓ11

2

∂x2DΓ11
2
dx2 .

(4.5)

4.2 Bach-flat gradient Ricci solitons

Let Φ be a symmetric (0, 2)-tensor field on (Σ, D, T ). One uses the nilpotent structure T to
construct an associated symmetric (0, 2)-tensor field Φ̂ given by Φ̂(X, Y ) = Φ(TX, TY ), for all
vector fields X, Y on Σ.

Further, proceeding as in Lemma 5.4, let (x1, x2) be local coordinates where T∂x1 = ∂x2 ,
T∂x2 = 0 (just interchanging the order of the coordinates in Assertion (i) of Lemma 5.4). Setting
Φ = Φijdx

i ⊗ dxj one has that Φ̂ expresses as Φ̂ = Φ̂ijdx
i ⊗ dxj = Φ22dx

1 ⊗ dx1.

4.2.1 Einstein nilpotent Riemannian extensions
Riemannian extensions gD,Φ,T with T = c Id are Einstein if and only if the deformation tensor
Φ is given by the symmetric part of the Ricci tensor (cf. Theorem 1.23). In the nilpotent case
(T 2 = 0) one has:

Theorem 4.4. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-tensor
field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Then (T ∗Σ, gD,Φ,T ) is Einstein (indeed,
Ricci-flat) if and only if Φ̂ = −2ρDs .

Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and consider the
induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. A straightforward calculation shows that the Ricci
tensor of any nilpotent Riemannian extension gD,Φ,T is determined by

ρ(∂x1 , ∂x1) = Φ(∂x2 , ∂x2) + 2ρDs (∂x1 , ∂x1),

the other components being zero. Hence the Ricci operator is nilpotent and gD,Φ,T has zero scalar
curvature.

Moreover, the Ricci tensor vanishes if and only if Φ(∂x2 , ∂x2)+2ρDs (∂x1 , ∂x1) = 0. The result
now follows.
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Remark 4.5. The Weyl tensor of a pseudo-Riemannian manifold is harmonic if and only if
div4W vanishes. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-
tensor field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let (x1, x2) be local coordinates
on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and consider the induced coordinates (x1, x2, x1′ , x2′) on
T ∗Σ. A straightforward calculation shows that the divergence of the Weyl tensor of (T ∗Σ, gD,Φ,T )
is given by

2(div4W )(∂x1 , ∂x2 , ∂x1) = {∂x2 Φ(∂x2 , ∂x2) + 2∂x2 ρ
D
s (∂x1 , ∂x1)},

the other components being zero. Hence (T ∗Σ, gD,Φ,T ) has harmonic Weyl tensor if and only
if D̂Φ = −2 η̂ ⊗ ρDs , where η̂(X) = η(TX), η being the recurrence one-form given in Equa-
tion (4.4) and D̂Φ(X, Y ;Z) = DΦ(TX, TY ;TZ).

4.2.2 Gradient Ricci solitons on nilpotent Riemannian extensions

Recall from Theorem 1.27 that the affine gradient Ricci soliton equation determines the potential
function of any self-dual gradient Ricci soliton which is not locally conformally flat, indepen-
dently of the deformation tensor Φ. The next theorem shows that, in contrast with the previous
situation, for any h ∈ C∞(Σ) with dh(ker(T )) = 0, one may use the symmetric (0, 2)-tensor field
HesDh +2ρDs to determine a deformation tensor field Φ so that the resulting nilpotent Riemannian
extension is a Bach-flat steady gradient Ricci soliton with potential function f = h ◦ π.

Theorem 4.6. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-tensor
field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let h ∈ C∞(Σ) be a smooth function.
Then (T ∗Σ, gD,Φ,T , f = h ◦π) is a Bach-flat gradient Ricci soliton if and only if dh(ker(T )) = 0
and

Φ̂ = −HesDh −2ρDs . (4.6)

Moreover the soliton is steady and isotropic.

Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and consider the
induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. Setting f = h ◦ π, one has that Hesf (∂x1 , ∂x1′ ) +
ρ(∂x1 , ∂x1′ ) = λg(∂x1 , ∂x1′ ) leads to λ = 0, which shows that the soliton is steady. A straightfor-
ward calculation shows that the remaining non-zero terms in the gradient Ricci soliton equation
are given by

Hesf (∂x2 , ∂x2) + ρ(∂x2 , ∂x2) = ∂x2∂x2h,

Hesf (∂x1 , ∂x2) + ρ(∂x1 , ∂x2) = ∂x1∂x2h− DΓ11
1∂x2h,

Hesf (∂x1 , ∂x1) + ρ(∂x1 , ∂x1) = x2′ ∂x2h− DΓ11
2 ∂x2h+ ∂x1∂x1h− DΓ11

1∂x1h

+ Φ22 + 2∂x2
DΓ11

2 − 2∂x1
DΓ11

1 .

It immediately follows from the equation (Hesf +ρ)(∂x1 , ∂x1) = 0 that ∂x2h = 0, which shows
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that dh(ker(T )) = 0. The only remaining equation now becomes

Hesf (∂x1 , ∂x1) + ρ(∂x1 , ∂x1)

= ∂x1∂x1h− DΓ11
1∂x1h+ Φ22 + 2∂x2

DΓ11
2 − 2∂x1

DΓ11
1

= Φ(∂x2 , ∂x2) + HesDh (∂x1 , ∂x1) + 2ρDs (∂x1 , ∂x1),

from which Equation (4.6) follows. Moreover, it also follows from the form of the potential
function that ∇f = h′(x1)∂x1′ , and thus ‖∇f‖2 = 0 (equivalently, the level hypersurfaces of
the potential function are degenerate submanifolds of T ∗Σ), which shows that the soliton is
isotropic.

Remark 4.7. The potential functions of the gradient Ricci solitons in Theorem 4.6 are of the
form f = h ◦ π for some h ∈ C∞(Σ). Next we show that this is indeed the case if the Ricci
tensor of (Σ, D) is non-symmetric.

We consider (T ∗Σ, gD,Φ,T , f) a gradient Ricci soliton with potential function f ∈ C∞(T ∗Σ).
Take local coordinates (x1, x2, x1′ , x2′) on T ∗Σ as in the proof of Theorem 4.6. Observe that,
since Hesf (∂xi′ , ∂xj′ ) = ∂xi′∂xj′f(x1, x2, x1′ , x2′), it follows from the expression of the Ricci
tensor in Theorem 4.4 and the metric tensor (1.19), that the potential function is determined by
f = ιX + h ◦ π, for some h ∈ C∞(Σ) and some vector field X on Σ, where ιX is the evaluation
map acting on X .

Further set X = A(x1, x2)∂x1 + B(x1, x2)∂x2 in the local coordinates (x1, x2) above, for
some A,B ∈ C∞(Σ). Then Hesf (∂x2 , ∂x1′ ) = ∂x2A(x1, x2), from where it follows that X =
A(x1)∂x1 +B(x1, x2)∂x2 . Considering Hesf (∂x2 , ∂x2′ ) = −A′′(x1) + ∂x2B(x1, x2), one has that
X = A(x1)∂x1 + (P (x1) + x2A′(x1))∂x2 for some smooth function P (x1). Next the component

Hesf (∂x1 , ∂x2′ ) = A(x1)DΓ11
2 − x2′A(x1)

+DΓ11
1(P (x1) + x2A′(x1)) + P ′(x1) + x2A′′(x1)

shows that A = 0 and it reduces to Hesf (∂x1 , ∂x2′ ) = P ′(x1) + P (x1)DΓ11
1. A solution P (x1)

of the equation P ′(x1) + P (x1)DΓ11
1 = 0 either vanishes identically (and hence X = 0) or

it is nowhere zero, in which case ∂x2DΓ11
1 = 0 (see the proof of Theorem 4.13). In the latter

case Remark 4.3 shows that the Ricci tensor of (Σ, D) is symmetric and thus recurrent of rank
one. Theorem 4.6 describes all possible gradient Ricci solitons on (T ∗Σ, gD,Φ,T ) whenever ρDsk
is non-zero.

Remark 4.8. The tensor field Dijk = −2 div4Wijk + Wijk`∇`f introduced in [36] plays an
essential role in analyzing the geometry of Bach-flat gradient Ricci solitons. Local conformal
flatness in [34, 36] follows from D = 0, which is obtained under some natural assumptions.

Gradient Ricci solitons in Theorem 4.6 satisfy∇f = h′(x1)∂x1′ . Therefore, a straightforward
calculation shows that D is completely determined by

D121 = −2h′(x1)∂x2
DΓ11

1(x1, x2),

the other components being zero. Hence it follows from Remark 4.3 that the tensor field D
vanishes if and only if the Ricci tensor ρD is symmetric. However Theorem 4.9 shows that
(T ∗Σ, gD,Φ,T ) is never locally conformally flat.
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4.3 Half conformally flat nilpotent Riemannian extensions

The existence of a null distribution V on a four-dimensional manifold (M, g) of neutral signature
defines a natural orientation on M : the one which, for any basis {u, v} of V, makes the bivector
u ∧ v self-dual (see [49]). We consider on T ∗M the orientation which agrees with V = ker(π∗),
and thus self-duality and anti-self-duality are not interchangeable. The following result shows
that they are essentially different for nilpotent Riemannian extensions.

Theorem 4.9. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-tensor
field T . Then

(i) (T ∗Σ, gD,Φ,T ) is never self-dual for any deformation tensor field Φ.

(ii) If (T ∗Σ, gD,Φ,T ) is anti-self-dual, then D is either a flat connection or (Σ, D) is recurrent
with symmetric Ricci tensor of rank one.

In the latter case there exist local coordinates (u1, u2) where the only non-zero Christoffel
symbol is uΓ11

2 and the tensor field T is given by T∂u1 = ∂u2 , T∂u2 = 0. Moreover,
(T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if the symmetric (0, 2)-tensor field Φ satisfies
the equations:

D̂Φ = −2ω̂ ⊗ ρD,

0 = 1
2
Φ̂⊗ Φ̂(∂x1 , ∂x1 , ∂x1 , ∂x1) + 2(Φ̂⊗ ρD)(∂x1 , ∂x1 , ∂x1 , ∂x1)

+D2Φ(∂x1 , ∂x1 ;T∂x1 , T∂x1) +D2Φ(T∂x1 , T∂x1 ; ∂x1 , ∂x1)

− 2D2Φ(∂x1 , T∂x1 ;T∂x1 , ∂x1),

(4.7)

where D̂Φ(X, Y, Z) = DΦ(TX, TY ;TZ), ω is the recurrence one-form given by DρD =
ω ⊗ ρD, and ω̂(X) = ω(TX).

Proof. A direct computation using the expression of the anti-self-dual curvature operator of any
four-dimensional Walker metric obtained in [51] shows that, for any nilpotent Riemannian ex-
tension gD,Φ,T , W− takes the form

W− =
1

2

 −1 0 1
0 0 0
−1 0 1

 , (4.8)

thus showing that the anti-self-dual Weyl curvature operatorW− is nilpotent and so (T ∗Σ, gD,Φ,T )
is never self-dual, which proves Assertion (i).

Next we show Assertion (ii). As a matter of notation we write ∂xsf = fs, ∂xr∂xsf = frs. Let
(M, g) be a four-dimensional Walker metric and set the metric components g11 = a, g12 = c and
g22 = b, where gij are functions of the Walker coordinates (x1, x2, x1′ , x2′). Then the self-dual
Weyl curvature operator takes the form (see [51])

W+ =

 W+
11 W+

12 W+
11 + τ

12

−W+
12

τ
6

−W+
12

−W+
11 − τ

12
−W+

12 −W+
11 − τ

6

 , (4.9)
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where
W+

11 = 1
12

(6ca1b2 − 6a1b1′ − 6ba1c2 + 12a1c2′ − 6ca2b1 + 6a2b2′

+ 6ba2c1 + 6a1′b1 − 6a2′b2 − 12a2′c1 + 6ab1c2 − 6ab2c1

+ 12b2c1′ − 12b1′c2 − a11 − 12c2a11 − 12bca12 + 24ca12′

− 3b2a22 + 12ba22′ − 12a2′2′ − 3a2b11 + 12ab11′ − b22

− 12b1′1′ + 12acc11 − 2c12 + 6abc12 − 24cc11′ − 12ac12′

− 12bc21′ + 24c1′2′),

(4.10)

and
W+

12 = 1
4
(−2ca11 − ba12 + 2a12′ + ab12 − 2b21′ + ac11 − 2cc12

− 2c11′ − bc22 + 2c22′) .
(4.11)

Since any anti-self-dual metric is Bach-flat, we proceed as in the proof of Theorem 4.1 con-
sidering local coordinates (x1, x2) on the surface Σ such that T is determined by T∂x1 = ∂x2 and
T∂x2 = 0. Since T is parallel, the Christoffel symbols must satisfy:

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

Next, we analyze the self-dual Weyl curvature operator, which is completely determined by
the scalar curvature and its components W+

11 and W+
12 already described in Equations (4.10)

and (4.11). The scalar curvature is zero by Theorem 4.4, and W+
12 = −2∂x2

DΓ11
1, from where it

follows that the Ricci tensor ρD is symmetric of rank one and recurrent (see Remark 4.3). Take
local coordinates (u1, u2), as in Remark 4.3, so that the only non-zero Christoffel symbol is uΓ11

2

and T∂u1 = ∂u2 , T∂u2 = 0. Finally, we compute the component W+
11 given by Equation (4.10)

in the coordinates (u1, u2, u1′ , u2′) of T ∗Σ, obtaining

W+
11 = (∂x2Φ22 + 2∂x2∂x2

uΓ11
2)u2′ − 1

2
(Φ22)2 − 2Φ22∂x2

uΓ11
2

− ∂x2Φ22
uΓ11

2 + 2∂x1∂x2Φ12 − ∂x2∂x2Φ11 − ∂x1∂x1Φ22 .

Thus (T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if

∂x2Φ22 + 2∂x2∂x2
uΓ11

2 = 0,

1
2
(Φ22)2 + 2Φ22∂x2

uΓ11
2 + ∂x2Φ22

uΓ11
2

= 2∂x1∂x2Φ12 − ∂x2∂x2Φ11 − ∂x1∂x1Φ22,

from where Equation (4.7) follows.

4.3.1 Anti-self-dual gradient Ricci solitons
Self-dual gradient Ricci solitons which are not locally conformally flat are described in Theo-
rem 1.27. In contrast, no explicit examples of strictly anti-self-dual gradient Ricci solitons were
previously reported. In this section we use nilpotent Riemannian extensions to construct anti-
self-dual isotropic gradient Ricci solitons. In this case, Theorem 4.9 shows that (Σ, D) must
have symmetric Ricci tensor.
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Proposition 4.10. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci tensor equipped
with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric (0, 2)-tensor field Φ.
Then (T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if ω̂ = 0 and Φ̂ = 0, where ω is the recurrence
one-form given in Equation (4.5).

Proof. If the Ricci tensor ρD is symmetric of rank one and Φ is parallel, then the equations in
Theorem 4.9 reduce to ω̂ = 0 and Φ̂ = 0, which proves the result. If (Σ, D) is a flat surface
then a straightforward calculation shows that anti-self-duality is equivalent to Φ̂ = 0, being Φ a
parallel tensor.

Since the deformation tensor Φ of any gradient Ricci soliton in Theorem 4.6 must satisfy
Φ̂ = −HesDh −2ρDs , the condition Φ̂ = 0 in the previous proposition restricts the consideration
of Ricci solitons on (T ∗Σ, gD,Φ,T ) to those originated by affine gradient Ricci solitons on (Σ, D).

Proposition 4.11. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent (1, 1)-
tensor field T and let h ∈ C∞(Σ). Then

(i) The (Σ, D, T, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if
(T ∗Σ, gD,Φ̂,T , f = h ◦ π) is a Bach-flat steady gradient Ricci soliton for any symmetric
(0, 2)-tensor field Φ.

(ii) The (Σ, D, T, h) is a non-flat affine gradient Ricci soliton with dh(ker(T )) = 0 if and only
if the recurrence one-form η given in Equation (4.4) satisfies η̂ = 0.

Proof. Since T is nilpotent, Φ̂(TX, TY ) = 0 for any (0, 2)-tensor field Φ. Hence Equation (4.6)
shows that (T ∗Σ, gD,Φ̂,T , f = h ◦ π) is a gradient Ricci soliton if and only if (Σ, D, T, h) is
an affine gradient Ricci soliton with dh(ker(T )) = 0, which shows Assertion (i). Next take
local coordinates (x1, x2) on Σ so that T∂x1 = ∂x2 , T∂x2 = 0. Since ρDs = (∂x2

DΓ11
2 −

∂x1
DΓ11

1)dx1 ⊗ dx1 (see Remark 4.3), one has

(HesDh +2ρDs )(∂x2 , ∂x2) = ∂x2∂x2h .

Thus h(x1, x2) = x2P (x1) + Q(x1) for some P,Q ∈ C∞(Σ). Hence dh(ker(T )) = 0 holds if
and only if P = 0. Since h(x1, x2) = Q(x1) one has that

(HesDh +2ρDs )(∂x1 , ∂x2) = 0,

and the only remaining equation is

0 = (HesDh +2ρDs )(∂x1 , ∂x1) = Q′′ + 2(∂x2
DΓ11

2 − ∂x1DΓ11
1)

= Q′′ + 2ρD(∂x1 , ∂x1) .

Therefore, the integrability condition becomes ∂x2ρD(∂x1 , ∂x1) = 0.
Hence, it follows from Equation (4.4) that (Σ, D, T, h) is an affine gradient Ricci soliton

with dh(ker(T )) = 0 if and only if the symmetric part of the Ricci tensor ρDs is recurrent with
recurrence one-form η satisfying η(ker(T )) = 0. Assertion (ii) now follows.
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A direct application of previous propositions gives the desired examples.

Theorem 4.12. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci tensor equipped with
a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric (0, 2)-tensor field Φ.

(i) The (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if
(T ∗Σ, gD,Φ̂,T , f = h ◦ π) is an anti-self-dual steady gradient Ricci soliton which is not
locally conformally flat.

(ii) The (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if there
exist local coordinates (u1, u2) on Σ so that the only non-zero Christoffel symbol is given
by uΓ11

2 = P (u1) + u2Q(u1) and the potential function h(u1) is determined by h′′(u1) =
−2Q(u1), for any P,Q ∈ C∞(Σ).

Proof. (T ∗Σ, gD,Φ̂,T , f = h ◦ π) is a gradient Ricci soliton by Proposition 4.11–(i). Anti-self-
duality now follows from Proposition 4.10 and Proposition 4.11–(ii), showing Assertion (i).

Assertion (ii) follows from Proposition 4.11–(ii) and the expression of the recurrence form ω
in Equation (4.5). Take local coordinates (u1, u2) on Σ as in the proof of Proposition 4.11–(ii).
Then it follows from Equation (4.5) that ω̂ = 0 if and only if ∂x2∂x2uΓ11

2 = 0. Thus

uΓ11
2(u1, u2) = P (u1) + u2Q(u1)

for some P,Q ∈ C∞(Σ) and h′′(u1) = −2Q(u1).

4.4 Conformally Einstein nilpotent Riemannian extensions

Since nilpotent Riemannian extensions are not weakly-generic (see the expression of W− in the
proof of Theorem 4.9), we will analyze the conformally Einstein Equation (1.6):

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0,

seeking for solutions on nilpotent Riemannian extensions (T ∗Σ, gD,Φ,T ).

Theorem 4.13. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T . Then any solution of Equation (1.6) is of the form ϕ = ιX +φ ◦ π for some
vector field X on Σ such that X ∈ ker(T ) and tr(DX) = 0.

Moreover (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if one of the following holds:

(i) The conformally Einstein Equation (1.6) admits a solution ϕ = φ ◦ π for some φ ∈
C∞(Σ) with dφ(ker(T )) = 0, and the deformation tensor Φ is determined by φ Φ̂ +
2(HesDφ +φ ρDs ) = 0.

(ii) The conformally Einstein Equation (1.6) admits a solution ϕ = ιX + φ ◦ π for some φ ∈
C∞(Σ) and some non-zero vector field X on Σ such that X ∈ ker(T ) and tr(DX) = 0. In
this case, the Ricci tensor ρD is symmetric of rank one and recurrent.
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Moreover there are local coordinates (u1, u2) on Σ so that

ϕ(u1, u2, u1′ , u2′) = κu2′ + φ(u1, u2)

is a solution of Equation (1.6) if and only if

dφ(T∂x1) = µ
2
Φ(T∂x1 , T∂x1),

HesDφ (∂x1 , ∂x1) + φ ρD(∂x1 , ∂x1)

= −1
2
(φ+ 2µ uΓ11

2)Φ(T∂x1 , T∂x1)

+ µ
2

{
2(D∂x1

Φ)(T∂x1 , ∂x1)− (DT∂x1
Φ)(∂x1 , ∂x1)

}
.

Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and consider
the induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. Since T is parallel we obtain directly from
Equation (4.1) that

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

In order to analyze the conformally Einstein Equation (1.6) consider the symmetric (0, 2)-tensor
field E = 2 Hesϕ +ϕρ − 1

4
{2∆ϕ + ϕ τ}g and set E = 0. Let Eij = E(∂xi , ∂xj) and let ϕ ∈

C∞(T ∗Σ) be a solution of Equation (1.6). Then one computes

E33 = 2∂x1′∂x1′ϕ, E34 = 2∂x1′∂x2′ϕ, E44 = 2∂x2′∂x2′ϕ,

to show that any solution of Equation (1.6) must be of the form

ϕ(x1, x2, x1′ , x2′) = A(x1, x2)x1′ +B(x1, x2)x2′ + ψ(x1, x2), (4.12)

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2). This shows
that any solution of the conformally Einstein equation on (T ∗Σ, gD,Φ,T ) is of the form ϕ =
ιX + ψ ◦ π, where ιX is the evaluation of a vector field X = A∂x1 + B∂x2 on Σ, ψ ∈ C∞(Σ)
and π : T ∗Σ→ Σ is the projection.

