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Introduction

“By symmetry we mean the existence of different viewpoints from which the system
appears the same. It is only slightly overstating the case to say that physics is the study of
symmetry.”

This comment is due to the Nobel Prize Winner in Physics 1977, Philip Anderson,
and reveals that symmetry lies at the very core of science. Whatever the challenge in
our society, its solution requires the development of novel ideas that often originate from
mathematical models. Then, using the symmetries of the mathematical model one may
reduce the degrees of freedom of the problem, making it simpler. The main aim of this thesis
is precisely to investigate geometric models or structures by examining their symmetries.

In this sense, Felix Klein described geometry as the study of those properties in a
space that are invariant under a given transformation (symmetry) group. In Riemannian
geometry, this group is the isometry group, that is, the group of distance-preserving trans-
formations of a given Riemannian manifold. The action of a subgroup of the isometry
group of a given manifold is called an isometric action. Its cohomogeneity is the lowest
codimension of the orbits. An orbit whose codimension is greater than the cohomogeneity
of the action is called a singular orbit. The orbits of maximal dimension are called reqular.
A submanifold is said to be (extrinsically) homogeneous if it is an orbit of the action of a
subgroup of the isometry group on the ambient manifold.

The problem of classifying homogeneous hypersurfaces (equivalently cohomogeneity one
actions up to orbit equivalence) in Euclidean spaces stems from Geometrical Optics and
traces back to the work by Somigliana [96] at the beginning of the 20th century. Inci-
dentally, his result initiated the study of one of the geometric objects of interest in this
thesis: isoparametric hypersurfaces. A hypersurface of a Riemannian manifold is called
isoparametric if it and its nearby equidistant hypersurfaces have constant mean curvature.
Homogeneous hypersurfaces are always examples of isoparametric hypersurfaces. In the
1930s, Levi-Civita [75], Segre [93] and Cartan [25] 27, 26] restarted the study of these ob-
jects from a geometric viewpoint. Cartan [25] proved that, in space forms, a hypersurface is
isoparametric if and only if its principal curvatures are constant. Segre [93] and Cartan [25]
classified these objects in Euclidean and real hyperbolic spaces, respectively. All examples
known to Cartan had a common property: they were homogeneous. However, unlike the
Euclidean and hyperbolic cases, spheres do admit non-homogeneous examples [53]. In fact,
the problem in spheres turned out to be much more involved and rich, and it was included
by the Fields Medallist Yau in his influential list of problems in geometry [111].

1



2 Introduction

Cohomogeneity one actions have been usually investigated from a Lie-theoretic point
of view or, as mentioned above, from the viewpoint of their regular orbits (homogeneous
hypersurfaces) and related concepts (such as isoparametric hypersurfaces). However, it
is also interesting to approach cohomogeneity one actions with regard to their singular
orbits. Indeed, if one considers a cohomogeneity one action with a singular orbit on a
connected complete Riemannian manifold, then the principal curvatures of this singular
orbit, counted with multiplicities, do not depend on the normal directions. It is really
interesting to investigate the classification of submanifolds having this geometric property
of singular orbits of cohomogeneity one actions. In this thesis, we call these objects CPC
submanifolds. Note that CPC submanifolds have constant principal curvatures in the
sense introduced by Heintze, Olmos and Thorbergsson [58] in the context of isoparametric
submanifolds.

The relation between cohomogeneity one actions and CPC submanifolds mentioned
above was generalized in the following result [54]: if M is a submanifold of a Riemannian
manifold with codimension greater than or equal to two for which the tubes around it (for
sufficiently small radii) are isoparametric hypersurfaces with constant principal curvatures,
then M is a CPC submanifold. Therefore, CPC submanifolds play a crucial role in the
study of cohomogeneity one actions and isoparametric hypersurfaces. In particular, in
standard real space forms one can show by using Jacobi field theory that a submanifold
M is CPC if and only if the tubes (of sufficiently small radii) around M have constant
principal curvatures. Thus, in real space forms, classifying CPC submanifolds is equivalent
to classifying isoparametric hypersurfaces. Note that totally geodesic submanifolds are
always CPC, and CPC submanifolds are clearly minimal.

Another central concept in this thesis, which is also related to the aforementioned no-
tions, is that of austere submanifold. A submanifold M is said to be austere if, at every
point, the principal curvatures (counted with multiplicities) with respect to any unit nor-
mal vector are invariant under change of sign. One of the main sources of interest in this
notion stems from its relation with other concepts, such as isoparametric hypersurfaces, ho-
mogeneous hypersurfaces, minimal submanifolds and CPC submanifolds. Indeed, austere
submanifolds constitute an intermediate class between CPC submanifolds and minimal sub-
manifolds, and as mentioned above, the focal sets of isoparametric families of hypersurfaces
with constant principal curvatures are CPC, and hence austere. Moreover, homogeneous
austere hypersurfaces are CPC.

Austere submanifolds were introduced by Harvey and Lawson [57] in the context of
calibrated geometries. They proved for instance that the normal bundle of an austere
submanifold of the Euclidean space R™ is a special Lagrangian submanifold of the cotangent
bundle T*R™. Since then, austere submanifolds have been investigated because of their
own geometric interest. In fact, the austerity condition imposes a highly overdetermined,
non-linear second order PDE on the submanifold which clearly implies the vanishing of
the mean curvature. However, in dimension higher than two it turns out to be much
stronger than minimality. Moreover, as a particular class of minimal submanifolds, their
investigation is interesting on their own from the viewpoint of Riemannian submanifold
geometry. Thus, Bryant [22] initiated a systematic study of austere submanifolds of the
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Euclidean space, and derived the classification of austere submanifolds of dimension 3 in
R™. This result was generalized by Dajczer and Florit [38] to austere submanifolds of
arbitrary dimension in R”, under the assumption that their Gauss map has rank two,
and by Ionel and Ivey [64] to 4-dimensional submanifolds without the assumption on the
Gauss map. Austere submanifolds have also been studied in spheres [36], [62] and complex
projective spaces [65], for example. Some other related notions, such as weakly reflective
submanifolds [62] or arid submanifolds [I0I], have also been recently investigated.

In this thesis, we have mostly focused on the study of isoparametric hypersurfaces, CPC
submanifolds and austere submanifolds in the setting of symmetric spaces of non-compact
type.

According to the original definition given by Cartan [24], a Riemannian symmetric
space is a Riemannian manifold characterized by the property that curvature is invariant
under parallel translation. This geometric definition has the surprising effect of bringing
the theory of Lie groups into the picture, and it turns out that Riemannian symmetric
spaces are intimately related to semisimple Lie groups. To a large extent, many geometric
problems in symmetric spaces can be reduced to the study of properties of semisimple Lie
algebras, thus transforming difficult geometric questions into linear algebra problems that
one might be able to solve.

For this reason, the family of Riemannian symmetric spaces has been a setting where
many geometric properties can be tackled and tested. They are often a source of exam-
ples and counterexamples. The set of symmetric spaces is a large family encompassing
many interesting examples of Riemannian manifolds such as spaces of constant curvature,
projective and hyperbolic spaces, Grassmannians, compact Lie groups and more. Apart
from Differential Geometry, symmetric spaces have also been studied from the point of
view of Global Analysis and Harmonic Analysis, being non-compact symmetric spaces of
particular relevance (see for example [60]). They are also an outstanding family in the
theory of holonomy, constituting a class of their own in Berger’s classification of holonomy
groups.

Roughly speaking, there are three types of symmetric spaces: Euclidean spaces, sym-
metric spaces of compact type (in case the group of isometries is compact semisimple) and
symmetric spaces of non-compact type (if the group of isometries is non-compact semisim-
ple). Symmetric spaces of compact and non-compact type are in some way dual to each
other, but they usually have many different properties. Symmetric spaces of non-compact
type are diffeomorphic to Euclidean spaces, and thus their topology is trivial, whereas in
compact symmetric spaces topology does play a relevant role.

Every symmetric space of non-compact type is isometric to a solvable Lie group en-
dowed with a left-invariant metric. Indeed, this Lie group is the solvable part AN of the
Iwasawa decomposition of the isometry group of the symmetric space (see Section for
details). In our experience, this provides a wealth of examples of many interesting concepts,
compared to their compact counterparts. In fact, from the viewpoint of submanifold geom-
etry, one can consider interesting types of submanifolds by looking at orbits of the action of
subgroups of the solvable Lie group AN or, equivalently, by looking at subalgebras of the
Lie algebra of such Lie group. For this reason, a good understanding of the restricted root
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space decomposition associated with the symmetric space is crucial. Of course, not every
submanifold (even homogeneous submanifold) can be regarded as an orbit of the action of
a Lie subgroup of AN, but very important types of examples arise in this way, sometimes
combined with some additional constructions, as we will see throughout this thesis.

In the following lines we present the main contributions and goals of this thesis.

Isoparametric hypersurfaces in complex hyperbolic spaces

One of the main contributions of this thesis is the classification of isoparametric hypersur-
faces in complex hyperbolic spaces. Firstly, Chapter [2] is devoted to an exposition of the
origin of isoparametric hypersurfaces as well as some well-known results concerning them,
and also to describing the construction method and some geometric data of the known ex-
amples of isoparametric hypersurfaces in complex hyperbolic spaces. Then, in Chapter
we prove the classification result of isoparametric hypersurfaces in complex hyperbolic
spaces. Indeed, we see that each isoparametric hypersurface in the complex hyperbolic
space corresponds to one of the examples described in Chapter [2] It is important to em-
phasize the existence of non-homogeneous isoparametric families of hypersurfaces in the
complex hyperbolic space CH", n > 3 [4I]. The classification result proved in Chapter
constituted the first complete classification of isoparametric hypersurfaces in a whole fam-
ily of symmetric spaces after Cartan’s work for real hyperbolic spaces [25] in 1938. This
classification result obtained in Chapter (3| has given rise to the articles [43] and [44].

The first step of the proof is to check the good behaviour of isoparametric hypersurfaces
with respect to the Hopf fibration associated with CH™. In other words, we start by showing
that a hypersurface is isoparametric in CH™ if and only if its pullback with respect to the
Hopf map is a Lorentzian isoparametric hypersurface in the anti-De Sitter space H:"™!.
This allows us to study isoparametric hypersurfaces in CH™ by analyzing their lifts to
Lorentzian isoparametric hypersurfaces in H2"*'. There are two main reasons to start
our work by inspecting these Lorentzian isoparametric hypersurfaces: since H;"™' has
constant sectional curvature, it is easier to solve the Jacobi equation in order to examine
parallel translation of hypersurfaces; and we have a generalization of the Cartan formula,
which, roughly speaking, is a formula that allows us to obtain bounds on the number of
distinct principal curvatures of a Lorentzian isoparametric hypersurface. Hence, working
in the anti-De Sitter space we are able to extract the fundamental geometric information
about the Lorentzian isoparametric hypersurface, and deduce its implications to the initial
hypersurface in CH". Finally, we prove a rigidity result that reveals several interesting
aspects of the geometry of the examples.

This classification result of isoparametric hypersurfaces in complex hyperbolic spaces
has very interesting consequences. On the one hand, we deduce that isoparametric hy-
persurfaces of CH™ with constant principal curvatures are homogeneous hypersurfaces.
Moreover, we obtain that each isoparametric hypersurface in a complex hyperbolic space
has (pointwise) the same principal curvatures as a homogeneous one. On the other hand,
we also obtain that the focal submanifold of an isoparametric hypersurface in the complex
hyperbolic space is locally homogeneous.
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Isoparametric hypersurfaces in the anti-De Sitter space

The concept of isoparametric hypersurface has been also generalized to the context of
semi-Riemannian geometry, just by additionally requiring the hypersurface to have non-
degenerate induced metric. Moreover, as follows from Hanh’s work [56], a hypersurface
in a semi-Riemannian space form is isoparametric if and only if it has constant principal
curvatures with constant algebraic multiplicities.

[soparametric hypersurfaces have been investigated in the Lorentzian setting, where
the breadth of examples seems to be much richer than in the Riemannian case. In fact,
these objects are supposed to be classified in the Minkowski space by Magid [80], although
Burth [23] pointed out some gaps in Magid’s arguments. Some partial classifications have
been achieved in De Sitter spaces. Indeed, Nomizu [83] proved, using the fact that the num-
ber of principal curvatures is bounded from above by two, that spacelike hypersurfaces with
constant principal curvatures in De Sitter spaces are tubes around totally geodesic subman-
ifolds. He also conjectured in the same paper [83] that examples of spacelike isoparametric
hypersurfaces with more than two principal curvatures would appear in the anti-De Sitter
space.

The main aim of Chapter [4] is to give a negative answer to this conjecture proposed
by Nomizu. Indeed, we will show that two is an upper bound for the number of principal
curvatures of a spacelike isoparametric hypersurface in the anti-De Sitter space. In order
to prove this bound, we generalize Ferus’ work [52] to study isoparametric hypersurfaces
in semi-Riemannian space forms focusing, in this particular case, on anti-De Sitter spaces.
The bound achieved on the number of principal curvatures leads to a classification of space-
like isoparametric hypersurfaces in anti-De Sitter spaces: non-totally umbilical spacelike
isoparametric hypersurfaces are tubes around totally geodesic submanifolds. This classifi-
cation has been published in the article [92].

CPC submanifolds

Chapter [5| is devoted to the study of CPC submanifolds, that is, submanifolds whose
principal curvatures, counted with multiplicities, do not depend on the normal direction.
It is evident from the discussion above that CPC submanifolds arise in various geometric
contexts. However, there seems to be no systematic study in a more general setting. This
is somewhat surprising, given that the condition on the principal curvatures is remarkably
simple and natural.

The main purpose of Chapter [5|is to present a systematic approach to the construction,
description and classification of homogeneous CPC submanifolds in irreducible Riemannian
symmetric spaces of mnon-compact type and rank greater or equal than 2. Recall that
totally geodesic submanifolds and singular orbits of cohomogeneity one actions are always
examples of CPC submanifolds. The main contribution of Chapter [5|is to provide a large
number of new examples of non-totally geodesic CPC' submanifolds that are not orbits of
cohomogeneity one actions. To our knowledge, only one example under such conditions
was previously known: a particular 11-dimensional submanifold of the Cayley hyperbolic
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plane [41]. The contents of Chapter [5| have given rise to the article [14], and jointly with
other results, to the survey [45].

In order to construct and describe the geometry of this new family of non-totally
geodesic CPC submanifolds that are not orbits of cohomogeneity one actions, we restrict
our attention to submanifolds that arise as orbits of certain subgroups of the solvable part
AN of the Iwasawa decomposition associated with the symmetric space of non-compact
type. Moreover, we have developed an original and promising technique based on the
examination of the information codified in the root system of each symmetric space.

More precisely, the Levi-Civita connection is the main tool for studying many geometric
properties in the context of submanifold theory. In symmetric spaces one can use Lie
algebraic tools to describe this connection. In principle, it is quite hard to handle this
in full generality because it involves many calculations that relate root spaces of positive
roots in a complicated way. In order to tackle this difficulty, we introduce in this thesis a
generalization of the classical concept of a-string of A [69, p. 152], where a, A are roots.
For each given solvable submanifold, using this more general notion of string, we describe
a partition of the set of positive roots explicitly. Each string constitutes one of the sets
of the partition. This can be interpreted as a decomposition of the tangent space of the
submanifold. Roughly speaking, the Levi-Civita connection is determined if we calculate
it when restricted to each subspace of the decomposition induced by the strings. The main
goal of this approach is that strings can adopt just a few different configurations that we
perfectly control. This means that we just need to calculate the Levi-Civita connection
when restricted to a very reduced number of different kinds of subspaces.

To sum up, we are able to describe the Levi-Civita connection of a symmetric space of
non-compact type (and thus the shape operator of each solvable submanifold) with very
simple and short calculations using the information codified in the root system, indepen-
dently of the rank of the space under consideration. In Chapter [5| we have used this tool to
study CPC submanifolds, but we believe that it might be applied to study totally geodesic,
austere and minimal submanifolds.

Austere submanifolds in classical and exceptional symmetric spaces

An important tool for the study of symmetric spaces of non-compact type and rank higher
than one stems from their so-called horospherical decomposition, which is intimately related
to the theory of parabolic subalgebras of real semisimple Lie algebras [50, Section 2.17].
These subalgebras are parametrized (up to conjugacy) by the subsets ® of a set IT of simple
roots for the restricted root space decomposition of a real semisimple Lie algebra g. Thus,
given a symmetric space of non-compact type M = G/K, the horospherical decomposition
associated with the choice ® C II states that M is diffeomorphic to the Cartesian product of
certain totally geodesic submanifold B of M, an abelian subgroup Ag of G and a nilpotent
subgroup Ng of G. Even more than that, the connected solvable subgroup Se = AsNg
of G acts freely and isometrically on M, and all the orbits of such action are mutually
congruent. Tamaru [I02] proved that these orbits are Einstein solvmanifolds and, from the
viewpoint of extrinsic geometry, minimal submanifolds of M.



Introduction 7

In Chapters 6 and 7 we deepen into the investigation of the extrinsic geometry of such
orbits by classifying which Sg-orbits are austere submanifolds. The austerity condition on
the Sg-orbits turns out to be reflected on certain algebraic and combinatorial properties
of the pair (II, ®). Analyzing these properties requires a profound understanding of the
restricted root system associated with the symmetric space M. In order to address this
problem we introduce the notion of ®-string, which generalizes the classical concept of
string in the theory of root systems. Moreover, to each ®-string we associate certain
diagram which will help us to understand its structure. Roughly speaking, the austerity of
the Sg-orbits is codified in certain symmetry conditions of the diagrams of the ®-strings.
After proving several basic results for ®-strings and their diagrams, we develop a rather
exhaustive case-by-case study of these objects for each possible root system.

Due to the length of this analysis, we divide the exposition into two chapters. Chapter 6
is devoted to the setup of the problem, the introduction and general properties of ®-
strings and their diagrams, and the classification in symmetric spaces of classical type.
The investigation of exceptional symmetric spaces, together with specific tools for their
study, constitutes the content of Chapter 7.

Structure of the thesis

This thesis is organized as follows.

Chapter (1] is devoted to the introduction of the basic notions, concepts and terminol-
ogy to be used in this work. More precisely, we introduce the notion of semi-Riemannian
manifold (Section [1.1)), the main general tools in order to study submanifold theory (Sec-
tion , some basic facts about isometric actions (Section and we finally introduce
and describe symmetric spaces (Section, with special focus on the algebraic description
of those of non-compact type (Section . Finally, we briefly construct anti-De Sitter and
complex hyperbolic spaces (Section .

In Chapter [2, we start with an exposition of the origin of isoparametric hypersurfaces
(Section together with some well-known results and classifications concerning these ge-
ometrical objects (Section. Furthermore, in this chapter we also construct and describe
the examples of isoparametric hypersurfaces in complex hyperbolic spaces (Section ,
using the identification of the complex hyperbolic space with a solvable Lie group with
a left-invariant metric (Section and some facts related to real subspaces of complex
vector spaces (Section [2.4)).

The original contributions of this work are located from Chapter [3] to [7]

In Chapter 3| we classify isoparametric hypersurfaces in complex hyperbolic spaces. This
means that we show that an isoparametric hypersurface in the complex hyperbolic space is
one of the examples introduced and described in Chapter [2, We start by checking the good
behaviour of the Hopf map (Section in order to analyze the lift of each isoparametric
hypersurface of the complex hyperbolic space to the anti-De Sitter space (Section |3.2)).
Then, we focus on the possibilities for the shape operator of this lift, with special attention
to one non-diagonalizable case (Section. Finally, with a rigidity argument (Section
we conclude the classification result (Section [3.5).
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In Chapter [d] we generalize Ferus’ work [52] to the semi-Riemannian setting (Section [4.1)
and obtain a classification result of spacelike isoparametric hypersurfaces in anti-De Sitter

spaces (Section [4.2)).

Chapter || is devoted to the development of a systematic approach to the construction
(Sections 5.2 and [5.3)), classification (Section [5.4) and description (Sections 5.5 and of
homogeneous CPC submanifolds in irreducible symmetric spaces of non-compact type and
rank greater or equal than 2, based on the inspection of the geometric information codified
in root systems. In particular, we provide a large number of new examples of non-totally
geodesic CPC submanifolds that are not orbits of cohomogeneity one actions.

The remaining chapters are devoted to studying the austerity of certain orbits that arise
from the theory of parabolic subgroups of real semisimple Lie groups. Due to the length of
this work, we have divided this last part into two different chapters. Firstly, in Chapter [6]
we explain the general setting (Section , introduce the main tools to be used and
their properties (Section and conclude the classification in classical symmetric spaces
(Section . Finally, in Chapter [7| we finish the classification by analyzing exceptional
symmetric spaces with an exhaustive case-by-case analysis.



Chapter 1
Preliminaries

This first chapter is completely devoted to the introduction of the basic notions, concepts
and terminology to be used in this thesis.

In Section we introduce the notion of semi-Riemannian manifold. Moreover, we
also fix our sign convention for the curvature tensor. Section [1.2|focuses on the main tools
and ingredients in order to study submanifold geometry. In Section we introduce the
concept of isometric action and some of the main notions related to it, such as homogeneous
submanifold or principal, exceptional and singular orbit. In Section we introduce the
concept and basic ideas concerning Riemannian symmetric spaces. Moreover, in Section
we describe symmetric spaces of non-compact type algebraically and see that they can be
regarded as solvable Lie groups with a left-invariant metric. Finally, in Section we
briefly construct anti-De Sitter and complex hyperbolic spaces.

1.1 Semi-Riemannian manifolds

Let M be a smooth differentiable manifold of dimension n. Indeed, in this thesis we will
always assume that manifolds are smooth and second countable. If p € M, then T,M
denotes the tangent space of M at p, T'M is the tangent bundle of M, and I'(T'M) is
the module of smooth vector fields on M. In general, if D is a distribution along M, we
denote by I'(D) the module of sections of D, that is, the vector fields X € I'(T'M) such
that X, € D, for each p € M.

Let T' be a symmetric bilinear tensor in a vector space V. We will say that 7" is non-
degenerate if T'(z,y) = 0 for all y € V' implies that = 0. Any non-degenerate symmetric
bilinear tensor in a vector space is linearly congruent to a diagonal matrix of the form
diag(1, S TS I —1). The signature of the tensor 7" is by definition the pair (r, s).

A semi-Riemannian manifold is a pair (M, (-,-)), where M is a manifold and (-, ")
is a non-degenerate symmetric bilinear tensor field of type (0,2) and constant signature.
In other words, for each point p € M, the tangent space T,M is endowed with a non-
degenerate symmetric bilinear tensor (-, -),. We define the signature of the manifold M as
the signature of its non-degenerate symmetric bilinear tensor field (-,-). In particular, if
the signature is (n,0), then M is said to be a Riemannian manifold. If the signature of
the manifold M is (n — 1, 1), then M is said to be a Lorentzian manifold.

Let V be a vector space with non-degenerate symmetric bilinear form (-, -). Recall that
v € V is spacelike, timelike, or null if (v, v) is positive, negative, or zero, respectively. We

also write ||v]| = /|[(v,v)| for v € V.
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Moreover, if U and W are subspaces of V', we will denote U 6 W = {u € U : (u,w) =
0, for all w € W}. We do not require W C U. This will be convenient when dealing with
non-definite scalar products, especially if there are null vectors in W. If (-,-) is positive
definite, this notation stands for the orthogonal complement of W in U.

One of the central concepts in geometry is the curvature. Its study is addressed by
means of the curvature tensor R, which is defined according to the convention

R(X,Y)Z =VxVyZ -VyVxZ - Vxy|Z,

where V denotes the Levi-Civita connection of M, that is, the unique symmetric torsion-
free connection of M. We say that a manifold is flat if the curvature tensor vanishes
identically. Moreover, a semi-Riemmanian manifold M is said to have constant curvature
c if its curvature tensor can be written as R(X,Y)Z = c((Y, Z)X — (X, Z)Y) for all vector
fields X, Y and Z in M.

1.2 Geometry of submanifolds

Let (M, (-,-)) be a semi-Riemannian manifold and M an embedded submanifold of M
such that the restriction of (-,-) to M is non-degenerate (this is automatically true if M
is Riemannian). The normal bundle of M is denoted by vM. Thus, I'(vM) denotes the
module of all normal vector fields to M. A canonical orthogonal decomposition holds at
each point p € M, namely, T,M = T,M @& v,M. In this thesis, the symbol & will always
denote direct sum (not necessarily orthogonal direct sum).

Let us denote by V and R the Levi-Civita connection and the curvature tensor of M,
respectively, and by V and R the corresponding objects for M. The second fundamental
form II of M is defined by the Gauss formula

VxY =VxY +1I(X,Y)

for any X, Y € I'(T'M). Let £ € I'(vM) be a normal vector field. The shape operator
S¢ of M with respect to £ is the operator on M defined by (S¢X,Y) = (II(X,Y),&),
where X, Y € I'(TM). Furthermore, denote by V* the normal connection of M, that
is, V& = (Vx&)?t, for any X € I'(TM) and ¢ € T'(vM). Then we have the Weingarten
formula

Vxé=-8X + Vx&.
The extrinsic geometry of M is controlled by Gauss, Codazzi and Ricci equations
(R(X,Y)Z,W) = (R(X,Y)Z,W) — (I(Y, Z), [I(X, W)} + (II(X, Z), (Y, W),
(RHX,Y)E n) = (R(X,Y)Em) + ([Se, S| X, Y),
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where X, Y, Z W eI'(TM), &, ne'(vM), (V)L(H)(Y, Z) = V)L([I(Y, Z)—1(VxY,Z) —
II(Y,VxZ), and R is the curvature tensor of the normal bundle of M, which is defined
The mean curvature vector H of a semi-Riemannian submanifold M is defined as the

trace of the second fundamental form. In this sense, let {X;}; be a local orthonormal
basis of T'M. Then, we have that

H = i(Xi,XiﬂI(Xi,Xi).

i=1

In particular, let £ be an element in I'(vM). The mean curvature vector of M with respect
to the normal vector  is the trace of the shape operator S¢. A submanifold is said to be
manimal if its mean curvature vector vanishes.

A submanifold is said to be totally umbilical if there exists a function A such that
II = X\(-,-)H. In particular, when A\ = 0 or, equivalently, when the second fundamental
form II vanishes identically we say that M is a totally geodesic submanifold. This is
equivalent to saying that every geodesic in M is also a geodesic in M.

Let & be a unit normal vector field defined on an open subset U of the submanifold M.
We say that \: U C M — R is a principal curvature of M with respect to & at p € M if
there exists a vector field X € I'(TU) such that S¢.X,, = A(p)X,, for each p € U.

The vector X, is then called a principal curvature vector at p € M. By T)(p) we denote
the eigenspace of A(p) at p, and we call it the principal curvature space of A\(p). Under
certain assumptions, Ty defines a smooth distribution along M. If M is a Riemannian
manifold, then the shape operator S is diagonalizable at every point, since it is a self-
adjoint map and the metric is positive definite. However, if M is not Riemannian, this is not
necessarily true, and the Jordan canonical form of & might have a non-diagonal structure.
In such situations it is important to distinguish between the geometric multiplicity of a
principal curvature A, that is, dim ker(S — \), and its algebraic multiplicity my, that is, the
multiplicity of A as a zero of the characteristic polynomial of S. Obviously, the geometric
multiplicity is always less or equal than the algebraic multiplicity. In the Riemannian
setting both quantities are the same and we simply talk about the multiplicity of A. In
any case, the number of distinct principal curvatures at p is denoted by g(p). In principle,
g does not need to be a constant function.

The concepts of totally umbilical, totally geodesic and minimal submanifolds can be
rewritten in terms of principal curvatures. Indeed, the submanifold M is totally umbilical
if and only if for each normal vector £ at each p € M all the eigenvalues of S, coincide,
for each p € M; the submanifold M is totally geodesic if and only if for each unit normal
vector ¢ the shape operator S, vanishes; and the submanifold M is minimal if and only if
for each normal vector £ the trace of the shape operator S¢ is zero.

Another class of submanifolds that we will study in this thesis is the class of austere
submanifolds (Chapter |§| and Chapter . A submanifold M of M is said to be austere
if, for any unit normal vector, the set of principal curvatures with respect to such normal
vector, counted with multiplicities, is invariant under multiplication by —1. Equivalently,
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M is austere in M if all odd degree symmetric polynomials in the principal curvatures of
M vanish. Clearly, totally geodesic submanifolds are austere, and austere submanifolds
are always minimal.

A submanifold M of a Riemannian manifold M has constant principal curvatures if
the principal curvatures of M are constant for any parallel normal vector field of M along
any piecewise differentiable curve in M. Submanifolds with constant principal curvatures
were introduced and studied by Heintze, Olmos and Thorbergsson [58] in the context of
isoparametric submanifolds.

Assume now that M is a hypersurface of M, that is, a submanifold of codimension one.
Then, locally and up to sign, there exists a unique smooth normal vector field £ € T'(v M),
with (£,€) = e € {—1,1}. Put ({,£) = €. In this case we write S = S¢ for the shape
operator with respect to &. The Gauss and Weingarten formulas can now be written as

vxy:vXY—l-dSX,Y)f, vxé:—SX.

Then, the Gauss and Codazzi equations reduce to

(RIX,Y)Z, W) = (R(X,Y)Z,W) — e(SY, Z)(SX, W) + ¢(SX, Z)(SY, W),
(R(X,Y)Z,§) = ((VxS)Y — (VyS)X, Z),

whereas the Ricci equation does not give further information for hypersurfaces.

In the context of hypersurfaces, the mean curvature vector H is proportional to the
vector €. Hence, we will usually refer to the mean curvature of the hypersurface, which is
defined as the trace of its shape operator S. Recall that locally and up to sign, there exists
a unique unit normal vector field £ € I'(vM). A hypersurface is said to have constant
principal curvatures if the eigenvalues of the shape operator & = S;¢ are the same at every
point. In this case, we will denote by T3 the distribution on M formed by the principal
curvature spaces of A and by I'(T)) the set of all sections of T}, that is, the vector fields
X € I'(TM) such that SX = \X.

1.3 Isometric actions

In this section, we briefly review the basic concepts, notations and terminology related to
the study of isometric actions on Riemannian manifolds. In particular, we introduce the
concept of (extrinsically) homogeneous submanifold, that will be of great interest in this
thesis. We refer to [0, Chapter 3] for a more detailed exposition on the topic.

Let M be a Riemannian manifold and let G be a Lie group. An isometric action ¢ of
the Lie group G on the Riemannian manifold M is a smooth map

p:GxM—M, (9,p)— gp
satisfying that:

(i) ©(g,¢(d.p)) = (g9, p) for all g, ¢ € G and all p € M,
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(ii) o(e,p) = p for all p € M, where e is the identity element of G, and

(iii) the map ¢,: M — M given by p — ©,(p) = ¢(g,p) is an isometry of M, for each
geaqG.

From now on, we will write gp instead of (g, p) for the sake of simplicity. Let us
introduce two crucial concepts concerning (isometric) actions. For each point p € M, the
orbit of the action of GG through p is defined as

G-p={gp:9€G}

and the isotropy group or stabilizer at p is defined as

G,={9€G:gp=p}

If there is a point p € M such that G - p = M, then the action ¢ is said to be transitive
or that G acts transitively on M. Moreover, when the isometric action is transitive, then
M is said to be a (Riemannian) homogeneous manifold.

Furthermore, each orbit G - p of the isometric action of G on M is a submanifold
(generally immersed) of M. One may study the intrinsic geometry of this orbit with the
induced metric. However, we will be interested in the geometry of the orbit G- p in relation
to the geometry of M, that is, the extrinsic geometry of G-p. In this sense, an (extrinsically)
homogeneous submanifold of M is an orbit of an isometric action on M. Moreover, G acts
transitively by isometries on each orbit G - p (with the induced metric). Hence, each orbit
G -p=G/G, is a Riemannian homogeneous manifold.

The group of isometries of M, which we denote by Isom(M), turns out to be a Lie
group [82]. Hence, we can consider a Lie group homomorphism p: G — I(M) defined as
p(g) = p,. If this associated map p is injective, then the action is called effective. This
means that the Lie group G is isomorphic to a subgroup of Isom(M). The action is said to
be free if for every p € M and every g, h € G, the equality gp = hp implies g = h. Finally,
we say that G acts simply transitively on M when the action is free and transitive.

Consider two isometric actions G x M — M and G’ x M’ — M’. We say that these
isometric actions are orbit equivalent if there exists an isometry f: M — M’ that maps
the orbits of the G-action on M to the orbits of the G’-action on M’. Furthermore, both
isometric actions are said to be conjugate or equivalent if there is an isometry f: M — M’
and a Lie group isomorphism ¢: G — G’ such that f(gp) = ¥(g)f(p) for all p € M and
all g € G. It easily follows that two conjugate actions are in particular orbit equivalent.

Given an isometric action, we can derive certain orthogonal representations in a natural
way. Recall that, roughly speaking, a representation of a Lie group G on a vector space
V is a Lie group homomorphism p: G — GL(V). This representation p is said to be
orthogonal if p(g) is an orthogonal transformation of V' for each g € G.

As usual in this section, let p: G x M — M be an isometric action on a Riemannian
manifold M, and let p € M. Note that the isotropy group G, fixes p and leaves the orbit
G - p invariant. Hence, the differential of each isometry ¢,, for g € G, leaves the tangent
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space T,(G - p) and the normal space v,(G - p) invariant. On the one hand, we call the
action

Gy x T,(G - p) = T,(G - p), (9, X) = (‘Pg)*pxy

the isotropy representation of the action ¢ at p. On the other hand, the action

Gp x vp(G - p) = v,(G - p), (9,6) = (‘Pg)*p&

is usually called the slice representation of the action ¢ at p.

An isometric action ¢: G'x M — M is said to be proper if, for any two points p, ¢ € M,
there exist open neighbourhoods U, and U, of p and ¢ in M, respectively, such that the set
{9 € G : gU,NU, # 0} is relatively compact in G. Another equivalent definition is that
the map

GxM—=MxM,  (g.p)— (p,gp)

is a proper map, that is, the inverse image of each compact set in M x M is also compact
in G x M. This kind of isometric actions comes motivated for the following reason. If
one considers the space of orbits of the action of G on M, namely M /G with the quotient
topology, it is not necessarily Hausdorff. However, if the Lie group G acts properly on M,
then M /G is a Hausdorff space. Moreover, each isotropy group G, is compact, and each
orbit G - p is closed in M and therefore an embedded submanifold [39].

In order to finish this section, we will focus on the three different types of orbits that
can appear when one considers a proper isometric action. Let us consider an orbit G - p,
for some p € M. If for each ¢ € M the isotropy group G, at p is conjugate in G to some
subgroup of Gy, then G - p is said to be a principal orbit. Equivalently, any orbit G - p
of a proper action is principal if and only if the slice representation at p is trivial. It is
interesting to point out that the union of all principal orbits is a dense and open subset of
M. Principal orbits are orbits of maximal dimension. The codimension of any principal
orbit is the cohomogeneity of the action. An exceptional orbit is any non-principal orbit of
maximal dimension. Finally, a singular orbit is an orbit whose dimension is less than the
dimension of a principal orbit. In other words, an orbit whose codimension is greater than
the cohomogeneity of the action is called a singular orbit.

1.3.1 Cohomogeneity one actions

A cohomogeneity one action of a Lie group G on a Riemannian manifold M is an isometric
action of G on M whose principal orbits have codimension one. In such a case, M is called
a cohomogeneity one manifold.

In this thesis we will not study cohomogeneity one actions directly. However, on the one
hand, in Chapter [2[and in Chapter [3| we deal with isoparametric hypersurfaces, which can
be understood as generalizations of principal orbits of cohomogeneity one actions. On the
other hand, in Chapter [5| we introduce the notion of CPC submanifold, which is intimately
related to the notion of cohomogeneity one action.

The classification of cohomogeneity one actions (up to orbit equivalence) is an important
problem in differential geometry. This is probably due to the fact that they allow to
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reduce certain partial differential equations on M to ordinary differential equations. Indeed,
cohomogeneity one actions have been successfully utilized, for example, in the construction
of Einstein, Einstein-Kéhler and Einstein-Weyl structures [, 21], in the inspection of Yang-
Mills equations [105], and also to construct hyper-Kéahler Calabi metrics [37] and special
Lagrangian submanifolds [6§].

Cohomogeneity one actions have been classified in space forms. In non-positive cur-
vature, this traces back to the works of Somigliana [96], Levi-Civita [75], Segre [93] and
Cartan [25]. We include these results in Section The classification in spheres follows
from the work of Hsiang and Lawson [61] decades later.

1.4 Symmetric spaces

In this thesis, we will be particularly interested in submanifold theory of symmetric spaces.
Therefore, this section is completely devoted to a brief introduction to them. Indeed, we
start by presenting the notion of symmetric space and the first properties one can derive
from it. We will also distinguish among the different types of symmetric spaces and we
finally introduce the main algebraic tools to be used in this thesis.

There are several references that the reader may like to consult to obtain further infor-
mation on this topic. Probably, the most well-known and complete references are Helga-
son’s book [59] and Loos’ books [78, [79]. Eschenburg’s survey [51] and Ziller’s notes [112]
are great references. The books by Besse [20], Kobayashi and Nomizu [73], O’Neill [86]
and Wolf [109] also include nice chapters on symmetric spaces. In this section we mainly
follow [59] and [112].

Firstly, let us fix some notations concerning Lie groups and Lie algebras. In general, for
each Lie group GG, we denote its Lie algebra by the corresponding gothic letter g. We denote
by Exp the Lie exponential map. Consider the conjugation map I,: G — G, h + ghg™*,
for each g € G. Let Aut(g) be the group of automorphisms of the Lie algebra g, that is, the
linear bijective transformations ¢: g — g such that p[X,Y] = [pX, pY] for all X, Y € g.
Then, the Lie group adjoint map Ad: G — Aut(g), g — (I;).e, is defined as the differential
of I, at the identity element e of G. Moreover, the differential of Ad at the identity element
of G leads to the Lie algebra adjoint map ad: g — End(g), X — ad(X) = [X,].

Let M be a connected Riemannian manifold and take a point o € M. Take r >
0 sufficiently small such that normal coordinates are defined on the open geodesic ball
B,(r) ={p € M : d(o,p) < r}. We can always consider a smooth map o,: B,(r) — B,(r)
that sends each p = exp,(v) to g,(p) = exp,(—v), for v € T,M, ||v|]| < r. We call this map
a local geodesic symmetry. A Riemannian manifold M is said to be locally symmetric if at
each point there is a ball such that the corresponding local geodesic symmetry is a local
isometry. Moreover, a locally symmetric space is characterized by the fact that VR = 0.
A connected Riemannian manifold M is called a (Riemannian) symmetric space if each
local geodesic symmetry can be extended to a global isometry.

We can easily deduce from the definition that symmetric spaces are complete, since
geodesics can be extended by using geodesic reflections. Moreover, symmetric spaces are
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examples of homogeneous spaces, that is, for any py, po € M there is an isometry ¢ of M
mapping p; to pe. Actually, it suffices to take ¢ = o,, where ¢ is the midpoint of a geodesic
joining p; and ps.

Let M be a symmetric space. In the following lines we will focus on a more algebraic
description of symmetric spaces. Let G = Isom’(M) be the connected component of the
identity of the isometry group of M. Fix a point o € M, consider the geodesic symmetry
s, at the point 0 and let K = (G, be the isotropy group of G at o. Note that K is compact.
Then, M is diffeomorphic to the coset space G/K by means of the map : G/K — M
defined by gK — g¢g(0). With a pullback of the metric of M, the map ® becomes an
isometry. Since for each h € G the map defined by gK — hgK is an isometry, the induced
metric (-,-) in G/K is G-invariant. The isotropy representation of the symmetric space
M = G/K at the point o is the orthogonal representation defined by K x T,M — T,M,
(k,v) = kiov.

Recall that o is a fixed point in M and that K = G,. Let us define the involutive
Lie group automorphism s: G — G, g — 0,90,. It satisfies GY C K C G,, where
G, ={g9 € G :5(g9) = g} and G? is the connected component of the identity of G. The
differential # = s,: g — g of sis a Lie algebra automorphism called the Cartan involution of
the symmetric space (at the Lie algebra level). The isotropy Lie algebra ¢ is the eigenspace
of 8 with eigenvalue 1. Let p be the (—1)-eigenspace of 6. The eigenspace decomposition
of # then reads g = € @ p, which is called the Cartan decomposition. Moreover, it easily
follows that [¢, €] C €, [¢,p] C p and [p,p] C €. Let B be the Killing form of the Lie algebra
g, that is, B(X,Y) = tr(ad(X) cad(Y)) for X, Y € g. Using the bracket relations and the
definition of the Killing form it follows that £ and p are orthogonal subspaces with respect
to B.

Since the vector space p is a complementary subspace to € in g, it can be identified with
T,M by means of the map ®. Thus, p can be endowed with an inner product that turns
out to be Ad(K)-invariant. Indeed, the isotropy representation of G/K explained above is
equivalent to the adjoint representation of K in p, K X p — p, given by (k, X) — Ad(k)X.

If M is a connected, complete, locally symmetric Riemannian manifold, then its Rie-
mannian universal covering is a symmetric space. In particular, every locally symmetric
space is locally isometric to a symmetric space.

Let M = G/K be a symmetric space and let us write M for its universal covering. The
isotropy representation allows to distinguish different types of symmetric spaces. Indeed, if
the restriction of the isotropy representation of M = G/ K to the connected component K°
of the identity of K is irreducible, then we say that the symmetric space M is irreducible.
This turns out to be equivalent to the property that the universal cover M of M (which is
always a symmetric space) cannot be written as a non-trivial product of symmetric spaces,
unless M is some Euclidean space R". Furthermore, according to De Rham Theorem, we
can decompose the universal covering as M = My X My x -+ x My, where My is locally
isometric to a Euclidean space and M; is a simply connected irreducible symmetric space,
with ¢ € {1,...,k}. A symmetric space G/K is said to be semisimple if its universal
covering does not have a Euclidean factor.
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A symmetric space M = G/K is said to be of compact type, of non-compact type or of
Buclidean type if Bl,x,, the restriction to p of the Killing form B of g, is negative definite,
positive definite or identically zero, respectively. If M is irreducible, then Schur’s lemma
implies that Blyx, is a scalar multiple of the induced metric on p = T,M and, according
to the sign of such scalar, M falls into exactly one of the three possible types. It turns
out that if M is of compact type, then GG is a compact semisimple Lie group, and M is
compact and of non-negative sectional curvature; if M is of non-compact type, then G is
a non-compact real semisimple Lie group, and M is non-compact (indeed, diffeomorphic
to a Euclidean space) and with non-positive sectional curvature; and if M is of Euclidean
type, its Riemannian universal covering is a Euclidean space R". Moreover, in general, the
universal cover of a symmetric space M splits as a product M = My x M, x M_, where
My = R™ is of Euclidean type, M, is of compact type, and M_ is of non-compact type.

Symmetric spaces of compact and non-compact type are related via the notion of du-
ality. Being more specific, there is a one-to-one correspondence between simply symmet-
ric spaces of compact type and (necessarily simply connected) symmetric spaces of non-
compact type. Without entering into details, the trick at the Lie algebra level to obtain
the dual symmetric space is to change g = €& p by the new Lie algebra g* = € & ip, where
i = +/—1 is the imaginary unit. Let G* be the simply connected real Lie group whose
Lie algebra is g*. Then, we obtain that G*/K is a symmetric space that we call the dual
symmetric space of G/K. If G/K is of compact type, then G*/K is of non-compact type,
and if G/K is of non-compact type, then G*/K is of compact type. In spite of the sim-
plicity of this procedure, dual symmetric spaces have, of course, very different geometric
and even topological properties. However, dual symmetric spaces have equivalent isotropy
representations and, therefore, irreducibility is preserved by duality.

Among different kinds of Riemannian submanifolds, the totally geodesic ones typically
play an important role. This is particularly true in the case of symmetric spaces. Indeed,
although the classification problem of totally geodesic submanifolds in symmetric spaces
is still outstanding, these submanifolds are, intrinsically, also symmetric, and admit a neat
algebraic characterization. The rank of a symmetric space M is defined as the maximal
dimension of a totally geodesic and flat submanifold of M or, equivalently, the dimension of
a maximal abelian subspace of p. The rank is an invariant that is preserved under duality.

Another interesting problem in symmetric spaces is the classification of cohomogeneity
one actions. This classification was achieved in irreducible symmetric spaces of compact
type. In the rank one case, Hsiang and Lawson [61] obtained the classification in spheres,
Takagi [98] on complex projective spaces and Iwata for the quaternionic [66] and the
Cayley [67] cases. Many years later, Kollross classified cohomogeneity one actions on
irreducible compact symmetric spaces of rank greater than one [74].

The techniques utilized to classify cohomogeneity one actions in compact symmetric
spaces do not hold for non-compact symmetric spaces, where the problem remains open.
However, cohomogeneity one actions in symmetric spaces of non-compact type have been
thoroughly investigated and classifications have been achieved by Berndt and Tamaru
under the following extra assumptions: cohomogeneity one actions that produce regular
foliations [15]; cohomogeneity one actions with a totally geodesic singular orbit [16]; and
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cohomogeneity one actions in rank one symmetric spaces of non-compact type [17], except
for the quaternionic hyperbolic spaces HH™, n > 3. Also Berndt and Tamaru have made
remarkable progress in [16] for higher rank (see also [13]). However, a complete classification
is still open.

Among the different kinds of symmetric spaces, the Hermitian ones constitute a re-
markable subclass. Indeed, one of them, namely the complex hyperbolic space will be of
great interest in this thesis (see Chapter [2| and Chapter . We recall some definitions
concerning complex, Hermitian and Kahler manifolds following [73].

On the one hand, an endomorphism .J of a vector space V is said to be a complex
structure if J2 = —id. Note that V is a complex vector space if and only it has a complex
structure. Moreover, if V' has an inner product (-,-) such that (u,v) = (Ju, Jv) for all u,
v € V, then (-,-) is said to be a Hermitian inner product. An almost complex structure
on a manifold M is a tensor field that defines a complex structure in each tangent vector
space T, M, with p € M.

A complex manifold is a manifold that admits charts with image onto open subsets of
C" such that the coordinate transitions are holomorphic. This induces an almost complex
structure J on M, which is as an endomorphism of the tangent bundle T'M of M such
that J2 = —id. If M is a complex Riemannian manifold, and the metric is Hermitian
in each tangent space, then M is called a Hermitian manifold. A Kdhler manifold is a
Hermitian manifold M satistying V.J = 0, where V is the Levi-Civita connection of M.
The endomorphism .J is known as the Kdhler structure or the complex structure of M.

Thus, a symmetric space M is Hermaitian if it is a Hermitian manifold and the geodesic
symmetries s,, p € M, are holomorphic transformations. It occurs that every Hermitian
symmetric space is Kahler. Moreover, a symmetric space M is Hermitian if and only if its
dual is Hermitian, and every Hermitian symmetric space is simply connected.

Let M be a Kahler manifold and denote by J and R its complex structure and its
curvature tensor, respectively. The holomorphic sectional curvature Ky of M is defined as
the restriction of the sectional curvature K to J-invariant 2-dimensional subspaces of the
form {v, Ju}, with v € T,M, for p € M. Note that K} can be thought as a function that
maps each unit vector v € T, M to the real number K (v, Jv) = (R(v, Jv)Jv,v).

A Kahler manifold is said to have constant holomorphic curvature if K, is constant
for any unit tangent vector of M. If M has constant holomorphic curvature ¢ then its
curvature tensor reads [111]

RIX.Y)Z == (Y, 2)X — (X, 2)Y + (JY, Z)JX — (JX, Z)JY —2(JX,Y)JZ).

=0

1.5 Symmetric spaces of non-compact type

In this thesis we will focus on symmetric spaces of non-compact type and this section is
devoted to describe the tools and structures that will be used throughout this work in order
to study them. The main purpose will be to explain the fact that any symmetric space of
non-compact type is isometric to a solvable Lie group endowed with a left-invariant metric.
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For more information or detailed proofs one can consult, for instance, Eberlein’s [50],
Chapter 2|, Helgason’s [59, Chapter VI] or Knapp’s books [69, Chapter VI, Section 4-5].
A nice survey that includes a detailed description of the space SL,(R)/SO,, can be found
in [4]. We refer to the survey [45] for an exposition of the study of submanifold geometry
of symmetric spaces. In the following lines, we mainly follow [4], [69] and [45].

We will start by describing some important decompositions of the Lie algebra of the
isometry group (Subsection, and then we present the Lie group model of a symmetric

space of non-compact type (Subsection [1.5.2)).

1.5.1 Root space and Iwasawa decompositions

Let M = G/K be an arbitrary symmetric space of non-compact type. Then g is a real
semisimple Lie algebra, which implies that its Killing form B is non-degenerate. Indeed,
the Cartan decomposition g = ¢ @ p is B-orthogonal, Blexe is negative definite (due to
the compactness of K), and By, is positive definite (since M is of non-compact type).
Hence, by reverting the sign on £ x £ or, equivalently, by defining

(X,Y)p, = —B(0X,Y),

for X,Y € g, we have that (-,-)p, defines a positive definite inner product on g. It is easy
to check that this inner product satisfies

(ad(X)Y, Z)p, = —(Y, ad(0X)Z) 5, (1.1)

forall X,Y,Z € g.

Let a be a maximal abelian subspace of p. One can show that any two choices for a are
conjugate under the adjoint action of K (similar to the fact that any two maximal abelian
subalgebras of a compact Lie algebra are conjugate to each other). Moreover, recall that
the rank of M = G/K is the dimension of a. For each H € a, X, Y € g, we have that

(ad(H)X,Y)p, = —(X,ad(0H)Y)p, = (X,ad(H)Y)5,,

which means that each operator ad(H) € End(g) is self-adjoint with respect to the inner
product (-,-)p,. Moreover, if Hy, Hy € a, then [ad(H;),ad(Hs)] = ad[H;, Ho] = 0, since
ad: g — End(g) is a Lie algebra homomorphism and a is abelian. Thus, {ad(H) : H € a}
constitutes a commuting family of self-adjoint endomorphisms of g. Therefore, they di-
agonalize simultaneously. Their common eigenspaces are called the restricted root spaces,
whereas their non-zero eigenvalues (which depend linearly on H € a) are called the re-
stricted roots of g. In other words, if for each covector A € a* we define

on={X €g:[H,X]=XNH)X for all H € a},

then any g, # 0 is a restricted root space, and any A # 0 such that g, # 0 is a restricted
root. Note that gg is always non-zero, since a C go. If X = {\ € a* : A £ 0, g, # 0} denotes
the set of restricted roots, then we have the following (-, -) g,-orthogonal decomposition

g=00® (@ gx), (1.2)

AED
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which is called the restricted root space decomposition of g.

Observe that these definitions depend on the choice of o € M (or, equivalently, of
a Cartan involution 6 of g) and on the choice of the maximal abelian subspace a of p.
However, different choices of o and a give rise to decompositions that are conjugate under
the adjoint action of GG. For simplicity, in this thesis we will not specify this dependence
and we will also omit the adjective “restricted”. It is easy to check that we have the bracket
relation

(07, 8u] € Ort (1.3)

for any A, u € a*. Moreover, we have the following properties:
(i) Ogx = g_» and, hence, A € ¥ if and only if —\ € .
(i) go = & @ a, where ) = go N ¢ is the normalizer of a in &.

For each A\ € ¥, define H) € a by the relation B(Hy, H) = A(H), for all H € a. Then
we can introduce an inner product on a* defined by (A, ) := B(H), H,). We will write
A2 = (A, \) for the induced norm on a*. Thus, with a bit more work one can show that
¥ is an abstract root system in a*, that is, it satisfies (see [69 p. 149]):

(a) a* =span X,

b) for a, 8 € X, the number A, 3 = 2(a, B)/{a, ) is an integer,
( 8 g
(c) for o, B € ¥, we have f — A, g0 € X.

This system may be non-reduced, that is, there may exist A € X such that 2\ € .

Now we can define a positivity criterion on ¥ by declaring those roots that lie at one
of the two half-spaces determined by a hyperplane in a* not containing any root to be
positive. If X% denotes the set of positive roots, then ¥ = £ U (=X7).

We define here the concept of string [69, p. 152], since it will play a crucial role in this
thesis. Let a € ¥ and A € ¥ U {0}. The a-string containing \ is defined as the set of all
elements in X U {0} of the form A\ + na with n € Z.

We state now a result concerning the algebraic structure of the root system ». In
particular, it provides really useful information about the Cartan integers, that is, the
integers of the form
2(a, \)

|of?

Aa,)\ =

Y

where o, A € Y. The calculation of Cartan integers allows to control how roots are
constructed, and in particular, they allow to determine strings explicitly.

Proposition 1.5.1. [69, Proposition 2.48] Let ¥ be the restricted root system of a Rie-
mannian symmetric space of non-compact type.

(i) If « € X3, then —a € 3.
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(i) Ifa € ¥ and A € XU {0}, then

20\
Auy = <|—’;"> € {0, 41,42, £3 + 4},
a

and 4 occurs only when X is non-reduced and A\ = +2q.
(iii) If a, A € ¥ are non-proportional and || < |al, then A, € {0, £1}.

(iv) If a, A € 3 with (o, \) > 0, then o — A € S U{0}. If a, A € ¥ with (a, \) < 0, then
a+ e XU{0}.

(v) If « € ¥ and X € XU {0}, then the a-string containing A has the form X\ + na for
—p < n < q with p,g > 0. There are no gaps. Furthermore p — q = Ayx. The
a-string containing A contains at most four roots.

As it is usual in the theory of root systems, one can consider a subset II C Xt of
simple roots. A positive root is simple if it cannot be written as the sum of two positive
roots. The set of simple roots II is a basis of a* made of positive roots such that any
A € XY is a linear combination of the roots in II where all coefficients are either non-
negative integers or non-positive integers. More precisely, each root A € ¥ can be written
as A = Y cq Mo, where the coefficients n,, are either all non-negative or all non-positive
integers depending on whether A is a positive root or a negative root, respectively. For
each root A = > _;n,a € ¥, the sum

(A=) n, (1.4)

acll

a€ll

is called the level of the root A\. Note that positive roots have positive level and negative
roots have negative level. Of course, the cardinality of Il agrees with the dimension of a,
that is, with the rank of G/K. The set II of simple roots allows to construct the Dynkin
diagram associated with the root system X, which is a graph whose nodes correspond to
the simple roots. The nodes corresponding to the simple roots o, § € II are joined by
Anp - Ap o edges. Moreover, if the system is non-reduced, two collinear positive roots are
drawn as two concentric nodes. Due to the properties of the root space decomposition, the

subspace
n= P o

Aext

of g is a nilpotent subalgebra of g. Moreover, a & n is a solvable subalgebra of g such that
[a®n, a®n] =n. Any two choices of positivity criteria on X give rise to isomorphic Dynkin
diagrams and to nilpotent subalgebras n that are conjugate by an element of Ng(a).
A fundamental result in what follows is the Iwasawa decomposition theorem. At the
Lie algebra level, it states that
g=tCadn
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is a vector space direct sum (but neither orthogonal direct sum nor semidirect product).
Let us denote by A and N the connected Lie subgroups of G with Lie algebras a and
n, respectively. Since a normalizes n, the semidirect product AN is the connected Lie
subgroup of G with Lie algebra a & n. Then the Iwasawa decomposition theorem at the
Lie group level states that the multiplication map

KxAx N — G, (k,a,n) — kan

is an analytic diffeomorphism, and the Lie groups A and N are simply connected. Indeed, as
A is abelian and N is nilpotent, they are both diffeomorphic to Euclidean spaces [69, The-
orem 1.127]. Hence, the semidirect product AN is also diffeomorphic to a Euclidean space.

1.5.2 The solvable Lie group model

As above, let M = G/K be a symmetric space of non-compact type, where K is the
isotropy group at some point o € M. Consider the smooth map ¢: G — M, h — h(o).
The restriction ¢|ay: AN — M is injective; indeed, if ¢(h) = ¢(h') with h,h’ € AN, then
h='h(0) = o, and hence h™'h/ € K N AN, which, by the Iwasawa decomposition, implies
that h™1h’ = e. It is also onto: if p € M, then by the transitivity of G there exists h € G
such that h(p) = o, but using the Iwasawa decomposition we can write h = kan, with
ke K,ae A, ne N, and then p=h"1(0) = n"ta k= (0) = (an)"!(0). Finally, ¢|sn is
a local diffeomorphism, since ker ¢,. = €, hence (¢|an)se: a®n — T,M is an isomorphism,
and by homogeneity any other differential (¢|4n )« is also bijective.

Therefore, ¢|any: AN — M is a diffeomorphism. If we denote by g the Riemannian
metric on M, we can pull it back to obtain a Riemannian metric (¢|4n)*g on AN. Hence,
we trivially have that (M, g) and (AN, (¢|an)*g) are isometric Riemannian manifolds.

Let now h,h' € AN C G, and denote by L the left multiplication by A in G. Then

(™" 0 ¢lan o Ln)(R') = h™'(hh/(0)) = I (0) = ¢|an(h'),

from where we get h™top|sn 0Ly, = ¢|ay as maps from AN to M. Since h™! is an isometry
of (M, g), and using the previous equality, we have

Li(olan) g = Ly (d|an)*(h ") g = (W 0 ¢lan o L) g = (¢|lan)*y-

This shows that (¢|an)*g is a left-invariant metric on the Lie group AN.

Altogether, we have seen that any symmetric space M = G /K of non-compact type is
isometric to a solvable Lie group AN endowed with a left-invariant metric. In particular,
any symmetric space of non-compact type is diffeomorphic to a Euclidean space and, since
it is non-positively curved, it is a Hadamard manifold. This allows us to regard any of
these spaces as an open Euclidean ball endowed with certain metric, as happens with the
well-known ball model of the real hyperbolic space.

Moreover, it is sometimes useful to view a symmetric space of non-compact type M as
a dense and open subset of a bigger compact topological space M U M (co) which, in this
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case, would be homeomorphic to a closed Euclidean ball. In order to do so, one defines an
equivalence relation on the family of complete, unit-speed geodesics in M: if v and o are
two of them, we declare them equivalent if they are asymptotic, that is, if d(v(¢),o(t)) < C,
for certain constant C' and for all ¢ > 0. Each equivalence class of asymptotic geodesics is
called a point at infinity, and the set M (oo) of all of them is the ideal boundary of M. By
endowing M UM (o0) with the so-called cone topology, M UM (co0) becomes homeomorphic
to a closed Euclidean ball whose interior corresponds to M and its boundary to M (co).
Two geodesics are asymptotic precisely when they converge to the same point in M (00).
We refer to [50], §1.7] for more details.

The Lie group model turns out to be a powerful tool for the study of submanifolds of
symmetric spaces of non-compact type. The reason is that one can consider interesting
types of submanifolds by looking at subgroups of AN or, equivalently, at subalgebras of
a @ n. A good understanding of the root space decomposition is crucial for that. Of
course, not every submanifold (even extrinsically homogeneous submanifold) of M can be
regarded as a Lie subgroup of AN, but very important types of examples arise in this way,
sometimes combined with some additional constructions. In any case, if one wants to study
submanifolds of AN with particular geometric properties, one needs to have manageable
expressions for the left-invariant metric on AN and its Levi-Civita connection. We obtain
the appropriate formulas below.

Let us denote by (-, -) 4 the inner product on a @ n given by the left-invariant metric
(¢|an)*g on AN in order to avoid confusions with the inner product (-, ) p,. Assume for the
moment that M is irreducible. Then, recall that the inner product ¢*g, on T,M induced
by the metric g on M is a scalar multiple of modified Killing form (-,-)p,. Thus, after
a rescaling of the metric we can and will assume that ¢*g, = (-,-)5,. Now, we will find
the relation between (-,-)any and (-,-)p,. Thus, if X,V € a @ n, and denoting orthogonal
projections (with respect to (-, -)p,) with subscripts, we have

—-0_1-4 1
= TXa TY>Bg = - <2Xa + Xy — 0X,,2Y, + Y, — 6Yn>Bg
1
=1 (4(Xq, Ya) B, + (Xu, Ya) B, + (0X4,0Y4) B,)
1
- <Xﬂv Y:'l>39 + §<Xn7 Yn>Be‘ (15)

If M is reducible, one can adapt the argument (by defining (-, ), as a suitable multiple
of By on each factor) to prove the same formula. Using Koszul formula and relations
and , one can obtain an important formula for the Levi-Civita connection V of the
Lie group AN. Indeed, if X,Y,Z € a @ n, and taking into account that [a®n,a ® n] C n,
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we have
(VY Zhan = 5 (X, V], Zhan = (¥ 2], X)ax — (X, 20,V ) ax)
= (X, Y], 2y, ~ (¥, 2], X5, — {[X. 2], )s,)
_ %([X, Y]+ [0X,Y] — [X,0Y], Z)p,. (1.6)

Note that we have started and finished with different inner products. Thus, in order to
obtain an explicit formula for VxY', one has to impose some restrictions on X and Y. For
example, if X and Y do not belong to the same root space, then [#X,Y] and [X, 8Y] are
orthogonal to a, whence in this case 2VxY = ([X, Y] + [0X, Y] — [X, 0Y])an.

1.6 Anti-De Sitter and complex hyperbolic spaces

Let Ry n > 3, denote the (n + 1)-dimensional real vector space endowed with the semi-
Riemannian metric (z,y) = —z1y1 — Z2y2 + Z?:’Lgl x;y;. This metric has signature (n—1,2).
We define the anti-De Sitter space of radius r, H]'(r), as

H'(r) ={z e Ry | (z,2) = —r?}.

Let D denote the Levi-Civita connection of Ry*! and S the shape operator of H}(r) as
a submanifold of Ry, Consider the normal vector field to H}(r) given by &, = z/r, for
each z € H}'(r), and let X be a tangent vector to the anti-De Sitter space. Note that

(€,€) = —1. Then, we have

1
SX =—-X.
r

for each tangent vector X to HJ'(r). Therefore, we deduce that
1

for all vector fields X,Y and Z tangent to the anti-De Sitter space HJ'(r). Let V be the
Levi-Civita connection of H{. Then, the Gauss formula reads as

~ XY
DXy - VXY + <77>€,

and Gauss equation can be written as

N 1
RX.Y)Z =~

Therefore, the anti-De Sitter space is a Lorentzian manifold with negative constant (sec-
tional) curvature —1/r2. It can be thought as the Lorentzian analogue of the real hyperbolic
space.
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In the following lines we briefly construct the complex hyperbolic space. In order to do
so, consider the anti-De Sitter spaces of the form H7"t'(r) C R3"™. Let J be a complex
structure R3""?, satisfying (Jx, Jy) = (z,y) for all x,y € R3"*2. This allows us to identify
R27+2 with C"*!, where the multiplication by the imaginary unit 7 is induced by .J. We will
consider the following equivalence relation on H"™(r): two elements z, 2/ € H""(r) are
related if and only if there exists an element A € S! C C such that 2’ = Az. The complex
hyperbolic space is the smooth quotient manifold CH" = H;"*'(r)/ ~ . The canonical
projection 7: H""(r) — CH™ is the so-called Hopf map.

Now, we will equip the complex hyperbolic space with a metric that is induced by the
metric of the anti-De Sitter space. In order to do so, let & be a unit vector normal to
H"(r), and define V = J¢. Since J is a complex structure, we have that V' is a vector
field tangent to H;"™(r). Moreover, it satisfies (V,V) = —1. Consider the orthogonal
decomposition

T.H"'(r) =RV, @ V"

of the tangent space of H:"*!(r) at z, where V' denotes the orthogonal complement
of V. in T,H?"*!(r) with respect to the Lorentzian metric of the anti-De Sitter space
H>(r). Moreover, ker7,, = RV,. Thus, arguing by dimensions, it follows that Tez|vt
is an isomorphism between the vector spaces V' and Ty, CH", for each z € H{""(r).
Therefore, for each X (. € Tr(;)CH"™ we define the horizontal lift X L of Xr(2) to z as the
unique tangent vector in V:* such that m, X~ = X. This allows to define a metric in the
complex hyperbolic space given by

(X,Y) = (X" Y")

for the vectors X, Y € T, CH", which is independent of the base point z € H? 1 (r) of
the lifts. Moreover, the (well-defined) map J given by

JX = m.JXE

defines a complex structure for the complex hyperbolic space (for the sake of simplicity we
use J for both complex structures). An important point here is the fact that the metric
of H"*1(r) is positive definite on V;* and, hence, the metric on CH™ is positive definite.
This means that CH™ becomes a Riemannian manifold. This metric, called the Bergman
metric of CH™, makes 7: H"*'(r) — CH"™ a semi-Riemannian submersion. Moreover, the
Bergman metric satisfies that (JX, JY) = (X,Y) for any tangent vectors X and Y. From
the formulas for semi-Riemannian submersions (see [85] or [86, p. 213]), the Levi-Civita
connection of CH™ is given by

ViV = (@XLYL) ,
for tangent vector fields X, Y on CH". Using this formula one can show that J is Kahler.

Again, the theory of semi-Riemannian submersions allows to calculate the holomorphic
sectional curvature of CH™, which turns out to be —4/r? for every X € TCH™. Therefore,
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CH™ is a space of constant holomorphic curvature ¢ = —4/r%. Now, the curvature tensor
R of CH™ reads

R(X,Y)Z = 2((5@ VX — (X, 2)Y + (JY, Z)JX — (JX, Z)JY — 2(JX, Y>JZ),

for X,Y,Z € TCH".



Chapter 2

Isoparametric hypersurfaces in the complex
hyperbolic space: the examples

This chapter is devoted, on the one hand, to an exposition of the origin of isoparametric
hypersurfaces, as well as some well-known results concerning them in the context of Rie-
mannian geometry. On the other hand, we will describe the construction method and some
geometric data of the known examples of isoparametric hypersurfaces in complex hyper-
bolic spaces. In Chapter [3| we will prove that these examples constitute a classification of
isoparametric hypersurfaces in complex hyperbolic spaces.

We organize this chapter in the following way. In Section we explain the origin of
the concepts of isoparametric function and isoparametric hypersurface. In Section we
state the classification results of isoparametric hypersurfaces in Euclidean spaces and real
hyperbolic spaces. We also provide some information on the problem in spheres, which is
much more involved. In Section we include a description of the complex hyperbolic
space as a symmetric space. Section is devoted to the study of the structure of a real
subspace of a complex vector space by means of the notion of Kahler angle, which will allow
to distinguish among the examples of isoparametric hypersurfaces in complex hyperbolic
spaces that we introduce in Section [2.5]

2.1 Origin of the problem

The origin of the study of isoparametric hypersurfaces traces us back to the work of
Somigliana in 1919 [06], where he addressed the following problem in the context of Geo-
metric Optics. Let ¢: R? x R — R be a solution to the wave equation
ot
Ap=—r
where A is the Laplace operator of R?, that is, with respect to the space variables. We
think of ¢ as the time variable. A wavefront of ¢ is defined as the set of points that have
a common oscillating state at a given instant ¢ = t,. Mathematically, for each instant %,
they are the level surfaces of the function f; (z) = p(z, o).
Somigliana was interested in waves satisfying two particular conditions. Firstly, let us
assume that ¢ is a stationary wave, that is, its wavefronts do not depend on the time.
Then, we can write f instead of f;,. Moreover, we have that the map c(t) = ¢(xz¢,t) does

27
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not depend on the chosen point xy, but on the wavefront containing the point xo. Thus,
for each z € f~!(c(tg)) we have that

0%p "
Af(z) = Ap(w, to) = 55 (2,0) = " (to)-
Hence, in mathematical terms, the stationary condition means that the Laplacian Af is
constant along the level sets of ¢. Secondly, let us assume that the wavefronts of ¢ are
parallel, that is, equidistant to each other. Somigliana refers to this condition as Huygens
principle. Mathematically, this means that || grad f|| is constant along the level sets of f,
where grad f denotes the gradient of f.

In summary, an stationary wave ¢ with equidistant wavefronts leads to a function f
whose Laplacian and norm of its gradient are constant along the level sets of f. The
generalization of this idea is behind the origin of isoparametric hypersurfaces.

Indeed, the term isoparametric hypersurface was probably introduced by the mathe-
matician Levi-Civita [75] in the year 1937, and it is intimately related to what we have
explained above. Let f: M — R be a smooth function, where M is a Riemannian manifold.
The first and the second differential parameters of f are, respectively,

Aif=|grad f||* and A,f =Af,

where A is the Laplace-Beltrami operator of M and grad f denotes the gradient of f. When
the first and the second differential parameters of a non-constant function f are constant
along the level sets of f, we say that f is an isoparametric function. A hypersurface is said
to be an isoparametric hypersurface if it is a regular level set of an isoparametric function.
In particular, note that f is isoparametric if and only if there exist real functions F; and
F, of real variable such that

Alf = Fl(f) and Agf = Fg(f)

Usually, it is required that the function F} is smooth and the function F; is continuous in
order to avoid dealing with complicated examples. We refer to [I07] for more details.

Cartan found out an equivalent more geometric definition for isoparametric hypersur-
faces. Thus, a hypersurface is isoparametric if and only if it and its sufficiently close parallel
hypersurfaces have constant mean curvature [27]. Let us be more precise, and state this
equivalent definition in the more general setting of semi-Riemannian geometry. Given a
non-degenerate hypersurface M of a semi-Riemannian manifold M, for r € R close enough
to zero we define the map ®": M — M by ®"(p) = exp,(r,), where exp is the semi-
Riemannian exponential map of M and £ is a unit normal vector field on M. For a fixed r,
®"(M) is not necessarily a submanifold of M, but at least locally and for r small enough,
it is a hypersurface of M. A parallel hypersurface at a distance r to a given hypersurface
M is precisely a hypersurface of the form ®"(M). Thus M is isoparametric if and only if
®"(M) is a hypersurface with constant mean curvature, for all r € (—¢, €) and some € > 0.
In this thesis, we will use this second definition.
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Isoparametric hypersurfaces have been studied thoroughly and their study has revealed
many connections with different areas of mathematics such as Riemannian geometry, but
also Lie group theory, algebraic geometry, algebraic topology, differential equations and
Hilbert spaces. Even some applications in Physics have been found. For instance, see
[89] and [94] for the appearance of isoparametric hypersurfaces in some problems of fluid
mechanics, or [55] for certain relation between isoparametric families and Dirac operators.

2.2 Some classification results

In the following lines we will present some important classification results concerning
isoparametric hypersurfaces. However, for a complete and more detailed approach to this
topic, we refer to the surveys [103], [28], [104] and [32], and to the books [88] and [6].

As explained above, the study of isoparametric hypersurfaces traces back to the work of
Somigliana [96], who studied isoparametric surfaces of the 3-dimensional Euclidean space,
motivated by a problem in the context of Geometric Optics. This study was generalized
by Segre [93], who classified isoparametric hypersurfaces in any Euclidean space. Indeed,
Segre proved that one can extend the results of [96] and [75] to Euclidean spaces of arbitrary
dimension.

Theorem 2.2.1. [93] Let M be an isoparametric hypersurface in a Fuclidean space R™.
Then M has one or two constant principal curvatures and it is an open part of one of the
following hypersurfaces:

(i) An affine hyperplane R™™! of R™.
(ii) A sphere S"~! in R".
(iii) A generalized cylinder S* x R =1 with k € {1,...,n —2}.

It is interesting to point out that these examples are all homogeneous. Hence, the clas-
sification of isoparametric hypersurfaces is equivalent to the classification of cohomogeneity
one actions in the context of Euclidean spaces. The observation about the constancy of
the principal curvatures of these examples can be extended. Indeed, Cartan characterized
isoparametric hypersurfaces in real space forms as hypersurfaces with constant principal
curvatures [25]. Furthermore, he derived a fundamental formula relating principal curva-
tures and their multiplicities in hypersurfaces with constant principal curvatures in spaces
with constant sectional curvature. Indeed, consider a manifold with constant sectional
curvature ¢ and let g be the number of distinct constant principal curvatures of one of its
isoparametric hypersurfaces. For each principal curvature \;, we write m; for its multiplic-
ity. Then, Cartan proved that

g
i\

E ij—]:O, foreachi=1,...,g.

| Uy

=10 2N
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Using this formula, it is possible to see that if ¢ < 0 then g € {1,2}. With this infor-
mation, Cartan derived the classification of isoparametric hypersurfaces in real hyperbolic
spaces RH™.

Theorem 2.2.2. [25] Let M be an isoparametric hypersurface in a real hyperbolic space
RH™. Then, M has one or two constant principal curvatures and it is an open part of one
of the following hypersurfaces:

(i) A totally geodesic real hyperbolic hyperspace RH™™! in RH™ or one of its equidistant
hypersurfaces.

(ii) A tube around a totally geodesic real hyperbolic space RH* in RH™, for some k €
{1,...,n—2}.

(iii) A geodesic sphere in RH".
(iv) A horosphere in RH™.

Again, all these examples are homogeneous hypersurfaces. Cartan also made progress
in spheres [26], and succeeded in classifying isoparametric hypersurfaces with one, two
or three distinct principal curvatures. However, it turns out that the classification of
isoparametric hypersurfaces in spheres is very involved. In fact, its complete classification
was considered one of the most outstanding problems in Differential Geometry [I11]. It was
a surprise at that moment to find inhomogeneous examples: the first such examples were
constructed by Ozeki and Takeuchi [87], and these were generalized by Ferus, Karcher
and Miinzner [53] by using Clifford modules. As of this writing, it is not clear if the
classification problem remains still open or not. Many mathematicians have worked in this
problem and we include some of the main references. Some important progress has been
made by Stolz [97], Cecil, Chi and Jensen [29], Immervoll [63] and Chi [33, 34, [35] for
four distinct principal curvatures, and by Dorfmeister and Neher [49], Miyaoka [81] and
Siffert [95] for six distinct principal curvatures. See the surveys [28] and [103] for a more
detailed story of the problem in spheres and related topics.

Recall that, in real space forms, a hypersurface is isoparametric if and only if it has
constant principal curvatures. This is not true in a general Riemannian manifold. Thus,
it makes sense to study both isoparametric hypersurfaces or hypersurfaces with constant
principal curvatures in non-flat complex space forms, that is, complex projective and hy-
perbolic spaces. The classification of real hypersurfaces with constant principal curvatures
in complex projective spaces is known for Hopf hypersurfaces [70], and for two or three
distinct principal curvatures [99, [100]; all known examples are open parts of homogeneous
hypersurfaces. Using the classification results in spheres, Dominguez-Vazquez [46] derived
the classification of isoparametric hypersurfaces in CP™, n # 15. A consequence of this
classification is that inhomogeneous isoparametric hypersurfaces in CP" are relatively com-
mon. See also [4§] for a recent classification of isoparametric hypersurfaces in quaternionic
projective spaces HP", n # 7.
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Moreover, real hypersurfaces with constant principal curvatures in complex hyperbolic
spaces have been classified under the assumption that the hypersurface is Hopf [2], or if the
number of distinct constant principal curvatures is two [84] or three [§], [9]. All of these
examples are again homogeneous. See Section for more information.

In Chapter [2] and Chapter [3, we deal with isoparametric hypersurfaces in complex
hyperbolic spaces. Apart from the homogenous examples classified by Berndt and Tamaru
n [I7], there are also some inhomogeneous examples that were built by Diaz-Ramos and
Dominguez-Vézquez [40]. We will explain all these examples in Subsection [2.5.2]

2.3 The complex hyperbolic space described as a sym-
metric space

The complex hyperbolic space CH" is a rank one symmetric space of non-compact type.
Hence, this section is devoted to describing CH" according to the algebraic information
provided in Section [1.5] Firstly, note that CH" = G/K, where G = SU(1,n) is the
connected component of the identity of the isometry group of CH", and K = S(U(1)U(n))
is (up to a finite kernel) the isotropy group at a point o € CH". Let g = su(1,n) and
t = s(u(l) @ u(n)) be the Lie algebras of G and K, respectively. Recall that ad and
Ad denote the adjoint maps of g and G, respectively. Then g = € ® p is the Cartan
decomposition of g with respect to o € CH", where p is the orthogonal complement of ¢
in g with respect to the Killing form B of g. Recall also that the Killing form B allows
to define a positive definite inner product (X,Y)p, = —B(#X,Y) on the Lie algebra g
satisfying the relation (ad(X)Y,Z)p, = —(Y,ad(0X)Y)p, forall X, Y, Z € g.

Take now a maximal abelian subspace a of p. It can be proved that the dimension
of a is one, which is the rank of the symmetric space G/K = CH". Recall that the set
{ad(H) : H € a} is a family of commuting self-adjoint (with respect to By) endomorphisms
of g, and hence simultaneously diagonalizable. In this particular case, the (restricted) root
space decomposition of g with respect to a reads

9:972a®9a@90@9a@92m

for certain covector a € a*. Therefore, the restricted roots are —2a, —a, a and 2a.
Furthermore, it can be seen that g, and g_, are isomorphic to C*1 and that gsn, g2
and a are isomorphic to R. In particular, this means that dim g, = dimg_, = 2n — 2 and
dim go, = dimg_o, = dima = 1.

At this point, we will fix a positivity criterion in the set of roots. Let us say that «
is a positive root. Define n = g, @ g2, as the sum of the root spaces corresponding to
all positive roots. These choices (the point o, the maximal abelian subspace a and the
notion of positivity) determine a point at infinity = in the ideal boundary CH"™(c0) of
CH™, that is, an equivalence class of geodesics that are asymptotic to the geodesic starting
at o € CH™, with direction a C p = T,CH" and the orientation determined by the fact
that «a is positive.
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Due to the properties of the root space decomposition, n is a nilpotent Lie subalgebra
of g with center go,; in fact n is isomorphic to the (2n — 1)-dimensional Heisenberg algebra
(see [I9, Chapter 3] for a description of generalized Heisenberg algebras). Then a @ n is
a solvable Lie subalgebra of g, since [a ® n,a @ n] = n is nilpotent. Now g = t®dadn
is the so-called Iwasawa decomposition of the Lie algebra g with respect o € CH™ and

x € CH"(00).
2.4 Real subspaces of a complex vector space

In this section we compile some information on the structure of a real subspace of a
complex vector space V. This will be needed to present the examples of isoparametric
hypersurfaces appearing in Theorem [3.0.4] and it will be also an important tool in the
proof of such classification result. We follow [42].

Let W be a real subspace of V| that is, a subspace of V' with the underlying structure
of real vector space (as opposed to a complex subspace of V). We denote by J the complex
structure of V', and assume that V', as a real vector space, carries an inner product (-, -)
for which J is an isometry.

Let £ € W be a non-zero vector. The Kdhler angle of £ with respect to W is the
angle ¢¢ € [0,7/2] between JE and W. For each £ € W, we write J§ = FE + P&, where
F¢ is the orthogonal projection of J¢ onto W, and P¢ is the orthogonal projection of J&
onto V © W, the orthogonal complement of W in V. Then, the Kahler angle of W with
respect to € is determined by (F§, FE) = cos®(p¢) (€, €). Hence, if € has unit length, ¢ is
determined by the fact that cos(y¢) is the length of the orthogonal projection of J¢ onto
W. Furthermore, it readily follows from J? = —id that (P¢, P€) = sin®(p¢) (€, €).

A subspace W of a complex vector space is said to have constant Kdhler angle ¢ €
[0, /2] if all non-zero vectors of W have the same Kéhler angle . In particular, a totally
real subspace is a subspace with constant Kéhler angle 7/2, and a subspace is complex
if and only if it has constant Kahler angle 0. It is also known that a subspace W with
constant Kéhler angle has even dimension unless ¢ = /2.

Following the ideas in [42, Theorem 2.6], we consider the skew-adjoint linear map
F: W — W, that is, (F¢,n) = —(§, F'p) for any &, n € W, and the symmetric bilinear
form (&, 1) — (F&, Fn). Hence, it follows that there is an orthonormal basis {&1, ..., &} of
W and Kéhler angles @1, . .., ¢k such that (F&;, F&;) = cos®(y;)d;;, for all 4, j € {1,...,k},
and where 0;; is the Kronecker delta. We call ¢, ..., ¢ the principal Kahler angles of
W, and &,...,& are called principal Kdhler vectors. Moreover, as it is proved in [42]
Section 2.3], the subspace W can be written as W = @,cW,,, where & C [0, 7/2] is a finite
subset, W, # 0 for each ¢ € ®, and each W,, has constant Kéhler angle ¢. Furthermore,
if ¢, ¥ € ® and ¢ # ¥, then W, and W,, are complex-orthogonal, i.e. CW,, L CW,,. The
elements of ® are precisely the principal Kéhler angles, the subspaces W, are called the
principal Kdhler subspaces, and their dimension is called their multiplicity.

Denote by W+ = V & W the orthogonal complement of W in V. Then, we can also
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take the decomposition of W+ in subspaces of constant Kéhler angle W+ = GB%\IIW(;
It is known that ® \ {0} = ¥\ {0} and dim W, = dim W for each ¢ € @\ {0}, that
is, except possibly for complex subspaces in W or W+, the Kihler angles of W and W+
and their multiplicities are the same. We have CW, = W, @ W for ¢ € ®\ {0}, and
moreover, F?{ = —cos?(¢)¢ for each & € W, and each ¢ € ®. Conversely, if £ € W
satisfies F2¢ = — cos?(p)&, then it follows from the decomposition of W in subspaces of
constant Kahler angle that § € W.,.

Finally, two subspaces W and W of V 22 C" are congruent by an element of U(n) if and
only if they have the same principal Kahler angles with the same multiplicities, that is, if
W = ®pecalW, and W= EB%‘I,VV(F are as above, then they are congruent by an element of
U(n) if and only if ® = ¥ and dim W,, = dim W, whenever ¢ = 1.

2.5 The examples

The main purpose of this section is to present the examples of isoparametric hypersurfaces
in complex hyperbolic spaces. Let M be a hypersurface in the complex hyperbolic space
and let £ be a unit normal vector field. The tangent vector field J¢ to M is called the Reeb
or Hopf vector field of M. A real hypersurface M in a complex hyperbolic space CH" is
Hopf at a point p € M if J¢, is a principal curvature vector of the shape operator. We
say that M is Hopf if it is Hopf at all points.

2.5.1 The standard examples

The standard set of homogeneous examples of real hypersurfaces in complex hyperbolic
spaces is known as Montiel’s list [84]. Berndt [2] classified these examples in the following
sense:

Theorem 2.5.1. Let M be a connected Hopf real hypersurface with constant principal
curvatures of the complex hyperbolic space CH™, n > 2. Then, M is holomorphically
congruent to an open part of:

(i) a tube around a totally geodesic CH*, k € {0,...,n — 1}, or
(i) a tube around a totally geodesic RH™, or
(iii) a horosphere.

Remark 2.5.2. In order to use Theorem efficiently (see for example Corollary
and Proposition , we need to know the principal curvatures and their multiplicities
for a Hopf real hypersurface with constant principal curvatures. These can be found for
example in [2] or [10].
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A tube of radius r > 0 around a totally geodesic CH*, k € {0,...,n — 1}, has the
following principal curvatures:

A = 2_C tanh(r 2_C>, Ay = 2_6 coth(r 2_C>, A3 =/ —ccoth(r\/ —c>,

with multiplicities 2k, 2(n — k — 1), and 1. Thus, the number of principal curvatures is

g=2if k=0or k=n—1, and g = 3 otherwise. The Hopf vector is associated with 3.
A tube of radius r > 0 around a totally geodesic RH™ has three principal curvatures

A= \/2__6 tanh(ré?c), Ao = \/2__6 coth(r\/Q__C>, A3 = \/—_ctanh<r\/—_c>,

with multiplicities n — 1, n — 1, and 1, except when r = \/%7 log(2 + \/g), in which case
A1 = A3. The Hopf vector is associated with As.
Finally, a horosphere has two distinct principal curvatures

/\1 = _c7 )\2 =V —¢C,

with multiplicities 2(n — 1) and 1. The Hopf vector is associated with As.

It was believed for some time that, as it is the case for complex projective spaces,
the Hopf hypersurfaces with constant principal curvatures (Theorem should give
the list of homogeneous hypersurfaces in complex hyperbolic spaces. However, Lohnherr
and Reckziegel found in [77] an example of a homogeneous hypersurface that is not Hopf,
namely, case in Theorem . Later, new examples of non-Hopf homogeneous hyper-
surfaces in complex hyperbolic spaces were found in [5], and Berndt and Tamaru classified
all homogeneous hypersurfaces in [I7]. The construction method of these non-Hopf ex-
amples was generalized by Diaz-Ramos and Dominguez-Vézquez in [40] for the complex
hyperbolic space, and in [41] for Damek-Ricci spaces. These examples are in general not ho-
mogeneous, but they are isoparametric, and the rest of this section is devoted to presenting
their definition and main properties.

2.5.2 Tubes around the submanifolds W,

Before starting with the description of the examples themselves, we need to introduce
some facts about the Lie group and Riemannian structures of the solvable part of the
Iwasawa decomposition of the isometry group of CH™. With the notations introduced
in Section 2.3 throughout this section B will be the unit left-invariant vector field of a
determined by the point at infinity x. That is, the geodesic through o whose initial speed is
B converges to x. We also set Z = JB € go,4, and thus, a = RB and g,, = RZ. Moreover,
go is J-invariant, so it is isomorphic to C*~!. The Lie algebra structure on a @ n is given
by the formulas

[B,Z) =v—cZ, 2|B, U] =+/—cU, [UV]=+v—c{JUV)Z, [Z,U]=0, (2.1)
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where U, V € g,.
In Section [3.4] we will also need the group structure of the semidirect product AN. A
standard reference for this is [I9]. The product structure is given by

Expyen(aB + U + 27) - Expg, (0B +V +y2)

= Bxpan (408 +(57) " (ol 0721V 22)

1 b
+ pla+0b)~" (p(a):c +e“p(b)y + 56“/2\/—(:,0 (g) p (5) (JU, V>)Z)
foralla, b, z,y € Rand U,V € g,. Here, Exp,,: a®n — AN denotes the Lie exponential
map of AN, and p: R — R is the analytic function defined by

(s) eT’l if s #£ 0,
S) =
P 1 if s =0.

The Levi-Civita connection of AN is given by

1
Vonv4e2 (0B +V +yZ) = V=c{(3(U.V) +ay) B
1 1
-5 <bU 4 yJU + xJV) + <§(JU, V) — bx) Z},
(2.3)
where a, b, x, y € R, U, V € g,, and all vector fields are considered to be left-invariant.

In order to construct the examples corresponding to cases to of Theorem
let tv be a proper real subspace of g,, that is, a subspace of g,, v # g., where g, is
regarded as a real vector space. We define to+ = g, © tv, the orthogonal complement of tv
in g,, and write k¥ = dimw*. It follows from the bracket relations above that a @ v @ go,
is a solvable Lie subalgebra of a & n. We define

We = Sp - 0, where s, = a® 10 @ goq,

the orbit of the group S, through the point o, where Sy, is the connected subgroup of AN
whose Lie algebra is s,. Hence, Wy, is a homogeneous submanifold of CH™; it was proved
in [40] that W, is minimal and tubes around W,, are isoparametric hypersurfaces of CH".

We give some more information on W, and its tubes. As we have seen in Section
we can decompose v+ = @gp@mé as a direct sum of complex-orthogonal subspaces of
constant Kihler angle. The elements of ® are the principal Kihler angles of tot. Recall
that F: w!t — ' and P: w’ — w map any ¢ € w' to the orthogonal projections of
J& onto wt and v respectively. Let ¢ be the maximal complex subspace of sy, that is,
¢c=a®d (go ©Crot) ® goy. Then, 5, = ¢® Prot and a®n = ¢ ® Prot @ wt. Denoting by
¢, P+, and 20+ the corresponding left-invariant distributions on AN, then the tangent
bundle of Wy, is TW,, = € & P20+ and the normal bundle is vW,, = 20+. It follows
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from [40, p. 1039] that the second fundamental form of W), is determined by the trivial
symmetric bilinear extension of

2I1(Z, P€) = —/—c(JPE)*, € € vWy,

where (-)* denotes orthogonal projection onto vWy,. It can be shown that this expres-
sion for the second fundamental form implies that the complex distribution € on W,
is autoparallel, and hence W, is ruled by totally geodesic complex hyperbolic subspaces
(see Lemma [3.4.6)).

If £ =1, that is, if v is a real hyperplane in g,, then the corresponding W,, is denoted
by W21 and is called the Lohnherr hypersurface [77). Tt follows that TW?"~! and its
equidistant hypersurfaces are homogeneous hypersurfaces of CH". These were also studied
by Berndt in [3], and correspond to case of Theorem W The corresponding foliation
on CH™ is sometimes called the solvable foliation.

Thus, we assume from now on k > 1. If w' has constant Kihler angle o = 0, then
W, is congruent to a totally geodesic complex hyperbolic space. If ro' has constant
Kihler angle ¢ € (0,7/2], then W, is denoted by W2""*. These are the so-called Berndt-
Briick submanifolds, and it is proved in [5] that the tubes around W2"~* are homogeneous.
Moreover, it follows from [17] that a real hypersurface in CH™ is homogeneous if and only
if it is congruent to one of the Hopf examples in Theorem [2.5.1, to W?"~! or one of its
equidistant hypersurfaces, or to a tube around a Wj”_k.

In general, however, a tube around a submanifold W, is not necessarily homogeneous.
For an arbitrary t, the mean curvature H" of the tube M" of radius r around the sub-
manifold W, is [40]

N

H =
2 sinh %‘7 cosh %jc

(k — 1+ 2n sinh? ! 2_0) .
Therefore, for every r > 0, the tube M" of radius r around W,, is a hypersurface with

constant mean curvature, and hence, tubes around the submanifold W,, constitute an
isoparametric family of hypersurfaces in CH".

Remark 2.5.3. With the notation as above, if 7 denotes the geodesic through a point
0 € Wy with 4¢(0) = € € v,Wy, then the characteristic polynomial of the shape operator
of M" at y¢(r) with respect to —y¢(r) is

C

pre@) = =22 (<2 2) ()

where \ = @ tanh T\?, ¢ is the Kahler angle of § with respect to v,Wy,, and

c 1
frp(z) = —2° + <_ﬁ + 3)\> r? + 3 (c—6X*)z

16A* — 16cA? — ¢ + (¢ + 42%)? cos(2¢)
+ 32\
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As was pointed out in [40], at y¢(r), M" has the same principal curvatures, with the
same multiplicities, as a tube of radius r around the ng_k, e € [0,7/2]. However, in
general, the principal curvatures and the number g of principal curvatures vary from point
to point in M".

Finally, we summarize the examples of isoparametric hypersurfaces in complex hyper-
bolic spaces that we have presented. On the one hand, in Theorem we have introduced
the examples of the Montiel’s list. This list constitutes the classification of Hopf hypersur-
faces with constant principal curvatures in complex hyperbolic spaces. On the other hand,
the rest of the examples are constructed following the same procedure.

Indeed, let 1o be a real subspace of g,, that is, a subspace of g, with the underlying
structure of real vector space. We define the Lie subalgebra sy, of g by 5, = a®1wdgs,, and
denote by Sy the connected closed subgroup of SU(1,n) whose Lie algebra is sy,. Then,
we define W,, as the orbit through o of the subgroup Sy. It was shown in [40] that W), is a
homogeneous minimal submanifold of CH", and that the tubes around it are isoparametric
hypersurfaces of CH™. We denote by w+ the orthogonal complement of to in g,. These
procedure gives rise to three kinds of examples.

If v is a hyperplane of g,, then Wy, is a real hypersurface of CH" denoted by W?2"~1,
and it was shown in [3] that the equidistant hypersurfaces to W?"~! are homogeneous.

If o has constant Kihler angle ¢, then the corresponding W, is denoted by Wﬁ”_k.
Here k is the codimension of tv in g,, and it can be proved [5] that k is even if ¢ # /2.
Moreover, it follows from [5] that the tubes around Wj"‘k are homogeneous. In particular,
if ¢ = 0, the submanifold WZ" " is a totally geodesic complex hyperbolic space and we
recover the examples in Theorem (i).

If o' does not have constant Kihler angle, then the tubes around W,, are not homoge-
neous (indeed, they have non-constant principal curvatures) but are still isoparametric [40)].






Chapter 3
Isoparametric hypersurfaces in the complex
hyperbolic space: the classification

Recall that an isoparametric hypersurface of a Riemannian manifold is a hypersurface such
that all its sufficiently close parallel hypersurfaces have constant mean curvature. The aim
of this chapter is to prove the following classification result of isoparametric hypersurfaces
in complex hyperbolic spaces. To our knowledge, this is the first complete classification
in a whole family of Riemannian manifolds since Cartan’s classification of isoparametric
hypersurfaces in real hyperbolic spaces [25]. The results of this chapter have been published
in the article [43]; see also [44] for an alternative proof of the fact that isoparametric
hypersurfaces in CH™ have the same principal curvatures as the homogeneous examples.

Theorem 3.0.4. Let M be a connected real hypersurface in the complex hyperbolic space
CH™, n > 2. Then, M 1is isoparametric if and only if M is congruent to an open part of:

(i) a tube around a totally geodesic complex hyperbolic space CH*, k € {0,...,n—1}, or
(ii

(i

a tube around a totally geodesic real hyperbolic space RH™, or

)
)
) a horosphere, or

(iv) a ruled homogeneous minimal Lohnherr hypersurface W21, or some of its equidis-
tant hypersurfaces, or

(V) a tube around a ruled homogeneous minimal Berndt-Briick submanifold W;”_k, for
ke{2,....,n—1}, ¢ € (0,7/2], where k is even if p # 7/2, or

(vi) a tube around a ruled homogeneous minimal submanifold Wy, for some proper real
subspace 10 of go = C"' such that wt, the orthogonal complement of v in g, has
non-constant Kahler angle.

Note that all the examples in the above classification result have been presented in
Section We state some of the direct consequences of Theorem

Corollary 3.0.5. [I7] A real hypersurface of CH™, n > 2, is homogeneous if and only if
it is congruent to one of the examples ([z]) through @) i Theorem m

For n = 2, g, is a complex line and thus the examples and are not possible.
Compare also with the classification of real hypersurfaces in CH? with constant principal
curvatures [9].

39
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Corollary 3.0.6. An isoparametric hypersurface in CH? is as open part of a homogeneous
hypersurface.

Nevertheless, for n > 3 there are inhomogeneous examples: one family up to congruence
for CH3, and infinitely many for CH™, n > 4.
Since the examples in of Theorem are the only ones that do not have constant

principal curvatures we also get:

Corollary 3.0.7. An isoparametric hypersurface of CH™ has constant principal curvatures
if and only if it is an open part of a homogeneous hypersurface of CH™.

Moreover, since the examples in Theorem have the same pointwise principal cur-
vatures as the homogeneous hypersurfaces in CH", we have the following result. An
alternative shorter proof can be found in [44].

Corollary 3.0.8. Let M be an isoparametric hypersurface in CH™. Then, the principal
curvatures of M are pointwise the same as the principal curvatures of a homogeneous
hypersurface of CH™.

Another important consequence of the classification is that each isoparametric hypersur-
face of CH™ is an open part of a complete, topologically closed, isoparametric hypersurface
which, in turn, is a regular leaf of a singular Riemannian foliation on CH™ whose leaves
of maximal dimension are all isoparametric. Thus, an isoparametric hypersurface in CH"
determines an isoparametric family of hypersurfaces that fills the whole ambient space and
that admits at most one singular leaf.

We can determine the congruence classes of isoparametric families of hypersurfaces
in CH™. Note that, apart from the horosphere foliation Fp, the family Fgrpyn of tubes
around a totally geodesic RH", and the family F, of geodesic spheres around any point
o € CH", any other family is given by the collection of tubes around a submanifold W,
(see Subsection [2.5.2]), where w is any real subspace of codimension at least one in g,.
Thus, we have

Theorem 3.0.9. The moduli space of congruence classes of isoparametric families of hy-
persurfaces of CH™ is isomorphic to the disjoint union

{Fu, Fapn, Fo} 11 (Q,E Gr(R*"™*)/U(n — 1)),

where G(R*=2) /U (n — 1) stands for the orbit space of the standard action of the unitary
group U(n — 1) on the Grassmannian of real vector subspaces of dimension k of C"!.

As we will see in Section [3.2] the classification of isoparametric hypersurfaces in the com-
plex hyperbolic space CH" is intimately related to the study of Lorentzian isoparametric
hypersurfaces in the anti-De Sitter space H2"™'. Following the ideas of Magid in [80], Xiao
gave parametrizations of Lorentzian isoparametric hypersurfaces in H;y"™ [106]. Burth [23]
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pointed out some crucial gaps in Magid’s arguments, which Xiao’s proof depends on. How-
ever, the classification of isoparametric hypersurfaces in CH™ does not follow right away
from an eventual classification of Lorentzian isoparametric hypersurfaces in the anti-De
Sitter space H?"™ as the projection via the Hopf map m: H:"*' — CH™ depends in a
very essential way on the complex structure of the semi-Euclidean space R3""2 where the
anti-De Sitter space lies. This is precisely the main difficulty of this approach in the clas-
sification of isoparametric submanifolds of complex projective spaces [46] using the Hopf
map from an odd-dimensional sphere.

Therefore, although the starting point of our arguments is the fact that isoparametric
hypersurfaces in CH" lift to Lorentzian isoparametric hypersurfaces in HZ"™ our ap-
proach is independent of [80] and [I06]. The shape operator of a Lorentzian isoparametric
hypersurface does not need to be diagonalizable and, indeed, it can adopt four distinct Jor-
dan canonical forms. Using the Lorentzian version of Cartan’s fundamental formula, some
algebraic arguments, and Gauss and Codazzi equations, we determine the hypersurfaces in
CH™ that lift to Lorentzian hypersurfaces of three of the four types. The remaining case
is much more involved. Working in the anti-De Sitter space, we start using Jacobi field
theory in order to extract information about the shape operator of the focal submanifold
(Proposition . The key step is to justify the existence of a common eigenvector to
all shape operators of the focal submanifold (Proposition . This allows us to define
a smooth vector field which is crucial to show that the second fundamental form of the
focal set in the complex hyperbolic space coincides with that of one of the submanifolds
Ww. After a study of the normal bundle of this focal set, the obtention of a reduction
of codimension result, together with a more geometric construction of the submanifolds
Wy (Proposition , we prove a rigidity result for these submanifolds (Theorem ;
although the proof of this result is convoluted, it reveals several interesting aspects of the
geometry of the ruled minimal submanifolds W, in relation to the geometry of the am-
bient complex hyperbolic space. Altogether, this will allow us to conclude the proof of

Theorem [3.0.41

This chapter is organized as follows. In Section [3.1] we describe the relation of the
complex hyperbolic space CH™ with the anti-De Sitter space by means of the Hopf map.
Section [3.2]is basically devoted to presenting Cartan’s fundamental formula for Lorentzian
space forms and some of its algebraic consequences. It turns out that cases and in
Theorem can be handled at this point. For the remaining cases, a more thorough study
of the focal set is needed, and this is carried out in Section |3.3] The ingredients utilized
here are the Gauss and Codazzi equations of a hypersurface (Subsection , Jacobi field
theory (Subsection , and a detailed study of the geometry of the focal submanifold
(Subsection [3.3.3). In Section we give a characterization of the submanifolds W, in
terms of their second fundamental form. We need a reduction of codimension argument in
Subsection [3.4.1], and the proof is concluded in Subsection We finish the proofs of
Theorem [3.0.4] and Theorem [3.0.9] in Section [3.5
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3.1 Complex hyperbolic space and the Hopf map

In this section we will focus on the Hopf map, which was introduced in Section [1.6, and
the role that it plays in order to study isoparametric hypersurfaces in complex hyperbolic
spaces. Indeed, recall from Section the definition of the vector field V' on HZ"*! by
means of V, = Jy/—cq/2 for each ¢ € H?t! . This vector field is tangent to the S'-flow and
(V,V) = —1. We have the linear isometry T,H;"*!' = T, ,CH" & RV, and the following

relations between the Levi-Civita connections V and V of H2"*! and CH", respectively:

Ve

Vi YE = (VxY)E+ T(JXL, YHV, (3.1)
VyXE =YV =Y Q_C(JX)L - —VQ_CJXL, (3.2)

for all X, Y € ['(TCH"), and where X denotes the horizontal lift of X and J denotes the
complex structure on C"*! as well. These formulas follow from the fundamental equations
of semi-Riemannian submersions [85].

Let now M be a real hypersurface in CH™. Sometimes we say ‘real’ to emphasize that
M has real codimension one, as opposed to ‘complex’ codimension one. Then M = T (M)
is a hypersurface in H2"™ which is invariant under the S'-action. Thus 7| : M — M is a
semi-Riemannian submersion with timelike totally geodesic S'-fibers. Conversely, if M is a
Lorentzian hypersurface in H>"*! which is invariant under the S'-action, then M = (M)
is a real hypersurface in CH", and 7| : M — M is a semi-Riemannian submersion with
timelike totally geodesic fibers. If £ is a (local) unit normal vector field to M, then &% is a
(local) spacelike unit normal vector field to M. In order to simplify the notation, we will
denote by V and V the Levi-Civita connections of M and of M. Denote by S and S the
shape operators of M and M, respectively.

The Gauss and Weingarten formulas for the hypersurface M in H™ are, as we have
seen, VxY = VYV 4+ (SX, V)l and Vyér = —SX. Using and (3.2), for any
X € I'(TM), we have

V=

SXE=(SX)F+ X —(eb xhyw, SV = V¢

Jex, (3.3)

2 2
In particular, SX = W*SXL.
Let Xy,..., Xs,_1 be a local frame on M consisting of principal directions with cor-
responding principal curvatures Aq, ..., Agp—1 (obviously, some can be repeated). Then

XL XL |,V is a local frame on M with respect to which S is represented by the

matrix
A 0 /e
0 A2n—1 ——bZ"LI\/jC ’ (34)
biv—c  bamiv—=c 02
2
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where b; = (J¢, X;),i=1,...,2n — 1, are S'-invariant functions on (an open set of) M.

As a consequence of , M and M have the same mean curvatures. Since horizontal
geodesics in H2"*! are mapped via 7 to geodesics in CH™, it follows that = maps equidistant
hypersurfaces to M to equidistant hypersurfaces to M. Therefore, M is isoparametric if
and only if M is isoparametric. This allows us to study isoparametric hypersurfaces in
CH™ by analyzing which Lorentzian isoparametric hypersurfaces in H:"™' can result by
lifting isoparametric hypersurfaces in CH" to the anti-De Sitter space. It is instructive
to note that, whereas the isoparametric condition behaves well with respect to the Hopf
map, this is not so for the constancy of the principal curvatures of a hypersurface, since
the functions b; might be non-constant.

3.2 Lorentzian isoparametric hypersurfaces

In this section we present the possible eigenvalue structures of the shape operator of a
Lorentzian isoparametric hypersurface in the anti-De Sitter space H:"™' and use this in-
formation to deduce some algebraic properties of an isoparametric hypersurface in the
complex hyperbolic space CH™.

Let M be a Lorentzian isoparametric hypersurface in H 27+l Then we know by [56,
Proposition 2.1] that it has constant principal curvatures with constant algebraic multi-
plicities. The shape operator S at a point ¢ is a self-adjoint endomorphism of 7} M. It is
known (see for example [86, Chapter 9]) that there exists a basis of T,M where S, assumes
one of the following Jordan canonical forms:

A O
)\1 0 € )\1
L 1. A2 L e==1
0 )\Zn '
)\2an
A 0 1
0 A O Z _ab
0o 1 XN A\
II1. Ao IV. 3
)\Zn

)\2n72

Here, the \; € R can be repeated and, in case IV, \; = a +ib,\y = a —ib (b # 0) are
the complex eigenvalues of S In cases I and IV the basis with respect to which S is
represented is orthonormal (Wlth the first vector being timelike), while in cases II and III
the basis is semi-null. A semi-null basis is a basis {u,v,eq, ... ,em_g} for which all inner
products are zero except (u,v) = (e;,e;) =1, for all i =1, . — 2. We will say that a
point ¢ € M is of type I, IL, III or IV if the canomcal form of S is of type I, I1, IIT or IV,
respectively.
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Remark 3.2.1. It can be seen by direct calculation that all points of the lift of a tube
around a totally geodesic CH*, k € {0,...,n — 1}, are of type 1. Similarly, all points of
the lift of a horosphere are of type II, and all points of the lift of a tube around a totally
geodesic RH™ are of type IV. For the Lohnherr hypersurface W?"~! and its equidistant
hypersurfaces, or for the tubes around the Berndt-Briick submanifolds Wg"*k , all points
of their lifts are of type III. Nevertheless, it is important to point out that, in general, the
lift of a tube around a submanifold W, does not have constant type: there might be points
of type I (if ¢¢ = 0 in the notation of Subsection and of type III (otherwise).

Cartan’s fundamental formula can be generalized to semi-Riemannian space forms.
See [56], or [23], Satz 2.3.6] for a proof:

Proposition 3.2.2. Let M be a Lorentzian isoparametric hypersurface in the anti-De Sitter
space H" ' of curvature c/4. If its (possibly complex) principal curvatures are Ay, . . ., Yy
with algebraic multiplicities my, ..., mg, respectively, and if for some i € {1,...,g} the
principal curvature \; is real and its algebraic and geometric multiplicities coincide, then:

Now let M be an isoparametric real hypersurface in CH™ and M = 7L (M) its lift
to H2"*!. Then, M is a Lorentzian isoparametric hypersurface in the anti-De Sitter space.
We use Cartan’s fundamental formula to analyze the eigenvalue structure of M. Our
approach here will be mostly based on elementary algebraic arguments.

We denote by ¢ a (local) unit normal vector field of M. For a point ¢ € M, the shape
operator S of M at ¢ with respect to qu can adopt one of the four possible types described
above. We will analyze the possible principal curvatures of M at the point p = 7(q) going
through the four cases.

The following is an elementary result that we state without proof.

Lemma 3.2.3. Let ¢ < 0, p > 0, and define ¢: R\ {p} — R by ¢(x) = C;r_if. Then
¢(x) > 0 if and only if v >0 and |z + [ < |p+ £l

We begin with a consequence of Cartan’s fundamental formula that will be used in

Subsections [3.2.1] and See [23, §2.4] and [106, Lemma 2.3].

Lemma 3.2.4. Let g € M be a point of type I, II or III. Then the number §(q) of constant
principal curvatures at q satisfies g(q) € {1,2}. Moreover, if g(q¢) = 2 and the principal
curvatures are X\ and p, then ¢+ 4\ = 0.

Proof. Let A be the set of principal curvatures of M at gq. The algebraic multiplicity
of A € A is denoted by my. If ¢ is of type II or IIl, then the algebraic and geometric
multiplicities of only one principal curvature py € A of M at ¢ do not coincide.
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By Proposition [3.2.2] we have

Mg Z C+4#0M Zm ( Z #C+4/\M>

_ N _
ey O Yeh  \ueav( a
1 1
= Zm,\mu(c + 4 ) < + ) = 0.
A<p A H w A

Since m,,, # 0, we have that the fundamental formula of Cartan is also satisfied for p.
Now let ¢ be a point of type I, IT or III. Then we have

4\
Z muC;_ . 0, for each A € A. (3.5)
pEMA) s

By a suitable choice of the normal vector field, we can assume that A™, the set of positive
principal curvatures, is non-empty; otherwise, there would be only one principal curvature
A = 0, and hence § = 1. Let A\g € A be a positive principal curvature that minimizes
A€ AT = |A+¢/(4)\)]. By Lemma [3.2.3] (with p = Xg) we have (c + 4X\op) /(Ao — p) < 0
for all 4 € A\ {Ao}. Therefore, implies g € {1,2}, and if § = 2, then A = {\o, pu} and
c+ 4 op = 0. [

We will make extensive use of the relations, see (3.3),

SV = ——V;C,JgL and  (SV,V) =0,

where V is a timelike unit vector field on HZ"* tangent to the fibers of the Hopf map 7.
In order to simplify the notation, we will put v =V, § = §;, S = S, and remove the base
point of a vector field from the notation whenever it does not lead to confusion.

3.2.1 Type I points

We start our study with the diagonal setting.

Proposition 3.2.5. If ¢ € M is of type I and p = 7(q), then M is Hopf at p, and
g(p) € {2,3}. The principal curvatures of M at p are:

Ve (k0 e e (YD) () i a

The first two principal curvatures coincide with those of M (one of them might not exist
as a principal curvature of M at p) and the last one is of multiplicity one and corresponds
to the Hopf vector.
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Proof. According to Lemma , let A and y = —c/(4)) be the eigenvalues of S (u might
not exist). We assume that the principal curvature space T)(¢) has Lorentzian signature.

First, assume that there exist two distinct principal curvatures A and p. Since c+4Au =
0, we have A\, pt # 0. We can write v = u + w, where u € T)(q), and w € T},(¢). Since
—1 = (v,v) = (u,u) + (w, w), we have that u is timelike, and

0= (Sv,v) = A, u) + plw, w) = (A — pr) (u,u) —

whence (u,u) = 3£ <0 and (w, w) = ﬁ > 0. In addition:

2 2
Jebh = ———Sv=——=(u+ pw).

=T T =

Both T)(¢) & Ru and T,(¢q) © Rw are orthogonal to v and J¢F, and so, by (3.3), they
descend via 7, to eigenvectors of S (which are orthogonal to J¢) corresponding to the
eigenspaces of A and u, respectively. For dimension reasons, J¢ belongs to one eigenspace
of §. Since m,v = 0, we have m,w = —m,u, and thus, by ,

-9 —2
SJf = —/_—C(AQW*U + Nzﬂ-*w) = \/—_C(AQ - MQ)T‘-*U
—2

= \/_—C(A+M)(M*U+/mw) = (A+p)J¢.

Therefore M has g(p) € {2,3} principal curvatures at p: A, g and A+ p, where one of the
first two might not exist (depending on whether T)(q) © Ru or T),(¢) © Rw might be zero)
and where the last one is of multiplicity one and corresponds to the Hopf vector. Since
A+ c =0 and ;ﬁ’ -5 > 0/it readily follows that |u[ > |A[, and thus [A] < /—c/2.

~ Now assume that there is just one principal curvature A. Then Sv = M and 0 =
(Sv,v) = —\, but then J&& = —\/%SU = 0, which makes no sense. So this case is
impossible. O

Remark 3.2.6. Note that for a certain r € R, one can write

A= 2_C tanh (r 2_0) ;= 2_C coth (T 2—0) , and A+ p = v/ —ccoth(rv/—c).

Therefore, if M is an isoparametric hypersurface that lifts to a type I hypersurface, then
M is a Hopf real hypersurface with constant principal curvatures and, according to the
classification of Hopf real hypersurfaces with constant principal curvatures in the complex
hyperbolic space (Theorem and to the principal curvatures of M, it is an open part of
a tube around a totally geodesic CH*, k € {0,...,n— 1}. However, as we have mentioned
in Remark [3.2.1] it is possible for an isoparametric hypersurface of CH™ to have points of
type I and III in the same connected component. We will have to address this difficulty
later in this chapter.
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3.2.2 Type II points

Now we tackle the second possibility for the Jordan canonical form of the shape oper-
ator.

Proposition 3.2.7. Ifq € M is of type IT and p = 7(q), then M is Hopf at p, and g(p) = 2.
Moreover, M has one principal curvature X\ = £+/—c/2, and the principal curvatures of
M at p are X and 2)\. The second one has multiplicity one and corresponds to the Hopf
vector.

Proof. Let X and j = —c¢/(4)) be the eigenvalues of S (; might not exist). Assume S has
a type II matrix expression with respect to a semi-null basis {eq, e, ..., ea,}, where Se; =
ey +ceq, with € € {—1,1}, Ta(q) = span{es, ..., ex} and T),(¢) = span{egi1,...,€2,}. As
a precaution, for the calculations that follow we observe that e; ¢ T)(q), but it still makes
sense to write, for example, T)\(q) © Re; = span{es, ..., ex}.

First, assume that M has two distinct principal curvatures X, i # 0 at ¢ with ¢+ 4 \u =
0. We can assume that v = rie; + roes + u + w, where u € Ty(q), {e1,u) = (es,u) = 0,
w € T,(q) and 71,7y € R. We have —1 = (v,v) = 2riry + (u,u) + (w,w), so ry,ry # 0. If
u # 0, we define
(u, u) 1

/ —
27“% es + r—lu, €y = €2,

el =e —

and then we have (e, e}) = (e;,¢;), Se| = N + eely, Sel, = Aeb, and v = 7€} + (5 +
(u,u)/(2r1))ey + w. This means that we could have assumed from the very beginning
u=_0.

Thus, we have —1 = (v,v) = 2riry + (w,w) and Sv = ride; + riges + rodes + o,
and hence JE& = —2(ri\e; + (r1e + ra))es + pw) /+/—c. Taking into account that 2riry =

—1 — (w,w), we have

4
—= (2r{Xe + 2r11m\* + (w, w)p?)
c

1= (Jgh, Jeh) =

4
= (27”%)\8 — N 4 (w, w) (u? — )\2)) ,

0 = (Sv,v) = 2rro) + 126 + (w, w)p = 126 — X+ (w, w) (1 — N).

These two equations give a linear system in the unknowns r? and (w,w). As A\ # u and
c+ 4\ = 0, it is immediate to prove that this system is compatible and determined, and
r? = —(c+4 ) /(4e(A — p)) = 0, which gives a contradiction. Therefore, there cannot be
two distinct eigenvalues of S.

If S has just one eigenvalue ), similar calculations as above (or just setting w = 0
everywhere) yield 2\er? = -7+ A2, and er? = X, which is only possible if A\ = ++/—c/2

and r? = \/—c/2.



48 3 Isoparametric hypersurfaces: the classification

Now, T)(q) © Re; is orthogonal to v and J¢E. Thus, when we apply 7., the vectors in
Tx\(q) © Re; descend to eigenvectors of S associated with the eigenvalue A, which are also
orthogonal to J¢. For dimension reasons, J& must also be an eigenvector of S. Furthermore,
by , and since 0 = 7,0 = r{mee + rame, We get

2 4D re
V—c V—c
In conclusion, M has g(p) = 2 principal curvatures at p. One is A = +1/—¢/2, which

coincides with the unique principal curvature of M, and the other one is 2\ = +/—¢,
which has multiplicity one and corresponds to the Hopf vector. ]

SJE = — (riA*T.er + (2rieX + rod?)mey) = — Teey = 20 JE.

3.2.3 Type III points

Now we will assume that the minimal polynomial of the shape operator S has a triple
root. This case is much more involved than the others, and indeed, Section will be
mainly devoted to dealing with this possibility. For type III points we will always take
vectors {eq, es, €3} such that

(e1,€1) = (e2,e2) = (e1,e3) = (e2,€3) = 0, (e1,e2) = (es,e3) =1, (3.6)

S’el = Aeq, 5’62 = Aey + e3, 363 =e1 + Aes. '
Proposition 3.2.8. Let g € M be a point of type III and let X be the principal curvature of
M at q whose algebraic and geometric multiplicities do not coincide. Then, §(q) € {1, 2},
A€ (—\/—0/2, \/—0/2); if there are two principal curvatures at q and we denote the other
one by p, then c + 4 \u = 0.

Proof. Let A and p = —c/(4A be the eigenvalues of S (1 might not exist). Recall that
¢+ 4 \p = 0 from Proposition | Assume that S has a type III matrix expression, and
take {e1, e, e3} as in (3.6)). The spaces T(q) © Rey (recall that ex ¢ Th(¢)) and T,,(q) are
spacelike. By changing the sign of the normal vector we can further assume A > 0.

First, assume that there exist two distinct principal curvatures A, u # 0 with ¢ +4\u =
0. We can write v = rie; + 12e2 + r3e3 + u + w, where u € Th(q) © Rey, w € T),(q).
Taking an appropriate orientation of {ej, e, e3} we can further assume ro > 0. We have
—1 = (v,v) = 2rirg + 12 + (u,u) + (w,w). In particular, ro > 0 and r; < 0. If u # 0, we
define

p o (uu) L

el =e, ey= 52 1 +eg + —2u e = e3. (3.7)
2

Then, the e/’s satisfy (3.6)), and also v = (ry + (u, u)/(2r2))€} +ra€h + rsel +w. This shows
that we could have assumed from the very beginning u = 0.

Thus we have —1 = (v,v) = 2riry + 12 + (w,w), and Sv = (riA + 73)er + rades +
(19 + 73M\)es + pw, and hence JEL = —2 (1A + r3)e; + mades + (12 + r3h)es + pw) //—c.
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Taking into account that 2ryry = —1 — 73 — (w,w) we have

4
— (27“1?"2)\2 + 4rors A + 12 + 12N + (w, w);ﬂ)

1= (J¢" Jghy =
_ _% (4rara) + 75 — N + (1 — X)) (w,w)),

0 = (Sv,v) = 2r1r9\ + 2rgr3 + 12N + p{w, w) = 2rgrs — A+ (1 — A)(w, w).
Canceling the ror3 addend, we get

o (1= N w,w) = =7 = A%
Since ro > 0, we deduce \ € (—\/—0/2, \/—0/2), A # 0.
If M has just one principal curvature A > 0 at ¢, calculations are very similar to what
we did above, just putting w = 0. We also get A\ € (—v/—c/2,+/—c/2), although in this
case A = 0 is possible. O

3.2.4 Type IV points

The final possibility for the Jordan canonical form of a self-adjoint operator of a
Lorentzian vector space concerns the existence of a complex eigenvalue. Since an isopara-
metric hypersurface in the anti-De Sitter space has constant principal curvatures, if there
is a complex eigenvalue at a point, then there is a complex eigenvalue at all points. Since
type IV matrices are the only ones with a non-real eigenvalue we conclude

Lemma 3.2.9. If M is a connected isoparametric hypersurface of the anti-De Sitter space,
and ¢ € M s a point of type IV, then all the points of M are of type IV.

As a consequence of Cartan’s fundamental formula (Proposition 3.2.2)) we have (cf. [23]
Satz 2.4.3] or [106, Lemma 2.4]):

Lemma 3.2.10. Let ¢ € M be a point of type IV and let a = ib (b # 0) be the non-
real complex conjugate principal curvatures at q. We denote by A the set of real principal
curvatures at q. Then §(q) € {3,4} and

a(4X? —¢) — A(4a* + 4b® — ¢) = 0, for each \ € A.
If g(q) = 4, the real principal curvatures A and p satisfy ¢ + 4 = 0.

Proof. Let a + ib, a —ib (b # 0) be the two complex principal curvatures, both with
multiplicity one, and as usual we denote by m, the multiplicity of A € A. Since n > 2, we
have A # (). By Proposition [3.2.2] for each A € A we have

a(4X? — ¢) — N(4a® + 4b* — ¢) c+ 4\
2 =0. 3.8
(A —a)?+? * Z m“)\—,u (38)
peM{A}
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We denote by AT the set of positive principal curvatures at q. We define the map
[T R Rz~ f(x)=a(42? — ¢) — z(4a® + 4b* — ¢).

Assume a < 0 and AT # (). We define Ay to be a positive principal curvature that
minimizes A € AT — |X + ¢/(4)\)|. Then, by Lemma [3.2.3we get (c + 4Xou)/(Ag — p) <0
for all 1 € A\ {\o}. Since f(Ag) < 0, this gives a contradiction with (3.8). Thus, there
cannot be positive principal curvatures if ¢ < 0. Similarly, we get that all real principal
curvatures are non-negative if @ > 0. In particular, if @ = 0 then A = {0} and hence § = 3.

From now on we will assume, without losing generality, that a > 0. Then, all real
principal curvatures are non-negative. But from one sees that in fact A > 0 for all
A € A, that is, A = AT,

The function f is a quadratic function with discriminant (¢ + 4a? — 4b%)? + 64a?b* > 0,
so f has exactly two zeroes, say x; and 3. We have x129 = —¢/4 > 0 and 1 + x5 =
(a® +b* —c/4)/a > 0, so we can assume 0 < z1 < x5 = —c/(4xy).

If A > 0, note that A € (21, 22) if and only if |[A+c/(4N\)| < |x1+¢/(4xq)]. If AN(zq, 20) #
(), we define \g to be a principal curvature that minimizes A € A — |A + ¢/(4)\)|. Then
f(o) < 0 and (c + 4Xop)/(No — p) < 0 for all u € A\ {Ao} by Lemma [3.2.3] (with
p = Xg), contradiction with . Thus, let Ag be a principal curvature that maximizes
A € A |[Ac/(4)N)]. In this case, f(Ag) > 0and (c+4MAop)/(Ao—p) > 0 for all p € A\{ Ao}
by Lemma [3.2.3] (with p = ). Hence, by we get f(Ao) = 0, A C {x1,x2}, and the
assertion follows. [

Before starting an algebraic analysis of the shape operator we need to prove the following
inequality, which requires obtaining information from the Codazzi and Gauss equations.

Lemma 3.2.11. With the notation as above we have 4a® + 4b* 4+ ¢ > 0.

Proof. First, recall that by Lemma , M is of type IV everywhere with the same
principal curvatures. We denote by A and p the real principal curvatures (p might not
exist), and by T\ and T, the corresponding smooth principal curvature distributions. We
also consider smooth vector fields E; and E5 such that SEl = aF|+bFEs, SE, = —bE, +aFs,
(Ey, Ey) = —1, (Ey, E9) =1, (Ey, Ey) = 0.

First of all we claim

inEj S F(T)\ S5 T#), for 1,] € {1, 2} (39)

In order to prove this, note that (E;, E;) is constant, so in particular (Vg E;, E;) = 0. On
the other hand, by the Codazzi equation,

0= <R(E17 EZ)E27 £L> = <(VE1‘§)E2> E2> - <(VE28~)E17 E2>
= (Vp,SEy, Ey) — (SV, By, By) — (V,SE1, Ey) + (SV g, Fy, Es)
- —2b<VE1E1, E2>,

so (Vg Ey, Es) = 0. Similarly, writing the Codazzi equation with (£, Es, Ey) gives
(Vg,Ey, E1) = 0. Altogether this proves (3.9).
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Now let X € I'(7,), with v € {\, u}. By applying the Codazzi equation to (E, X, Es),
(EQ,X, E1)7 (El,X, E11)7 and (EQ,X, EQ), we obtain
(v —a)(Vp,FEy, X) + (Vg E1,X)=(v—a)(Vg,E,X) —b(Vg,Ey, X) =0
(l/ - (I)<VE1E1,X> - b(VElEQ,X> = (l/ — (I)<VE2E2,X> + b(VE2E1,X>
= 20(Vx E1, Es).

From this we get the following relations:

2b(v — a
(Ve B, X) = (Vg Ey, X) = W(vXElaEQ%
op? (3.10)
<VE1E2,X> - —<VE2E1,X> == —m<VXE1,E2>.
Now we use the Gauss equation and (3.9) to get

C

-1 = (R(Ey, Fy)Ey, Ey)
= (R(Ey, E3)Es, Ey) — (SEs, E5)(SEy, Ey) + (SEy, F\)(SE», E;)
= (Vg By, Vi, B1) — (Vi By, Vi, By) — (Vv 5, Ba, By)

+ (Vv B Ea, Br) +a® + 0.

Finally, let {X1,..., X)} be an orthonormal basis of I'(T) & T},) such that SX, = v X,
with v; € {\, u}. Taking into account (3.9)), and writing the previous covariant derivatives

with respect to the previous basis, (3.10]) implies
c

i a’ = b = (Vg By, Vi, By) — (Vg E1, Vi, Ey)
— (Vv B B2, Er) + (Vv 5 B, Br)

k k
Z VEIEQ, szElv > Z<VE1E17Xi><VE2E2’Xi>
i=1 =1
k k
> (Vi B2, Xi)(Vx, B2, Br) + Y (Vi By, Xi)(Vx, By, E1)
=1 =1
= — Z 75 (V. Br, Bp)* <0,
VZ — a

i=1

from where the result follows. ]

Proposition 3.2.12. If ¢ € M is of type IV and p = ©(q), then M is Hopf at p. Let A
and p be the real principal curvatures of M at q (u might not exist). Then the principal
curvatures of M at p are

4e
A, W, and 2a = PERET € (—\/—c, \/—c),

where 2a is the principal curvature associated with the Hopf vector.
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Proof. Let a + ib be the non-real complex eigenvalues of S (b # 0). Let A and p = —c/4\
be the real eigenvalues of S (p might not exist). Assume that S has a type IV matrix
expression and let ey, ey € T, M such that Se1 = aeq +bey, Sey = —bey +aes, (e1,e1) = —1,
(e9,€9) =1, (e1,€9) = 0.

We can assume that v = req + roe3 + u + w, where u € T)(q), w € T,(q), and 71,
ro € R. If there is only one principal curvature A, then p and 7),(¢) do not exist and it
suffices to put w = 0 throughout. We have —1 = (v,v) = —r} 4+ r3 + (u, u) + (w,w) and
Sv = (ria — rab)er + (raa + r1b)es + Au + pw, and hence

JEE = —2((ria — rob)ey + (rea 4+ rib)es + Mu + pw) /v/—c.
Taking into account that (u,u) = —1 +r} —r3 — (w, w) we have
4
1= (Jeb, Jeby = —Z(( a® 4+ 0% + X?)(r] — r3) + dabrirs + (1° — X)) (w, w) — N?),
= (Sv,v) = (A —a)(r? — 72) + 2bryry 4 (pn — N (w, w) — \.

We can view the previous two equations as a linear system in the variables 77 —r3 and ryrs.
The matrix of this system has determinant —8b((a —\)?>+b?)/c # 0, and thus has a unique
solution. In fact,

22 6o 8a\ + 4X? + 4(A + p — 2a) (X — p){w, w)
toe 4((a — X)? 4+ b?)

Then we have

4a? 4+ 4% + ¢+ 4((a — p)* + v*){w, w)

0 < (uyu) = =1+ 7¢ =15 — (w,w) = — A(a— )7 +2)

Hence, as we knew that 4a? +4b% +c > 0 by Lemmal[3.2.11], we must have 4a? +4b> + ¢ = 0,
and thus u =w = 0.

This implies that T\(q) and 7}(q) are orthogonal to v and J&*, and therefore, they
descend to the A and pu eigenspaces of S respectively, and they are orthogonal to J¢.
Again, for dimension reasons, J¢ must be an eigenvector of S and thus M is Hopf at p.
We also have, taking into account 0 = m,,v = r1m.e1 + ram.es and b* = —a® — ¢/4,

SJE = — ((ria® — 2ryab — rib®)mer + (2riab — rob® + roa®)m,es)

2
Vv—c
2
= — (2a(ary — bro)meer + 2a(bry + ary)mees + %T*U) = 2aJ¢.

—c

Lemma [3.2.10 and 4a? + 40> + ¢ = 0 yield a = 2c\/(c—4)?). If |2a| > /—c, then
0 = 4a® + 4b* + ¢ > 4b%, which is impossible because b # 0. Therefore, |2a| < /—c, that
is, the principal curvature associated with the Hopf vector in M is in (—v/—c,v/—c). O
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Corollary 3.2.13. Let M be a connected isoparametric hypersurface in CH™ which lifts to
a type IV hypersurface in Hi" at some point. Then M is an open part of a tube around
a totally geodesic RH™.

Proof. By Lemma 3.2.9, every point of M is of type IV. From Proposition [3.2.12 and the
fact that M has constant principal curvatures, we deduce that M is Hopf and has constant

principal curvatures. From the classification of Hopf hypersurfaces with constant principal
curvatures in CH" (Theorem , it follows that the unique such hypersurface whose
Hopf principal curvature is less than y/—c in absolute value (see Remark is a tube
around a totally geodesic RH™. ]

3.2.5 Variation of the Jordan canonical form

As was pointed out in Remark [3.2.1] there are examples of isoparametric hypersurfaces
in CH™ whose lift to the anti-De Sitter space might have varying Jordan canonical form.
We clarify this a bit more in the following

Proposition 3.2.14. Let M be a connected isoparametric hypersurface in CH", n > 2,
and denote by M = 7~ (M) its lift to the anti-De Sitter space. Then,

(i) If a point q € M is of type IV, then all the points of M are of type IV, and M is an
open part of a tube around a totally geodesic RH™ i CH™.

(i) If a point q € M is of type II, then all the points of M are of type II, and M is an
open part of a horosphere in CH™.

(iii) If there is a point q € M of type III, then there is a neighborhood of ¢ where all points
are of type 111

Proof. The first statement is consequence of Lemma and Corollary [3.2.13]

Assume now that ¢ € M is of type II, and recall that M has constant principal cur-
vatures. Then, according to Proposition M has exactly one principal curvature at
q that is +v/—¢/2. If ¢y € M is another point of type I or III, then propositions
and say that ++/—c/2 cannot be a principal curvature of M at go. Since M is con-
nected we conclude that all the points of M are of type II. But now the classification of
Hopf real hypersurfaces with constant principal curvatures in complex hyperbolic spaces
(Theoremtogether with Remark implies that M is an open part of a horosphere.

Finally, assume that ¢ € M is of type IIL. By definition, the difference between the
algebraic and geometric multiplicities of X is a lower semi-continuous function on M. In
our case, this function can only take the values 0 (at points of type I) and 2 (at points of
type III). Hence we conclude. O
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3.3 Type III hypersurfaces

The aim of this section is to study isoparametric hypersurfaces of the anti-De Sitter space
all of whose points are of type III, and determine the extrinsic geometry of their focal
submanifolds.

Let M be a connected isoparametric real hypersurface in the complex hyperbolic space
CH™, n > 2. We denote by M = 7~'(M) its lift to the anti-De Sitter space. Assume that
there are points in M of type III. According to Proposition , if ¢ € M is a point of
type III, then there is a neighborhood of ¢ where all points are also of type III.

Thus, we assume that we are working on a connected open subset W of M = 7~'(M)
where all points are of type III. We denote by § a unit (spacelike) normal vector field
along W. We know that M has at most two distinct constant principal curvatures (see
Proposition E We call A the principal curvature whose algebraic and geometric mul-
tiplicities do not coincide, and p the other one, if it exists. Note that if there are two
distinct principal curvatures, then c+4Au = 0. We denote by T} and 7T, the corresponding
principal curvature distributions, and choose smooth vector fields E;, Fy, F3 € F(TVV)
satisfying at each point. Recall that T\ = RE; & (T) © RE»).

We also denote my = dim T\ + 2 and m, = dim7},, the algebraic multiplicities of X
and p. Since W is isoparametric and all points are of type III, my and m, are constant
functions, and in principle my > 3, m, > 0. In fact, ;1 might not exist, and in this case,
m,, = 0.

3.3.1 Covariant derivatives of an isoparametric hypersurface

Recall that ¢& denotes a unit normal vector field along W. By V and R we denote
the Levi-Civita connection and curvature tensor of W, and by V and R the Levi-Civita
connection of the anti-De Sitter spacetime, respectively. The aim of this subsection is to
prove the following result:

Proposition 3.3.1. For any W € T(T},) we have Vg, W € T(T,).

We may assume m,, > 0; otherwise, if m,, = 0, this is trivial. We will carry out the proof
in several steps. The first step almost finishes the argument except for an Fj-component.

Lemma 3.3.2. For any W € I'(T},) we have Vg, W € T(RE, & T},).

Proof. First, recall that Vg, W = VW + (SE;, W)¢F = Vi, W, so it suffices to work
with V. Let X € I'(RE3 @ T)). The result follows if we show (Vg W, X) = 0. First of all,
the Codazzi equation and the fact that S is self-adjoint imply:

< (Eb )X 5L> = <(VE1S)W7X> - <(VW5)E1>X>
[L(VElw X> <VE1VV,SX>—A(VWEl,X>+<VWE1,SX>.
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Taking X € I'(T)) in this formula gives 0 = (u—A)(V g, W, X). In particular, (Vg W, Ey) =
0. Using this, (Vw E1, F1) = 0 (because (Ey, Ey) = 0), and putting X = Fj3 in the previous
equation yields
0= ,U<VE1VV, E3> - <VE1M/7 E1 + /\E3> — )\<VwE1, E3> + <VWE1, E1 + )\E3>
= (:U’ - )‘><VE1VV7 E3>7

from where the assertion follows. O]

Thus, in order to conclude the proof of Proposition |3.3.1| it just remains to show that
(Vg,W, Ey) = 0. This will take most of the effort of this subsection. The next lemma is
known (see for example [50, Propostion 2.6]), but we include its proof here for the sake of
completeness.

Lemma 3.3.3. T, is an autoparallel distribution: if Wy, Wy € I'(T},), then Vy, Wy €
I'(7,).