Now, the conformally Einstein condition given in Equation (1.6) can be expressed in matrix
form as follows:

(Eij) =


E11 E12 ∂x1A− ∂x2B 2(DΓ11

2A+ DΓ11
1B + ∂x1B −Ax2′)

∗ E22 2∂x2A −∂x1A+ ∂x2B

∗ ∗ 0 0

∗ ∗ ∗ 0

 (4.13)

where positions with ∗ are not written since the matrix is symmetric, and where
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E11 = −(∂x1A− ∂x2B − 4DΓ11
1A)x2

2′

+{AΦ22 + 2(∂x1∂x1A− DΓ11
2∂x2A

+ DΓ11
1∂x2B + A∂x2

DΓ11
2 −B∂x2DΓ11

1)}x1′

−{BΦ22 + 2AΦ12 − 2(∂x1∂x1B + DΓ11
2∂x1A

− DΓ11
1∂x1B + (∂x1

DΓ11
2 − 2DΓ11

1DΓ11
2)A

+ (∂x1
DΓ11

1 − 2(DΓ11
1)2)B + ∂x2ψ)}x2′

+2∂x2Ax1′x2′

−(∂x1A+ ∂x2B)Φ11 + 2(DΓ11
2A+ DΓ11

1B)Φ12

+(2DΓ11
2B + ψ)Φ22 − A∂x1Φ11 +B∂x2Φ11 − 2B∂x1Φ12 + 2∂x1∂x1ψ

−2DΓ11
1∂x1ψ − 2DΓ11

2∂x2ψ − 2(∂x1
DΓ11

1 − ∂x2DΓ11
2)ψ,

E12 = 2(∂x1∂x2A− DΓ11
1∂x2A+ A∂x2

DΓ11
1)x1′

+2(∂x1∂x2B + DΓ11
1∂x1A+ A∂x2

DΓ11
2)x2′

−(∂x1A+ ∂x2B)Φ12 + 2DΓ11
1BΦ22 − A∂x2Φ11 −B∂x1Φ22

+2∂x1∂x2ψ − 2DΓ11
1∂x2ψ,

E22 = 2∂x2∂x2Ax1′ + 2(∂x2∂x2B + 2A∂x2
DΓ11

1)x2′

−(∂x1A+ ∂x2B + 2DΓ11
1A)Φ22 − 2A∂x2Φ12

+A∂x1Φ22 −B∂x2Φ22 + 2∂x2∂x2ψ .

First, we use the component E14 = 2(DΓ11
2A+ DΓ11

1B + ∂x1B −Ax2′) in Equation (4.13);
note that ∂x2′E14 = −2A, and therefore A(x1, x2) = 0, which shows that X ∈ ker(T ). Now
component E13 in Equation (4.13) gives ∂x2B = 0, which implies B(x1, x2) = P (x1) for some
smooth function P depending only on the coordinate x1, i.e., the vector field X = B∂x2 satisfies
tr(DX) = 0.

At this point, the conformal function ϕ has the coordinate expression

ϕ(x1, x2, x1′ , x2′) = P (x1)x2′ + ψ(x1, x2)

and the possible non-zero components in Equation (4.13) are E11, E12, E22 and E14. Considering
the component E14 = 2(P ′(x1) + DΓ11

1(x1, x2)P (x1)), we distinguish two cases depending on
whether the function P vanishes identically or not. Indeed, if P (x1) is a solution of the equation
E14 = 0, then

∂x1
(
P (x1)e

∫
DΓ11

1(x1,x2)dx1
)

= e
∫
DΓ11

1(x1,x2)dx1
{
P ′(x1) + P (x1)DΓ11

1(x1, x2)
}

= 0,

which shows that
P (x1)e

∫
DΓ11

1(x1,x2)dx1 = Q(x2),
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for some smooth function Q(x2). Now, if the function Q(x2) vanishes at some point, then
P (x1) = 0 at each point. Otherwise, if Q(x2) 6= 0 at each point, so is P (x1).

First, suppose that P (x1) ≡ 0, and hence ϕ = ψ ◦ π. In this case, component E22 in Equa-
tion (4.13) yields ∂x2∂x2ψ = 0, which implies ψ(x1, x2) = Q(x1)x2 + φ(x1) for some smooth
functions Q and φ depending only on the coordinate x1. Now, the only components in Equa-
tion (4.13) which could be non-null are

E11 = 2Qx2′ + (QΦ22 + 2Q′′ − 2DΓ11
1Q′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)Q)x2

+φΦ22 + 2φ′′ − 2DΓ11
1φ′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)φ− 2DΓ11
2Q,

E12 = 2(Q′ − DΓ11
1Q) .

Now, ∂x2′E11 = 2Q, implies Q = 0, thus showing that dϕ(ker(T )) = 0. Then E12 = 0 and the
component E11 reduces to

E11 = φΦ22 + 2φ′′ − 2DΓ11
1φ′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)φ .

Since ϕ(x1, x2, x1′ , x2′) = φ(x1), φ must be non-null and we obtain that E11 = 0 is equivalent to

Φ22 = − 2
φ

{
φ′′ − DΓ11

1φ′ − (∂x1
DΓ11

1 − ∂x2DΓ11
2)φ
}

= − 2
φ

{
HesDφ (∂x1 , ∂x1) + φ ρDs (∂x1 , ∂x1)

}
,

from where Assertion (i) is obtained.

Finally, we analyze the case in which the function P (x1) does not vanish identically. Since
E14 = 2(P ′(x1) + DΓ11

1(x1, x2)P (x1)), we have ∂x2DΓ11
1 = 0. Now it follows that the Ricci

tensor ρD is symmetric of rank one and recurrent (see Remark 4.3). Specialize the local co-
ordinates (u1, u2) on Σ so that the only non-zero Christoffel symbol of D is uΓ11

2(u1, u2) and
T∂u1 = ∂u2 , T∂u2 = 0. Then any solution of the conformally Einstein equation takes the form

ϕ(u1, u2, u1′ , u2′) = A(u1)u2′ + φ(u1, u2) .

Now, considering the component E41 of the conformally Einstein equation in the new coordinates
(u1, u2), one has E41 = 2A′(u1), which shows that ϕ(u1, u2, u1′ , u2′) = µu2′+φ(u1, u2) for some
µ 6= 0. Considering now the component

E11 = (2∂x2φ− µΦ22)u2′ + 2∂x1∂x1φ− 2∂x2φ
uΓ11

2

+ 2φ∂x2
uΓ11

2 + φΦ22 + 2µΦ22
uΓ11

2 + µ∂x2Φ11 − 2µ∂x1Φ12,

it follows that the conformally Einstein equation reduces to

µΦ22 = 2∂x2φ,

(φ+ 2µ uΓ11
2)Φ22 = −2(HesDφ (∂u1 , ∂u1) + φρD(∂u1 , ∂u1))

+µ(2∂x1Φ12 − ∂x2Φ11),

from where Assertion (ii) is obtained.
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4.5 Examples

4.5.1 Nilpotent Riemannian extensions with flat base

Let (Σ, D) be a flat torsion free affine surface. Take local coordinates on Σ so that all Christoffel
symbols vanish. Let T be a parallel nilpotent (1, 1)-tensor field. Since T is parallel, its compo-
nents T j i are necessarily constant on the given coordinates. Hence one may further specialize
the local coordinates (x1, x2), by using a linear transformation, so that T∂x1 = ∂x2 , T∂x2 = 0
and all the Christoffel symbols DΓij

k remain identically zero. Now Theorem 4.1 shows that
(T ∗Σ, gD,Φ,T ) is Bach-flat for any symmetric (0, 2)-tensor field Φ on Σ. Moreover it follows from
Theorem 4.6 that (T ∗Σ, gD,Φ,T , f = h ◦ π) is a steady gradient Ricci soliton for any h ∈ C∞(Σ)
with dh ◦ T = 0 and any symmetric (0, 2)-tensor field Φ such that Φ22(x1, x2) = −h′′(x1).
Further note from Remark 4.8 that the steady gradient Ricci soliton (T ∗Σ, gD,Φ,T , f = h ◦ π)
satisfies D = 0. Moreover, since Φ22 = −h′′(x1), one has that (T ∗Σ, gD,Φ,T ) is in the conformal
class of an Einstein metric (just considering the conformal metric ḡ = φ−2gD,Φ,T determined by
the equation φ′′(x1)− 1

2
φ(x1)h′′(x1) = 0).

Remark 4.14. Set Σ = R2 with usual coordinates (x1, x2) and put T∂x1 = ∂x2 , T∂x2 = 0. For
any smooth function h(x1) consider the deformation tensor Φ given by Φ22(x1, x2) = −h′′(x1)
(the other components being zero). Then, the non-zero Christoffel symbols of gD,Φ,T are given
by

Γ11
2 = −x2′ = −Γ12′

1′ , Γ11
2′ = −h′′(x1)x2′ , Γ12

2′ = −1

2
h(3)(x1) = −Γ22

1′ .

Hence a curve γ(t) = (x1(t), x2(t), x1′(t), x2′(t)) is a geodesic if and only if

ẍ1(t) = 0, ẍ2(t)− x2′(t) ẋ
1(t)2 = 0,

ẍ1′(t) + 2 x2′(t) ẋ
1(t)ẋ2′(t) + 1

2
h(3)(x1(t)) ẋ2(t)2 = 0,

ẍ2′(t)− h′′(x1(t))x2′(t) ẋ
1(t)2 − h(3)(x1(t)) ẋ1(t) ẋ2(t) = 0 .

Thus x1(t) = at+ b for some a, b ∈ R and

ẍ2(t)− a2 x2′(t) = 0,

ẍ2′(t)− h′′(at+ b) a2 x2′(t)− h(3)(at+ b) a ẋ2(t) = 0,

ẍ1′(t) + 2a x2′(t) ẋ2′(t) + 1
2
h(3)(at+ b) ẋ2(t)2 = 0 .

Now the first two equations above are linear and thus x2(t) and x2′(t) are globally defined.
Finally, since ẍ1′(t) + 2a x2′(t) ẋ2′(t) + 1

2
h(3)(at+ b) ẋ2(t)2 = 0 is also linear on x1′(t), one has

that geodesics are globally defined.
Then it follows from Theorem 4.6 that (T ∗R2, gD,Φ,T , f = h ◦ π) is a geodesically complete

steady gradient Ricci soliton, which is conformally Einstein by Theorem 4.13.
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4.5.2 Nilpotent Riemannian extensions with non-recurrent base
Let (T ∗Σ, gD,Φ,T , f = h ◦ π) be a non-trivial Bach-flat steady gradient Ricci soliton as in Theo-
rem 4.6. Further assume that the Ricci tensor ρD is non-symmetric, i.e., ρDsk 6= 0 (equivalently,
∂x2

DΓ11
1 6= 0 as shown in Remark 4.3). Then it follows from Theorem 4.9 that (T ∗Σ, gD,Φ,T ) is

not half conformally flat.
Theorem 4.13 shows that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if there exists a

positive φ ∈ C∞(Σ) with dφ ◦ T = 0 such that

φ Φ̂ + 2(HesDφ +φ ρDs ) = 0 .

Therefore, it follows from Theorem 4.6 that HesDh = 2
φ

HesDφ , which means (2φ
′

φ
− h′)DΓ11

1 =

2φ
′′

φ
− h′′. Taking derivatives with respect to x2 and, since ∂x2DΓ11

1 6= 0, the equation above
splits into

2φ′

φ
− h′ = 0 and

2φ′′

φ
− h′′ = 0,

which only admits constant solutions. Summarizing the above one has the following: Let
(Σ, D, T ) be an affine surface with non-symmetric Ricci tensor (i.e., ρDsk 6= 0). Then any Bach-flat
gradient Ricci soliton (T ∗Σ, gD,Φ,T , f = h ◦ π) is neither half conformally flat nor conformally
Einstein.



Chapter 5
Parallel tensors on affine surfaces

Motivated by the results in Chapter 4, one is interested in the existence of affine surfaces admit-
ting a parallel tensor of type (1,1) which is nilpotent and their explicit description. It is important
to emphasize that any parallel tensor decomposes as an scalar multiple of the identity plus a trace
free part. In consequence, one can reduce the problem and restrict the study to trace free parallel
tensor fields.

We say that (Σ, D, T ) is a Kähler surface if T is a complex structure (T 2 = − Id) and
DT = 0. If the parallel tensor field is a para-complex structure (T 2 = Id), then (Σ, D, T ) is
called para-Kähler. Finally (Σ, D, T ) is said to be nilpotent Kähler if T is a nilpotent parallel
tensor field of type (1,1). Let (Σ, D) be an affine surface with the non-zero skew-symmetric
Ricci tensor ρDsk 6= 0. Then ρDsk defines a volume element. Furthermore, ρDsk is recurrent, i.e.,
DρDsk = ω ⊗ ρDsk. The symmetric Ricci tensor is not recurrent in general. We will prove the
following result in Section 5.2.

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recurrent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is recurrent.

(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and recurrent.

Affine surfaces admitting a trace free parallel (1,1)-tensor field have appeared in the literature
in several contexts.

(1) Affine surfaces with parallel shape operator have been investigated in [69], where it is
shown that any such surface is either an equiaffine sphere or the shape operator is two-step
nilpotent, thus corresponding to Case (iii) above.

(2) Let (Σ, D) be an affine surface equipped with a parallel volume form Ω. Since dΩ = 0
and DΩ = 0, there is a notion of symplectic sectional curvature (see [56]).

A symplectic surface (Σ, D,Ω) has zero symplectic sectional curvature if and only if the
Ω-Ricci operator Ω(RicΩ(X), Y ) = ρD(X, Y ) is a nilpotent Kähler structure. Furthermore
the symplectic sectional curvature is positive definite (resp. negative definite) if and only
if RicΩ is a Kähler (resp. para-Kähler) structure [56].

This chapter is organized as follows. In section 5.1 we study the relation between parallel
tensors and the Ricci tensor as well as the dimension of the spaces of parallel tensors. The proof
of the Theorem 5.1 is given in Section 5.2. In Section 5.3 we analyze the existence of parallel
(1,1)-tensor fields on the Type A and Type B homogeneous surfaces. In this chapter we report
on work investigated in [30].

139
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5.1 The space of parallel tensor fields on a surface

Let (Σ, D) be an affine surface and let (x1, x2) be a system of local coordinates on Σ. Let T be
a tensor field of type (1,1). Expand T = T ij∂xi ⊗ dxj . We say that T is parallel if DT = 0. Let
P(Σ, D) be the set of parallel tensors of type (1, 1) on (Σ, D):

P(Σ, D) = {T ij : ∂xkT
i
j + DΓk`

i T `j − DΓkj
` T i` = 0, for all i, j, k} .

Let tr(T ) := T ii be the trace of the endomorphism. Let

P0(Σ, D) := {T ∈ P(Σ, D) : tr(T ) = 0}

be the space of trace free parallel tensors of type (1,1). If T ∈ P(Σ, D), tr(T ) is constant and
expressing T = 1

2
tr(T ) Id +(T − 1

2
tr(T ) Id) decomposes

P(Σ, D) = Id ·R⊕ P0(Σ, D) .

If 0 6= T ∈ P0(Σ, D), then the eigenvalues of T are {±λ} so tr(T 2) = 2λ2. If 2λ2 < 0
(resp. 2λ2 > 0), we can rescale T so T 2 = − Id (resp. T 2 = Id) and T defines a Kähler (resp.
para-Kähler) structure on Σ; the almost complex (resp. almost para-complex) structure being
integrable as Σ is a surface [44, 85]. Finally, if λ = 0, then T is nilpotent and defines what we
will call a nilpotent Kähler structure.

Lemma 5.2. If (Σ, D) is a connected affine surface, then P(Σ, D) is a unital algebra with
dim(P(Σ, D)) ≤ 4. Let T ∈ P(Σ, D). The eigenvalues of T are constant on Σ. If T vanishes at
any point of Σ, then T vanishes identically.

Proof. LetM2(F) be the unital algebra of 2×2 matrices with entries in a field F and letM0
2 (F) ⊂

M2(F) be the linear subspace of trace free matrices. The sum and product of parallel tensors of
type (1,1) is again parallel. Since Id = (δij) is parallel, P(Σ, D) is a unital algebra. Fix a
point p ∈ Σ. Since Σ is connected, a parallel tensor is defined by its value at a single point.
Thus the map T → T (p) is a unital algebra homomorphism which embeds P(Σ, D) into M2(R)
relative to the coordinate basis. Thus P(Σ, D) has dimension at most 4. Let T ∈ P(Σ, D).
Since d{tr(T )} = tr(DT ) = 0, tr(T ) is constant. By replacing T by T − 1

2
tr(T ) Id, we

may assume that T ∈ P0(Σ, D) is trace free. The eigenvalues of T are then {λ(p),−λ(p)} so
tr(T 2) = 2λ2(p). Since T 2 is parallel, this implies λ2(·) is constant and hence the eigenvalues
themselves are constant.

The symmetric Ricci tensor plays a crucial role. The proof of the following theorem will be
obtained in this section after a case by case analysis.

Theorem 5.3. Let (Σ, D) be a simply connected affine surface.

(i) If dim(P0(Σ, D)) = 1, then exactly one of the following possibilities holds:

(a) (Σ, D) admits a Kähler structure and Rank(ρDs ) = 2.
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(b) (Σ, D) admits a para-Kähler structure and Rank(ρDs ) = 2.

(c) (Σ, D) admits a nilpotent Kähler structure and Rank(ρDs ) = 1.

(ii) dim(P0(Σ, D)) 6= 2.

(iii) dim(P0(Σ, D)) = 3 if and only if ρDs = 0. This implies (Σ, D) admits Kähler, para-Kähler,
and nilpotent Kähler structures.

Generically, of course, dim(P0(Σ, D)) = 0. Thus, there exist examples with Rank(ρDs ) = 1
(resp. Rank(ρDs ) = 2) where dim(P0(Σ, D)) = 0 as we shall show in Remark 5.17 (resp.
Remark 5.13). What is somewhat surprising is that the existence of parallel (1, 1)-tensor fields is
completely characterized by the geometry of the symmetric part of the Ricci tensor ρDs .

Let T be a tensor of type (1,1) on a smooth surface Σ such that the eigenvalues of T are
constant; this is equivalent, of course, to assuming either that tr(T ) and tr(T 2) are constant on
Σ or that tr(T ) and det(T ) are constant on Σ. By subtracting a suitable multiple of the identity
from T , we can assume T is trace free. We have the following useful observation.

Lemma 5.4. Let 0 6= T be a trace free tensor of type (1,1) on an affine surface Σ with det(T ) ∈
{0,±1}.

(i) If det(T ) = 0, we can choose local coordinates so T = ∂x1 ⊗ dx2.

(ii) If det(T ) = 1, we can choose local coordinates so T = ∂x2 ⊗ dx1 − ∂x1 ⊗ dx2.

(iii) If det(T ) = −1, we can choose local coordinates so T = ∂x1 ⊗ dx1 − ∂x2 ⊗ dx2.

Proof. Let 0 6= T be nilpotent. Let Y1 be a non-zero vector field which is defined locally so that
TY1 6= 0. Then Y2 := TY1 spans ker(T ). Choose local coordinates (y1, y2) so that Y2 = ∂y2 .
Then T∂y1 is a non-zero multiple of ∂y2 , i.e., T∂y1 = f∂y2 . Let X1 = ∂y1 + g∂y2 and X2 = f∂y2
where g remains to be determined. Then TX1 = X2. We have [X1, X2] = (∂y1f + g∂y2f −
f∂y2g)∂y2 . Solve the ODE

∂y2g(y1, y2) = f−1{∂y1f + g∂y2f} with g(y1, 0) = 0 .

This ensures [X1, X2] = 0. Since {X1, X2} are linearly independent, we can choose local coordi-
nates (x1, x2) so ∂x1 = X1 and ∂x2 = X2. We then have T∂x1 = ∂x2 and T∂x2 = 0; Assertion (i)
follows after interchanging the roles of x1 and x2.

If det(T ) = 1, then T 2 = − Id and T defines an almost complex structure. Since Σ is a
surface, the Nirenberg-Newlander Theorem [85] shows that we can choose local coordinates so
T∂x1 = ∂x2 and T∂x2 = −∂x1 . Assertion (ii) now follows.

Let det(T ) = −1. Then T 2 = Id and T defines an almost para-complex structure. Since we
are in dimension 2, the para-complex structure is integrable and we can choose local coordinates
so T∂x1 = ∂x1 and T∂x2 = −∂x2 (see for example [44]). Assertion (iii) follows.

The proof of Theorem 5.3 follows after a case by case analysis of the different local forms
in Lemma 5.4. First, we consider the existence of parallel tensor fields on affine surfaces with
skew-symmetric Ricci tensor. After that, we will analyze nilpotent Kähler structures, Kähler
structures and para-Kähler structures.
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The case of skew-symmetric Ricci tensor

Lemma 5.5. Let (Σ, D) be an affine surface which is not flat.

(i) ρDs = 0 if and only if there is a coordinate atlas with locally defined ϕ so:

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
1 = ∂x1ϕ,

DΓ12
2 = 0, DΓ22

1 = ∂x2ϕ,
DΓ22

2 = ∂x1ϕ .
(5.1)

(ii) If Equation (5.1) holds, then ρD = −∂x1∂x1ϕdx1 ∧ dx2, and

P0(Σ, D) = span

{(
0 1

0 0

)
,

(
1 2ϕ

0 −1

)
,

(
−ϕ −ϕ2

1 ϕ

)}
.