Proof. Let X € I'(RE, ® RE; @ Ty). It suffices to prove that (Vy, Wa, X) = 0. Since S is
self-adjoint and SX is orthogonal to 7T}, the Codazzi equation implies

0 = (R(X, W)Wy, £E) = (VxS)W1, Wa) — ((Vi, S) X, Wy)
== —<VW1$X, W2> + <SVW1X, W2> = <VW1W2,SX - ,uX>

Taking X € T'(7)) in this formula yields 0 = (A — pu)(Vy,Ws, X) = 0. In particular,
(Vw,Wa, E1) = 0. This, and setting X = E3 above yields

0= (Vw, Wy, Ey + \E3 — uEs) = (A — pu)(Vw,Wa, E3).
This equation, and setting X = F5 in the previous equation yields
0= (Vw,Wa, AEy + E3 — uEs) = (A — p){(Vw, Ws, Es),
as we wanted to show. [

In order to finish the proof of Proposition [3.3.1| we use the Gauss equation to get

0 = <R(W, E1>VV, E3> - <R(VI/, El)W7 E3>
S+ (SW, WY (SEy, Es) — (SE1, W)(SW, Es)
= (VwVg, W, E3) = (V5,VwW, E3) — (Vv 5, W, E3) + (Vv wW, E3). (3.11)
Lemma yields Vg, W € I(RE, @ T),). Write Vg, W = (Vg W, Eo)E1 + (Vg,W)r,
accordingly. By Lemma [3.3.3, we have that Vi (Vg W)g, € I'(T,), and thus we get
(Vw(Ve,W)r,, Es) = 0. Since (Ey, E3) = 0, then we deduce the equality

(VwVE,W, Es) = (Ve W, E2)(Vw Ey, Ej).
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From Lemma we have VyW € I'(T,), and thus Lemma implies that
VEIVWW S F(REl D TM)' Hence, <VE1VWVV, E3> =0.

Lemma yields Vp, W € I'(RE; @ T},), which together with lemmas 3.3.2| and [3.3.3]
gives <VVE1WVV7 E3) =0.

Hence, now reads

0 - <VE1W, EQ)(V{/VEl, E3> - <VVWE1W7 E3> (312)
Lemma 3.3.4. Let U € I'(T\ © REy) and W € I'(T,,). Then,
(VwEy, E3) = (A= p)(VE, W, Es), (3.13)
(Vi W, By) = — 2(V W, Es), (3.14)
(VwEL,U) = — (A= pu)(VuW, E3). (3.15)

Proof. The Codazzi equation and Lemma [3.3.2| imply
0 = (R(Ey, W)E3, ") = (V5,S)W, Es) — (VwS)Ei, Es)
= (Ve W, Ey) — (Vg,W,SEy) — XVwE, E») + (VwE1, SEs)
= (/L - /\) <VE1W, E2> + <VWE1, E3>7
from where we get (3.13)).

We also have
0= (R(Es, W)E1, ") = (Vi,S)W, Er) — (VwS)Es, By) = (1 — A)(V e, W, En).
Thus, (Vg,W, E1) = 0. This, the Codazzi equation, and (3.13)) yield
0 = (R(E3,W)Es,&") = (Vi,S)W, E3) — (VwS) Es, E3)
= (1= A(VE,W, E3) = (V,W, Ey) — 2(Vw Ey, E3)
= —(A=pw)(Ve,W, E3) = 2(A — u)(V, W, Ey),

which gives (3.14]).

Now, the Codazzi equation and Lemma [3.3.2] imply
0= (R(E,U)W,") = (Ve,S)UW) = (VuS)Ei, W)
= A =pu)(Ve,U W)= (A= p)(VuE, W) = =(A = u)(VuE,, W),
and thus we get (Vg Ey, W) = 0. This implies
0 = (R(Es, U)W, ) = (Vi S)U W) = (VuS) Es, W)

= (A= )V, U, W) — (Y By, W) — (A — ) (Vi B, W)

= A= (Ve,U W) —(VuEs,W)),
from where we obtain (Vg,W,U) = (VyW, E3). Finally, this equation gives

0= (R(Es, W)U, ") = (Vi, S)W,U) = (VwS)E3,U)
= (= AVe,WU) = (VwELU) = —=(A = p)(VoW, E3) — (Vw E1, U),

which concludes the proof of the lemma. ]
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Now we come back to (3.12)) and finish the proof of Proposition |3.3.1}
Using Lemma we see that Vi Fy € T'(RE; @ RE; @ T)). Take {Uy,...,Ux} an
orthonormal basis of vector fields of the distribution Ty © RE,. Thus, we can write, taking

into account (3.13)) and (3.15]),

k
VwEr = (VwEy, B) By + (VwEy, Es)Es + Y (VwEy, Un)Ui
i=1 k (3.16)
= (VwEy, E)) By + (A= p)(Ve,W, By) Es — (A= 1) Y _(Vo,W, Es)U.

i=1

Hence, using (3.16]), Lemma [3.3.2 (3.13)) and ({3.14]), Equation (3.12]) becomes

0=\ = p)(Ve,W, Es)* = (VwEy, Es)(Ve, W, ESIZ

= (A= Ve, W, B (Vie, W, Es) + (A = 1) Y (Vu, W, Es) (Vi W, Ez)

=A=-p) <3<VE1W7 Ep)* + i(vmw, E3>2).

i=1
Since the addends are all non-negative, we must have
(Ve, W, Ey) =0, and (VyW, E5) =0 for any U € I'(T), © RE,) and W € I'(T},),

which is what was left to finish the proof of Proposition [3.3.1}]

3.3.2 Parallel hypersurfaces and the focal manifold

We continue to denote by W a connected open subset of the Lorentzian isoparametric
hypersurface M = 71 (M) of the anti-De Sitter space HZ" ™ where all points are of type II1,
and let W = W(W) C M. If £ denotes a unit normal vector field along W, then £F is a
unit vector field along W. As a matter of notation, 4, will be the geodesic in H;"*! such
that 4,(0) = ¢ € W and 3,(0) = &, Accordingly, we write 7, = m 0 7, for the geodesic in
CH™ with initial conditions 7,(0) = p = 7(q) and ~,(0) = &,.

Recall from Section [2.1| the definition of the map ®': W — H?"*! given by &t(q) =
equ(t(SL) = 4,(t), where exp is the semi-Riemannian exponential map. For a fixed r,
®"(M) is not necessarily a submanifold of H7"*!, but at least locally and for r small
enough, it is a hypersurface of H?"*1. We also consider the vector field 7 along ®* defined
by n'(q) = F4(t).

The differential of ®' is given by (fiq(X ) = (x(t), where (x is a Jacobi vector field
along 4, with initial conditions (x(0) = X € T,W, and (4 (0) = —SX, where (-)’ stands
for covariant differentiation along 7, (see [6, §8.2]). Since H;"™™' is a space of constant
sectional curvature ¢/4 and 4’ is spacelike, it follows that the Jacobi equation is written as

ACY 4+ e(x = 0.
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Let Px(t) denote the parallel translation of X € T,W along 7,. For v € R, we also
define

gu(t) = cosh <

t\/—_c> B 2v
2 )TV

Solving the Jacobi equation we get

(x(t) = g (t)Px(t), if X € Ti(qg),

t\/2—_c> and h(t) = — 2 smh(

t\/—_c>
Ve .

. h(
sin 5

Cx() = gu(Px (D), if X € T(q),
Crata)(8) = 92 (D) Pryi (1) + h(E) Py (1), (3.17)
Cas(g)(t) = ()P, (g)(t) + ga(t) Pry(g) (1)

Since we are denoting by A the principal curvature whose geometric and algebraic
multiplicities do not coincide, it follows from Proposition that |\| < v—c/2. We
assume, changing the orientation if necessary, that A > 0. Recall that, if a second distinct
principal curvature p exists, then ¢ + 4\ = 0, which implies A\, u # 0. We may choose
r > 0 such that

. tanh(T _C> and p = ¢ coth(r _C>. (3.18)
2 2
Coming back to the differential of ®*, it now follows from ®(X) = (x(¢) and (3.17) that,

if t € [0,7), then ® is an isomorphism for each ¢ € W. This is snnply because Ir Gp >0
in [0,7). Therefore, by making W smaller if necessary, we conclude that W' = ®*(W) is
an equidistant hypersurface to W for each ¢ € [0,7), and 7' can be seen as a unit normal
vector field along W

We now determine the extrinsic geometry of the hypersurface W!. For each ¢ € [0,r) it
is known that the shape operator S* of W' at ®(¢) with respect to 1*(¢) is determined by
the formula St&)in = —(4(t) for each X € T, (again, sce [6, §8.2]). Before using the
explicit expressions of the Jacobi vector fields in terms of the parallel translation obtained
above, we define the functions

A(t) = ?tanh(@c(r —t)), u(t) = ?coth(@c(r —t)),
at) = \/2—_0 Coshg(r 2—0) sech? (@c(r - t)) sinh(t\/;_c>, (3.19)

sech?

(o)

which are positive for each t € [0,7), and the vector fields along ®'
E1(q) = B(t)Pryg) (1),
a(t)®

alt)

. B 1
Ey(q) = T8RP (t) + WPEM)@) - 2ﬁ(t>2PE3(fI)(t>v (3.20)
EY0) = 5505 P (0) + Pesald)
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Now, using and St(l:)in = —(h(t), it follows after some calculations that W' has
principal curvatures A(¢) and p(t) with algebraic multiplicities my and m,,, and the tangent
vectors Ef, EL FEY satisfy at each point (with A(¢) instead of \). Moreover, the
principal curvature spaces of W* are obtained by parallel translation of 7y and T, along the
geodesics 7, that is, Ty = Pr,(t) and T,y = Pr,(t). In particular, W! is isoparametric
for all t € [0,7), and all pomts of Wt are of type III.

Finally, we show that the S'-fiber of 7 is tangent to W for each ¢ € [0, 7). This follows
from the fact that the vertical vector field V satisfies

(7(0), Vi) =0 and = {5, V) = (7, Vy,0V) = 0,

for all ¢, because V' is a Killing vector field (and thus VV is skew-symmetric with respect
to the metric).

We can summarize the information obtained about W so far as follows

Proposition 3.3.5. Ift € [0,7), then the S'-fibers of T are tangent to the parallel hypersur-
face W', which has constant principal curvatures \(t) and pu(t) with algebraic multiplicities
my and m,. All points of W' are of type III, {E}, B, EL} are three tangent vector fields
satisfying at each point (with \(t) instead of X), and the spaces Ty © RES and T,
are obtained by parallel translation of T\ © RE, and T}, along normal geodesics.

Now we focus our attention on ¢ = r. Recall from Proposition [3.2.§ that if A = 0, then
p does not exist and m, = 0. In general, it follows from - that ker <I>’" T,,, and thus,
®" has constant rank 2n — m,,. Hence, making W smaller if necessary, we deduce that W
is an embedded submanifold of Hj 201 of codimension m,, + 1.

Let ¢, € W'. The map 7" ((I~>’")_1(qr) — VLW, g = 17(q), from (2)7(g,) C W to
the unit normal space V;TWT of W' at ¢, is differentiable. By ,

Vxn" = C(r) = csch(
for each X € T),(q) with ¢ € (D) (g). Since T,(q) is the tangent space of (@) Yg,)
at g, it follows that 7" ((®")""(¢,)) is open in vy W'

As we have seen above, (7,(t),V) = 0 for all t and all ¢ € W. Setting t = 7 we get

(n",V) =0 for all ¢. € W', and since n" maps_ W to an open subset of the unit normal
bundle of W' we get that V' is orthogonal to I/W’", and thus tangent to Wr. This implies
that W' contains locally the S'-fiber of the submersion 7: H"™' — CH™.

On the other hand the tangent space T, W' = & JTh(q) ® REy(q) ® RE3(q)) is,
according to , precisely the parallel translatlon of T,\( ) & REy(q) & RE3(q) along
the geodesic 7, for g € W. Again by - VqTWT) © Rn"(q) is obtained by parallel
translation of T),(¢) along 7,.

In order to determine the geometry of the submanifold W', we take ¢ € W and calculate
the shape operator S (@) Of W' at g, = ®"(q) with respect to 7 "(q). It is known that
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S’” CIDT X = —(¢& ()7 for each X € T,W, where (-) denotes orthogonal projection onto

the tangent space TW' .
Taking this into account, and using (3.19) and (3.20)) for ¢ = r, one can see that

S;T( , has exactly one principal curvature A(r) =0, and {E](q), F3(q ) 7(q)} are vectors

satisfying the same relations as in for S;T( o b ¢ (with A =0 in (3-6)). The parallel
translation of T)(¢) © REy(q) along the normal geodesic 7, is in the kernel of S; ()"
In particular it follows that (S;, , ) # 0 and (S” (@) ) = 0 for each ¢ € W. Since 1" (W)
is open in the unit normal bundle of W, the analiticity of (S, )3 with respect to n implies
that (S7)* = 0 for any n € V"
We summarize these results in the following

Proposition 3.3.6. The submanifold W’ has codimension m,, + 1 in H™' and the S*-
fibers of ™ are tangent to it. Moreover, if g. = ®"(q), with ¢ € W, then (I/QTWT) oR7"(q) is
obtained by parallel translation of T,,(q) along a geodesic normal to W through q. For any
n e V;TWT, the shape operator S’,’; 15 3-step nilpotent, and its kernel is obtained by parallel

translation of Tx(q) along a geodesic normal to W through q.

It is worthwhile to emphasize that, although E{(q), E5(q), E%(q) are tangent vectors
at ¢, € W, these depend on ¢ € W. The next subsection is devoted to a more thorough
study of the geometry of the focal submanifold W".

3.3.3 Algebraic study of the focal submanifold

Let ¢, € W’. The main idea in what follows is to prove Proposition m, which implies
that a certain vector does not depend on the choice of ¢ € (®")~(g,). This vector will be
fundamental to determine the geometry of ("), which is the aim of this subsection. We
continue using the notation introduced in Section [3.3.2]

Proposition 3.3.7. Let ¢, € W’. Then, the map

(@) Hg) = T, W, g — E7(q) = V,,,

1

Voo B3 (@)
is constant in (") (qy).

Proof. Let q € (@) (q,) and let (, € l/qTVV’;@ Rn"(q) be a unit vector. We calculate
S, E7(q). Let o be an integral curve of £y in W and extend (,, to a smooth vector field ¢
along s — ®"(c(s)) in such a way that (Cor(o(s): ngr(g(s))) = 0. Then, there exists a unique
vector field Y € I'(0™T),) along o tangent to T}, such that Py,  (r) = (gr (s for all s by
Proposition [3.3.6, We define the geodesic variation F(s,t) = exp,(,)(t¥)), where & is

the unit normal vector of W that was fixed at the beginning of Subsection 3.3.2L We use
Proposition twice, and Proposition applied to W', t € [0,7), to conclude that
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Py, ., (t) € Tuw(F(s,t)) and @Ei(g(s Py, ., (t) € Tu(t)(F(s,t)). By Proposition [3.3.5 we
have that the principal curvature distribution of W* associated with u(t) at F(s,t) is the
parallel translation of T},(c(s)) along a normal geodesic, that is, T, (F(s,t)) = Pr,(o(s)) (t)-
By continuity we get Vg (s(s) Py, (1) € Pr(o(s(r). Combining this with ()
Py,,,(r) and Proposition (3.3.6| yields VE;(U(S))C € (V@T(G(S))W”) & R ). Therefore,

St E(a) = =(Vieg)' =

as we wanted to calculate.

Since (,, € I/qTWT © Rn"(¢q) was arbitrary and we already had Snr(q)E{ (q) = 0 by
Proposition and , we conclude that S’;E{ (q) =0, for any n € l/quT. Since ¢ is
also arbitrary, we get

S;E{(q) =0, for any n € v, W', and any ¢ € (®")"!(g,). (3.21)

Now take another point ¢ € (®")~'(g.). According to Proposition we can write
E7(qQ) = a1E7(q) + axE5(q) + asEL(q) + u, with a; € R, and u € (kerS o) © RE3(q).

By (3.21)) we have

0=38E1(4) = axE5(q) + as By (q).

Thus, a; = az = 0. On the other hand, since E7(q) is a null vector, we also obtain
0= (E7(q), F{(q)) = (u,u), and as u is spacelike, we get v = 0. Thus, E7(q) = a1E](q),
which easily implies the result. ]

The submanifold W* contains locally the S'-fiber of the semi-Riemannian submersion
7. H™' — CH™ as we have seen in propositions [3.3.5 and [3.3.6, If we denote W* =
(W), t € [0,7], and consider the map ®': W — CH", p — ®%(p) = exp,(t&,), then it
follows that ®*(m(W)) = n(®*(W)), that is, (W) = 7(W?'), or in other words, the Hopf
map commutes with the parallel displacement map.

Coming back to the study of the geometry of the submanifold W", we write Vi, =
$1(q) 7 (q) + 52(0) E5(q) + 55(0) E3(q) + . for s,(q) € R and u, € T, W' & (RE](q) &
REZ(q) & RES(q)) = (kerST ) © RE3(q). Arguing as in (3-7), we can assume u, = 0.
Note that the procedure at the beginning of the proof of Proposition [3.2.8] which leads
to does not change the vector Ej(q). Thus, —1 = (V,V) = 2sys5 + s3, which
immediately implies s1,$2 # 0. We can assume, changing the signs of F;(q), Ea(q) and
Es(q), that so > 0.

If ¢ is now a unit normal vector field of W™, we write J¢ = P + F§E, where P€ is the
orthogonal projection of J¢ onto TW™ and F€ is the orthogonal projection of J¢ onto vW".
We also write J&& = P& 4 FeL for W', accordingly. Notice that P(£F) = (P¢)% and
F(&h) = (F&)E. From we get SgLV = —(Vy€H)T = —(y/=¢/2)PEX. Hence, taking
¢ € D(vW") such that £ = n"(q) we get

Vo
2

0=— (PEE VY = (S1V, V) = (s5E35(q) + s3E7(q), V) = 25553,
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which implies s3 = 0. We may also write

2 = 282
——S  V+Fn =———-=FE(q)+ Fn". 3.22
Thus, 1 = (Jn",Jn") = —(4/c)s2 + (Fn", Fn"), and consequently we can choose a real
number ¢(q) € (0,7/2], such that

Jn" =

s2(q) = Y=C sin(p(q)). (' (@), P (@) = cos((a).

If §¢ denotes the shape operator of W" with respect to § € [(vW"), then (3.1]) implies
V—c

2
The vectors in (ker S;]}(q)) ©RE3(q) are orthogonal to Jn"(q) and V,, by (3.22)), and by the
previous equation, project bijectively onto ker ST "t For dimension reasons, there are
only two eigenvectors left to determine S () completely.

In view of Proposition [3.3.7 we can define

1 1

Zr(ar) = Tx (——TET(q) — VT> =
) Vo Bi()) ") (Vi B ()
Note that this vector field is smooth because E! is smooth along the map ®! by the smooth
dependence on the initial conditions of solutions to an ordinary differential equation. For
the subsequent calculations, we consider { € vx(,, ) W' such that its lift to v, W' satisfies

¢ =1n"(q). Thus we can write P¢E = Pn”. We have

1
L

Ly = —mET(Q) — Vi, Pe" = —sin(p(q)) F5(q)-

These two vectors are tangent to W' and orthogonal to V. Thus they are mapped isomet-
rically to Z and P& respectively; in particular, ||P€|| = sin(p(q)). Furthermore, by
we also have (ZL, Ji"(q)) = 0 for any ¢ € (®")7'(g,). Since 7"(($")7*(g,)) is open in
I/;TWT, we deduce that Z% is orthogonal to J I/W’", and hence, Z is orthogonal to JvW".
Thus, we have that TW"™ © PvW" is the maximal complex distribution of TW" and Z is
tangent to it.

Using the above formulas we obtain

N

Se. X = (St X)) + (JEX, XMV and S{X =mS[ X", for each X € TW".

m.E}(q), for g € (")} (q,).

J=¢

SiZ =g, St 2" = —7,, SV = TW*QTPgL =5 P¢,
5 . . . —c
SiPE = T, S PEY = —sin(p())Tug, B (q) = sin(p(q))s2(q)Z = 5 sin*(p(q)) Z.
Therefore, by analiticity of S with respect to ¢,
., V—c V—c

for all £, n € vW". We can summarize the results obtained so far in
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Proposition 3.3.8. The vector field Z is tangent to the maximal complex distribution of
TW". The second fundamental form of W' is determined by the trivial symmetric bilinear
extension of

211(Z, PE) = —v/=¢ (JPE)",
for any & € VW,

3.4 Rigidity of the focal submanifold

In this section we prove that a submanifold of CH™ under the conditions of Proposition|3.3.8
is congruent to an open part of a submanifold W), defined in Subsection [2.5.2] The precise
statement is as follows.

Theorem 3.4.1. Let M be a connected (2n — k)-dimensional submanifold of CH™, n > 2.
Assume that there exists a smooth unit vector field Z tangent to the maximal complex
distribution of M such that the second fundamental form II of M is given by the trivial
symmetric bilinear extension of

211(Z, PE) = —/—c(JPE)*, (3.23)

for & € vM, where P¢ is the tangential component of JE, and (-)* denotes orthogonal
projection onto the normal space vM. Then, a point o € M and B, = —JZ, determine an
Twasawa decomposition su(l,n) = €D a®d g, D goo of the Lie algebra of the isometry group
of CH™, such that M is congruent to an open part of the minimal submanifold Wy,, where
w=T,M6 (RB,®RZ,) C g..

Before beginning the proof, we start with a more geometric construction of the sub-
manifolds W,,. This will make use of several Lie theoretic concepts that were introduced
in Subsection [2.5.2] See [19] for further details.

Proposition 3.4.2. Letk € {1,...,n—1}, fiz a totally geodesic CH"* in CH™ and points
o€ CH"* and v € CH" *(0). Let KAN be the Iwasawa decomposition of SU(1,n)
with respect to o and z, and let H be the subgroup of AN that acts simply transitively
on CH™*. Now, let v be a proper subspace of v,CH" % such that v N Jo = 0. Left
translation of v by H to all points of CH" % determines a subbundle G of the normal
bundle vCH"*. At each point p € CH"* attach the horocycles determined by x and the
linear lines in *0,. The resulting subset M of CH" 1is congruent to the submanifold W,

where to = (6 O (a® g2)) DY C ga-

Proof. Let W, be the minimal submanifold of CH™ constructed from the Iwasawa decom-
position KAN associated with o and z and from 10 = (§ S (a @ gaa)) @ b, as described
in Subsection [2.5.2] We recall that T,CH™ is now identified with a @ n and we denote by
! = g, © 1o the orthogonal complement of tv in g,. We have that the Lie algebra of H
is 6 = 5, © Prot, with s, = a ® 10 @ goa, and where, as usual, P¢ denotes the orthogonal
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projection of J¢ on to for each ¢ € rot. Since v N Jv = 0, we have that 6 is the maximal
complex subspace of §.

Let p € Wy,. By definition, there exists an isometry s € Sy, with p = s(0). There is
a unique vector X in the Lie algebra s, of S, such that s = Exp,.,(X). We can write
X=aB4+U+W+zZ witha, z € R, U € 6@(u@gga), and W € v. Since U and W
are complex-orthogonal, we get [U, W] = 0 by from Section . Using this notation
we can define the elements ¢ = Exp,g,(p(a/2)W) and h = Expg,(aB +U +22) € H.

Using ([2.2) we obtain,

gh = Exp,ap <p<%> W)  Expyon(aB + U + 27) = Expyey(aB + U + W + 22) = s.

By construction, h(o) € CH"* and s(o) = g(h(0)) is in the horocycle through h(o),
tangent to RW, and with center z at infinity. Hence, p = s(0) € M and we conclude that
Ww C M.

Now we prove the converse. Let o be a horocycle such that ¢(0) = o, 0/(0) = U € v,
|U|| =1, and 2(V,0”)(0) = /—c B. We show that o is contained in W,,. First, using (2.3)),
we get VgB = VU =0, 2VyB = —/—cU and 2VyU = y/—c B. Hence, it follows that
the distribution generated by B and U is autoparallel and its integral submanifolds are
totally geodesic real hyperbolic spaces RH? of curvature c¢/4. Now, we denote by 7 an
integral curve of the left-invariant vector field U such that 7(0) = o. Using we get
VuVuU + (VyU,VyU)U = 0. Thus, 7 is a cycle in a totally geodesic RH? of curvature
c¢/4, and since 2(V7')(0) = \/—cB, it follows that 7 is a horocycle determined by o, U
and the point at infinity x. By uniqueness of solutions to ordinary differential equations
we get 7 = o, and thus o is contained in W,.

If o is an arbitrary horocycle determined by initial conditions p € CH"*, U, € T,
and \/—c B, /2, then there is a unique h € H such that p = h(o). Since h is an isometry
of CH™, it is easy to see that h™! o o satisfies the conditions of horocycle in the previous
paragraph. Hence, h™! o ¢ is contained in W, from where it follows that o is contained
in W, because h € H C S,. This shows that M C W,, and finishes the proof of the
proposition. O]

The rest of this section is devoted to the proof of the rigidity result given by Theo-
rem [3.4.1] In what follows, M will denote a submanifold of CH™ under the assumptions
of Theorem [3.4.11

3.4.1 The structure of the normal bundle

For ¢ € vM recall that J§ = P& + F§E, where P¢ and F¢ denote the orthogonal
projections of J¢ onto T'M and v M respectively. The maps P: vM — TM and F': vM —
vM are vector bundle homomorphisms. We will use some of their properties in the rest of
this chapter. We start with
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Lemma 3.4.3. The endomorphism F' of vM is parallel with respect to the normal connec-
tion of M, that is, V*F = 0.

Proof. Let £, n e T'(wM) and X € T'(T'M). Using (3.23]) we get

11(2.P9). 1) = ~ Y2 (1pPe ) = VP, Py = =Y (e 1w = (11(2, Pr). ).

This relation yields (II(X, P¢),n) = (II(X, Pn),&) using the fact that II is obtained by
the trivial symmetric bilinear extension of . Since CH™ is Kahler,
(VXF&n) = (VxJEn) — (Vx P& n) = —(Vx& P+ F) — (II(X, P€),n)
= (II(X, Pn),&) — (Vx& Fn) — (II(X, P¢), 1) = —(Vx&, Jn)
= (FVx& ).
Hence, (V% F)§ = VxFE — FV%E = 0, as we wanted to show. O

For each p € M, the normal space v, M is a real vector subspace of the complex vector
space T,CH". According to Section , v, M has a decomposition as a sum of subspaces
of constant Kahler angle. These angles are called the principal Kéahler angles of v, M. We
show that they do not depend on p € M.

Proposition 3.4.4. The principal Kahler angles of vM and their multiplicities are con-
stant along M .

Proof. Let p, ¢ € M be two arbitrary points, and let o: [0,1] — M be a smooth curve
in M such that 0(0) = p and o(1) = q. We take a basis {i,...,&} of principal Kéahler
vectors, that is, an orthonormal basis of v, M such that (F&(p), FE&;(p)) = cos?(¢i(p))diz,
for i, j € {1,...,k} (see Section . We extend this basis to a V+-parallel orthonormal
basis {&1(t), ..., &(t)} of smooth vector fields along o. Since F is parallel by Lemma [3.4.3]
it follows that (F'¢;, F'§;) is constant along o. Therefore, {&(1),...,&(1)} is also a basis of
principal Kahler vectors of v,M, and it follows that the principal Kahler angles and their
multiplicities of vM at p and ¢ coincide. ]

Let @ be the set of constant principal Kahler angles of M. As in Section [2.4] we write
vpM = @, ;(p), where each 207 (p) has constant Kéhler angle ¢. Since the principal
Kahler angles are constant, Qﬂé is a smooth vector subbundle of vM. If g is non-zero
we can simplify matters because there is a reduction of codimension.

Proposition 3.4.5. If Wy # 0 there exists a totally geodesic CH® in CH™ containing M
where 0 s no longer a principal Kdihler angle of M in CH¥, the normal bundle of M is
obtained by inclusion, and the second fundamental form is obtained by restriction.

Proof. We first show that each distribution Qﬁj is parallel with respect to the normal
connection. Let ¢ € ®, £ € ['(W;) and X € I'(TM). As we argued in Section , we
have F2¢ = — cos?(p)€. Since VEF = 0 by Lemma [3.4.3, we get

F?Vx§ = VxF¢ = Vx(—cos’(p)§) = — cos®(p) V&,
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and again from the results in Section [2.4]it follows that V& € I'(20;;). Therefore
Loyl 1
V-, CcW, for each ¢ € D. (3.24)

Recall from Sectionthat we can decompose TM = Qo ®(Byea (0}2W,,) With CA =
W, @ W, and dim W, = dim W, for all ¢ € @\ {0}. Now we consider the bundle

f:TM@( & w;) :mma(@ @m@)

ped\{0} pe\{0}

along M. Then, F is a complex vector bundle and, at a point p € M, F, is the tangent
space of a totally geodesic complex hyperbolic space CH n—my my = dime 203, in CH™.
Using (3.23) and (3.24) we get Vx¢ = V%¢ for each ¢ € I'(F) and where V7 denotes the
connection on F induced from V. Hence, by [90, Theorem 1 (with i = 0 in the notation of
this paper)] we conclude that M is contained in the totally geodesic CH n=m5 mentioned
above. [

In other words, what Proposition [3.4.5| states is that we can, and we will, assume from
now on that Qg = 0. Otherwise, we just take a smaller complex hyperbolic space where
this condition is fulfilled.

3.4.2 Proof of Theorem (3.4.1

In order to prove Theorem |3.4.1| we use the construction of W, as described in Propo-
sition [3.4.2] Part of the proof goes along the lines of the rigidity result in [10], although
the argument here is more involved.

As we have just seen in Subsection [3.4.1] we may assume that the normal bundle v M
does not contain a non-zero complex subbundle. We decompose the tangent bundle 7'M
of M orthogonally into TM = € ® 9, where € is the maximal complex subbundle of T'M.
Thus, ® N JD = 0. For each £ € T'(vM) we have J§ = P{ + F¢, where PE € I'(D) and
F¢eT'(vM). Since ® = PvM, then we argued in Section [2.4] that © has the same Ké&hler
angles, with the same multiplicities as vM (note that 0 is not a Kéhler angle of vM by
the assumption we have made after Subsection . Since the principal Kahler angles
are never 0, it follows that P: vM — ® is an isomorphism of vector bundles.

Lemma 3.4.6. The distribution € is autoparallel and each integral submanifold is an open
part of a totally geodesic complex hyperbolic space CH™ % in CH™.

Proof. For all U,V € T'(€) and ¢ € T'(vM) we have, using (3.23) and V.J = 0,

Thus € is autoparallel and as € is a complex subbundle of complex rank n — k, each of its
integral manifolds is an open part of a totally geodesic CH"* in CH™. ]
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From now on we fix o € M and let L, be the leaf of € through o, which is an open part
of a totally geodesic CH" % in CH™ by Lemma We have

Lemma 3.4.7. Ifv: I — L, is a curve with v(0) = o then the normal spaces of M along
v are uniquely determined by the differential equation

V. +—c(y, Z)Jn =0 (3.25)
forn e D'(y*vL,), where v*vL, is the bundle of vectors along v that are orthogonal to L,.
Proof. Let X € I'(T'M) and & € I'(vM). Using ([3.23) we get

_ X P —
(V6 X) = (10,20, = (7. 2) (A 1(2,P9). &) = Yo 2)(Pe ),
which implies
V6 = =, 2pe+ Ve, (3.20)

where V+ is the normal connection of M. Now, we take a vector field X along v with
Xo € v,M and satisfying (3.25). We write X = U + Jn + &, where we have U € T'(y*€),
&, nel(y'vM) and Uy = ny = 0. Using (3.26) and taking into account that V.J = 0, we
obtain

0=2V,X +v—c(y,2)JX
=2V U + 2JV.m + 2V €+ —=c(y, 2)JU + NV —=cl, Z) *n + v/ —c(y, Z) J&
=2V, U +v=c(y,Z2)JU + P (2VEn + vV/=c(y, Z) Fn)
+2VEE +V=cly, Z)FE + F (2Vin + V=c(y, Z)Fn) .

We have that 2V, U + /—c(y/, Z)JU is tangent to € since € is a complex autoparal-
lel distribution. Thus, it follows that 2V, U + /—c(y/, Z)JU = 0. Since Uy = 0, the
uniqueness of solutions to ordinary differential equations implies U; = 0 for all ¢, and thus
X € I'(v*vL,). Similarly, the component tangent to PvM in the previous equation yields
2V$77 +v/—c(,Z)Fn = 0 and since 7y = 0 we have 7, = 0 for any ¢ by uniqueness of
solution. Hence, X; € v,4) M for all ¢, which proves our assertion. O

We define B = —-JZ.

The point 0 € M and the tangent vector B, uniquely determine a point at infinity
x € CH™(00) and thus, a corresponding Iwasawa decomposition tGadn =D ad g, D gon
of the isometry group of CH™, where a = RB, and gs, = RZ,. We define the subspace
w=T,Mc (RB,®RZ,) C g, and consider the submanifold W,, defined by this Iwasawa
decomposition and . As we have already seen, the integral submanifold £, is an open
part of a totally geodesic CH" ¥ contained in CH™ that is tangent to the maximal complex
distribution of W, at 0. Since by Lemma the normal bundle is uniquely determined
by the ordinary differential equation , and both M and W, satisfy the hypotheses
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of Theorem it follows that v, M = v,W,, for each p € L,. As a consequence, v,M is
obtained by left translation of v,M by the subgroup of AN that acts simply transitively
on L,. In view of Proposition [3.4.2] it only remains to prove that for each p € L, the
horocycles determined by the point at infinity « and the lines of Py, M are locally contained
in M.

Before continuing our argument we need to calculate certain covariant derivatives of
some vector fields.

Lemma 3.4.8. Let X € I'(TM 6 RB) and { € I'(vM). Then

VxB = F \/2_<X AVA (3.27)
VpP¢ = PV 5 (3.28)
VpePE = guﬂg, P&)B + PVpE. (3.29)

Proof. Let n € T'(vM) be a local unit vector field. Using (3.23) we obtain (VxB,n) =
(II(X,B),n) = 0. Moreover, (VxB, B) = 0. Next, (3.23) yields

—2(X, Po)(II(Pn, Z),n)/(Pn, Pn) = —v/=c(X, Pn).
Now, let Y € I'(€ & RB) and assume that X € I'(€ © RB). For any £ € I'(vM) we
have (Vp, JY, PE) = (II(Pn,Y),€) — (I1(Pn, JY), FE) = /=Y, Z){Py, P€)/2. This, the

explicit expression for the curvature tensor R of CH", the Codazzi equation, ([3.23)) and
VJ =0 imply

(3.30)

= —4(lI(Pn,VxJY),n) +4(II(X,Vp,JY),n)
= —A(VxJY, Z)II(Pn, Z),n) + 4X, Z){II(Z,V p,JY),n)
= 2v/=c(Pn, Pn)(VxB,Y) — (Pn, Pn)(X, Z){(Z,Y).

Thus, if X € I'(¢ © RB) we have, taking into account VxB € I'(€), that 2VxB =
—V=c(X+(X,2)2).

Next we assume that X € I'(PvM) and we put X = P¢ with £ € I'(vM). Then, we
have (Vv P&, Z) = —(NyyZ,J6 — FE) = —(II(JY, B), &) + (II(JY, Z), F¢) = 0. This,
together with the expression for R, the Codazzi equation, (3.23) and V.J = 0 yields

0= 2(R(PS, JY)PE,§) = 2(VpI)(JY, P§) — (Vi I1)(P§, PS), €)
= —2(I[(VpeJY, PE), &) + 4 (V vy PE, P¢), €)
= —2VpeJY, Z)(U(Z, P§), &) + 4V y PE, Z2){I1(Z, PE), )
= —V=c(P§, PEN(Vpe Y, Z) = /=c(P§, PE)(VpeB.Y).
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Hence (VpeB,Y) = 0, and using (3.30) we get 2VpeB = —/—c P, Altogether we

get (3.27).

Now we prove (3.28). Let £,¢ € I'(vM) and Y € T(€). As € is autoparallel, we
have (VP Y) = 0. Using we get (VpP¢ () = (II(B, P§),¢) = 0. Moreover,
using , we obtain S¢B = 0 and thus

= (8eB, JP() — (V€ JPC) = (PV 3¢, PC).
This implies .
Finally, if Y € ['(€), using again (3.23)) we have
2(VpePE,Y) = —2(VpeY, JE — F¢)
=2(JY, Z)(II(P¢, Z),&) + 2(Y, Z)(II(P§, Z), F§)
= (P&, PEYIZ,Y) — =Y, Z)(J P, F€)

where we have used (JPE, FE) = (JPE, JE — PE) = (P, &) — (JPE,PE) = 0. Obvi-
ously, implies (Vpe PE, ) = (II(PE, P€),¢) = 0. Using we obtain

(VpePE, PC) = (Vpe(J — F)E,P() = —(Vpel, JPC) 4 (Vpe PC, FE)
= (8¢ PE, JPC) — (Vpel, JPC) = (PV &, PC).

Altogether this yields (3.29)). O

The next lemma basically says that the point at infinity determined by B does not
depend on the point o € M that was chosen.

Lemma 3.4.9. The vector field B is a geodesic vector field and all its integral curves are
pieces of geodesics in CH™ converging to the point x € CH"(o00).

Proof. Since B € I'(€) we have Vg B € I'(€). Clearly, (VpB, B) = 0. Let X € I(CORB)
and 1 € I'(vM) be a local unit normal vector field. Using the expression for R, the Codazzi
equation, (3.23) and V.J = 0 we obtain

0= 2(R(B, Pn)JX,n) = 2((VEII)(Pn, JX) — (V$,1)(B, JX), 1)
= —2(II(Pn,VJX),n) = -2(VpJX, Z)(II(Pn,Z),n)
= V=c(JPn,n)(VpJX,Z) = /—c(Pn, Pn)(VsB, X).

This yields (VpB, X) = 0 and hence VB = 0. This implies that the integral curves of B
are geodesics in CH™.

Now let X € I'(T'M & RB) be a unit vector field, and v an integral curve of X. We
define the geodesic variation F(s,t) = exp, ) (tBy(s)), where Fi(t) = F(s,t) are integral
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curves of B. We prove that d(F'(s1,t), F(s2,t)) tends to 0 as ¢t goes to infinity, where d
stands for the Riemannian distance function of CH™.
The transversal vector field of F', ((s,t) = (0F/0s)(s,t), is a Jacobi field along each Fj
satisfying
0%¢

Aoz +eC+3c((, 2)Z =0, C(s,0) = Xo(s),

9¢

5(8’0) =Vx,,B.

If Px denotes V-parallel translation of X along Fj, one can directly show that
((s,t) = eV 2Py (s,t) + (e — eV (Xpy o), Zry0)) Zra 1)

where we have used (3.27) and the fact that Z is a parallel vector field along Fj since
VBewonZ = IV, B =0. It is easy to see that lim; ,[[((s,?)|| = 0. Using the mean
value theorem of integral calculus we get

s2

P (s1,0), F(s2,) < [ 150l ds = [0l ds = (52 = 5028 0.

S1 S1

for some s, € (s1,$2). Therefore the integral curves of B are geodesics converging to the
point x € CH™(00) at infinity. O

Now take p € £, and let {, € v,M be a unit vector. As we argued before, the
theorem will follow if we prove that the horocycle determined by P&, /|| P&, | and the point
x € CH™(o0) is locally contained in M. To this end we will construct a local unit vector
field £ € I'(v M) such that the aforementioned horocycle is an integral curve of P¢/||P£||.

Let v: I — M be a curve satisfying the initial value problem

Vo = LE00B, (0 = Pa/IPg (331

Lemma 3.4.10. A curve v satisfying (3.31)) is parametrized by arc length and remains
tangent to PvM.

Proof. Write v/ = aB + xZ + X + Pn for certain differentiable functions a,z: I — R, and
vector fields X € I'(v*(€ e (RB®RZ))) and n € I'(yv*vM). As Z = JB, the definition of

v and ([3.27)) show

dx d

1 1
= = E(v’,Z} = (VY. Z)+(VyZ,y") =/ —c(xB — §JX — §JP77,7'> =+/—cax.

Since z(0) = 0, the uniqueness of solutions to ordinary differential equations gives z(t) = 0
for all ¢.

Let Y € I(RB®PvM) and ¢ € I'(vM). Then, (3.23) yields (Vy X, ¢) = (II(Y, X),() =
0 and (Vy X, J() = —(II(Y,JX),() = 0. Since VyB € T'(PvM) by (3.27), we have
(VyX,B) = —(VyB,X) = 0. Moreover, we have also the equality 2(VxX,B) =
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—2(VxB,X) = v—c(X,X) and (VxX,Pn) = —(II(X,JX),n) — (II(X,X),Fn) = 0.
Hence, using also the definition of the curve =,

CUXX) = S0 X) = (Vo X) + (VX )
=a(V,X,B)+(V, X, X)+ (V, X, Pn) = (V, X, X)+a(VxX,B)
= (V. X, X) + */2_<X X) = %%(X X)+ a\/_p( X).

This gives (d/dt)(X, X) = av/—c(X, X). Since (X(0), X(0)) =0 we get (X (t),X(t)) =0
for all £, and thus X = 0.
The definition of v gives

d / ! / ! ! /
EW,M =2V, ") = av—c(v, 7).

Using again the definition of ~, the fact that B is geodesic and (3.27)), we get

= L0 B) = (V. B) + (V0B )
= YE ()~ (Pny) = Y2 () — (P, P)).
Finally, from and we obtain
575<P’7’ P) = ;iw , Pn) = (Vo P) + (Vo P, o)
= Py, Pa) + alPV . Pa) + (P by, )
= a\/_<P ,Pn) + (V. Py, Pr) = GT\/__C<PW,P77> + %%UDTLPT]%
and thus J
77 (P, Pn) = av/=c(Pn, Pn).
If we define b = (y/,+) and h = (Pn, Pn), we get the initial value problem:
a = \/;_C(b— h), V =+/—cab, K =+/—cah, a(0)=0, b0)=~h(0)=1.

Again, by uniqueness of solution we deduce a(t) = 0, b(t) = h(t) = 1 for all £. Hence,
(v (t),~'(t)) =1 and v/(t) € PvM for all t as we wanted to show. O

Let us assume then that v: I — M is a curve satisfying equation . Since the
map P: vM — ® = PvM is an isomorphism of vector bundles, there exists a smooth unit
normal vector field 1 of M in a neighborhood of p such that 7/(t) = Pny) /|| Pnyw | for all
sufficiently small . Since B is a unit vector field and ~ is orthogonal to B, we can find
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a hypersurface A/ in M containing ~ and transversal to B in a small neighborhood of p.
The restriction of 7 to this hypersurface N is a smooth unit normal vector field along N.
We define £ to be the unit normal vector field on a neighborhood of p such that & = n
on N, and such that ¢ is obtained by V+-parallel translation along the integral curves of
B. It follows that £ is smooth by the smooth dependence on initial conditions of ordinary
differential equations, and by deﬁnltlon V& = O

The definition of £ and equations (|3 and (3.28) imply 2[B, P¢] = 2V P{—2V peB =
v/ —c P¢. Thus, the distribution generated by B and P¢ is integrable. We denote by U the
integral submanifold through p.

Lemma 3.4.11. We have:
(i) The norm of P& is constant along the integral curves of P&, that is, PE(||PE|) =
(i) VpePE = V=e(PE, PE)B

(iii) The submanifold U is an open part of a totally geodesic RH?* in CH™.

Proof. We calculate V peP§. Equation (3.23)) implies that S, B = 0 for all € vM. Then,
for any n,( € vM the Ricci equation of M yields

(R*(B, P&)n, ) = (R(B, P&, ¢) + (S, S B, P€) = 0,

where R% denotes the curvature tensor of the normal connection V+. This, 2[B, P¢] =

v —c P&, and the definition of ¢ give

e
0= RH(B, PO = VEVEE = VEVEE = Vi pgé = VEVheE — LoV,

and therefore,
2VEVpel = V—cVpL. (3.32)

By definition of £, along v we have 7/(t) = P&« /|| P& )|, and thus, along v we get

VrePE = Vipgr (IPEIY) = IPEN(+(IPEN)Y + 1 PEIT)

— Y (IPelPE + Y

(P, PE)B

Comparing this equation above with (3.29) yields PV pe§ = 7' ([[P€]]) P€, and since we have
that P: vM — © = PvM is an isomorphism of vector bundles we get V£ = 7/ (|| PE|))€.
Finally, (¢,€) = 1 implies (V5.&, &) = 0. Thus, 7/(||P€]|) = 0, which is our first assertion,

and hence V5 pe& = 0 along 7.
Now, let a be an integral curve of B such that a(0) = ~(s). We have just shown that
Vﬁff lato) = V}%f L = 0. Next, from (3.32) and since §,B = 0 for each n € vM, we get

Q?Q/Vﬁgf ¢ = QVIL;VIL%S ‘a(t) — QSVIL%EB ‘a(t) = v —C v]%gf |a<t).
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Hence, by the uniqueness of solutions to differential equations we get Vfgf oy = 0 for
all ¢, and consequently 2V pe P€ = /—c (P, PE) B along the integral submanifold ¢. This
is our second assertion.

Since B is a geodesic vector field we have VB = 0. By we have 2VpB =
—+v/—c P¢, and by definition of £ and we get VpP¢ = PV 3¢ = 0. Together with (ii)
we deduce that U is an open part of a totally geodesic RH? C CH™. ]

We define P¢ = P¢/||P¢| along Y. From Lemma [3.4.11| we obtain 2V p. P& = y/—c B.
Using this and (3.27)) we obtain

v—c
2

C

1(B.B)PE=10.

VpeVpe PE+ (Vpe P,V p PE) PE = VpeB —
Therefore, the integral curves of P¢ are horocycles contained in U with center x € CH"(00),
where U is an open part of a totally geodesic real hyperbolic plane in CH™. The rigid-
ity of totally geodesic submanifolds of Riemannian manifolds (see e.g. [6, p. 230]), and of
horocycles in real hyperbolic planes (see e.g. [0, pp. 24-26]), together with the construction
method described in Proposition |3.4.2] imply that a neighborhood of any o in M is congru-
ent to an open part of a submanifold W, determined by the point 0 € CH", x € CH"(o0)
and v =T,M & (RB, ®RZ,).

The argument above was local, so we still need to prove that the connected submanifold
M is contained in the W, stated above. Since W, is an orbit of a Lie group action on
an analytic manifold, it follows that W, is analytic and complete. Since M is a smooth
minimal submanifold in an analytic Riemannian manifold, it is well known that M is also
an analytic submanifold of CH™. As an open neighborhood of M is contained in W, it
follows that M is an open part of the submanifold W,,.

3.5 Proofs of Theorem [3.0.4] and Theorem |3.0.9

We are now ready to summarize our arguments and conclude the proofs of Theorem
and Theorem [3.0.9| of this chapter.

Proof of Theorem[3.0.4. Assume that M is a connected isoparametric hypersurface in the
complex hyperbolic space CH", n > 2. Then, its lift to the anti-De Sitter space M =
71 (M) is also an isoparametric hypersurface. If at some point the shape operator of M
is of type II or of type IV, then by Proposition we have that M is an open part
of a horosphere or a tube around a totally geodesic real hyperbolic space RH™ in CH",
respectively. This corresponds to cases and of Theorem . If all points of M
are of type I, then Remark implies that M is an open part of a tube around a totally
geodesic CH* in CH™ (Theorem )

Finally, if there is a point ¢ € M of type III, then there is a neighborhood W of ¢ where
all points are of type III by Proposition Then, by the results of Section [3.3] there
is > 0 such that the parallel displacement at distance r, that is, W' = ®"(w(W)), is a
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submanifold of CH™ such that its second fundamental form is given by the trivial symmetric
bilinear extension of 2II(Z, P€) = —/—c(JP&)*, € € vW", where Z is a vector field
tangent to the maximal complex distribution of W, and (-)* denotes orthogonal projection
on vW". Using Theorem |3.4.1| we conclude that there exists an Iwasawa decomposition
ED ad g, P goo of the Lie algebra of the isometry group of CH™ and a subspace tv of g,,
such that W is an open part of W,.

Therefore, we have proved that there is an open subset of M that is an open part of a
tube of radius r around the submanifold W,,. Since both M and the tubes around W,, are
smooth hypersurfaces with constant mean curvature, they are real analytic hypersurfaces
of CH™. Thus, we conclude that M is an open part of a tube of radius r around W,,. Note
that W, is minimal, as shown in [40], and ruled by totally geodesic complex hyperbolic
subspaces, as follows from Lemma |3.4.6

If v is a hyperplane, W, is denoted by W?"~! and we get one of the examples in
Theorem (iv). In this case we can have r = 0 and we get exactly W?"~1. Both W21
and its equidistant hypersurfaces are homogeneous (see for example [3]).

If w' has constant Kahler angle ¢ € (0,7/2], then W, is denoted by W2"*, where k
is the codimension. If ¢ # 7/2, then k is even [5]. In any case the tubes around W2"~*
are homogeneous as was shown in [5]. These correspond to case of Theorem [3.0.4]

If ot does not have constant Kihler angle, then the tubes around W,, are isopara-
metric but not homogeneous [40]. These remaining examples correspond to case of

Theorem [3.0.4] O

Proof of Theorem[3.0.9. An isoparametric family corresponding to cases or in
Theorem [3.0.4] cannot be congruent to a family in one of the other four cases, since the
former are regular Riemannian foliations, whereas the latter families always have a singular
leaf. Foliations in cases and give rise to exactly two congruence classes. Indeed,
the family in has a minimal leaf W?"~! whereas the family in does not (see
Remark . Furthermore, all horosphere foliations are mutually congruent, as well
as all solvable foliations. Now, any family in and has a totally geodesic singular
leaf, whereas the singular leaf W, in and is not totally geodesic. Moreover, the
classification of totally geodesic submanifolds of CH™ allows to distinguish between cases
and .

In order to finish the proof, it is convenient to consider the families , , and
as tubes around a submanifold W, as described in Subsection[2.5.2] Thus, a totally geodesic
CH*, k € {1,...,n — 1}, corresponds to a submanifold W,,, where v C g, is complex, a
Lohnherr submanifold W?"~! corresponds to a hyperplane v in g,, and a Berndt-Briick
submanifold Wg”_k’ corresponds to a subspace tv of g, whose orthogonal complement in
go has constant Kahler angle. Thus, the congruence classes of isoparametric families of
hypersurfaces in CH" are parametrized by the disjoint union of the singular foliation by
geodesic spheres F,, the horosphere foliation Fp, the singular foliation Frg» of tubes
around a totally geodesic RH™, and the congruence classes of isoparametric families of
tubes around the submanifolds W,,, which we still have to determine.

The submanifold W, depends on the choice of a root space decomposition. Since any
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two such decompositions are conjugate by an element of SU (1, n), it suffices to take a fixed
root space decomposition g = g_2,Pg_o DB ad g, P go, real subspaces vy, s C g, and
determine when the family of tubes around W,,, and W, are congruent. By dimension
reasons, and by the minimality of W?2"~1 if both tv;, v, are hyperplanes, such families are
congruent if and only if the two submanifolds Wy,, = S; -0 and W,,, = S; - 0 are congruent,
where S; is the connected Lie subgroup of SU(1,n) with Lie algebra s; = a @ w; @ gaa,
1=1,2.

Let ¢ be an isometry of CH™ such that ¢(Wy,) = W,,, and assume, without loss of
generality, that ¢(o) = o. The identification T,CH™ = a @ n thus allows us to deduce
that ¢.(a @ 07 @ goo) = a D 10y @ go,. We consider the Kéhler angle decompositions
; = Dyeca,0;, as described in Section . Since ¢ is an isometry of CH" fixing o, it
follows that ¢, is a unitary or anti-unitary transformation of T,CH"™ = a®n = C". Hence,
it maps subspaces of constant Kahler angle to subspaces of the same constant Kahler angle,
and thus we have & := &, = &, and

G (A D110 D gan) = (A D W20 D gan), (25*(?01,@) =10y, forall p € \ {0}.

Therefore, to; and tv, have the same Kahler angles with the same multiplicities. Now set
£y = goNE, where £ is the Lie algebra of K, the isotropy group at o. It is known (see e.g. [42])
that ¢ is a Lie subalgebra of g and that the connected subgroup Kj of G = SU(1,n) whose
Lie algebra is €y acts on g,, and its action is equivalent to the standard action of U(n — 1)
on C"!. The action of Ky on a and on g, is trivial. Since tv; and tv, are subspaces
of g, with the same Kéhler angles and the same multiplicities, it follows that there exists
k € Ky such that Ad(k)to; = 1, (see the end of Section [2.4]or [42, Remark 2.10] for further
details), and thus, k(Wy,) = Wi,.

As a consequence, we have proved that the congruence classes of the submanifolds of
type W, are in one-to-one correspondence with proper real subspaces of g, = C*~ ! modulo
the action of Ko = U(n — 1). Altogether this implies Theorem [3.0.9] O






Chapter 4

[soparametric hypersurfaces in the
anti-De Sitter space

In Chapter [2] we have presented a quick review of the origin of isoparametric hypersurfaces.
Indeed, we have mentioned some Riemannian spaces where a classification of these kind of
hypersurfaces is known. However, it also makes sense to study isoparametric hypersurfaces
in the semi-Riemannian case, and more precisely, in Lorentzian space forms, where the
breadth of examples is much richer than in the Riemannian case. In fact, in the previous
chapter Lorentzian isoparametric hypersurfaces in anti-De Sitter spaces played a crucial
role in the classification of isoparametric hypersurfaces in complex hyperbolic spaces.

In this chapter we restrict our attention to spacelike isoparametric hypersurfaces, and
we prove the following result, which has been published in the article [92].

Theorem 4.0.1. Spacelike isoparametric hypersurfaces with more than one principal cur-
vature in the anti-De Sitter space Hi', n > 3, are tubes around totally geodesic submanifolds
of H.

As we have already used in the previous chapter, a hypersurface in a Lorentzian space
form is isoparametric if and only if it has constant principal curvatures with constant alge-
braic multiplicities. In this context, some remarkable progress has been made as well. For
instance, these objects are supposed to be classified in the Minkowski space by Magid [80],
although in [23] Burth pointed out some gaps in Magid’s arguments. There are also partial
classifications in the De Sitter space. In this space, Nomizu [83] proved, using the fact that
the number of principal curvatures is bounded from above by two, that spacelike hypersur-
faces with constant principal curvatures are tubes around totally geodesic submanifolds.
He also conjectured in the same paper [83] that examples of spacelike isoparametric hy-
persurfaces with more than two principal curvatures would appear in the anti-De Sitter
space H{. In this chapter we answer this question negatively, proving that the number of
principal curvatures of a spacelike isoparametric hypersurface in H7' is less or equal than
two, using a different technique than that in [76], where the same question is addressed.

This chapter is organized as follows. In Section we recall some notations and
conventions and we start with a general procedure following [52] in order to study the
geometry of spacelike isoparametric hypersurfaces in anti-De Sitter spaces. This process

will allow us to finish the proof of Theorem in Section

77
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4.1 General procedure

Recall from Section the construction and geometry of the anti-De Sitter space. We
have considered the vector space R5™, n > 3, provided with the semi-Riemannian metric
(x,y) = —x1y1 — Lol + Z?j; x;y;. We have defined the anti-De Sitter space of radius r,
H}(r), as

Hi(r) = {z e Ry | (2,2) = —r*}.

Recall that the anti-De Sitter space is a Lorentzian manifold with constant negative sec-
tional curvature —1/r%, whose curvature tensor R then reads R(X,Y)Z = —5((Y, Z)X —
(X,2)Y), for X,Y,Z € T(HP(r)). We will write V for the Levi-Civita connection of the
anti-De Sitter space.

Let M C H(r) be an isoparametric hypersurface, that is, a hypersurface with con-
stant principal curvatures, Aq,...,\,_1, and whose corresponding algebraic multiplicities,
My, ---,My,_,, are constant along M [56]. Note that, implicitly, we are assuming that
M is a non-degenerate hypersurface of H}'(r). Let us denote by V and R the Levi-Civita
connection and the curvature tensor of M, respectively. Locally and up to sign, we can
take a unique unit normal vector field £ € I'(vM). We write € = (£,€) € {—1,1}.

Now, let A be a real principal curvature of M with constant geometric multiplicity.
Under these assumptions, it is easy to check that T = ker(S—A\I) constitutes a distribution
on M. In fact, T\ defines an autoparallel and, consequently, integrable distribution. In
order to prove this last claim, let X,Y € I'(T). Then, for each vector field Z € I'(T'M),
we obtain

(S =A)(VxY),Z) = (Vx(S = MY — (Vx(S = M))Y, Z)
= —((Vx(S§ =AY, Z) = —(Y,(Vx(S — \I))Z)
= (Y, (V2(S — M) X)
= (Y, V(S = A\)X) + (Y, (S — A\)VX) =0,

where in the third equality we have used the symmetry of Vx (S — AI) and in the fourth
one the Codazzi equation (see Section . Therefore, we can construct L), the integral
submanifolds of the distribution T through a point p € M. Assume, in what follows, that
the geometric and algebraic multiplicities of A coincide. In this case, for each p € M and
each p € Spec(S)\{A}, it is possible to select r(u,p) big enough in such a way that, if

T,.(p) = ker(S — ul )nP) e obtain the orthogonal decomposition

T,M = Ti(p) & P T,(p)
HFEA

Take now an element X in 7)(p) orthogonal to all the elements of T)\(p). Since T)(p)
is orthogonal to all the generalized eigenspaces T),(p) with p # A [85], we deduce that X is
orthogonal to all the elements in 7, M. But taking into account that M is non-degenerate,
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we can conclude that X = 0. Therefore, L, is a non-degenerate submanifold of M. In
fact, L, is totally geodesic as a submanifold of M and totally umbilical as a submanifold
of H(r).

The next step is trying to understand the behaviour of the generalized eigenspaces T},
with p # A, with respect to T). In this sense, following Ferus’ ideas [52], we examine the

behaviour of (S — AI) along a geodesic curve in Ly. In order to do that, we introduce, as
in [52], a tensor field C defined by

Cx(Y) = —VVyHX,

where, for each p € M, H, and V, denote the orthogonal projections onto ker(S — AI),
and Im(S — A1), respectively. It is easy to check that both H and V are parallel along L,.

Ferus’ work focused on Riemannian geometry and consequently some of his results must
be adapted to the more general semi-Riemannian setting. The next lemma constitutes a
generalization of Lemmas 1 and 2 in [52]. Note that, even though the final claim is exactly
the same, the arguments utilised in the proof should be modified slightly.

Lemma 4.1.1. Let X be a vector T\(p) and Y € T,M. Then:
(i) (Vx(S—=M))Y =(S—XN)oCx(Y).
(ii) (VxC)xY =C%(Y) + RxY, where RxY = VR(VY, X)X.

Let v: I C R — Ly be a unit speed geodesic in Ly, with n = (¥,4) € {1, —1}. Using the
Gauss equation and taking into account that 4 € I'(y*T)), we obtain the Jacobi operator

R:(X) = VRVX, %) + £(S4, /) VSVX — e(SVX,)VS¥
= VROVX, )4 + eMpSVX — eX2(VX, V5 = VRVX, 4)5 + eanSVX

and recalling that H'(r) has constant curvature, we substitute R by its value in the above
equation to obtain

R:X = n(c+eAS)VX. (4.1)

For each t € I, we construct an endomorphism A(t) of the real vector space T,4)M =
ker(S — Al @ Im(S — Al),(), defined as the inverse of (S — Al), ) |im(s-an),,, When
restricted to Im(S — AI), (), and defined as zero for the elements in ker(S — AJ),). Thus,
A(t) is a tensor field along the curve . It is convenient to remark here that along 7 the
equality V = A(S—AI) = (§—AI)A holds. Taking derivatives along v in this last equality,
and using Lemma [4.1.1| we may write

0= (VsV)A = (V2 AS — M)A = {(V5A)(S — M) + A(V5(S — M)} A
= {(V5A)(S — AI) + A(S — AI)Cs A = (V5 A)(S — M)A + VC: A = Vs A+ Cs A
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Taking derivatives again and using the expression above together with (4.1) and Lemma

[4.1.7] we obtain

= (V2A) + (V4C3A) = (VZA) 4 (V5C5) A+ C4(V5A)

= (VEA) +CA+ Ry A—CiA = (V2A) +1(c +eXS)VA
= (VE2A) +n(c+eXS — 6)\2[ +eX)A

= (V2A) +1n(c+eX?) A+ nedV.

We can also rewrite this differential equation in the following way:
2 2 2 2 _
Vi{(c+eN)A+ eV} +n(c+ el ){(c+eX)A+elV} =0. (4.2)

The next step is to solve this equation with the purpose of understanding and extracting
all the relevant information codified in it. In fact, in the Riemannian case, it seems that all
the information can be summarized in the Cartan formula. However, although it is possible
to rewrite a semi-Riemannian version of the Cartan formula using as well, there is
some more information which would not remain summarized in it. Actually, this geometric
information will lead us to conclude a bound on the number of principal curvatures of a
spacelike isoparametric hypersurfaces in the anti-De Sitter space. In other settings, like
Lorentzian isoparametric hypersurfaces in De Sitter spaces, this procedure presented so
far is still valid and it might be utilized to obtain some results concerning the number of
principal curvatures and the relations between them.

4.2 Spacelike isoparametric hypersurfaces in the anti-
De Sitter space

We will focus now our attention on a spacelike hypersurface with constant principal curva-
tures in the anti-De Sitter space H]'(r). Therefore, this isoparametric hypersurface M has
diagonalizable shape operator at each point p in M. Assume that we have more than one
constant principal curvature and select, without loss of generality, A = A;. In this particu-
lar situation, we could develop the process we have just explained and, moreover, we have
that the constant n(c+e\?) is strictly less than zero (¢ < 0, = —1, 7 = 1). Under all these
conditions, we can easily integrate equation (4.2)), and writing F'(t) = (c+eA?)A(t)+eAV(t)
and k = n(c + e)?) for the sake of simplicity, its solution may be written as

F(t) = cosh (\/—_kt) Pro) () + sinh (\/—_/{t) ,P(VﬁF)(O) (1), (4.3)

1
vV —k
where Pro)(t) and Py, r)()(t) denote the parallel transport of the endomorphisms F'(0)

and (V5F)(0) of Ty M along the curve v from the point 7(0) = p to the point ~(¢). We
will show that (c + e\?)A(t) + eAV(t) is a self-adjoint endomorphism for each ¢ € I by
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checking that both A(t) and V(t) are self-adjoint endomorphisms for all t € I. This is
clear for A because it is the inverse of a self-adjoint operator. For V), we can compute

VX,Y) = (VX,HY +VY) = (VX,VY) = (HX + VX, VY) = (X, VY).

At this point, we can determine the eigenvalue structure of the endomorphism F(t) of
the real vector space T, )M, for each ¢t € I. Firstly, by hypothesis, we know that the
principal curvatures of M and their algebraic and geometric multiplicities are constant
along M. But, taking into account that for each ¢ € I the tensor field A(t) is zero when
restricted to ker(S — AI),«) and the inverse of (S — AI )W(t)hm(g_)\l)w) when restricted
to Im(S — AJ)4), we can deduce that the eigenvalues of A(t) are: zero with algebraic
and geometric multlphClty my, and _/\ with algebraic and geometric multiplicity m,,,
forv = 2,3,...,n— 1. On the other hand, the spectrum of the endomorphism V is 0
with multiplimty my, and 1 with multiplicity n — 1 — m,. Note that these eigenvalues
together with their algebraic and geometric multiplicities are constant along M precisely
because they only depend on the dimension of the subspaces involved in the orthogonal
decomposition ker(S — A1), & Im(S — AI),. The dimensions of these subspaces are constant
because M is isoparametric and, thus, the eigenvalues of V are constant along the curve 7.

Therefore, the tensor field F(t) = (c+eA?).A(t) + eAV(t) has constant eigenvalues with
constant algebraic and geometric multiplicities. These eigenvalues are: 0 with geometric
and algebraic multiplicity m,, and C+E)"\’ with algebraic and geometric multiplicities my,,
fori=2,...,n— 1.

Note at this point that the parallel transport Ppg)(t) of the endomorphism F'(0) along
~ has the same eingenvalues as those of F'(0) for all ¢t € I. Furthermore, the eigenvectors are
exactly the parallel translation of these of F'(0). So parallel translation of endomorphisms
also preserves algebraic and geometric multiplicities. In fact, let {Xi,..., X,,_1} be an
orthonormal basis of T M. Then, writing F' instead of F'(0) for the sake of simplicity,
we may deduce

V5 (Pr(t)Px, (1), Pr(t)Px; (1)) = (V5 PrPx,)(t), Px;(t))
+ (Pr(t)Px (t),(V Px;)(8))

=((V4Pr)()Px,(t), Px; (1))
+ (F(V5Px,) (1), Px, (1)) = 0.

Therefore, the function ¢t € I — (Pr)(t)Px,(t), Pr)(t)Px,(t)) is constant and takes
the value 9,;\; = 0;;A\; at zero. Thus, our claim is proved. This might be thought as
a particularization of a more general result which claims that the parallel transport of
an endomorphism along a curve preserves eigenvalues together with their algebraic and
geometric multiplicities. Moreover, the eigenvectors of the parallel transport of an endo-
morphism are exactly the parallel transport of the eigenvectors of the initial endomorphism.
Thus P(v. r)0)(t) also has constant eigenvalues with constant algebraic multiplicities for
all t € I.

It is important to remark that (V;F)(t) is a self-adjoint endomorphism for each ¢ € I.
Since F'(t) is self-adjoint, then we have that (F'(t)Px,(t),Px;(t)) = (Px,(t), F'(t)Px,(t)),
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where {X1,...,X,_1} is again, as above, an orthonormal basis of T, M. Taking deriva-
tives in the left hand side we get (V5 F)(t)Px,(t), Px,(t)). By symmetry, in the right hand
side we obtain (Px,(t), (V) (t)Px,(t)). Thus, (V5IF)(t) is a self-adjoint endomorphism
of the real vector space T, M for all t € 1.

This means, in particular, that each one of the addends of F(¢) in diagonalizes
with real eigenvalues. Furthermore, taking into account that F' has constant eigenvalues
along the geodesic curve 7, one may argue that the map ¢ € I — tr(F(¢)) is a constant
function. But it is then clear that F?(t) diagonalizes with real eigenvalues, the square of
the eigenvalues of F, for all t € I. Therefore, the function tr(F?(t)) is again constant and
we may write

d2

0= —
dt?|,_,

tr(F2(t)) = tr((V2F?)(0)) = 2|k| tr(F%(0)) + 2tx((V4F)?(0)). (4.4)
But this last equalitiy clearly implies that both F(0) and (V;£)(0) are the zero endo-
morphims. Consequently, F(t) = 0 for all ¢t € I by (4.3) and recalling the definition of
F we have just shown that (c + eA?)A(t) = —eAV(t). If we now decompose T,y M into

ker(S — A1), and Im(S — A1), as usual, and we express both families of endomorphisms
in their matrix form with respect to that decomposition,

0] 0 0] 0

2 _
€ o) ia [T ol —exia |

one can easily deduce that M only has two principal curvatures: A, the curvature we had
assumed at the very beginning to have the same algebraic and geometric multiplicity, and
= = $. According to the bound achieved in Lemma and Lemma |3.2.10| on the
number of principal curvatures for a Lorentzian isoparametric hypersurface in the anti-De
Sitter space, this allows to state the following

Proposition 4.2.1. Let M C H{ be an isoparametric hypersurface. Then, the number of
principal curvatures is less or equal than two.