Proof. Suppose ρDs = 0. Fix a local basis {e1, e2} for TpΣ. Let σ(t) := expp(te2). Extend e1

along σ to be parallel and let Ψ(s, t) := expσ(t)(se1(t)). This gives a system of local coordinates
where D∂t∂t|s=0 = 0, D∂t∂s|s=0 = 0, D∂s∂s = 0, i.e.,

DΓ22
1(0, x2) = 0, DΓ22

2(0, x2) = 0, DΓ12
1(0, x2) = 0,

DΓ12
2(0, x2) = 0, DΓ11

1(x1, x2) = 0, DΓ11
2(x1, x2) = 0 .

We have 0 = ρDs,11 = −(DΓ12
2)2 − ∂x1DΓ12

2 = 0. Since DΓ12
2(0, x2) = 0, this ODE implies

DΓ12
2 = 0. Setting ρDs,12 = 0 then yields ∂x1{DΓ12

1 − DΓ22
2} = 0. Since DΓ12

1(0, x2) = 0
and DΓ22

2(0, x2) = 0, we conclude DΓ12
1 = DΓ22

2. Setting ρDs,22 = 0 yields −∂x2DΓ22
2 +

∂x1
DΓ22

1 = 0. Consequently, DΓ22
2 = ∂x1ϕ and DΓ22

1 = ∂x2ϕ for some smooth function ϕ.
This yields the relations of Equation (5.1). Conversely, if Equation (5.1) holds, then a direct
computation shows that ρDs = 0 and that the three endomorphisms of Assertion (ii) are parallel.
Since these endomorphisms are linearly independent and dim(P0(Σ, D)) ≤ 3, Assertion (ii)
holds.

The case of nilpotent Kähler structures

Lemma 5.6. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a nilpotent Kähler structure, there is a coordinate atlas so

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
2 = 0, DΓ22

2 = DΓ12
1 . (5.2)

(ii) If Equation (5.2) holds, then ρDs = (∂x1
DΓ22

1 − ∂x2DΓ12
1) dx2 ⊗ dx2 and

T = ∂x1 ⊗ dx2 ∈ P0(Σ, D).

(iii) If Equation (5.2) holds and if dim(P0(Σ, D)) ≥ 2, then

DΓ12
1 = −∂x1ψ and DΓ22

1 = −∂x2ψ (5.3)

for some smooth function ψ.
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(iv) If Equations (5.2) and (5.3) hold, then ρD = ∂x1∂x1ψ dx
1 ∧ dx2 and

P0(Σ, D) = span

{(
0 1

0 0

)
,

(
ψ −ψ2

1 −ψ

)
,

(
1 −2ψ

0 −1

)}
.

Proof. Let 0 6= T ∈ P0(Σ, D) be nilpotent. By Lemma 5.4, we may choose coordinates so
T = ∂x1 ⊗ dx2. Setting DT = 0 yields the following relations from which Equation (5.2)
follows (see also [33]):

D∂x1
T = 0 :

(
−DΓ11

2 DΓ11
1 − DΓ12

2

0 DΓ11
2

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
−DΓ12

2 DΓ12
1 − DΓ22

2

0 DΓ12
2

)
=

(
0 0

0 0

)
.

Assume Equation (5.2) holds. A direct computation establishes Assertion (ii). To prove
Assertion (iii), assume in addition that dim(P0(Σ, D)) ≥ 2 and choose S ∈ P0(Σ, D) so S and
T are linearly independent. We must establish the relations of Equation (5.3).

Case 1:
Suppose that S is nilpotent. Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
; ST =

(
0 S1

1

0 S2
1

)
.

Since ST ∈ P(Σ, D), tr(ST ) = S2
1 is constant. Thus S2

1 = c for c ∈ R and

S =

(
S1

1 S1
2

c −S1
1

)
.

If c = 0, then det(S) = −(S1
1)2 = 0 implies S1

1 = 0 so S = S1
2 T . Since S and T are parallel,

dS1
2 = 0 so S1

2 ∈ R and S and T are linearly dependent contrary to our assumption. Thus
c 6= 0 and we may rescale S to assume c = 1. Setting det(S) = 0 yields S1

2 = −(S1
1)2 so

S =

(
S1

1 −(S1
1)2

1 −S1
1

)
.

We compute the covariant derivative DS = Sij;k∂xi ⊗ dxj ⊗ ∂xk , where the components Sij;k =
∂xkS

i
j + DΓk`

iS`j − DΓkj
`Si` to get 0 = S2

2;1 = −DΓ12
1 − ∂x1S1

1 and 0 = S2
2;2 = −DΓ22

1 −
∂x2S

1
1. This yields the additional relations given in Equation (5.3).

Case 2:
Suppose that S is not nilpotent. The map S → S(p) is an algebra morphism which embeds

P(Σ, D) inM2(R). Consequently, if dim(P0(Σ, D)) = 3, then dim(P(Σ, D)) = 4 andP(Σ, D)
contains a linearly independent nilpotent element S ∈ P(Σ, D) and the argument given in Case 1
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pertains. We therefore assume dim(P(Σ, D)) = 3 and that any nilpotent element of P(Σ, D) is
a constant multiple of T . Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
and T =

(
0 1

0 0

)
.

We compute

ST =

(
0 S1

1

0 S2
1

)
.

As ST is parallel, tr(ST ) = S2
1 is constant so S2

1 = c for some constant c and

ST − c
2

Id =

(
− c

2
S1

1

0 c
2

)
, STS =

(
cS1

1 −(S1
1)2

c2 −cS1
1

)
.

Since dim(P0(Σ, D)) = 2, there must exist a non-trivial real dependence relation of the form
0 = a1T + a2(ST − c

2
Id) + a3STS, i.e.,(

0 0

0 0

)
=

(
−1

2
a2c+ a3cS

1
1 a1 + a2S

1
1 − a3(S1

1)2

a3c
2 1

2
a2c− a3cS

1
1

)
.

If c 6= 0, the relation a3c
2 = 0 implies a3 = 0. The relation 1

2
a2c − a3cS

1
1 = 0 then implies

a2 = 0. And then finally the relation a1 + a2S
1

1 − a3(S1
1)2 = 0 implies a1 = 0. Thus c = 0 so

we have

S =

(
S1

1 S1
2

0 −S1
1

)
, T =

(
0 1

0 0

)
.

Since the eigenvalues of S are constant, S1
1 is constant as well. If S1

1 = 0, thenDS = 0 implies
S1

2 ∈ R and hence S and T are not linearly independent. Thus we may assume S1
1 = 1. We

set S1
2 = −2ψ. Setting DS = 0 then shows that DΓ12

1 = −∂x1ψ and DΓ22
1 = −∂x2ψ which

yields, as desired, Equation (5.3).
Assertion (iv) follows by a direct computation.

The case of Kähler structures

Lemma 5.7. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a Kähler structure, then there is a coordinate atlas so
DΓ11

1 = DΓ12
2 = −DΓ22

1, DΓ11
2 = −DΓ12

1 = −DΓ22
2 . (5.4)

(ii) If Equation (5.4) holds, then

ρDs = (∂x2
DΓ11

2 − ∂x1DΓ11
1)

(
1 0

0 1

)
and

T =

(
0 −1

1 0

)
∈ P0(Σ, D) .
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(iii) If Equation (5.4) holds and if dim(P0(Σ, D)) ≥ 2, there exists smooth ψ so

DΓ11
1 =

1

2
∂x2ψ and DΓ11

2 =
1

2
∂x1ψ . (5.5)

(iv) If Equations (5.4) and (5.5) hold, then

ρD =
1

2
(∂x1∂x1 + ∂x2∂x2)ψ dx

1 ∧ dx2

and

P0(Σ, D) = span

{(
0 −1

1 0

)
,

(
cosψ − sinψ

− sinψ − cosψ

)
,(

sinψ cosψ

cosψ − sinψ

)}
.

Proof. Suppose T ∈ P0(Σ, D) satisfies T 2 = − Id. By Lemma 5.4, we can choose local
coordinates so T = ∂x2 ⊗ dx1 − ∂x1 ⊗ dx2. Setting DT = 0 yields the relations:

D∂x1
T = 0 :

(
DΓ11

2 + DΓ12
1 −DΓ11

1 + DΓ12
2

−DΓ11
1 + DΓ12

2 −DΓ11
2 − DΓ12

1

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
DΓ12

2 + DΓ22
1 −DΓ12

1 + DΓ22
2

−DΓ12
1 + DΓ22

2 −DΓ12
2 − DΓ22

1

)
=

(
0 0

0 0

)
.

These relations establish Equation (5.4). A direct computation establishes Assertion (ii). Sup-
pose dim(P(Σ, D)) ≥ 3. Choose S ∈ P0(Σ, D) to be linearly independent of T . Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
, T =

(
0 −1

1 0

)
, S + εT =

(
S1

1 S1
2 − ε

S2
1 + ε −S1

1

)
.

We have det(S + εT ) = ε2 + ε(S2
1− S1

2)− (S1
1)2− S2

1S
1

2. We use the quadratic formula to
solve the equation det(S + εT ) = 0 setting:

ε = 1
2

{
(S1

2 − S2
1)±

√
(S1

2 + S2
1)2 + 4(S1

1)2
}
.

Since S and T are assumed linearly independent, S + εT is a non-trivial nilpotent element.
We can then apply Lemma 5.6 and Assertion (ii) to see ρDs = 0 and derive the relations of
Equation (5.5). This proves Assertion (iii); Assertion (iv) follows by a direct computation.

The case of para-Kähler structures

Lemma 5.8. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a para-Kähler structure, then there is a coordinate atlas so

DΓ11
2 = 0, DΓ12

1 = 0, DΓ12
2 = 0, DΓ22

1 = 0 . (5.6)
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(ii) If Equation (5.6) holds, then

T =

(
1 0

0 −1

)
∈ P0(Σ, D)

and

ρDs = −1

2
(∂x2

DΓ11
1 + ∂x1

DΓ22
2)

(
0 1

1 0

)
.

(iii) If Equation (5.6) holds and if dim(P0(Σ, D)) ≥ 2, then there exists a locally defined
smooth function θ such that

DΓ11
1 = ∂x1θ and DΓ22

2 = −∂x2θ . (5.7)

(iv) If Equations (5.6) and (5.7) hold, then ρD = ∂x1∂x2θ dx
1 ∧ dx2 and

P0(Σ, D) = span

{(
1 0

0 −1

)
, e−θ

(
0 1

0 0

)
, eθ
(

0 0

1 0

)}
.

Proof. Let T ∈ P0(Σ, D) satisfy T 2 = Id. We apply Lemma 5.4 to see we may choose local
coordinates so T = ∂x1 ⊗ dx1 − ∂x2 ⊗ dx2. Setting DT = 0 yields the relations

D∂x1
T = 0 :

(
0 −2DΓ12

1

2DΓ11
2 0

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
0 −2DΓ22

1

2DΓ12
2 0

)
=

(
0 0

0 0

)
.

This yields Equation (5.6). Suppose dim(P0(Σ, D)) ≥ 2. If dim(P0(Σ, D)) = 3, thenP0(Σ, D)
contains a nilpotent element and we may apply Lemma 5.6 to conclude ρDs = 0 and As-
sertion (ii) gives the relations of Equation (5.7) for suitably chosen θ. We therefore suppose
dim(P0(Σ, D)) = 2. Let {S, T} be linearly independent elements of P0(Σ, D). Expand

S =

(
S1

1 S1
2

S2
1 −S1

1

)
, T =

(
1 0

0 −1

)
, ST =

(
S1

1 −S1
2

S2
1 S1

1

)
.

Since tr(ST ) = 2S1
1 is constant, we obtain S1

1 is constant. Define Ŝ = S − S1
1 T . Then Ŝ is

parallel and Ŝ 6= 0 since S and T are linearly independent. We then have

Ŝ =

(
0 S1

2

S2
1 0

)
, T =

(
1 0
0 −1

)
, ŜT =

(
0 −S1

2

S2
1 0

)
.

Since Ŝ±ŜT are nilpotent and not both are zero,P(Σ, D) contains a non-trivial nilpotent element
and we can use Lemma 5.6 to conclude ρDs = 0 and Assertion (ii) establishes Assertion (iii).
Assertion (iv) follows by a direct computation.
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5.2 Characterization of affine surfaces admitting parallel ten-
sor fields

The purpose of this section is to prove Theorem 5.1, which characterizes the existence of parallel
tensor fields by the recurrence of the symmetric part of the Ricci tensor. We recall the result for
the convenience of the reader.

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recurrent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is recurrent.

(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and recurrent.

Proof.
Assertion (i). Let (Σ, D) be an affine surface with ρDs 6= 0 admitting a Kähler structure. Take
local coordinates as in Lemma 5.7. Then the relations in Equation (5.4) show that det(ρDs ) > 0
and ρDs is recurrent, i.e., DρDs = ω ⊗ ρDs with

ω = −(2DΓ11
1 − ∂x1 log ρDs,11) dx1 − (2DΓ11

2 − ∂x2 log ρDs,22) dx2 .

Conversely, if ρDs is recurrent and det(ρDs ) > 0, there exist local coordinates (x1, x2) so that
ρDs = ψ(x1, x2) (dx1 ⊗ dx1 + dx2 ⊗ dx2) (see for example Theorem 3.2 in [104]). Now a
straightforward calculation using DρDs = ω ⊗ ρDs gives the relations of Equation (5.4) and thus
Assertion (ii) in Lemma 5.7 shows that (Σ, D) is Kähler.

Assertion (ii). Let (Σ, D) be an affine surface with ρDs 6= 0 admitting a para-Kähler struc-
ture. Take local coordinates as in Lemma 5.8. Then the relations in Equation (5.6) show that
det(ρDs ) < 0 and ρDs is recurrent, i.e., DρDs = ω ⊗ ρDs with

ω = −(DΓ11
1 − ∂x1 log ρDs,12) dx1 − (DΓ22

2 − ∂x2 log ρDs,12) dx2 .

Conversely, if ρDs is recurrent and det(ρDs ) < 0, there exist local coordinates (x1, x2) so that
ρDs = ψ(x1, x2) (dx1 ⊗ dx2 + dx2 ⊗ dx1) (see for example Theorem 3.2 in [104]). Now a
straightforward calculation using DρDs = ω ⊗ ρDs gives the relations of Equation (5.6) and thus
Assertion (ii) in Lemma 5.8 shows that (Σ, D) admits a para-Kähler structure.

Assertion (iii). Let (Σ, D) be an affine surface with ρDs 6= 0. Assume (Σ, D) admits a nilpotent
Kähler structure. Take adapted coordinates as in Lemma 5.6 so that the Christoffel symbols are
given by the relations in Equation (5.2). Then ρDs is recurrent of rank one with recurrence 1-form
given by

ω = ∂x1 log ρDs,22 dx
1 − (2DΓ12

1 − ∂x2 log ρDs,22) dx2 .

Conversely, let (Σ, D) be a recurrent affine surface with Rank(ρDs ) = 1. Take local coordinates
(x1, x2) so that ker(ρDs ) = span{∂x1} (see Theorem 4.1 in [104]). If ρDs = ρDs,22dx

2 ⊗ dx2, a



148 5 Parallel tensors on affine surfaces

straightforward calculation shows thatDρDs = ω⊗ρDs for some 1-form ω if and only if DΓ11
2 = 0

and DΓ12
2 = 0. Furthermore, one has

ρDs,12 = 1
2

(
∂x1(

DΓ12
1 − DΓ22

2)− ∂x2DΓ11
1
)
, ρDs,11 = 0,

ρDs,22 = DΓ11
1DΓ22

1 + DΓ12
1
(
DΓ22

2 − DΓ12
1
)

+ ∂x1
DΓ22

1 − ∂x2DΓ12
1 .

Since ρDs,12 = 0 one has the additional relation

DΓ11
1 = µ(x1) +

∫
∂x1
(
DΓ12

1 − DΓ22
2
)
dx2 .

Change the coordinates as (u1, u2) = (x1 + a(x1), x2) so that

du1 = (1 + a′)dx1, du2 = dx2,

∂u1 = (1 + a′)−1∂x1 , ∂u2 = ∂x2 .

Now, one has that

uDΓ11
2 = 0, uDΓ12

2 = 0, uDΓ12
1 = xDΓ12

1, uDΓ22
2 = xDΓ22

2

and

uDΓ11
1 =

1

1 + a′(x1)

(
xDΓ11

1 − a′′(x1)

1 + a′(x1)

)
=

1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)
+

∫
∂x1
(
uDΓ12

1 − uDΓ22
2
)
dx2

)
=

1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)

)
+

1

1 + a′(x1)

∫
∂x1
(
uDΓ12

1 − uDΓ22
2
)
dx2

=
1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)

)
+

∫
∂u1
(
uDΓ12

1 − uDΓ22
2
)
du2 .

Hence choosing a(x1) to be a solution of a′′ − µa′ − µ = 0 one may assume that

DΓ11
1 =

∫
∂x1
(
DΓ12

1 − DΓ22
2
)
dx2 .

Let T = T 1
2 ∂x1 ⊗ dx2 be a nilpotent tensor field on (Σ, D). Then T is parallel if and only if

T 1
2;2 = ∂x2T

1
2 + (DΓ12

1 − DΓ22
2)T 1

2 = 0 and

T 1
2;1 = ∂x1T

1
2 + T 1

2
DΓ11

1 = 0 .
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Use the equation T 1
2;2 = 0 and set T 1

2 = e−
∫

(DΓ12
1 − DΓ22

2)dx2
. Then

T 1
2;1 = ∂x1T

1
2 + T 1

2
DΓ11

1

= e−
∫

(DΓ12
1 − DΓ22

2)dx2 (
−∂x1

∫
(DΓ12

1 − DΓ22
2)dx2 + DΓ11

1
)

= 0,

thus showing that T is a nilpotent Kähler structure.

Remark 5.9. Let (Σ, D) be a simply connected affine surface with Rank(ρDs ) = 1. The follow-
ing conditions are equivalent:

(i) The symmetric part of the Ricci tensor is recurrent: DρDs = ω ⊗ ρDs .

(ii) The kernel of the symmetric part of the Ricci tensor is a parallel distribution: D ker(ρDs ) ⊂
ker(ρDs ).

(iii) The kernel of ρDs is spanned by a recurrent vector field: ker(ρDs ) = span{X} and DX =
η ⊗X .

Consequently, if ρDs has rank one and if ker(ρDs ) is parallel, then the affine surface admits a
nilpotent Kähler structure (see for example [89]).

Indeed, assume that Rank(ρDs ) = 1. Choose local coordinates so that the symmetric Ricci
tensor has the form ρDs = ρDs,22dx

2 ⊗ dx2. A straightforward calculation shows that any of the
conditions of the observation is equivalent to the condition DΓ11

2 = DΓ12
2 = 0.

5.3 Parallel tensor fields on homogeneous surfaces
Homogeneous surfaces were discussed in Chapter 1. For the convenience of the reader, we recall
the following result of Opozda [90]. It is fundamental in the subject.

Theorem 1.31. Let (Σ, D) be a locally homogeneous affine surface which is not flat. Then at
least one of the following three possibilities holds which describe the local geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols DΓij
k are constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form
DΓij

k = (x1)−1Cij
k

for Cijk constant and x1 > 0.

(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Homogeneous Type C surfaces have symmetric and parallel Ricci tensor, which is a mul-
tiple of the metric. Hence any such surface admits either a Kähler or a para-Kähler structure,
depending on the signature of the metric.

In what remains of this chapter we analyze the existence of parallel (1, 1)-tensor fields on the
other two types of homogeneous surfaces.
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5.3.1 Parallel tensor fields on Type A homogeneous surfaces
The Ricci tensor of any TypeA homogeneous model is symmetric. Furthermore, the Ricci tensor
is recurrent if and only if it is of rank one (see Lemma 2.3 in [18]). Therefore Theorem 5.1 (iii)
shows that a Type A homogeneous surface admits a parallel tensor field if and only if the Ricci
tensor is of rank one, in which case it is a nilpotent Kähler surface. The construction in Theo-
rem 4.6 make an explicit use of the nilpotent Kähler structure. Therefore, it is important to have
concrete expressions. We begin with a useful algebraic fact that we will use to explicitly deter-
mine all nilpotent Kähler structures on Type A homogeneous models. As a matter of notation,
let K(Σ, D) be the Lie algebra of affine Killing vector fields.

Lemma 5.10. Let D be a Type A connection on Σ = R2 which is not flat and which satis-
fies P0(Σ, D) 6= {0}. There exists (a1, a2) ∈ R2 and 0 6= t ∈ M0

2 (R) so that P0(Σ, D) =
ea1x

1+a2x2t · R.

Proof. It is convenient to complexify and set P0
C(Σ, D) := P0(Σ, D)⊗RC. IfK ∈ K(Σ, D) and

if T ∈ P0
C(Σ, D), then the Lie derivative LKT belongs to P0

C(Σ, D). Thus P0
C(Σ, D) is a finite

dimensional complex K(Σ, D) module. If D defines a Type A structure on R2, the Christoffel
symbols are constant and ∂x1 and ∂x2 are affine Killing vector fields. If X and Y are vector
fields, then we have LXY = [X, Y ] is the Lie bracket. Thus L∂xi∂xj = 0 and dually L∂xidx

j =
0; if T = T ij∂xi ⊗ dxj , then {L∂

xk
T}ij = ∂xk{T ij}; the components of T do not interact.

The operators ∂x1 and ∂x2 commute and act on the finite-dimensional vector space P0
C(Σ, D).