Finally, coming back to spacelike isoparametric hypersurfaces in anti-De Sitter spaces, it
is easy to check, using Jacobi vector field theory, that the focal submanifold of the spacelike

isoparametric hypersurface M considered above is a totally geodesic submanifold. Hence
Theorem [£.0.1] follows.



Chapter 5
CPC submanifolds

In the previous chapters we have investigated isoparametric hypersurfaces in different con-
texts. An important subclass of isoparametric hypersurfaces is that of homogeneous hyper-
surfaces. In this chapter we focus on a property of focal sets of homogeneous hypersurfaces
(see Section [5.1] for more details).

In this sense, we will say that a connected complete submanifold P of a Riemannian
manifold M is CPC (constant principal curvatures) if its principal curvatures, counted with
multiplicities, are independent of the normal direction (parametrized by the unit normal
vectors of P). Note that our notion of constant principal curvatures is more restrictive than
the one studied in [58]: every CPC submanifold is a submanifold with constant principal
curvatures in the sense of [58].

The main purpose of this chapter is to present a systematic approach to the con-
struction, classification and description of homogeneous CPC submanifolds in irreducible
Riemannian symmetric spaces of non-compact type and rank > 2. The contents of this
chapter have given rise to the paper [14], and jointly with other results, to the survey [45].

It is evident that totally geodesic submanifolds are CPC submanifolds. Since totally
geodesic submanifolds of irreducible Riemannian symmetric spaces are not yet classified,
unless the rank of M is < 2 [109, B0, 31 [72] [71], we cannot expect to achieve full classifi-
cation results of CPC submanifolds.

Thus, we will restrict our attention to CPC submanifolds arising from orbits of certain
subgroups of the solvable part of the Iwasawa decomposition associated with a symmetric
space of non-compact type. More precisely, let M = G /K be an irreducible Riemannian
symmetric space of non-compact type, where G = I°(M) is the identity component of the
isometry group of M and K is the isotropy group of G at a point o € M. Let g=¢ D p
be the corresponding Cartan decomposition of the Lie algebra g of G. Choose a maximal
abelian subspace a of p and let g = go & (@aez ga) be the induced restricted root space
decomposition of g, where X denotes the set of restricted roots. Let g = €@ a & n be the
corresponding Iwasawa decomposition of g. Denote by AN the solvable closed connected
subgroup of G with Lie algebra a@®n. Then M is isometric to AN endowed with a suitable
left-invariant Riemannian metric (see Section [L.5). Let II be a set of simple roots for X
and denote by II' the set of simple roots a € II with 2ac ¢ A. Note that there is at most
one simple root in II that does not belong to II', and this happens precisely when the
restricted root system of G/K is of type BC,.. Denote by €, = go N ¢ the principal isotropy
subalgebra of €. This chapter is completely devoted to prove the following result.

Theorem 5.0.2. Lets =a® (n© V) be a subalgebra of a ®n with V C @ 1 ga- Let S
be the connected closed subgroup of AN with Lie algebra s. Then the orbit S - o is a CPC
submanifold of M = G/K if and only if one of the following statements holds:

33
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(I) There ezists a simple root A € II" with V' C g,.

(IT) There exist two non-orthogonal simple roots oy, ay € I with |ag| = || and subspaces
Vo € 9o, and Vi C g4, Such that V =V, @ Vi and one of the following conditions
holds:

(i> Vo & Vi = gag @ Bays
(ii) Vo @& Vi is a proper subset of ga, D 8o, and

(a) Vo and Vi are isomorphic to R; or
(b) Vo and Vi are isomorphic to C and there exists T € €, such that ad(T)
defines complez structures on Vi and Vi and vanishes on [Vy, V1]; or

(¢) Vo and Vi are isomorphic to H and there exists a subset | C €, such that
ad(l) defines quaternionic structures on Vo and Vi and vanishes on [Vy, Vi].

Moreover, only the submanifolds given by (1) and (II)(i) can appear as singular orbits of
cohomogeneity one actions.

Note that this result has three different aspects: a construction part, a classification
part and a description part. We will first construct the submanifolds introduced in The-
orem (in particular we see that all the cases occur) and prove that their principal
curvatures are independent of the normal direction. We will then prove that there are no
other such submanifolds under the hypotheses of Theorem [5.0.2] Finally, some of them can
be described as singular orbits of cohomogeneity one actions, but one of the main goals of
this work is that most of those examples do not come from cohomogeneity one actions.

The submanifolds in (I) can be thought of as canonical extensions of submanifolds
in real hyperbolic spaces. According to [25], all these examples are singular orbits of
cohomogeneity one actions. Thus, using a result due to Ge and Tang [54] we will obtain
directly that their principal curvatures are independent of the normal direction. Therefore,
in this chapter we will focus mainly on the submanifolds presented in (II).

We will construct the submanifolds of Theorem [5.0.2|explicitly and compute their shape
operator. For this purpose, we first generalize the concept of strings generated by a single
root [69, p. 152] to strings generated by two roots. This more general concept will then
induce a natural decomposition of the tangent space of the submanifold into subspaces
that are invariant under the shape operator. The root space structure will then allow us to
calculate explicitly the shape operator when restricted to each of these invariant subspaces.
This technique is original and we hope that it can be applied also in other situations.
We will also construct explicitly the complex and quaternionic structures mentioned in
Theorem [(5.0.2]

This chapter is organized as follows. In Section [5.1| we expose the main the motivations
for studying CPC submanifolds and their connections with geometrical objects such as
cohomogeneity one actions or isoparametric hypersurfaces. We also state some results that
we will need for our investigations. In Section [5.2) we start by introducing the general
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setting for constructing the new examples. We show that in order to understand the
principal curvatures of those examples it suffices to determine a decomposition of the
tangent space by invariant subspaces with respect to the shape operator. We also determine
one of these invariant subspaces. Calculating the shape operator when restricted to such
a subspace turns out to be equivalent to studying Theorem for a symmetric space
of non-compact type whose Dynkin diagram is of type As. Thus, in the final part of
the section, we prove the construction and classification part of Theorem for the
symmetric spaces SL3(R)/SO3, SL3(C)/SUs, SL3(H)/Sps and E;?°/F,. In Section
we will show that all the examples of Theorem [5.0.2| are indeed CPC submanifolds. Thus,
in Section [5.3] we finish the construction part of Theorem [5.0.2] Section [5.4] is devoted
to the classification part of Theorem [5.0.2] Actually, we just see that if the subspace V'
does not satisfy the conditions of (I) or (II), then S - o cannot be a CPC submanifold. In
Section [5.5] we analyze if the examples can be realized as singular orbits of cohomogeneity
one actions. Finally, in Section [5.6| we provide some further geometric explanations of the
examples in the rank 2 cases.

5.1 Motivation and main tools

The concept of CPC submanifold was recently introduced [14], but it is deeply connected
to many other objects concerning submanifold theory. Hence, in the following lines we will
explain the main motivations for the investigation of CPC submanifolds.

As mentioned above, CPC submanifolds are intimately related to cohomogeneity one
actions. Indeed, consider a cohomogeneity one action on a connected complete Riemannian
manifold M. If there is a singular orbit of this action, say P, then its principal curvatures
do not depend on the normal directions. More precisely, if £ and & are two unit normal
vectors of P, at the same point or at two different points, then the principal curvatures
of P with respect to & and &, are the same, counted with multiplicities. This is a simple
consequence of the homogeneity of the orbit and the fact that the slice representation of
the action at a point p € P acts transitively on the unit sphere in the normal space of P
at p.

An obvious consequence is that every singular orbit of a cohomogeneity one action is
a CPC, and hence austere and minimal submanifold. Note that the principal curvatures
of a homogeneous austere hypersurface do not depend on the normal direction. In other
words, the concepts of austere and CPC submanifolds are equivalent in the context of
homogeneous hypersurfaces.

Another consequence is that every singular orbit of a cohomogeneity one action is a
submanifold with constant principal curvatures. Recall from Section[I.2] that a submanifold
P of a Riemannian manifold M has constant principal curvatures if the principal curvatures
of P are constant for any parallel normal vector field of P along any piecewise differentiable
curve in P. Submanifolds with constant principal curvatures were introduced and studied
by Heintze, Olmos and Thorbergsson [58] in the context of isoparametric submanifolds.
They proved that a submanifold of a Euclidean space has constant principal curvatures
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if and only if it is an isoparametric submanifold or a focal manifold of an isoparametric
submanifold.

It is interesting to investigate the classification of submanifolds having the above geo-
metric property of singular orbits of cohomogeneity one actions, that is, the classification
of CPC submanifolds. Assume that M is a standard real space form, that is, M is the
real hyperbolic space RH", the Euclidean space R"™, or the sphere S", with their stan-
dard metrics of constant curvature —1,0, +1 respectively. Let P be a submanifold of M
with codim(P) > 2. Using Jacobi field theory one can show P is CPC, that is, that
its principal curvatures are independent of the normal direction if and only if the tubes
(of sufficiently small radii) around P have constant principal curvatures. As it was ex-
plained in Section according to Cartan [25], a hypersurface of a space of constant
curvature has constant principal curvatures if and only if it is isoparametric. Therefore,
classifying isoparametric hypersurfaces in constant curvature spaces is equivalent to clas-
sifying CPC submanifolds. Recall, also from Section that the classification problem
for isoparametric hypersurfaces in Euclidean spaces and real hyperbolic spaces was solved
by Segre [93] and Cartan [25], respectively. In contrast, the problem for S™ turned out to
be very challenging as mentioned in Section Interestingly, the CPC property of focal
submanifolds of isoparametric hypersurfaces in spheres turns out to play a crucial role in
certain approaches to their investigation (e.g. [81, 95]).

One of the implications in the above characterization in spaces of constant curvature
was recently generalized by Ge and Tang [54] to arbitrary Riemannian manifolds: let
P be a submanifold of a Riemannian manifold M with codim(P) > 2 for which the
tubes around it (for sufficiently small radii) are isoparametric hypersurfaces with constant
principal curvatures. Then the principal curvatures of P are independent of the normal
direction. The other implication is not true. In fact, it follows from Theorem [5.0.2] in
Chapterthat there are tubes around totally geodesic submanifolds (in complex hyperbolic
spaces) that are not even isoparametric hypersurfaces.

If M =RH" (n > 2), then the above result by Cartan implies that a CPC submaniold
P is congruent to a totally geodesic RH* ¢ RH", k € {0,...,n — 1}. For the other
rank one symmetric spaces, which are the complex hyperbolic spaces CH™ (n > 2), the
quaternionic hyperbolic spaces HH" (n > 2), and the Cayley hyperbolic plane QH?, the
problem is already much more complicated. Their totally geodesic submanifolds are known
from the work by Wolf [I08]. In each of the spaces CH™, HH™ and QOH? there exists a
homogeneous austere hypersurface [3]. Singular orbits of cohomogeneity one actions on
these spaces were described in [5], [I7] and [4I]. Note that, up to orbit equivalence,
the cohomogeneity one actions on CH", HH? and QH? are classified, whereas for HH",
n > 3, this is still an open problem. A remarkable discovery in [41] is an 11-dimensional
homogeneous CPC submanifold of @H? that is not an orbit of a cohomogeneity one action.
To our knowledge, this was the only known non-totally geodesic CPC submanifold in an
irreducible Riemannian symmetric space of non-compact type that is not an orbit of a
cohomogeneity one action.

In the final part of this section, we state some results that will be needed throughout this
chapter. We will use the concepts, notations and terminology introduced in Section [1.5]
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Recall that M = G/K is an irreducible Riemannian symmetric space of non-compact
type, where G is the identity component of the isometry group of M and K is the isotropy
group of G at a point 0o € M. Let g = go ® (@aez ga) be the induced restricted root
space decomposition and let g = ¢ & a & n be the corresponding Iwasawa decomposition
of g. Recall also that M is isometric to a solvable closed connected subgroup AN of G.
Let « € ¥ and X € ¥y = X U {0}. Recall that the a-string containing A is defined as the
set of all elements in ¥y of the form A + na with n € Z. The following result will play an
important role from now on. Basically, it relates the dimensions of the root spaces involved
in a string.

Lemma 5.1.1. Let a, A € X1 be linearly independent.
(1) If the a-string of X is A\, A\ + «, then A,y = —1 and dim(g,) = dim(gata)-

(ii) If the a-string of X is A, A + a, A\ + 2a, then A, = —2, dim(g,) = dim(gr+a) and
dlm(g)\) = dim(g,\+2a).

Proof. The statements about A, ) follow from Proposition . We denote by s,(A) =
A — Ay o the Weyl reflection of a.

If the a-string containing A is A, \+a, then A,y = —1 and s,(\) = A=A, a = A +a.
Since the Weyl reflection s, interchanges A and A + «a, we get dim(g,) = dim(gatq)-

Next, assume that the a-string containing A is A, A + a, A + 2. Then A, = —2
and s,(\) = A — Aaaa = A + 2a, which implies dim(g,) = dim(gri24). The only root
systems of rank two with a-strings of length 3 and containing only positive roots are Bs
and BC5. In the Bs-case there is only one such string A\, A + a, A + 2«, namely when a, A
are the simple roots of By and « is the shortest of the two roots. In this case we have
sx(a) = A+ «, which implies dim(g,) = dim(gra). In the BCh-case there is another
such string X, X + o/, N + 2a/ with X' = 2a and o = A. In this situation we have
sy (@) = s2a(N) = 2a + XA = N + o, which implies dim(g,/) = dim(gx+o/)- O

Recall also from Section [I.3 the Levi-Civita connection of M reads
AVxY, Zyan = (X, Y]+ (1 - 0)[0X,Y],Z)B,. (5.1)

In this work, we are interested in a particular class of submanifolds of M. Let s be a
subalgebra of a @ n and S the connected closed subgroup of AN with Lie algebra s. We
will study the orbit S - o, which by definition is a homogeneous submanifold of M. We
can identify the tangent space T,(S - 0) with s and the normal space v,(S - 0) with the
orthogonal complement V' of s in a @ n. The shape operator S¢ of S - o with respect to a
unit normal vector £ € V' is given by

SeX = —(Vx6)', (5.2)

where X € s and ()" denotes the orthogonal projection onto the space T,(S - 0) & s.
In order to simplify some arguments of this chapter, we state a result which will allow
us to use the Levi-Civita connection more efficiently.
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Lemma 5.1.2. Let A € ¥ and X,Y € gy be orthogonal.
(i) [6X,X] =2(X, X)anH) = (X, X)p,H).
(i) [0X,Y] € € =go O a.
(iii) If2\ ¢ X7, then
(06X, Y], [0X, Z]) 5, = 4| (X, X)an (Y, Z) an
for all Z € g, orthogonal to X .
(iv) If 2\ ¢ X, then VxY = 0.

Proof. Firstly, we have 0[0X, X| = —[0X, X]. Using the bracket relation in (1.3)), the
Cartan decomposition g = £ @ p and the facts that 6|, = id; and 0|, = —id,, we deduce

that [X, X] € a =pNgo. Now, using (1.1)) and the definition of restricted root space, we
obtain

<[(9X7X]7H>\>Be = <X7 [H)UX]>BQ = ‘)"2<X7 X>Be = 2|)“2<X7X>AN‘

A similar calculation shows that ([.X, X], H)p, = 0 for all H orthogonal to Hy. Then, we
get [0X, X] = 2(X, X)anH), which proves (fi}).

For , let H € a. Clearly, [0X,Y] € go by . However, using again and the
definition of restricted root space, we obtain ([0.X,Y], H)p, = AN H)(Y,X)p, = 0, which
implies [#X,Y] € € = go © a.

For , let Z € g, be orthogonal to X. Then, using , the Jacobi identity, the
assumption that 2\ ¢ X1 , and the definition of restricted root space, we have

<[9X7 Y]? [er Z]>Be = _<Y7 [X7 [er Z]]>Be = <Y7 [27 [X7 9X]]>Be
= <Ya [[9X> X]> Z])Be = 2’)“2<X7 X>AN<Y> Z>B9
= 4A*(X, X)an (Y, Z) an-
In order to prove , we will use equation directly. On the one hand, from ,
we obtain that the vectors [#.X,Y] and [X, 0Y] both belong to go. Since n = @, 5+ gr.
we deduce that they have trivial projections onto n. From we conclude they have also

trivial projections onto a and consequently onto a @ n. On the other hand, the element
[X, Y] vanishes because of (1.3) and the assumption that 2\ ¢ X*. Then, we deduce

AVxY, Z)yan = (X, Y]+ [0X,Y] - [X,0Y],Z)p, =0
for all Z € a @ n. This finishes the proof. [
The next result will be used later for calculating principal curvatures.

Lemma 5.1.3. Let v € X1 be the root of minimum level in its non-trivial v-string, for
v € ¥ non-proportional to . Let X € g, and & € g, with (§,&)an = 1.
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(i) ad(é)lg, : 9y = Gy+v is an injective map preserving the inner product up to a positive
constant.

(ii) [0¢, [, X]] = A, |v]2X.
(iii) [0¢, €, [ X)] = (Avqa + Auy)[V]PE, X
(iv) If A, < =2, then

[957 [é? {57 [57 X]]H = (AV,7+21/ + AVWJH/ + AV,7)|V‘2[§7 [57 X“

Proof. Since «y is the root of minimum level in its v-string, we have v — v ¢ ¥. Since ~
and v are non-proportional, we have v — v # 0. Altogether, we conclude v — v ¢ ¥.

(ii): Using the Jacobi identity, v — v ¢ o and Lemma [5.1.2{fi), we obtain [6¢, [¢, X]] =
_[X7 [9575]] - [57 [X7 Qéﬂ = [[Gf,ﬁ],X] = Q[HI,,X] = AV{Y|V|2X'

(i): Let Y € g,. Combining with (i), we obtain

(ad(§)X, ad(§)Y) an = —(X, ad(6€) 0 ad(£)Y) an = —(X, [0¢, [§, Y]]} an
= —[v*As0 (X, Y ) ax

Since the v-string of «y is non-trivial, we have A, , < 0 and the assertion follows.
(iii): Next, using the Jacobi identity, and Lemma [5.1.2[(fi), we deduce

[967 [57 [5? X]H = _Hga X]? [9&5“ - [57 [[£>X]7 95“
=2[H,, [¢, X]] + [&, [6¢, [, X]]]
= (Avosw + Au ) IV [PlE, X1,

(iv): Similar arguments as those used before, together with , give

[0¢, [€, (& 1€ X = =&, [§, XT], [0¢, €] — [€ [[¢€, [€, XT], 6¢]]
=2[H,, [¢, [§, X]]] + [€, [0, (¢, &, X]]]]
= Au,7+2u’V|2[5> €, X]] + (Av o + Au,'y)|1/’2[£a €, X]]
= (Ao + A + A I PIE [€ XT). [

5.2 Construction of CPC submanifolds

In this section we construct new examples of CPC submanifolds in the rank 2 non-compact
symmetric spaces SL3(R)/SOs, SLs(C)/SUs, SL3(H)/Sps (= SU/Sps) and E;*/Fy.
These are precisely the non-compact symmetric spaces whose restricted root system is of
type As. The new examples will provide the building blocks for further new examples in
other non-compact symmetric spaces, via the so-called canonical extension method intro-
duced in [I§] and studied further in [47]. We emphasize that the CPC property is not



90 5 CPC submanifolds

preserved in general under the canonical extension method (an example will be given in
the last paragraph of this section). A fundamental ingredient in our investigations will
be a decomposition of the tangent space of a CPC submanifold into subspaces that are
invariant under the shape operator.

Our construction is based on a suitable choice of a linear subspace V' of the vector space
@D.cir 9o € n. The nilpotent subalgebra n has a natural gradation that is generated by
D, 9a- Thus, if we remove a linear subspace V' from €@, g, that is, consider the
subspace n © V| we get a subalgebra of n. We then define the subspace

s=admal)

of a @ n. Unfortunately, this subspace is in general not a subalgebra of a & n. Assume
for the moment that s is a subalgebra of a @& n and choose a vector X € s of the form

X=> cwXa Lt ecll'and 0 # H € a © <@aen\{ﬁ} RH(X>. Since s is a subalgebra
of a®nand a C s, we get [H, X] =3 [H,Xo] = ep(H) Xy = B(H)X3 € 5.
Since H # 0 is orthogonal to the vector spaces RH,, for all a € II\{#}, we must have

B(H) # 0 and hence Xz € 5. Thus, if ), X, € 5, we deduce that X, € s for all e € IT".
Consequently, if s is a subalgebra of a @ n, then V is of the form

V=@ (5.3)

acy

with V,, C g, and ¢ C IT". Without loss of generality, we can assume that V,, # {0} for
each a € 1.

We assume from now on that s = a @ (n S V) is a subalgebra of a @ n and that V' is
of the form . Let S be the connected closed subgroup of AN with Lie algebra s. The
orbit S'- o0 of S through o is a connected homogeneous submanifold of the symmetric space
M =G/K = AN. We want to understand when this orbit is a CPC submanifold.

The simplest situation occurs when V' is contained in a single root space g, a € II'. Let
me = dim(g,) and k& = m,—dim(V'). The orbit through o of the connected closed subgroup
of AN with Lie algebra RH, & g, is a real hyperbolic space RH™*! embedded in M as
a totally geodesic submanifold. The orbit through o of the connected closed subgroup
of AN with Lie algebra RH, @ (g, © V) is a real hyperbolic space RH**! embedded
in RH™*1 as a totally geodesic submanifold. This RH**! is the singular orbit of a
cohomogeneity one action on RH™*! This cohomogeneity one action admits a canonical
extension to a cohomogeneity one action on M (see [I8] for details). The singular orbit
of this cohomogeneity one action on M, which is the canonical extension of RH**!  then
must be a CPC submanifold since the slice representation at any point of the singular
orbit acts transitively on the unit sphere in the normal bundle. We can also give a slightly
more complicated argument in this situation, which has the advantage though that we can
apply it to more general situations. The generic orbits are homogeneous hypersurfaces,
hence have the properties that they are both isoparametric and have constant principal
curvatures. By applying the result by Ge and Tang [54] that we mentioned in Section
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we can deduce that the canonical extension of the RH**! must be a CPC submanifold. It
is this line of argument that we are going to apply for producing our new examples.

Back to the general situation. The orbit S - 0 is a homogeneous submanifold and
therefore it suffices to study its shape operator S at the point 0. We will now investigate
the shape operator in Lie algebraic terms by using equation . In our situation we need
to analyze the equation

4<VX§aZ>AN: <[X7£}+<1_0)[9X7§]7Z>B9 (54)

for unit normal vectors £ € V', tangent vectors X € s and all Z € a® n.
We start by choosing X € a C p. Then X = —X and

(X, €]+ [0X,€] - [X, 0] = —[X,6¢) € P oo

acY

Hence [X, 6] has trivial projection onto a @ n. Therefore, Vx& = 0 for all X € a and
all normal vectors € € V. In other words, for each unit normal vector £, 0 is a principal
curvature of S - o with respect to £ and a is contained in the 0O-eigenspace. This is also
clear from a geometric viewpoint. The orbit A - 0 is a Euclidean space R" of dimension
r = rk(M) and embedded in M as a totally geodesic flat submanifold, a so-called maximal
flat in M. Since a C s, we have A-0 C S - 0, and the assertion follows. In particular, the
maximal flat A-o=R" is a totally geodesic submanifold of S - o.

Therefore, we now need to examine the terms involved in (5.4) when X € n& V. On
the one hand, since X, £ € n, we have [X,¢{] € n and hence [X,£] has trivial projection
onto a. On the other hand, we will see that the elements [#X,¢] and [X, 6¢] involved in
have also trivial projections onto a. Moreover, we will justify that [#.X, £] must have
trivial projection onto a @ n.

Let X € n© V and decompose X into X = ZAE? X, with X, € g). We decompose
¢ into & = Eaew &o with &, € V. Let a € ¥ and 8 € II. We will analyze the elements
[0X5,&] and [Xg,06,]. Since a, f € II, we have £(a — ) ¢ X. Using we deduce
0X5,80) = 0 = [Xp, 0] whenever a # (. If § = a, since (X, &) an = 0 for all a € ¢
because of (5.3)), we have [0X,,&,] € & and [X,,0¢,] € & by Lemma [5.1.2)(ii), and hence
they have trivial projections onto a & n. Thus we conclude that [0.X3, ] and [Xg, 6] have
trivial projections onto a®n. Let A € XT\II. Then a—\ ¢ ¥} and hence [0X),&,] € ga_n
has trivial projection onto a @ n. Altogether this implies that [0.X, £] has trivial projection
onto a @ n. We also see that [X),0£,] € g,_o has trivial projection onto gy and, since
a C go, also onto a, which implies that [X,0¢] has trivial projection onto a. Then the
Levi-Civita connection becomes

2Vx&H +Y)an = (X, €] = [X,6¢], Y)an

for Hea, Y en €V and X e no V. We saw above that [X, 0¢] € €, @ n. Moreover,
0 # [X, 6] € & is possible only if there exists a € ¥ with X, # 0 # &,. In this situation,
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since X,,&, are orthogonal for each a € 1, we have Vx_¢, = 0 by Lemma .
Otherwise, the above equation yields

forall £ € V and X € n©V with [X,,0¢,] = 0 for all a € ¢. In particular, if £ € g, and
X e noV, equations (5.2)) and (5.5) imply that the shape operator S with respect to £

of the submanifold S - 0 can be written as
25X = — ([X, €] — [X,0¢])" = [(1—0)&, X]". (5.6)

Note that 6(& — 6€) = — (€ — 6€) and hence (1 — 6)¢ € p is the orthogonal projection of &
onto p with respect to By.

Before considering the examples introduced in Theorem [5.0.2}, we will study the behav-
ior of the Levi-Civita connection in terms of the concept of string. Let v € X1 be the root
of minimum level in its non-trivial v-string, for v € X' non-proportional to . For each
unit vector ¢ € g, we define

de = V|7 (—Au,) 2 ad(€) , dae = —|v| T (—Aun) TP ad(66). (5.7)

From Lemma [5.1.3|(i), () we easily deduce:

Lemma 5.2.1. Let v € X1 be the root of minimum level in its non-trivial v-string, for
v € X non-proportional to . Then:

(i) @elg, : 8y = Gy4v 15 a linear isometry onto ¢¢(gy) = [, 9]
(ii) (¢oe © ¢¢)lg, = idg, -
The next result will be useful for calculating principal curvatures explicitly.

Proposition 5.2.2. Let v € X be the root of minimum level in its v-string, for v € XT
satisfying A, = —1, and £ € g, be a unit vector with respect to (-,-) an. Then ¢¢ and ¢ge
are inverse linear isometries when restricted to g, and g4, respectively. Moreover, for
each X € g, we have

v v
fo = —%(ﬁg(X) and V¢§(X)f = —%X.
Proof. From Lemma we deduce dim(g,) = dim(g,4,). Lemma then implies that
Pelg, : 8y — Gy4v IS a linear isometry onto g, and (¢¢ly, )™ = @pelg, .- Since v is the
root of minimum level in its v-string and A, , = —1, we have v — v ¢ ¥,. Using (5.5)), the
fact that v — v ¢ 3, and then (5.7)), we deduce

2Vx€ = [X,&] = [X, 0¢] = [X, £] = —[v]oe(X),
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for unit vectors £ € g, and vectors X € g,. Finally, using ({5.5)), the fact that v + 2v ¢ X,
(5.7) and then Lemma [5.2.1, we obtain

2V¢§(X)€ :[¢€(X)7€] - [¢£(X)79£] = _[¢§(X)79€]
= — [Vl(¢og 0 ¢¢)(X) = —[v| X,

for a unit vector { € g, and X € g,. ]

After these considerations we shall focus now on the examples introduced in Theo-
rem Consider a symmetric space G/ K of non-compact type with at least two simple
roots, say ag and a1, that are connected by a single edge in its Dynkin diagram. Consider
the subalgebra s = a @ (n© V) with ¢ = {ap,a;} and V' C g,y @ go,- Let £ € V be a
unit vector and X € g, , where gy denotes the orthogonal projection of gy onto n© V for
A € Xt From (5.6 and we obtain

SfX € (g;\r+a0 EB g;\r+a1) EB (g;\r—ao EB gl——oq)'

This shows that we need to understand how the shape operator § relates the different root
spaces of positive roots.

In order to clarify this situation, we introduce a generalization of the concept of a-
string. For ag, a1 € ¥ and A € ¥y we define the (ag, ap)-string containing A as the set of
all elements in ¥, of the form A\ 4+ nag + may with n,m € Z. This leads to the following
equivalence relation on 7. We say that two roots A\, Ay € T are (ap, a)-related if
A1 — Ay = nag + ma;y for some n,m € Z. Therefore, the equivalence class [A](ag,a,) Of the
root A € X7 consists of the elements which may be written as A + nagy + ma; for some
n,m € Z. We will write [A] for this equivalence class, taking into account that this class
depends on the roots o and oy defining the string. Put 3%/ ~ for the set of equivalence
classes. The family {[A]} es+ constitutes a partition of X+,

Using this notation, we can now write

S| Po) | cPal forall x et (5.8)

yeN veP

In other words, for each A\ € ¥* the subspace el gI is an Sg-invariant subspace of the
tangent space s. Clearly, S0 is a CPC submanifold if and only if the eigenvalues of S¢ are
independent of the unit normal vector £ when restricted to each of these invariant subspaces
) vl g,j for every A € ¥*. Thus it suffices to consider the orthogonal decomposition

noV = @ @gj (5.9)

AEXt /~ \vE[N]

and to study the shape operator when restricted to each of these Sg-invariant subspaces.
These invariant subspaces will be determined more explicitly in Lemma by using the
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concept of (o, a1)-string of \. However, note that one of them is very easy to determine.
Since o and oy are simple roots and connected by a single edge in the Dynkin diagram,
the (ap, aq)-string of ayq is just the set of roots of a rank 2 symmetric space of non-compact
type whose Dynkin diagram is of type As. Therefore, studying the shape operator S
when restricted to the Sg-invariant subspace @76[%] gI is equivalent to studying the CPC
property of the submanifold S-o in one of the symmetric spaces SL3(R)/SOs3, SL3(C)/SUs,
SL3(H)/Sps or E5*°/F,. The remaining part of this section is devoted to the study of the
shape operator of S - o when restricted to the vector space @ve[ao] gI , or equivalently, to
classifying CPC submanifolds in these rank 2 symmetric spaces under the hypotheses of
Theorem [(5.0.21

We restrict now to the rank 2 symmetric spaces of non-compact type whose Dynkin
diagram is of type As. In this case we have X7 = {ap, a1, a0 + a1} and || = |ay| =
lag + a1 = v/2. From Lemma we see that dim(g,,) = dim(g,,) = dim(gagra,)- In
line with the construction that we explained at the beginning of this section, we consider
the subalgebra

5 =aD (gayg © Vag) ® (8a1 © Vo) © Jagras

with V =V, @& V,, and {0} # V., C ga,. k € {0,1}. We put V;, =V, and T = go, S Vi-
If Uy, Uy are linear subspaces of g, we denote by [Uy, Us] the linear subspace of g spanned

by {[u1,us] : uy € Uy,us € Us}. The following result will help us computing the shape
operator of S - o explicitly.

Lemma 5.2.3. Let 0 # &, € Vi, k € {0,1}. Then

Yaotar = ¢€0 (‘/1) ® ¢§0 (Tl) = ¢§1 (Vb) D ¢€1 (TU) (510)

are orthogonal decompositions of §ag+a,- Moreover, if dim(Vy) = dim(V;) = dim([Vp, V1)),
then:

(1> qbfo(vl) = 92551 (%) = [V(),‘/l] and
¢§0(T1) = ¢€1(T0) = [VbaTI] = [VhTo]-

(i) If Ty # {0}, then dim(T}) > dim(V%).

(i) The maps (¢oe, © ;)| : To = 11 and (pge, © dg,) |y 2 T1 — To are linear isometries
and
sO(@adV)=TyoT @ [Vo,Th] @ [Vo, V1]

is an orthogonal decomposition of § © (a ® V).

Proof. According to Proposition , we deduce that the maps ¢5O\ga1: Jo1 — Baotay
and ¢£1|ga0: Oao — Gap+a, are linear isometries. Since go, = Vi @ T} is an orthogonal
decomposition by construction, we get .

Assume from now on that dim(Vp) = dim(V;) = dim([Vo, Vi]). As ¢g (V1) C [Vo, V3]
and dim(¢g, (V1)) = dim(V1) = dim([Vo, V4]), we get ¢¢, (V1) = [Vb, V4], and analogously,
oe,(Vo) = [Vo, V4]. From we then obtain the other part of (). From (i) we get
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dim(7y) = dim([71, Vo)). If dim(7}) > 0 we also get dim([17, Vp]) > dim(V4) from Propo-
sition [5.2.2] Altogether this implies dim(7,) > dim(Vp) if dim(77) > 0. Analogously,
dim(73) > dim(Vy) if dim(7;) > 0. Note that dim(7p) = dim(7}). This proves (ii). Recall
that ¢g, (T1) = ¢¢, (To) is orthogonal to ¢, (V1) = ¢ (Vo). For Xy € Ty and n; € V) we
have

((Pogy © D¢, )(X0), M) an = (¢e,(Xo0), Peo (1)) an = 0.

Since dim(Vp) = dim(V;) and dim(7p) = dim(7}) we get that (¢ge, © ¢¢,)|n,: To — 11 is a
linear isometry. This implies . [

The next result provides an algebraic characterization of the CPC property of the orbit

S-o.
Proposition 5.2.4. Let s be the subalgebra of a & n defined by
s=ad (gao © ‘/0> S” (gal © ‘/1> D Jap+a

and S be the connected closed subgroup of AN with Lie algebra s. Then the orbit S -0 is a
CPC submanifold of the symmetric space G/K = AN if and only if dim(Vy) = dim(V;) =
dim([Vp, Vi]). Moreover, if S - 0 is a CPC submanifold, then its principal curvatures are
:I:\/Lﬁ, both with multiplicity dim(7p), and 0 with multiplicity dim(gag+a,) + 2

Proof. Assume that the orbit S -0 is a CPC submanifold. Let j, k € {0,1} with j # k and
¢, € V; be a unit vector. According to (5.10]), the tangent space s of S - 0 at o has the
orthogonal decomposition

s=a®T; T, ® de;(Th) D pe; (Vi)

We saw at the beginning of this section that S|, = 0. Using Lemma and
Proposition [5.2.2, we get following expression for the shape operator S, :

V28, X = 6¢,(X1,) + doe,(Xo (1),

where X € s is a tangent vector and the index to X denotes the orthogonal projection
of X onto that space. In particular, dim(ker(Se,)) = 2 + dim(7}) + dim(V%). Since S -
o is a CPC submanifold, we have dim(ker(Se;)) = dim(ker(Se,)) and thus dim(7};) +
dim(V;) = dim(7%)+dim(Vj). On the other hand, we have dim(7})+dim(V}) = dim(ga,;) =
dim(ga, ) = dim(7}) + dim(Vj). From the previous two equations we easily get dim(V})
dim(V}), that is, dim(Vy) = dim(V;) (and then also dim(7p) = dim(7})).

We now investigate the shape operator S with respect to the unit normal vector { =
\%(fg +&1). Since S¢ = \%(850 + S, ), we get

28:X = ¢y (X1y) + D¢, (X)) + Pogo (X, (1)) + Poer (X, (1))
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Since all the ¢-maps are linear isometries on the corresponding spaces (see Lemma [5.2.1]),
we obtain

ker(Se) =a@{X € To® T\ : ¢ey(X1y) + b¢,(X1,) = 0}
D {X € gagra, : X¢£0(T1) =0= X¢51(T0)}
=a® {po,Y — poe,Y €ToDT1:Y € ¢, (T1) N e, (To) }
© (D¢, (V1) N g (Vo))

Since S - 0 is a CPC submanifold, then dim(ker(S;,)) = dim(ker(S¢)) and therefore
dlm(TJ) + dlm<vk> = dim(¢£e (Tl) n (bél (TO)) + dim((on(‘/l) N (bfl (VO))

Again, since all the ¢-maps are linear isometries on the corresponding spaces, this is possible

only when ¢¢, (T7) = ¢¢, (Th) and ¢g, (V1) = ¢, (Vo). As & € Vp and & € V) are arbitrary

unit vectors, this implies in particular that dim([Vp, V4]) = dim(Vy) = dim(1}).
Conversely, assume that dim([Vp, V1]) = dim(Vy) = dim(V}). Let & be a unit normal

vector of S -0 at o. There exist unit vectors {, € Vj, & € Vi and ¢ € [0, 5] so that

¢ = cos(p)&o + sin(p)&;. From Lemma we have the orthogonal decomposition
s=a® Ty ® (Pog, © e, )(To) © ¢, (To) & [Vo, VA

(5.11)
=ad Ty T & [Vi,To) @ [Vo, VA

of the tangent space s of S -0 at 0. As shown above, we have
V285, X = 6¢,(Xn,) + dog, (X, (11))-
This implies

\/§S§X = COS(SO) (¢€0 (XT1) + ¢9§0 (X¢>§0(T1)>)
+ sin(p) (P, (X1,) + o, (Ko, (10)))-

We immediately see that S¢ vanishes on a@®[Vp, V;]. Next, consider the vectors 0 # X € Tp,
o6, (X) € Vi, Ty] = [Vo,Th] and ¢ge,(¢pe, (X)) € Ti. The 3-dimensional subspace of s
spanned by X, ¢¢, (X), dog, (0, (X)) is Se-invariant and the matrix representation of S
with respect to the basis X, ¢¢, (X), e, (0g, (X)) is

1 0  sin(p) 0

— | sin(p) 0 cos(p)
V2 OSD cos(p) OSD

The eigenvalues of this matrix are 0 and :I:\/Li. It follows that S - 0 is a CPC submanifold
of AN. The statement about the principal curvatures and their multiplicities also follows
from this calculation. N
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The previous result implies that the codimension of a CPC submanifold is even. How-
ever, as we will see in the next result, there are further constraints on the codimension.

Corollary 5.2.5. Let s be the subalgebra of a & n defined by
5§ =0 (gap © Vo) ® (ga; © V1) @ Jag+an

and S be the connected closed subgroup of AN with Lie algebra s. Assume that S -0 is a
CPC submanifold of G/K = AN.

(i) If G/K = SL3(R)/SOs3, then S - o has codimension 2.

(i) If G/K = SL3(C)/SUs, then S - o has codimension 2 or 4.
(iii) If G/K = SL3(H)/Sps, then S - o has codimension 2, 4 or 8.
(iv) If G/K = E;*/F,, then S - 0 has codimension 2, 4, 8 or 16.

Proof. According to Proposition [5.2.4] for (i) and (ii) there is nothing to prove since the
dimensions of the root spaces are 1 and 2 respectively. In the cases (iii) and (iv) the
dimensions of the root spaces are 4 and 8 respectively, and therefore we need to exclude
the possibility for codimension 6 in case (iii) and for codimensions 6, 10, 12 and 14 in case
(iv). The codimensions 10, 12 and 14 in case (iv) cannot occur by Proposition and
Lemma . It remains to investigate the possibility for codimension 6 in cases (iii)
and (iv). In this situation we have dim(Vy) = dim(V;) = dim([Vp, V1]) = 3.

Let 11,72, m3 be an orthonormal basis of V; and & be a unit vector in V4. The vector
& = (@on, © Pny)(&1) is non-zero by means of Proposition . On the one hand, using
again Proposition [5.2.2] we obtain

(&1, &2)an = (&1, (Pons © Py ) (§1)) an = (D, (&1), e (§1)) an
= <¢£1 (12), ¢£1<773)>AN = (12, m3)an = 0.

On the other hand, we have ¢,,(£2) = (¢, © Ppy, © Py ) (§1) = Py (&1). From Lemma
we have [0z, 0n9] € £y C €. Since 0]y = ide we have [n3, 0na] = [0n3,n2]. Using this and the

Jacobi identity we get

¢773 (52) = (gb% © §Z56n2 © ¢n3)(§1) = _<¢772 © ¢9773 © ¢n3)(§1) = _¢772 (gl)

To sum up, having in mind definition (5.7), we have shown that ¢g,(n2) = ¢¢, (73) and
be,(n3) = — ¢, (n2). Since ¢g, (V1) and ¢g, (V1) must be the same vector space by Proposi-
tion and Lemma [5.2.3|(fi), we conclude that ¢, (1) is either ¢g, (1) or —¢e,(m1), which
implies that ¢,, (£1) is either ¢, (§2) or —¢y, (&2). Since (&1, &2) an = 0, this contradicts the
injectivity of ¢,, (see Proposition . This concludes the proof. ]

We want to derive a more geometric characterization of the CPC property. For this,
we first prove an auxiliary result.
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Lemma 5.2.6. Let X|Y € gogtay be orthonormal (and then G/K # SL3(R)/SOs). Then:

(i) The linear map 1 ad([0X,Y]) defines a complez structure on the vector space RX ®RY
spanned by X and Y .

(i) The linear map 5 ad([0X,Y]) defines complex structures on the vector spaces go, and
Yoy -

(iii) Let X,Y,Z € @agta, be orthonormal (then G/K is either SL3(H)/Sps or E5*°/Fy).
Define J, = Lad([0X,Y]), Jo = 2ad([6X,Z]) and J; = Jy o Jo. Then {Jy, Jo, J3}
defines quaternionic structures on the vector spaces go, and gq, -

Proof. : First, using the Jacobi identity, 2(c + a1) ¢ ¥ and Lemma , we obtain
[0X,Y], X] = —[[X,0X],Y] = [[6X, X],Y] = 2|ag + o |*Y = 4Y. (5.12)

According to Lemma we have [0X,Y] € ¢ C ¢. Since 0|, = ide we have [0X,Y] =
[X,0Y]. Together with (5.12)), we deduce [[0X,Y],Y] = [[X,0Y],Y] = —[[0Y, X].Y] =
—4X. Thus we have (5 ad([0X,Y]))? = —id on RX ® RY.

: Let W € g,, for k € {0,1}. Using the Jacobi identity, the equations ,
and [0X,Y] = [X,0Y], and Lemma [5.1.2{(]), we obtain

[0X, Y] [[0X, Y], W] = —[[[[0X, Y], W],0X], Y]

= [[W,0X],[0X, Y], Y]+ [[0X, [6X, Y]], W], Y]

= [[W,0X], [X,0Y]], Y] = [[0[l0X, Y], X], W], Y]
= —[[0Y, [W,0X], X]], Y] — 4[[0Y, W], Y]

= [[0Y, [[0X, X], W], Y] = 4[[0Y, Y], W]

= 2[[ [ apta1; W]LY] - 8[Hoco+a1a W]

= 2[[9Y W] ] —8W = 2[[9Y, Y],W] —8W

= 4[ ao+ar ] SW =4W — 8W = —4W.

(ii): With analogous arguments as above, we obtain

60X, Y], [[0X, 2], W]] = —[l[[6X, Z], W], 6X], Y]
= [[[W,0X], 10X, Z]], Y] + [[[0X, [6X, Z]}, W], Y]
= [[[W,0X],[X,02]], Y] - [[6[[60X, Z], X], W], Y]
—[107,[w,6X], X]], Y] — 462, W], Y]
= [162,[[6X, X], W], Y] = 4[[62,Y], W]
= 2[[02, [Hagtor, WII, Y] + 4[[0Y, Z], W]

=2[[02,W],Y] + 4[[0Y, Z], W]
= —2[[0Y, Z), W] + 4[[0Y, Z], W] = 2[[8Y, Z], W].
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Using the previous equality and [0Y, Z] = [V, 0Z], we deduce

HGXv Y]? [[QX, Z],W]] = 2[[9K Z],W] = _2[[827 Y],W]
= —[[0X, 7], [[6X,Y],W]].

Now define J; = 5ad([0X,Y]) and J, = jad([6X, Z]). We just proved (J; o Jy)lg, =
—(Ja 0 J1)lg,, - Hence, using and defining J3 = J; o J,, the result follows. O

Remark 5.2.7. We state here a generalization of Lemma[5.2.6] to arbitrary symmetric spaces
of non-compact type. Assume that A € X7 with 2\ ¢ X*. Then every 2-dimensional
subspace RX @ RY of g,, with X, Y € g, orthonormal, can be viewed as a complex vector
space with complex structure ﬁ ad([0X,Y]). Furthermore, each 4-dimensional subspace
of g, can be described as a quaternionic subspace. Choose X,Y,Z € g, orthonormal.
First, using 6| = id; and the Jacobi identity, we deduce

[[0X7Y]>Z] = [[Xv GYLZ] = _HHK Z]vX] = _[[Yv HZ]aX]
=07, X],Y]|=17,0X],Y]| =—-[0X,Y], Z], (5.13)

which implies [[0X,Y], Z] = 0. Let W be a 4-dimensional subspace of g, and X,Y, Z, T €
W be orthonormal. Then Ji, J5, J3 with

1

1
o = 50X, 2) - ad (9. 7))
J3=JioJo

is a quaternionic structure on W.

If we think about our symmetric spaces of type A, in terms of matrices, we have
canonical real, complex, quaternionic or octonionic structures on the root spaces. More
precisely, the Iwasawa decomposition G = K AN gives

T11 T2 T13 T11, T2, T33 € R;
G/K = AN = 0 oy o3 | 1 Ti2,T13, %23 € IF;
0 0 33 T11%92733 = 1
with
R if G/K = SL3(R)/SOs,
F— C if G/K = SL3(C)/SUs,
|H if G/K = SLy(H)/Sps,
0 ifG/K=E;*/F,.

The x15- and xes-entries correspond (on Lie algebra level) to the root spaces g,, and
ga, respectively, and the zy3-entry corresponds to the root space goy+q,- The standard
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examples of CPC submanifolds in these symmetric spaces are given by

T4 Ti2 T3 T11, To2, T33 € R;
0 oy o3 | : Ti2,T23 € F O Fy;
0 0 33 13 € F; 211090733 = 1

with Fy € {R,C,H, O} and Fy C F. If Fy = F, we get the totally geodesic submanifolds

RH? x R C SL3(R)/SO;,
RH? x R C SL3(C)/SUs,
RH® x R C SL3(H)/Sps,
RH? xR C E;*°/F,.

In all other cases the submanifold is not totally geodesic. The following result makes this
more precise.

Theorem 5.2.8. Let s be the subalgebra of a & n defined by
5 =a® (gay ©V0) ® (gar © V1) D Gagtans

Vo, Vi # {0}, and S be the connected closed subgroup of AN with Lie algebra s. Then S -o
1s a CPC submanifold if and only if one of the following statements holds:

(1) VE) & ‘/1 = Bap @gal}' or
(i) Vo @ Vi is a proper subset of goy, D 9o, and

(a) Vo and Vi are isomorphic to R; or

(b) Vo and Vi are isomorphic to C and there exists T € €, such that ad(T) defines
complex structures on Vo and Vi and vanishes on [V, Vi]; or

(¢) Vo and Vi are isomorphic to H and there exists a subset | C €, such that ad(l)
defines quaternionic structures on Vo and Vi and vanishes on [Vy, Vi].

Proof. Assume that S-o is a CPC submanifold. From Proposition[5.2.4 we have dim(Vp) =
dim(Vy) = dim([Vp, V1]). Recall that T = ga, © Vi, £ € {0,1}, and hence dim(7p) =
dim(7}). If dim(7p) < 1, we have (i) or (iia]). Assume that dim(75) > 2. From Lemma
we get [Vo,Th] = [V4,To] and dim([Vp, T1]) = dim(7p) > 2. Note that [Vo, T1] € gagta-
Thus, using elements in [Vp, 71], we can construct complex structures (following Lemma
if dim(7}) = 2) or quaternionic structures (following Lemma if dim(7p) >
2) on ga, and g,,. From (5.13)) we deduce that these structures vanish on [Vp, V;]. Thus
it remains to check that these structures can be restricted to Vy and V;. In other words,
we need to verify that ([[0X,Y],&], Zx)ay = 0 for X, Y € [V, Th] = [V4, To), & € Vi and
Zy, € Ty. Let j € {0,1} with j # k. There exist L; € T; and n; € V; so that X = ¢, (L;)
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and Y = ¢z, (n;). Then, using the Jacobi identity, the fact that (-,-)p, is f-invariant, (L.1)
and Proposition [5.2.2] we obtain

<H0X’ Y]agk]a Zk:>B9 = —<H§k,9X],Y], Zk>B9
= <[€k7‘9X]7 [ZkaeYDBo = <[‘9£k7X]7 [6Zk7Y]>Be

= 2(ge, © Vg, (Lj), boz, © ¢z, (1)) B, = 2(Lj,nj)B, = 0,

which implies that or holds.

Conversely, if (fi)) or holds, then S0 is a CPC submanifold by Proposition m For
case , put J = ad(K) with K € ¢. By assumption, we can write V, = RX; & RJ X}
with 0 # X, € Vi. Then [Vp, V4] is spanned by [Xo, X1, [JXo, JX1], [Xo, JX1], [J X0, X1].
Since J = ad(K) is a derivation and vanishes on [Vj, V;], we have

0 = J[Xo, X1] = [J X0, X1] + [Xo, JX1],
0= JQ[X()aXl] = [J2X07X1] + Q[JX(% JXl] + [X()a J2X1]
- 2([JXO, JXl] - [Xo,Xl]),

which implies dim([Vp, V4]) = 2. Thus S - 0 is a CPC submanifold by Proposition
In case we can write J, = ad(K,), K, € &, v = 1,2, 3, for the quaternionic struc-
ture. Then Vj is spanned by Xy, J; Xi, Jo Xy, J3 X with 0 # X, € Vi. As above, we get
[, Xo, X1| = —[Xo, J,X1] and [J, Xo, J,X1] = [Xo, X1]. For v, pu € {1,2,3} with v # p we
have J,.J, = +J, and hence [J, X, J,X1] = [J2Xo, J,J,X1] = £[Xo, J,X1]. Altogether
this implies dim([Vp, V1]) = 4 and from Proposition we conclude that S - o0 is a CPC
submanifold. ]

This finishes the proof of Theorem for the symmetric spaces of non-compact type
SL3(R)/SO3, SL3(C)/SUs, SL3(H)/Sps and E;?°/F;. Recall that this is equivalent to
characterize the CPC property of the shape operator S of the examples we constructed
in a general symmetric space G/K, when it is restricted to the Sg-invariant subspace
Dicpoo) v

As we mentioned at the beginning of this section, all the examples of Theorem [5.0.2
can be described as canonical extensions of CPC submanifolds in the above four symmetric
spaces. As was shown in [47], several geometric properties of submanifolds are preserved via
canonical extensions. However, the CPC property is not preserved in general by canonical
extension. For example, the maximal flat A - 0 = R? is a totally geodesic submanifold of
SL3(R)/SO3. However, its canonical extension to the symmetric space SL4(R)/SOy is not
even austere. For this reason we need to analyze more thoroughly the shape operator of
the examples described in Theorem [5.0.2

5.3 Canonical extensions of CPC submanifolds

In this section we calculate the shape operator of the canonical extensions of the exam-
ples that we investigated in the previous section. We will conclude that these canonical
extensions are also CPC submanifolds.
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The concept of canonical extension was introduced in [I§] and studied in the context
of cohomogeneity one actions. We refer the reader to [I8] for details, but roughly it
works as follows. Every subset ® of II determines a parabolic subgroup Q¢ of G. Let
Qs = Mg AsNg be its Langlands decomposition (see Section . The orbit B = Mg - 0
is a totally geodesic submanifold of M whose rank is equal to the cardinality of ®. If S is a
subgroup of Mg, then SAsNg is the canonical extension of S from Mg to G and the orbit
SAeNg -0 C M is the canonical extension of the orbit S0 C Bg. If there exist ag, aq € 11
so that oy and a; are connected in the Dynkin diagram of M = G/K by a single edge,
and put ® = {ay, a1}, then By is one of the symmetric spaces SL3(R)/SO3, SL3(C)/SUs,
SL3(H)/Sps or E;g?°/F,. In Theorem we classified the CPC submanifolds of Bg of
the form S - 0, where s = a @ ((goy D 9ay) © V) @ Gagtas- In this section we will prove
that the canonical extension of S -0 C Bg to the symmetric space M = G/K is a CPC
submanifold if and only if S - 0 is a CPC submanifold of Bg.

Let G/K be a symmetric space of non-compact type, with at least two simple roots aq
and oy connected by a single edge in its Dynkin diagram. Our approach for constructing
new examples was to take a subspace V' C g,, ® go, and define the subalgebra s =
a® (ne V). Let S be the connected closed subgroup of AN with Lie algebra s. We are
interested in the geometry of the submanifold S -0 of AN = G/K.

Let £ € V be a unit normal vector. As we clarified in Section [5.2] the subspaces
@VGP\] gl in the orthogonal decomposition

nov= P Do

AETt /~ \vE[N]

are all Sg-invariant. Therefore, S - 0 is a CPC submanifold of M if and only if for all unit
normal vectors £ the shape operator S¢ has the same eigenvalues when restricted to each of
these subspaces. We clarified this in Theorem for the invariant subspace €D, 1o, a,.
In this section we will clarify this for the remaining subspaces in the above decomposition.
The following result explains the above decomposition in more detail.

Lemma 5.3.1. Let X be the root system of a symmetric space of non-compact type with at
least two simple roots cg and vy connected by a single edge in the Dynkin diagram. Then
the equivalence class [N of a positive root A € X\ (Rag @ Ray), which has minimum level
in its (ap, aq)-string, can be described as follows (with k € {0,1} and indices modulo 2):

(1) N ={A} if (A ag) =0= (X, ).
(i) [N = {0+ A+ g+ ap b, if Jaw] = [N and (A, ap) £ 0.

(111) [/\] = {)\,)\+ozk,)\—i—ozk—l—ozkﬂ,)\+2ak,)\—I—2ak+ak+1,)\+2ak+2ak+1}, Zf|04k| < |)\|
and (A, ag) # 0.

Proof. Since A, ag, a are linearly independent, they generate a root system R C X of rank
3. We can assume that A, ag, a; are positive roots in R.
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If R is reducible, we must have R = Ay, & A; with Ay generated by g and a; and
A; generated by A. It is clear that this is equivalent to [A\] = {A} and (A, ay) = 0 for
k € {0,1}, which corresponds to case (i).

If R is irreducible, then R is isomorphic to Az, Bs, C3 or BC3. The result follows
by inspecting these rank 3 root systems case by case and taking into account that A\ has
minimum level in its (g, aq)-string. If R = Az or R = B, we get (ii). If R = C5, we get
(iii). Finally, if R = BCj3, then A is either reduced or non-reduced. If X is reduced, we get
(ii), and if A is non-reduced, we get (iii). O

In view of Lemma [5.3.1] we have to investigate three cases.
Case (i): [A\] = {\}. From (5.6) and (1.3) we see that S; vanishes on gy = g .
Case (ii): [A] = {\, A + ag, A + o + ag41}. We consider the subspace

g/\ @ g)\+01k @ g)\+ak+ak+1 g S.

We write £ = cos(¢)&x + sin(¢)&k1 with ¢ € [0, 7], & € Vi and &1 € Viqr. Note that
Agr = —land Ay, | rta, = —1. For the pairs (7, v) = (N o) and (7,v) = (A + g, apy1)

we obtain from Proposition that Itoy, = ¢§k (g)\) and I taptagpr — (¢§k+1 © gbfk)(gA)
Let 0 # X, € gx. From (5.6) and (1.3)), together with the fact that A + ap1 & X, we get

St Xo = Se, (D, © P, )(Xn) = 0.

For the pair (v,v) € {(\, ax), (A + ok, axi1)}, we deduce from (.2) and Proposition [5.2.2]
that

|040|

S&kXA = - (VXA&%‘) ¢§k <X>\>

T o
S§k¢§k X)\ (V%k(xmgk) — | 0|X)\,
T o)
8§k+1¢§k (Xx) = (v¢gk(XA)€k+1) = | 0| <¢§k+1 © ¢£k)(X>\>
_ T _ ’040|
S§k+1(¢§k+1 0 Pg,)(Xn) = — <V(¢§k+10¢§k)(XA)§k+1> = g (X))

Thus, the 3-dimensional vector space spanned by the vectors X, ¢¢, (X) and (¢, ., 0¢¢, ) (X)
is Sg-invariant. It follows that the matrix representation of S¢ is given by dim(gy) blocks

|

0 sin(yp) 0

with respect to the decomposition g\@¢e, (gr) D (0, ,, ©¢¢, )(9x). An elementary calculation
shows that S restricted to gy ® gxta, D Gr+ap+ar,, has the three eigenvalues 0 and :I:'o‘OI

all of them with multiplicity dim(gy). Thus we established that the eigenvalues of S¢ are
independent of the choice of £ for case (ii). Note that cases (i) and (ii) together already
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settle the problem if G/K is a symmetric space whose Dynkin diagram is of type A,, B,,
Dra E67 E7 or Eg.

Case (iii): [A] = {\ A+ ap, A + o + apr1, A+ 20, A+ 20 + agpr, A+ 20 + 20541 -
We consider the subspace

g>\ @ g/\—i-ak @ g)\-i-QOck EB g)\+ak+ak+1 @ g)\+2ak+ak+1 @ g)\+2ak+2ak+1 g 5.

We need to understand better the behavior of the Levi-Civita connection when restricted to
this subspace. As we did in Proposition [5.2.2] we will calculate the Levi-Civita connection

using the map ¢, defined in (5.7).

Proposition 5.3.2. Let v € X7 be the root of minimum level in its v-string, for v € ¥T
non-proportional to vy satisfying A,, = —2. Let § € g, be a unit vector with respect to
(,-)an and X € g,. Then:

(i) Vx& =L (X);

(ii) Vo€ = =4 (X + 3(X));

fii) Vo€ = — e (X);

(iv) ¢g|ng 0y = Gy+20 1S a linear isometry;
(v) Vw& =0 for al W € g4, © ¢¢(g).

Proof. Using 1D and 1' we easily obtain V& = —%qbg(X ). The same arguments
together with Lemma show that

Ve = 516600, 6 [0:00,06) = - (6230 + ).

Note that A, .4, = 0. Thus, combining (5.5, (5.7) and the fact that v + 3v is not a root
with Lemma [5.1.3)(iil), we obtain

1
4P

e .16, X)) = — g (0.

1

Moreover, using again Lemma [5.1.3|(iii), we deduce

= (e VI (6 2D an

1 1
= _qu,}/], [657 [Ea [672]“>AN - W

= (0e(Y),0¢(Z))an = (Y, Z) an

for Y,Z € g,. It is then clear that ¢§ is an injective linear map preserving the inner
product when restricted to g,. Furthermore, from Lemma we know that dim(g,) =

(0e(Y), 92(Z2)) an
<[£a Y]? [57 Z])AN
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dim(g-+2,), and thus d)?] ¢ Oy — @y12, is a linear isometry. Note that Lemma 5.1.3 . iii]) for
A, = —2is equivalent to (¢pe 0 ¢F)|g, = ¢¢lg,. Then, we deduce that ¢¢(gy) = ¢9§ Oyt20)-

To complete the proof, fix a vector W € g,4, © ¢g(gfy) = Gy+v © Goe(gy42,). On the
one hand, we have (¢¢(W),Y)an = (W, ¢pe(Y))an = 0 for all Y € g,19,. On the other
hand, <¢9§( ) Z)an = (W, ¢e(Z))an = 0 for all Z € g,. This implies Vi:§ = 0 for all
W € gy41 © ¢¢(g,), which finishes the proof. O

Let £ € V be a unit vector and, as above, write & = cos(¢)&, + sin(p)&k. 1. We first
study the shape operator S¢ on the subspace

gD ¢§k (gk) D ¢§k (gk) S¥ (¢€k+1 © ¢$k)(g>\)
® (D, © D) (00) @ (9%, © 92, (82)-

Let 0 # X, € g). First, using (5.6), (1.3)) and the fact that neither A + o,y nor A +

2041 + af, are roots, we deduce

(5.14)

Seon Xn = S, (07, © 97,)(Xx) = 0.

We will analyze the aj-string of A and the ajiq-string of A + 2a4 simultaneously. Let
€ {A A+ 204} and define r(p) = k if p = A and r(u) = k + 1 otherwise. Put X, = X

if 4 =X and X, = ¢7 (X,) otherwise. Using (5.2) and Proposition we obtain

||

\/—¢§r<u)<
Seo b (X = — (Voo conbon) =22 (x,+ 2 (X
Er(u) Plr(u) 1 Pe ) (Xu) ST(1) V2 H Er ) w))s

Sgr(u) (vXu&“ )T )

T
2 |
Sgr(u) ¢£T(H) (XH) == (V¢ET<#) (Xu)gr(ﬂ)) \/_ gbgT(H) ( )

Note that As,  dtar = Aaprtap+ar, = —1. Then, using (5.2) and Proposition for
the pair (,) € {(\+ ax, ake1), (A -+ 0k + g, 0x)}, we deduce

\040|

Ser1 06, (Xn) = = (deryy © D) (X)),
St (D, © 9 )(Xn) = ‘O;O| Pe, (X),
Se. (G611 © 96)(X2) = 12 (9 0, 0 0) ()
Se (e, 0 Be,y 0 0, ) (X)) = '0‘0' (e, © 66,) (Xn):

So far we calculated the shape operator S¢ on the subspace in (5.14). However, all this
information is not conclusive as (g, o @, ., © ¢, )(Xx) and (¢, ., o ¢, )(Xx) both belong
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t0 @rt2ay+ay,» Put we do not know how they are related. Consider the (v, g11)-string
containing \:

9A+2ak

d(ék) ad(€x+1)
9A+ak 9A+20k+%+1 g>\+2ak+2ak+1
gk k+1 O
% Av

g)\+ak+ak+1

O

(Note that the nodes in this diagram represent root spaces and not roots.) The problem is
that it is not clear whether or not the square diagram in the middle is commutative. More
precisely, we do not yet understand the behavior of the vector ¢, (X)) depending on the
part of the diagram it follows. In terms of brackets, the key point is to understand the

relation between [[¢g, (X2), &k, Exr1] and [[¢g, (X)), &ksa], €. Using (5.7) and the Jacobi
identity twice, we obtain

V2| [, (Xn), (s, &kl = —[[Xn, &, [Gesr, &)

[[€ks €1, k] Xa] + [[[€k+1, €kl X ], &kl
= [[[€rr1, E)s Xa]; €l

= —[[[X0, &eals &kl &) — [[[s Xa], Era]s €]
—[[[&: X0, Gl &) = — V2] aol[[Pe, (Xn), G, &).

Using the last equality and writing Y = ¢, (X)) for the sake of simplicity, we deduce

2|ao*(dey,, © Pe) (V) = [Ersr, €, Y]]
= ([ [V &) + [V, [Ert1, Ex]])
= [[Y &), &l = [V (G, &&]]
= [V, &rsa], &kl + [V, Erral, §k) = 2[ks [Erv1, Y]
= 4lag)? (¢, © e, )(Y),

which proves that the diagram is commutative up to a constant. In particular, we estab-
lished that the vector space spanned by the vectors

X, ¢§k(X)\)7 Q%k(X)\)? (¢Ek+1 O¢Ek)(X>\)a
(¢§k+1 ° ¢§k>(X>\)> (¢gk+1 o ¢§k)(X>\)

is Sg-invariant. Therefore, the matrix representation of the shape operator S¢ on that
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subspace is given by dim(g,) blocks of the form

0 V2cos(p) 0 0 0 0

V2cos(¢) 0 2cos(p) sin(p) 0 0

|ao] 0 v2cos(p) 0 0 +2sin(p) 0

2 0 sin(ep) 0 0  cos(yp) 0
0 0 V2sin(p) cos(p) 0 V/2sin(p)

0 0 0 0 +2sin(p) 0

with respect to the decomposition in . A straightforward calculation shows that
the eigenvalues of S¢ are %oy, i%, 0, each of them with multiplicity dim(g,), except 0,
which has multiplicity 2 dim(g,).

Finally, from Lemma [5.1.1] and Lemma [5.1.3 we see that

dlm(g)\) = dim<g)\+2ak) = dim<gk+2ak+2ak+1)

< dim(g/\-i-ak) = dim(g)\+ak+ak+1) = dim(g/\+2@k+ak+1)>

where indices are modulo 2. Define U = gyia, © ¢¢,(gx). We still need to analyze the
behavior of S¢ on the vector space

U ¢§k+1 (U) D <¢§k © ¢§k+1)(U)'
Let 0 # X € U. On the one hand, using (5.2)) and Proposition we obtain

Se. X = S, (bg, © Pe,,,)(X) = 0.

Note that Aa, ., ata, = —1 and A, ryaj+ar,, = —1. On the other hand, for the pair
(A, v) € {A+ ag, agy1), (A + ag + agr1, ax)) } we obtain

Sf (X) = T Sin(¢)¢§k+1 (X)a
Seden(X) = 122 (sin(0)X + cos(9) 05, 0 06,,,) (X)),

i |040|

85(¢§k © ¢§k+1 ) (X) - T COS(90>¢€1€+1 (X)7

using ((5.2)) and Proposition [5.2.2, Taking into account that the vector space generated by
the vectors X, ¢¢, ., (X), (¢¢, © ¢¢,,, ) (X) is Se-invariant, the matrix representation of S¢ on
U e, ,(U) ® (¢, © d,,,)(U) is given by (dim(gx+a,) — dim(gs)) blocks of the form

0 sin(ep) 0

sin(ep) 0 cos(yp)
0  cos(y) 0

|l

2

The eigenvalues are 0, @ and —@, each of them with multiplicity dim(gx1a, ) —dim(g,).

Altogether we have now established that the canonical extensions are also CPC submani-

folds.
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5.4 The classification

In this section we finish the classification in Theorem (0.2l We will show that if S - o
is a CPC submanifold of M = G/K, then it must be one of the examples presented in
Theorem More precisely, we will prove that if S - o0 is a CPC submanifold, then
either V' C g, for some a € II' or there exist ag,aq € II' with Ayy 0y = Aayae = —1
and V' C go, D ga,. Together with Theorem this finishes the classification part of
Theorem [5.0.2l We start with a result about the principal curvatures of the submanifold
S - 0. Recall that, according to (5.3]), we can write V' = @a@ V., where V,, is a non-trivial
subspace of g, for each o € 1.

Proposition 5.4.1. Let s =a® (ne V) be a subalgebra of a ®n with V = @uey Vi and
W CII'. Lety € X be the root of minimum level in its v-string, for v € 1) non-proportional
to v. Let I be the set of roots in the v-string of ~v. Consider the restriction of the shape
operator S¢ of S - o to the vector space @, g, where £ is a unit vector in'V,,.

(i) If A, = —1, then i% are principal curvatures, both with multiplicity dim(gI).

(ii) If Ay = =2, then £|v| are principal curvatures, both with multiplicity dim(g] ), and
i% are principal curvatures, both with multiplicity dim(V,).
Proof. Assume first that A, ., = —1. In this case the v-string of v consists of v, y+v. Since

v+ v ¢ II, we have gLV = gv4+v. Let § € V, be a unit vector and consider the restriction
of the shape operator S¢ to g; @ gy4,. From (5.2) and Proposition we get

_ v

SEX = —(VX§)T = 7¢5(X),
See(X) = =(Vge)' = %'X

for X € gI. Then the 2-dimensional vector space spanned by X, ¢¢(X) is Se-invariant
for all 0 # X € gI and all unit vectors £ € V,,. Thus the matrix representation of S¢ on
9 ® (g, ) consists of dim(g. ) blocks of the form

vl (01
2 \1 0)

Finally, let Y € ¢¢(V,) and write Y = ¢¢(n) with € V,. From (5.2) and Proposition [5.2.2]

we obtain

||
SeY = 8ete(n) = — (V€)' = 777T =0.
Therefore, 4+ are the non-zero principal curvatures of S¢ on gI ® g4, and both have
multiplicity dim(g, ). This proves ().
Now assume that A, ., = —2. Then the v-string of 7 consists of v,y + v,y + 2v. Since
v+ v and v + 2r are not simple roots, we have gLV = g4, and QLQV = gy4+20- Let { be a
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unit vector in V,, and consider the restriction of the shape operator S to gI DGy DGyr20-

Let X € g). From (5.2) and Proposition we obtain

SeX = — (Vyé) = %mm,
Sete(X) = — (Vo) = %<¢§<X> L x)T
Sede(X) = — <V¢>§<X>§> = %%(X)-

Thus the 3-dimensional vector space spanned by X, ¢¢(X ),gbg(X ) is Sg-invariant for all
0 # X € gI and all unit vectors ¢ € V,. Thus the matrix representation of S¢ on
g, @ de(g)) @ di(g,) consists of dim(g,) blocks of the form

||

v 010
— | 1 0 1
V2 010
This shows that +|v| are principal curvatures of the shape operator S¢ with multiplicities
at least dim(g] ). There are two other cases to analyze. Assume that X € ¢¢(V,) and write

X = ¢¢(n) with n € V,,. From (5.2) and Proposition we deduce

SeX = Setre(n) = — (Vo €)= %@?(”) +n)" =

%Qﬁ? (n),

vl

S0t = = (Vo) = 750600

So the 2-dimensional vector space spanned by ¢¢(n), qﬁg(n) is Se-invariant for all 0 # n € V,
and all unit vectors £ € V,,. Thus the matrix representation of S¢ on ¢¢(V,)@¢g(V;) consists

of dim(V;,) blocks of the form
vl (01
V1 o0)

Consequently, +|v| and i% are principal curvatures with multiplicities at least dim(gj)
and dim(V), respectively. Finally, assume that X € g1, © ¢¢(g,). From (5.2) and
Proposition we deduce

S X =—(Vxé)" =0.
This finishes the proof. [

We will now show that if S - 0 is a CPC submanifold, then all roots in ¥ must have the
same length. We will start by investigating the symmetric spaces G2/SO, and GS/G5.

Proposition 5.4.2. Let M = G/K be a symmetric space of non-compact type whose
Dynkin diagram is of type Go. Let oy and oy be its simple roots. Let S be the connected
closed subgroup of AN with Lie algebra s = s®(neV), where V C go, g, has non-trivial
projection onto g, for k€ {0,1}. Then S - o cannot be a CPC submanifold of M.
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Proof. We can assume |ap| > |a;| and hence |ap|> = 6 and |a;]* = 2. The a;-string of ag
consists of ap, ag + o1, o + 201, ap + 30y and we have A,, o, = —3. Let & € V,, be a unit
vector and k € {0,1}. We will determine a principal curvature of the shape operator Sg,
that cannot be a principal curvature of the shape operator Sg,. Note that [£1,&0] € Gagtas

is tangent to S - 0. Using (5.6) and Lemma we deduce

28e, 161, &) = —([[61, &0, &1] — [[&1, &), 061) T
= [517 [51, fo]]T [951, [51, 50]]
= [&1, [61, &) — Aavaolon’E = [61, €1, &)

Note that Aa,agta; = —1. From (B.6) and Lemma [5.1.3fiil), we obtain

28¢, (&1, &1, &)l = —([[&1, [, &l & — [, &1, &), 061]) T
= [517 [517 [fl,fo]]]T - [9517 [517 [élagomT
= &1, (61, €1, o)) + 8[€1, &o)-

Finally, since A,, ag+20, = 1, from (5.6) and Lemma we conclude

28¢, [€1, &1, (61, &) = =&, [, (&1, &0l &) + [[6n, [ (&0 (6, o)), 060) T
= &, [&, [, [&L &) T — (06, [& 6, [& (6L & T
= 6[&1, [§1, ol]]-

Therefore, the 3-dimensional vector space spanned by the three vectors ad(&;)&y, ad?(&1)&
and ad®(&;)& is Sg,-invariant. The corresponding matrix representation of Sg, on that
subspace is

0 4 0
1o 3
010

The principal curvatures of &g, on this subspace are i\/7_/2 and 0. If §-0is a CPC
submanifold, then \/7_/2 must also be a principal curvature of the shape operator Sg,.
However, since |ag| > ||, we deduce from Proposition [L.5.1]that |44, .| < 1 for all 4 € 3.
According to Proposition :|. all the non-trivial principal curvatures of S, are :I:\/_
Therefore S - 0 cannot be a CPC submanifold.

We now prove a similar result for symmetric spaces of non-compact type whose Dynkin
diagram is not of type Gs.

Proposition 5.4.3. Let M = G/K be a symmetric space of non-compact type whose
Dynkin diagram is not of type Go. Let S be the connected closed subgroup of AN whose
Lie algebra is s =s© (n© V), where V=@, Va- If S0 is a CPC submanifold of M,
then all roots in v must have the same length.
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Proof. Assume that there are two roots ag, y € 1 with different length and that || >
la1|. Then we have |ag| = v/2|a;| and there exists A € ¥* with A,, ,» = —2. Then )\ is
the root of minimum level in its non-trivial a;-string, which consists of A\, A + a1, A + 2a;.
Let & € V,, be a unit vector. Consider the restriction of the shape operator S, to the
tangent projection of the root spaces of the a;-string of A. From Proposition we
see that the non-zero principal curvatures of S, are +|ay|, both with multiplicity dim(gy, ),
and =+|a;|/v/2, both with multiplicity dim(V}). In particular, the submanifold S - o is
not totally geodesic. There exists v € Xt such that its ag-string is non-trivial, because
otherwise the shape operator Sg, with respect to a unit vector § € V,, vanishes, which
contradicts that S-o is a CPC submanifold. Without loss of generality we can assume that
~ is the root of minimum level in its ag-string. Since «q is a long root, Proposition [1.5.1
implies A, = —1. From Proposition we see that the non-zero principal curvatures
of S, are %|ag|/2, both with multiplicity dim(g] ). But |ay| # |ag|/2. Since S- o0 is a CPC
submanifold, it follows that |a;| cannot be a principal curvature and hence dim(g, ) = 0.
In other words, V), = g, and X is a simple root connected to a; by a single edge.

We put ay = A and define the normal vector £ = cos(p)&; + sin(p)&2, where & € V,,
for k € {1,2}. Note that oy, as generate a root system of type By (= C3). Therefore,

according to (5.6)) and (|1.3)), the vector space
g;‘rl b gl—z b g(;rl+(362 D g;—al—i—az = g;l'l D Jai+as S 9201 +as

is Se-invariant. We will now investigate the shape operator S¢ on this subspace. In fact,
studying the principal curvatures of S¢ when restricted to this subspace is equivalent to
studying the principal curvatures of S - 0 as a submanifold of a rank 2 symmetric space
whose Dynkin diagram is of type B,. First note that the as-string containing o consists
of a1, a1 + as and the ai-string containing as consists of as, as + a1, as + 2a;. We will
use Proposition for both cases. On the one hand, the non-zero principal curvatures
of S, are £|ae|/2, both with multiplicity dim(g,, ). On the other hand, since go, = Va,,
the non-zero principal curvatures of S¢, are #|a;|/v/2, both with multiplicity dim(ga,) =
dim(V,,). This implies that dim(ga,) = dim(g,,) is a necessary condition for S - o to
be a CPC submanifold. Since V,, # {0} by assumption, we get dim(gs,) > dim(ga,)-
This means, according to [7, p. 337], that S - 0 must be contained in the symmetric space
502, . ,/SO,SO, 4y, where dim(gs,) = 1 and dim(g,,) = n. Since dim(ga,) = dim(g, ),
Vo, must be an (n — 1)-dimensional subspace of ga,. Let & € V,, and X € g, . From
and Proposition we deduce

_ o]

= 192l50x) ana S0 = 12x

Now consider &; € V,,. Since qbgl |ga2  Oay — 924, +a, 1S @ linear isometry, we have go,2q4, =
R¢§1 (&2). Recall that ¢g, g, : 8oy —* Gaita, is also linear isometry. Then, using (1.1]) and
combining definition (5.7) with Lemma [5.1.3)(i), (i), we obtain

((fe, © De,)(X), 07, (&2)) an = (e, (X), D¢, (&2)) an = —(0e,(X), P, (€1)) an
= <X, fl)AN = 0.

Se, X
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Therefore, using (5.2)) and Proposition we obtain

Sfl¢§2(X) = %(¢§1 S ¢§2(X))T = 0.

Since & = cos(p)& + sin(p)&, with & € V,,, and k € {1,2}, we deduce

i o
Se(X + 06,(X)) = sin(0) %2 (X + 5, ().
which shows that S - 0o cannot be a CPC submanifold. O

In order to finish this section, we just need to prove that S o is not a CPC submanifold
whenever there are at least two orthogonal roots in 1. One of the consequences of [12] is
that S - 0 is not a CPC submanifold when 1) has exactly two orthogonal simple roots. The
next result settles the general case.

Proposition 5.4.4. Let s = a® (n© V) be a subalgebra of a ®n, for V = Gaeyp Vi and
W C II'. Assume that there are two orthogonal roots ag,aq € 1. Let S be the connected
closed subgroup of AN with Lie algebra s. Then the submanifold S - o is not a CPC
submanifold.

Proof. In view of Proposition [5.4.2| and Proposition [5.4.3| we can assume that all roots in
¥ have the same length. Taking into account the classification of Dynkin diagrams (see
e.g. [69]), we deduce that there exist simple roots f, ..., 3. € Il so that ag, f1,..., 5, a1
corresponds to a Dynkin diagram of type A, 2. We define v =37 ; € £*. The (g, o1)-
string of 7 consists of v,y + ap, ¥+ a1,7 + g + aq. Let £ = cos(¢)&y + sin(p)&; be a unit
normal vector with & € V,,, and k € {0,1}. Using and Proposition , we obtain
that the non-trivial part of the matrix representation Sg consists of dim(gD blocks of the
form
0  cos(p) sin(p) 0
|| | cos(yp) 0 0 sin(ep)
2 | sin(yp) 0 0 cos(yp)

sin(p) cos(yp) 0
with respect to X, ¢, (X)), ¢e, (X), (¢e, 00¢,)(X) for X € g . The corresponding eigenvalues
are +4/1 —sin(2y), both with multiplicity 2. They clearly depend on ¢, which cannot
happen if S - 0 is a CPC submanifold. This implies g, =V, and v = 3; € IL.

Let &, € V,, be a unit vector. Note that ¢¢ (o) € gag+y and (¢¢, © de )(&0) € Jagtr+an
are tangent to S-o at 0. Using and Proposition , we get 28 de (&o) = |V[& =0
and

|

Se1 (e, (§0) + (06 © ¢¢,)(§0)) = %1'(% (o) + (92, © e, )(60))-

Since a + a1, ag +27+ a1 ¢ X, we deduce from (5.6 and ((1.3]) that S¢ (¢¢, 0 @¢,)(§o) = 0.
Thus, if we define § = cos(¢)&; + sin(p)§,, we get

Q
Se(de, (&) + (06, © 66,)(&)) = cos() 2 (0, (€0) + (66, 0 06, )(E0)
From this we see that S - o cannot be a CPC submanifold. This finishes the proof. ]
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5.5 Description of the examples

In this section we show that, with a few basic exceptions, the CPC submanifolds that we
introduced in Theorem [5.0.2| are not singular orbits of cohomogeneity one actions.

Recall that ag and «a; are two simple roots and A, o, = Aa,.00 = —1. Recall also that
V' is a subspace of g,, @ go, With non-trivial projections onto g,, and g,, (equivalently
Vo # {0} # V1). We are studying the orbit S - o, where S is the connected closed subgroup
of AN with Lie algebra s = a @ (n© V). First, assume that V = go, @ ga,. Then S -0 is
one of the following submanifolds, or a canonical extension to G/K of it:

(1) RH? x R = (SLQ(R)/SOQ) X R C SLg(R)/SOg,
(11) RH? x R = (SLQ(C)/SUQ) X R C SLg(C)/SUg,,
(iii)
(iv) RH? xR C E;*/F}.

RH5 x R & (SLQ(H)/SPQ) xR C SL3(H)/SP3,

These four submanifolds appear in the list [16l Theorem 3.3] of reflective submanifolds and
are singular orbits of cohomogeneity one actions. Therefore, their canonical extensions are
also singular orbits of cohomogeneity one actions.

We will now see that the remaining submanifolds that we introduced in Theorem [5.0.2
do not admit such a description. One might study them in a rank 2 symmetric space and
after that use some tools involving canonical extensions to conclude. However, for the sake
of simplicity, we will carry out a direct study to avoid the introduction of these techniques.

Assume that Vj is a proper subspace of g,, for & € {0,1} and that dim(ga,+a,) > 2.
We will assume that S - o is a singular orbit of a cohomogeneity one action and derive a
contradiction. Up to now we used the [wasawa decomposition to identify the tangent space
T,(S - 0) of the orbit S - 0 at o with s and the normal space v,(S - 0) with V. However, in
this section we will use the identification p = T,(G/K). This means that we will identify
T,(S-0) and v,(S - 0) with the orthogonal projections of s and V' onto p, which are (1 —0)s
and (1 — 0)V respectively.

If S0 is the singular orbit of a cohomogeneity one action on G/ K, then the normalizer
Ng(S-0)of S-o0in K acts transitively on the unit sphere v}(S - 0) in v,(S - 0). Let m be
the Lie algebra of Nx (S -0). Then we have [m,£] = v,(S - 0) © R¢ for each € € v1(S - o).
Let & € Vp and & € Vi be unit vectors. Taking into account that v,(S - 0) = (1 — )V,
there exists Z € m so that

[Z7 (1 - 0)50] = (1 - 6)51 S D 9—ay- (515)

Consider the orthogonal decomposition € = £, @ ), .5+ £ with €5 = €N (gD g_»), and
write Z = Zy 4+ )\ cxs Za accordingly. On the one hand, we have

[Zx; (1 = 0)&]

(5.16)
= (]- - 9)[Z/\7 50] € Gr+ao ) J—(\+ap) ) Ir—ag S J—(\—ap)
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for each A € 7. From (5.16]) and (5.15)), using [€, gx] C ga for each A € 1, we deduce
[Zo, (1 —0)&] = 0. Thus, without loss of generality, we can assume that Z, = 0 and hence

Z =3 yesi+ Zx. From (5.16) and (5.15) we also see that Z,,1s, # 0. It is now easy to
verify that

Ne(To(S - 0)) = Ne(vo(S - 0)) C b D tagra, & | P ],

)\E{Oéo,ozl}L

where {ap,a;}* denotes the set of positive roots that are orthogonal to both ag and
ar. Since m C Ne(T,(S - 0)), we can thus write Z = X + 0X + 3, 30 21 with
0 # X € gag+a,- Denote by [ the Lie algebra of Ng(S -0). It is clear that s C land Z € L.
Let Y7,...,Y, be an orthogonal basis of gay+a, © RX C s, where ¢ = dim(gag+a,) — 1.
According to Lemma [5.1.2(i),( i), the set {[Z,Y;] = [6X,Yi] : i = 1,...q} generates a

g-dimensional linear subspace W of €. Since [ is a subalgebra, we also have W C [ and
therefore W C N¢(T,(S - 0)). For 0 # n € Vi we have

[Z,Yi], (1 = 0)n] = (1 = 0)[[Z,Yi],n] = (1 = O)[[0X,Yi],n] € (1 =)V,

which is equivalent to [[0.X,Yi],n] € V; for all i € {1,...,¢}. Note that [[0X,Y;],n] =
[Y;,0[0n, X]] # 0 for all ¢ € {1,...,¢q} by using twice Proposition [5.2.2] first for [0, X]
and then for [Y;, 8[0n, X]|, taking into account that # is an isomorphism of Lie algebras.
Note also that ([U, L], L), = —(L,[U, L])p, for all U € & and L € n, which means that
(U, L] is orthogonal to L for all U € ¢, and L € n. If dim(gayta,) = 2, then Vj = Ry is
1-dimensional and 0 # [[n,0X],Y1] € V, is orthogonal to 7, which is a contradiction. If
dim(gag+a,) > 2, we have 0 # [[0X,Y;],n] € Vj for i € {1,...¢q}. Since dim(V}) < dim(7p)
by Proposition and Lemma , these g vectors must be linearly dependent.
Thus

q q

0= Zai[[er Yil,n] = ZHQX; a;Y],m| = HQX,ZGZ'YZ']W],

=1 i=1

which contradicts Proposition by the above argument. These contradictions come
from the assumption that the action of Nx (S -0) on v}(S - 0) is transitive. Therefore, if
Vi is a proper subset of g,, for k£ € {0, 1}, then the orbit S - o cannot be the singular orbit
of a cohomogeneity one action.

5.6 Further geometric explanations

In this section we present a brief geometric context for some of the algebraic constructions
in the previous sections. Consider the inclusions

SL3(R) C SL3(C) C SL3(H) C E;*°.
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The maximal compact subgroup of Ey 26 is Fy and Ey % /F}y is an exceptional Riemannian
symmetric space of non-compact type whose root system is of type As. We have

SLg(R) N F4 = SOg s SLg(C) N F4 = SUg s SLg(H) N F4 = Spg.
This leads to the totally geodesic embeddings
SLg(R)/SOg, C SL3(C)/SU3 C SLg(H)/Spg C EG_QG/F4.

The root system of these four Riemannian symmetric spaces G/K is of type As and the
multiplicities of their roots are 1, 2,4, 8, respectively. These dimensions correspond to the
dimensions of the four normed real division algebras R, C,H, . This suggests a close
relation between these four symmetric spaces and normed real division algebras.

In fact, we have totally geodesic embeddings of the hyperbolic planes over these four
normed real division algebras into these symmetric spaces:

RH? C CH? C H 2 c O
N N N A
SL3(]R)/503 C SL3((C)/SU3 C SL3<H>/S])3 C Eg26/F4

In each of the four cases, the totally geodesic submanifold FH? is reflective and hence there
exists a totally geodesic submanifold (which is also reflective) that is perpendicular to the
hyperbolic plane. These are

SL3(R)/SO3 < SL3(C)/SU; C SLs(H)/Sps C E;*°/F,

U U ] U
RH? xR C RH? xR Cc RH>xR C RH?xR
1 1 1 1
RH? C CH? C HH? c OH?
N N N N

SL3(R)/SO3 < SL3(C)/SU; C SLs(H)/Sps C E;*°/F,

The products RH* x R are precisely our orbits S - o for the case when we remove V =
0o, D ga,- Thus the normal space v,(S - 0) = V of S -0 at o coincides with the tangent
space T,FH? of FH? at o for a suitable FH?> C G/K and where F is the corresponding
division algebra.

Now suppose that V is a proper subspace of go, ® go, = T,FH?.

If F=C, then VX R®R = T,RH? for a totally geodesic RH?> C CH? C SL3(C)/SUs.

If F =M, then V ¥ RpR = T,RH? for a totally geodesic RH* C HH? C SL3(H)/Sps,
or VC®C=T,CH? for a totally geodesic CH*> C HH? C SL3(H)/Sps.

If F =Q, then V 2 R® R = T,RH? for a totally geodesic RH? C OH? C E;*°/Fy,
or V=CaoC=T,CH? for a totally geodesic CH?> C OH?> C E;*°/Fy,or V=2 H @ H =
T,HH? for a totally geodesic HH? C QH? C E;*°/F,.
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In other words, this means that the totally geodesic hyperbolic planes in G/K corre-
spond to the subspaces V' that we can remove from g,, ® ga, to obtain our CPC subman-
ifolds.

The submanifolds S - o with V strictly contained in g,, @ ga, are some kind of ruled
submanifolds. Here is a description for the simplest case when G/K = SL3(C)/SUs and
V =2 R@R. In this case we have the two reflective submanifolds RH? x R and CH? which
are perpendicular to each other at o. Consider the polar action on CH? given in (ii)(d) in
Theorem of [TT]. The orbit of this polar action through o is a Euclidean plane R?
embedded in a horosphere of CH? (equivalently, the 3-dimensional Heisenberg group N)
as a minimal surface. Perpendicular to R? at o in CH? is a totally geodesic RH* c CH?>.
Moving this R? along RH? x R through the action on RH? x R by the solvable group S’
with S’ -0 = RH? x R arising from the Iwasawa decomposition gives the orbit S -o. Thus
S - o0 is foliated by these Euclidean planes. The normal spaces are obtained by moving the
totally geodesic RH? perpendicular to R? in CH? along S - 0. According to Proposition
3.4, the principal curvatures are +1/ V2 with multiplicity 1 each and 0 with multiplicity 4.
The 0-eigenspace at o is the tangent space at o of the totally geodesic RH?® x R, and the
other two eigenspaces arise from the non-totally geodesic minimal embedding of R2.



Chapter 6
Austere submanifolds in classical symmetric
spaces

A particularly interesting subclass of minimal submanifolds which, in turn, is broader
than the class of CPC submanifolds introduced in the previous chapter, is that of austere
submanifolds. Austere submanifolds are defined by an algebraic property that must be
satisfied at every point of the submanifold, namely, the principal curvatures (counted with
multiplicities) with respect to any unit normal vector are invariant under change of sign.

The aim of this and the following chapter is to establish the classification of austere
submanifolds that arise as orbits of the solvable part Sg of parabolic subgroups of the
isometry group G of an irreducible symmetric space of non-compact type M = G/K. In
order to formalize our result, we need to introduce some terminology and notation. We
refer to [18], [47] and [50, Section 2.7] for further information.

Let M = G/K be a symmetric space of non-compact type, where G is the connected
component of the identity of the isometry group of M, and K is the isotropy group at some
base point 0 € M. We will make use of the concepts and results stated in Section
Thus, let ¥ be the set of restricted roots of the real semisimple Lie algebra g of G. Consider
a positivity criterion on X, and let X% be the corresponding set of positive roots, and II
the associated system of simple roots.

Now take any subset ® of II. Let X% denote the subset of positive roots in X% that are
not spanned by ®. Define the abelian and nilpotent Lie algebras

ap = ﬂkera and ng = @ga,

acd acx®

respectively. Then, the direct sum s¢ = ag @ ng turns out to be a Lie subalgebra of a & n.
Let Sp be the connected Lie subgroup of AN whose Lie algebra is s¢.

In this chapter we focus on the classification of those homogeneous submanifolds Sg - 0
that are austere in the irreducible symmetric spaces of non-compact type M = G/ K with
classical Lie group G. The study of the symmetric spaces of exceptional type is postponed
to Chapter [/} Thus, the main result of this chapter is the following

Theorem 6.0.1. Let G/K be a classical symmetric space of mon-compact type whose
Dynkin diagram adopts one of the following configurations
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Qg

051 Q1 Q. a Q9 o

where the second diagram can be of type B, or C... Let ® be a proper subset of the set I1 of
simple roots of G/K. The submanifold S¢ - 0 is austere if and only if one of the following
statements holds:

(i) @ is discrete, or
(il) ® = By, satisfying the conditions specified in Table or

(iii) @ = &g U Dy, where ®q is orthogonal to ®1 and they satisfy the conditions specified
m Table (in the gray row all the roots have the same multiplicity).

L1 Py |

A, | Symmetric, connected 0

B, B, n<r Discrete
B, {2, 0,1} Discrete
C, Chy,n<r Discrete
BC, BC,, n<r Discrete
D, D,,n<r Discrete
D, {3, qp_2,0,_1} Discrete
D, {ay_3,0,_9,0,} Discrete

Table 6.1: Classification in classical symmetric spaces.

In the statement, a subset ¥ of the simple system II is said to be discrete if any two
roots in W are orthogonal (equivalently, no edge links them in the Dynkin diagram of IT).
A subset W C II is said to be connected if it cannot be expressed as a non-trivial union
U, U Wy where Wy is orthogonal to Wy (equivalently, if there is a connected subgraph of
the Dynkin diagram of IT whose nodes correspond precisely to the roots in ¥). Finally, if
IT is a simple system of type A,, then ¥ C II is called symmetric if a; € ¥ implies that
a,_ip1 € W, for ¢ € {1,...,7}, with the notation in the statement (equivalently, the set of
nodes associated with ¥ in the Dynkin diagram of II are invariant under the non-trivial
involution of such Dynkin diagram).

The action of Sg on the symmetric space M is isometric (indeed polar) and free, and
all its orbits are mutually congruent. This action is fundamental in the canonical extension
method that was introduced in [I8§] and further investigated in [47], and which was already
mentioned in Chapter[f] A key ingredient in such method is the minimality of the Sg-orbits
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on M, which was proved by Tamaru [102] (who also showed that such orbits are Einstein
solvmanifolds). Moreover, such orbits are never totally geodesic, unless ® and I\ ¢ are
orthogonal sets of roots, which essentially leads to reducible symmetric spaces M.

It is therefore natural to ask the question of which Se-actions have austere orbits, as
austerity is a stronger condition than minimality, and much weaker than being totally
geodesic. Since all Sg-orbits are mutually congruent, in order to analyze their extrinsic
geometry we can and will focus on the orbit Sg - 0 through the base point o.

It is important to notice the following observation regarding the definition of austere
submanifold. Because of the nonlinearity of the higher degree symmetric polynomials in the
principal curvatures of a submanifold, it is not enough to impose the eigenvalue condition
on the shape operator S¢ for £ running over a basis of the normal space at each point.
This makes the study of austere submanifolds difficult. In our setting, we will develop
several tools to analyze which subsets ® C II give rise to orbits S¢ - 0 that are austere.
The fundamental idea that we introduce and discuss is the concept of ®-string, which
generalizes the classical notion of string in the context of root systems [69, p. 152] and
also the concept of (g, ap)-string introduced in Section . Moreover, we will associate
a diagram to each such ®-string, which will be helpful to understand their structure and,
ultimately, determine if Sg - 0 is austere or not.

In order to prove the above result, this chapter is organized as follows. In Section [6.1
we introduce the general setting for studying the austerity of S - 0. In particular, we prove
that it suffices to analyze the shape operator with respect to unit normal vectors in a® (Sub-
section and we explain the crucial role that strings will play in this and the following
chapter. More precisely, we will generalize the notion of string introduced in Chapter [5/and
we will consider a decomposition of the tangent space induced by strings. Moreover, in this
case we will associate a diagram to each string (Subsection . Roughly speaking, the
austerity of Sg - 0 will be equivalent to certain symmetry conditions of this diagram (Sub-
section . In Section we consider and inspect particular strings that will appear
throughout this chapter and the next and we study their symmetries. As a consequence,
we will obtain the first examples of austere submanifolds of the form Sg - 0. Section |6.3]is
completely devoted to finishing the proof of Theorem [6.0.1]

6.1 &-strings and their diagrams

In this section we establish the general setup for the study of the extrinsic geometry (and,
in particular, the austerity) of the orbits of the form Sg - 0. We start by recalling some
notation and facts regarding parabolic subalgebras of real semisimple Lie algebras. Then,
in Subsection [6.1.1 we link the study of the shape operator of Sg -0 with the restricted root
structure of the symmetric space, and introduce the concept of ®-string. In Subsection|6.1.2
we associate a diagram to each ®-string, and explain how to read geometric information of
the orbit Sg - o from its associated diagrams. Subsection [6.1.3]is devoted to prove several
important necessary and sufficient conditions for the austerity of S - o.

Let ® be a proper subset of the set II of simple roots of a symmetric space G/K of
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non-compact type. We will denote by X¢ the root subsystem of ¥ generated by the simple
roots in ®. Let 33 = X7 N Xg be the set of positive roots spanned by ® and let 3% be the
set of positive roots of Xt that are not generated by ®, that is,

»® =yh\3].

Define the abelian and the nilpotent subalgebras

ap = ﬂkera and ng = @ga,

acd acx®

respectively. Note that s¢ = age @ ne is a subalgebra of a @ n. Let Sg be the connected
closed subgroup of AN whose Lie algebra is sg.

In order to study and understand the geometry of such orbits, we will need to introduce
some tools related to parabolic subgroups and parabolic subalgebras. We follow [I§].
Consider the reductive and abelian Lie subalgebras

6 = go @ <@ ga> and aq’:a@aq):@RHa

OLEE@ aced

respectively. Then, [g is the centralizer and normalizer of ag in g. Moreover, we have that
Jo = lo B ng

is a subalgebra of g, which is called the parabolic subalgebra of g associated with the subset
® of II. The decomposition q¢ = lp @ ng is usually called the Chevalley decomposition of
the parabolic subalgebra qg.
We define now the reductive subalgebra mg = [ © ag. Note that it normalizes s¢. The
decomposition
Je = Mo D as D Ny

is the so-called Langlands decomposition of the parabolic subalgebra q¢. Consider the
subalgebra £g of £ given by

to=tNde =t | Pt |,

aEEg

where €, = €N (go B g_a), for each a € ¥3. Note that €5, ng] C ng and define

bézmémpza(b@ @Pa )

aezg

which turns out to be a Lie triple system, where p, = p N (go ® g_a), for each a € 7.
Note that

do = [bq;, bq;] ) b@ (61)
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is a semisimple Lie algebra (note also that in [I8] ge is used to denote a different subal-
gebra). Moreover, we have that is a Cartan decomposition for the semisimple Lie
algebra ge. Note also that a® is a maximal abelian subspace of bg. Then, we can consider
the restricted root decomposition

go = ( (EB%) (9o M) ® a” (@ga) (6.2)

acdyp ac¥y

of g with respect to a®, for which ® is the set of simple roots. Let G4 be the connected
Lie subgroup of G with Lie algebra g¢. The orbit B = Gg - 0 of the Gg-action on M
containing o is a connected totally geodesic submanifold of M with T,Bs = bg. Moreover,
if ® is a non-empty subset of II then Bg is a Riemannian symmetric space of non-compact
type with rank |®|.

6.1.1 The shape operator of Sg -0

All the tools presented above will be necessary in order to simplify our calculations through-
out the study of the shape operator and the austerity of the orbit Sg - 0. Note that we
have a® C v,(Sg - 0) = bgy. Roughly speaking, the following result states that it suffices to
analyze the shape operators of the form S, with & € a®, in order to characterize austere
submanifolds of the form Sg - 0. Following Bryant [22] (cf. [64]), we will say that a linear
subspace S of the space of selfadjoint endomorphisms of a Euclidean space (V (-, -)) is
austere if each endomorphism in S has eigenvalues occuring in oppositely signed pairs.
Similarly, if S is as before and W is an S-invariant subspace of V', we will say that S is
austere when restricted to W if the eigenvalues of the endomorphisms in S restricted to
W occur in oppositely signed pairs. We will use this terminology to refer to the shape
operator § of a submanifold.

Proposition 6.1.1. Let ® be a proper subset of the set of simple roots Il of the symmetric
space G/K. Let S be the shape operator of the submanifold S¢ - 0. Then, the submanifold
Se - 0 is austere if and only if S¢ is austere for all £ € a®.

Proof. One of the implications is trivial. Let us see the other one. Since Bg is a symmetric
space, we can consider the representation

ch X bq>—>b<1>,

which is equivalent to the isotropy representation of Bg. Fix an element & € bg. Hence,
there exists an isometry g € Kg such that ¢.& € a®. Note that g preserves Sy, by =
Vo(Se - 0) and (1 — 0)se = T,(Se - 0). Moreover, we have

<Sg*§X7 Y>Be = <]I(X Y) §>Be = <(9*)_1]I(X’ Y)’€>Be
= (I((9:)7' X, (9:)7'Y), &) By = (Se(9) 7' X, (9:) 'Y ),
= <g*S§(g*) X? Y>Ba
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forall X, Y € T,(S¢-0) and all £ € v,(S¢-0). Hence we have that the principal curvatures
of the shape operator S, with £ € v,(Ss - 0), coincide with the principal curvatures of the
shape operator S, for some 7 € a®. Hence, the result follows. ]

Let us start with the study of the geometry of the submanifold Sg - 0. Now, we identify
the tangent space with s = ag ® ne. Take H, € a® with o € ® and B € ag. Then, using
that a is an abelian subalgebra satisfying 0|, = — id, and recalling ((1.6)) we deduce

AV pHa, Z)an = (B, Hy) + [0B, H,) — [B,0H,], Z), = 0, (6.3)

for all Z € a@®n. This shows that S¢ag = 0 for all £ € a®. Therefore, we just need to study
the shape operator S¢ when restricted to ng, for all £ € a®. Take X, € gy with A € 2?.
Thus, we have

4<VX>\H0¢7 Z>AN == <[X/\7 Ha] + [QX)nHa] - [X)\,QHQ], Z>Bg
= _2<[HOMX>\]7 Z>Ba = _|a|2AOc,/\<X>\7 Z>Be'

Take the unit normal vector & = |a| ' H,. Then, we have that

SgX)\ = %AQ’AXA, (64)
where X, € gy C ng. Let ® be a proper subset of the set of simple roots II. Let
& = Za@ aoH, be a unit normal vector of the submanifold S¢ - 0. Take X, € g, for
A € X%, Using (6.4) and the linearity of the shape operator we obtain

2
S§X>\ = Z aaﬁAav)\X,\. (65)

2
aed

According to this equation, all the vectors in g, are eigenvectors of S with the same
principal curvature for each A € X®. Thus it makes sense to talk about the principal
curvature of S¢ associated with the root space g for each root A € £®. In most of the
cases all the roots in the set ® will have the same length. Hence, the calculation of the
Cartan integers of the form A, ), where @ € ® and A € £?, is the key point in the
investigation of the austerity of the orbit Sg - o.

In order to calculate Cartan integers, we reorganize the roots by using a generalization
of the concept of a-string (Subsection and the concept of («, §)-string (Chapter [5).
Let ® be a proper subset of the set of simple roots II. Consider a root A € 3 U {0}.
We define the ®-string containing A as the set of all elements in ¥ U {0} of the form
A+ nee Nat, With ng € Z for all a € ®. In what follows, we will write I(A, ®) to denote
the ®-string of A, for A € 3.

Let ® be a proper subset of the set of simple roots II of the root system ». We will
say that two roots v1, 7o € X1 are ®-related if and only if the element v; — 75 is spanned
by ®. This relation is an equivalence relation in ¥ and also in X®. Let A be a root in
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¥®. Let S be the shape operator of the submanifold Sg - 0. By the restriction of S to the
®-string of A we will refer to the restriction of S to the vector subspace of ng C s

D oo

acl(\,P)

Furthermore, we will say that S is austere when restricted to the ®-string of A if for each
unit vector £ normal to Sg - 0 and each principal curvature p of ¢ when restricted to the
$-string of A, then —pu is also a principal curvature of S¢ when restricted to the ®-string
of A with the same algebraic multiplicity as p.

Thus, the decomposition into ®-strings induces a partition of % and we can calculate
the shape operator S of the submanifold Sg - 0 by calculating its restriction to each one of
the ®-strings. The key point is that these ®-strings adopt just a few configurations that we
can control. This fact motivates the analysis of strings, that will play a crucial role in what
follows. In order to determine the ®-strings, it is essential to understand first how roots
are constructed by means of simple roots. The following well-known lemma addresses this
question. Roughly speaking, it says that each non-simple positive root can be obtained by
adding a simple root to a positive root.

Lemma 6.1.2. [69, p. 204, Exercise 7] Let II be a set of simple roots of a root system 3.
Any X € X1 can be written in the form

)\:/\11+)\12++/\1kv
where \;; € I and each partial summand from the left is in ot

Proof. We prove this by induction on the level I()\) of the positive root A € ¥F. Recall
that A can be written as A = ) nqa, for some integers n, > 0, for each a € II. The
claim is obvious if [(A\) = 1. Assume that it is true for level £ > 1 and let A € T be a
positive root with [(\) = k+ 1. If (\, ) < 0 for all « € I, then we would have

0< (AN =MD n.a)<0.

aell

Thus there exists a € II such that (A\,a) > 0. Then, using Proposition , we
deduce that A — o € X. Moreover, A — a € X" as [(A) > 2 and I(«) = 1. So we may write
A = (A— )+« and the result follows by applying the induction hypothesis to A — «, which
has level k. [

It is also important to understand that the sum of roots spanned by orthogonal subsets
of IT cannot be a root. The following result makes this fact precise.

Proposition 6.1.3. Let &y, &, C II be orthogonal subsets. Let Ay, Ay € X be roots spanned
by ®¢ and Py, respectively. Then X g = A1 cannot be roots.
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Proof. Put A\g = Zae% neo and \; = Zﬁeél ngf, where n,, is an integer for all v € ®oUP;.

Assume first that \g and A; are positive roots. Then there must exist o € P4 and
p € ®; such that n, > 0 and ng > 0. Note that A,  ,, = 0 for each element 7;, in the span
of &, with k£ € {0,1}. If A\g + Ay were a root, using Proposition together with
Axon, = 0 we would obtain that A\g — A\ and Ay — Ay are both roots. However, we have

that
M=M= maa+ Y (—ng)B, (6.6)

aedg Bed1

where n, > 0 for some a € ¢y and —ng < 0 for some § € ®,. This is a contradiction.
Since A\g + A; is not a root, from Proposition neither is —(Ag + A1). In particular,
equation proves that A\g — A\; is not a root. Again, using Proposition we
deduce that neither is —\g + A;.

If Ao and \; are both negative, then from Proposition we have that —)\y and
— M\ are positive and we proceed as above.

Finally, let us assume that A\ is positive and \; is negative. Then —\; is positive and
proceeding as above we can prove that neither A\g — Ay nor A\g + A; are roots. Using again

Proposition the result follows. O

6.1.2 The diagram of a ®-string

As mentioned above, in order to make a systematic approach to the study and classification
of austere submanifolds of the form Sg - 0, we will consider an orthogonal decomposition
of their tangent space. This decomposition comes from a decomposition into ®-strings of
the set ¥ of positive roots not spanned by ®. Furthermore, we will construct a diagram
associated with each ®-string. These diagrams will allow us to calculate the principal cur-
vatures of the shape operator § when restricted to each ®-string very efficiently. Moreover,
each symmetric space G/K will admit just a few configurations for its ®-strings. Thus,
the examination of these diagrams will lead us to determine if the submanifold Sg¢ - 0 is
austere or not directly. Roughly speaking, we will need certain symmetry conditions in the
diagrams of ®-strings for Sg - 0 to be austere. This section is devoted to the explanation
of the construction of these diagrams as well as to characterizing the austerity of Sg - 0 in
terms of them.

Take ® C II. The construction of the diagram of a ®-string is as follows. Let A € ®
be a root of minimum level in its ®-string (we will see in Proposition that it is
unique). We will draw a node for each root v in the ®-string of \. We will point out the
node A\ of minimum level as a starting node. Now, the nodes corresponding to the roots 14
and v, in the ®-string of A will be connected (by a single line) if and only if v} — vy = +a
for some a € ®. In this case, the arrow connecting the node 4 to the node v, will have
label a. This arrow will be oriented pointing to the highest level root among the two roots
that it connects. Fix a node v in the diagram of the ®-string of A. If one considers a path
from A to v following the arrows, then v will be the sum of A and all the labels a« € ¢
associated with the arrows of the chosen path.
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In order to clarify the construction of these diagrams, we include two particular exam-
ples.

Example 6.1.4. Assume that II is an A, simple system with Dynkin diagram

and put ® = {ay, ag, ay}. The ®-string of oy consists of the roots oy, ay + g, ag + g+ a
and aq + as + ag + ay. Thus, the diagram of the ®-string of «; is of the form

oO—>———O0O—>r—0O0—>—0

Let us continue with a more interesting example.

Example 6.1.5. Assume that II is a D, simple system with Dynkin diagram

a3

O O O
Qg 6%) Oy

and put ® = {ag, a3, ay}. In this case, the ® string of a; consists of the roots ay, oy + o,
a1+aotag, ap+astay, ap+as+as+ay and ag+2as+as+ay. Thus, we obtain the diagram

(%)
Qay
043[ 043[
(651 (%) Oy

for the ®-string of ;.

Let us come back to a more general situation. Let { = ) 4 aoHo be a unit normal
vector to the submanifold Sg - 0. Take a root v € ¥® and X, € g,. Recall from (6.5 that
the principal curvature of the shape operator &g associated with the root space g, is

21 Z%|Oé|214a,y, (6.7)

acd
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for each v € X®.

Before going on, we will focus on ®-strings when ® = {a}, for some «a € 3. Indeed, we
will determine the possibilities for these strings and we will also specify the Cartan integers
associated with them.

Proposition 6.1.6. Let o, A € X be non-proportional roots. Then, the a-string of A
must adopt one of the following configurations. For each case we draw the diagram of the
a-string of A and above each node v we write the Cartan integer A, ,.

(1) The a-string of A consists of the root A. In this case we have that A, ) = 0.

(ii) The a-string of A consists of the roots A and A+« and both have the same multiplicity.
The diagram of this a-string is of the form:

—1 1
O > O
A a A+«

(111) The a-string of \ consists of the roots A\, A+ « and A + 2a.. The roots X and X\ + 2«
have the same multiplicity. This case just appears when ¥ has either a B,., C,., BC,
or Fy Dynkin diagram. The diagram of this a-string is of the form:

-2 0 2
O > O > O
A a A+ a N+ 20

(iv) The a-string of \ consists of the roots A\, A+ «, A+ 2« and A + 3« and all of them
have the same multiplicity. This case just appears when ¥ has a Gy Dynkin diagram.
The diagram of this a-string is of the form:

-3 -1 1 3
O - O > O - O
A a A+ a A+ 2¢ a A+ 3a

Proof. The claims concerning the configuration of the strings come directly from Propo-

sition (i), (v). The claims about the multiplicities come from Lemma and the
fact that in G5 all the roots have the same multiplicity from [7, p. 339]. ]

In the following lines, we will explain a method that allows us to calculate the principal
curvatures of the shape operator of the submanifold S¢ - 0 when restricted to a ®-string,
just by inspecting its diagram. Let A € X% be a root of minimum level in its ®-string and
assume that v belongs to the ®-string of A.
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Take a root a € ®. First, we will assume that |a| > |v|. From Proposition ()
we deduce that v — « is a root if and only if A, , = 1; we deduce that v + « is a root
if and only if A, , = —1; and we deduce that neither v + a nor v — « are roots if and only
if A,, = 0. On the one hand, if A,, = 1, then the addend 27'|a/?a, in will appear
in the expression of the principal curvature of S¢ associated with the root space g,. But
A, = 1if and only if there is an arrow with label « in the diagram from the node v — «
pointing to the node v. On the other hand, if A4,, = —1, then the addend —27'|a/|%a,
in will appear in the expression of the principal curvature of S¢ associated with the
root space g,. But A,, = —1 if and only if there is an arrow with label o in the diagram
from the node v pointing to the node v + . Finally, if A,, = 0, neither the addend
271 a|?a, nor the addend —27 Y a|?a,, in (6.7)) will appear in the expression of the principal
curvature of S¢ associated with the root space g,. But A,, = 0 if and only if there are no
arrows from the node v or reaching the node v with label a.

In particular, assume that v € £ satisfies |a| > |v| for all & € ®. Let ®; be the set
of roots a; € ® such that there is an arrow with label a; in the diagram of the ®-string
of A from the node v — a;; pointing to the node v. Let ®5 be the set of roots ay € ¢ such
that there is an arrow with label as in the diagram of the ®-string of A from the node v
pointing to the node v +ay. Recall that { = ) 4 aaH,. Then, from (6.5) we obtain that

|0é1|2 |CY2|2
> 4l - Y any-

a1€P as Py

is the principal curvature of S¢ associated with the root space g,. We will apply this
information to the particular examples considered above.

Ezample 6.1.7 (Continuation of Example . Recall that in Example we were
studying an A4 simple system with ® = {as, a3,a4}. Put & = Zf:2 a;H,, for a unit
normal vector to the submanifold Sg - 0. Since all the roots have the same length, put
|a1|? = 2 for the sake of simplicity. In the following diagram of the ®-string of «;, we write
the principal curvature associated with each root space at the top of the corresponding
node.

—a9 a9 — a3 a3 — Gy a4y
—-O0
a; 2 a3 Qy

Ezample 6.1.8 (Continuation of Example . Let us also use Example to clar-
ify these ideas. Recall that in that example we considered a D, simple system and
O = {ay, a3, 04}, Put & = 2?22 a;H,, for a unit normal vector to the submanifold Sg - o.
Since all the roots have the same length, put |a;|> = 2 for the sake of simplicity. Again,
we complete the diagram of the ®-string of «y writing the principal curvature associated
with each root space.
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a2

J

Oag + as + ay

—as + a4

Oy
aq o
O O O
—Qa2 a9 — A3 — Q4 a3 — Ay

Remark 6.1.9. Recall that ® C II. We have assumed above that |a| > |v| for all (o, v) €
® x ¥®. This will be the case when studying symmetric spaces of non-compact type with
A,, D,, FEg, F; or Eg Dynkin diagram. Moreover, it will also apply in some cases when
the symmetric space has a Dynkin diagram B,., C,, Fy, Gy or BC,.. However, it is possible
to extend the study of the principal curvatures in terms of strings. We will not use such
approach, but we include here the main ideas for the sake of completeness. As before, let
S¢ be the shape operator with respect to € and consider the ®-string of A, where A € 2.
First, let us assume that we are considering a B,, C, or F, Dynkin diagram. Take o € ®
such that |a| < |v|, for some v € ¥% in the ®-string of A\. Hence, we can assume that
2|al? = |v|*. From Proposition , (v)) we deduce that v — « and v — 2« are roots if
and only if A, , = 2; we have that v+ o and v+ 2« are roots if and only if 4,, = —2; and
we deduce that A,, = 0 if and only if either both v + o and v — « are roots, or none of
them is a root. On the one hand, if A,, = 2 then the coefficient |a|?a, in (6.7)) will appear
in the expression of the principal curvature of S¢ associated with the root space g,. But
A, = 2 if and only if there are arrows with label « in the diagram from the nodes v — 2a
and v — a pointing to the nodes v — a and v respectively. On the other hand, if A, , = —2
for some root o € ® then the coefficient —|a|*a, in (6.7) will appear in the expression of
the principal curvature of S¢ associated with the root space g,. But A,, = —2 if and only
if there are arrows with label « in the diagram from the nodes v and v + « pointing to the
nodes v + o and v + 2« respectively. Finally, if A,, = 0 neither the coefficient 27| |?a,
in (6.7) nor the coefficient —27%al?a, in appears in the expression of the principal
curvature of S¢ associated with the root space g,. But A,, = 0 if and only if one of the
following condition holds in the diagram: either there are two arrows with label «, one
from the node v and the other one reaching the node v, or there are no arrows with label
a connected to the node v. There is just one remaining case to consider. Assume we are
in the Gy case. Put Il = {ay, an}, with |a;| > |as|, and ® = {as}. Then, the ®-string of
oy consists of the roots aq, a1 + as, ag + 2a9 and a1 + 3as. Put |as| = 1 for simplicity.
We just need to consider the unit normal vector £ = H,, to S¢ - 0. Hence, the principal
curvatures are
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-3 —1 1 3
oO—>—O0—>—0—>—20
ap A2 a2 Q2

and since 2 4 3ap has trivial ®-string then Sg - 0 is austere.

6.1.3 Conditions for the austerity of S - 0

The information provided in the discussion above allows us to compute the principal cur-
vatures of the submanifold Sg¢ - 0 by inspecting the diagram of the ®-string of A, for each
A € ¥®. However, this idea can be improved. In fact, it would be better to use these
diagrams to deduce if the submanifold Sg - 0 is austere or not directly. In order to do that,
we claim some necessary conditions for Sg - 0 to be austere in terms of Cartan integers,
strings and diagrams.

If ® is a subset of the set II, v € X% and £ is a unit normal vector to Sg - 0, we denote
by fe(7y) the principal curvature of the shape operator S, associated with the tangent root

space g .

Lemma 6.1.10. Let ® be a proper subset of the set of simple roots I1. Let S be the shape
operator of the submanifold Sg - 0. The following two statements are equivalent:

(a) For each root y € X% there exists a root v € % such that Ay, = —Aq, for alla € .

(b) For each root v € % and each unit normal vector € to S -o there exists a root ve € X%
such that pig() = —pie(ve).

Therefore:

(i) If the submanifold Sg - o is austere, then for each v € L% there must erist a root
v € X% such that Ay = —Aq, for all a € .

(ii) Fiz a root X € X®. If the shape operator S of the submanifold S - 0 is austere when

restricted to the ®-string of A, then for each root v € I(\, ®) there must exist a root
v e I\ @) such that A, = —A,, for all a € .

Proof. From we easily deduce that @ implies (]ED Let us see the converse.

If ® = {a} then there is just one unit normal vector up to sign, namely £ = |a| ™t H,,.
Hence, u¢(v) = |a|A,, for each v € X*. Then, if A, # —A,, for each v € %, we deduce
that pe(y) # —pe(v) for each v € X%,

Assume now that ® C II contains at least two roots. Consider a root v € ¥®. If
Aqny =0 for all @ € ® we are done. Thus, assume that A,, # 0 for some oo € ¢. We will
assume that for each v € X% there exists § € ® such that Ag, # —Ag, and we will get
a contradiction. Let £ = > 4 aqH, be a generic unit normal vector to the submanifold
Se - 0. Recall from (6.5) that pe(v) = 271> 4 la|?anAq, is the principal curvature of
S¢ associated with the root space g,, for each v € X®. Put n for the number of elements
in ®. Recall that we are assuming that for each v € ® we do not have Aoy = —Aay
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for all @« € ®. Using this and A,, # 0 for some o € ®, we deduce that the equality
pe(y) = —pe(v) is the equation of a hyperplane in R™ with variables (aq)aes, for each
v € Y*\{y}. Note that the number of roots in X®\{~} is finite and then we obtain a
finite number of hyperplanes. Take a unit normal vector n = > 4 baH, with the element
(ba)acs € R™ outside all these hyperplanes. Hence () # —u,(v) for all v € £®. This
proves that (]E[) implies @

Using the equivalence between and (]E[) and the definition of austerity, then asser-
tions (i) and follow. O

In summary, Lemmal6.1.10] claims a necessary condition for Sg-o to be austere, and also
a necessary condition for the shape operator to be austere when restricted to a ®-string.
However, in both cases we do not get a characterization of austerity. In fact, we have the
following difficulty: we can guarantee that for each principal curvature p there exists the
principal curvature —u, but we cannot guarantee that the multiplicities of the curvatures
u and —p coincide. We will now address this question.

Let A, B C X be subsets of the set of roots. A map f: A — B is said to be a
multiplicity-preserving bijection (respectively involution) if f is a bijection (respectively
involution with A = B) between A and B satisfying that v and f(v) have the same
multiplicity, for each v € A.

Proposition 6.1.11. Let ® be a proper subset of the set of simple roots II. Let S be the
shape operator of the submanifold Sg - 0 and let X € ©* be a root of minimum level in its
b-string. Then:

(i) If there exists a multiplicity-preserving involution f: X% — X% such that A, =
—Au t(y) for all (a,y) € ® x X%, then the submanifold Se - o is austere. If all the
roots in ©* have the same multiplicity, the converse is true.

(i) If there exists a multiplicity-preserving involution f: I(\,®) — I(\,®) such that
Aoy = —Aa sy forall (a,y) € @xI(A, ), then the shape operator of the submanifold
Se - 0 is austere when restricted to the ®-string of \. If all the roots in 1(\, ®) have
the same multiplicity, the converse is true.

(iii) Let X and ~y be different roots in X% of minimum level in their respective ®-strings. If
there exists a multiplicity-preserving bijection f: I(\, ®) — I(vy, ®) such that A,, =
— Ao ry for all (o, v) € @ x I(A, @), then the shape operator of the submanifold Sg -0
15 austere when restricted to
b o

vel(A\,®)UI(y,P)
If all the roots in I(A\, @) U I(vy, ®) have the same multiplicity, the converse is true.

Moreover, for each f as above, we have that pe(v) = —pe(f(v)) for all unit vector £ and
all v in % (in case (1)) or in I(\, ®) (in cases and ).
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Proof. Recall that pe(v) denotes the principal curvature of the shape operator S¢ when
restricted to g,, for each v € X®. Consider roots v, 72 € £®. The key point of the proof
is to see that pie(71) = pe(72) for all unit normal vector ¢ if and only if A, ., = A, for
all @ € ®. This is clearly true if ® consists of just one element as follows from (6.5)).

Hence, let us assume that ® contains at least two different elements. One of the
implications follows directly from (6.5). Now, assume that A, ., is distinct from A, .,
for some o € ®. Using this, we will see that s, (1) # p,(y2) for some unit normal
vector 7. Indeed, let £ = > 4 aaH, be a generic unit normal vector to the submanifold
Se - 0. Put n for the number of elements in ®. Since A, ,, # Aq,, from (6.5) we deduce
that the equality pe(71) = pe(y2) is the equation of a hyperplane in R™ with variables
(aa)ace. Take a unit normal vector n = Y .4 boH, With the element (by)ace € R™ not
in this hyperplane. Then fi,(7v1) # ft,(72). This proves that the principal curvatures of S¢
coincide when restricted to the root spaces g,, and g,, for all unit normal vector ¢ if and
only if A, ., = Aqan, for all a € .

We define now the following equivalence relation in X%: ~;, v € 3% are related if and
only if A,., = A, for all a € ®. Put [y] for the equivalence class of the root v € 2.
From the previous paragraph, two roots vy, 7/ € X% are related if and only if pe(y) = pe(7/)
for all unit normal vector . Therefore, it makes sense to write p([y]) for the principal
curvature of the shape operator S when restricted to g./, for each 7' € [y]. Another key
observation is that the multiplicity of the principal curvature p([y]) is exactly the sum of
the multiplicities of all the roots v € [v].

Assume first that there exists a multiplicity-preserving involution f satisfying the hy-
pothesis of (). Then, from (6.5) we have that u([v]) = —u([f(7)]) for each v € £®. Since
f preserves multiplicities, the result follows.

Let us show the converse with the extra assumption on the multiplicity of the roots.

Consider a root v € X% such that u([y]) # 0. Since the submanifold Sg - 0 is austere,
from Lemma we deduce that there is a root 7/ € X% such that A,, = —A,
for all o € ®. Moreover, since all the multiplicities of the roots in X% are equal and Sg - o
is austere, then the classes [y] and [y/] must have the same number of elements. Now,
consider a set ¥ C X satisfying these conditions:

(i) All the roots in ¥ have non-trivial ®-strings, and
(i) any two roots 71, 72 € ¥ satisfy that pu(vy;) # £u(y2).

Let ¥’ be a set defined in the following way: for each v € W take exactly one 7/ € £ such
that p([y]) = —p([y']) to be in ¥'. Then |V| = |¥’| and the pair

(U . U M) (6.8)

yew vy ew’

is a partition of the subset of roots in X% with non-trivial ®-string. Moreover, if p # 0
is a principal curvature, then there exists v € W U U’ such that y = p(v). Now, for each
v € ¥ take the unique element 7' € ¥’ such that u([y]) = —p([y']) and define a bijection
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fv: 7] = [¥], and for each 4" € W’ define the bijection f,: [y] = [y] given by f, = f.
Recall from the partition in that for each v € ¥® with non-trivial ®-string there must
exist a root 7y either in ¥ or in ¥’ such that v € [y]. Now, consider the map f: X% — ¥®
defined by

() = {V if I(v, ®) = {v},
fy(v) i I, ®) £ {v} and v € 1],

Note that f is a multiplicity-preserving involution and then follows. The same idea
holds in order to prove prove and . O

The above result will be very useful in order to study the austerity of the shape operator
when restricted to each ®-string and consequently the austerity of the submanifold S¢-0. In
particular, it makes very easy to check austerity by using the diagram of ®-strings. Recall
that each node in the diagram is connected to other nodes by certain oriented arrows. We
will say that two nodes have opposite arrows if they are connected with arrows of exactly
the same labels but with opposite orientations. More precisely, two nodes v and v/ have
opposite arrows if the labels of the arrows leaving from v coincide with the labels of the
arrows arriving at v/, and the labels of the arrows arriving at v coincide with the labels of
the arrows leaving from /. In particular, if one root has trivial ®-string, we will say that
it has opposite arrows with respect to itself.

Corollary 6.1.12. Let ® be a proper subset of II. Assume that |o| > |v| for all (o, v) €
® x X%, Let S be the shape operator of the submanifold S - 0. Then, we have:

(i) If there exists a multiplicity-preserving involution f: X* — X% such that v and f(v)
have opposite arrows for each v € X%, then Sy - 0 is austere. If all the roots in X
have the same multiplicity, the converse is true.

(i) Let A € X% be of minimum level in its ®-string. If there ewists a multiplicity-
preserving involution f: I(\, ®) — I(\,®) such that v and f(v) have opposite ar-
rows for each v € I(\, ®), then the shape operator S is austere when restricted to the
O-string of . If all the roots in I(\, ®) have the same multiplicity, the converse is
true.

(iii) Let X and v be different roots in X% of minimum level in their respective ®-strings. If
there ezists a multiplicity-preserving bijection f: I(A\, ®) — I(y,®) such that v and
f(v) have opposite arrows for each v € I(\, @), then the shape operator S is austere
when restricted to @

gu-

vel(\,®)UI(y,P)
If all the roots in (A, ®) U I(vy, ®) have the same multiplicity, the converse is true.
Proof. Note that A, , € {0,41} for all (o, v) € ® x £% by means of Proposition (iii).-
Take a root v € £®. Then we have that: v+ « is root if and only if 4, = —1; 7 — a is

root if and only if A, = 1; and neither v 4+ o nor v — « are roots if and only if 4, ., = 0.
Now the claim follows directly from Proposition [6.1.11 ]



6.2 The study of ®-strings 133

Let us apply the above results to the two examples we have considered above.

Ezample 6.1.13 (Continuation of Example and Example|6.1.7)). Recall that in Exam-
ple we were studying a ®-string with diagram

o X2 as Oy

Hence, according to the second statement of Corollary , the shape operator S of
the submanifold Sg -0 is not austere when restricted to the ®-string of a;. Indeed, the node
corresponding to «; is connected to just one node by an arrow with label as. However, no
node has opposite arrows with respect to ay, that is, there is no node admitting exactly
one arrow arriving at it with label as.

Ezample 6.1.14 (Continuation of Example and Example [6.1.8). In this case, the ®-
string has a diagram of the form

where all the roots have the same multiplicity. Hence, a reflection with respect to the
vertical line that interchanges the roots on the line satisfies the conditions of Proposi-
tion |6.1.11 . Indeed, it is easy to see that each node is sent to a node with opposite
arrows.

In summary, in this section we have seen how to construct the diagram of a ®-string.
Moreover, we have characterized the austerity of the submanifold Sg - 0 in terms of these
diagrams. This fact justifies the crucial role that ®-strings and their diagrams will play in
what follows. In particular, the diagrams will allow us to argue that many examples are
not austere by means of Corollary in a very efficient way. Moreover, these diagrams
will also give the hint to construct the map f of Proposition [6.1.11] in order to prove the
austerity of Sg - 0.

6.2 The study of ¢-strings

This section is devoted to the explicit inspection of the configuration of ®-strings, where
® is a proper subset of the set II of simple roots. Indeed, we will start by determining the
roots of each ®-string explicitly, under certain convenient hypotheses on the set ®. This will
allow us to calculate the principal curvatures of the shape operator S of the submanifold
S¢ - 0 when restricted to that ®-string using the ideas explained in Section Moreover,
we will use either Proposition [6.1.10| or Proposition [6.1.11] in order to see if the shape
operator § is austere when restricted to the ®-string under consideration. Altogether,
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this information will allow us (see Section to conclude the classification of the austere
submanifolds of the form Sg - 0 in symmetric spaces G/K with Dynkin diagram A,, B,,
C,, D, or BC,.

Recall that ® is a proper subset of the set of simple roots II. We start with a result
focusing on the root of minimum level in a ®-string. In fact, we are interested in its
uniqueness but especially in how to detect when a root A € X? is of minimum level in its
$-string just by using the Cartan integers of the form A, », for each o € ®.

Proposition 6.2.1. Let II be the set of simple roots of the root system Y. Let ® be a
proper subset of Il and let A\ € X% be a root of minimum level in its non-trivial ®-string.
Then:

(i) The set spany({A\} U ®) N X is a root subsystem of o for which {\} U ® is a simple
system. Moreover, X\ is the unique root of minimum level in its ®-string.

(ii) If ® is connected and «y is not the root of minimum level in the ®-string of X, then
there exists a root a € ® such that v — « is a root in the ®-string of \.

(iii) Assume that ® is connected and that |a| > |v|, for all (a,v) € ® x ©*. Then, a root
v € X% is the root of minimum level in its non-trivial ®-string if and only if there
ezists a root a € ® such that A, <0 and Az, =0, for all € ®\{a}.

Proof. : Let A € ©? be a root of minimum level in its ®-string. Since A is not spanned by
®, we have that 1T, = {A\}U® is a basis for its span. The set ¥ Nspan,II, satisfies the three
conditions of a root system (see Subsection . We will denote by ¥, = ¥ N spany,Il,
the new root system and use the positivity criterion in ¥ to induce a positivity criterion
in ¥,. Now, we need to see that 1Ty = {\} U ® is a simple system for the root system X,.
In other words, we need to see that each root a € II, cannot be written as a = vy 4 v, for
any vy, 5 € X1 . In particular, this is true for all o € ®, since it is true in the root system
Yand ¥, C X. Put A = Zﬁel‘[ mgf. Since A is not spanned by ®, we have that mg > 0
for some € II\®. In particular, for each v in the span of ® we have that

—kA+rvgxt (6.9)
and thus cannot be an element in X7, for all £ > 0. Assume now that
A=vi+1p= (n}\)\ + Z n;oz) + <n?\)\ + Znia) , (6.10)
acd acd

where vy, vy € X1 and the coefficient n¥ is integer for all k£ € {1,2} and v € ®U{\}. Since
IT, is a basis for its span, from (6.10) we deduce that 1 = n} + n3 and that n}, = —n?, for
each a € ®. Thus, we can write

A=+ = (n,\/\ + Znaa> + ((1 — )\ + Z(—na)a> . (6.11)

aced acd



6.2 The study of ®-strings 135

Since My + ) cq N and (1 — ny)A + Y- 5 (—nq)o must be in X+, we deduce that

[(AN)ny + Zna >0 and [(A)(1—mny) + Z(—na) > 0.

acd acd

But this is equivalent to the inequality

0 <IN)ny+ Y na <IN

acd

Without loss of generality, we can assume that ny > 0 (if not, we would have 1 —ny, > 0
and rename coefficients). If ny > 1, then (1 —n,) < 0 and from (6.9 we deduce that vy
cannot be a positive root. Thus, ny = 1 and

A= +1y = ()\ + Z%ﬂ) + (Z(—na)a) . (6.12)

aced

Now, if " .47 < 0, then X\ would not be of minimum level in its ®-string. Thus
Y aco Mo = 0 and v, cannot be a positive root. This proves that II, is a simple system.

Let v = A" cp Mo be another root of minimum level in the ®-string of A. Note that
calculating the roots of the ®-string of X in the root system X is equivalent to studying the
roots of the form ny\ + Za@ nea with ny = 1 in the root system X, with simple system
IIy = {A\} U ®. Hence, we think now in the root system X,. Since n) = 1, we deduce that
ne > 0 for all « € ®. Then we have Za@ ne = 0, which means that n, = 0 for each
a € ®. Thus v = A\. This proves the uniqueness of the root of minimum level in a ®-string
and (fi) follows.

(ii): We will proceed by induction on the number of roots in ®. If |®| = 1 the result
follows from Proposition directly. In particular, since ® is a proper subset of II, if II
is a Gy simple system then ® contains exactly one element and the result follows. Thus,
we can assume that IT is not a G5 simple system from now on.

Assume then that our claim is true for W-strings under the hypotheses of , with
|U| =n — 1, and put |®| = n. Let v € % be a root not of minimum level in its ®-string.
We will think of v in the root system X, with simple system IIy = {A} U ®. According to
Lemma , we can write y = p+ v, for p € X and v € TI,. If v is in @, then we are
done. Thus, assume that u is a root spanned by ® and v = A. If u € I, we are done again.

Thus, assume that u is a root spanned by ® with level greater or equal than two (since
 is spanned by ® the level of i is the same in 3 and in X,). Since both g and p+ A =~
are roots but g — A cannot be a root, from Proposition we deduce that A, , < 0.
By regarding p as a root in the root system ¢ with simple set @, from Lemma there
must exist a simple root @ € ® such that u — « is a positive root spanned by ®. On the
one hand, if A, , > 0, from Proposition we would obtain that p — a — X is
a positive root or zero. This is not possible since A is not spanned by ® and y — « is a
positive root spanned by ®. On the other hand, if A, ,_, <0, from Proposition
we would obtain that 4 — a + A = v — a is a root and the result follows. Thus, assume
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that 0 = Ay —a = Axy — Are. Then A, , = Ay, < 0. Hence, « is connected to A in the
Dynkin diagram of the simple system II,. Since ® is connected, if there were another root
£ € ® connected to A in the Dynkin diagram of ITy, we would have a loop. Hence, a € ® is
the unique root connected to A in the Dynkin diagram of the simple system II, = {\} U ®.
Put =3 5.5 nsb.