Consequently, there is a non-trivial joint eigenvector so ∂x1T ij = a1T
i
j and ∂x2T ij = a2T

i
j;

this implies T = ea1x
1+a2x2t for 0 6= t ∈ M0

2 (C). Since (Σ, D) is not flat, the Ricci tensor is
non-zero. Since the Ricci tensor is symmetric for a TypeA geometry, ρDs 6= 0. Theorem 5.3 then
implies dim(P0

C(Σ, D)) = 1. Thus the real and imaginary parts of T are linearly dependent and
we can assume T is real. The desired result now follows.

Lemma 5.11. Let (Σ, D) = (R2, D) be a Type A structure which is not flat. Then P0(Σ, D) 6=
{0} if and only if (Σ, D) is linearly equivalent to a Type A structure with DΓ11

2 = DΓ12
2 = 0.

In this setting,

ρD = (−DΓ12
1 DΓ12

1 + DΓ11
1 DΓ22

1 + DΓ12
1 DΓ22

2)dx2 ⊗ dx2 .

Let a1 := −DΓ11
1, let a2 := DΓ22

2−DΓ12
1, and let T = ea1x

1+a2x2∂x1 ⊗ dx2. Then P0(Σ, D) =
T · R is 1-dimensional and nilpotent.

Proof. Let D define a Type A structure on R2 with P0(Σ, D) 6= {0} which is not flat. We
apply Lemma 5.10 to choose (a1, a2) so that 0 6= T = ea1x

1+a2x2t ∈ P0
C(Σ, D) for some 0 6=

t ∈ M0
2 (C). By Lemma 5.2, the eigenvalues of T are constant. Assume the eigenvalues are

non-zero. This implies ea1x1+a2x2 is constant and hence a1 = a2 = 0. By rescaling T , we may
assume the eigenvalues are ±1 and hence, after making a complex linear change of coordinates,
we may assume T 1

1 = 1, T 2
2 = −1, and T 1

2 = T 2
1 = 0. Setting DT = 0 then yields the

relations
DΓ12

1 = DΓ11
2 = DΓ22

1 = DΓ12
2 = 0 .
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This forces the Ricci tensor to be zero which is false. Thus no TypeA geometry which is not flat
admits a Kähler or a para-Kähler structure.

We may therefore assume the eigenvalues of T are constant and zero. After making a linear
change of coordinates, we can assume T = ea1x

1+a2x2∂x1 ⊗ dx2. We compute DT = 0 if and
only if

DΓ11
2 = 0, a1 + DΓ11

1 − DΓ12
2 = 0

DΓ12
2 = 0, a2 + DΓ12

1 − DΓ22
2 = 0 .

Thus (Σ, D) admits a non-trivial parallel nilpotent tensor of type (1, 1) if and only if DΓ11
2 =

DΓ12
2 = 0. We make a direct computation to determine ρD. Since the Ricci tensor is symmetric,

we use Theorem 5.3 to see dim(P0(Σ, D)) = 1.

We say that two Type A structures on R2 are linearly equivalent if there exists an element
Θ ∈ GL(2,R) which intertwines the two structures. As a consequence of Lemma 5.11 we have:

Theorem 5.12. Let (Σ, D) = (R2, D) be a TypeA structure which is not flat. Then P0(Σ, D) 6=
{0} if and only if the Ricci tensor is of rank one. Furthermore, (Σ, D) is linearly equiva-
lent to a structure where DΓ11

2 = 0 and DΓ12
2 = 0, and P0(Σ, D) = T · R, where T =

e−
DΓ11

1x1+(DΓ22
2−DΓ12

1)x2∂x1 ⊗ dx2.

Remark 5.13. If (Σ, D) is a TypeA geometry which is not flat, then (Σ, D) is neither Kähler nor
para-Kähler. Furthermore, any Type A surface with Rank(ρDs ) = 2 satisfies dim(P0(Σ, D)) =
0.

Remark 5.14. Let (Σ, D) be a Type A surface with Ricci tensor of rank one and let T =
ea1x

1+a2x2∂x1 ⊗ dx2 be a nilpotent Kähler structure as in Theorem 5.12. A straightforward cal-
culation shows that the corresponding modified Riemannian extension (T ∗Σ, gD,Φ,T ) with defor-
mation tensor field Φ ≡ 0 is anti-self-dual. This is due to the fact that any Type A homogeneous
geometry is projectively flat. Moreover it has been shown in [18] that any Type A surface with
Ricci tensor of rank one admits affine gradient Ricci solitons (i.e., smooth functions f ∈ C∞(Σ)
satisfying Hesf +2ρDs = 0) so that df(ker(ρD)) = 0. Hence (T ∗Σ, gD,0,T , h = π∗f) is an anti-
self-dual gradient Ricci soliton which is never locally conformally flat. In this setting, the soliton
is steady (i.e., λ = 0) and isotropic (i.e., ‖dπ∗f‖2 = 0).

In a more general setting, results in [20] show that any Type A surface with Ricci tensor of
rank one admits solutions of the affine quasi-Einstein equation (i.e., smooth functions f ∈ C∞(Σ)
satisfying Hesf +2ρDs − µ df ⊗ df = 0) so that df(ker(ρD)) = 0. Hence (T ∗Σ, gD,0,T , h = π∗f)
is an anti-self-dual quasi-Einstein manifold which is never locally conformally flat.

Results of [18] show that if (Σ, D) is a Type A geometry which is not flat, then either
dim(K(Σ, D)) = 2 or dim(K(Σ, D)) = 4.

Theorem 5.15. Let (Σ, D) = (R2, D) be a Type A structure. The following assertions are
equivalent:

(i) Rank(ρD) = 1.
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(ii) P0(Σ, D) 6= {0}.

(iii) dim(P0(Σ, D)) = 1.

(iv) dim(K(Σ, D)) = 4.

Proof. Results of [18] (see Lemma 2.3) show that ρDs has rank one if and only if (Σ, D) is linearly
equivalent to a structure where DΓ11

2 = 0 and DΓ12
2 = 0. The equivalence of Assertion (i), As-

sertion (ii), and Assertion (iii) then follows from Theorem 5.12. The equivalence of Assertion (i)
and Assertion (iv) follows from Theorem 3.4 of [18].

5.3.2 Parallel tensor fields on Type B homogeneous surfaces
The situation is more complicated in the Type B setting. For instance, Remark 5.17 shows the
existence of simply connected affine surfaces with Rank(ρDs ) = 1 but with non-recurrent ρDs and
dim(P0(Σ, D)) = 0. Also, in contrast with Type A surfaces, there are non-flat Type B surfaces
with ρDs = 0. This situation is discussed in Lemma 5.19.

Let (Σ, D) = (R+ × R, D) where DΓij
k = (x1)−1Cij

k and Cijk ∈ R be a Type B surface
which is not flat such that P0(Σ, D) is non-trivial. In Lemma 5.16, we give an algebraic cri-
teria for determining when P0(Σ, D) is non-trivial. In Lemmas 5.21–5.29, we use this criteria
to divide the analysis into five different cases and to determine when dim(P0(Σ, D)) = 1 or
dim(P0(Σ, D)) = 3. We first prove an analogue of Lemma 5.10 in this setting.

Lemma 5.16. If D is a Type B connection on Σ = R+ × R and if P0(Σ, D) 6= {0}, then there
exists α ∈ C and 0 6= t ∈M0

2 (C) so that (x1)αt ∈ P0
C(Σ, D).

Proof. LetD define a Type B structure on R+×R. The vector fields ∂x2 andX := x1∂x1 +x2∂x2
are affine Killing vector fields (see [18]). We have:

LX(∂xi) = [X, ∂xi ] = −∂xi LX(dxj) = dxj, LX(∂xi ⊗ dxj) = 0,

L∂x2 (∂xi) = 0, L∂x2 (dxj) = 0, L∂x2 (∂xi ⊗ dxj) = 0 .

Therefore the components do not interact and we have:

{LXT}ij = XT ij and {L∂x2T}
i
j = ∂x2T

i
j .

Because P0
C(Σ, D) is a finite-dimensional ∂x2 module, we can find a non-trivial complex eigen-

vector, i.e., 0 6= T ∈ P0
C(Σ, D) so ∂x2T

i
j = a2T

i
j . This implies that T ij = ea2x

2
tij(x

1).
Applying Xk yields

Xk(T ij) = ea2x
2{ak2(x2)ktij(x

1) +O((x2)k−1)} .

Thus if a2 6= 0, the elements {T,LXT, . . . ,LXT k} are linearly independent for any k. This
is false since dim(P0

C(Σ, D)) ≤ 3. Therefore, T = tij(x
1). We let V 6= {0} be the subspace

of all elements of P0
C(Σ, D) where T = T (x1). Choose a non-trivial eigenvector of LX . Then

x1∂x1T = αT implies T (x1) = (x1)αt for some t ∈M0
2 (C).
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Remark 5.17. In the Type A setting, the condition Rank(ρDs ) = 1 implies P0(Σ, D) is non-
trivial. This fails in the Type B setting. Let (Σ, D) be the Type B surface defined by setting
C22

2 = (3 + 2
√

3)/3 and Cijk = 1 otherwise. We compute that

ρDs =
1

(x1)2

(
1 + 2√

3
1√
3

1√
3

2√
3
− 1

)

and, consequently, ρDs has rank one. Assume dim(P0(Σ, D)) ≥ 1. It follows from Lemma 5.16
that there exists an element in P0

C(Σ, D) of the form T = (x1)α(tij) where 0 6= (tij) ∈ M0
2 (C).

Setting T ij;2 = 0 yields the relations:

(x1)α−1

(
t21 − t12 −2t11 − 2√

3
t12

2t11 + 2√
3
t21 t12 − t21

)
=

(
0 0

0 0

)
.

We solve this relation to see t21 = t12 and t11 = − 1√
3
t12. Substituting these relations and setting

T ij;1 = 0 then yields:

(x1)α−1

 − α√
3
t12

(
α + 2√

3

)
t12(

α− 2√
3

)
t12

α√
3
t12

 =

(
0 0

0 0

)
.

This shows t12 = 0 and hence T = 0. This shows P0(Σ, D) is trivial. The result also follows
from Theorem 5.1 just observing that the symmetric Ricci tensor ρDs is not recurrent.

Definition 5.18. We follow the discussion of [18] and introduce the following surfaces of TypeB.

(1) For c ∈ R, let Qc be the affine manifold of Type B defined by

C11
1 = 0, C11

2 = c, C12
1 = 1, C12

2 = 0, C22
1 = 0, C22

2 = 1 .

Since ρD = (x1)−2dx1 ∧ dx2, ρDs = 0.

(2) For 0 6= c ∈ R, let P±0,c be the affine manifold of Type B defined by

C11
1 = ∓c2 + 1, C11

2 = c, C12
1 = 0,

C12
2 = ∓c2, C22

1 = ±1, C22
2 = ±2c .

Since ρD = ±(x1)−2c dx1 ∧ dx2, ρDs = 0.

By Theorem 5.3, ρDs = 0 if and only if dim(P0(Σ, D)) = 3. We give a complete description
of Type B manifolds which are not flat where ρDs = 0 as follows.
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Lemma 5.19.

(i) If (Σ, D) is a Type B manifold which is not flat but which has ρDs = 0, then (Σ, D) is
linearly equivalent either to Qc or to P±0,c.

(ii) If (Σ, D) = Qc for c 6= 0, then

P0
C(Qc) = span

{(
0 1

c 0

)
, (x1)2

√
c

( √
c 1

−c −
√
c

)
,

(x1)−2
√
c

(
−
√
c 1

−c
√
c

)}
.

(iii) If (Σ, D) = Qc for c = 0, then

P0(Q0) = span

{(
0 1

0 0

)
,

(
− log(x1) 1− log(x1)2

1 − log(x1)

)
,

(
− log(x1) −1− log(x1)2

1 − log(x1)

)}
.

(iv) If (Σ, D) = P±0,c, then

P0(P±0,c) = span

{
(x1)−1

(
−c 1

−c2 c

)
,

(x1)−1

(
±1

2
(x1 ∓ 2cx2) x2

±c(x1 ∓ cx2) ∓1
2
(x1 ∓ 2cx2)

)
,

(x1)−1

(
±x2(x1 ∓ cx2) (x2)2

−(x1 ∓ cx2)2 ∓x2(x1 ∓ cx2)

)}
.

Proof. Assertion (i) follows from Lemma 4.6 in [18]; the remaining assertions follow from a
direct computation.

Remark 5.20. Suppose that (Σ, D) is a Type B surface with P0(Σ, D) non-trivial. And by
Lemma 5.16, there exists α ∈ C and 0 6= t ∈ M0

2 (C) so that T := (x1)αt ∈ P0
C(Σ, D). If

α is complex, then the real and imaginary parts of T are linearly dependent and both belong
to P0(Σ, D). This implies dim(P0(Σ, D)) ≥ 2 and hence ρDs = 0. Lemma 5.19 then yields
(Σ, D) = Qc for c < 0 and α is purely imaginary.

In view of Lemma 5.19, we will assume ρDs 6= 0 henceforth. Let (Σ, D) be a TypeB geometry
with P0(Σ, D) non-trivial and, since ρDs 6= 0, dim(P0(Σ, D)) = 1. By Lemma 5.16, there exists
α ∈ C and 0 6= t ∈ M0

2 (C) so that (x1)αt ∈ P0
C(Σ, D). By Remark 5.20, α ∈ R and thus,

by taking real and imaginary parts, we may assume that 0 6= t ∈ M0
2 (R). Suppose α = 0. We
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deal with the case t12 6= 0 in Lemma 5.21, the case t12 = 0 and t21 6= 0 in Lemma 5.23, and
the case t12 = t21 = 0 and t11 6= 0 in Lemma 5.25. We then turn to the situation where α 6= 0.
Since det(T ) = (x1)2α det(t) is constant and since α 6= 0 is real, we conclude that t is nilpotent.
In Lemma 5.27, we assume t12 6= 0 and in Lemma 5.29, we assume t12 = 0 to complete our
analysis.

Lemma 5.21. Let D define a Type B structure on R+×R with ρDs 6= 0. Suppose that there exists
0 6= t ∈ P0(Σ, D) ∩M2(R) with t12 6= 0. Rescale t to assume that t12 = 1. Then:

(i) The Christoffel symbols are determined by

C11
1 = C22

1 t21 + 2(C22
2 + 2C22

1 t11)t11, C12
1 = C22

2 + 2C22
1 t11,

C11
2 = (C22

2 + 2C22
1 t11)t21, C12

2 = C22
1 t21 .

(ii) The symmetric part of the Ricci tensor is given by

ρDs = (x1)−2C22
1

(
t21 −t11

−t11 −1

)
, C22

1 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) =

(
t11 1

t21 −t11

)
· R .

Proof. The equations D∂xi
t = 0, i = 1, 2 become:(

C12
1t21 − C11

2 C11
1 − C12

2 − 2C12
1t11

−C11
1t21 + C12

2t21 + 2C11
2t11 C11

2 − C12
1t21

)
=

(
0 0

0 0

)
,

(
C22

1t21 − C12
2 C12

1 − C22
2 − 2C22

1t11

−C12
1t21 + C22

2t21 + 2C12
2t11 C12

2 − C22
1t21

)
=

(
0 0

0 0

)
.

These equations yield the relations amongst the Cijk; a direct computation then yields ρDs ; we
obtain C22

1 6= 0 since ρDs 6= 0. Furthermore, since ρDs 6= 0, we have dim(P0(Σ, D)) = 1 and the
element given spans P0(Σ, D).

Remark 5.22. Let t be a nilpotent Kähler tensor field as in Lemma 5.21. Then, in contrast with
Remark 5.14, the modified Riemannian extension (T ∗Σ, gD,0,t) is never anti-self-dual. Indeed,
the affine structures in Lemma 5.21 are never projectively flat unless ρDs = 0.

Lemma 5.23. Let D define a Type B structure on R+×R with ρDs 6= 0. Suppose that there exists
0 6= t ∈ P0(Σ, D) ∩M2(R) with t12 = 0 and t21 6= 0. Rescale t to assume t21 = 1. Then:

(i) The Christoffel symbols are determined by
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C11
1 = C12

2 + 2C11
2t11, C12

1 = 0, C22
1 = 0, C22

2 = −2C12
2t11 .

(ii) The Ricci tensor is given by

ρD = (x1)−2C12
2

(
1 −2t11

0 0

)
, C12

2 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) =

(
t11 0
1 −t11

)
· R .

Proof. Setting Dt = 0 yields the relations(
C12

1 −2C12
1t11

−C11
1 + C12

2 + 2C11
2t11 −C12

1

)
=

(
0 0

0 0

)
,

(
C22

1 −2C22
1t11

−C12
1 + C22

2 + 2C12
2t11 −C22

1

)
=

(
0 0

0 0

)
.

We solve these relations to obtain the relations amongst the Cijk. We then compute ρD. Since
ρDs 6= 0, C12

2 6= 0. Furthermore, since ρDs 6= 0, dim(P0(Σ, D)) = 1 and the element given spans
P0(Σ, D).

Remark 5.24. The modified Riemannian extensions of nilpotent tensor fields in Lemma 5.23
corresponding to t11 = 0 are anti-self-dual whenever the deformation tensor field Φ ≡ 0. In this
case Lemma 5.23 gives C12

1 = 0, C22
1 = 0, C22

2 = 0, and thus (Σ, D) is also of type A (see
Remark 1.32). In this case, Remark 5.14 applies.

Lemma 5.25. Let D define a Type B structure on R+×R with ρDs 6= 0. Suppose that there exists
0 6= t ∈ P0(Σ, D) ∩M2(R) with t12 = t21 = 0. Rescale t to assume t11 = 1. Then:

(i) The Christoffel symbols are determined by

C11
2 = 0, C12

1 = 0, C12
2 = 0, C22

1 = 0 .

(ii) The Ricci tensor is given by

ρD = (x1)−2C22
2dx1 ⊗ dx2, C22

2 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) =

(
1 0

0 −1

)
· R .
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Proof. Let t =

(
1 0
0 −1

)
. Setting Dt = 0 yields the relations

(
0 −2C12

1

2C11
2 0

)
=

(
0 −2C22

1

2C12
2 0

)
=

(
0 0

0 0

)
.

The relations in Lemma 5.25 concerning the Cijk now follow. We determine ρD by a direct
computation; since ρDs 6= 0, C22

2 6= 0. Furthermore, since ρDs 6= 0, dim(P0(Σ, D)) = 1 and the
element given spans P0(Σ, D).

Remark 5.26. Theorem 5.12 shows that type A surfaces with dim(P0(Σ, D)) ≥ 1 have di-
mension 1 in the non-flat case and P0(Σ, D) is generated by a nilpotent Kähler structure. In
opposition, the Type B geometries in Lemma 5.21 with dim(P0(Σ, D)) = 1 contain Kähler,
para-Kähler and nilpotent Kähler examples. On the other hand, the Type B geometries treated in
Lemma 5.23 and Lemma 5.25 only admit para-Kähler structures.

Lemma 5.27. Let D define a Type B structure on R+×R with ρDs 6= 0. Suppose that there exists
0 6= t ∈ M2(R) with t12 6= 0 and that there exists α 6= 0 so that (x1)αt ∈ P0(Σ, D). Rescale t
so that t12 = 1. Then:

(i) The Christoffel symbols are determined by

C12
1 = C22

2 + 2C22
1t11, C11

2 = t11(−C11
1 + t11(C22

2 + C22
1t11)),

C12
2 = −C22

1(t11)2, α = −C11
1 + t11(2C22

2 + 3C22
1t11) 6= −1 .

(ii) The symmetric part of the Ricci tensor is given by

ρDs = −(x1)−2C22
1(1 + α)

(
(t11)2 t11

t11 1

)
, C22

1 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) = (x1)α
(

t11 1

−(t11)2 −t11

)
· R .

Proof. As noted previously, α 6= 0 implies t is nilpotent. Since we assumed t12 = 1,

T = (x1)α
(

t11 1

−(t11)2 −t11

)
.

The conditions D∂xi
T = 0 (i = 1, 2) imply the vanishing of the matrices(

−C11
2 − (C12

1t11 − α)t11 C11
1 − C12

2 + α− 2C12
1t11

t11(2C11
2 + (C11

1 − C12
2 − α)t11) C11

2 + (C12
1t11 − α)t11

)
and
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−C12

2 − C22
1(t11)2 C12

1 − C22
2 − 2C22

1t11

t11(2C12
2 + (C12

1 − C22
2)t11) C12

2 + C22
1(t11)2

)
.

We solve these relations to obtain the relations amongst the Cijk. The expression of α and ρDs
then follows by a direct computation. Since ρDs 6= 0, we obtain C22

1 6= 0, α 6= 0, and α 6= −1.
Furthermore, since ρDs 6= 0, dim(P0(Σ, D)) = 1 and the element given spans P0(Σ, D).

Remark 5.28. Let T be a nilpotent Kähler tensor field as in Lemma 5.27. The modified Rie-
mannian extension (T ∗Σ, gD,0,T ) is not anti-self-dual.

Lemma 5.29. Let D define a Type B structure on R+×R with ρDs 6= 0. Suppose that there exists
0 6= t ∈ M2(R) with t12 = 0 and that there exists α 6= 0 so that (x1)αt ∈ P0(Σ, D). Since t is
nilpotent, t11 = 0 and t21 6= 0. Rescale t so that t21 = 1. Then:

(i) The Christoffel symbols are determined by

C12
1 = 0, C22

1 = 0, C22
2 = 0, α = C11

1 − C12
2 /∈ {0,−1} .