Therefore, from Ay, = Ay, < 0 and Ag, = 0 for all € ®\{a}, we deduce that
ne = 1. If ®\{a} is not connected, then the positive root 1 — a must be spanned by a
connected subset of ®\{a} (see Proposition [6.1.3), since p — a is a root and the coefficient
corresponding to « in the expression with respect to the simple system & is zero. Thus, we
can assume that ; — a is spanned by a connected subset ¥ of ®\{«}. Now, we can write
w=a-+ ZBE\I, ngB. Note that p is a root in the W-string of a. On the one hand, if p is
the root of minimum level in the W-string of a, then ng = 0 for all 3 € ¥ by means of .
Thus 4 = a € & and we are done. On the other hand, assume that p is not the root of
minimum level in its U-string. By induction hypothesis, we can take 5 € ¥ C ®\{«a} such
that p — f is a root. Recall that II is not a G5 simple system. If p is proportional to
(and we are consequently in a BC, root system), then we must have that g = 2. Hence,
we have that

Aﬁ,)\+’u = AﬁJ\ + 4.

Since [ is proportional neither to A nor to A + pu, from Proposition we have that
Ag, Agrsy € {0,£1,£2}. But then Ag i, = 2 and from Proposition we have
that A\+pu— 3 =~v— [ is aroot. If 8 and p are non-proportional, from Proposition 6.1.6| we
deduce that either Ag, > 0 or u+ 3 is a root and Ag s = 2. Therefore, since Ag =0,
we get either Ag., = Agyy, > 0 or that A+ p+ f is a root and Agi,45 = 2. In both
cases we get that v — 3 is a root. This completes the proof of .

: Let v € X% be of minimum level in its ®-string. If A, = 0 for all @ € @, then
{7} U ® would be a reducible system and the ®-string of v would be trivial. Hence, there
must exist one root & € ® such that A,, < 0. If Ag, < 0 for some g € ®\{a}, then g
and «a are connected to v in the Dynkin diagram of II,. Since ® is connected, there would
be a loop, which is a contradiction. This proves the first implication.

Conversely, assume that v is not of minimum level in its ®-string. Hence, from (i)
there must exist a root o € ® such that v — « is also a root. From Proposition
we get that A, € {0,%1}. Let us study these possibilities.

If A, =0, since 7 — « is a root, from Proposition (v) we have that v+ « is also
a root. But then A, .4, > 2 and this contradicts Proposition (i), since || > |y +af
by hypothesis.

If A, = —1, then from Proposition we have that v+ « is also a root. Hence,
from Proposition we get that A, e > 2. Again, this is a contradiction with
Proposition (iii), since |a| > |y + a| by hypothesis.

Hence, we deduce that A,, =1 and the result follows. O

Remark 6.2.2. One of the key tools in order to classify austere submanifolds of the form
Ss - 0 in exceptional symmetric spaces (see Chapter [7)) is the characterization provided by
Proposition for the root of minimum level in a ®-string. Indeed, in most cases
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in exceptional symmetric spaces it is very difficult to detect if a root with high level is of
minimum level in its ®-string. Proposition addresses this difficulty, and it would
be interesting to have a more general characterization. However, it is not true without the
assumption on the length of the roots. For example, let ¥ be a root system containing
an Ay subsystem, let ® = {aj,as} C II be an A, simple system and let A\ € X% be of
minimum level in its ®-string. From Proposition (), we have that {\}U® is a simple
system. Assume that it is a C5 simple system, with A,, » = —2 and A,, » = 0. A direct
examination of this simple system allows us to deduce that the diagram of the ®-string of
A is (we include the general calculation of this string in Proposition ()

aq A (67)
o NP

Note that the root A 4+ a4 is in the ®-string of \. We represent it with a black node in the
diagram. It is not of minimum level since A is a root. However, we have that A,, x+a, =0
and Aa, x+e, = —1. This means that the characterization in Proposition m iii) is not
true without the assumption on the lengths of the roots. However, see Remark [6.2.10] for
a partial generalization of such result.

Note that the information provided by Proposition in order to detect the root
of minimum level of a ®-string by means of the Cartan integers just addresses the connected
case. In the following result, we explain how to calculate a ®-string of a root when ® is a
non-connected subset of II. In particular, this idea allows to extend the characterization
of the root of minimum level in a ®-string to the non-connected case.

Corollary 6.2.3. Let Il be the set of simple roots of the root system . Let ®q, &, be
orthogonal connected subsets of I1 and put ® = &y U ®,. Let A € X% be of minimum level
in its ®-string. Assume that the ®;-string of A is not trivial for i € {0,1}. Then:

(1) 1A @) = Uyespnay LW Pisa) for an arbitrary but fived i € {0,1} and indices mod-
ulo 2. In other words, the roots of the ®-string of A can be obtained by calculating
and taking the union of the ®;-strings of all the roots in the ®;.1-string of X\, for
i € {0,1} and indices modulo 2. If y is not the root of minimum level in its ®-string,
then there exists a root a € ® such that v — « is a root in the ®-string of \.

(ii) Assume that |a| > |v| for all (o, v) € ® x X*. A root v € £ is the root of minimum
level in its non-trivial ®-string if and only if there exists a root a; € ®; such that
Ay <0 and Ag,, =0 for all B; € ®,\{a;}, for each i € {0,1}. In other words,
18 the root of minimum level in its ®-string if and only if it is the root of minimum
level in its ®;-string for i € {0,1}.

Proof. Since 3 and ®; are orthogonal non-empty subsets of II, we do not need to study
the G4 case.
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: Consider an arbitrary root v in the ®-string of A. It can be written as v = A4+79+71,
for 7, in the span of ®;, with ¢ € {0,1}. In order to prove (fi}) it suffices to check that A+~
and A + 7, are both roots, since then the root v in the ®-string of A can be obtained by
calculating the ®;-string of the root A + 7,11, which is a root in the ®;,,-string of A, for
some arbitrary but fixed ¢ € {0, 1} and indices modulo 2.

We will proceed by induction on the level of v with respect to the simple system
IIy = {A\} U ®. If [(y) = 1 then v = X and the result is trivial. Assume that our claim is
true for roots in the ®-string of A with level n — 1 and let v € I(\, ®) with {(7) = n. From
Lemma [6.1.2) we deduce that there must exist a root o € Il such that v — « is a root.
Since Apya, = 0 for all o € ®; with ¢ € {0,1}, if @« = X\ we deduce that v; = 0 for some
j € {0,1} and then A + ;41 = v and A + v, = A (with indices modulo 2) are both roots.
Thus, assume that a € ®; for some fixed | € {0,1}. Then v — « is a root in the ®-string
of A of level n — 1. By applying the induction hypothesis we deduce that A + v, — « and
A+ 741 are both roots, for some [ € {0, 1} and indices modulo 2. We just need to see that
A+ is a root.

Since v — « is a root, II is not a G5 simple system and v and « are non-proportional,
from Proposition we deduce that either A,.,_, < 0 or 7 — 2 is also a root and
Agroa = —2. If Ay o <0, recalling that A, o, = 0 for all a; € ®; with i € {0,1}, we
deduce that Ay yiv—a = Aar—a < 0, and then XA+, is a root using Proposition (i
If v—2a is a root we use again the induction hypothesis and deduce that A+, —2a is a root.
Then we have Ay x+,—20 = Aay—20 = —2 and A+ is a root by using Proposition .

In conclusion, if v = A4~y +; is a root in the ®-string of A\, then A+~ and A+, are
both roots, for 7; in the span of ®;, with ¢ € {0,1}. As explained above, 7 can be obtained
by calculating the ®;-string of the root A 4 ~;.1, which is a root in the ®;,-string of A, for
some arbitrary but fixed i € {0, 1} and indices modulo 2.

(il): Recall that A is the root of minimum level in its ®-string. Since ®; C &, we
have that A is also the root of minimum level in its ®;-string, for i € {0,1}. Then, from
Proposition we get one of the implications in . Conversely, assume that
Y = A4+ + 71 is a root in the ®-string of A satisfying the conditions for the Cartan
integers specified in . Recall from the proof of Corollary that A + v, is a root in
the ®;-string of A with ¢ € {0,1}. From Proposition we get that A + 7, is the
root of minimum level in the ®;-string of A, with ¢ € {0, 1} and indices modulo 2. Since
the coefficients of the expression of v; with respect to ®; must be non-negative we deduce
that v; = 0 for i € {0,1} and hence v = A. O

The above result becomes really powerful when combined with Proposition [6.1.11] In-
deed, let us consider a particular example using diagrams.

Example 6.2.4. Assume that ¥ is a B, root system and that there are roots oy, as and
in IT such that ay and s span a By simple system orthogonal to 5. Put &y = {ay, as},
®) = {B} and & = &y U P,. Let A € X? be of minimum level in its ®-string. Assume that
® U {\} is a By simple system with Dynkin diagram
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o o O——0
B A 051 Qg
where |G| = |A\| = |aa| > |ag|. A direct examination allows us to argue that the diagram

of the ®y-string of A\ (see Proposition for the general calculation of this string)
is of the form

o—>— 00— @& —>»—O0—+—0O
A o (0% 0% Qg

From Lemma [5.1.1] we have that all the roots in this string except one corresponding
to the central node (the black one) have the same multiplicity. Consider the reflection
fo: I(A\, @¢) — I(\, @) with respect to the central node. Note that this central node
is then a fixed point with respect to this reflection. The map fy satisfies the hypothe-
ses of Proposition . This means that the shape operator of Sg, - 0 is austere
when restricted to the ®y-string of \. Moreover, the ®;-string of A\ consists of the roots
A and A + . From Lemma [5.1.1] they both have the same multiplicity. Hence, the map
fi: I(A, ®1) — I(A, @) that interchanges both roots (it can be also thought as a reflection)
satisfies the hypotheses of Proposition . This means that the shape operator of
Se, - 0 is austere when restricted to the ®;-string of A. From Corollary we deduce
that the ®-string of A is obtained by calculating the ®,-string of each root in the ®y-string
of A\. Thus, the ®-string of A has a diagram of the form

ST T
.1 1.7 7

Roughly speaking, the ®-string of A consists of several copies of the ®,-string of A\, and these
copies are parametrized by the @, q-string of A, for some arbitrary but fixed k& € {0,1} and
indices modulo 2. In the beginning, we used row reflection at the bottom of the diagram of
the ®-string of A to construct a map fy satisfying the hypotheses of Proposition .
However, this idea does not work now. In fact, the conditions on the Cartan integers
required in Proposition are not satisfied by the corresponding nodes of such
reflection. However, if we combine the reflections fy and f; conveniently, we can construct
a map satisfying the hypotheses of Proposition . Note that for each root « in the
®-string of A, the ®;-string of fo(y) consist of the roots fo(y) and fo(y) + 5. Extend the
map f1 in such a way that it interchanges the roots fy(7y) and fo(vy) + B for each 7 in the
®(-string of X\. Extend also the map fy to be a reflection with respect to the central node in
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the row at the top of the diagram of the ®-string of \. Thus, if we consider the composition
f = foo fi we obtain an involution satisfying the hypotheses of Proposition [6.1.11 .
This means that the shape operator of Sg -0 is austere when restricted to the ®-string of A.

We generalize and make this idea precise, based on the examination of some particular
diagrams, in the following

Lemma 6.2.5. Let 5, ®; be orthogonal subsets of the set of simple roots 11. Put ® =
Do U Dy, Let X € X% be of minimum level in its ®-string. Assume that fy: I(\, @) —
I(A, i) is a multiplicity-preserving involution satisfying Aa, = —Aa,f.w) for all (a,v) €
O x I(\, ®y), for each k € {0,1}. Hence, there exists a multiplicity-preserving involution
fr I\, @) = I(A, @) satisfying Aa, = —Aa 5w for all (a,v) € & x I(A, ®). In particular,
the shape operator of the submanifold Se - 0 is austere when restricted to the ®-string of X.

Proof. Let A € X% be of minimum level in its ®-string. If the ®;-string of ) is trivial for
some k € {0, 1}, the result is trivial (taking f = fx+1 where indices are modulo 2). Let us
assume that the ®j-string of A is not trivial for £ € {0,1}. Note that X is also of minimum
level in its ®y-string for k£ € {0,1}. Consider an arbitrary root  in the ®-string of A. It
can be written as v = XA + vy + 71, for 44 in the span of ®;, with & € {0,1}. Recall from
the proof of Corollary that A + vy and A + 7, are both roots.

The map f; induces an involution fi: A, C span®, — A, C span®; such that

frOA+7) = A+ fk(’yk), where
Ap ={y €span @y : A+ € I(\, Dy},
for each k € {0,1}. Hence, we have

Aa,)\-i"yk- = _Aa,)\Jrfk('yk) (613)

for each o € ® with k& € {0,1}. Moreover, we have that the roots A + v, and A + fi(7x)
have the same multiplicity by assumption.

Recall that A is of minimum level and @ is orthogonal to ®;. Let A+14, be an arbitrary
root in the ®p-string of A for v, € span ®;. Hence, we have that A\ + v is of minimum
level in its @y q-string, with £ € {0,1} and indices modulo 2. Indeed, if A + v is not of
minimum level in its ®,-string, from Proposition there must exist a € Py
such that A\ + v, — a is a root. Recall from Proposition that I, = ® U {\} is
a simple system and that each root in the ®-string of A must be in the N U {0}-span of
IT\. However, the root A\ + v, — « is not Z-generated with non-negative coefficients by the
simple system II, = {\} U ®.

Note from the classification of Dynkin diagrams (see 7, p. 337]) that in @ or in ®; all
the roots must have the same length, since they are orthogonal subsets of II. Taking into
account the classification of Dynkin diagrams and the fact that the roots in the Z-span
of II, must be contained in ¥, we deduce that in &5 U {A} or in ®; U {A\} or in &y U P,
all the roots must have the same length. Moreover, if all the roots in &5 U ®; have the
same length, using again the classification of the Dynkin diagrams, the fact that ®, and
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®, are orthogonal and that the ®g-string of A is not trivial for k € {0,1}, we deduce that
in &, U {A} or in ®; U {\} all the roots must have the same length.

Without loss of generality, assume that in the simple system ®; U {A} (see Proposi-
tion ) all the roots have the same length. Hence, all the roots in the ®;-string of
A have the same length (and thus multiplicity), since they lie in the integer span of the
simple system ®; U {A}, where all the roots have the same length.

Consider the roots A+ v, and A+ in the ®;-string of A\, with v, 1| € span ®;. Recall
that they are of minimum level in their ®(-strings and that they have the same length.
From Proposition we have that 113, = ®oU{\+ 11} and H&’Jwi =P U{A+1)}
are both simple systems. Since ® is orthogonal to ®; and A+ v, and A+ v have the same
length, then Ay xyp, = Aa,/\+u{ and Ayyy, 0 = AH%Q for all a € ®;. Therefore, H(3\+V1 and
I o have identical Dynkin diagrams. Hence, each root the form A+ v+ 1, has the same
length (and multiplicity) as the root A + vy + 14, for vy € span @y and vy, V| € span ;.

This means that the map f: I(\, ®) — I(\, ) defined by

FA+7+7) =X+ fo(w) + fi(n),

preserves multiplicities. In fact, take v = X+ + v € I(A, ®). We have that A+ v + 7
has the same multiplicity (and length) as A + o; the roots A + v and A + fo(70) have the
same multiplicity by assumption; and A + fo(v0) and A + fo(70) + fi(71) have the same
multiplicity (and length). This proves that f is a multiplicity-preserving involution.

Finally, take a root o € @y for some k € {0,1}. Thus, recalling that ®; and ®; are
orthogonal subsets of ® and using we obtain

A%f(’Y) = Aa,/\-i-fo(vo)-&-ﬁ(’ﬂ) = Aa7>\+fk('Yk) = _AOM-F% = _Aa,k-&-vo-i-w = _Aa,w

for each v = A+~9+71 € I(A, ®). This means that the involution f preserves multiplicities
and satisfies the conditions of Proposition . In particular, this implies that the
shape operator of the submanifold Sg - 0 is austere when restricted to the ®-string of A.
This finishes the proof. [

This result allows us to provide the first class of examples of austere submanifolds of
the form Sg - 0. Recall that a subset ® of the set II of simple roots is said to be discrete if
Ay p = 0 for any two distinct roots «, 3 € .

Proposition 6.2.6. Let ® be a proper subset of the set of simple roots I1 of the root system
Y. If ® is discrete, the submanifold Se - 0 is austere.

Moreover, for each root X € % of minimum level in its ®-string, the shape operator of
S¢ - 0 15 austere when restricted to the ®-string of \.

Proof. Take an arbitrary root A € £® of minimum level in its ®-string. On the one hand,
if this ®-string is trivial, then A, = 0 for all & € ®. From (6.5) we deduce that g, is
contained in the 0-eigenspace of the shape operator of the submanifold Sg - 0.

On the other hand, assume that the ®-string of A is not trivial. Recall from Proposi-
tion that 1Ty = {A} U ® is a simple system. Then, the simple root A is connected
to at most three simple roots in the Dynkin diagram of the simple system 1I,.
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Assume first that A is connected to just one root @ € ®. Note that the ®-string of A
consists of the roots A + e« for an integer € € {0,...,—A, 1} (see Proposition [6.1.6]). If
the ®-string of A is

—1 1
O - O
A a Mo

then A and A\ + a have the same multiplicity. Note that in the above diagram we write
the Cartan integer A, , above the node v. In this case, consider a function fi: I(\, ®) —
I(\, @) that interchanges A and A + «.

If the ®-string of X is

-2 0 2
O > O - O
A a Mo a M2

then A and A+42a have the same multiplicity. In this case, consider a function fy: I(A, ®) —
I(\, ®) that fixes A + a and that interchanges A and A + 2av.
Finally, if the ®-string of A is

-3 —1 1 3
O > O > O > @)
A @ Mo a A2 @ A3

all the roots have the same multiplicity. In this case, consider a function f3: I(\, ®) —
I(X, @) that interchanges A and A + 3a, and that interchanges A + o and A + 2a.

In conclusion, if the non-trivial ®-string of A\ coincides with the a-string of A, for some
a € &, we can define a multiplicity-preserving involution f satisfying the conditions of
Proposition . Therefore, the shape operator of Sg - 0 is austere when restricted
to the ®-string of A.

Assume now that A is connected to the roots ay and «; in the Dynkin diagram of the
simple system II. Note that A,, ., = 0, since otherwise we would have a loop in the Dynkin
diagram of IIy. Put ®5 = {ap} and ¢ = {1 }. From the above considerations there exist
multiplicity-preserving involutions of I(\, ®g) and I(\, ®;) satisfying the hypotheses of
Proposition . Hence, from Lemmawe deduce that there exists a multiplicity-
preserving involution of I()\, ®) satisfying the hypotheses of Proposition ({ii). In
particular, we deduce that the shape operator of Sg - 0 is austere when restricted to the
®-string of .

Finally, assume that A is connected in the Dynkin diagram of Il to three roots, namely
o, a1 and as. They are mutually orthogonal, since otherwise we would have a loop in
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the Dynkin diagram of II,. Put &y = {ap} and ®; = {ay, as}. From the above consid-
erations there exist multiplicity-preserving involutions of (A, @) and I(\, ®,) satisfying
the hypotheses of Proposition . Hence, from Lemma we deduce that there
exists a multiplicity-preserving involution of (A, ®) satisfying the hypotheses of Proposi-
tion . In particular, we deduce that the shape operator of Sg - 0 is austere when
restricted to the ®-string of A\. This concludes the proof. ]

Let G/K be a symmetric space with G5 Dynkin diagram. Thus, if we take a non-empty
proper subset ® C II, it will contain just one root. Hence, ® is discrete. This allows to
deduce a classification result for symmetric spaces of non-compact type with G5 Dynkin
diagram.

Corollary 6.2.7. Let G/K be a symmetric space of non-compact type with Gy Dynkin
diagram. Let ® be a proper subset of the set 11 of simple roots. Then, the submanifold
S - 0 18 austere.

6.2.1 Study of $-strings of classical type

After the results of the previous subsections, we are ready to start the study of most of
the ®-strings that will appear throughout the classification of the austere submanifolds of
the form Ss - 0. This is the approach that we will follow. We will fix a subset ® of the set
I of simple roots. For each ®-string in ©% we will consider the root A of minimum level.
From Proposition we have that Iy = {\} U ® is a simple system. Then, we will
start a case-by-case examination of the ®-string of A depending on the Dynkin diagram
of the simple system II,. In order to do that, we will calculate the number of roots in
the ®-string of A by using the knowledge about the number of positive roots spanned by
® and by II, [69, p. 684]. Then, we will construct all these roots explicitly and draw the
diagram of the ®-string. Finally, using Proposition or Corollary we will check
in which cases the shape operator of Sg - 0 is austere when restricted to the ®-string of A.
Let us start with the simplest case.

Proposition 6.2.8. Let ® = {«y,...,a,} CII be a connected subset of the set of simple
roots of the root system 3. Let A € ¥ be of minimum level in its ®-string. Assume that
® is an A, simple system and that the simple system 11y = {\} U® has either an A,1 or
a B,y1 Dynkin diagram of the form

o—o— — - - —O or

A a1 Qp A gy Qp (614)

The shape operator of Sg - 0 is austere when restricted to @ael()\@ go if and only if n = 1.

Moreover, let v € LE\I(A\, ®) be of minimum level in its ®-string. Assume that the
simple system 11, has either an A,y or a B,11 Dynkin diagram of the form

oO—o— ——-—— —o0 or -—-- —0

v Ay, (03] Y Qp a7 (615)
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Then, the principal curvatures of the shape operator Sg when restricted to the vector space
@aGI(A,CD) go are exactly the opposite to the principal curvatures of the shape operator S¢
when restricted to @ag(%@) 0o, Jor each unit normal vector € to the submanifold Sg - o.
In particular, if X and v have the same multiplicity, then S is austere when restricted to

@ael(/\,fb)uf('y,cb) Ya-

Proof. If n = 1, our assertion follows from Proposition [6.2.6, Thus, put n > 1. First, we
will study the roots of the ®-string of X\. This is equivalent to studying the positive roots
of the form nyA + Y7 | n;a; Z-spanned by the simple system IT, = {A\} U ®, with n, = 1.
Then, the number of roots in the ®-string of A is the number of positive roots spanned by
an A, or B, simple system, minus the number of roots with ny > 2 in ny\A+3_" | n;q;
and minus the number of positive roots spanned by ® (since n, = 0 in this case). In both
cases we obtain |I(A, ®)| =n + 1 (see for example [69, p. 684]).

Since ® is an A,, system, we have that a(l) = Zi:l «; is a root for each [ € {1,...,n}.
Note that, for both possible Dynkin diagrams of II, we have that A,, y = —1and Ay, » =0
for all o € ®, with ¢ > 2. Thus, Ay = —1 for each [ € {1,...,n}. From Proposi-
tion ([iv), we deduce that A + «(l) is a root, for each I € {1,...,n}. Hence, the
d-string of A consists of the root A and the n roots of the form A+ «a(l), for [ € {1,...,n}.
Therefore, the diagram of the ®-string of A (we put n = 6 for simplicity) is of the form

Using n times Lemmal[5.1.1] (first for v and A, and for oy 1 and A+a(l), with I € {1,...,n—
1}) we deduce that all the roots in I(A, ®) have the same multiplicity. Since n > 1, it is
easy to see that the shape operator § is not austere when restricted to the ®-string of A,
by virtue of Corollary . Indeed, there is just one arrow connected to the node .
This arrow has label aq. Since none of the nodes is connected to just one arrow with label
a1, we deduce that the shape operator of Sg - 0 cannot be austere when restricted to the
®-string of .

For the sake of completeness, we also include the calculation of the principal curvatures.
Put \y =X+ a(l) forl € {1,...,n} and A\g = A\. Note first that

—1 ifi=1+1,
Agrn =41 ifi=1, (6.16)

0 otherwise.

Let £ =" | a;H,, be a unit normal vector to Sg - 0. Using (6.16)) together with (6.5) we
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get that the principal curvature p();) associated with the root space gy, is

( 2
_J%|m if =0,
) = |O‘1‘2 ; 6.17
() = 5 (g —aryq) if 0 <l <m, (6.17)
2
|a21| an, if [ =n.

Note that the principal curvatures are the same for the first and the second type of ®-string
in (6.14)). Let us be more precise. Note that || > || for all & € ® in both cases in ([6.14).
Hence, by virtue of Proposition we have A,y € {0 £ 1} for all @ € ® in both
cases in . Hence, from we deduce that the principal curvatures do not depend
on the case in (6.14])). However, the multiplicity of A might be different depending on the
case in (|6.14)).

The same arguments as those used above hold for calculating the roots in the ®-string
of 7. This string consists of the roots v and v, = v+ Eé:o oy, foreach 1 € {0,...,n—1}.
The picture of the ®-string of v (we put n = 6 for simplicity) is of the form

—O0—>—0O0—>>—20
il Qg (67 Qy Qg3 %) aq

Let us calculate the principal curvatures of S¢ when restricted to the ®-string of +.
Using (6.16)) and (6.5) we get that the principal curvature p(7;) of S¢ associated with the
root space g, is

( 2
|%|m it l—n—1,
o |? .
() = 5 (G — @) i —1<l<n—1, (6.18)
o |? -
[~ an if [ =-—1.

Note that these are exactly the opposite to the principal curvatures of S¢ when restricted
to the ®-string of .

Finally, assume that v and A have the same multiplicity. Since all the roots in I(«, ®)
have the same multiplicity as a, with o € {\, 7}, then all the roots in I(\, ®)UI(y, ®) have
the same multiplicity. Hence, the map f: I(A\, ®) — I(v, ) defined by f(N\) = Y511 for
each [ € {0,...,n} satisfies the conditions of Proposition (ii). This means that if ~
and A have the same multiplicity, then S is austere when restricted to

D o
vel(N\,®)UI(~,P)

Note that this claim is true even if A is of the first type in (6.14]) and ~ of the second type
in (6.15)), provided that they have the same multiplicity. O
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Consider a symmetric space of non-compact type G/K with A, Dynkin diagram, for
some r € N. Let & = {ay,...,a,} be a connected subset of the set of simple roots
I = {ay,...,a.}, with n < m. Let A € % be of minimum level in its ®-string. From
Proposition we have that [Ty = ® U {\} is a simple system. This ®-string can be
trivial. Since A, = 0 for all o € ® in this case we have that

P o

vel(\P)

is contained in the 0-eigenspace of the shape operator of Sg - 0. If the ®-string of A is not
trivial, the root system with simple system II, is contained in ¥, which has an A, Dynkin
diagram. Note that if II) is not of type A, then there will be at least (see [69, p. 684])
one positive root v = Zaem nea with ng > 2 for some g € II,. But this root would be
in the A, system Z-generated by II and then 0 < n, <1 for all « € II,. Thus we get a
contradiction. Hence, if the ®-string of A is not trivial, then II, must be an A,, ..o simple
system.
Recall that we are considering the vector subspace

D ..

aexn®

of the tangent space to Sg - 0. Recall also that we are considering a decomposition of
this subspace induced by strings. These strings can be of three types: trivial, of the first
type in or of the first type in . Note that all the roots in > have the same
multiplicity. Thus, combining Proposition [6.2.8] with Lemma [6.1.10, we deduce that the
submanifold Sy - 0 is austere if and only if the number of roots v; € £® of minimum level
in their ®-strings satisfying A,, ,, = —1 coincides with the number of roots v, € X% of
minimum level in their ®-strings satisfying A,,, ,, = —1.

This idea of counting roots of minimum level and their multiplicities will hold for the
rest of the cases. However, the ®-strings involved will be more complicated than those
we have studied in Proposition [6.2.8, Hence, before stating the classification result for a
symmetric space of non-compact type with A, simple system, we continue investigating
®-strings that will appear in the rest of the cases.

Proposition 6.2.9. Let & be a connected subset of the set of simple roots 11 of the root
system ¥. Let X € ¥ be of minimum level in its ®-string. If one of the following conditions
holds, then the shape operator of Sg - 0 is austere when restricted to the ®-string of \.

(i) ® is a simple system with B, Dynkin diagram and the simple system I1y, = {\} U ®
has a B,y1 Dynkin diagram of the form

O
)\ 0751 Qp—1 (679

(i1) @ is a simple system with C, Dynkin diagram and the simple system Iy = {\} U ®
has a C,+1 Dynkin diagram of the form
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O
)\ Qg Q1 Qp

(iii) ® is a simple system with D,, Dynkin diagram and the simple system I, = {\} U ®
has a Dy, Dynkin diagram of the form

Op—1
(@ O - = — O O O
)\ o Qn_3 Ap—2 (7%

Proof. : First we will determine the roots of the ®-string of A. In order to do that, we
will study the positive roots of the form n A+ )" .4 naa Z-spanned by the simple system
I, = {A\} U ®, with ny = 1. Then, the number of roots in the ®-string of A is the number
of positive roots spanned by a B,; simple system, minus the number of positive roots
spanned by ® (since ny, = 0 in this case and n, > 2 does not occur [69, p. 684]). We
obtain
I\, @) = (n+1)* —n?=2n+ 1.

The root a’(l) = Zizl «; is spanned by ® for each I € {1,...,n}. Since Ay 4o = —1 for
each [ € {1,...,n}, then from Proposition we deduce that A\g(l) = A + (1) is a
root in the ®-string of A for each [ € {1,...,n}. Since |\| = |a®(l)| for each [ € {1,...,n—
1}, then from Proposition[1.5.1] and Ay 40 = —1 we deduce that Ay, = —1 for each
le{l,...,n—1}. Hence, using Lemma for a®(l) and A, for each [ € {1,...,n — 1},
we deduce that all the roots of the form Ag(l) have the same multiplicity as A, for each
le{l,....,n—1}.

Moreover, the root al(k) = a°(n) + Z;:ékﬂ) a,—j is spanned by @ for each k €
{1,...,n — 1}. Since Ay,1) = —1 for each k € {1,...,n — 1}, then from Proposi-
tion we get that (k) = X\ + a!(k) is a root in the ®-string of A for each
k € {l,...,n—1}. Note that |a! (k)| = || for each k € {1,...,n — 1}. Hence, Proposi-
tion and Ay g1k = —1 yield Agigyn = —1 for each k € {1,...,n — 1}. Using
Lemma for a'(k) and A, for each k € {1,...,n — 1}, we deduce that all the roots
of the form A;(k) have the same multiplicity as A, for each k € {1,...,n — 1}. Put
Ao(0) = A. Moreover, we have that A, y1q1(1) = —1 and from Proposition we
get that A + o' (k) + a4 is also a root (again with the same multiplicity as A, by virtue of
Lemma [5.1.1)). Put A;(0) for this root. The root Ag(n) and the roots of the form A.(l),
with ¢ € {0,1} and [ € {0,...,n — 1}, give rise to the 2n + 1 roots of the ®-string of .
The diagram of this ®-string (with n = 4 for simplicity) is of the form

i
- & » O+ O—» O —» O
3 631 Qo Qs Qg v Qg Qg Qo ap
1
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Recall that all the roots in the ®-string of A except Ag(n) (the black node in the above
diagram) have the same multiplicity as A\. Hence, the map f: I(\, ®) — I(\, ) defined
by

(A=() = {W) if (e,0) = (0.m),

A_e(l) otherwise,

satisfies the conditions of Proposition . The map f is induced by a reflection
with respect to the vertical line in the above diagram.

: We will study the positive roots of the form nyA + > 4 noo Z-spanned by the
simple system IIy = {A\} U ®, with ny = 1. Then, the number of roots in the ®-string of
A is the number of positive roots spanned by a C,,; simple system, minus the number of
positive roots spanned by ® (since n, = 0 for such roots) and minus the number of roots
with n), > 2 (there is just one root satisfying this condition [69, p. 684]). We obtain

I\, ®)] = (n+1)> —n® — 1 =2n.

The root a’(l) = Ei | @ is spanned by ® for each [ € {1 ,n—1}. Since Ay 40y = —1 for
each [ € {1,.. — 1}, then from Proposition [L.5.1] (iv) we deduce that )\o(l) =X+ a°(l)
is a root in the <I> string of A for each [ € {1,...,n — 1}. Note that |a°(l)] = |A| for
each [ € {1,...,n — 1}. Hence, from Proposition and A, 400y = —1 for each
I € {1,...,n — 1}, we deduce that Ay = —1 for each [ € {1,...,n — 1}. Using
Lemma for a°(1) and A, for each [ € {1,...,n — 1}, we deduce that all the roots of
the form A\g(l) have the same multiplicity as A, for each { € {1,...,n —1}.

Moreover, the root al(k) = a®(n — 1) + Z"_ (k1) a,—j is spanned by ¢ for each
k € {0,...,n — 1}. Note that |a!(k)] = |\ if k: 7é 0 and |a!(0)] > |A|. Using Propo-
sition [1.5.1] _ and Ay 415 < 0 for each k € {0, .. — 1}, we deduce that Agigy\ = —1
foreach k € {0,...,n— 1} Then from ProposMon_ (iv) we get that A\ (k) = )\+a1(k)
is a root in the CI> strlng of A for each k € {0,...,n —1}. Put A\o(0) = A. Furthermore,
using Lemma for a'(k) and A, for each k € {O, ...,n— 1}, we deduce that A\;(k) has
the same multiplicity as A, for each k € {0,...,n — 1}. Thus, the roots of the form A.(1),
for e € {0,1} and I € {0,...,n — 1}, give rise to the 2n roots of the ®-string of A\. Note
that all of them have the same multiplicity as A. Its diagram (with n = 4) is of the form

—O0—» ! —0
i o1 a2 a3 Qiy a3 &%) Qg

Hence, the map f: I(\,®) — I(\, @) defined by f(A:(1)) = A1_<() satisfies the conditions
of Proposition . The map f is induced by the reflection with respect to the
vertical line in the above diagram.

: We will study the positive roots of the form nyA + )" . nac Z-spanned by the
simple system II, = {A} U ®, with ny = 1. Then the number of roots in the ®-string of
A is the number of positive roots spanned by a D, simple system, minus the number of
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positive roots spanned by @ (since n), = 0 in this case and there are not positive roots
satisfying ny > 2 [69 p. 684]). We obtain

[ I(A\, @) = (n+1)n —n(n —1) = 2n.

Since we are studying a D,, ;1 simple system, then all the roots of the ®-string of A have the
same multiplicity. In particular, from Proposition we have that A,, ,, = A,, .,
for all vy, 1p, € 3.

Put a®(l) = X', for each [ € {1,...,n} and a®(n + 1) = a®(n) — a,_;. All these
roots are spanned by ®. Since Ay 400y, = —1 = Aoy for each I € {1,...,n+ 1}, from
Proposition we deduce that A\g(l) = A+ a®(l) is a root in the ®-string of \ for
eachl e {1,...,n+1}.

Moreover, the root al(k) = a°(n) + z;:z(kﬂ) @ is spanned by @ for each k €

{1,...,n — 3}. Since Apigyr = —1 for each k € {1,...,n — 3}, then from Proposi-
tion we get that A\;(k) = A + a!(k) is a root in the ®-string of A for each
ke {1,...,n — 3}. Furthermore, we have that A, 1,1y = —1 and then from Proposi-

tion we get that A\ (0) = A\1(1) + oy is a root in the ®-string of A.

Put A\g(0) = A. Then we have that Ao(n —2), Ag(n — 1), Ao(n), Ao(n+ 1) and the roots
of the form A.(I), with e € {0,1} and [ € {0,...,n — 3}, give rise to the 2n roots of the
®-string of \. Its diagram (with n = 5 for simplicity) is of the form

Since we are studying a D, simple system, then all the roots of the ®-string of A have
the same multiplicity. The map f: I(A, ®) — I(\, ®) defined by

(A(n) if (e,1) = (0,n — 2),
Ae(n—2) if (g,1) = (0,n),
() =< Ae(n+1) if (g,1) = (0,n — 1),
Ae(n—1) if (g,1) = (0,n + 1),
[ A1-e (1) otherwise,

satisfies the conditions of Proposition [6.1.11 . The map f is induced by the composition
of reflections with respect to the horizontal and vertical axes in the above diagram. This
finishes the proof. [

Remark 6.2.10. It is very interesting to remark that although the characterization given in
Proposition is not true without the assumption on the lengths, it can be extended
for some particular cases. Indeed, assume the hypotheses and notations of the proof of
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Proposition . We have calculated explicitly the roots of the ®-string of X\. Note
that A is the unique root in I(\, ®) such that there exists a root o € ¢ satistying A, = —1
and Ag, = 0 for all 8 € ®\{a}. Hence, the characterization given in Proposition[6.2.1]
is also true when @ is an B, simple system and ® U {\} is a B,y simple system, with
n > 1.

Combining Proposition [6.2.6 Proposition [6.2.9/and Lemma[6.2.5| we directly obtain the
following

Corollary 6.2.11. Let ® be a proper subset of the set of simple roots 11 of the root system
X, Let A € X% be of minimum level in its ®-string. If one of the following conditions
holds, then the shape operator of Sg - 0 is austere when restricted to the ®-string of \.

(i) @ is a reducible simple system with A; & B, Dynkin diagram and the simple system
I, = {A\} U has a B, s Dynkin diagram of the form

O —_— —_ - e () m—— |
% )\ o Qp—1 7%

(ii) ® is a reducible simple system with A; @ C,, Dynkin diagram and the simple system
I, = {A} U has a C,yo Dynkin diagram of the form

O —_ = — — (OO0
% A aq Qp—1 Qp,

(iii) @ is a reducible simple system with Ay @ D,, Dynkin diagram and the simple system
I, = {A} U has a D, 1o Dynkin diagram of the form

Qn—1

>0

B

This result allows us to construct a large family of examples of austere submanifolds in
symmetric spaces of non-compact type G/K with Dynkin diagram B,, C,. or D,.

aq ap—3 Op—2 879

Proposition 6.2.12. Let ®q, ®; be orthogonal subsets of the set of simple roots Il and put
O = Oy U Py, Assume that $q is discrete and the pair (I1, ®g) of simple systems is of one
of the following types:

{(BT7 B'”a)? (CT7 Cﬂ)? (DT? D”)}’

with n < r. Then, the submanifolds Ss, - 0, Se, - 0 and Se,ue, - 0 are austere.
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Proof. Let us denote by Sy, S; and § the shape operators of Sg, - 0, Sp, - 0 and Sg - o,
respectively. Recall from Proposition that ITy = ® U {\}, &g U {A} and & U {A}
are simple systems. Let us study all the possibilities:

(a) If the ®;-string of A is trivial for ¢ € {0, 1}, then from Corollary we have that
the ®-string of A is also trivial. Hence, the subspace g, is contained in the 0-eigenspace

of So, 81 and S.

(b) Assume that the ®¢-string of A is not trivial and that the ®;-string of A is trivial.
This implies firstly that g, is contained in the 0-eigenspace of &;. Moreover, due to
Corollary we have that the ®(-string of A\ coincides with the ®-string of .
According to our hypothesis, we have that I, has either a B, 1, C,41 or D, ;1 Dynkin
diagram. These cases have been studied in Proposition[6.2.9/and we have that Sy and S
are austere when restricted to the ®y-string of A\ and to the ®-string of A, respectively.
At this point, we deduce that Sy, - 0 is austere.

(c) Assume that the ®¢-string of A is trivial and that the ®;-string of A is not trivial.
This implies firstly that g, is contained in the 0-eigenspace of Sy. Moreover, due to
Corollary we have that the ®-string of A coincides with the ®;-string of .
Since @, is discrete, from Proposition [6.2.6| we deduce that S; and S are austere when
restricted to the ®;-string of A and to the ®-string of A, respectively. At this point,
we deduce that Sg, - o is austere.

(d) Assume that the ®;-string of A is not trivial, for i € {0,1}. According to the classifi-
cation of Dynkin diagrams [7, p. 337], we have that IT) must be of type B, 2, Cpyo Or
D, 5. All these cases have been investigated in Corollary and we have that S
is austere when restricted to the ®-string of .

Since all the cases have been considered, the result follows. O

Let us continue with the study of the different kinds of ®-strings that will appear when
we address classification results.

Proposition 6.2.13. Let ® = {«,...,a,} CII be a connected subset of the set of simple
roots of the root system Y. Let A € ¥ be of minimum level in its ®-string. Assume that ®
is an A, simple system and the simple system Iy = {\} U ® has a D, 1 Dynkin diagram
of the form

>0
Q
o
Q
3
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The shape operator of Sg - 0 is austere when restricted to EBQGI(M)) go if and only if n = 3.
Moreover, let v € S2\I(\, ®) be of minimum level in its ®-string. Assume that the
simple system IL, = {y} U ® has a D,,+1 Dynkin diagram of the form

Qp

O JR— _— _— B —
Y On—1 aq

Then, the principal curvatures of the shape operator Sg when restricted to the vector space
@ael(/\’q)) go are exactly the opposite to the principal curvatures of the shape operator S¢
when restricted to @ael(%q)) 9o, for each unit normal vector & to the submanifold S - 0. In
particular, S is austere when restricted to @ael(/\@)ul(«/,@) o

Proof. 1f n = 3, the shape operator is austere when restricted to the ®-string of A by means
of Proposition (iil). Thus, put n > 3. First, we will study the roots of the ®-string
of A\. In order to do that, we will study the positive roots of the form nyA + > " | no
Z-spanned by the simple system I, = {A\} U®, with ny, = 1. Then, the number of roots in
the ®-string of A is the number of positive roots spanned by a D, 1 simple system, minus
the number of positive roots spanned by ® (since n) = 0 for such roots) and minus the
number of positive roots spanned by the D, 1 system with ny, > 2 (there are no roots
satisfying this condition [69], p. 684]). Therefore

nn+1)  n(n+1)

2 2
Note that all the roots in the ®\{«; }-string of A are contained in the ®-string of . Since
A is the root of minimum level in its ®-string, then it is also the root of minimum level in

its ®\{«; }-string. From Proposition we get that the ®\{ay }-string of A consists of
the root A and the roots of the form

TN\, @) = (n+1)n —

l
>\l = )\‘F ZO&Z',
=2

for each [ € {2,...,n}. The root ), is the root of minimum level in its (aq,...,q_1)-
string for each | € {2,...,n}, as follows from Proposition and the facts that
Ayx, <0and A,, 5, =0foreachie {2,...,1—1}. Since (aq,...,q_1) is an A;_; system
then {ay,..., o1} U{N} is an A; simple system for each | € {2,...,n}. Using again
Proposition we obtain that the (o, ..., a;_1)-string of A; consists of the root A; and
the roots of the form

k
M(k) =N+
j=1
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foreachk € {1,...,l—1}andl € {2,...,n}. Put \y = Aand \(0) = N\, for [ € {1,...,n}.
Then, the number of roots of the form A (k) with [ € {1,...n} and k € {0,...,l — 1} is

1
1+2+---+n:@,
and thus we have calculated all the roots in the ®-string of A. Hence, the diagram of this

$-string (we put n = 6 for simplicity) is of the form

In the row in the bottom we draw the roots of the form \;, that is, the roots of the ®\{«; }-
string of A. Above the root \; we draw the roots of the form X;(k), that is, the roots of
the (aq,...,qq_1)-string of A;. It is easy to see that the shape operator of S is not austere
when restricted to the ®-string of A by using Corollary [6.1.12} Indeed, there is just one
arrow connected to the node A. This arrow has label as. None of the nodes is connected
to just one arrow with label as: there is just one node connected to exactly one arrow, but
this arrow has label a,,_; in general (label a5 in the above diagram since n = 6). Thus, we
deduce that the shape operator of S - 0 cannot be austere when restricted to the ®-string
of A, if n > 3.

For the sake of completeness, we also include the calculation of the principal curvatures.
Recall from that in order to calculate the principal curvatures we need to determine
the Cartan integers. In this case we have

1 itm=%k or m=Iland k #1—1,
Avoy =4 —1 ifm=k+landk#1—-1, or m=1+1, (6.19)

0 otherwise.
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Consider the normal vector & = Y " a;H,,. Since all the roots in II, have the same
length, put |a;| = 2 for simplicity. From (6.19) we deduce that the principal curvature
(k) associated with the root space g, with [ € {1,...,n} and k € {0,...,1 — 1}, is

(al+ak_al+1_ak+1 if 2<l<n, O0<k<Il-—1,
ap — Q41 if 2<l<n, k=1-1,
a; + ap — a1 if l=n, 1<k<n-—2,
(k) = < a; — apyr — apsy if 2<i<n-1, k=0, (6.20)
ay, — a1 if l=n, k=0,
—ay if Il=1, k=0,
Ap—1 if l=n, k=n—1.

Now we will prove the second claim in the statement of this proposition. Let v €
Y®\I(A, ®) be of minimum level in its ®-string satisfying A,, ,, = —1. In order to define
later a bijection f between I(\, ®) and I(y, ), we include the roots of the ®-string of v
explicitly. The ®\{a,}-string of v consists of the root v and the roots of the form

l
M=+ Z Qp—i,
i=1

with [ € {1,...,n — 1}. Note that v, is of minimum level in its (@, _;41, ..., qy,)-string
by means of Proposition (). Hence, using Proposition we will calculate the
(n—141, - -, )-string of ; for each [ € {1,...,n—1}. Thus we have that the roots of the
form

k
’Yl(k> =M + Z Qp—j
=0

for k € {0,...,1 — 1} belong to the ®-string of v. Put vy = v and y(—1) = v, with
1 €{0,...,n—1} . Thus the ®-string of v consists of the roots v,(k) for I € {0,...,n—1}
and ke {—1,...,01—1}.

Then, the ®-string of v has a diagram (which we draw for simplicity for the case n = 6)
of the form
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Recall that, by assumption, A and v are connected to a simple root by the same number
of edges in the Dynkin diagrams of II) and II,. Hence v and A have the same multiplicity.
Moreover, note that 1I, and IL, are both D, ; simple systems. This means that all the
roots Z-spanned by II, and IL, have the same multiplicity. In particular, all the roots in
I(\, ®) and (v, ®) have the same multiplicity as A and 7.

Hence, the map f: I(\, ®) — I(vy, ®) defined by f(N(k)) = Yn_r_1(n — [ — 1) satisfies
the conditions specified in Proposition . This map is induced by the reflection
with respect to a central vertical axis separating the diagrams drawn below (with n = 4
for simplicity):

; Y

. @)
1
i

(0% : a3
i
i
Yy :
i
&%) &%) i
i
i
1
a3 0y i a3
1
651 Qg Qg i (€51
1
—l—»—i—»—i i
o—> i 5
A Q2 a3 0y i Q3 Q9

In terms of diagrams it is very easy to check that the condition explained in Corol-
lary [6.1.12 is satisfied. If we reflect one diagram to the other we can see that each
node is sent to a node with opposite arrows. This concludes the proof. O
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Remark 6.2.14. Let ® be a proper subset of the set II of simple roots. Let \, v € X®
be roots of minimum level in their corresponding different ®-strings. Assume that the
®-string of A is described in Proposition [6.2.8] and that the ®-string of ~ is described
in Proposition [6.2.13] Then, for some unit normal vector & of S - 0 there is a principal
curvature of S¢ when restricted to the ®-string of v such that its opposite cannot a principal
curvature of &g when restricted to the ®-string of A\. This is a simple consequence of the
assertions on the Cartan integers in the proofs of Proposition [6.2.8] and Proposition [6.2.13

combined with Lemma [6.1.10 .

In most of the results above we have dealt with a connected subset ® of the set II of
simple roots. The following two propositions can be thought as generalizations of Propo-
sition [6.2.8) to the non-connected case.

Proposition 6.2.15. Let & C II be a proper subset of the set of simple roots of the root
system ¥. Let X\ € ¥ be of minimum level in its ®-string. Assume that the simple system
I, = {A\} U has an A, iny1 Dynkin diagram of the form

7 Qap

>0

g h

The shape operator of S - 0 is austere when restricted to @ael(k’é) go if and only if n =
m = 1.

Moreover, let v € S2\I(\,®) be of minimum level in its ®-string. Assume that the
simple system IL, = {y} U ® has an A, 4nt1 Dynkin diagram of the form

- = — O O O - — — — =0
1 /Bm fy (079 (051

Then, the principal curvatures of the shape operator S¢ when restricted to the vector space
EB%I(/\’(}) 0o are the opposite to the principal curvatures of the shape operator S when
restricted to @ael(%@ 0o, for each unit normal vector £ to the submanifold S - 0. In
particular, S s austere when restricted to @ael(/\ &)UI(7,8) Ja-

Proof. If n = m = 1 the result follows from Proposition [6.2.6, Then, assume that n > 1
orm > 1. Put ® = {ay,...,a,} and &, = {By,..., Bn}. Define o*(l) = 3\, a; for
each [ € {1,...,n} and a*(0) = 0. From the proof of Proposition we know that the
®y-string of A consists of the roots

A=A+ arl),

with [ € {0,...,n}. From Corollary we know that we can obtain the ®-string of
A by calculating the ®;-string of \; for each [ € {0,...,n}. Put $*(0) = 0 and k) =
Zle B; for each k € {1,...,m}. Thus, using again Proposition , we obtain that the

d-string of A\ consists of the roots

Ml k) =X+ a() + k)
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for 1 € {0,...,n} and k € {0,...,m}. The diagram of this ®-string is of the form

»— =
(651 (6% Qp
Bl

Bl Bl Bl
i i i i
i i i i

There are two arrows connected to the node X\. One has label oy and the other one has
label f3;. There is just another node connected to exactly two arrows (located at the top
right-hand side of the diagram). However, its arrows have labels a,, and (,,. Thus, from
Corollary we deduce that the shape operator of Sg - 0 is austere when restricted to
the ®-string of A if and only if m =n = 1.

Let us focus on the ®-string of v. Put a7(1) = Zi:o a,_; foreach [ € {0,...,n—1} and
B(k) = S5 Bm_i for cach k € {0,...,m—1}. For simplicity, write a?(—1) = 7(~1) = 0.
Thus, the ®-string of v consists of the roots

V(LK) =~y +a’(l) + 57 (k),

forle {—1,...,n—1}and k € {—1,...,m—1}. Note that all the roots have the same mul-
tiplicity. Hence, the map f: (A, ®) — I(, ®) defined by f(A(l,k)) =v(n—1l—1,m—k—1)
satisfies the conditions of Proposition . This map is induced by the reflection
with respect to the central vertical axis of the diagram below (which we draw for the case
(n,m) = (3,4) for simplicity):
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(651

If we reflect one diagram to the other we can see that each node is sent to a node with
opposite arrows. This concludes the proof. [

Proposition 6.2.16. Let & C II be a proper subset of the set of simple roots of the root
system . Let X € X% be of minimum level in its ®-string. Assume that the simple system
Iy = {A} U has a B,o Dynkin diagram of the form

p A 631 O

The shape operator of Sg - 0 is austere when restricted to @ael(/\ ) Ja if and only if n = 1.

Moreover, let v € S2\I(\, ®) be of minimum level in its ®-string. Assume that the
simple system I, = {v} U ® has a B,1o Dynkin diagram of the form

B 7 Qp aq

Then, the principal curvatures of the shape operator S¢ when restricted to the vector space
EBQGI(/\’@) go are exactly the opposite to the principal curvatures of the shape operator S¢
when restricted to @ae[(%@) 0o, for each unit normal vector € to the submanifold S¢ - 0. In
particular, S s austere when restricted to @ael(/\ &)UI(7,0) Ja-

Proof. If n =1 this result follows directly from Proposition [6.2.6] Thus, put n > 1. Using
Proposition [6.2.8, we have that the (aq, ..., a,)-string of A consists of the root A and the
roots of the form A\, = A + Zﬁzl a;, for each [ € {1,...,n}. For simplicity, put Ay = A.
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Thus, according to Corollary [6.2.3] Proposition and Proposition [6.2.8] we deduce
that the ®-string of A consists of the roots of the form

Al e) = N +¢€b,
for 1 € {0,...,n} and € € {0,1,2}. The diagram of this ®-string is of the form

(S

-2 if (v,e) = (B,0),

-1 if v = a4,

Auriey =10 if (r,e) = (8,1) or v & {41, }, (6.21)
1 if v = aq,

2 if (ne) = (8,2).

In particular, using Lemma and we deduce, on the one hand, that all the roots
A(l,e) with € € {0,2} have the same multiplicity (first and last rows in the diagram).
On the other hand, they also imply that all the roots of the form A(l,1) (second row
in the diagram) have the same multiplicity. Put n > 1. Thus (Ag.,, Aa,\) = (—2,—1)
and A, = 0 for all v € ®\{B,}. If S were austere when restricted to the ®-string
of A\, from Lemma , there should exist a root A in the ®-string of A\ satisfying
(Agxs Aoy v) = (2,1) and A, = 0 for all v € ®\{B, a;}. From (6.21), a root satisfying
these conditions does not exist.

Let us focus on the diagram of the ®-string of v. Put v, = v + ZEZO ay,—; for each
1 €{0,...,n—1} and put v_; = . Thus, according to Corollaryand Propositionm
the ®-string of v consists of the roots

Y, k) =y +€B,

for I € {—1,....,n — 1} and ¢ € {0,1,2}. Recall the information about multiplicities
given by Lemma and (6.21). Hence, the map f: I(\,®) — I(v,®) defined by
f(Al,e)) = v(n — 1 — 1,2 — ¢) satisfies the conditions of Proposition (ii). This
map is induced by the reflection with respect to a central vertical axis between the dia-
grams we draw below.

Note that
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O O O—»— »—r-p—
)
O O O—»— =
)
O O O—»— -
Oy, QOp—1

(651

aq (6D) (679

g g B i
bbb e

This concludes the proof. O

6.3 The classification in classical spaces

In this section we will classify the austere submanifolds of the form Sg - 0 in symmetric
spaces G/K with A,, B,, C,., BC, and D, Dynkin diagram, where ® is a subset of the set
IT of simple roots. The information about ®-strings given in Section suffices in order
to obtain these classifications. We start with an easy but very useful lemma.

Lemma 6.3.1. Let Oy be a subset of the set of simple roots I1. Assume that S, - 0 is not
an austere submanifold. Take a subset ®; C Il orthogonal to ®g. Put ® = &y U ®,. Then
Se - 0 18 not austere.

Proof. In this proof we will write S for the shape operator of S - 0 and S®° for the shape
operator of Sg, - 0. Since Sg, - 0 is not austere, there exists a unit normal vector £ to the
submanifold Sy, - 0 such that the shape operator Sg) % of S, - 0 is not austere. Note that &
is also a unit normal vector to the submanifold S¢ - 0 and that

T(Se-0)® | P .| @ (@ RHQ> = T,(Sa, - 0).

a€2<1>1 acd;

Moreover, we have that S¢ is the restriction of the shape operator Sf ® to the vector

space
(@ ga) o .

acy?®
In other words, we have that

o
Sé - 85 O‘(EBaegp Ea)@%'

Recall from (6.3) that S, ag = 0 for all n; € a® and S;°ag, = 0 for all 1, € a® . From (6.5)
and Ao, =0 for all a; € ®;, with i € {0,1}, we deduce that Sgo is zero when restricted

to ga, for each @ € X,. Thus, the non-zero principal curvatures of S¢ and Sgb ° coincide.
Since Sg, - 0 is not austere, then Sg - 0 cannot be austere. O
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Remark 6.3.2. Consider the Dynkin diagrams of two simple systems II and IT of the same
type. Let f: ¥ — X' be a bijection satisfying An 3 = A s for all o, B € II. Let & C II
and assume that the multiplicity of v is proportional by a constant factor ¢ (note that ¢ does
not depend on v) to the multiplicity of f(v), for all v € . Then, the submanifold Sg - 0 is
austere if and only the submanifold Sy - 0 is austere. This is because the decomposition
of ¥® into ®-strings is equivalent to the decomposition of %/(®) into f(®)-strings and
multiplicities are preserved up to multiplication by a constant factor c¢. Roughly speaking,
this means that it suffices to study Dynkin diagrams instead of symmetric spaces. In
particular, in spaces where all the roots have same length we just need to care about the
Dynkin diagram.

6.3.1 Symmetric spaces of type A,

Let us start with the classifications of the simplest cases, that is, symmetric spaces G/K
with A, Dynkin diagram.

Proposition 6.3.3. Let ® be a proper subset of the set of simple roots Il of a symmetric
space of non-compact type G/ K with A, Dynkin diagram

o— — — - —O0
(0%] (7%

Then, the orbit S - 0 is austere if and only if one of the following statements holds:
(i) ® is discrete, or

(i) ® = {ap,...an} is a connected and symmetric subset of Il = {ay,...a,}, that is,
r—m=mn-—1.

Proof. Consider first a particular case. Let & = {,,...,a;,} be a connected subset of the
set of simple roots IT = {ay, ... a,} of the symmetric space G/K, with n < m. Let A € ¥.%
be of minimum level in its ®-string.

From Proposition , we have that ITy = ®U{\} is a simple system. This ®-string
can be trivial. Since A, ) = 0 for all & € ® in this case we have that g, is contained in the
0-eigenspace of the shape operator of Sg - o.

Assume that the ®-string of A is not trivial. Then, the roots in the root system with the
simple system II, must be contained in ¥, which has an A, Dynkin diagram. Note that if
IT) is not of type A, then there will be at least [69, p. 684] one positive root v = .y nac
with ng > 2 for some § € II,. But this root would be in the A, system Z-generated by II
and then 0 < n, <1 for all @ € II,. Thus we get a contradiction. Hence, if the ®-string
of X is not trivial, then II, must be an A,,_, 2 simple system.

Then, the principal curvatures of the shape operator of Sg - 0 when restricted to this
®-string have been determined in Proposition Since all the roots in ¥ have the
same multiplicity, from Proposition [6.2.8) we deduce that Sg¢ - 0 is austere if and only if
the number of roots v; € X% of minimum level in their ®-strings satisfying A,, ,, = —1
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coincides with the number of roots v, € £® of minimum level in their ®-strings satisfying
A = —1.
On the one hand, note that the

m—=2)n—1)+(r—m—1)(r —m)
2

positive roots generated by the reducible simple system

{ar, .. ,an_o} U{amye, .., an} = A g ® Ar iy

have trivial ®-string. Moreover, also the (n — 1)(r — m) roots of the form Y'_, «; with
k <n <m <[ have trivial ®-string. On the other hand, we have that Z;:ll o is the root
of minimum level in its ®-string by means of Proposition foreachl € {1,...,n—1}.
This ®-string is of the first type in (6.14), for each { € {1,...,n—1}. Finally, we have that
Zi:m 41 @; is of minimum level in its ®-string by means of Proposition for each
l € {m+1,...,r}. This ®-string is of the first type in (6.15)), for each I € {m+1,...,r}. If
P is a simple system, we denote by |P| the number of positive roots spanned by P. Recall

that ® is an A,,_,, 11 simple system. Then we have

(= 1) — ) + VAol + 1Ar s+ A
+(n—1)(m—-n+2)+(r—m)(m—n+2)=|A,]

which means that we have studied all the roots in ¥®. In summary, we have n — 1 roots
v, € X% of minimum level in their ®-strings satisfying Aa, 1y = —1land r—mroots v, € »e
of minimum level in their ®-strings satisfying A, ,, = —1. Therefore, if & = {a,, ..., an}
is a connected subset of II with n < m, then Sg - 0 is austere if and only if r —m =n — 1,
that is, if and only if ® is symmetric in II.

Assume first that &y, ®; C &, where &y, ¢, are orthogonal connected subsets of II. If
|Do, |P1] > 2, then ®( or @y is not symmetric in II. Thus Sg, - 0 or Sg, - 0 is not austere.
From Lemma [6.3.1] the submanifold Sg - 0 is not austere either.

Hence, assume that ®g = {a,, ... a,} and ®; are orthogonal subsets of II, where ® is
symmetric in I and ®; is discrete, and put & = &qUP,. Without loss of generality, assume
also a; € ®; with [ < n — 1. Let us consider the submanifold Sg,u(qa,3. Thus, Aq s =0
for all @ € ®y. Consider the positive root A = Z?:Hl a;. Note that A,y = —A,. 2 =
Ao, x = —1 and that A, = 0 for all @ € ®p\{a,, @ny1}. From Lemma we
have that if Sg,u(a,) is austere, then there must exist a root y € S} such that A, , =
—Aa,n = Aa,ny =1 and that A, = 0 for all @ € Oo\{av,, g1} Put v =>"1_ b,
Note that b; € {0,1} for all ¢ € {1,...,r}. Thus, from A,,, = 1 we deduce b, = 1, from
Aq, 4 = —1 we deduce b, = 0, and from A,, , , = 1 we deduce b, ; = 1. But then v would
not be a root. Then Sg,(q,) is not an austere submanifold. Recall that ® = ®¢ U ;.
From Lemma [6.3.1], we conclude that Sg - 0 is not austere either. O
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6.3.2 Symmetric spaces of type B,

In this subsection we classify the austere submanifolds of the form Sg - 0 in symmetric
spaces of non-compact type with B, Dynkin diagram. We have:

Proposition 6.3.4. Let ® be a proper subset of the set of simple roots Il that has a B,
Dynkin diagram of the form

&3] Qr_1 Ay

Then, the submanifold Sg - 0 is austere if and only if one of the following conditions holds:

(i) ® is a B, simple subsystem, for n <r,

(i) ® = {a,_2,,_1} and all the roots in ©* have the same multiplicity, or

(iii) & = ®y U §y, where Oy satisfies the hypotheses of either (@) or , and ®1 s a
discrete subset of I orthogonal to ®.

Proof. Assume first that ® is connected subset of II. Thus, according to Proposition
we just need to analyze the case when ® = {a,,...,q,} is a subset of the set IT =
{ai,...,a,} of simple roots, with n < m < r.

In Table[6.2] table we gather the following information. In each row we write a family of
roots in ¥* of minimum level in their ®-strings (using Proposition ) In particular,
we also write roots with trivial ®-string. Moreover, we also specify how many roots of each
class we have and which kind of ®-string they have.
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Roots Conditions Number of roots | ®-string

S a 1<li<n-1 n—1 (6.14)

S +237 1<i<n-1 n—1 6.15)
SF l<n<m<k<r (r—m)(n—1) Trivial

2§:m+1 Q; m+1<I<r r—m (6.15))

S 23 ey | m+2<I<vy r—m—1 ©.15)
SE 42y e | 1<i<k<n—2| (n—2)(n—1)/2 | Trivial
St +2Y | 1<i<n—1, | (r—m—1)(n—1)| Tivial

m+2<k<r

Table 6.2: Some roots of minimum level in their ®-strings, for Il of B, type.

It is important to emphasize that all the roots (except one) in Table whose ®-string

is of type ((6.14) or of type (6.15)) have a ®-string of the first type in (6.14]) or of the first
type in (6.15)), respectively. Indeed, the root (fourth row in Table with [ =r)

v = Z o (6.22)

has a ®-string of the second type in . Hence, v can have different multiplicity from
that of the rest of the roots of minimum level with non-trivial ®-string we have considered
(see [7, p. 337]). According to Remark [6.3.2] we will write d for the multiplicity of v and
1 for the other multiplicity. Note also that the root

A=ap+2 Y oex® (6.23)

=m-+1

is of minimum level in its ®-string by means of Proposition (iil). The ®-string of A
is of the first type in (6.14) if |®| = 2 and described in Proposition [6.2.13|if |®| > 3.
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The reducible simple system

An72 S Brfmfl = {ala cee 7057172} U {Oém+27 s 7047"}

spans (n—2)(n—1)/2+ (r—m—1)? roots in % with trivial ®-string. Since ® is an A,, .1
subsytem, it spans (m —n + 1)(m — n + 2)/2 positive roots. Moreover, note that each
®-string described in Proposition [6.2.8| consists of m — n 4 2 roots and the ®-string of the

root A described in (6.23)) contains (m —n+ 2)(m —n+1)/2 roots (see Proposition [6.2.13
if |®| > 3). Hence we can see that

2ln—1(m—n+2)+(r—m)(n—1)+ (r—m)(m —n+2)
+(r—m—-1Dm-n+2)+n—-2)n—-1)+r—m-—1)
+(r—m—-Dn—-1D+m-n+1)(m-—n+2)=r?

and this means that we have considered all the roots in ¥ and then in ¥®.

According to the data in Table , the root defined in and the root defined
in (6.22), we have that if the ®-string of a root in £* is not trivial, then it has been stud-
ied in Proposition [6.2.8] or in Proposition [6.2.13] Hence, from Proposition [6.2.8] Propo-
sition and Remark [6.2.14] we deduce that if the submanifold S - 0 is austere, it
must happen that |®| < 3 and the number of roots v; € £% of minimum level in their
d-strings satisfying A,, ,, = —1 coincides with the number of roots v, € X% (counted with
multiplicities) of minimum level in their ®-strings satisfying A,,, ., = —1.

Hence, using again the data in Table , the root defined in and the root defined
in , we deduce that the submanifold Sg - 0 is austere if and only if

n—l=n—-1+r—m-1+r—m-1+4+d+¢,

where € = 1 if |®| = 2, since then the root in has a ®-string of the first type in ,
and € = 0 otherwise. Since m < r by assumption, and d > 0, we deduce that Sg - 0 is
austere if and only if d =1, e = 1 and m = r — 1. In other words, Sg - 0 is austere if and
only if ® = {a, 9,1} and all the roots in 3 have the same multiplicity.

Let us assume that ® contains at least two connected orthogonal components ¢, and
Q,. If |®;] > 2 for i € {0, 1}, then either ®; or ®; does not satisfy neither () nor ({ii) and
using the above considerations together with Lemma we deduce that S - 0 is not
austere.

Hence, let us assume that = &qUP,, with &, discrete and orthogonal to &y, where g
satisfies the conditions specified in (fil) or in . If &y is a B,, simple subsytem, then Sg - 0
is austere, as follows from Proposition|6.2.12} Hence let us assume that ®o = {a,_2, a;_1}.

Take oy, ay € @, with I < k. Let v = i, a;a; € X be of minimum level in its
$-string satisfying A,,, = A, = —1. Then we have that

(ai_l, a;, CLZ‘+1) S {(]., O, 0)7 (0, O, ].), (]_, 17 2)} (624)

Hence, either v = Zi:zlﬂ Q; Or v = Zf:lﬂ @i+ 3041205, In both cases we have that
A,, =0for any a € @\ {oy, a;}, since v is of minimum level in its ®-string.
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Let A € % be of minimum level in its ®-string. If the ®-string of ) is not trivial we
basically have three cases to study possibilities.

First, assume that the ®g-string of A is trivial. Then, the ®-string of A coincides with
the ®;-string of A. From Proposition [6.2.6] we deduce that S is austere when restricted to
the ®-string of \.

Now, assume that the ®;-string of A is not trivial for each i € {0,1}. Hence, from the
above calculations we deduce that the ®-string of A coincides with the & U {y }-string of
A\, for some a; € ®@;. There are exactly two roots in ©* with non-trivial ®, U {a; }-string:
the root v; = Z:jjrl a; and the root vy = ZZ-Z? 1 @ + 2, are of minimum level in their
respective ®-strings, as follows Proposition . These ®-strings have been studied
in Proposition [6.2.15] Since 7; and v, have the same multiplicity, from Proposition [6.2.15
we deduce that S is austere when restricted to

b

vel(v1,P)UI(y2,P)

This means that the roots with non-trivial ®;-string, for i € {0, 1}, are organized by pairs
and the shape operator is austere when restricted to the union of both strings. Note that in
each pair, one of the roots has a ®y-string of the first type in (6.14)) and the other one has
®(-string of the first type in . Hence this means that the number of roots v, € ©® of
minimum level in their ®(-strings (with trivial ®;-string) satistying A,, ,,, = —1 equals
the number the number of roots 15 € % of minimum level in their ®¢-strings (with trivial
®,-string) satisfying A, ,., = —1. This is because for each o € ®; there are two roots in
Table [6.2| whose string change. This was the last case we needed to study. Hence, Sg - 0 is
austere. O]

6.3.3 Symmetric spaces of types C, and BC,

The next step consists in studying the austere submanifolds of the form Sg - 0 in symmetric
spaces G/K of non-compact type with Dynkin diagram of the form C, and BC..

Proposition 6.3.5. Let ® be a proper subset of the set of simple roots 11 of a symmetric
space of non-compact type G /K with C, Dynkin diagram

O——- —_ - — — (OO0
&3] Qr_1 Ay

Then Sg - 0 is austere if and only if one of the following statements holds:
(i) ® is a C, simple system system, with n <r,
(i) @ is discrete,

(iii) @ = &g U Py, where Oq is a C,, simple system orthogonal to the discrete subset ®y.
In other words, ®y satisfies (@) and ®, satisfies and is orthogonal to ®y.
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Proof. Let ® be an A,, subsystem of the C,. simple system II, with 2 < n < r. If we prove
that Sg -0 is not austere then the result follows using Proposition [6.2.12| and Lemma [6.3.1
Take oy, i1 € ® two connected roots. Note that m 4+ 1 < r, since by assumption ¢
is an A, simple system. Consider the root A = «,. + Z;:;H 20, if m+1 < r—1and
the root A = «, otherwise. Then (A,,, s Aa,iin) = (0,—2). From Lemma
we deduce that if Sp - 0 is austere, then there must exist a positive root v € 3% such
that (Aan s Aamiry) = (0,2). Put v = >0 by, From A,,,,, = 2 we deduce that
bz = bp, = 0 and b,; = 1, which implies that v = a,,,;. But this contradicts
A, ~ = 0. Thus, the submanifold Sg - 0 cannot be austere. This finishes the proof. O

Let us study the BC, case, which is very similar to C,. In principle, we can have
different kinds of ®-strings here. However, with the ®-strings we have already studied and
some other general considerations it suffices to obtain a classification in the BC). case.

Proposition 6.3.6. Let ® be a proper subset of the set of simple roots Il of a symmetric
space of non-compact type G /K with BC, Dynkin diagram

O——- —_ - — —(O——0
(031 Qr—1 078

Then Sg - 0 is austere if and only if one of the following statements holds:
(i) ® is a BC, simple system system, with n <,
(i) @ is discrete,

(i) @ = §ygU Dy, where @q is a BC,, simple system orthogonal to the discrete subset ®y.
In other words, ® satisfies (@) and ® satisfies and is orthogonal to ®g.

Proof. First, let ® be a BC,, subsystem of the BC, simple system II, with n < r. Let
A € X% be of minimum level in its ®-string. If this ®-string is trivial, then gy is contained
in the 0O-eigenspace of the shape operator of Sg - 0. If the ®-string of X is not trivial, then
from Proposition we deduce that IIy = {A} U ® is a simple system. Note that a,
and 2a, are both in the integer span of ITy. Hence, I, must be a BC,,.; simple system,
since it is the unique root system containing double roots (see [7, p. 339]).

Now, we need to determine the roots of the ®-string of A and calculate the eigenvalues
of the shape operator when restricted to g, for each v € I(A, ®). However, note that we
can think C, 1 as a subsystem of BC,, ;. Put Ils for this C),,; simple system, which has
a Dynkin diagram of the form

A Or_n41 Q1 Ay

We have studied this simple system and the ®-string of A in it in Proposition (ii).
The ®-string of A in I has a diagram of the form (with » = 5 and n = 4 for simplicity)
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A Qo o %! Qy Qs Oy Qa3 e%)

Moreover, note that the roots Z-spanned by the BC).; simple system that are not Z-
spanned by C),.1 simple system are 2\ + 2 ZZ:T_H_H ay, and those of the form 23", ay,
foreach l € {r —n+1,...,r} (see [T, p. 339]). It is clear that none of them belongs to
the ®-string of A\. Hence, from Proposition we deduce that the shape operator of
Se¢ - 0 is austere when restricted to the ®-string of A. In particular, from the proof of that
result, we have that there exists a multiplicity-preserving involution of I(\, ®) satisfying
the conditions of Proposition .

Now, assume that ®, C II is a BC,, simple system orthogonal to the discrete subset
®, C @, and put ® = U ;. Let A € ¥? be of minimum level in its ®-string. If it is
trivial, then g, is contained in the 0-eigenspace of the shape operator of Sg - 0. If it is not
trivial, then from Proposition we deduce that II, is a simple system and there are
three possibilities:

(a) The ®g-string of A is not trivial and the ®;-string of A is trivial. Hence, from the
above considerations we deduce that II, is a BC),,; simple system and there exists
a multiplicity-preserving involution of I(\, ®¢) = I(\, ®) satisfying the conditions of
Proposition . Hence, the shape operator of Sg - 0 is austere when restricted
to the ®-string of A by means of Proposition .

(b) The ®g-string of A is trivial and the ®;-string of A is not trivial. From the proof
of Proposition [6.2.6] we deduce the existence of a multiplicity-preserving involution
of I(A\,®1) = I(), @) satisfying the conditions of Proposition [6.1.11] (if). Hence, the

shape operator of Sg - 0 is austere when restricted to the ®-string of A by means of

Proposition [6.1.11] ().

(c) The ®g-string of A and the ®;-string of A are not trivial. From the above considerations
we deduce that ®oU{A} is a BC,, ;1 simple system. Hence, I must be a BC), ;5 simple
system (see the classification of Dynkin diagrams [7, p. 337]). Also from the above
considerations we deduce the existence of multiplicity-preserving involutions of (A, ®g)
and (A, ®,) which satisfy the conditions of Proposition , respectively. Hence,
from Lemma|6.2.5|we deduce that the shape operator of Sg -0 is austere when restricted
to the ®-string of A.

Finally, let ® be an A, subsystem of the BC, simple system II, with 2 < n < r.
If we prove that Sg - 0 is not austere then the result follows using Lemma [6.3.1 Take
Qmy Omy1 € © two connected roots. Note that m + 1 < r, since by assumption ® is an
A,, simple system. Consider the root X =237 - a;. Then (Aq,, x, Aapiin) = (0,-2).
From Lemma we deduce that if Sg - 0 is austere, then there must exist a positive
root v € X% such that (Aq,, 4, Aayniry) = (0,2). Put v =37 a;a;. From A, ., =2 we
deduce that

Am—+1,

(am> Am+1, am+2) € {(07 17 0)7 (0? 2a 2)}
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If v were 11, it would be spanned by ®, which is a contradiction. Thus, let us assume
that (am, @mi1, @my2) = (0,2,2). Hence, v = ZZ};ZmH ap or v = a, + 2223%1 .
But then A,,, , = —2. Thus, the submanifold Sg - 0 cannot be austere. This finishes the

proof. O

6.3.4 Symmetric spaces of type D,

Finally, let us consider symmetric spaces GG/ K of non-compact type with D, Dynkin dia-
gram.

Proposition 6.3.7. Let ® be a proper subset of the set of simple roots Il of a symmetric
space of non-compact type G /K with D, Dynkin diagram

Qr_1
o— - - — O O
&3] Q2 Ay

Then, the submanifold Sg - 0 is austere if and only if one of the following conditions holds:
(i) ® is a D,, simple subsystem, forn <r,
(11> O = {ar—37 A2, ar—l} or & = {ar—37 Ay _2, ar}; or

(i) & = Py U Oy, where $y satisfies the hypotheses of either @) or , and ®1 s a
discrete subset of I1 orthogonal to ®g.

Proof. Assume first that ® is connected subset of II. Thus, according to Proposition [6.2.12

we just need to analyze the case when ® = {,, ..., a,,} is a connected subset of the set of
simple roots Il = {a, ..., a,} withn < m < r. Let A\ € X® be of minimum level in its non-
trivial ®-string. Then II, = ®U{\} is a simple system as follows from Proposition .
Note that the roots Z-spanned by II, must be in > and that all the roots in 3 have the same
length. Hence, II, is either an A,,_, 1o simple system or a D,,_, .o simple system. Then,
the ®-string of A has been studied in Proposition [6.2.§ or in Proposition [6.2.13] Moreover,
if S - 0 is austere, from Remark we have that the number of roots 1, € X% of
minimum level in their ®-strings satisfying A, ,, = —1 must coincide with the number of
roots vo € X* of minimum level in their ®-strings satisfying A,,, ,, = —1. Define the set

n—1
le{Zaislglgn—l}. (6.25)

Take an arbitrary root v € ¥;. Note that v is of minimum level in its non-trivial ®-string
and A,, , = —1.
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First let us assume that m < r — 2. Let v € ¥?® be of minimum level in its ®-string
satisfying A,,, = —1. Note that then A,, = 0 for all & € ¢\ {w,}, as follows from
Proposition . Put v = > a;oy with 0 < a; < 2. Using A,,, = —1 we deduce
that

(an_1,an,ans1) € {(1,0,0),(0,0,1),(1,1,2)}. (6.26)

Recall A,, = 0 for all @ € @\ {a,}. Using this, we get that either v € ¥y or |®| = 2
(equivalently m = n + 1) and

r—2

Y=y +2 Z aj + g +ap
j=m+1

if m <r—2 or~vy=a,_s+ a_1 + a, otherwise. Hence, the number of roots v € X% of
minimum level in their ®-strings satisfying A,, , = —1 is at most n. Define

m r—2
{Zai—l—Z Z o+ g+ 1§l§n—1}U{am+1,am+1~l—am+2}
i=l

Jj=m+1

if m < r — 2 and the set of roots of the form

{Zai 1<li<n-— 1} U {1, maa}
i=l

otherwise (m = r — 2 since we are assuming m < r —2). In each one of the above sets there
are n + 1 roots that are of minimum level in their corresponding ®-strings. Note that all
these ®-strings are different to each other. Hence, the number of roots v € X of minimum
level in their ®-strings satisfying A,,, , = —1 is at least n 4+ 1. Therefore, if Sy - 0 is an
austere submanifold, then m = r — 1.

Put ® = {«,_2,,_1}. Hence, each v € ¥y and «, are of minimum level in their ®-
strings and A,, ,, = Ao, 50, = —1. Let v = Y_ a;a; € % be of minimum level in its
P-string satisfying (Aa, 5s Aa, 1) = (0,—1). Then we deduce that

(ar—?n Ar—2; Qr—1, ar) € {(17 1a 07 ]-)}

This means that 7 is generated by the A,_; simple subsystem II \ {«,_1} and also that
(ay_3,a,_9,a,) = (1,1,1) in this subsystem. Hence, the number of roots v, € X% of
minimum level in their ®-strings satisfying A,, ,,, = —1 is at least » — 2, but the number
of roots vy € X% of minimum level in their ®-strings satisfying A,, ,,, = —1 is at most
r — 3. Hence, we deduce that Sg - 0 is not austere if ® = {a, o, a,_1}.

Finally, assume that ® = {a,_3, a,_o, a_1}. Recall that the n — 1 = r — 4 roots in ¥,
defined in are of minimum level in their ®-strings and A,, ,, = —1 for each A € ¥;.
Define the set

Uy ={A\+a,3+a,2+a : XAe W} (6.27)
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Note that the n — 1 = r — 4 roots in W, defined in (6.27) are of minimum level in their
$-strings and A,, , , = —1 for each v € V5. According to Proposition we have that
the shape operator § is austere when restricted to

b o

VEI(qll,q))UI(q’Q,q))

Note that «, is of minimum level in its ®-string, which has been studied in Proposi-
tion (ii). Hence, the shape operator S is austere when restricted to the ®-string of

a,. The roots spanned by the A,_5 = {ay,...,a,_5} simple subsystem and the ones of the
form
k r—2
ZOéH-Q Z aj + g +
=l j=k+1

with 1 <1 <k <n —2=r—>5 have trivial ®-string. Note that & spans 6 positive roots,
the ®-string of o, consists of 6 elements, and that the ®-string of v consists of 4 elements
for each v € ¥; U ¥y, Hence, we get

4r—4)+4(r—4)+64+6+(r—=>5)(r—4)/2+ (r=5)(r—4)/2=r(r —1).

Thus, we have considered all the roots in ¥ and then in ®. Therefore, if ® = {a,,..., an}
is a connected subset of the set of simple roots II with n < m < r, then Ss - 0 is austere if
and only if ® = {a,_3, a2, ,_1}.

Let us assume that ® contains at least two connected orthogonal components ¢, and
®,. If |®;| > 2 for i € {0, 1}, then either ®; or ®; does not satisfy neither () nor (i) and
using the above considerations together with Lemma [6.3.1] we deduce that S¢ - 0 is not
austere.

Hence, let us assume that & = &5 U ¢, with &, discrete and orthogonal to ®,, where
® satisfies the conditions specified in or in . If &, is a D,, simple subsytem, then
Se - 0 is austere, as follows from Proposition [6.2.12] Hence let us assume that &5 =
{Oérf?n Qp_2, ar71}~

Let A € X? be of minimum level in its ®-string. If the ®y-string of X is trivial, then S
is austere when restricted to the ®-string of A by means of Proposition [6.2.6]

Note that the ®-string of «,. is described in Proposition , since «,. is orthogonal
to all the roots in IT \ {a,., ,—1}. Hence, from Proposition we deduce that S is
austere when restricted to the ®-string of «..

Note that if a root A € ¥® has non-trivial ®g-string, then A € ¥U; U ¥,y. In addition,
assume that A has non-trivial ®,-string. Hence, taking into account that ®; is discrete and
the form of the roots in ¥; and ¥,, we deduce that the ®-string of A coincides with the
®y U {a}-string of A, for some a € ;.

Now, take a root o € ®;. Then, consider the roots

r—4 r—2
)\:Zai and VZZQH‘@T'

1=l+1 i=l+1
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Note that
(Aaz)\? Aar—s)\’ Aar—z)\? Aar—l,)\) = (_17 —1,0, O)

and that
(Aalm Aar—au’w Aar—zﬁ’ Aarqﬁ) - (_17 07 Ou _1)'

Hence, from Corollary we get that A and v are of minimum level in their ®-strings.
Their ®-strings have been studied in Proposition |6.2.15| and according to it we have that
S is austere when restricted to

D o

vel(N\,®)UI(v,P)

Therefore for each a; € ®; there are exactly one root in ¥; and one root in Wy whose
strings change with respect to the case when ® was connected. But the shape operator
S is austere when restricted to the union of both strings (not to each one separately).
Moreover, the number of roots v; € X% of minimum level in their ®-strings satisfying
(Aarys Aa, 500) = (0,—1) coincides with the number of roots v € X% of minimum level in
their ®-strings satisfying (Aa,u,, Aa, 11,) = (0, —1). Hence, Sg - 0 is austere. O

Finally, Theorem follows from combining Proposition [6.3.3] Proposition [6.3.4
Proposition [6.3.5] Proposition [6.3.6] and Proposition [6.3.



Chapter 7
Austere submanifolds in exceptional

symmetric spaces

This chapter is devoted to the classification of austere submanifolds of the form Sg - 0 in
exceptional symmetric spaces of non-compact type, that is, non-compact symmetric spaces
whose Dynkin diagram is of type Eg, E7, Es, Fy or G5. Indeed, the main purpose of this
chapter is to prove the following

Theorem 7.0.8. Let ® be a proper subset of the set of simple roots 11 of a symmetric
space of non-compact type G/K. Then

(a) If 11 has a Gy Dynkin diagram, then S - o is austere.
(b) If 11 has an F, Dynkin diagram of the form

(O e ) m—— ) S )
051 Qg as Oy

with |ay| = |as| < |as| = |au|, then the submanifold S - 0 is austere if and only if one
of the following statements holds:
(i) ® is a discrete subset of I, or
(ii) @ is a B, simple subsystem for n € {2,3}, that is, & = {ag, a3} or & =
{062, asg, OZ4}7 or
(i) @ is a C3 simple subsystem, that is, ® = {ay, ag, as}, or

(iv) ® = {as,au} and all the roots in X have the same multiplicity.

(¢) If 11 has an Eg, E7 or Es Dynkin diagram contained in the diagram

a2

O O
Qg Q7 Qg (67 Oy Qs (651

then the submanifold S - 0 is austere if and only if one of the following conditions

holds:

173
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(i) & =Dy or & = Oy U Py, where Dy is an Az simple subsystem containing the root
ay as a central root in its Dynkin diagram, that is, the simple subsystem ®y has
a Dynkin diagram of the form

gl &4 é;
for (B1,P2) € {(as,as), (as, a3), (ag,a5)}, and &1 = {B} is orthogonal to Py,
where B # ay, and B # ag if Il = Eg, or

(il) & = Dy or & = Oy U Oy, where Oy is a Dy simple subsystem and $y is a discrete
subset of I1 orthogonal to @, or

(iii) II s an Eg simple system and ® = {aq, as, aq, as, ag} is an A simple subsystem,
or

(iv) 11 is an E; or Eg simple system and ® = {9, a3, a4, a5, a6} is a D5 simple
subsystem, or

(v) I is an E; or Eg simple system and ® = {ag, az, ay, as, ag, ar} is a Dg simple
subsystem, or

(vi) II is an Eg simple system and ® = II\{ag} is an E; simple subsystem, or

(vil) @ s discrete.

Note that the claim concerning the GGy case is the content of Proposition [6.2.7, Hence,
this chapter is devoted to the study of the rest of the cases and it is organized as follows.
In Section [7.1] we will inspect the austere submanifolds of the form Sg - 0 in a non-compact
symmetric space with F; Dynkin diagram. Although it is an exceptional symmetric space,
the approach we will follow is very similar to the one utilized for classical symmetric
spaces in Chapter [6] Since Eg and E; can be thought of as contained in Es, in the rest
of the chapter we will address the Eg case directly. However, in Section [7.2] we derive a
classification for the Fg case and in Section [7.3| we derive a classification for the E; case.
Finally, in Section [7.4] we will analyze the remaining particular cases and we will conclude
the classification for the Ejg case.

7.1 F, case

This section is devoted to classifying the austere submanifolds of the form Sg - 0 in non-
compact symmetric spaces with F; Dynkin diagram. Although new examples of ®-strings
that we did not analyze in Chapter [6] will arise in the classification, we will address these
new cases directly.

Proposition 7.1.1. Let ® be a proper subset of the set of simple roots Il of a symmetric

space G/ K of non-compact type with Fy Dynkin diagram of the form

o—(CO0—FF(0O———---O0
aq Q2 a3 Oy
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with oy | = |ag| < |as| = |au|. Then, the submanifold Sg - 0 is austere if and only if one of
the following statements holds:

(i) @ is a discrete subset of 11, or

(ii) @ is a B, simple subsystem for n € {2,3}, that is, ® = {ag, a3z} or ® = {as, a3, as},
or

(i) @ is a C3 simple subsystem, that is, ® = {ay, ag, a3}, or
(iv) ® ={as, a4} and all the roots in X have the same multiplicity.

Proof. Consider first the By & O system ® = {ay, az}. Let A € % be of minimum level in
its non-trivial ®-string. Then, {\}U® is a simple system by means of Proposition (@.
Since |aq| < |ag|, this simple system must have Bs or C3 Dynkin diagram. According to
Proposition —, the shape operator S of the submanifold Sg - 0 is austere when
restricted to the ®-string of A\. Thus, Sg - 0 is austere when ® = {ay, as}.

Put now ® = {as, as,as}. Let us study the ®-string of ;. Since the simple system
{a1} U ® has an F; Dynkin diagram, the ®-string will have the number of positive roots
spanned by a Fy simple system (24), minus the number of positive roots spanned by ® (9
since ® has a Bz Dynkin diagram) and minus the number of positive roots with coefficient
corresponding to oy greater or equal than 2. Using [69, p. 691], we deduce that the ®-string
of oy consists of 8 roots. In fact, it has a diagram of the form

From Lemma we have that all the roots in this ®-string have the same multiplicity.
Hence, a map induced by a reflection with respect to the vertical line (interchanging the
roots on the line) satisfies the hypotheses of Corollary . Then the shape operator
of Sg - 0 is austere when restricted to the ®-string of ;. In order to conclude this case,
note that 2a; 4+ 2a + a3 is another root of minimum level in its ®-string, by virtue of
Remark[6.2.10] Note that Ilo, +20,+as = {201 + 202+ a3} U P is a simple system by means
of Proposition . According to the Cartan integers Asq,+2a5+a3,0 a0d A 201 +205+as
we deduce that Ils,, 424,404 15 & By simple system. Hence, the ®-string of 20y + 200 + a3
has been described in Proposition and the shape operator S of Ss - 0 is austere
when restricted to the ®-string of 2a; + 25 + a3. Note that the ®-string of a; contains 8
elements, the ®-string of 2a;; + 2a, 4+ a3 contains 7 elements and ® spans 9 positive roots.
These are the 24 positive roots of an F root system. This proves that if holds, then
Ss - 0 1s an austere submanifold.
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Put now ® = {ay, as, az}. The P-string of ay will have the number of positive roots
spanned by an Fj simple system, minus the number of positive roots spanned by & (9
since ® has a C3 Dynkin diagram) and minus the number of positive roots with coefficient
corresponding to oy greater or equal than 2. Using [69] p. 691], we deduce that the ®-string
of ai; consists of 14 roots. In fact, it has a diagram of the form

a4 Q3

From Lemma [5.1.1] roots with nodes of the same colour have the same multiplicity. Con-
sider the involution of I(ay, ®) induced by the composition of the reflections of the above
diagram with respect to the central horizontal axis and with respect to the central vertical
axis. This map satisfies the hypotheses of Corollary . Since the ®-string of ay
consists of 14 roots, ® spans 9 positive roots and 2ay + 4y + 33 + 2ay has trivial ®-string,
we have considered the 24 positive roots generated by the F); simple system. This proves
that if holds, then Ss - 0 is an austere submanifold.

Let us consider the case ® = {a3, ay}. Let A € ¥ be of minimum level in its non-trivial
®-string. Then, {\} U ® is a simple system by means of Proposition (). Since @
contains the largest roots, then {\} U® must be either an Az simple system or a Bs simple
system. In both cases, these ®-strings have been described in Proposition [6.2.8f We just
need to check that the number of roots v € £ of minimum level in their ®-strings satisfying
Apsy = —1 coincides (counted with multiplicities) with the number of roots v € %% of
minimum level in their ®-strings satisfying A,,, = —1. From Proposition , the
roots amo, a; + as and 2aq + 4as + 2a3 + a4 are of the first type. The roots 2as + as,
a1 + 2as + ag and 2aq + 2as + ag are of the second type. Note that

2\042]2 = 2|y + 042]2 = 2|y + 20 + 043|2

= |2041 —|— 4062 —|— 2(1/3 + Oé4|2 = |2042 —f- 043|2 = |20él —f- 20[2 + Oé3|2.

Each of these 6 ®-string contains 3 roots, ® spans three positive roots and the roots aq,
a1+ 3as + 23 + ay, 200 + 3as + 2a3 + ay have trivial ®-string. All the positive roots of a
F system have been considered. Hence, if ® = {3, ay}, then Sg - 0 is austere if and only
if all the roots have the same multiplicity.

Thus, we need to consider the case ® = {ay, a3, au}. Put A = 25 + 3. We have that
Apn = =2, Ag,n = —1 and A,y = 0. If Sg - 0 is austere, then from Lemma
there must exist a root v € X% such that 4,,, = 2, Ay,, = 1 and A,,, = 0. Put
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Y= Z?:l a;o;. Then we will have:

2 = Aozl,'y = 2(1,1 — Qg,
0 = Any = —az + 2a3 — ay,
agy = A3 + 20,4.

In particular we get 3a4 = 2a; and as = 3a4 — 2. Then a; = 3k for some k € N. From [69]
p. 691] we deduce that a; = 0. But this means that ay = 0 and then a; = —2. Since 7
must be a positive root, this is a contradiction. Hence, the submanifold Sg -0 is not austere
when & = {1, as, au}.

Finally, put ® = {a;,as}. Note that az and as + a4 are roots in X%, with the
same multiplicity, and of minimum level in their corresponding ®-strings. We have that
(Aaixs Aasn) = (0,=2) for X € {as, as+au}. If Sp-0is austere, from Proposition [6.1.10] (),
there must exist a root v € X% such that (Aa, , Aay~) = (0,2). Put v = Zle a;c;. Then
we will have:

O = Aal,'y = 2(11 — Qg,
{ 2 = AaQ,’y = —a + 2&2 — 2&3.

Thus 2a; = a2 and 3a; — 2a3 = 2. Hence, we deduce that (ay,as2,a3) = (2,4,2). The
unique root under these conditions is

2001 + 4ag + 203 + y.

Note that it has the same multiplicity as a3 and a3 4+ a4. Thus, Sg - 0 cannot be austere.
Now, Lemma [6.3.1] finishes the proof. ]

7.2 Fjg case

Let us focus now on the symmetric spaces G/K with Eg, F; or Eg Dynkin diagram. As
explained above, since Fg and E; can be thought of as contained in FEjg, in the rest of the
chapter we will address the Eg case directly. Again, we will need to study new classes
of ®-strings. However, this is the general procedure that we will follow. We will fix a
connected subset ® of the set of simple roots II. Then, we will determine all the roots
A € X? that are of minimum level in their ®-strings by means of Proposition .
We include the determination of the roots A € X% with trivial ®-string. Note that when
all the roots in ¥ have the same multiplicity, as it is the case now [7, p. 338], then A € X¢
has trivial ®-string if and only if A, ) = 0 for all a € ®.

In some cases, it turns out that these ®-strings have been studied either in Proposi-
tion [6.2.8] Proposition (i), Proposition or Proposition (we will also
combine these results with Lemma . If not, we will address the study of such string
directly. Therefore, using these results we will be able to deduce whether the submanifold
S - 0 is austere. Note that we will determine all the roots that are of minimum level in
their corresponding ®-strings and that we know the number of roots of each ®-string. We
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also know the number of positive roots spanned by ®. Hence, it will be very easy to check
that we are considering the whole tangent space to the submanifold S - o.

In general, we will start by assuming that ® is connected. Under this assumption, if
Se -0 is not an austere submanifold, then Sg g - 0 cannot be austere if ¥ C II is orthogonal
to ®, by virtue of Lemma . Thus, just in the cases when Sg - 0 is austere (there are
not so many examples), we will continue examining the submanifolds of the form Sguy - 0,
for U C IT orthogonal to .

Recall that since Eg and E; can be thought of as contained in Fg, we will address the
Ey case directly. Put

(%)
O O O O O O O
ag (074 Qg a5 Oy Q3 o

for the Dynkin diagram of the simple system II.

Let us start with a very particular case. Assume that ® = &y U &, where &, C II
determines a D, simple subsystem orthogonal to the discrete simple system ®; C II. Let
A € X% be of minimum level in its non-trivial ®-string. If such ®-string is trivial then g,
is contained in the 0-eigenspace of the shape operator. Hence, assume that the ®-string of
A is not trivial. From Proposition we have that {A\} U ® is a simple system. There
are three possibilities here:

(a) The ®¢-string of A is not trivial and the ®;-string of A is trivial. Hence the ®-string
of A\ coincides with the ®g-string of A and the simple system &5 U {\} (see Propo-
sition ) has a Dynkin diagram of type Ds, according to the classification of
Dynkin diagrams [7, p. 337]. From Proposition (i), we deduce that the shape

operator of Sg - 0 is austere when restricted to the ®-string of A.

(b) The ®g-string of A is trivial and the ®;-string of A is not trivial. Hence the ®-string
of X\ coincides with the ®;-string of A. Since ®; is discrete, from Proposition [6.2.6| we
deduce that the shape operator of Sg -0 is austere when restricted to the ®-string of A.

(c) The ®g-string of A is not trivial and the ®;-string of A is not trivial. Hence the &-
string of A is of type Dg, according to the classification of Dynkin diagrams [7], p. 337].
From Corollary , we deduce that the shape operator of Sg -0 is austere when
restricted to the ®-string of A.

Hence, the submanifold Sg - 0 is austere. Then, we have the following

Proposition 7.2.1. Let &y, ®; C be orthogonal subsets of the set of simple roots II.
Assume that ®¢ is a Dy simple subsystem and ®q is discrete. Then, the submanifolds
S, + 0, S, - 0 and Se,us, - 0 are austere.
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In the following pages we will study the cases where ® C II is an A,, simple subsystem,
with n < 4.

7.2.1 & containing a component of type A,

In this subsection we consider the case that ® is an Ay simple subsystem, and conclude
that no subset ® of II containing a connected component of type A, gives rise to an austere
orbit S¢ - 0.

Let ® = {f1, 3} be an A, simple system. Let A € X® be of minimum level in its
®-string. From Proposition we have that [Ty = {\} U ® is a simple system. Since
the ®-string of A is not trivial and all the roots in 3 have the same length, then II, has an
Az Dynkin diagram. Since all the roots have the same multiplicity, from Proposition
we deduce that Sp - 0 is austere if and only if the number of roots A\; € £® of minimum
level in their ®-strings satisfying Ag, y, = —1 coincides with the number of roots Ay € X%
of minimum level in their ®-strings satisfying Ag, », = —1.

Since most of the following examples could be thought in symmetric spaces G /K with
either Fg, F; or Eg Dynkin diagram, we will use the following notation. When we have
to point out the number of roots of minimum level under some properties, we write either
(x,y,2), (x,y) or z. On the one hand, the first coordinate will denote the number of roots
under certain condition in an Eg simple system. On the other hand, the second coordinate,
if it exists, will denote the number of roots under certain condition in an F; simple system.
Finally, the third coordinate, if it exists, will denote the number of roots under certain
condition in an Ejg simple system.

As explained above, in the following list of roots we will determine and write roots in
% of minimum level in their ®-strings (including roots with trivial ®-string). In order
to simplify notations, except for the roots with trivial ®-string, we will just specify the
non-zero Cartan integers.

Let us start with the case-by-case analysis. In what follows, and in order to write
each root with respect to the simple system II explicitly, we will use the notation of [69]
Appendix C]. Moreover, for each possible ®, A € ¥ will denote a root of minimum level
in its ®-string.

Put ® = {a7,ag}. This example just makes sense in Fg. Let A € £ be of minimum
level in its ®-string.

o If Ay, » = —1, then A is one of the following 17 roots:

0 0 0 0 1 1
0010000/ "\ 0011000/ * \ 0011100/ * \ 0011110/ * \ 0011100/ " \ 0011110/’
0 1 1 1 1 1
0011111/ 7\0011210/ >\ 0011111/ "\ 0012210/ "\ 0011211/ " \ 0012211 )’
1 1 1 2 3
0011221 ) 7\ 0012221 ) * \ 0012321 ) " \ 0012321 /] " \ 1245642 ]
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o If A, » = —1, then X is one of the following 10 roots:

1 1 1 1 1 2
(0122210) ’(0122211) ’(0122221) ’(0122321) ’(0123321) ’(0122321)’
2 2 2 2
0123321 ) * \ 0123421 ) "\ 0123431 ) " \ 0123432 ) -

o If A,.» = Aq, ) =0, then X is one of the following 36 roots:

0 0 0

(0000001) (0000000) (0000010) (0000100) ’(0001000) (0001100)
(oommo) - (omoran) - (monns ) (oorto)  Conoron) - (o)

0000110, > \ 0000100 ) > \ 0000011 / > \ 0001110 ) * \ 0001100 ) * \ 0000110
(ooms ) (omnin) - (aonrin) oo ) (o) (onin)

0000111 ) >\ 0001110/ > \ 0001111 / > { 0000111 ) * \ 0001210 ) * \ 0001111
(o) (o) (o) (pnsion) (i) (ion)

0001211 ) > \ 0001221 ) > \ 1233321 ) * \ 1233321 ) * \ 1233421 ) * \ 1234421
(1233431) (1234431) (1233432) (1234531) (1234432) (1234531)

(m&mm) (m&mm) (m&mw) (m&mm) (m&mm) (m&m@)

Since the number of roots A\; € X* of minimum level in their ®-strings satisfying A, , =
—1 does not coincide with the number of roots Ay € X% of minimum level in their ®-strings
satisfying A,gx, = —1, we deduce that Sg - 0 is not austere when ® = {az, as}.

Put ® = {ag, a7}. This example appears in E; and Eg. Let A € £ be of minimum
level in its ®-string.

o If A,,» = —1, then X is one of the following (16, 10) roots:

0 0 0 1 1 0
0001000/ * \ 0001100/ * \ 0001110/ " \ 0001100/ " \ 0001110/ * \ 0001111 ) °
1 1 1 1 1 1
0001210/ *\ 0001111/ >\ 0001211/ * \ 0001221 ) "\ 1112210/ "\ 1112211 )’

1 1 2 3
1112221 ) 7 \ 1112321 ) * \ 1112321 ) * \ 1235642 )
o If A,,» = —1, then A is one of the following (11, 5) roots:
0 1 1 1 1 2
1000000/ " \ 0012210/ * \ 0012211 ) " \ 0012221 ) * \ 0012321 ) * \ 0012321 /) °
1 2 2 2 2
1123321 ) 7 \ 1123321 ) " \ 1123421 ) * \ 1123431 ) * \ 1123432 ) °
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o If Ay, = An,x =0, then X is one of the following (36, 15) roots:

0 1
(0000001) (0000000) (0000010> <0000100> (0000110) (0000100)
1 0
0000011 0000110 0000111 1111000 0000111 ) > \ 1111100
1 1
1111110 1111100 1111110 1111111 1111210 ) \ 1111111
2 2
1111211 1111221 0123321 0123321 0123421 ) > \ 0123431
(0123432) (1234421) (1234431> (1234531) (1234432) (1234531)
(u&mw) (u&wu) (u&ww) (u&w@) (m&mm) CB%&Q)

Thus, we deduce that Sg - 0 is not austere when ® = {ag, ar}.

The rest of the examples with ® = A, can be thought in the symmetric spaces with
Dynkin diagram Fg, E7 or Es.

Put ® = {as, ag}. Let A € X? be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (15,9, 6) roots:

0 0 1 1 0 1
(0000100) ’(0000110) ’(0000100) ’<0000110> ’<0000111) ’(0000111)’
1 1 1 1 1 1
0111210/ > \1111210 ) " \ 0111211 ) " \ 1111211 ) > 0111221 ) > \ 1111221 )~
1 2 3
1222321 ) * \ 1222321 ) * \ 1234642 ) -

o If A\, » = —1, then X is one of the following (12,6, 3) roots:

0 0 1 1 1 1
(0100000) ’(1100000) ’(0001210> ’<0001211> ’<ooo1221) ’(0112321)’
1 2 2 2 2 2
1112321 ) " \ 0112321 ) " \ 1112321 ) > \ 1223421 ) * \ 1223431 ) * \ 1223432 ) -
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o If Ay, » = Apgx =0, then X is one of the following (36,15, 6) roots:

(0000001) (0000000) (0000010) <1000000> (0000011) (0111?00)
(1111100) (0111110) (0111100> <1111110> (1111100) (0111110)
(0111111) (1111110) (1111111> (0111111) (1111111) (0012;21>
(1222210) (0012321) (1222211> (1222221) (0123421) (1123421)
(0123431) (1123431) (0123432> (1123432) (1234531) (1234531)
(1234532) (1234542) (1234532> (1234542) (1345642) (2345642)

Thus, we deduce that Sg - 0 is not austere when ® = {as, ag}.

Put ® = {ay, a5}. Let A € X? be of minimum level in its ®-string.

o If A,,» = —1, then X is one of the following (14,8, 5) roots:

1 0 0 1 1 1
(ooooooo) ’(0000010) ’(0000011) ’<oo1111o) ’<o11111o) ’(0011111)7
1 1 1 1 1 1
1111110 > \o111111 ) \ 1111111 ) * \ 0122221 ) \ 1122221 ) * \ 1222221 )
2 3
1233321 ) > 1234542 ) -

o If A,, = —1, then X is one of the following (13,7, 4) roots:

0 0 0 1 1 1
0010000/ * \ 0110000/ * \ 1110000/ * \ 0000110/ " \ 0000111 ) "\ 0011221 ] °
1 1 2 2 2 2
0111221 )7\ 1111221 ) >\ 0122321 ) " \ 1122321 ) " \ 1222321 ) " \ 1233431 )’
2
1233432 )
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o If A,, = An,» =0, then X is one of the following (36,15, 6) roots:

1
(0000001) (0100000) (1000000) <1100000> (0011110) (0011100)
0
0111110 0111100 0011111 1111110 1111100 0111111
1
(1111111) (0001221) (0122210> (1122210) (0122211) (1222210)
1
(1122211) (0012321) (1222211> (0112321) (1112321) (1233321)
(0123431) (1123431) (0123432) (1223431) (1123432) (1223432)
(1234531) (1234542) (1234532) (1245642) (1345642) (2345642)

Thus, we deduce that Sg - 0 is not austere when ® = {ay, as}.

Put ® = {a3,a4}. Let A € X? be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (13,7, 4) roots:

0 1 1 1 1 1
(oooooo1) ’(0001100) ’(0011100) ’<o1111oo) ’<11111oo) ’(0012211)7
1 1 1 1 1 2
0112211 "\ 1112211 ) * \ 0122211 ) * \ 1122211 ) * \ 1222211 ) * 1234421 ) °

3
1234532 )

o If A,, = —1, then X is one of the following (14,8, 5) roots:

1 0 0 0 0 1
0000000/ * \ 0001000/ * \ 0011000/ " \ 0111000/ *\ 1111000/ " \ 0001111}’
1 1 1 2 2 2
0011111/ 7\0111111 /> \ 1111111/ "\ 0123321 ) "\ 1123321 ) " \ 1223321 )’

2 2
1233321 ) " \ 1234432 )
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o If Ay, = An,x =0, then X is one of the following (36,15, 6) roots:

(0010000) (0100000) (1000000) (1100000) (0110000) (1110000)
(0001111) (0000111) (0011111) (0111111) (0012210) (1111111)
(0112210) (1112210) (0122210) (1122210) (1222210) (0012321)
(0112321) (0123321) (1112321) (0122321) (1123321) (1122321)
(1223321) (1222321) (1233321) (0123432) (1123432) (1223432)
(1233432) (1234531) (1235642) (1245642) (1345642) (2345642)

Thus, we deduce that Sg - 0 is not austere when ® = {ag, ay}.

Put ® = {ay,a3}. Let A € X? be of minimum level in its ®-string.

o If A,, » = —1, then A is one of the following (12,6, 3) roots:

1 1 1 1 1 1
(0001210) ’(0011210) ’(011121o> ’<0012210> ’(1111210) ’(0112210)’
1 1 1 1 2 3
1112210 ) * 0122210 ) * \ 1122210 ) * \ 1222210 ) * \ 1234531 ) * \ 1234531 ) -

o If A,, = —1, then X\ is one of the following (15,9, 6) roots:

0 0 1 0 1 0
0000100/ * \ 0001100/ * \ 0000100 / " \ 0011100/ * \ 0001100 ) * \ 0111100 )
1 0 1 1 2 2
0011100/ '\ 1111100/ > \ 0111100/ " \ 1111100/ " \ 0123421 ) " \ 1123421 )’
2 2 2
1223421 ) * \ 1233421 ) " \ 1234421 ) -
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o If A, » = An, =0, then X is one of the following (36, 15, 6) roots:

(0000000) (0001000) (0010000) <0100000> (1000000) (1100000)
(0110000) (0011000) (1110000> <0111000> (1111000) (0012321)
(0112321) (0012321) (1112321> (()122321) (0112321) (1122321)
(0123321) (1112321) (0122321> (1222321) (1123321) (1122321)
(0123321) (1223321) (1222321) (1123321) (1233321) (1223321)
(1233321) (1234642) (1235642> (1245642) (1345642) (2345642)

Thus, we deduce that Sg - 0 is not austere when ® = {«, as}.

Put ® = {ag, ay}. Let A € X? be of minimum level in its ®-string.

o If A,, = —1, then X\ is one of the following (13,7, 4) roots:

0 0 0 0 0 0
0001110/ *\ 0011110/ >\ 0001111/ \0111110/ '\ 0011111/ "\ 1111110/ "
0 0 1 1 1 1
0111111/ 7\ 1111111/ \0123321 ) "\ 1123321 ) " \ 1223321 ) " \ 1233321 )’

2
1234542 ) -

o If A,, = —1, then X is one of the following (14,8, 5) roots:

0 0 0 0 0 0
0000010/ * \ 0001000/ * \ 0011000 / * \ 0000011 / " \ 0111000/ * \ 1111000 )
1 1 1 1 1 1
0012221 ) 7\ 0112221 ) > \ 1112221 ) " \ 0122221 ) " \ 1122221 ) " \ 1222221 )’

2 2
1234431 ) * \ 1234432 )
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o If Ay, = An,» =0, then X is one of the following (36,15, 6) roots:

(ooooom) (0010000> (0100000> <1oooooo> (1100000) (0110000)
(1110000) (0012210> (0001221> <o11221o) <0012211) (0011221)
(1112210) (0122210> (0112211> <o111221) <1122210) (1112211)
(o122211> (1111221> (1222210> <1122211) <1222211) (0123431)
(1123431) (0123432) (1223431> <1123432) <1234421) (1233431)
(1223432) (1233432) (1235642) <1245642) <1345642) (2345642)

Thus, we deduce that Sg - 0 is not austere when ® = {as, ay}.
The above information, together with Lemma [6.3.1], allows us to deduce the following

Proposition 7.2.2. Let ® be a proper subset of the set of simple roots I1. Assume that I1
1s either an Eg, E7 or Ey simple system. If ® has a connected component that consists of
two roots, then Sg - 0 is not austere.

7.2.2 Extreme roots of ®-strings

The ®-strings that will appear in this chapter are quite difficult to write explicitly (as
we used to do in Section . In order to avoid long and complicated calculations, we
introduce a nice property that ®-strings have. As usual, let ® be a subset of the set II of
simple roots and let A € ¥® be of minimum level in its ®-string. Let v be a root in the
®-string of A. We will say that v is extreme in the ®-string of A if v + «a is not a root,
for each a € ®. This notion can be thought as a generalization of the concept of extreme
root [91) p. 65] to P-strings.

Remark 7.2.3. Let ® be a connected subset of II. Note that if v = A\ + myaq + ... mpay
is extreme in its ®-string, then v + v is not a root for any element v spanned by ® with
positive level. In fact, assume first that ® is connected and take v with positive minimum
level among the elements spanned by ® such that v+ v is a root. Since v is extreme, then
the level of v must be greater or equal than two. Since v + v is not the root of minimum
level in the ®-string of A, from Proposition “ . we deduce that there must exist a
simple root @ € ® such that v + v — « is also a root in the ®-string of \. Then v — « is
an element spanned by ® with less level than v such that v+ (v — «) is a root, which is a
contradiction.
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Proposition 7.2.4. Let 11 be the set of simple roots of the root system . Assume that all
the roots in X have the same length. Let ® be a proper connected subset of II. Let A € ¥.®
be of minimum level in its non-trivial ®-string. Then:

(i) The extreme root in the ®-string of X\ is unique.

(ii) A root v is extreme in the ®-string of X if and only if there exists a root o € ® such
that Ao~ >0 and Az, =0 for all € ®\{a}.

Proof. Since all the roots in ¥ have the same length, from Proposition we have
that A, € {0,%£1} for any distinct roots a, f € X. Recall from Proposition
that Iy, = {\} U ® is a simple system. Let v € X% be an extreme root in the ®-string
of \. If A, < 0 for some o € ®, then from Proposition we get that v+ «a is
a root, which is a contradiction with the extreme character of v. Thus A,, > 0 for all
a€® Puty=A+) onae. If ng =0 for some 3 € &, then Az, < 0. Together with
Ao > 0 for all @ € @, we deduce that Az, = 0. Define &, = {a € ® : n, = 0} and
Q) ={ae® : n,#0}. Since A,, = 0 for all @ € ®;, we obtain that A,, = 0 for all
a € ¢ and all v € ®5. This contradicts the connectedness of ®. Thus, if v = )\+Za€¢ N
is an extreme root in the ®-string of A\, then n, > 0 for all a € ®.

: Let 79, 71 € X% be extreme roots in the ®-string of X\. Note that if A, ., > 0 we
are done. Indeed, from Proposition , we get that 7, — Y41 is either a positive
root spanned by ® or zero, for some k € {0, 1} and indices modulo 2. If it is not zero, then
we can write v, = Vg1 + (% — Yks1). But then 7, would not be an extreme root in the
®-string of \. Then 7y — v, = 0 and we are done.

Thus, we will prove that A, ., > 0 proceeding by induction on the number of elements
in ®. If |®| = 1 the result follows from Proposition directly. We will assume that our
claim is true for all subsets W of II with |¥| < n — 1. Let & C II with |®| = n and let us
see that the claim is also true for ®. Let vy, 71 € X% be extreme roots in the ®-string of

A. Let us write
Ve = A+ Z nka, (7.1)

acd

where nf € N for all « € ® and k € {0,1}. Therefore, we obtain

Vo Vel A'Yk,)\ + Z nl;+1A7k:a7 (72)

aced

A

for each k € {0,1} and indices modulo 2. Since the root 7, is not of minimum level in the
®-string of A\, from Proposition there must exist a root £ € ® such that v, — 5x
is a root for each k € {0,1}. The element 74 + S5 cannot be a root since 7y is extreme for
each k € {0,1}. Hence, from Proposition (), we deduce that Ag, ., > 0, for each
k e {0,1}.

Recall that n® > 0 and A, , > 0 for all @ € ® and all k¥ € {0,1}. Now, assume
that A, y > 0 for some k € {0,1}. Using Ag, ,, > 0 together with we deduce that

A4 > 0 and we are done.
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Hence, put A, » = A,, » = —1. Recall from Proposition that A is connected
to just one root in the Dynkin diagram of the simple system {A} U ®. Put oy for this root.
Then A) ., = —1 and we obtain that

—1=A,,, =2—nk,

and we deduce that nf = 3 for k € {0,1}. Hence, from [69, p. 684-685] we obtain that
the simple system IT, = {A} U ® is of type Eg, E; or Es. Since the roots Z-spanned by 1T,
must be in ¥, we deduce that II is of type F7; or Fg

Assume first that nj; > 1 for some k € {0,1}. Then, using A, » = —1, A
for all @ € ¢ and we get A, ,, > 0 and the result follows.

Thus, assume that ngk =1 for each k € {0, 1}. Recall that ~, — S is a positive root for
each k € {0,1} in the simple system IT,. Then, we can write it with respect to ITy, that is,

>0

Ve+1,06 —

Ve = Be=maA+ Y maa,

acd

with integers my, m, > 0 for each a € . Since ngk = 1in ([7.1) and X is simple in II,, we
deduce that mg, = 0. From Proposition[6.1.3and the fact that m, > 0 for all o« € ®\{S},
we deduce that ®\{fx} is a connected subset of & with k € {0,1}.

Since ®\{fx} C P, we have that A is the root of minimum level in its ®\ {5 }-string.
Thus, from Proposition we have that {\} U ®\{fx} is a simple system that spans
the root v, — . for each k € {0, 1}. Since the coefficient of v in the expression of v, —
with respect to the simple system {A} U ®\ {5} is 3, we deduce that {\} U ®\{S;} must
be either an Eg or an E; simple system. This determines the root 5y with & € {0,1}. In
other words, we can write § = 3 = (1. This is because if I is an Eg (respectively FE7)
simple system there is just one root v € II such that II\{r} is an E7 (respectively Ejg)
simple system.

Consider now the root 7 — 8 in the ®\{S}-string of A, for £ € {0,1}. If it is not
extreme in such string for some k € {0, 1}, then there must exist a root a € ®\{3} such
that v, — 8 + « is a root. Since all the roots in % have the same length and v, — 8+ o is
a root, we have that —1 = A, ., 5 (see Proposition . Hence, from

—-1=A

A Anp

Yk _B = Yk

we deduce that A,,, = —1. Thus 7 + o would be a root due to Proposition
and 7, would not be an extreme root in the ®-string of A\. Thus, we deduce that vy —
and y; — (3 are extreme in the ®\{f}-string of X\. Applying the induction hypothesis, we
obtain that vg — 8 = 1 — 8. The result now follows.

(if): Recall that A,,,, € {0,£1} for any distinct vy, o € ¥. Assume first that
7 is an extreme root in the ®-string of A\. If A,, < 0, then v 4 « is a root due to
Proposition and v would not be extreme in the ®-string of \. Thus A, > 0 for
all @ € . Recall that the ®-string of A is not trivial. Thus, v is not of minimum level the
®-string of A\. Now, from Proposition we get that there must exist a; € ® such
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that v — ay is a root. Since v+ a; cannot be a root, from Proposition we deduce
that A,, , > 0. Assume that A,,, > 0 for some ay € ®\{a;}. Put @ = ) .4, a. Note
that since @ is a simple subsystem of I, then the sum of its simple roots is a root (see [69]
p. 684]). Recalling that A, > 0 for all & € & we obtain that

Ad,7 = Z Aa,*y > 27

acd

which is a contradiction with Proposition (iid).
Conversely, if v is not extreme in the ®-string of A\, then there must exist a € ® such
that v+« is a root. If v — a were a root, then A, ,_, < —2, which is a contradiction with

Proposition (iil). Thus, from Proposition we deduce that A, , = —1. This

concludes the proof. O
Combining Corollary and Proposition we obtain the following

Corollary 7.2.5. Let ® = &qU D, be a proper subset of the set 11, where ®q is orthogonal
to ®1 and both are connected. Assume that all the roots in X have the same length. Let
A\ € X2 be of minimum level in its non-trivial ®;-string, for each i € {0,1}. Let v € X°®
be a root in the ®-string of A\. The root v is extreme in the ®-string of X if and only if
there exists a root o € ®; such that A,, , =1 and Ag, =0 for all B € ®;\{a;} for each
ie{0,1}.

Proposition and Corollary have a very nice consequence that will avoid
many calculations in order to justify that the shape operator of Sg - 0 is not austere when
restricted to a ®-string. Roughly speaking, it allows us to argue that the map f given in
Corollary interchanges extreme roots with roots of minimum level.

Corollary 7.2.6. Let 3 be a root system whose roots have the same multiplicity. Let ®
be a connected subset of the set of simple roots I1. Denote by Jy the set of roots A € £* of
minimum level in their non-trivial ®-strings and by J, the set of extreme roots v € B¢ in
their non-trivial ®-strings. Then:

(i) If So -0 is austere, then there exists a bijection f: Jy — Ji such that Ay, = —Aq 5
for all (a,v) € O x Jy.

(ii) Let A € X® be of minimum level in its ®-string, and let X € X% be the extreme
root of the ®-string of \. If S is austere when restricted to the ®-string of \, then
Aay = —Ayx for all a € .

(iii) If S is austere when restricted to the non-trivial ®-string of X for some X\ € X, then
the number of elements in the ®-string of A is even.

Proof. ({i): Since Sg - 0 is austere and all the roots have the same multiplicity, from Corol-
lary [6.1.11] (i) we deduce that there exists a multiplicity-preserving involution f: X® — %®
such that A,, = —A, f() for all (a,v) € ® x ©®. We just need to see that f interchanges



190 7 Austere submanifolds in exceptional symmetric spaces

roots of minimum level and extreme roots. In other words, it suffices to see that f(Jy) C J;.
Let A € X% be of minimum level in its non-trivial ®-string. Since ® is connected and the
®-string of A is not trivial, from Proposition we deduce that there exists a root
a € ¢ such that A, » = —1 and that A, , = 0 for all v € ®\{a}. Let v be a root that is not
extreme in its non-trivial ®-string. Thus, there exists a root 5 € ® such that v+ is a root
in the ®-string of 7. Hence, from Proposition - we have that Ag, = —1. Since
Ag, = —1and A, , <0 for each v € ®, we have that f()\) # v, for each root v € £? that is
not extreme in its non-trivial ®-string. Finally, let 7' € % be a root with trivial ®-string.
This means that A, ., = 0 for all v € ®. Hence, we have that —1 = A, \ # —A,, = 0 and
fF) #+"

: Since the shape operator § is austere when restricted to the ®-string of A, from
Corollary we deduce that there must exist a multiplicity-preserving involution
foI(X, ®) = I(A, @) such that A,, = —A, ) for all (a,v) € & x I(A, ®). Now, substi-
tuting ¥ by I(\, ®) and proceeding as in ({i) the result follows.

: Let A € £® be of minimum level in its ®-string. Recall that since S is austere
when restricted to the ®-string of A\, from Corollary we deduce that there must
exist a multiplicity-preserving involution f: I(A, ®) — I(\, ®) such that A,, = —Aq )
for all (a,v) € ® x I(\, ®). Take a root v € X% in the ®-string of A. Since the ®-string of
A is not trivial, ¥ cannot be extreme and of minimum level simultaneously. Hence, from
Proposition and the definition of extreme root we deduce that there exists a root
a € @ such that v — o or v 4+ o is a root. Hence, we deduce that A,, # 0 for some
a € ®. Thus, we have that A,, # —A,, for some a € ®. This means that the involution
f cannot have fixed points. Then, the number of roots in I(A, ®) must be even. O

7.2.3 & containing a component of type Aj

We will start now the study of the submanifolds Sg - 0 when ® = {f, 55, f3} is an Aj
simple subsystem with Dynkin diagram

Let A € X% be of minimum level in its ®-string. Note that all the roots have the same
multiplicity. If {\} U ® is a D, system, that is, if Ag, , = —1, from Proposition
we deduce that the shape operator of Sg - 0 is austere when restricted to the ®-string of \.
Otherwise, {\}U® will be an A, simple system and the ®-string of A has been described in
Proposition [6.2.8, Hence, the submanifold Sg - 0 will be austere if and only if the number
of roots A\; € X% of minimum level in their ®-strings satisfying Ag, ,, = —1 coincides with
the number of roots A3 € X% of minimum level in their ®-strings satisfying Ag, », = —1.

Let us start with the case-by-case analysis.

Put ® = {ag, a7, ag}. This examples just makes sense in Eg. Let A € X® be of minimum
level in its ®-string.
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o If A, » = —1, then X is one of the following 11 roots:

0 0 0 1 1 0
0001000/ * \ 0001100/ * \ 0001110/ " \ 0001100/ " \ 0001110/ * \ 0001111/’
1 1 1 1 3
0001210/ >\ 0001111/ > \ 0001211 / " \ 0001221 ] " \ 1235642 )

o If A,.» = —1, then X is one of the following 5 roots:

1 1 1 1 2
(0012210) ’(0012211) ’(0012221) ’(0012321) ’(0012321)'

o If A,,» = —1, then X is one of the following 5 roots:

1 2 2 2 2
0123321/ 7\ 0123321/ * \ 0123421 ) > \ 0123431 ) ' \ 0123432 ) °
o If Apsn = Anrn = Ao = 0, then X is one of the following 20 roots:
0 0 0 1
0000001 OOOOOOO 0000010/ * \ 0000100 / > \ 0000110/ > \ 0000100 / ’
0 1 2 2
0000011 0000110 0000111/ >\ 0000111 ) >\ 1234421 ) >\ 1234431 )’
3 2 2 3
1234531 1234432 1234531 ) 7 \ 1234532 ] 7 \ 1234542 ) > \ 1234532 )’
(1234542) (1234642)'

Thus, we deduce that Sg - 0 is not austere when ® = {ag, a7, ag}.
Put ® = {as, ag, ar}. This example makes sense only in E; and Eg. Let A € X% be of
minimum level in its ®-string.

o If A,. = —1, then A is one of the following (10, 6) roots:

0 0 1 1 0 1
(0000100) ’(0000110> ’(0000100> ’<0000110> ’<0000111) ’(0000111)’
1 1 1 3
1111210 ) \1111211 ) > \ 1111221 ) * 1234642 ) -

o If A,,» = —1, then X is one of the following (5, 3) roots:

1 1 1 1 2
(0001210) ’(0001211) ’(0001221) ’(1112321) ’(1112321)'
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o If A, = —1, then X is one of the following (6, 2) roots:

0 1 2 2 2 2
1000000/ "\ 0012321 ) 7 \ 0012321 ) * \ 1123421 ) * \ 1123431 ) "\ 1123432 ] °

o If Ay, )= Augr = Aa,x = 0, then X is one of the following (20, 7) roots:

0 0 0 0
(0000001 ooooooo) (000001o> ’(ooooo11> ’(1111100) ’(1111110)’

0 1 2 2
(1111100) (1111110) (1111111)’ (1111111) ’(0123421) ’(0123431)’

3 2 2 3
(0123432 1234531) (1234531)’ (1234532) ’(1234542) ’(1234532)’

(1234542) (2345642)'

Thus, we deduce that Sg - 0 is not austere when ® = {as, ag, a7 }.

The rest of the possibilities with ® = Aj arise in all the symmetric spaces with Dynkin
diagram FEjg, F7 or Ejs.

Put ® = {ay, a5, a6}. Let A € X? be of minimum level in its ®-string.

o If A,, » = —1, then X is one of the following (9,5, 3) roots:

1 0 0 1 1 1
0000000/ * \ 0000010/ * \ 0000011 / "\ 0111110/ *\ 1111110/ "\ 0111111 /"
1 1 3
1111111 ) 7 \1222221 ) * \ 1234542 )

o If A,, » = —1, then X is one of the following (5, 3,2) roots:

1 1 1 1 2
(0000110) ’(0000111) ’(0111221) ’(1111221) ’(1222321)'

o If A,,» = —1, then X is one of the following (7,3, 1) roots:

0 0 1 2 2 2
0100000/ * \ 1100000/ * \ 0001221 / * \ 0112321 ) '\ 1112321 ) " \ 1223431 )’
2
1223432 )
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o If Ay, = An,x = Auer =0, then X is one of the following (20, 7, 2) roots:

0 1 0 1

(0000001) (1000000) (0111110) ’(0111100) ’(1111110) ’(1111100)’
1 2 1 2

0111111 1111111 1222210 ) * \ 0012321 ) * \ 1222211 ) > 0123431 ) °
2 3 2 3

1123431 0123432 1123432 ) * \ 1234531 ) " \ 1234542 ) > \ 1234532 ) °

(1345642) (2345642)'

Thus, we deduce that Sg - 0 is not austere when ® = {ay, a5, ag}-
Put ® = {3, a4, a5}. Let A € X? be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 1 1 1 1 1
(0000001) ’(0011100) ’(0111100) ’(1111100) ’<0122211) ’(1122211)’

1 3
1222211 ) "\ 1234532 )

o If A,,» = —1, then X is one of the following (5, 3,2) roots:

1 1 1 1 2
(0000000) ’(0011111) ’(0111111) ’(1111111) ’(1233321)'

o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 0 0 1 2 2
0010000/ * \ 0110000/ * \ 1110000 / * \ 0000111/ "\ 0122321 ) " \ 1122321 )’

2 2
1222321 ) 7\ 1233432 ) °

o If Ay, = Anyn = Aa; ) =0, then X is one of the following (20, 7, 2) roots:

0 0 0 0
(0100000 (1000000) (1100000) ’<0011111> ’<o111111) ’(1111111)’
2 2 2
1122210 1222210 0012321 ) * \ 0112321 ) * \ 1112321 )
2 3 3
0123432 1123432 1223432 ) > \ 1234531 ) * \ 1245642 )

)
(o210)
(23)
(ss563)

1345642 2345642



194 7 Austere submanifolds in exceptional symmetric spaces

Thus, we deduce that Sg - 0 is austere when ® = {ag3, a4, a5}
Put ® = {ay, a3, a4}. Let A € 3% be of minimum level in its ®-string.

o If A,,» = —1, then X is one of the following (7,3, 1) roots:

1 1 1 1 1 1
(0012210) ’(0112210) ’(1112210> ’(0122210) ’(1122210) ’(1222210)’
3
1234531 )

o If A,, = —1, then X is one of the following (5, 3,2) roots:

1 1 1 1 2
(0001100) ’(0011100) ’(0111100) ’<1111100) ’(1234421)'

o If A,,» = —1, then X is one of the following (9,5, 3) roots:

1 0 0 0 0 2
0000000/ * \ 0001000/ * \ 0011000/ * \ 0111000/ " \ 1111000 ) * \ 0123321 )’
2 2 2
1123321 ) "\ 1223321 ) " \ 1233321 ) °

o If Ay, )= Ansn = Au, ) =0, then X is one of the following (20, 7, 2) roots:

0 0 0 0
(0010000 0100000) (1000000) ’(1100000) ’(0110000) ’(1110000)’

1 2 2 1
(0012321) (0112321) (0123321)’ (1112321) ’(0122321) ’(1123321)’

2 1 3 3
(1122321 1223321) (1222321)’ (1233321) ’(1235642) ’(1245642)’

(1345642) (2345642)'

Thus, we deduce that Sg - 0 is not austere when ® = {a, a3, ay}.
Put ® = {ay, a3, as}. Let A € X% be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 0 0 0 1 1
0001111/ \0011111 /> \0111111/ "\ 1111111/ "\ 0123321 ) "\ 1123321 )’
1 1
1223321 ) " \ 1233321 ) -
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o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 1 1 1 1 1
(0000001) ’ (0012211) ! (0112211) ’ (1112211) ’ <0122211) ’ (1122211) ’
1 2
1222211 ) 7 \ 1234421 ) *

o If A,,» = —1, then X is one of the following (5, 3,2) roots:

0 0 0 0 2
0001000/ \ 0011000/ * \ 0111000/ * \ 1111000 ) " \ 1234432 ] -

o If Ay, = Anyn = Au, ) =0, then A is one of the following (20, 7, 2) roots:

0 0 0 0
(0010000 0100000) (1000000> ! (1100000) ’ <0110000) ’ (1110000) ’

1 1 1 1
(0012210) (0112210) (1112210> ’ (0122210) ’ <1122210) ’ (1222210) ’

2 2 3 3
(0123432 1123432) (1223432> ! (1233432) ’ <1235642) ’ (1245642) !

(1345642) (2345642) '

Thus, we deduce that Sg - 0 is austere when ® = {as, ag, ay}.
Put ® = {9, ay, a5}. Let A € X% be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 0 0 0 0 0
0011110/ *\0111110/\0011111 ) \1111110/ " \O111111 /" \1111111/"
1 2
1233321 ) " \ 1234542 )~

o If A,, = —1, then X is one of the following (5, 3,2) roots:

0 0 1 1 1
0000010/ *\ 0000011 ) "\ 0122221 ) " \ 1122221 ] " \ 1222221 )

o If A,, = —1, then X is one of the following (8,4, 2) roots:

0 0 0 1 1 1
0010000/ " \ 0110000/ * \ 1110000/ " \ 0011221 ) "\ 0111221 ) " \ 1111221 )’
2 2
1233431 ) "\ 1233432 )
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o If Ay, = An,n = Au, ) =0, then X is one of the following (20, 7, 2) roots:

0 0 1 1
(0000001) (0100000) (1000000) ’ (1100000) ’ (0001221) ’ (0122210) ’

1 1 1 2
1122210 0122211 1222210 ) * \ 1122211 ) * \ 1222211 ) * \ 0123431 ) -

2 2 2 3
1123431 0123432 1223431 ) > \ 1123432 ) ' \ 1223432 ) * \ 1245642 ) -
(1345642) (2345642)'

Thus, we deduce that Sg - 0 is austere when ® = {as, oy, as}.

From the above case-by-case analysis it follows that if ® is an A3 simple subsystem
then Sg - 0 is austere (in Eg, F; or Eg) if and only if ® contains the root a4 as a central
root, that is, the simple subsystem &, has a Dynkin diagram of the form

8 v B
1 Oy 2

for (61; ﬁ2> < {(043, a5>7 (042, 053), (042, a5)}’

Hence, with this assumption on ®, we still need to inspect when the submanifold Se g -0
is austere, for U C II orthogonal to ®. The cases with |¥| > 3 will be analyzed later. From
the above considerations on the case ® = Ajs, Proposition and Lemma [6.3.1, we
deduce that ¥ must be discrete.

As usual in this section, the approach we will follow is to study all the cases indepen-
dently.

Basically, there are four types of ®-strings that will play a crucial role in what follows.
More precisely, let & = {81, B2, 83, B4} be a subset of the simple roots II. Assume that
{f1, Pa, B3} constitutes an Az simple subsystem with Dynkin diagram

o o o
o B2 B3

and that £, is a simple root orthogonal to 3;, with i € {1,2,3}. As usual, let A € X% be
of minimum level in its ®-string.

There are several possibilities for the simple system {A} U ®. On the one hand, if
(Agyas Agyn) = (—1,0), then the ®-string of A has been described in Proposition
and the shape operator S is austere when restricted to the ®-string of A\. On the other
hand, if (Ag,x, Ag,n) = (—1,—1), then the ®-string of A has been described in Corol-
lary and the shape operator § is austere when restricted to the ®-string of .
Assume that Ag, » = —1 is the unique non-zero Cartan integer of the form A, ), with



7.2.3 @ containing a component of type As 197

a € ®. Then, the ®-string of A coincides with the §4-string of A\. Then, from Proposi-
tion [6.2.6] we deduce that the shape operator S is austere when restricted to the ®-string
of \.

Now, assume on the one hand that (A4, ), Ag,\) = (—1,—1) for some v € {f, f3}.
This ®-string has been described in Proposition On the other hand, assume that
(Aya, Ag,n) = (—1,0) for some v € {f31, f3}. This ®-string has been described in Propo-
sition [6.2.8, Hence, using now Lemma [6.1.10, Proposition [6.2.15 and Proposition [6.2.8
we deduce the following. The submanifold Sg - 0 is austere if and only if: the number
of roots v € ® of minimum level in their ®-strings satisfying (Ag, .., A4g,) = (—1,—1)
coincides with the number of roots v3 € ® of minimum level in their ®-strings satisfying
(Agy sy Agyrs) = (—1,—1), and the number of roots v; € ® of minimum level in their
P-strings satisfying (Ag, ,, Agsy) = (—1,0) coincides with the number of roots v3 € ® of
minimum level in their ®-strings satisfying (Ag, s, Agsqs) = (—1,0).