(ii) The Ricci tensor is given by

ρD = (x1)−2(1 + α)C12
2dx1 ⊗ dx1 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) = (x1)C11
1−C12

2
∂x2 ⊗ dx1 · R .

Proof. Setting DT = 0 yields the vanishing of the matrices(
C12

1 0

−C11
1 + C12

2 + α −C12
1

)
and

(
C22

1 0

−C12
1 + C22

2 −C22
1

)
.

The relations amongst the Cijk follows and α is determined. A direct computation yields the
Ricci tensor. Since ρD = ρDs 6= 0, dim(P0(Σ, D)) = 1 and the element given spans P0(Σ, D).



Chapter 6
General examples of Bach-flat manifolds in

neutral signature

In this chapter we generalize the construction in Chapter 4 to characterize Bach-flat Riemannian
extensions of affine surfaces admitting a nilpotent structure without assuming any parallelizabil-
ity condition.

This chapter is organized as follows. In Sections 6.1 and 6.2 we make use of the Cauchy-
Kovalevski Theorem to show that any nilpotent Riemannian extension can be locally deformed
to be Bach-flat in the real analytic case (see Theorem 6.1). In Section 6.3 we show that all
these metrics have vanishing scalar curvature invariants (see Theorem 6.8). For that reason, in
Section 6.3.2 we shall introduce suitable invariants which are not of Weyl type to distinguish
different classes. Finally, in Section 6.4, we shall exhibit some specific examples of Bach-flat
manifolds. In this chapter we report on work investigated in [31].

6.1 Bach-flat Riemannian extensions

Let (Σ, D) be an affine surface. If (x1, x2) are local coordinates on Σ, let (x1′ , x2′) be the asso-
ciated dual coordinates on the cotangent bundle. Let T = T ri ∂xr ⊗ dxi be a tensor field of type
(1, 1) on Σ and let Φij be a symmetric (0, 2)-tensor on Σ. The associated modified Riemannian
extension

gD,Φ,T = 2 dxi ◦ dxi′

+
{

1
2
xr′xs′(T

r
iT

s
j + T rjT

s
i)− 2xk′

DΓij
k + Φij

}
dxi ◦ dxj

(6.1)

is invariantly defined and independent of the particular system of local coordinates (see for ex-
ample the discussion in Chapter 1 and [29]). Let

ST := {p ∈ Σ : T (p) = λ(p) Id} and OT := Σ− ST .

The space ST is the set of points where T is a scalar multiple of the identity; OT is the comple-
mentary space.

Theorem 6.1. Let (Σ, D) be an affine surface, let T be a tensor field of type (1, 1), and let Φ be
a symmetric (0, 2)-tensor.

(i) If Σ = ST , then (T ∗Σ, gD,Φ,T ) is half conformally flat and hence Bach-flat.

(ii) OT is an open subset of Σ. If p ∈ OT and if B(p) = 0, then T (p)2 = 0.

159
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(iii) If T is nilpotent on Σ and if T (p) 6= 0, then there exist local coordinates near p so that
T = ∂x1 ⊗ dx2. The following assertions are equivalent in such a coordinate system:

(a) (T ∗Σ, gD,Φ,T ) is Bach-flat.

(b) DΓ11
2 = 0 and (DΓ11

1)2 − DΓ11
1 DΓ12

2 + ∂x1(
DΓ11

1 − DΓ12
2) = 0.

Proof. A direct computation shows that if T = f Id for f ∈ C∞(Σ), then (T ∗Σ, gD,Φ,T ) is self-
dual [29], and thus B = 0; this establishes Assertion (i). Consequently, we assume henceforth
that there exists a point p of Σ where T (p) 6= f(p) Id.

Let Coeff[Bk`;xi′xj′ ] be the coefficient of xi′xj′ in Bk`. A straightforward calculation
shows that the components of the Bach tensor are quadratic polynomials in the fiber coordinates
(x1′ , x2′), and moreover one has:

Coeff[B11;x1′x1′ ] = 1
6

{(
−30(detT )2 − detT (trT )2 + (trT )4

)
T 1

1(x1, x2)2

+2 detT trT
(
17 detT − 2(trT )2

)
T 1

1(x1, x2)

−2(detT )2
(
5 detT + (trT )2

)}
,

Coeff[B11;x1′x2′ ] = 1
6T

1
2(x1, x2)

{(
−30(detT )2−detT (trT )2+(trT )4

)
T 1

1(x1, x2)

+ detT trT
(
17 detT − 2(trT )2

)}
,

Coeff[B11;x2′x2′ ] = 1
6T

1
2(x1, x2)2

{
−30(detT )2 − detT (trT )2 + (trT )4

}
,

Coeff[B12;x1′x1′ ] = 1
3T

2
1(x1, x2)

{(
−30(detT )2−detT (trT )2+(trT )4

)
T 1

1(x1, x2)

+ detT trT
(
17 detT − 2(trT )2

)}
,

Coeff[B12;x1′x2′ ] = 1
6

{
−2
(
30(detT )2 trT + detT (trT )3 − (trT )5

)
T 1

1(x1, x2)

+2
(
30(detT )2 + detT (trT )2 − (trT )4

)
T 1

1(x1, x2)2

+ detT
(
20(detT )2 + 16 detT (trT )2 − 3(trT )4

)}
,

Coeff[B12;x2′x2′ ] = 1
3T

1
2(x1, x2)

{(
30(detT )2+detT (trT )2−(trT )4

)
T 1

1(x1, x2)

−13(detT )2 trT − 3 detT (trT )3 + (trT )5
}
,

Coeff[B22;x1′x1′ ] = 1
6T

2
1(x1, x2)2

{
−30(detT )2 − detT (trT )2 + (trT )4

}
,

Coeff[B22;x1′x2′ ] = 1
6T

2
1(x1, x2)

{(
30(detT )2 + detT (trT )2 − (trT )4

)
T 1

1(x1, x2)

−13(detT )2 trT − 3 detT (trT )3 + (trT )5
}
,

Coeff[B22;x2′x2′ ] = 1
6

{(
26(detT )2 trT + 6 detT (trT )3 − 2(trT )5

)
T 1

1(x1, x2)

+
(
−30(detT )2 − detT (trT )2 + (trT )4

)
T 1

1(x1, x2)2

−10(detT )3 + 2(detT )2(trT )2 − 5 detT (trT )4 + (trT )6
)
} .

Next we analyze the different possibilities for the eigenvalues of T (p), showing firstly that
they cannot be complex. Assume that T 1

1 = T 2
2 and T 1

2 = −T 2
1. Then det(T ) = (T 1

1)2 +
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(T 1
2)2 and tr(T ) = 2T 1

1, so we get

Coeff[B11;x1′x1′ ] = −1

3
(T 1

2)2
{

3(T 1
1)4 + 5(T 1

2)4
}
,

from where it follows that T 1
2 = 0.

Next assume that T (p) has two distinct real eigenvalues and set T 1
2 = T 2

1 = 0. Then
det(T ) = T 1

1T
2

2 and tr(T ) = T 1
1 + T 2

2, so we have

Coeff[B11;x1′x1′ ] = 1
6
(T 1

1)2(T 1
1 − T 2

2)2 ((T 1
1)2 + T 1

1T
2

2 − 5(T 2
2)2) ,

Coeff[B22;x2′x2′ ] = 1
6
(T 2

2)2(T 1
1 − T 2

2)2 ((T 2
2)2 + T 1

1T
2

2 − 5(T 1
1)2) ,

and thus
T 1

1 ((T 1
1)2 + T 1

1T
2

2 − 5(T 2
2)2) = 0 and

T 2
2 ((T 2

2)2 + T 1
1T

2
2 − 5(T 1

1)2) = 0 .

If T 1
1 = 0, then T 2

2 6= 0 and the second identity fails. Similarly, if T 2
2 = 0, then T 1

1 6= 0 and
the first identity fails. Thus T 1

1 6= 0 and T 2
2 6= 0 and we obtain

(T 1
1)2 + T 1

1T
2

2 − 5(T 2
2)2 = 0 and

(T 2
2)2 + T 1

1T
2

2 − 5(T 1
1)2 = 0 .

Adding the two identities yields 4(T 1
1)2 − 2T 1

1T
2

2 + 4(T 2
2)2 = 0. The only real solution to

this is (T 1
1, T

2
2) = (0, 0) which is false since we assumed the eigenvalues to be distinct.

Thus the eigenvalues of T (p) must be real and equal. Since T (p) is not a scalar multiple of
the identity, we must have non-trivial Jordan normal form at p. If we choose coordinates so

T (p) = T 1
1(∂x1 ⊗ dx1 + ∂x2 ⊗ dx2) + ∂x1 ⊗ dx2,

we obtain that Coeff[B11;x2′x2′ ] = −3(T 1
1)4. Thus T 1

1 = 0 and T is nilpotent. This completes
the proof of Assertion (ii).

Now assume that T is nilpotent. By Lemma 5.4, we may choose coordinates so T =
∂x1 ⊗ dx2. Examining B11 yields DΓ11

2 = 0. Examining B22 yields the remaining relation
of Assertion (iii-b). A direct computation shows that if the relations of Assertion (iii-b) are
satisfied, then the Riemannian extension is Bach-flat.

By Theorem 6.1 we may decompose Σ = ST ∪̇OT as the disjoint union of the set of points
where T is a scalar multiple of the identity and the set of points where T is nilpotent and has non-
trivial Jordan normal form. In the real analytic setting, ifOT is non-empty and if Σ is connected,
then OT is dense in Σ and T is always nilpotent. Next we provide an example in the smooth
category where this observation fails.

Example 6.2. Let Σ = R2 and let α(x2) be a smooth real valued function which vanishes to
infinite order at x2 = 0 and which is positive for x2 6= 0. Impose the conditions of Theorem 6.1–
(iii-b) and assume that DΓ11

2 = 0 and (DΓ11
1)2 − DΓ11

1 DΓ12
2 + ∂x1(

DΓ11
1 − DΓ12

2) = 0.
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Let

T (x1, x2) =


(
α(x2) 0

0 α(x2)

)
if x2 ≤ 0,(

0 α(x2)

0 0

)
if x2 ≥ 0 .

One may then compute that B = 0 so this yields a Bach-flat manifold where the Jordan normal
form of T changes at x2 = 0. Furthermore, if we only assume that α is Ck for k ≥ 2, we still
obtain a solution; thus there is no hypo-ellipticity present when considering the solutions to the
equations B = 0.

Remark 6.3. We note that the auxiliary tensor Φ plays no role in the analysis. We also note that
we can express the conditions of Theorem 6.1-(iii-b) in the form

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = DΓ11

1 + c · eβ

for smooth functions c = c(x2) and β = β(x1, x2).

6.2 Deformation of nilpotent Riemannian extensions

Theorem 6.1 permits us to construct connections so the Riemannian extension is Bach-flat once
the nilpotent endomorphism is given. Next, we focus on the reverse problem of constructing
nilpotent endomorphisms so the Riemannian extension is Bach-flat once the connection is given;
this is, in certain sense, a more natural question.

For sake of completeness we include the following statement of the Cauchy-Kovalevski The-
orem, which is an essential argument in proving Theorem 6.7. We refer to [53] for a discussion
of Theorem 6.4.

We assume the following boundary-value problem:

uxn =
n−1∑
j=1

Bj(u, x
′)uxj + c(u, x′) for |x| < r,

u = 0 for |x′| < r, xn = 0,

(6.2)

where Bj = (bk`j ) with j = 1, . . . , n− 1, c = (c1, . . . , cm) and uxk denotes partial derivative.

Theorem 6.4 (Cauchy-Kovalevski). Assume {Bj}n−1
j=1 and c are real analytic functions. Then,

there exist r > 0 and a real analytic function

u =
∑
α

uαx
α

solving the boundary-value problem (6.2).
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Roughly speaking, one compute all the derivatives at the origin of a possible solution and uses
them to construct the formal Taylor’s series of an anticipated solution. The proof of the theorem
reduces to show that the series converges about the origin. The convergence of the series could
be establish, indirectly, by the method of the majorant.

If T is a scalar multiple of the identity, then (T ∗Σ, gD,Φ,T ) is half conformally flat. We focus,
therefore, on the case T which is nilpotent henceforth and assume, unless otherwise noted, that
Σ = OT . We work locally. Fix p ∈ Σ and a local system of coordinates defined near p. We wish
to find 0 6= T nilpotent so that (T ∗Σ, gD,Φ,T ) is Bach-flat. Since either T 1

2(p) 6= 0 or T 2
1(p) 6= 0,

we assume for the sake of definiteness that T 1
2(p) 6= 0. This implies that we may expand T near

p in the form

T = α(x1, x2)

(
ξ(x1, x2) 1

−ξ2(x1, x2) −ξ(x1, x2)

)
. (6.3)

For sake of simplicity we introduce the following notation to be used in Definition 6.5 and the
proof of Lemma 6.6 and Theorem 6.7. Let φ(x1, x2) be a smooth function. Then φ(1,0) = ∂x1φ,
φ(2,0) = ∂x1∂x1φ and so forth.

Definition 6.5. We introduce the following operators:

P1(ξ) := −ξ(1,0) + ξ ξ(0,1) + DΓ22
1ξ3 − (2DΓ12

1 − DΓ22
2)ξ2

+ (DΓ11
1 − 2DΓ12

2)ξ + DΓ11
2,

P2(ξ, α) := αα(2,0) + ξ2αα(0,2) − 2ξαα(1,1) + (α(1,0))2 + ξ2(α(0,1))2 − 2ξα(1,0)α(0,1)

− αα(1,0)
(
2ξ(0,1) − 5DΓ22

1ξ2 + 2(4DΓ12
1 − DΓ22

2)ξ − 3DΓ11
1 + 2DΓ12

2
)

+ αα(0,1)
(
2ξξ(0,1) − 6DΓ22

1ξ3 + (10DΓ12
1 − 3DΓ22

2)ξ2

−4(DΓ11
1 − DΓ12

2)ξ − DΓ11
2
)

+ 6ξ4α2(DΓ22
1)2

− 2ξ3α2
(
(DΓ22

1)(0,1) + 9DΓ12
1DΓ22

1 − 3DΓ22
1DΓ22

2
)

− ξ2α2
(
4DΓ22

1ξ(0,1) − 3(DΓ12
1)(0,1) − 2(DΓ22

1)(1,0) + (DΓ22
2)(0,1)

− 12(DΓ12
1)2 − (DΓ22

2)2 − 7DΓ11
1DΓ22

1 +7DΓ12
1DΓ22

2 + 9DΓ12
2DΓ22

1
)

+ ξα2
(
2(3DΓ12

1 − DΓ22
2)ξ(0,1) − (DΓ11

1)(0,1) − 3(DΓ12
1)(1,0)

+(DΓ12
2)(0,1) + (DΓ22

2)(1,0) − 2(DΓ11
1 − DΓ12

2)(4DΓ12
1 − DΓ22

2)

+4DΓ11
2DΓ22

1
)
− α2

(
2(DΓ11

1 − DΓ12
2)ξ(0,1) − (DΓ11

1)(1,0)

+(DΓ12
2)(1,0) − (DΓ11

1)2 + DΓ11
1DΓ12

2 + 3DΓ11
2DΓ12

1 − DΓ11
2DΓ22

2
)
.

Lemma 6.6. Let (Σ, D) be an affine surface. Let T have the form given in Equation (6.3) and
let Φ be arbitrary. The modified Riemannian extension (T ∗Σ, gD,Φ,T ) of Equation (6.1) is Bach-
flat if and only if α and ξ are solutions to the partial differential equations P1(ξ) = 0 and
P2(ξ, α) = 0.

Proof. We suppose T is a nilpotent tensor field of type (1, 1). Then tr(T ) = 0 and det(T ) = 0.
If we assume that T 1

2(p) 6= 0, then T has the form given in Equation (6.3). A direct computation
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shows

B =


B11 B12 0 0

B12 B22 0 0

0 0 0 0

0 0 0 0


and thus only B11, B12 and B22 are relevant. We observe that

Coeff[B11, α
(2,0)] = −4αξ2,

Coeff[B12, α
(2,0)] = −4αξ,

Coeff[B22, α
(2,0)] = −4α .

We therefore define Q1 := B11 −B12ξ, Q2 := B11 −B22ξ
2 and Q3 := 2Q1 − Q2. We may

then express Q3 = −4α2(P1)2 and thus the vanishing of Q3 is equivalent to the vanishing of
P1. We set P1 = 0 and express ξ(1,0) = F(1,0)(ξ,

DΓ, ξ(0,1)). Differentiating this relation permits
us to express ξ(1,1) = F(1,1)(ξ,

DΓ, dDΓ, ξ(0,1), ξ(0,2)) and ξ(2,0) = F(2,0)(ξ,
DΓ, dDΓ, ξ(0,1), ξ(0,2)).

Substituting these relations then yields Q1 = 0 and Q2 = 0. Thus only B11 plays a role.
Substituting these relations permits us to express B11 = −4ξ2P2. The desired result now follows.

Theorem 6.7. Let (Σ, D) be a real analytic affine surface. Then there exist locally defined
nilpotent (1, 1)-tensor fields T such that the modified Riemannian extension (T ∗Σ, gD,Φ,T ) is
Bach-flat.

Proof. Suppose (Σ, D) is real analytic. The operator P1(ξ) of Definition 6.5 takes the form:

P1(ξ) = −ξ(1,0) + ξξ(0,1) + f(ξ,DΓ) .

Given a real analytic function ξ0(x2), the Cauchy-Kovalevski Theorem shows that there is a
unique real solution to the equation P1(ξ) = 0 with ξ(0, x2) = ξ0(x2). Once ξ is determined, the
operator P2(ξ, α) of Definition 6.5 takes the form

P2(ξ, α) = αα(2,0)−2ξαα(1,1) + ξ2αα(0,2) + F (α, dα;DΓ, dDΓ; ξ, dξ) .

Given real analytic functions α0(x2) and α1(x2), there exists a unique local solution to the equa-
tion P2(ξ, α) = 0 with α(0, x2) = α0(x2) and α(1,0)(0, x2) = α1(x2). Thus given D, there are
many nilpotent T so that (T ∗Σ, gD,Φ,T ) is Bach-flat in this setting; the auxiliary tensor Φ plays
no role in the analysis.

6.3 Invariants of nilpotent Riemannian extensions

6.3.1 VSI manifolds
A pseudo-Riemannian manifold is said to be VSI (vanishing scalar curvature invariants) if all
the scalar Weyl invariants (i.e., invariants formed by a complete contraction of indices in the
Riemann curvature tensor Rijk` and its covariant derivatives) vanish.
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Theorem 6.8. Let (T ∗Σ, gD,Φ,T ) with T 6= 0. The following assertions are equivalent:

(i) (T ∗Σ, gD,Φ,T ) is VSI.

(ii) ‖R‖2 = ‖ρ‖2 = 0.

(iii) ‖ρ‖2 = τ = 0.

(iv) T is nilpotent.

We will show the different implications in Theorem 6.8 in the rest of this subsection. Clearly
if (T ∗Σ, gD,Φ,T ) is VSI, then ‖R‖2 = ‖ρ‖2 = τ = 0. Thus Assertion (i) of Theorem 6.8 implies
Assertions (ii) and (iii).

Assertions (ii) or (iii) imply Assertion (iv) in Theorem 6.8

A direct computation shows that τ is a quadratic polynomial in the components of T and that
‖R‖2 and ‖ρ‖2 are fourth order polynomials in the components of T ; the other variables do not
enter. Moreover

τ = −2(detT − (trT )2),

‖ρ‖2 = (detT )2 − 6 detT (trT )2 + 2(trT )4,

‖R‖2 = 4(3(detT )2 − 4 detT (trT )2 + (trT )4) .

Hence ‖ρ‖2 = τ = 0 or ‖ρ‖2 = ‖R‖2 = 0 if and only if det(T ) = tr(T ) = 0.

Example 6.9 (The vanishing of just one invariant). The next example shows that the conditions
‖R‖2 = τ = 0 do not suffice to get that T is nilpotent nor does the condition ‖ρ‖2 = 0 suffice to
get that T is nilpotent. Indeed, ‖R‖2 = τ = 0 if and only if det(T ) = (tr(T ))2.

Let r(x1, x2) > 0 be an arbitrary smooth function and let θ be constant. Set

T = r(x1, x2)

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
.

This example is not nilpotent and we have

τ = 2r(x1, x2)2{1 + 2 cos(2θ)},

‖ρ‖2 = r(x1, x2)4{1 + 4 cos(2θ) + 4 cos(4θ)},

‖R‖2 = 4r(x1, x2)4{1 + 2 cos(4θ)} .

Choosing θ = π
3

one has that τ = ‖R‖2 = 0 but ‖ρ‖2 = −3r(x1, x2)4 6= 0. Moreover,

setting θ = 1
2

arctan
(

1+
√

7
1−
√

7

)
one has ‖ρ‖2 = 0 but τ = (1 +

√
7)r(x1, x2)2 and ‖R‖2 =

2(2−
√

7)r(x1, x2)4.
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Assertion (iv) implies Assertion (i) in Theorem 6.8

In the final step we will show that T is nilpotent implies that (T ∗Σ, gD,Φ,T ) is VSI. Although this
fact already follows from the results in [43, 65], we include a direct proof for sake of complete-
ness. Before establishing this implication, we must derive an additional technical result.

Assume that T is nilpotent. By Lemma 5.4, we may choose coordinates so T = ∂x1 ⊗ dx2.
Let g = gD,Φ,T . Then{gij,Γijk, Rabcd;e1...ek} are polynomial expressions in the fiber coordinates
x1′ and x2′ whose coefficients depend on the variables {DΓij

k,Φij} and their derivatives with
respect to x1 and x2. In such a coordinate system, one computes that the possibly non-zero
components of the tensor gij , of the Christoffel symbols, and of the curvature R are, up to the
usual Z2 symmetries,

g11′ , g22′ , g1′1′ , g1′2′ , g2′2′ , Γ11
1, Γ11

2, Γ11
1′ ,

Γ11
2′ , Γ12

1, Γ12
2, Γ12

1′ , Γ12
2′ , Γ11′

1′ , Γ11′
2′ , Γ12′

1′ ,

Γ12′
2′ , Γ22

1, Γ22
2, Γ22

1′ , Γ22
2′ , Γ21′

1′ , Γ21′
2′ , Γ22′

1′ ,

Γ22′
2′ , R1212, R1211′ , R1212′ , R1221′ , R1222′ , R21′21′ .

(6.4)

Of particular interest is the fact that R21′21′ = −1. Let o(·) be the maximal order of an
expression in the dual variables {x1′ , x2′}. Thus if o(·) = 0, these variables do not occur, if
o(·) = 1, the expression is linear in the variables {x1′ , x2′}, and so forth. In other words, we
define o(x1′) = o(x2′) = 1 and extend o to a derivation. If o(Rijk`) = 2, then Rijk` is at
most quadratic in {x1′ , x2′}; if o(Rijk`) = 1, then Rijk` is at most linear in {x1′ , x2′}; and if
o(Rijk`) = 0, then Rijk` does not involve {x1′ , x2′}. We have:

o(Γ11
1) = 0, o(Γ11

2) = 0, o(Γ11
1′) = 1, o(Γ11

2′) = 2,

o(Γ12
1) = 0, o(Γ12

2) = 0, o(Γ12
1′) = 1, o(Γ12

2′) = 2,

o(Γ11′
1′) = 0, o(Γ11′

2′) = 0, o(Γ12′
1′) = 0, o(Γ12′

2′) = 0,

o(Γ22
1) = 1, o(Γ22

2) = 0, o(Γ22
1′) = 2, o(Γ22

2′) = 2,

o(Γ21′
1′) = 0, o(Γ21′

2′) = 1, o(Γ22′
1′) = 0, o(Γ22′

2′) = 0,

o(R1212) = 2, o(R1211′) = 1, o(R1212′) = 0, o(R1221′) = 1,

o(R1222′) = 1, o(R21′21′) = 0 .

We define the defect by setting

d(Γij
k) := −

2∑
n=1

{δi,n + δj,n − δk,n}+
2∑

n=1

{δi,n′ + δj,n′ − δk,n′},

d(Ri1i2i3i4;i5...iν ) :=
ν∑

n=1

{δin,1′ + δin,2′ − δin,1 − δin,2} .



6.3.1 VSI manifolds 167

In brief, we count, with multiplicity, each lower index ‘1’ or ‘2’ with a −1 and ‘1′’ or ‘2′’ with a
+1 and reverse the sign for upper indices. This will play an important role in contracting indices
subsequently. We then set x = o + d and compute:

x(Γ11
1) = −1, x(Γ11

2) = −1, x(Γ11
1′) = −2, x(Γ11

2′) = −1,

x(Γ12
1) = −1, x(Γ12

2) = −1, x(Γ12
1′) = −2, x(Γ12

2′) = −1,

x(Γ11′
1′) = −1, x(Γ11′

2′) = −1, x(Γ12′
1′) = −1, x(Γ12′

2′) = −1,

x(Γ22
1) = 0, x(Γ22

2) = −1, x(Γ22
1′) = −1, x(Γ22

2′) = −1,

x(Γ21′
1′) = −1, x(Γ21′

2′) = 0, x(Γ22′
1′) = −1, x(Γ22′

2′) = −1,

x(R1212) = −2, x(R1211′) = −1, x(R1212′) = −2, x(R1221′) = −1,

x(R1222′) = −1, x(R21′21′) = 0 .

(6.5)

Lemma 6.10. Suppose that Ri1i2i3i4;j1...jν 6= 0. Then x(Ri1i2i3i4;j1...jν ) ≤ 0. Furthermore,
x(Ri1i2i3i4;j1...jν ) = 0 if and only if ν = 0 and Ri1i2i3i4 = ±R21′21′ .

Proof. As a matter of notation, throughout the proof of this lemma ∂j denotes ∂xj if j ∈ {1, 2}
and ∂xj if j ∈ {1′, 2′}. Let Ri1i2i3i4 6= 0. By Equation (6.5), x(Ri1i2i3i4) ≤ 0 with equality if and
only if Ri1i2i3i4 = ±R21′21′ . This establishes the result if ν = 0. Next we suppose ν = 1 and
examine∇R. We expand

Ri1i2i3i4;j = ∂jRi1i2i3i4 −
∑
a

Γji1
a Rai2i3i4 −

∑
a

Γji2
a Ri1ai3i4

−
∑
a

Γji3
a Ri1i2ai4 −

∑
a

Γji4
a Ri1i2i3a .

We examine different cases separately, depending on the kind of addend which gives the order in
the above expression for Ri1i2i3i4;j .

Case 1. o(Ri1i2i3i4;j) = o(Γji1
a Rai2i3i4). (For any other addend of this type the argument is

similar).
In this case, since d(Ri1i2i3i4;j) = d(Γji1

a Rai2i3i4), we have

x(Ri1i2i3i4;j) = x(Γji1
a Rai2i3i4) = x(Γji1

a) + x(Rai2i3i4) .

Suppose r(Ri1i2i3i4;j) ≥ 0. Since Equation (6.5) implies that x(Γji1
a) ≤ 0 and x(Rai2i3i4) ≤ 0,

we conclude that
x(Γji1

a) = x(Rai2i3i4) = 0,

which is a contradiction since, again by Equation (6.5), x(Γji1
a) = 0 implies that a ∈ {1, 2′},

while x(Rai2i3i4) = 0 implies that a ∈ {2, 1′}. So, we conclude that necessarily x(Ri1i2i3i4;j) < 0.
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Case 2. o(Ri1i2i3i4;j) = o(∂jRi1i2i3i4), with j ∈ {1, 2}.
Note that o(∂jRi1i2i3i4) ≤ o(Ri1i2i3i4) and d(Ri1i2i3i4;j) = d(Ri1i2i3i4)− 1. Thus,

x(Ri1i2i3i4;j) = o(∂jRi1i2i3i4) + d(Ri1i2i3i4)− 1

≤ o(Ri1i2i3i4) + d(Ri1i2i3i4)− 1 = x(Ri1i2i3i4)− 1 .

Now, since x(Ri1i2i3i4) ≤ 0, we conclude that x(Ri1i2i3i4;j) < 0.

Case 3. o(Ri1i2i3i4;j) = o(∂jRi1i2i3i4), with j ∈ {1′, 2′}.
In this case, a key observation is that o(∂jRi1i2i3i4) < o(Ri1i2i3i4). Indeed, analyzing the com-

ponents with ∂jRi1i2i3i4 6= 0 we distinguish two cases: the components R1211′ , R1221′ and R1222′

are of the form x1′F1(x1, x2) + F2(x1, x2) and hence o(∂jRi1i2i3i4) = 0 < 1 = o(Ri1i2i3i4).
On the other hand, R1212 is of the form (x1′)

2F1(x1, x2) + x1′F2(x1, x2) + x2′F3(x1, x2) +
x1′x2′F4(x1, x2) + F5(x1, x2) and therefore o(∂jR1212) = 1 < 2 = o(R1212).

Hence o(∂jRi1i2i3i4) < o(Ri1i2i3i4) and since d(Ri1i2i3i4;j) = d(Ri1i2i3i4) + 1 we have:

x(Ri1i2i3i4;j) = o(∂jRi1i2i3i4) + d(Ri1i2i3i4) + 1

< o(Ri1i2i3i4) + d(Ri1i2i3i4) + 1 = x(Ri1i2i3i4) + 1 .

Now, note that Ri1i2i3i4 6= ±R21′21′ in this case and therefore x(Ri1i2i3i4) < 0, so we conclude
that x(Ri1i2i3i4;j) < 0.

In the second part of the proof, for ν ≥ 2, we proceed by induction in two conditions. In par-
ticular, we suppose that o(∂jνRi1i2i3i4;j1...jν−1) < o(Ri1i2i3i4;j1...jν−1) whenever jν ∈ {1′, 2′} and
∂jνRi1i2i3i4;j1...jν−1 6= 0, and we also suppose that if Ri1i2i3i4;j1...jν 6= 0 then x(Ri1i2i3i4;j1...jν ) < 0.
Next we show that both conditions hold for ν + 1. We expand

Ri1i2i3i4;j1...jν+1 = ∂jν+1Ri1i2i3i4;j1...jν −
∑
a

Γjν+1i1
a Rai2i3i4;j1...jν

−
∑
a

Γjν+1i2
a Ri1ai3i4;j1...jν −

∑
a

Γjν+1i3
a Ri1i2ai4;j1...jν

−
∑
a

Γjν+1i4
a Ri1i2i3a;j1...jν .

As in the case ν = 1 we analyze separately the different cases depending on the kind of addend
which gives the order in the expression for Ri1i2i3i4;j1...jν+1 .

Case 1. o(Ri1i2i3i4;j1...jν+1) = o(Γjν+1i1
a Rai2i3i4;j1...jν ). (For any other addend of this type the

argument is similar).
In this case, d(Ri1i2i3i4;j1...jν+1) = d(Γjν+1i1

a Rai2i3i4;j1...jν ), so we have

x(Ri1i2i3i4;j1...jν+1) = x(Γjν+1i1
a Rai2i3i4;j1...jν ) = x(Γjν+1i1

a) + x(Rai2i3i4;j1...jν ) .

Since x(Γjν+1i1
a) ≤ 0 by Equation (6.5) and we are assuming x(Rai2i3i4;j1...jν ) < 0, we conclude

that x(Ri1i2i3i4;j1...jν+1) < 0.



6.3.1 VSI manifolds 169

Case 2. o(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ), with jν+1 ∈ {1, 2}.
Using o(∂jν+1Ri1i2i3i4;j1...jν ) ≤ o(Ri1i2i3i4;j1...jν ) and that, in this case, d(Ri1i2i3i4;j1...jν+1) =

d(Ri1i2i3i4;j1...jν )− 1, we have

x(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν )− 1

≤ o(Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν )− 1

= x(Ri1i2i3i4;j1...jν )− 1 .

Since we are assuming x(Ri1i2i3i4;j1...jν ) < 0, we get x(Ri1i2i3i4;j1...jν+1) < 0.

Case 3. o(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ), with jν+1 ∈ {1′, 2′}.
Suppose that o(∂jν+1Ri1i2i3i4;j1...jν ) < o(Ri1i2i3i4;j1...jν ). Note that, d(Ri1i2i3i4;j1...jν+1) =

d(Ri1i2i3i4;j1...jν ) + 1, then

x(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν ) + 1

< o(Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν ) + 1

= x(Ri1i2i3i4;j1...jν ) + 1 .

Since we are assuming x(Ri1i2i3i4;j1...jν ) < 0, we conclude x(Ri1i2i3i4;j1...jν+1) < 0.

We finish the proof showing that if ∂jν+1Ri1i2i3i4;j1...jν 6= 0 then

o(∂jν+1Ri1i2i3i4;j1...jν ) < o(Ri1i2i3i4;j1...jν ),

where jν+1 ∈ {1′, 2′}. We analyze the three different kind of addends in the expression of
∂jν+1Ri1i2i3i4;j1...jν showing that the order of each addend is always smaller than the order of the
addend from which it derives. This, in particular, implies the above inequality.

• For ∂jν+1∂jνRi1i2i3i4;j1...jν−1 , since we are assuming

o(∂jν+1Ri1i2i3i4;j1...jν−1) < o(Ri1i2i3i4;j1...jν−1),

we have
o(∂jν+1∂jνRi1i2i3i4;j1...jν−1) = o(∂jν∂jν+1Ri1i2i3i4;j1...jν−1)

≤ o(∂jν+1Ri1i2i3i4;j1...jν−1)

< o(Ri1i2i3i4;j1...jν−1) .

• For ∂jν+1 (Γjν i1
a)Rai2i3i4;j1...jν−1 , a straightforward calculation show that o(∂`Γij

k)) < o(Γij
k)

whenever o(Γij
k) > 0 and ` ∈ {1′, 2′}, so we get

o
(
∂jν+1 (Γjν i1

a)Rai2i3i4;j1...jν−1

)
= o(∂jν+1Γjν i1

a) + o(Rai2i3i4;j1...jν−1)

< o(Γjν i1
a) + o(Rai2i3i4;j1...jν−1)

= o(Γjν i1
a Rai2i3i4;j1...jν−1) .



170 6 General examples of Bach-flat manifolds in neutral signature

• Finally, for an addend ot the type Γjν i1
a ∂jν+1

(
Rai2i3i4;j1...jν−1

)
, and since we are assuming

o
(
∂jν+1Rai2i3i4;j1...jν−1

)
< o(Rai2i3i4;j1...jν−1) we have

o
(
Γjν i1

a ∂jν+1

(
Rai2i3i4;j1...jν−1

))
= o(Γjν i1

a) + o(∂jν+1Rai2i3i4;j1...jν−1)

< o(Γjν i1
a) + o(Rai2i3i4;j1...jν−1)

= o(Γjν i1
a Rai2i3i4;j1...jν−1) .

Now we are ready to show that Assertion (iv) implies Assertion (i) in Theorem 6.8. Suppose
T is nilpotent. LetW be a Weyl scalar invariant formed from the curvature tensor and its covari-
ant derivatives. By Equation (6.4), we can contract an index ‘1’ against an index ‘1′’ and an index
‘2’ against an index ‘2′’. We can also contract indices {1′, 2′} against {1′, 2′}. Consequently, if
A = Ri1i2i3i4;j1...jν . . . is a monomial, then

deg1(A) ≤ deg1′(A) and deg2(A) ≤ deg2′(A),

where deg`(A) denotes the number of times that the index ‘`’ appears in the monomial A. The
inequality can, of course, be strict as we can also contract an index ‘1′’ or ‘2′’ against an index
‘1′’ or ‘2′’. This implies that d(A) ≥ 0. Since o(A) ≥ 0, this implies x(A) ≥ 0. By Lemma 6.10,
x(A) ≤ 0. Thus we have x(A) = 0. This implies A is a power of R21′21′ . Since we cannot
contract an index ‘2’ against an index ‘1′’, we see thatW = 0. This shows Assertion (iv) implies
Assertion (i) in Theorem 6.8.

6.3.2 Invariants which are not of Weyl Type
Let (Σ, D) be an affine surface and let (T ∗Σ, gD,Φ,T ) be the associated Riemannian extension
where T is nilpotent. We begin by decomposing the curvature and the Ricci tensor of the Rie-
mannian extension (T ∗Σ, gD,Φ,T ). Choose coordinates so T = ∂x1 ⊗ dx2. Let {R, ρ} be the
curvature operator and Ricci tensor of (T ∗Σ, gD,Φ,T ) and let {RD, ρD, ρDs , ρ

D
sk} be the curva-

ture operator, Ricci tensor, and the symmetric and skew-symmetric Ricci tensors of (Σ, D). Let
V := span{∂x1′ , ∂x2′} be the “vertical” space and let H := span{∂x1 , ∂x2} be the “horizontal”
space. These are, of course, not invariantly defined. We may then decompose

R(X, Y ) =


RH

H =

(
RXY 1

1 RXY 2
1

RXY 1
2 RXY 2

2

)
RH

V =

(
RXY 1′

1 RXY 2′
1

RXY 1′
2 RXY 2′

2

)

RV
H =

(
RXY 1

1′ RXY 2
1′

RXY 1
2′ RXY 2

2′

)
RV

V =

(
RXY 1′

1′ RXY 2′
1′

RXY 1′
2′ RXY 2′

2′

)
 .

The next result follows by a direct computation.

Lemma 6.11. Take (T ∗Σ, gD,Φ,T ) where T = ∂x1 ⊗ dx2, as above.
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(i) RH
V(X, Y ) = 0 for all X, Y vector fields on T ∗Σ, i.e.,

Rabi′
j = 0 for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 .

(ii) {RH
H + (RV

V)t}(X, Y ) = 0 for all X, Y vector fields on T ∗Σ, i.e.,

Rab1
1 +Rab1′

1′ = 0, Rab2
2 +Rab2′

2′ = 0,
Rab1

2 +Rab2′
1′ = 0, Rab2

1 +Rab1′
2′ = 0 .

RH
H(∂xi , ∂xj) = 0 for i < j and (i, j) 6∈ {(1, 2), (2, 1′)} .(
R21′1

1 R21′2
1

R21′1
2 R21′2

2

)
=

(
0 −1

0 0

)
.

(
R121

1 R122
1

R121
2 R122

2

)
=

(
RD

121
1 RD

122
1

RD
121

2 RD
122

2

)
+ x1′

(
−DΓ11

2 DΓ11
1 − DΓ12

2

0 DΓ11
2

)
.

tr(RH
H(X, Y )) = 2(π∗ρDsk)(X, Y ) for all X, Y vector fields on T ∗Σ .

(iii) ρi′j = ρi′j′ = 0 for all i, j = 1, 2 .(
ρ11 ρ21

ρ12 ρ22

)
= 2ρDs

+

(
0 2x1′

DΓ11
2

2x1′
DΓ11

2 2x1′(
DΓ12

2 − 2DΓ11
1)− 2x2′

DΓ11
2 + Φ11

)
.

(iv) ∇R(i, j, 1, 1; k) +∇R(i, j, 2, 2; k) = 0 unless {i, j, k} ∈ {1, 2} .

The manifold (T ∗Σ, gD,Φ,T ) is a Walker manifold; V := span{∂x1′ , ∂x2′} is a null parallel
distribution of rank two by Equation (6.1) and Equation (6.4). Generically, this is the only such
distribution and V is invariantly defined. We use V as an additional piece of structure and
redefine H := T (T ∗Σ)/V and let π : T (T ∗Σ) → H be the natural projection. By Lemma 6.11,
πR(X, Y )v = 0 for v ∈ V and thus πR(X, Y ) descends to a well-defined map that, via an abuse
of notation, we continue to denote by RH

H(X, Y ) of H. Let {X1′ , X2′} be a local frame for V.
Choose {X1, X2} so that

g(X1, X1′) = g(X2, X2′) = 1 and g(X1, X2′) = g(X2, X1′) = 0 . (6.6)

We note that {X1, X2} is not uniquely defined by these relations as we can add an arbitrary
element of V to either X1 or X2 and preserve Equation (6.6). However {πX1, πX2} is uniquely
defined by Equation (6.6). And, in particular, if we take X1′ = ∂x1′ and X2′ = ∂x2′ , then we may
take X1 = ∂x1 and X2 = ∂x2 .

We use Lemma 6.11 to introduce some additional quantities.
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(1) Since ρ(X, Y ) = 0 if either X or Y belongs to V, ρ descends to a map from H ⊕ H to R
that we shall denote by ρH ∈ S2(H∗). Let π : T ∗Σ→ Σ. Since π∗(V) = 0, π∗ : H→ TΣ.
If DΓ11

2 = 0, if 2DΓ11
2 = DΓ12

2, and if Φ11 = 0, then ρH = 2π∗ρDs .

(2) Let Ω(X, Y ) = tr(RH
H(X, Y )). Then Ω(X, Y ) = 0 if either X or Y belongs to V so Ω

descends to an alternating bilinear map from H ⊕ H to R that we shall denote by ΩH ∈
Λ2(H∗). We have ΩH = 2π∗ρDsk.

(3) As V is parallel, ∇R(X, Y ;Z) maps V to V. Consequently, ∇R(X, Y ;Z) extends to an
endomorphism (∇R)H(X, Y ;Z) of H. A direct computation shows that

tr((∇R)H(X, Y ;Z)) = 0,

if X , Y , or Z belongs to V. We may therefore regard tr((∇R)H(X, Y ;Z)) ∈ Λ2(H) ⊗
H∗. Assuming that ΩH 6= 0, we may decompose tr((∇R)H) = ωH ⊗ ΩH for ωH ∈ H∗.
Moreover, one has dωH = ΩH.

Definition 6.12. Suppose that we are at a point of (T ∗Σ, gD,Φ,T ) where ρH defines a non-degenerate
symmetric bilinear form on H. We may then define

β1 := ‖ΩH‖2
ρH =

(R121
1 +R122

2)2

ρ11ρ22 − ρ12ρ12

.

If we also assume that ΩH 6= 0 (i.e., ρDsk 6= 0) or, equivalently, that β1 6= 0, then ωH is well-
defined and we may set

β2 := ‖ωH‖2
ρH .

We have

ωH
1 =

R121
1

;1 +R122
2

;1

R121
1 +R122

2
, ωH

2 =
R121

1
;2 +R122

2
;2

R121
1 +R122

2
,

β2 :=
ρH22ω

H
1 ω

H
1 + ρH11ω

H
2 ω

H
2 − 2ρH12ω

H
1 ω

H
2

ρH11ρ
H
22 − ρH12ρ

H
12

.

It is obvious from the discussion given above that β1 and β2 are isometry invariants of
(T ∗Σ, gD,Φ,T ) where defined.

Generically, β1 and β2 are very complicated expressions which involve non-trivial depen-
dence on the fiber variables and which involve the endomorphism Φ. It is interesting to note that
if we consider a nilpotent (1,1)-tensor field T given by T = ∂x2⊗dx1, then proceeding in a com-
pletely analogous way as in Lemma 6.11 one can construct the invariants β1 and β2. In the next
section we will present examples of Bach-flat manifolds where both invariants are calculated.

Remark 6.13. The facts that (RH
H) ∈ Λ2(H∗), ωH = tr(∇R)H/ΩH ∈ H∗ and dωH = ΩH is,

of course, not true for a general Walker manifold. This observation perhaps can be useful in
studying when a general Walker manifold is one of our special examples. All of these are pull-
backs of similar identities on the base.
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6.4 Examples of Bach-flat manifolds

The existence of a null distribution V on a four-dimensional manifold (N, g) of neutral signature
defines a natural orientation on N : the one which, for any basis {u, v} of V, makes the bivector
u ∧ v self-dual (see Chapter 1 and [49]). We consider on T ∗Σ the orientation which agrees with
V = ker(π∗), and thus self-duality and anti-self-duality are not interchangeable. Let

e1 = ∂x1 + 1
2
(1− (gD,Φ,T )11)∂x1′ ,

e2 = ∂x2 − (gD,Φ,T )12∂x1′ + 1
2
(1− (gD,Φ,T )22)∂x2′ ,

e3 = ∂x1 − 1
2
(1 + (gD,Φ,T )11)∂x1′ ,

e4 = ∂x2 − (gD,Φ,T )12∂x1′ −
1
2
(1 + (gD,Φ,T )22)∂x2′

be an orthonormal basis of (T ∗Σ, gD,Φ,T ) with ε1 = ε2 = 1 = −ε3 = −ε4 (where εi = g(ei, ei)).
Note that e1 ∧ · · · ∧ e4 agrees with the orientation determined by V = ker(π∗). Then, the spaces
of self-dual and anti-self-dual 2-forms, Λ2

± = 〈
{
E±1 , E

±
2 , E

±
3

}
〉, have induced basis

E±1 =
e1 ∧ e2 ± e3 ∧ e4

√
2

, E±2 =
e1 ∧ e3 ± e2 ∧ e4

√
2

, E±3 =
e1 ∧ e4 ∓ e2 ∧ e3

√
2

.

Here observe that the Hodge star operator satisfies

ei ∧ ej ∧ ?(ek ∧ e`) = (δikδ
j
` − δ

i
`δ
j
k) εiεj e

1 ∧ e2 ∧ e3 ∧ e4 .

Further note that 〈〈E±1 , E±1 〉〉 = 1, 〈〈E±2 , E±2 〉〉 = −1, 〈〈E±3 , E±3 〉〉 = −1, where 〈〈·, ·〉〉 is the inner
product defined in Chapter 1, and let W±

ij = W±(E±i , E
±
j ) denote the components of the self-

dual and anti-self-dual parts of the Weyl curvature tensor.
Let 0 6= T = T j i(x

1, x2) be a nilpotent tensor field of type (1, 1) as in Equation (6.3). A
straightforward calculation shows that

W−
11 = −1

2
α(x1, x2)2(ξ(x1, x2)2 + 1)2, W+

12 = −2ρDsk(∂x1 , ∂x2) .

Therefore, W− is always non-null and the non-symmetry of ρD guarantees that (T ∗Σ, gD,Φ,T ) is
not half conformally flat.

We recall that a manifold is conformally Einstein if and only if the equation

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (6.7)

has a positive solution, where the conformal metric is given by g = ϕ−2g. It was shown in [62,72]
that any four-dimensional conformally Einstein manifold satisfies

(i) div4W −W (·, ·, ·,∇ logϕ) = 0, (ii) B = 0 . (6.8)

Conditions (i)–(ii) above are also sufficient to be conformally Einstein if (N, g) is weakly-
generic. In our case, it is easy to check that Riemannian extensions gD,Φ,T for T nilpotent are not
weakly-generic (see Chapter 1).
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From now on we introduce the notation:

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g and Ẽ = div4W −W (·, ·, ·,∇ logϕ) .

For the Riemannian extension (T ∗Σ, gD,Φ,T ), we compute

E1′1′ = 2∂x1′∂x1′ϕ, E1′2′ = 2∂x1′∂x2′ϕ, E2′2′ = 2∂x2′∂x2′ϕ,

to show that any solution of Equation (6.7) must be of the form

ϕ(x1, x2, x1′ , x2′) = A(x1, x2)x1′ +B(x1, x2)x2′ + ψ(x1, x2), (6.9)

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2). This shows
that any solution of the conformally Einstein equation on (T ∗Σ, gD,Φ,T ) is of the form ϕ =
ιX + ψ ◦ π, where ιX is the evaluation of a vector field X = A∂x1 + B∂x2 on Σ, ψ ∈ C∞(Σ)
and π : T ∗Σ→ Σ is the projection.

Although in some cases we shall discuss some interesting families of anti-self-dual and con-
formally Einstein manifolds, our main purpose is to construct strictly Bach-flat examples with
DT 6= 0 (examples with T parallel were previously constructed in Chapter 5).

6.4.1 Locally homogeneous setting
For a Type A or Type B homogeneous affine surface we investigate the existence of nilpotent
tensor fields so that the corresponding nilpotent Riemannian extension is Bach-flat. We begin
with a simple case.

Example 6.14. Setting

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
1 = 1, DΓ12

2 = 1, DΓ22
1 = 0, DΓ22

2 = 0,

we have a Type A affine surface which is not flat since the Ricci tensor of D is ρD = −(dx1 −
dx2)2. Despite of the Bach-flat condition is quite complicated, there exist many examples of
nilpotent tensor fields of type (1, 1) which give rise to Bach-flat manifolds. For instance, if
αi’s are smooth functions of one variable, then the following nilpotent endomorphisms lead to
Bach-flat manifolds:

T := α2(x2)
√
e2x1 + α1(x2)

{
∂x1 ⊗ dx2

}
,

T̃ := α2(x1)
√
e2x2 + α1(x1)

{
∂x2 ⊗ dx1

}
.

In the rest of this subsection we consider nilpotent tensor fields T ∈ M2(R), i.e., T has
constant entries in the given coordinates and analyze Type A and Type B affine surfaces by
separate.
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Example 6.15. LetD be a TypeA structure on R2, i.e., the Christoffel symbols ofD are constant.
The Ricci tensor is symmetric in this setting. Let 0 6= T ∈ M2(R) be nilpotent. Make a linear
change of coordinates to ensure T = ∂x1 ⊗ dx2. A direct computation shows B = 0 if and only
if DΓ11

2 = 0 and (DΓ11
1)2 − DΓ11

1 DΓ12
2 = 0.

If (T ∗Σ, gD,Φ,T ) is Bach-flat and Φ = 0, then (T ∗Σ, gD,Φ,T ) is anti-self-dual and conformally
Einstein. Indeed, if DΓ11

1 = DΓ11
2 = 0 and DΓ12

2 = 0, then the conformal metric ϕ−2gD,Φ,T
is Einstein just taking ϕ = x1′ e

−DΓ12
1x2 . If DΓ11

1 = DΓ11
2 = 0 and DΓ12

2 6= 0 then ϕ−2gD,Φ,T
is an Einstein metric with conformal factor ϕ = e−

DΓ12
2x1+DΓ12

1x2 . If DΓ11
2 = 0 and DΓ11

1 =
DΓ12

2 then again ϕ = x1′ e
−DΓ12

1x2 defines an Einstein conformal metric.

Next we construct strictly Bach-flat Riemannian extensions considering the case DΓ11
1 =

DΓ11
2 = 0 and assuming DΓ12

2 6= 0. In this case,

∂x1′W
+
11 = ∂x1Φ11(x1, x2)− 2DΓ12

2Φ11(x1, x2) .

A straightforward calculation shows that the possible conformal functions take the form ϕ =
µ e−

DΓ12
2x1+DΓ12

1x2 (with µ ∈ R) and, in such a case,

E22 = ϕ(x1, x2, x1′ , x2′)Φ11(x1, x2) .

Hence, we conclude that if

Φ11(x1, x2) 6= 0 and ∂x1Φ11(x1, x2)− 2DΓ12
2Φ11(x1, x2) 6= 0,

i.e., Φ11(x1, x2) 6= e2DΓ12
2x1P (x2), where P is a smooth function depending only on the coordi-

nate x2, then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat.
Moreover, since (D∂x1

T )∂x2 = −DΓ12
2∂x1 , we have DT 6= 0 in this case.

Remark 6.16. Let (Σ, D) be a Type A surface. Since any Type A surface has ρDsk = 0, the
invariant β1 = 0 whenever it is defined. Hence the invariant β2 is not defined in this setting.

Example 6.17. LetD be a Type B structure on R+×R, i.e., the Christoffel symbols ofD take the
form DΓij

k = (x1)−1Cij
k. Let 0 6= T ∈M2(R) be nilpotent. The map (x1, x2)→ (x1, ax2+bx1)

defines an action of the “ax + b" group on such structures and modulo such an action, we may
assume T takes one of the following two forms:

(1) T = ∂x1 ⊗ dx2. A direct computation shows that (T ∗Σ, gD,Φ,T ) is Bach-flat if and only if
C11

2 = 0 and (C11
1 − 1)(C11

1 − C12
2) = 0.

(2) T = ∂x2 ⊗ dx1. A direct computation shows that (T ∗Σ, gD,Φ,T ) is Bach-flat if and only if
C22

1 = 0 and C22
2(C12

1 − C22
2) = 0.

Case (1). In this case, ρD is symmetric if and only if C12
1 + C22

2 = 0.

Case (1.1) C11
2 = 0, C11

1 = 1

First of all, note that DT 6= 0 in this case since (D∂x2
T )∂x1 = −C12

2

x1
∂x1 and (D∂x1

T )∂x2 =
1−C12

2

x1
∂x1 .
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Assume that ρD is non-symmetric, i.e., C12
1 + C22

2 6= 0. Then (T ∗Σ, gD,Φ,T ) is not half
conformally flat. Moreover, a straightforward calculation shows that the possible conformal
functions take the form ϕ = (x1)2−C12

2
P (x2), where P is a smooth function depending only on

the coordinate x2 and, in such a case,

−2(x1)3 Ẽ121 = C12
1(5− 4C12

2)− C22
2 .

Hence, ρD non-symmetric and C22
2 6= C12

1(5−4C12
2) imply (T ∗Σ, gD,Φ,T ) is strictly Bach-flat.

If ρD is non-symmetric and C22
2 = C12

1(5 − 4C12
2), we distinguish two cases depending

on C12
2 equals 1 or not. If C12

2 = 1 then a straightforward calculation shows that (T ∗Σ, gD,Φ,T )

is conformally Einstein if and only if Φ11(x1, x2) = A(x2) − B(x2)
x1

+ 4C22
1

(x1)2
and the possible

conformal functions take the form ϕ = x1P (x2), where A, B and P are smooth functions
depending only on the coordinate x2 satisfying

2P ′′(x2) + A(x2)P (x2) = 0, 2C12
1P ′(x2) +B(x2)P (x2) = 0 .

If C12
2 6= 1, then it is easy to check that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if

Φ11(x1, x2) = 4(C22
1+2(C12

1)2(C12
2−1))

(x1)2
and the possible conformal functions take the form ϕ =

µ(x1)2−C12
2 , where µ ∈ R.

Remark 6.18. In a more general setting, without imposing the non-symmetric condition on ρD,
assume C12

2 6= 1 and Φ11(x1, x2) = P (x2) 6= 0, where P is a smooth function depending
only on the coordinate x2 with P ′ 6= 0. In this case, we compute ∂x1′∂x1∂x1

(
(x1)3W+

11

)
=

−4(C12
2 − 1)P (x2) so (T ∗Σ, gD,Φ,T ) is not half conformally flat. Moreover, a straightforward

calculation shows that the possible conformal functions take the form ϕ = (x1)2−C12
2
µ (with

µ ∈ R) and, in such a case,

∂x2 (E22) = ϕ(x1, x2, x1′ , x2′) ∂x2Φ11(x1, x2) .

Therefore, we conclude that if C12
2 6= 1 and Φ11(x1, x2) = P (x2) 6= 0 with P ′(x2) 6= 0, then

(T ∗Σ, gD,Φ,T ) is strictly Bach-flat.

Invariants β1 and β2 in Case (1.1) (C11
2 = 0, C11

1 = 1)

In this case, assuming that ρH is non-degenerate, one has

β1 = (C12
1 + C22

2)2∆−1

where
∆ = 2(2− C12

2)C12
2(x1)2Φ11 − 4(2− C12

2)2C12
2x1x1′

− (4C12
2 + 1)(C12

1)2 + 4(C12
2 − 2)C22

1(C12
2)2

− (C22
2)2 + 2(1− 2(C12

2 − 1)C12
2)C12

1C22
2 .
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It now follows that β1 = 0 if and only if the Ricci tensor ρD of (Σ, D) is symmetric. Moreover
β1 is a non-zero constant if and only if either C12

2 = 0, in which case β1 = − (C12
1+C22

2)2

(C12
1−C22

2)2
, or

C12
2 = 2, and then β1 = − (C12

1+C22
2)2

(3C12
1+C22

2)2
. Further, if β1 is non-zero then one has

β2 = {(C12
2 + 3)2(x1)2Φ11 + 2(C12

2 − 2)(C12
2 + 3)2x1x1′

− 2(C12
2 + 3)2C12

2C22
1 − 2((C12

2 − 1)C12
2 + 3)(C22

2)2

− 2((4C12
2 + 9)C12

2 + 6)(C12
1)2

− 2((3C12
2 − 4)C12

2 − 9)C12
1C22

2}∆−1,

which is generically non-constant.

Case (1.2) C11
2 = 0, C12

2 = C11
1

In this case DT is determined by

(D∂x2
T )∂x1 = −C11

1

x1
∂x1 , (D∂x2

T )∂x2 =
C12

1 − C22
2

x1
∂x1 +

C11
1

x1
∂x2 .

If ρD is non-symmetric, i.e C12
1 + C22

2 6= 0, then (T ∗Σ, gD,Φ,T ) is not half conformally flat
and, moreover, a straightforward calculation shows that the possible conformal functions take
the form ϕ = (x1)C11

1
P (x2), where P is a smooth function depending only on the coordinate

x2. In such a case,
E12 = (x1)−2(C22

2 − C12
1)ϕ(x1, x2, x1′ , x2′) .

Hence, if ρD is non-symmetric and C22
2 6= C12

1 then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat.
Now, if ρD is non-symmetric and C22

2 = C12
1 then a straightforward calculation shows that

(T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if Φ11(x1, x2) = A(x2)− B(x2)
x1

+ 2C22
1(C11

1+1)
(x1)2

and the possible conformal functions take the form ϕ = (x1)C11
1
P (x2), where A, B and P are

smooth functions depending only on the coordinate x2 satisfying

2P ′′(x2) + A(x2)P (x2) = 0, 2C12
1P ′(x2) +B(x2)P (x2) = 0 .

Invariants β1 and β2 in Case (1.2) (C11
2 = 0, C12

2 = C11
1)

Assume that ρH is non-degenerate. Then

β1 = (C12
1 + C22

2)2∆−1

where

∆ = 2C11
1(x1)2Φ11 − 4(C11

1)2x1x1′ − (4(C11
1)2 + 1)(C12

1)2 − (C22
2)2

− 4C11
1C22

1 + 2C12
1C22

2 .
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Therefore β1 = 0 if and only if the Ricci tensor of (Σ, D) is symmetric. Moreover, one has that
β1 is a non-zero constant if and only ifC11

1 = 0, in which case β1 = − (C12
1+C22

2)2

(C12
1−C22

2)2
. Furthermore,

if ρH is non-degenerate and β1 6= 0, then

β2 = {4(C11
1 + 1)2(x1)2Φ11 − 8(C11

1 + 1)2C11
1(x1)x1′

− 2(C11
1 + 2)(C22

2)2 − 8(C11
1 + 1)2C22

1

− 2(C11
1(8C11

1 + 9) + 2)(C12
1)2 + 4(3C11

1 + 2)C12
1C22

2}∆−1 .

Case (2). In this case, ρD is symmetric if and only if C12
1 = 0.

Case (2.1) C22
1 = 0, C22

2 = 0

If ρD is not symmetric, i.e., C12
1 6= 0, then (T ∗Σ, gD,Φ,T ) is not half conformally flat. More-

over, a straightforward calculation shows that the possible conformal functions take the form

ϕ = e−
C12

1x2

x1 P (x1), where P is a smooth function depending only on the coordinate x1 and, in
such a case,

∂x2

(
(x1)3 e

C12
1x2

x1 E12

)
= −4(C12

1)2P (x1) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat. More-
over, DT 6= 0 since (D∂x1

T )∂x2 = −C12
1

x1
∂x2 .

Invariants β1 and β2 in Case (2.1) (C22
1 = 0, C22

2 = 0)

Assuming that ρH is non-degenerate, one has

β1 = (C12
1)2∆−1

where

∆ = (C12
1)2{−2(x1)2Φ22 − 4C12

1x1x2′ − 4C11
1C12

2 + 4C11
2C12

1 − 1} .
One now checks that β1 is never constant in this case. Moreover, if ρH is non-degenerate and
β1 6= 0, then

β2 = (C12
1)2{(x1)2Φ22 + 2C12

1x1x2′ − 12C12
2 − 2C11

2C12
1 − 4

− 2(C11
1)2 − 8(C12

2)2 − 6(C12
2 + 1)C11

1}∆−1 .

It follows that β2 is constant if and only if 2C11
1 + 4C12

2 + 3 = 0, in which case β2 = −1
2
.

Case (2.2) C22
1 = 0, C22

2 = C12
1

If ρD is non-symmetric, i.e., C12
1 6= 0, then (T ∗Σ, gD,Φ,T ) is not half conformally flat.

A straightforward calculation shows that the possible conformal functions take the form ϕ =

e
C12

1x2

x1 P (x1), where P is a smooth function depending only on the coordinate x1 and, in such a
case,

(x1)2E12 = −2C12
1ϕ(x1, x2, x1′ , x2′) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat. More-
over, (D∂x1

T )∂x2 = −C12
1

x1
∂x2 and therefore DT 6= 0.
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Invariants β1 and β2 in Case (2.2) (C22
1 = 0, C22

2 = C12
1)

In this case, ρH is non-degenerate if and only if C12
1C12

2 6= 0. We get

β1 = −(C12
2)−2,

β2 = − ((x1)2Φ22 − 2C12
1x1x2′ − 4(C12

2)2 − 2C12
2) (C12

2)−2 .

In contrast with the previous cases, β1 is constant while β2 is never constant.

6.4.2 Non-locally homogeneous setting
Example 6.19. Impose the relations of Remark 6.3 and set

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = −∂x1β + ceβ,

for smooth functions c = c(x2) and β = β(x1, x2). We consider the nilpotent endomorphism
given by T 1

1 = 0, T 2
2 = 0, T 2

1 = 0 and T 1
2 = ef , where f is a function f(x1, x2). This yields

Bach-flat manifold if and only if

0 = ∂x1f
(
2ceβ + ∂x1β

)
− 2(∂x1f)2 − ∂x1∂x1f .

In particular, any function f = f(x2) will work in this instance. Further, assume that c = 0 and
∂x1

DΓ12
1 = 0. In this case, ρD is symmetric if and only if ∂x1DΓ22

2 + 2∂x1∂x2β = 0.
If ∂x1DΓ22

2 + 2∂x1∂x2β 6= 0 then (T ∗Σ, gD,Φ,T ) is not half conformally flat since W+
21 =

−∂x1DΓ22
2 − 2∂x1∂x2β. Moreover, a straightforward calculation shows that the possible confor-

mal functions take the form ϕ = e−β(x1,x2) P (x2), where P is a smooth function depending only
on the coordinate x2 and, in such a case,

E12 = −ϕ(x1, x2, x1′ , x2′)(∂x1
DΓ22

2 + 2∂x1∂x2β) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat. More-
over, in this case, DT = 0 if and only if ∂x1β = 0 and DΓ12

1 − DΓ22
2 + f ′ = 0.

Let us impose further relations interchanging the roles of the indices to specialize the remain-
ing three Christoffel symbols:

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = −∂x1β + ceβ, for c = c(x2),

DΓ22
1 = 0, DΓ22

2 = −∂x2 β̃, DΓ12
1 = −∂x2 β̃ + c̃eβ̃, for c̃ = c̃(x1) .

Then, in addition, we have the solutions T = ef̃∂x2 ⊗ dx1 where f̃ is a function f̃(x1, x2)
satisfying

0 = ∂x2 f̃(2c̃eβ̃ + ∂x2 β̃)− 2(∂x2 f̃)2 − ∂x2∂x2 f̃ .





Resumo

Un problema central na xeometría de Riemann é a existencia de métricas “óptimas”, é dicir,
aquelas cuxa curvatura ten a propiedade de ser a mellor distribuída uniformemente sobre unha
variedade. O enfoque para determinar tales métricas xeralmente céntrase en atopar métricas
críticas para algúns funcionais naturais de curvatura.

SexaM unha variedade compacta e τg a curvatura escalar dunha métrica pseudo-Riemanniana
g en M . O funcional de curvatura máis simple e máis natural definido sobre o espazo de métri-
cas vén dado pola integral da curvatura escalar: S : g 7→ S(g) =

∫
M
τg d volg, onde d volg é

o elemento de volume determinado pola métrica g. Unha métrica g dise S-crítica cando o seu
tensor de Ricci ρg − 1

2
τgg se anula, onde ρg denota o tensor de Ricci de (M, g). Como a cur-

vatura do funcional S é sensíbel a reescalamentos da métrica, a súa acción restrínxese a métricas
de volume constante. As métricas críticas correspondentes son as métricas de Einstein. Polo
tanto, poderíase argumentar que as métricas de Einstein, é dicir, aquelas cuxo tensor de Ricci
é proporcional á métrica, son as métricas óptimas máis naturais sobre unha variedade pseudo-
Riemanniana.

As métricas de Einstein son dalgunha maneira insignificantes en dimensión dous. O teorema
de Gauss-Bonnet mostra que S(g) = 4πχ[M ], onde χ[M ] denota a característica de Euler de
M , e por conseguinte tódalas métricas son S-críticas en dimensión dous. O caso en dimensión
tres é moi ríxido e as métricas de Einstein son xusto aquelas de curvatura seccional constante.
De feito, son localmente isométricas á pseudo-esfera, ao espazo pseudo-Euclidiano ou ao espazo
pseudo-hiperbólico. A primeira situación non trivial dáse en dimensión catro. A clasificación
de métricas de Einstein en dimensión catro é un problema amplamente aberto e unha pregunta
central é a existencia de tales métricas.

Existen diversas estratexias para construír métricas de Einstein. Unha construción clásica
consiste en deformar unha métrica dada por un factor conforme tal que a métrica se convirta
nunha métrica de Einstein tras un axeitado reescalamento conforme. Unha variedade de Rie-
mann (M, g) dise conforme Einstein se este enfoque ten éxito, é dicir, se existe un representante
Einstein na clase conforme [g]. Unha segunda estratexia máis recente fai uso do fluxo de Ricci,
o cal baixo condicións apropiadas converxe a unha métrica de Einstein. Non obstante, existen
métricas que permanecen invariantes (salvo reescalamentos e difeomorfismos) baixo o fluxo de
Ricci: os solitóns de Ricci.

Brinkmann mostrou en [14] que unha variedade (M, g) de dimensión n é conforme Einstein
se, e só se, a ecuación

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (1)
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ten solución positiva. A pesar de que en dimensión dous a ecuación é trivial, en dimensións
superiores a súa integración é sorprendetemente difícil e ademais esta é sobredeterminada na
maioría dos casos. Ademais unha métrica conforme Einstein no caso Riemanniano, se existe,
é única salvo homotecias [14, 106]. Un problema importante é caracterizar espazos conforme
Einstein por certas ecuacións tensoriais máis manexábeis.

Sexa (M, g) unha variedade conforme Einstein e supoñamos que g = e2σg é Einstein. Como
as métricas de Einstein teñen tensor de Weyl harmónico tense trivialmente que divW = 0, onde
W denota o tensor curvatura de Weyl da variedade (M, g).O feito de que o tensor de Weyl se
reescale baixo transformacións conformes implica que (div4W )(X, Y, Z) +W (X, Y, Z,∇σ) =
0 é unha condición necesaria para que (M, g) sexa conforme Einstein. Unha segunda condición
necesaria obtense da seguinte maneira: sexa W : g 7→ W(g) =

∫
M
‖W‖2 dvolg o funcional

curvatura determinado pola norma L2 do tensor curvatura de Weyl conforme. As métricas W-
críticas foron caracterizadas por Bach en [6], onde mostra que unha métrica de dimensión catro

é W-crítica se, e só se, o tensor de Bach B = div2 div4W +
1

2
W [ρ] é identicamente nulo.

Claramente toda métrica de Einstein resulta Bach-chá (B = 0). Máis aínda, unha caracterís-
tica específica en dimensión catro é que W é un invariante conforme e polo tanto as métricas
conforme Einstein son métricas Bach-chás en dimensión catro.

Kozameh, Newman e Tod mostraron en [72] que ás dúas condicións necesarias:

(i) B = 0, (ii) (div4W )(X, Y, Z) +W (X, Y, Z,∇σ) = 0, (2)

son suficientes para ser conforme Einstein se (M, g) é debilmente-xenérica, é dicir, o tensor de
Weyl visto como unha aplicación TM →

⊗3 TM é inxectiva. No caso Kähler a situación é
simple, pois toda métrica Kähler Bach-chá é conforme Einstein [48]. A pesar de todos estes
resultados, a clasificación de variedades conforme Einstein é, a día de hoxe, un problema aberto,
con tan só resultados parciais. Ver por exemplo [75] para unha clasificación de variedades pro-
duto conforme Einstein.

O noso propósito na Primeira parte desta monografía é abordar a clasificación de métri-
cas conforme Einstein en dimensión catro para o caso homoxéneo. A homoxeneidade permite
unha simplificación da ecuación conforme Einstein, reducindo a Ecuación (1) a un sistema de
ecuacións alxébricas mediante o uso das condicións na Ecuación (2). As métricas de Einstein
homoxéneas en dimensión catro foron descritas por Jensen [70], quen mostrou que no caso Rie-
mannianno estas son simétricas. Polo tanto, son localmente un “space form” real ou complexo,
ou son localmente un produto de duás superficies de igual curvatura de Gauss constante. A
situación conforme Einstein é máis rica, por iso o Capítulo 2 destínase a probar o seguinte resul-
tado:

Theorem 2.1. Sexa (M, g) unha variedade de Riemann de dimensión catro homoxénea, con-
forme Einstein, completa e simplemente conexa. Entón (M, g) é localmente simétrica ou é ho-
motética a un dos seguintes grupos de Lie determinados polas seguintes álxebras de Lie solubles:

(i) A álxebra de Lie gα = Re4 n r3 dada por

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .
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(ii) A álxebra de Lie gα = Re4 n h3 dada por

[e1, e2] = e3, [e4, e1] = e1 − αe2, [e4, e2] = αe1 + e2, [e4, e3] = 2e3 .

(iii) A álxebra de Lie gα = Re4 n r3 dada por

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Aquí {e1, . . . , e4} é unha base ortonormal. Ademais, os grupos de Lie (Gα, 〈 · , · 〉) na afirma-
ción (ii) son semi-conformemente chans.

En resumo, para métricas conforme Einstein en dimensión catro, a fórmula da sinatura de
Hirzebruch mostra que as métricas auto-duais e anti-auto-duais son tamén Bach-chás. Como con-
secuencia directa da análise no Capítulo 2, obtemos unha clasificación de métricas homoxéneas
que son estritamente Bach-chás, é dicir, aquelas métricas que non son conforme Einstein, nin
semi-conformemente chás:

Theorem 2.4. Sexa (M, g) unha variedade de Riemann de dimensión catro homoxénea, Bach-
chá estrita, completa e simplemente conexa. Entón (M, g) é homotética a un dos grupos de Lie
determinados polas seguintes álxebras de Lie solubles:

(i) A álxebra de Lie g = Re4 n e(1, 1) dada por

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .

(ii) A álxebra de Lie g = Re4 n h3 dada por

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Aquí {e1, . . . , e4} é unha base ortonormal.

É un feito notable que os dous exemplos do Teorema 2.4 foron previamente construídos por
Abbena, Garbiero e Salamon [1].

Un paso crucial na proba do Teorema 2.1 e na proba do Teorema 2.4 é a descrición que
fai Bérard-Bergery [9] das variedades homoxéneas de Riemann en dimensión catro: estas son,
ou simétricas, ou un grupo de Lie cunha métrica Riemanniana invariante pola esquerda. Clara-
mente, unha afirmación análoga non funciona nos casos Lorentziano e de sinatura neutra, pois
os espazos homoxéneos pseudo-Riemannianos non son necesariamente redutivos. Os espazos
homoxéneos non redutivos en dimensión 4 foron clasificados por Fels e Renner [54]. Neste tra-
ballo, empregamos explicitamente a súa clasificación para determinar todalas métricas conforme
Einstein non redutivas. No Capítulo 3 o teorema principal é o seguinte:

Theorem 3.1. Sexa (M, g) un espazo homoxéneo de dimensión catro conforme Einstein e non
redutivo. Entón (M, g) é Einstein, localmente conformemente chan ou localmente isométrico a:
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(i) (R4, g) coa métrica determinada por

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

onde a, b e c son constantes arbitrarias tales que ab 6= 0.

(ii) (R4, g) coa métrica determinada por

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4
dx3 ◦ dx3,

onde a, b e c son constantes arbitrarias tales que ab 6= 0.

(iii) (R4, g) coa métrica determinada por

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde a, b, c e q son constantes arbitrarias tales que abq 6= 0.

(iv) (U ⊂ R4, g+) coa métrica determinada por

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, e a, b, c e q son constantes arbitrarias tales
que ab 6= 0 e b 6= −q, ou

(R4, g−) coa métrica determinada por

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde a, b, c e q son constantes arbitrarias tales que ab 6= 0 e b 6= q.

Máis aínda, tódolos casos (i)–(iv) están na clase conforme dunha métrica Ricci-chá, a cal é única
(salvo homotecias) só no Caso (i). Noutro caso, o espazo das métricas conformes Ricci-chás é
de dimensión dous o tres.

Unha segunda aproximación máis recente para levar a cabo a construción de métricas de
Einstein vén dada polo fluxo de Ricci, é dicir, unha familia 1-paramétrica de métricas g(t) sobre
unha variedade M que satisfai a ecuación ∂

∂t
g(t) = −2ρg(t). O fluxo de Ricci está ben formulado

no contexto Riemanniano no sentido de que para toda variedade pechada M e toda métrica
inicial g(0), existe unha única solución g(t) para t suficientemente pequeno. Hamilton en [64]
mostrou que o fluxo de Ricci converxe a unha métrica de Einstein baixo condicións axeitadas,
mostrando así a existencia de métricas de Einstein. Unha observación importante é que, se a
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métrica inicial g(0) é Einstein, entón permanece invariante baixo o fluxo (salvo reescalamento
homotético). Polo tanto, unha solución do fluxo dise que é auto-similar se permanece invariante
baixo reescalamentos e difeomorfismos. Tales solucións, usualmente referidas como solitóns de
Ricci, están caracterizadas pola existencia dun campo de vectores X en M tal que

LXg + ρ = λg, (3)

onde L denota a derivada de Lie e λ é unha constante real. Os solitóns de Ricci son polo tanto
xeneralizacións das métricas de Einstein e súa clasificación é un problema importante para en-
tender o fluxo de Ricci. Se X é un gradiente, entón a Ecuación (3) convértese en

Hesf +ρ = λg, (4)

para algunha función potencial f , e (M, g, f) dise un soliton de Ricci gradiente.
A xeometría do tensor de Ricci depende fortemente do signo das curvaturas de Ricci. Men-

tres a curvatura de Ricci positiva é unha condición moi forte con consecuencias topolóxicas,
Lohkamp [80] mostrou que toda variedade admite métricas completas con curvatura de Ricci
negativa. Correspondentemente, o estudo dos solitóns de Ricci depende do signo da constante λ
do solitón; un solitón de Ricci (M, g,X) dise contractivo, estábel ou expansivo se λ > 0, λ = 0
ou λ < 0, respectivamente.

Mentres que se coñecen certos resultados de clasificación para solitóns de Ricci gradientes,
o caso xenérico (3) é aínda bastante descoñecido. Incluso no caso homoxéneo, non existe aínda
unha clasificación completa en dimensión catro. Tendo en conta que todalas métricas invari-
antes á esquerda Bach-chás se realizan sobre grupos de Lie resolubles (cf. Theorem 2.1 and
Theorem 2.4), tense a seguinte descrición dos solitóns Bach-chans homoxéneos.

Theorem 2.16. Sexa (M, g) un solitón de Ricci Riemanniano de dimensión catro homoxéneo,
Bach-chan, completo e simplemente conexo. Entón (M, g) é Einstein, un solitón de Ricci gradi-
ente localmente conformemente chan da forma N3(c)×R, onde N3(c) é un espazo de curvatura
constante, ou homotético a un dos seguintes solitóns de Ricci alxébricos determinados polas
seguintes álxebras de Lie solubles:

(i) A álxebra de Lie gα = Re4 n r3 determinada por

[e4, e1] = e1, [e4, e2] = 1
4
e2 + αe3, [e4, e3] = −αe2 + 1

4
e3 .

(ii) A álxebra de Lie gα = Re4 n r3 determinada por

[e4, e1] = e1, [e4, e2] = (α + 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) A álxebra de Lie g = Re4 n h3 determinada por

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .
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A ecuación do solitón de Ricci gradiente (4) codifica a información da variedade en términos
da curvatura de Ricci e da segunda forma fundamental dos conxuntos de nivel da función poten-
cial f . Como o tensor de Ricci determina completamente a curvatura no caso localmente con-
formemente chan, fixéronse moitos esforzos para obter unha clasificación de solitóns de Ricci
gradientes baixo algunhas condicións do tensor curvatura de Weyl. No caso Riemanniano os
solitóns de Ricci gradientes localmente conformemente chans son localmente produtos warped
con base de dimensión 1 [55] e tense unha descrición completa para o caso completo contractivo
e estábel [35, 94]. A situación Lorentziana permite outras familias de exemplos cuxa estrutura
subxacente é a dunha onda plana [17].

Foron investigadas suposicións máis débiles sobre o tensor de Weyl conforme. A propiedade
de ser semi-conformemente chá é un exemplo importante. Mentres os solitóns de Ricci (anti)-
auto-duais son localmente conformemente chans no caso Riemanniano [39], o caso de sinatura
neutra permite exemplos non triviais [16] dados por extensións de Riemann de solitóns de Ricci
gradientes. Xeneralizando a situación semi-conformemente chá, solitóns de Ricci gradientes
Bach-chans foron investigados en [34]. Os solitóns de Ricci gradientes expansivos completos
Bach-chans, así como os solitóns de Ricci gradientes estábeis con curvatura de Ricci positiva
cuxa curvatura escalar alcanza un máximo nalgún punto interior, son localmente conformemente
chans na categoría Riemanniana.

O noso obxectivo na segunda parte desta monografía é mostrar a existencia de solitóns de
Ricci gradientes Bach-chans estritos no caso de sinatura neutra. Ista pregunta está motivada pola
existencia de solitóns de Ricci gradientes auto-duais que non son localmente conformemente
chans [16]. As métricas desexadas constrúense por unha perturbación das extensións de Riemann
clásicas introducidas por Patterson e Walker [92]. Sexa (Σ, D) unha superficie afín, sexan T e
Φ un campo de tensores paralelo de tipo (1, 1) e un campo de tensores simétrico arbitrario de
tipo (0, 2) sobre Σ respectivamente. Os datos (Σ, D, T,Φ) determinan unha métrica de signatura
neutra sobre o fibrado cotanxente T ∗Σ dada por

gD,Φ,T = ιT ◦ ιT + gD + π∗Φ, (5)

onde ι denota a aplicación avaliación sobre o fibrado cotanxente, π : T ∗Σ → Σ é a proxección
canónica e gD denota a extensión de Riemann de Patterson-Walker.

No Capítulo 4, mostramos que as métricas (5) constituen unha grande familia de variedades
Bach-chás estritas. En efecto,

Theorem 4.1. Sexa (Σ, D, T ) unha superficie afín libre de torsión equipada cun campo de ten-
sores paralelo T de tipo (1, 1). Sexa Φ un campo de tensores simétrico arbitrario de tipo (0, 2)
sobre Σ. Entón o tensor de Bach de (T ∗Σ, gD,Φ,T ) anúlase se, e só se, T é un múltiplo da
identidade ou é nilpotente.

Se T é un múltiplo da identidade, entón as métricas gD,Φ,T son auto-duais e entón son de
especial interese no caso nilpotente (T 2 = 0, T 6= 0). Ademais, como o campo de tensores
deformación Φ non xoga ningún papel no Teorema 4.1, este pódese usar para construír unha
familia infinita de variedades Bach-chás non isométricas para calquera (D,T ) sobre Σ. Unha
elección adecuada de Φ permite a construción de novos exemplos de solitóns de Ricci gradientes
Bach-chans estábeis, onde por notación, Φ̂(X, Y ) = Φ(TX, TY ) na Ecuación (6).
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Theorem 4.6. Sexa (Σ, D, T ) unha superficie afín equipada cun campo de tensores paralelo
nilpotente T de tipo (1, 1) e sexa Φ un campo de tensores simétrico de tipo (0, 2) sobre Σ. Sexa
h ∈ C∞(Σ) unha función diferenciable. Entón (T ∗Σ, gD,Φ,T , f = h ◦ π) é un solitón de Ricci
gradiente Bach-chan se, e só se, dh(ker(T )) = 0 e

Φ̂ = −HesDh −2ρDs . (6)

Ademais o solitón é estábel e isotrópico.

Destacamos que a función potencial correspondente ten hipersuperficies de nivel dexeneradas
e a súa estrutura subxacente nunca é localmente conformemente chá, en contraste coa situación
no caso Riemanniano. No Teorema 4.1 as métricas pseudo-Riemannianas nunca son auto-duais,
pero poden ser anti-auto-duais nalgúns casos. Este feito permite a construción de solitóns de
Ricci gradientes anti-auto-duais que non son localmente conformemente chans, simplemente
requírese que ambos T e Φ sexan paralelos.

Theorem 4.12. Sexa (Σ, D, T,Φ) unha superficie afín con tensor de Ricci simétrico equipada
cun campo de tensores paralelo nilpotente T de tipo (1, 1) e un campo de tensores paralelo
simétrico Φ de tipo (0, 2).

(i) (Σ, D, h) é un solitón de Ricci gradiente afín con dh(ker(T )) = 0 se, e só se,
(T ∗Σ, gD,Φ̂,T , f = h ◦ π) é un solitón de Ricci gradiente estábel e anti-auto-dual que non
é localmente conformemente chan.

(ii) (Σ, D, h) é un solitón de Ricci gradiente afín con dh(ker(T )) = 0 se, e só se, existen co-
ordenadas locais (u1, u2) en Σ tal que o único símbolo de Christoffel distinto de cero está
determinado por uΓ11

2 = P (u1) + u2Q(u1) e a función potencial h(u1) está determinada
por h′′(u1) = −2Q(u1), para todos P,Q ∈ C∞(Σ).

A construción no Capítulo 4 require da existencia de superficies afíns que admitan un campo
de tensores paralelo e nilpotente, o cal é bastante restritivo. Polo tanto, no Capítulo 5 investig-
amos a existencia de campos de tensores paralelos de tipo (1, 1) sobre superficies afíns. Dise que
un campo de tensores T é unha estrutura Kähler (resp. para-Kähler), se T é paralelo e T 2 = − Id
(resp. T 2 = Id). Ademais T é Kähler nilpotente se T 2 = 0 e DT = 0. Como a traza de todo
tensor paralelo é constante, podemos expresar T = 1

2
tr(T ) Id +(T − 1

2
tr(T ) Id) de tal xeito que

se descompoña nun múltiplo escalar da identidade e un campo de tensores sen traza.
Se (Σ, D) é unha superficie afín con tensor de Ricci anti-simétrico ρDsk 6= 0, entón ρDsk define

un elemento de volume. Más aínda, ρDsk dise recorrente, é dicir, DρDsk = ω ⊗ ρDsk para algunha
1-forma ω. Os campos de tensores paralelos de tipo (1, 1) sen traza poden reescalarse para ser
Kähler, para-Kähler ou Kähler nilpotente cunha condición de recorrencia:

Theorem 5.1. Sexa (Σ, D) unha superficie afín simplemente conexa con ρDs 6= 0.

(i) (Σ, D) admite unha estrutura Kähler se, e só se, det(ρDs ) > 0 e ρDs é recorrente.

(ii) (Σ, D) admite unha estrutura para-Kähler se, e só se, det(ρDs ) < 0 e ρDs é recorrente.
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(iii) (Σ, D) admite unha estrutura Kähler nilpotente se, e só se, ρDs é de rango un e recorrente.

As superficies con tensor de Ricci anti-simétrico (equivalentemente ρDs = 0) admiten si-
multaneamente estruturas Kähler, para-Kähler e Kähler nilpotente (ver Lemma 5.6). Usamos
superficies homoxéneas afíns para ilustrar o Teorema 5.1, mostrando que todas as posibilidades
distintas poden realizarse. Os resultados na Sección 5.3 dan expresións explícitas de estruturas
paralelas Kähler nilpotentes sobre superficies homoxéneas.

Finalmente, dentro do Capítulo 6 consideramos algunhas xeneralizacións do Teorema 4.1
para a construcións de extensións de Riemann (5) Bach-chás cun campo de tensores T non par-
alelo. O Teorema 6.1 estende a construción do Teorema 4.1, mostrando que a extensión de
Riemann (T ∗Σ, gD,Φ,T ) determinada por un campo de tensores nilpotente T non paralelo segue
sendo Bach-chá baixo algunhas condicións na conexión afín. A pregunta subxacente está baseada
en determinar as condicións na conexión unha vez que se proporciona o endomorfismo nilpo-
tente. Reciprocamente, poderiamos considerar o problema inverso de construír endomorfismos
nilpotentes en Σ tal que a extensión de Riemann (5) é Bach-chá unha vez que D está determi-
nada. Usamos o Teorema de Cauchy-Kovalevski para mostrar que toda extensión de Riemann
de Patterson-Walker pódese deformar localmente por un campo de endomorfismos nilpotente
adecuado para ser Bach-chá na categoría real analítica.

Theorem 6.7. Sexa (Σ, D) unha superficie afín real e analítica. Entón existen campos de ten-
sores nilpotentes T de tipo (1, 1) definidos localmente tales que a extensión de Riemann modifi-
cada (T ∗Σ, gD,Φ,T ) é Bach-chá.

É importante destacar o feito de que os invariantes escalares da curvatura das extensións
de Riemann modificadas (5) son nulos se, e só se, T é nilpotente (Teorema 6.8). Polo cal na
Sección 6.3 introducimos algúns invariantes novos que non son de tipo Weyl. Estes invariantes,
que dependen fortemente da curvatura de Ricci de (Σ, D), permiten distinguir algunhas clases
de isometrías de métricas Bach-chás.
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[11] N. Blažić, N. Bokan, and P. Gilkey, A note on Osserman Lorentzian manifolds, Bull.
London Math. Soc. 29 (1997), no. 2, 227–230.
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