Put ® = {a3, a4, as, a7} Let A € ¥® be of minimum level in its ®-string. Recall that
except for the roots with trivial ®-string, we just point out the non-zero Cartan integers.

o If Ay, = Aa,n = —1, then X is one of the following (2, 1) roots:

1 1
(00111oo> ! (1122211) ‘

o If A,, = —1, then X is one of the following (4, 2) roots:
0 1 1 3
0000001/ "\ 1111100/ " \ 0122211 ) " \ 1234532 ]
o If Ay, » = An, = —1, then X is the root
1
0011111/~

o If A,,» = —1, then X is one of the following (3, 1) roots:

1 1 2

0000000/ *\ 1111111/ 7\ 1233321 )~
o If Ay, » = Aa,n = —1, then X is one of the following (2, 1) roots:
0 2
0010000 ) * \ 1122321 ) °

o If A,, = —1, then X is one of the following (4, 2) roots:

0 1 2 2
1110000/ "\ 0000111 ) "\ 0122321 ) " \ 1233432 )
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o If A, = —1, then X is one of the following (6, 2) roots:

0 0 1 2 2 3
1000000/ *\ 0011111/ 7\ 1122210 ) * \ 0012321 ) * \ 1123432 ) " \ 1245642 ]

o If Ay, n = Aour = Aoy = A, ) = 0, then A is one of the following (7, 2) roots:

0 1 2 1 2 3
1111111 ) 7\ 0122210/ " \ 1112321 ) * \ 1233321 ) 7\ 0123432 ) " \ 1234531 )’
3
2345642 ) -

Thus, the submanifold Sg - 0 is austere when ® = {as, ay, as, ar}.
Put ® = {as3, a4, as5,as}. This examples makes sense only in Es. Let A € ©® be of
minimum level in its ®-string.

o If Ay, = Angn = —1, then X is one of the following 2 roots:

1 1
(0111100) ’(0122211)‘

If Ayyn = —1, then A is one of the following 4 roots:

0 1 1 3
0000001 ) >\ 0011100/ " \ 1222211 ) " \ 1234532 )

If Ag, ) = Angx = —1, then A is the root

1
0111111/~

If Ay, » = —1, then X is one of the following 3 roots:

1 1 2
(0000000> ’(0011111) ’<1233321)‘

If Ao; ) = Angx = —1, then A is one of the following 2 roots:

0 2
0110000/ "\ 0122321 ) °

o If A,, » = —1, then X is one of the following 4 roots:

0 1 2 2
0010000/ * \ 0000111 J "\ 1222321 ) " \ 1233432 ) °
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o If A, » = —1, then X is one of the following 6 roots:

0 0 1 2 2 3
0100000/ >\ 0111111/ >\ 0122210/ " \ 0112321 ) " \ 0123432 ) * \ 1345642 ]

o If Ap,n = Ao n = Aasn = Ao = 0, then X is one of the following 7 roots:

0 1 2 1 2 3
0011111/ 7\ 1222210/ >\ 0012321 ) " \ 1233321 ) " \ 1223432 ) " \ 1234531 ) ’
3
1245642 )

Thus, the submanifold Sg - 0 is austere when ® = {as, ay, as, ag}.
Put ® = {ay, a3, ay,a6}. Let A € X% be of minimum level in its ®-string. Except for
the roots with trivial ®-string, we just point out the non-zero Cartan integers.

o If Ay, = Angx = —1, then X is one of the following (2,1, 1) roots:

0 1
0001111/ 7\ 1223321 ) °

If A,, » = —1, then X is one of the following (4,2, 0) roots:

0 0 1 1
0111111/ 7\ 1111111/ 7\ 0123321 ) "\ 1123321 )

If Ao,y = Aagx = —1, then A is one of the following (2,1, 0) roots:

1 1
(0112211) ’ (1112211> '

If Ay, » = —1, then X is one of the following (4, 2, 2) roots:

0 1 1 2
0000001 / 7\ 0012211 ) "\ 1222211 ) " \ 1234421 )

If Ag, ) = Apgx = —1, then X is the root

0
0001000/

If A,,» = —1, then X is one of the following (3, 1,0) roots:

0 0 2
0111000/ "\ 1111000/ " \ 1234432 ) -
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o If A,,» = —1, then X is one of the following (6,2, 0) roots:

0 0 1 1 2 3
0100000/ * \ 1100000/ *\ 0112210/ * \ 1112210/ " \ 1223432 ) " \ 1235642 )

o If Ay, = Apsn = Au, ) = Aagx = 0, then A is one of the following (7,2, 1) roots:

0 1 1 2 2 3
1000000/ "\ 0012210/ " \ 1222210 ) * \ 0123432 ) " \ 1123432 ) " \ 1345642 ) °
3
2345642 ) -

Hence, Sg - 0 is austere in E; and Fg when ® = {ay, a3, ay, ag}, but not in F.
Put ® = {9, a3, ay, az}. Let A € X% be of minimum level in its ®-string.

o If Ay, = Aa,n = —1, then X is one of the following (2, 1) roots:

0 1
0011111 ) 7\ 1123321 )~

If A,, » = —1, then X is one of the following (4, 2) roots:

0 0 1 1
0001111/ 7\ 1111111/ \0123321 ) "\ 1233321 ) °

If Aoy = Aa,x = —1, then A is one of the following (2, 1) roots:

1 1
(0012211) ’ (1122211) '

If Ay, » = —1, then X is one of the following (4, 2) roots:

0 1 1 2
0000001 / *\ 1112211 ) " \ 0122211 ) " \ 1234421

If Ao, = An, = —1, then A is the root

0
0011000/ -

o If A,,» = —1, then X is one of the following (3, 1) roots:

0 0 2
0001000/ "\ 1111000/ * \ 1234432
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o If A, = —1, then X is one of the following (6, 2) roots:

0 0 1 1 2 3
0010000/ "\ 1000000/ * \ 0012210/ * \ 1122210 ) " \ 1123432 ) " \ 1245642 )

o If Ay, = Ansn = Au, ) = Aay,a = 0, then A is one of the following (7,2) roots:

0 1 1 2 2 3
1110000/ "\ 1112210/ 7 \ 0122210 ) * \ 0123432 ) 7 \ 1233432 ) " \ 1235642 ) °
3
2345642 ) -

Thus, the submanifold Sg - 0 is austere when ® = {ay, as, ay, ar}.
Put ® = {aw, a3, a4, ag}. Let X € % be of minimum level in its ®-string.

o If Ay, » = Angx = —1, then X is one of the following 2 roots:

0 1
0111111/ *\0123321 )~

If Ay, » = —1, then X is one of the following 4 roots:

0 0 1 1
0001111/ 7\ 0011111/ "\ 1223321 ) " \ 1233321 )

If Aas ) = Aagx = —1, then A is one of the following 2 roots:

1 1
(0112211) ’ (0122211> '

If Ap,» = —1, then X is one of the following 4 roots:

0 1 1 2
0000001 / 7\ 0012211 ) " \ 1222211 ) " \ 1234421 ) -

If Aq, ) = Aogx = —1, then A the root

0
0111000/

o If A,,» = —1, then X is one of the following 3 roots:

0 0 2
0001000/ > \ 0011000 ) * \ 1234432 }
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o If A, » = —1, then X is one of the following 6 roots:

0 0 1 1 2 3
0100000/ * \ 0110000/ * \ 0112210/ * \ 0122210 ) * \ 0123432 ) " \ 1345642 ]

o If Ay, = Az ) = Aaun = Aagx = 0, then A is one of the following 7 roots:

0 1 1 2 2 3
0010000/ "\ 0012210/ * \ 1222210 ) " \ 1223432 ) " \ 1233432 ) " \ 1235642 ) ’
3
1245642 )

Thus, the submanifold Sg - 0 is austere when ® = {ag, as, ay, ag}.
Thus, we also need to consider the case ® = {9, a3, a4, g, ag}. Let A € @ be the of
minimum level in its ®-string.

o If A,, » = —1, then X is one of the following 4 roots:

0 1 1 2
0000001 / 7\ 0012211 ) "\ 1222211 ) " \ 1234421 )

If Ay, » = —1, then X is the root
2
1234432 ) -

If Aoy x = —1, then X is one of the following 2 roots:

2 3
1223432 ) 7 \ 1235642 ) -

If Apgr = —1, then X is one of the following 2 roots:

2 3
0123432 ) 7 \ 1345642 )

If Ay, n = Apgx = —1, then A is one of the following 2 roots:

0 1
0111111/ 7\0123321 )~

If Ag, x = Aagx = —1, then A is one of the following 2 roots:

0 1
0001111 ) 7\ 1223321/ °
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If Aq, ) = Aogr = —1, then A is the root

0
0111000/

o If Ay, » = An,» = —1, then X is the root

0
0001000/

If Aps ) = Aagr = Aogr = —1, then A is the root

1
0112211 )

If Apgn = Aagn = —1, then A is one of the following 2 roots:

0 1
(01ooooo> ’<o11221o)‘

If X has trivial ®-string, then it is one of the following 2 roots:

1 1
(0012210) ’(1222210)'
B 9
7= 1122321/

We have that (A, Aagys Aagys Aagys Aasy) = (1,0,0,1,1). Hence, from Corollary
we deduce that v is the extreme root of its ®-string. If Sp - 0 were austere, combining
Lemma [6.1.10 and Corollary[7.2.6] there would exist a root A € % of minimum level in its
O-string satisfying (Aa, x, Aasns Aasr, Aagrs Aagn) = (—1,0,0,—1, —1). However, we have
calculated above all the roots of minimum level in their ®-string and none of them satisfies
such condition. Hence, the submanifold Sg - 0 is not austere when ® = {ay, ag, ay, ag, as}.

Put ® = {1, as, a4, a5}. By symmetry, we have already considered this case in Fjg
above. However, we include its study for the sake of completeness. Let A € X% be of
minimum level in its ®-string.

Consider now the root

o If Ay, » = An,n = —1, then X is one of the following (3,2, 1) roots:

0 0 0
0011110/ *\ 0111110/ "\ 1111110/~
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o If A,, = —1, then X is one of the following (2,0, 0) roots:

1 2
(1233321) ’(1234542)'

o If A,,» = As, » = —1, then X is the root

0
0000010 /)

o If A,, » = —1, then X is one of the following (3, 1,0) roots:

1 1 1
(0122221) ’(1122221) ’(1222221)‘

o If A\, » = An, » = —1, then X is the root

2
1233431 ) -

o If A,, = —1, then X is one of the following (6, 4,2) roots:

0 0 0 1 1 1
0010000/ >\ 0110000/ > \ 1110000/ * \ 0011221 ) * \ 0111221 /" \ 1111221 ]~

o If A,, » = —1, then X is one of the following (6,2, 0) roots:

1 1 1 2 2 2
(0122210) ’(1122210) ’(1222210) ’(0123431) ’(1123431) ’(1223431)‘

o If Ay, )= Ap,n = Au; ) = Anyx =0, then X is one of the following (7,2, 1) roots:

0 0 0 1 3 3
0100000/ * \ 1000000 / * \ 1100000 / " \ 0001221 ] " \ 1245642 ) * \ 1345642 ) ’
3
2345642 ) -

Thus, the submanifold Sg - 0 is not austere when ® = {9, ay, as, a; }.
Put ® = {ay, ay, a5, az}. Let X € % be of minimum level in its ®-string.

o If A,, = An,» = —1, then X is one of the following (2, 2) roots:

0 0
0011110/ *\ 0011111/~
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o If A,, = —1, then X is one of the following (4, 0) roots:

0 0 1 2
1111110/ "\ 1111111 ) 7 \(1233321 ) 7\ 1234542 ) °

o If A\, » = An,» = —1, then X is the root

1
(1122221)'

o If A,, » = —1, then X is one of the following (3, 3) roots:

0 0 1
0000010/ >\ 0000011 /) "\ 0122221 } -

o If A,, = An,» = —1, then X is one of the following (2, 2) roots:

0 1
0010000/ >\ 0011221 )

o If A,, = —1, then X is one of the following (4, 0) roots:

0 1 2 2
1110000/ "\ 1111221 ) " \ 1233431 ) " \ 1233432 ) °

o If A,,» = —1, then X is one of the following (6, 0) roots:

0 1 1 2 2 3
1000000 ) * \ 1122210/ " \ 1122211 ) " \ 1123431 ) * \ 1123432 ) * \ 1245642 ]

o If Ay, = Aaur = Az = Aara = 0, then A is one of the following (7,6) roots:

0 1 1 1 2 2
(0000001) ’(0001221) ’(0122210) ’<o122211) ’(0123431) ’(0123432)’
3
2345642 ) -

Thus, the submanifold Sg - 0 is austere when ® = {9, ay, as, ar}.
Put ® = {ay, ay, a5, a5}. Let X € % be of minimum level in its ®-string.

o If A\, » = Anyr = —1, then X is one of the following 2 roots:

0 0
0111110/ >\ 0111111 /"
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o If A,,» = —1, then X is one of the following 4 roots:

0 0 1 2
0011110/ \0011111 ) "\ 1233321 ) " \ 1234542 ] -

o If A,,» = Aq, ) = —1, then X is the root

1
(0122221)

o If A,, » = —1, then X is one of the following 3 roots:

0 0 1
0000010/ * \ 0000011 / " \ 1222221 ) -

o If Ay, = Aagn = —1, then A is one of the following 2 roots:

0 1
0110000/ *\ 0111221 )~

o If A,,» = —1, then X is one of the following 4 roots:

0 1 2 2
0010000/ *\ 0011221 ) " \ 1233431 ) " \ 1233432 )

o If Ay, n = —1, then X is one of the following 6 roots:

0 1 1 2 2 3
0100000/ *\ 0122210/ * \ 0122211 ) " \ 0123431 ) " \ 0123432 ) " \ 1345642 ]

o If Ay, n = Aa, ) = Aoz n = Aogx = 0, then A is one of the following 7 roots:

0 1 1 1 2 2
(0000001) ’(0001221) ’(1222210) ’(1222211) ’<1223431) ’(1223432)’
3
1245642 ) -

Thus, the submanifold Sg - 0 is austere when ® = {as, ay, as, ag}.
We summarize all this information in the following

Proposition 7.2.7. Let G/K be a symmetric space of non-compact type with Eg, FE; or
Es Dynkin diagram contained in the diagram
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Q2
O O O O O O O
ag [07%4 Qg (071 Oy (6% (65}

Let ® be a proper subset of the set I with a connected component that consists of three
roots. Then, the submanifold S - 0 is austere if and only if & = $y or & = Py U Py,
where ®q is an As simple subsystem containing the root ay as a central root in its Dynkin
diagram, that is, the simple subsystem ®qg has a Dynkin diagram of the form

for (81, B2) € {(as,as), (a2, a3), (az, a5)} and @1 = {B} is orthogonal to gy, where 5 # ay,
and 8 # ag if Il = Fj.
7.2.4 & containing a component of type A,

Now, we will assume that ® = {1, B2, 83, f4} is an A4 simple subsystem with Dynkin
diagram

i it it i

Recall that all the roots have the same multiplicity. From Proposition [6.2.8, Proposi-
tion and Remark we deduce that the submanifold S - 0 will be austere if

and only if: the number of roots A\; € X? of minimum level in their ®-strings satisfying

Ag, », = —1 coincides with the number of roots Ay € X% of minimum level in their ®-
strings satisfying Ag, , = —1, and the number of roots Ay € X% of minimum level in their
d-strings satisfying Ag, », = —1 coincides with the number of roots A3 € 3% of minimum

level in their ®-strings satisfying Ag, \, = —1.

Let us start with the case-by-case analysis.

Put ® = {as, ag, ar, ag}. This example just makes sense in Eg. As usual, let A € X%
be of minimum level in its $-string, and we continue using the notation used so far in this
section.

o If A,,» = —1, then X is one of the following 7 roots:

0 0 1 1 0 1
(0000100) ’ (000011()) ’ (0000100> ’ <0000110) ’ (0000111) ’ (0000111) ’
3
1234642 )
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o If A, » = —1, then X is one of the following 3 roots:

1 1 1
(0001210) ’ (0001211) ’ <0001221) '

o If A,. = —1, then X is one of the following 2 roots:

1 2
0012321 ) 7\ 0012321 ) °

o If A,,» = —1, then X is one of the following 3 roots:

2 2 2
0123421 /) 7\ 0123431 ) "\ 0123432 ) -

o If Ay, = Aug ) = Aa.n = Augr = 0, then A is one of the following 10 roots:

0 1 0 0 2 3
0000001 / * \ 0000000 / * \ 0000010 / * \ 0000011 / " \ 1234531 ) " \ 1234531 ) °
2 2 3 3
1234532 ) 7 \ 1234542 ) " \ 1234532 ) " \ 1234542 ) -

Thus, we deduce that Sg - 0 is not austere when ® = {as, ag, a7, as}.
Put ® = {ay, as, ag, ar}. This example just makes sense in F7 and Fg. Let A € X% be
of minimum level in its ®-string.

o If A,, » = —1, then X is one of the following (6, 3) roots:

1 0 0 1 1 3
0000000/ * \ 0000010/ * \ 0000011/ "\ 1111110/ "\ 1111111 ) "\ 1234542 )

o If A,. = —1, then X is one of the following (3,2) roots:

)
1
0000110/’ 0000111 1111221

o If A,,» = —1, then X is one of the following (2, 1) roots:

1 2
0001221 ) "\ 1112321 ) °

o If A,,» = —1, then X is one of the following (4, 1) roots:

0 2 2 2
1000000/ "\ 0012321 ) " \ 1123431 ) " \ 1123432 )
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o If Ay, )= Ansn = Augr = Aarx = 0, then A is one of the following (10, 3) roots:

0 0 1 0 2 2
0000001 7 *\ 1111110/ *\ 1111100/ "\ 1111111 ) " \ 0123431 ) * \ 0123432 ) °
3 2 3 3
1234531 ) "\ 1234542 ) 7 \ 1234532 ) 7 \ 2345642 )

Thus, we deduce that Sg - 0 is not austere when ® = {ay, a5, ag, ar}.

The rest of the possibilities with & = A, appear in all the symmetric spaces with
Dynkin diagram Fg, F7 or Es.

Put ® = {as, ay, a5, as}. Let A € X% be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (5,2, 1) roots:

0 1 1 1 3
0000001 7 *\ 0111100/ * \ 1111100 ) " \ 1222211 ] " \ 1234532 )

o If A,,» = —1, then X is one of the following (3,2, 1) roots:

1 1 1
(0000000) ’(0111111> ’(1111111)'

If A,, » = —1, then X is one of the following (2, 1,1) roots:

1 2
0000111 ) 7\ 1222321 ) °

If Ayy ) = —1, then A is one of the following (5, 2,0) roots:

0 0 2 2 2
0100000/ > \ 1100000/ "\ 0112321 )\ 1112321 ] > \ 1223432 ) °
If Aoy = Aoyn = Aoz ) = Aagx = 0, then A is one of the following (10,3, 1) roots:
0 0 0 1 2 2
1000000/ >\ 0111111/ >\ 1111111/ >\ 1222210/ > \ 0012321 ) > \ 0123432 )’
2 3 3 3
1123432 ) 2 \ 1234531 ) * \ 1345642 ) ’ \ 2345642 |

Thus, we deduce that Sg - 0 is not austere when ® = {ag3, oy, a5, ag}-
Put ® = {a1, a3, a4, a5}. Let X € % be of minimum level in its ®-string.

o If A, » = —1, then X is one of the following (4, 1,0) roots:

1 1 1 3
(0122210) ’(1122210> ’<1222210> ’(1234531)'
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o If A,, = —1, then X is one of the following (3,2, 1) roots:

1 1 1
(0011100) ’<0111100> ’(1111100)‘

o If A,, » = —1, then X is one of the following (2, 1,1) roots:

1 2
(0000000) ’(1233321)'

o If A,, » = —1, then X is one of the following (6, 3,1) roots:

0 0 0 2 2 2
0010000/ > \ 0110000/ > \ 1110000/ > \ 0122321 ) * \ 1122321 ) > \ 1222321 ] °
o If Ay y = Aoy r = Aayr = Aoy ) = 0, then A is one of the following (10,3, 1) roots:
0 0 0 2 2 2
0100000/ > \ 1000000 / > \ 1100000 ) * \ 0012321 ) * \ 0112321/ "\ 1112321 )’
1 3 3 3
1233321 ) * \ 1245642 ] * \ 1345642 ] > \ 2345642 ) °

Thus, we deduce that Sg - 0 is not austere when ® = {«, as, a4, as}.
Put ® = {ay, s, a3, a4}. Let X € % be of minimum level in its ®-string.

o If A, » = —1, then X is one of the following (6, 3,1) roots:

1 1 1 1 1 1
(oo12210) ’(0112210) ’(1112210) ’<o122210) ’<1122210) ’(1222210)'

o If A,, = —1, then X is one of the following (4, 1,0) roots:

1 1 1 1
(0123321) ’(1123321> ’<1223321> ’<1233321)'

o If A,,» = —1, then X is the root
2
1234421 ) °

o If A,,» = —1, then X is one of the following (4, 3,2) roots:

0 0 0 0
0001000/ * \ 0011000/ > \ 0111000/ " \ 1111000 ) -
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o If Ay )= Anr = Aus ) = An,x =0, then A is one of the following (10,3, 1) roots:

0 0 0 0 0 0
0010000/ * \ 0100000/ * \ 1000000/ " \ 1100000/ * \ 0110000 ) * \ 1110000 / ’
3 3 3 3
1235642 ) 7 \ 1245642 ) * \ 1345642 ) 7 \ 2345642 )

Thus, we deduce that Sg - 0 is not austere when ® = {1, an, ag, s}
Put ® = {9, ay, a5, s }. Let A € X% be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (5,2, 0) roots:

0 0 0 0 2
0111110/ >\ 1111110/ *\ 0111111/ "\ 1111111 ) " \ 1234542 )

If A,, » = —1, then X is one of the following (3,2, 2) roots:

0 0 1
0000010 / * \ 0000011 ) "\ 1222221 } -

If A,,» = —1, then X is one of the following (2, 1,0) roots:

1 1
(0111221> ’ <1111221) ‘

If Ayy ) = —1, then A is one of the following (5,2, 1) roots:

0 0 1 2 2
0100000/ * \ 1100000/ * \ 0001221 J " \ 1223431 J " \ 1223432 ] °

If Aoy = Aayr = Aoz = Aagx = 0, then A is one of the following (10,3, 1) roots:

0 0 1 1 2 2
0000001 /  \ 1000000 / " \ 1222210 ) " \ 1222211 ) " \ 0123431 ) " \ 1123431 ) °
2 2 3 3
0123432/ 7\ 1123432 ) " \ 1345642 ] " \ 2345642 )

Thus, we deduce that Sg - 0 is not austere when ® = {ao, a4, a5, ag}.

This concludes the study when ® is an A, simple subsystem. Before going on, using the
above calculations when ® is an A4 simple subsystem, Proposition [7.2.1] Proposition
and Proposition [7.2.7, we summarize all the information in the following

Proposition 7.2.8. Let ® be a proper subset of the set of simple roots I1. Assume that 11
1s an Fg, E7 or By simple system whose Dynkin diagram is contained in the Dynkin diagram
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Q2
O O O O O O O
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Assume that each connected component of ® contains at most four elements. Then, the
submanifold Sg - 0 is austere if and only if one of the following statements holds:

(i) & = @y or & = &g U Dy, where Oy is an Az simple subsystem containing the root
ay as a central root in its Dynkin diagram, that is, the simple subsystem ®y has a
Dynkin diagram of the form

for (B1,B2) € {(as,as), (a2, a3), (az,a5)} and &1 = {8} is orthogonal to ®q, where
B # ay, and B # ag if Il = Eg.

(ii)) & = ®g or & = U Dy, where Oq is a Dy simple subsystem orthogonal to the discrete
subset ®q.

(iii) P is discrete.

7.2.5 The classification in spaces of type Ej

In this subsection we conclude the classification of austere submanifolds of the form Ss - 0
in symmetric spaces of non-compact type with Fg Dynkin diagram. However, before that,
we still need to analyze a particular class of ®-strings.

Proposition 7.2.9. Let ® be a proper subset of the set of simple roots II. Let A € X% be
of minimum level in its ®-string. Assume that ® is a Dy simple system and {\} U ® is an
FEg simple system with Dynkin diagram

(8%
o O O O 0
A Qs Qy (0% Qg

Then, the shape operator S is not austere when restricted to the ®-string of \.
Let v € % be of minimum in its ®-string. Assume that {y}U® is an Eg simple system
with Dynkin diagram
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a3

O O O O

Qg

=20
Q
)
Q
N
Q
[on

The principal curvatures of the shape operator S¢ when restricted to @ael(/\@ ga are ex-
actly the opposite to the principal curvatures of the shape operator S¢ when restricted to
@ael(%@) 0o, for each unit normal vector & to the submanifold Ss - o.

Therefore, the shape operator S is austere when restricted to @ael()\ ®)UI (,0) Ja-

Proof. Note that A,, » = —1 and A, = 0 for all v € ®\{as}. The number of roots of the
®-string of A equals the number of positive roots spanned by an Fg simple system, minus
the number of positive roots spanned by a Ds simple system, minus the number of roots

with coefficient corresponding to A greater or equal than 2 (there are no roots satisfying
this condition [69, p. 687]). Thus, we have |I(\, ®)| = 16. Consider the root

N 2
A= (12321) !

where the coefficients refer to its expression with respect to the simple system {A} U ®.
We have that A,, 5y = 1 and that A, 5 = 0 for all v € ®\{ay}. From Proposition [7.2.4] _ (i)
we deduce that >\ is the extreme root in the ®-string of A. Recall that A,, » = —1 and
Ay =0 for all v € ®\{as}. Therefore, from Corollary [7.2.6] (i) we deduce that S is not

austere when restricted the ®-string of \.

Now, we draw the diagrams of the ®-string of A and of the ®-string of v in order to
finish the proof.

—o—»—o
Qg Qo
a3

iy

R G

A
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Let f be the bijection induced by the reflection of the above diagrams with respect to an
horizontal axis separating them. Recall that all the roots have same multiplicity. Then, f
satisfies the conditions of Corollary [6.1.11 . This finishes the proof. [

Finally, we can state and prove the classification result for symmetric spaces of type FEg.

Proposition 7.2.10. Let G/K be a symmetric space of non-compact type with Eg Dynkin
diagram of the form

%)
O O O O O
(67 Qs Oy a3 o

Let ® be a proper subset of the set Il of simple roots. Then, the submanifold S -0 is austere
if and only if one of the following conditions holds:

(i) @ is the Az subsystem ® = {az, aq, a5}, ® = {as, as,au} or ® = {as, ay, a5}, or
(ii) @ is a Dy subsystem, that is, ® = {aq, ag, oy, a5}, or
(iii

)
)
iii) ® is an As subsystem, that is, ® = I1\{ax}, or
(iv) ® is discrete.

Proof. From Proposition [7.2.8, we just need to study the case when ® has a connected
component that consists of five elements.
Assume first that ® = {ay, as, as, ay, as}. Hence, ag € X is of minimum level in its

non-trivial ®-string by means of Proposition (iil). According to Proposition

the shape operator of Sg - 0 is not austere when restricted to the ®-string of ag. Since the
$-string of ag has 16 roots (see the proof of Proposition [7.2.9) and ® spans 20 positive
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roots, we have considered all the roots in ©®. Hence, if ® is a D5 simple subsystem of the
Eg simple system II, then Sg - 0 is not austere.

Finally, we only need to examine the case when ® is an As simple system, that is,
¢ = II\{az}. Then, note that {as} U P =1l is an E4 simple system. Then, the number
of roots of the ®-string of s equals the number of positive roots spanned by an Ey simple
system, minus the number of positive roots spanned by an As simple system, minus the
number of positive roots with coefficient corresponding to as greater or equal than 2 (there
is just one root satisfying this condition [69, p. 687]). Thus, the ®-string of ay consists
of 20 roots. Below, we write explicitly an involution f: I(as, ®) — (a2, ®) under the

conditions of Corollary [6.1.11] (ii)):

1 o 1 1 o 1
00000 12321 00100 12221
— ! — !
01100 11221 00110 12211
1 o 1 1 o 1
11100 01221 01110 11211
1 o 1 1 o 1
00111 12210 11110 01211
1 o 1 1 o 1
01210 11111 01111 11210 )"

Note that the root

2
12321

has trivial ®-string. Thus, all the roots have been considered and Ss - 0 is austere when
¢ =TT\{as}. [

7.3 FE- case

In the following lines we continue with the study of the austerity of Sg - 0 in symmetric
spaces of non-compact type of exceptional type. As usual, we will analyze the cases E;
and Eg simultaneously. In particular, at the end of this section we derive the classification
for the E; case.

7.3.1 & containing a component of type A;

In this subsection we will assume that ® is a connected subset of II with Dynkin diagram

i % it i %
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Recall that all the roots in ¥ have the same multiplicity. Let A € £® be of minimum level
in its ®-string. Then {A\} U ® will be an Ag, Dg or Eg simple system. Therefore, using
Proposition [6.2.8, Proposition [6.2.13] Remark [6.2.14] and the proof of Proposition [7.2.10
we deduce the following. The submanifold Ss - 0 is austere if and only if: the number of
roots v € L% of minimum level in their ®-strings satisfying Ag, ,, = —1 coincides with the
number of roots v5 € X% of minimum level in their ®-strings satisfying Ag, . = —1, and
the number of roots 15 € %% of minimum level in their ®-strings satisfying Ag, ,, = —1
coincides with the number of roots v4 € X% of minimum level in their ®-strings satisfying
Aﬁ4,v4 =—1

Put ® = {ay, as, ag, ag, ag}t. This example just makes sense in Eg. As usual, let A € X%
be of minimum level in its ®-string.

o If A,,» = —1, then X is one of the following 4 roots:

1 0 0 3
0000000/ * \ 0000010 / * \ 0000011 ) " \ 1234542 ]

If Ay, n = —1, then A is one of the following 2 roots:

1 1
(0000110) ’ (0000111) '

If Aoy x = —1, then X is the root
1
0001221/ -

2
0012321 ) -

If Aogx = —1, then X is one of the following 2 roots:

2 2
0123431 ) 7\ 0123432 ) °

If Ao,y = Aoz n = Aogr = Aoz x = Aag ) = 0, then A is one of the following 4 roots:

0 3 2 3
0000001 ) * \ 1234531 ) " \ 1234542 ) " \ 1234532 )

Thus, we deduce that Sg - 0 is not austere when ® = {ay, as, ag, a7, as}.
Put ® = {as, oy, as, ag, a7} This example exists in F7; and Eg. Let A € X% be of
minimum level in its ®-string.

If Ay, = —1, then X is the root
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o If A,, = —1, then X is one of the following (3, 1) roots:

)
0
0000001 ) *\ 111 1100 1234532

o If A,, » = —1, then X is one of the following (2, 1) roots:

1 1
(0000000) ’(1111111)'

o If Ay, » = —1, then A is the root
1
0000111/~

2
1112321 ) -

o If A, = —1, then X is one of the following (3, 1) roots:

0 2 2
1000000/ "\ 0012321 ) "\ 1123432 ) -

o If Apsn = Aayn = Ausn = Aoy = Aarn = 0, then A is one of the following (4,1)

roots:
0 2 3 3
1111111/ 7\0123432 /) >\ 1234531 ) ’ \ 2345642 ) °

Thus, we deduce that Sg - 0 is not austere when ® = {ag, ay, a5, ag, ar }.

Put ® = {a1, as, ay, as, ag}. This example exists in Eg, E; and Eg. However, since we
already got a classification for Eg in Proposition [7.2.10, we will only specify the number
of roots (satisfying the appropriate conditions) for the cases E; and Eg. Let A € X% be of
minimum level in its ®-string.

o If Ay, = —1, then A is the root

o If A,,» = —1, then X is one of the following (2, 0) roots:

1 3
1222210 ) "\ 1234531 )

o If A,,» = —1, then X is one of the following (2, 1) roots:

1 1
(0111100> ’<1111100>'
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1
(0000000)'

2
1222321 ) -

o If A,,» = —1, then X is one of the following (4, 2) roots:

0 0 2 2
0100000/ * \ 1100000/ "\ 0112321 ) " \ 1112321 ] °

o If Ay iy = Aasn = Aaur = Aoz n = Aagx = 0, then A is one of the following (4,1)

roots:
0 2 3 3
1000000/ >\ 0012321 /] > \ 1345642 ] * \ 2345642 ) °

Thus, we deduce that Sg - 0 is not austere when ® = {«1, as, a4, a5, ag} is neither in
E7 nor Eg. Recall from Proposition [7.2.10| that it is austere in Fjg.
Put ® = {aw, ay, a5, ag, a7 }. Let A € ©® be of minimum level in its ®-string.

o If A,, » = —1, then X is the root

o If Ay, » = —1, then A is the root

o If A,, = —1, then X is one of the following (3, 0) roots:

0 0 2
1111110/ "\ 1111111/ 7\ 1234542 ) °

o If A,, » = —1, then X is one of the following (2, 2) roots:

0 0
0000010/ 7 \ 0000011 /)

o If A,,» = —1, then X is the root
1
1111221 )

1
(0001221)'

o If A,,» = —1, then A is the root
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o If A, = —1, then X is one of the following (3, 0) roots:

0 2 2
1000000/ "\ 1123431 ) " \ 1123432 )

o If Apyn = Aayn = Aasn = Aoy = Aarx = 0, then A is one of the following (4, 3)

roots:
0 2 2 3
0000001/ > \ 0123431 /) >\ 0123432/ ' \ 2345642 |

Thus, we deduce that Sg - 0 is not austere when ® = {ao, ay, as, ag, a7 }.

7.3.2 & containing a component of type Ds

In this subsection, we will assume @ is a subset of II with Dynkin diagram

Ba

Recall that all the roots in ¥ have the same multiplicity. Let A € % be of minimum
level in its ®-string. Then {\} U ® will be a Dg or an Eg simple system. Therefore, using

Proposition (i), Proposition and Proposition [7.2.10| we deduce the following.

The submanifold Sg - 0 is austere if and only if: the number of roots vs € £ of minimum
level in their ®-strings satisfying Ag, ,, = —1 coincides with the number of roots v5 € £?
of minimum level in their ®-strings satisfying Ag, ,, = —1.

Put ® = {aw, a3, ay, as, ag}. Let A € ©® be of minimum level in its ®-string.

o If A,, = —1, then X is one of the following (2, 1) roots:

0 0
0111111/ \ 1111111 /"~

o If A,, = —1, then X is one of the following (2, 1) roots:

0 1
0000001 ) "\ 1222211 ) °
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o If A,,» = —1, then X is one of the following (3, 1) roots:

0 0 2
0100000/ * \ 1100000 ) * \ 1223432 ) -

o If Ap,n = Aaan = Aayy = Aoy = Apgr = 0, then A is one of the following (6, 1)
roots:

0 1 2 2 3 3
1000000 / "\ 1222210 ) " \ 0123432 ) " \ 1123432 ) * \ 1345642 ) 7 \ 2345642 ]

Thus, we deduce that Sg - 0 is austere when ® = {«s, as, ay, as, ag} both in E7 and Ek.
Hence, we also need to study the case ® = {as, as, ay, as, ag, ag}, which appears only
in By type. Let A € £® be of minimum level in its ®-string.

o If A,,» = —1, then X is one of the following 2 roots:

0 1
0000001 / *\ 1222211 ) °

If Aoy x = —1, then X is the root
2
1223432

If Aogx = —1, then A is one of the following 2 roots:

2 3
0123432 ) 7 \ 1345642 ) °

If Ay, n = Apgx = —1, then A is the root

0
0111111 )"~

If Aggn = Aagn = —1, then is the root

0
0100000/
1
1222210 /)

If X\ has trivial ®-string then it is
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2
7= (1123431)'

We have that (Aa, +; Aasys Aasys Aas iy Aag s Aagy) = (0,1,0,0,0,1). Hence, from Corol-
lary we deduce that v is the extreme root of its ®-string. If Sg - 0 were austere,
combining Lemma [6.1.10| and Corollary there would exist a root A € ©® of minimum
in its ®-string satisfying

Consider now the root

(Aaz,'ya Aag,’y? Aa4,w Aa5,'ya Aaﬁ,’yv Aozg,’y) = (07 _17 07 07 07 _1>

However, we have calculated above all the roots of minimum level in their ®-strings and
none of them satisfies such condition. Hence, the submanifold Sg - 0 is not austere when
¢ = {a27 a3, Ay, A5, O, Oég}.

Put ® = {ay, a9, a3, ay, a5} Let X € B% be of minimum level in its ®-string.

o If A,, » = —1, then X is one of the following (3, 1) roots:

1 1 1
(0122210) ’(1122210) ’(1222210)'

o If A,,» = —1, then X is the root
1
1233321/ °

o If A,. = —1, then X is one of the following (3,2) roots:

0 0 0
0010000/ * \ 0110000/ * \ 1110000 /

o If Ay, n = Aapn = Auyy = Aoy = Anyx = 0, then A is one of the following (6, 1)
roots:

0 0 0 3 3 3
0100000/ * \ 1000000 / * \ 1100000 J " \ 1245642 ) " \ 1345642 ) * \ 2345642 ]

Thus, we deduce that Sg - 0 is not austere when ® = {a, @, a3, oy, a5 }.
At this point, we can state the classification of the F; case.

7.3.3 The classification in spaces of type F7

In this subsection we conclude the classification of austere submanifolds of the form Sg - 0
in symmetric spaces of non-compact type with E7; Dynkin diagram.
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Proposition 7.3.1. Let G/K be a symmetric space of non-compact type with E; Dynkin
diagram of the form

G2
O O O O O O
(0%4 (673 (6731 Qg Qa3 (03]

Let ® be a proper subset of the set Il of simple roots. Then, the submanifold S -0 is austere
if and only if one of the following conditions holds:

(i) & = @y or & = &g U Py, where g is an Az simple subsystem containing the root
ay as a central root in its Dynkin diagram, that is, the simple subsystem Py has a
Dynkin diagram of the form

for (B1, 52) € {(as,as), (az,as), (a2, a5)} and &1 = {5} is orthogonal to ®g, where
6 7é Qq, Or

(i) & = Oy or & = &g U Dy, where Py is a Dy simple subsystem and Py is a discrete
subset of 11 orthogonal to ®q, or

(iii) @ = {ag, as, ay, a5, a6}, or
(iv) ® is a Dg simple subsystem, that is, ® = II\{a1 }, or
(v) @ is discrete.

Proof. According to the above calculations for the cases where ® is connected and contains
5 elements (Subsection and Subsection and Proposition , we just need to
analyze the austerity of S¢ - 0 when ® is a connected subset of II that consists of six roots.

Put first ® = IT\{ay}, that is, ® is an Eg simple subsystem. The root «7 is clearly the
root of minimum level in its ®-string. Then, II,, = {a7} U ® is an E; simple system by
means of Proposition . The number of roots of the ®-string of a is the number
of positive roots spanned by an FE; simple system, minus the number of positive roots
spanned by an Ejg simple system @, minus the number of roots spanned by an FE; simple
system whose coefficient corresponding to ay is greater or equal than two (this last number
is zero [69] p. 687]). Thus, we obtain |I(\, ®)| = 27. From Corollary we deduce
that the shape operator S is not austere when restricted to the ®-string of a;. Since II,,
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spans 63 positive roots and ® spans 36 positive roots, then we have considered all the roots
in X®. Then, Sp - 0 is not austere when ® = IT\{a7}.

Put now ® = II\{as}. We will gather the following information in a table: each root
A € X% of minimum level in its non-trivial ®-string; the extreme root ~ in the ®-string
of A; the root av € ® such that A, = —1; the root 8 € ® such that Az, = 1; and the
number of roots in the ®-string of \. We will call the roots a and 5 in ® (under the
previous conditions) the starting root and the finishing root, respectively. As usual, we
will use the notation of [69, Appendix C], but in this case for roots in E.

’ Minimum level \ Extreme \ Starting \ Finishing \ Number of roots ‘

1 1 .
000000 123321 4 @5

) 9 -
012321 123432 a7 1

Table 7.1: & = II\{az}.

Since ® spans 21 positive roots, we have considered all the roots in £®. Since «; is a
finishing root but never a starting root, from Corollary we deduce that S - 0 is
not austere when ® = IT\{as}.

Finally, put ® = II\{ay}. The number of roots in the ®-string of «; equals the
number of positive roots spanned by an F; simple system, minus the number of positive
roots spanned by a Dg simple system, minus the number of positive roots whose coefficient
corresponding to «; in an E; simple system is greater or equal than 2 (which is just one [69]
p. 688]). Thus, |I(ay,®)| = 32. Below, we explicitly write an involution f: I(ay, ®) —
I(ay, ®) satisfying the conditions of Corollary (ii):

000001 123431 000011

(o) aton) (o) (12
(o) i) (portn) = (i)
(000111) <_>(123321) (011(1)11) H(112321)
(o) ) o) o)
(onine) = (uazir) (i) <)

112321 001211
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1 1 1 1
<111111> H(012321) (011211) < (112221)
1 1 1 1
<001221> H(122211) (111211) v (012221)
1 1 1 1
(012211) H(111221) (011221) H<112211)'

Since ® spans 30 positive roots and the root

2
123432

has trivial ®-string, we have considered all the roots in ¥®. Thus, Sy - 0 is austere when
O =T1\{a }. ]

7.4 FEg case

In this section, we will finish the study of the Eg case. In order to do this, Corollary
will be the main tool.

In fact, we will address the remaining cases with the following procedure. We will fix
a connected subset ® of II that consists of 6 or 7 roots. After that, we will gather the
following information in a table (as we did in the proof of Proposition : the root
A € ¥® of minimum level in its non-trivial ®-string; the extreme root + in the ®-string of
A; the root a € @ such that A, = —1 (starting root); the root § € ® such that Az, =1
(finishing root); and the number of roots in the ®-string of A.

7.4.1 & containing a component with 6 roots

Recall that we are studying a symmetric space G/K with Eg Dynkin diagram of the form

(8%

O O O
ag (0%¢ Og Qs Qg (0% a7

Put ® = IT\{as, ag}. This is the corresponding table:
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] Minimum level \ Extreme \ Starting \ Finishing \ Number of roots ‘

3
(1234531) (1345642) “ “ !
0 7
1000000 1111111 a a
2 7
0012321 0123432 a a
1
(1111100) (1233321) @ o 21
2 21
1112321 1234542 a6 as
1
(ooooooo) (0123321) o 0 5

Table 7.2: & = IT\{ay, as}.

Since ® spans 21 positive roots and the root

3
2345642

has trivial ®-string, we have considered all the roots in ¥®. Since as is a finishing root but
never a starting root, from Corollary we deduce that Sg - 0 is not austere.
Put ® = IT\{a, as}. This is the corresponding table:

’ Minimum level ‘ Extreme ‘ Starting ‘ Finishing ‘ Number of roots ‘

0

(0000001) (1111111) @ s i
3

(1234532) (2345642) “ e !
2

(0123432) (1234542) e @ !
1

(0000000) (1222210) “ “ 21
2

(0012321) (1234531) “ “ 21
1

(0000111) (1233321) “ o 5

Table 7.3: & = IT\{ay, aq}.
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Since ® spans 21 positive roots and the root

3
1234531

has trivial ®-string, we have considered all the roots in ¥®. Since g is a finishing root but
never a starting root, from Corollary we deduce that Sg - 0 is not austere.
Put ® = I1\{«1, as}. This is the corresponding table:

’ Minimum level \ Extreme \ Starting \ Finishing \ Number of roots ‘

2
(0123431) (1234531) e “ !
; 7
0123432 1234532 e 2
(1234542) (2345642) 2 e !
(0000010) (1222210) o o 21
(000001 1) (1222211) 0‘4 “ 21
(0001221) (1234421) e s 5

Table 7.4: & = IT\{ay, as}.

Since ® spans 21 positive roots and the root

0
0000001

has trivial ®-string, we have considered all the positive roots. Since a5 is a finishing root
but never a starting root, from Corollary we deduce that Sg - 0 is not austere.
Put ® = IT\{«7, as}. This is the corresponding table:
Since ® spans 36 positive roots and the roots

0 3 1 3
1000000/ \ 1345642 ) ™% \ 2345642

have trivial ®-string, we have considered all the positive roots. Since ag is twice a finishing
root and only once a starting root, from Corollary we deduce that Sg - 0 is not
austere.

Put ® = I1\{a1, ag}. Consider the roots ag and

2
A= (1123432> '
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] Minimum level \ Extreme \ Starting \ Finishing \ Number of roots \

0 2 ”
0100000 0123432 o “
0 2
(1100000) (1123432) o “ 27
1 3
(1222210) (1245642> “ o 27

Table 7.5: & = II\{a7, as}.

These two roots are of minimum level in their ®-strings, as follows easily from Proposi-
tion , since Anqay = Aoz = —1land A, ., = A,y =0 for all v € ®\{ar}. Note
that (®,® U {ag}, ® U {A\}) = (Ds, D7, D7). Hence, from Proposition we have
that S is austere when restricted to the ®-string of ag and the ®-string of A\. Each one of
them consists of 12 roots. Consider the root oy and the root

B 0
T= 1111111 )

They are of minimum level in their ®-strings by means of Proposition (ii). Note that
Aaias = Aasy = —1. The shape operator S is austere when restricted to

b o

a€l(al,®)UI(y,P)

by virtue of Proposition [7.2.9] Each one of the strings consist of 32 roots. Since ® spans
30 positive roots and the roots

2 1 3
0123432 ) M \ 2345642

have trivial ®-string, we have considered all the roots in ¥®. Thus Sg - 0 is austere.

7.4.2 The classification in spaces of type Fjy

Finally, we will analyze the case where ® is a connected subset of Il that consists of 7
roots, which will allow us to conclude the classification in the Ey case.

Put ® = II\{«;}. This is the corresponding table:
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] Minimum level \ Extreme \ Starting \ Finishing \ Number of roots \

0 3

(0000001) (1234531) “ “ o4
2 3

(0123432) (2345642) e e H

Table 7.6: ® = IT\{a }.

Since ® spans 42 positive roots, we have considered all the roots in £®. Since as is a
finishing root but never a starting root, from Corollary we deduce that Sg - 0 is
not austere.

Put ® = IT\{as}. This is the corresponding table:

’ Minimum level ‘ Extreme ‘ Starting ‘ Finishing ‘ Number of roots ‘

1 1 ”
0000000 1233321 e e
3 3 .
1234531 92345642 e 8
D) B
(0012321) (1234542) o @ 28

Table 7.7: & = IT\{ax}.

Since ® spans 28 positive roots, we have considered all the roots in £®. Since a3 is a
finishing root but never a starting root, from Corollary we deduce that Sg - 0 is
not austere.

Finally, let us consider the case ® = I1\{ag}. It is clear that ag is the root of minimum
level in its ®-string. Note that ® U {ag} = II is an Eg simple system. Thus, the ®-
string of ag consists of the number of positive roots spanned by an FEg simple system,
minus those with coefficient corresponding to ag greater or equal than two and minus the
number of positive roots spanned by the E; simple system ®. Thus, using [69, p. 688], we
deduce that the ®-string of ag consists of 56 roots. Below, we write explicitly an involution

f:I(as, ®) = I(as, ®) under the conditions of Corollary [6.1.11] (ii)):
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0 3 0 3
(1000000) H<1345642) (1100000) <_><1245642)
(aoo) *(rzin)— Cannon) (1)

1110000 "\ 1235642 1111000 ) "\ 1234642
(i) Craie) (i) (i)
1111100 1234542 1111110 1234532

1 1 2
(1111100) H(1234542) (1111110) H(1234532)

0 1 2
(1111111) H(1234531) (1111210) H(1234432)

1 1 2
(1111111) <_><1234531) (1112210) <_><1233432)

1 1 2
<1111211) H(1234431) (1122210) H<1223432)

1 1 2
(1112211) H(1233431) (1111221) H(1234421)

1 1 2
(1222210) H(1123432) (1122211) - (1223431)

1 1 2
(1112221) H<1233421) (1222211> « (1123431)

1 2
(1122221) H(1223421) (1112321) = (1233321)

1 2
(1222221) H<1123421) (1122321) « (1223321)

1 2
(1112321) H<1233321) (1222321) « (1123321)

2 1
(1123321) H(1222321) (1122321) H(1223321)'

Thus, § is austere when restricted to the ®-string of ag. Since this ®-string consists of 56
roots, ¢ spans 63 positive roots and the root

3
2345642

has trivial ®-string, then we have considered all the roots in .
submanifold Sg - 0 is austere when ® = IT\{as}.
Thus, we can conclude the following

In conclusion, the

Proposition 7.4.1. Let G/K be a symmetric space of non-compact type with Eg Dynkin
diagram of the form
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Q2
O O O O O O O
ag [07%4 Qg (071 Oy (6% (65}

Let @ be a proper subset of the set Il of simple roots. Then, the submanifold Sg -0 is austere
if and only if one of the following conditions holds:

(i) @ = ®g or & = Oy U &y, where Oy is an Az simple subsystem containing the root
ay as a central root in its Dynkin diagram, that is, the simple subsystem Py has a
Dynkin diagram of the form

for (B1, B2) € {(as,as), (az, as), (az,as)}, and &1 = {B} is orthogonal to @y, where
6 # Qq, Or

(i) & = Oy or & = &g U Dy, where Py is a Dy simple subsystem and Py is a discrete
subset of II orthogonal to ®q, or

(i) ® = {ag, as,ay,as, a6} is a D5 simple subsystem, or
(iv) @ = {s, a3, au, a5, a6, a7} is a Dg simple subsystem, or
(v) @ =TI\{as} is an E; simple subsystem, or

(vi) ® is discrete.



Conclusions and open problems

The first contribution of this thesis is the classification result of isoparametric hypersur-
faces in complex hyperbolic spaces proved in Chapter [3] From this classification, we have
deduced the following consequences:

e Anisoparametric hypersurface in CH? is as open part of a homogeneous hypersurface.

e For n > 3 there are inhomogeneous examples: one family up to congruence for CH?3,
and infinitely many for CH™, n > 4.

e An isoparametric hypersurface of CH™ has constant principal curvatures if and only
if it is an open part of a homogeneous hypersurface of CH".

e The principal curvatures of an isoparametric hypersurface M in CH" are pointwise
the same as the principal curvatures of a homogeneous hypersurface of CH™.

e The focal submanifold of an isoparametric hypersurface in CH™ is locally homoge-
neous.

In this thesis, we have investigated isoparametric hypersufaces in the semi-Riemannian
setting too. Indeed, we focused our attention on anti-De Sitter spaces and we have obtained
the following results (see Chapter [4)):

e The number of principal curvatures of a spacelike isoparametric hypersurface in the
anti-De Sitter space is bounded from above by two.

e Non-totally umbilical spacelike isoparametric hypersurfaces in the anti-De Sitter
space H{', n > 3, are tubes around totally geodesic submanifolds of H7'.

Another class of submanifolds we have studied is that of CPC submanifolds (see Chap-
ter [5). Our investigation on CPC submanifolds led us to the following achievements:

e The construction of a large new family of non-totally geodesic CPC submanifolds
that do not admit a description as singular orbits of cohomogeneity one actions in
symmetric spaces of non-compact type and rank greater than one.

e The development of an original technique based on the examination of the information
codified in the root system of each symmetric space that allows us to calculate the
geometry of each solvable submanifold in a very efficient way.
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Finally, in Chapters [6] and [7] we have investigated the austerity of certain orbits related
to the theory of parabolic subgroups. The main achievements of both chapters are:

e The classification of austere orbits of the form AgNg - 0 of symmetric spaces of
non-compact type, where AgNg is the solvable part of a parabolic subgroup of the
isometry group of a symmetric space of non-compact type.

e The generalization of the concept of a-string containing A [69, p. 152] to subsets ® of
the set of simple roots II and the explicit determination of most of these ®-strings.

e The development of a theory that allows to associate a diagram to each ®-string and
to calculate the shape operator of certain solvable submanifolds by looking at these
diagrams.

There are still many open problems and questions in view of the above conclusions.
Some of these questions stem directly from the above commented results. Others have not
been studied in this thesis but can be addressed by using the methods and techniques we
have developed. More precisely:

e Cohomogeneity one actions in symmetric spaces of non-compact type have been thor-
oughly investigated and classifications have been achieved under the following extra
assumptions: cohomogeneity one actions that produce regular foliations [15]; coho-
mogeneity one actions with a totally geodesic singular orbit [16]; and cohomogeneity
one actions in rank one symmetric spaces of non-compact type [I7]. However, a
complete classification is still open. In order to achieve it, the remaining cohomo-
geneity one actions are those with a non-totally geodesic singular orbit, that is, a
non-totally geodesic CPC singular orbit. Hence, the achievements in this thesis con-
cerning CPC submanifols may play a crucial role in order to classify cohomogeneity
actions on symmetric spaces G/ K of non-compact type. However, it is important to
remark that the classification of cohomogeneity one actions would not follow right
away from an eventual classification of solvable CPC submanifolds. In fact, we would
need to understand and to investigate thoroughly the isometries in K, as well as un-
derstanding better a procedure employed successfully to produce cohomogeneity one
actions: the nilpotent construction method [18].

e As explained above, we have developed a technique based on the examination of root
systems that allows us to use the Levi-Civita connection in a very efficient way. We
expect this tool to be used or adapted to address different problems. For instance,
we have made remarkable advances in classifying homogeneous hypersurfaces of sym-
metric spaces of non-compact type that have a natural structure of algebraic Ricci
soliton with respect to the induced metric.

o Weakly reflective submanifolds are always examples of austere submanifolds. The
converse is not true. We have already achieved some results concerning weakly re-
flective submanifolds that will allow to check which austere examples in Chapters [6]
and [7] are also weakly reflective.
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e The canonical extension method was first introduced in [18] and investigated further
in [47]. It constitutes a nice tool for constructing new submanifolds from known
examples. This procedure preserves some properties that we are interested in, for
instance minimality and isoparametricity. However, it does not preserve austerity.
Our classification of austere submanifolds of the form Sg - 0 in symmetric spaces of
non-compact should be basically the key in order to make precise when a canonical
extension of an austere submanifold is austere.

e Make progress in the classification problem of totally geodesic submanifolds. This
problem seems nowadays infeasible in full generality. However, with the algebraic
methods utilized in Chapter [5] [6] and [7] we are able to calculate very efficiently the
shape operator of many homogeneous submanifolds. These ideas may help to obtain
some classification result in certain higher rank symmetric spaces.

233






Resumen en castellano

La nocién de simetria esta presente en todos los ambitos de la ciencia. Esta afirmacion
debe ser entendida de un modo generalizado. No solo hay simetria en objetos geométricos y
formas fisicas, sino que aparecen también simetrias en ecuaciones y construcciones tedricas.
Cabe destacar aqui las palabras con respecto a la simetria pronunciadas por el premio Nobel
P. W. Anderson, que declaré que “es solo un poco exagerado afirmar que la fisica es el
estudio de la simetria”.

En la ciencia aplicada existen muy pocos problemas que pueden ser resueltos de manera
exacta. No obstante, el rango de problemas que pueden ser resueltos de manera efectiva es a
menudo mayor, y la ciencia més tedrica lleva anos respondiendo a importantes y profundas
cuestiones conceptuales y practicas. Esto sucede asi debido a que, en ocasiones, es posible
modelar matematicamente el problema en cuestiéon. A continuacion, se buscan hipdtesis
simplificadoras, lo cual hace preciso demostrar, normalmente de forma matematica, que
tales simplificaciones no influyen, o no en exceso, en la solucién del problema. En este
sentido, un método de gran efectividad para resolver problemas es aprovechar las simetrias
del espacio para reducir el nimero de grados de libertad de los mismos y convertirlos en
algo mas manejable.

El objetivo principal de esta tesis es precisamente el estudio, andlisis y descripcion de
ciertos objetos geométricos a través de la observacion de sus simetrias.

En la misma linea que Anderson, el matematico Felix Klein describié la geometria co-
mo el estudio de aquellas propiedades de un espacio que son invariantes por un grupo de
transformaciones (grupo de simetrias) dado. En el seno de la geometria riemanniana, este
grupo es el grupo de isometrias, esto es, el grupo de transformaciones de una variedad rie-
manniana determinada que preservan las distancias. La accién de un subgrupo del grupo
de isometrias de una variedad dada se denomina accion isométrica. La cohomogeneidad
de una accién isométrica es la codimensiéon més baja de sus 6rbitas. Una orbita cuya co-
dimension es mayor que la cohomogeneidad de la accién se denomina orbita singular. Una
érbita de dimensién méxima se denomina regular. Una subvariedad se dice (extrinsecamen-
te) homogénea si es una 6rbita de la accién de un subgrupo del grupo de isometrias sobre
la variedad ambiente.

El problema de clasificacién de hipersuperficies homogéneas en el espacio euclideo (equi-
valentemente de acciones de cohomogeneidad uno, salvo equivalencia de 6rbitas) surge en el
seno de la 6ptica geométrica y se remonta al trabajo de Somigliana [96] a principios del siglo
XX. Su trabajo da origen al estudio de uno de los objetos geométricos en los que se centra
esta tesis: las hipersuperficies isoparamétricas. Una hipersuperficie de una variedad rie-
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manniana se dice isoparamétrica si ella y sus hipersuperficies equidistantes suficientemente
proximas tienen curvatura media constante. Las hipersuperficies homogéneas son siempre
ejemplos de hipersuperficies isoparamétricas. En la década de 1930, Levi-Civita [75], Se-
gre [93] y Cartan [25, 27, 26] retomaron el estudio de estos objetos desde un punto de
vista (mds) geométrico. En particular, Cartan [25] demostré que en espacios de curvatu-
ra constante una hipersuperficie es isoparamétrica si y solo si sus curvaturas principales
son constantes. Ademds, Segre [93] y Cartan [25] clasificaron estos objetos en el espa-
cios euclideo e hiperbdlico real, respectivamente. Todos los ejemplos conocidos por Cartan
tenfan una propiedad comun: eran homogéneos. Sin embargo, las esferas admiten ejemplos
de hipersuperficies isoparamétricas no homogéneas [53]. De hecho, el problema de clasifi-
cacion de hipersuperficies isoparamétricas en las esferas resulté ser mucho mas complejo y
sorprendente, llegando como consecuencia de ello a ser incluido por el Medalla Fields Yau
en su influyente lista de problemas en geometria [I11].

Normalmente, el estudio de las acciones de cohomogeneidad uno se ha enfocado desde el
punto de vista de sus 6rbitas regulares (hipersuperficies homogéneas) o conceptos relacio-
nados con las mismas (hipersuperficies isoparamétricas). Sin embargo, también resulta muy
interesante abordar el estudio de las acciones de cohomogeneidad uno centrando nuestra
atencion en sus orbitas singulares. De hecho, si uno considera una accién de cohomogenei-
dad uno con una o6rbita singular en una variedad de Riemann completa y conexa, entonces
las curvaturas principales de dicha érbita singular, contadas con multiplicidades, no depen-
den de las direcciones normales. Resulta realmente interesante investigar la clasificacion de
las subvaridades que comparten esta propiedad geométrica de las érbitas singulares de las
acciones de cohomogeneidad uno. En esta tesis, estas subvariedades se denominan subva-
riedades CPC. Notese que las subvariedades CPC tienen curvaturas principales constantes
en el sentido introducido por Heintze, Olmos y Thorbergsson en [58], en el contexto de
subvariedades isoparamétricas.

Esta relacién existente entre acciones de cohomogeneidad uno y subvariedades CPC ha
sido generalizada en el resultado que enunciamos a continuacién [54]: si M es una subvarie-
dad de una variedad de Riemann de codimensiéon mayor que uno y los tubos a su alrededor
(con radios suficientemente pequenios) son hipersuperficies isoparamétricas con curvaturas
principales constantes, entonces la subvariedad M es una subvariedad CPC. Esto indica que
las subvariedades CPC juegan un papel crucial en el estudio de las acciones de cohomoge-
neidad uno y de las hipersuperficies isoparamétricas. En concreto, usando teoria de campos
de vectores de Jacobi, es sencillo comprobar que una subvariedad de un espacio forma real
es CPC si y solo si los tubos a su alrededor (con radios suficientemente pequenios) son
hipersuperficies con curvaturas principales constantes. En otros términos, en los espacios
forma reales clasificar hipersuperficies isoparamétricas es equivalente a clasificar subvarie-
dades CPC. Conviene también destacar en este punto que las subvariedades totalmente
geodésicas son siempre CPC, y que a su vez las subvariedades CPC son minimales.

Otro de los conceptos que ocupa un lugar central en esta tesis y que esta relacionado con
los objetos geométricos mencionados hasta ahora es el concepto de subvariedad austera.
Una subvariedad M se dice austera si, en cada punto, las curvaturas principales (contadas
con multiplicidades) con respecto a cualquier vector normal son invariantes tras un cambio
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de signo. Uno de las principales focos de interés de esta nocion viene precisamente de su
relacién con otros conceptos tales como hipersuperficie isoparamétrica, hipersuperficie ho-
mogénea, subvariedad minimal o subvariedad CPC. De hecho, las subvariedades austeras
constituyen una clase intermedia entre las subvariedades CPC y las subvariedades minima-
les. Ademas, tal y como hemos mencionado anteriormente, los conjuntos focales de familias
isoparamétricas de hipersuperficies con curvaturas principales constantes son CPC y, por
lo tanto, también austeras. Notese por ultimo que las hipersuperficies homogéneas austeras
son hipersuperficies CPC.

Las subvariedades austeras fueron introducidas por Harvey y Lawson [57] en el contexto
de geometrias calibradas. Desde entonces, las subvariedades austeras se han investigado por
su propio interés geométrico (véase por ejemplo [22], [38] 64, 36}, [62]). De hecho, la condicién
de ser austera impone una ecuacion en derivadas parciales sobredeterminada de segundo
orden que implica que la curvatura media se anula, es decir, implica la condiciéon de ser
minimal. Nétese que ser minimal y austera equivalen en dimension dos. Sin embargo, en
una dimension superior a dos, la condicion de ser austera resulta mucho mas fuerte que la
condicién de ser minimal.

En esta tesis nos hemos centrado en el estudio de hipersuperficies isoparamétricas,
subvariedades CPC y subvariedades austeras en el contexto de los espacios simétricos de
tipo no compacto.

De acuerdo con la definicién original dada por Cartan [24], un espacio simétrico rie-
manniano es una variedad de Riemann caracterizada por la propiedad de que la curvatura
es invariante mediante el transporte paralelo. Esta definicién, a priori geométrica, tuvo el
sorprendente efecto de traer a colacion, y de manera natural, la teoria de grupos de Lie.
En efecto, resulta que los espacios simétricos riemannianos estan intimamente relacionados
con los grupos de Lie semisimples. En este sentido, muchos problemas geométricos com-
plicados y planteados sobre espacios simétricos pueden ser traducidos a un lenguaje de
algebra lineal, donde hay herramientas de calculo méas concretas que permiten resolver tal
cuestion.

Por esta razén, la familia de espacios simétricos ha sido un agradable entorno de tra-
bajo donde uno puede abordar y comprobar la validez de muchas propiedades de indole
geométrica. A menudo, son una interesante fuente de ejemplos y contraejemplos. En con-
creto, el conjunto de espacios simétricos es una gran familia de espacios que abarca muchos
de los mas interesantes ejemplos de variedad de Riemann, tales como espacios de curvatura
constante, espacios proyectivos e hiperbdlicos, grassmannianas o grupos de Lie compactos.
Ademas de desde el punto de vista de la geometria diferencial, los espacios simétricos tam-
bién se han estudiado desde el punto de vista del analisis global y el analisis armodnico,
adoptando los espacios simétricos de tipo no compacto una particular relevancia (véase,
por ejemplo, [60]). Los espacios simétricos también constituyen una familia de espacios con
gran importancia dentro de la teoria de holonomia, constituyendo una clase propia en la
clasificacién de los grupos de holonomia de Berger.

En cierto sentido, podemos afirmar que hay tres clases de espacios simétricos: espacios
euclideos, espacios simétricos de tipo compacto (cuando el grupo de isometrias es compacto
y semisimple) y espacios simétricos de tipo no compacto (cuando el grupo de isometrias

237



es no compacto y semisimple). Existe una dualidad entre los espacios simétricos de tipo
compacto y los espacios simétricos de tipo no compacto. Pese a ello, suelen presentar
propiedades muy diferentes. Los espacios simétricos de tipo no compacto son difeomorfos
a espacios euclideos y tienen por tanto topologia trivial. Por su parte, en los espacios
simétricos de tipo compacto la topologia suele jugar un papel fundamental.

Todo espacio simétrico de tipo no compacto es isométrico a un grupo de Lie resoluble
con una métrica invariante a la izquierda. De hecho, este grupo de Lie, que denotaremos
por AN, es la parte resoluble de la descomposicion de Iwasawa del grupo de isometrias
del espacio simétrico. Un profundo conocimiento de esta parte resoluble de la descomposi-
cién de Iwasawa permite construir, describir e incluso clasificar subvariedades del espacio
simétrico con ciertas propiedades de simetria. En efecto, dentro de la teoria de subvarieda-
des, uno puede considerar diferentes e interesantes tipos de subvariedades fijaindose en las
orbitas de los subgrupos del grupo de Lie resoluble AN. De modo equivalente, uno pue-
de considerar diferentes e interesantes tipos de subvariedades mirando las subalgebras del
algebra de Lie de AN. Esto hace que un buen manejo de la descomposicién en espacios de
raices del dlgebra de Lie del grupo de isometrias constituya una herramienta fundamental a
la hora de estudiar geometria de subvariedades en el contexto de los espacios simétricos de
tipo no compacto. Por supuesto, conviene mencionar que no todas las subvariedades de un
espacio simétrico de tipo no compacto M = G/K (ni siquiera las homogéneas) proceden
de un subgrupo de la parte resoluble AN del grupo de isometrias de G/ K.

A continuacién presentamos los resultados originales de esta tesis.

Hipersuperficies isoparamétricas en el espacio hiperbélico complejo

Una de las principales contribuciones de esta tesis es la clasificacion de hipersuperficies iso-
paramétricas en el espacio hiperbolico complejo. En primer lugar, el Capitulo [2se dedica a
la exposicion del concepto de hipersuperficie isoparamétrica asi como a un breve recorrido
por algunos de los resultados més importantes relacionados con dicho concepto. Ademsés,
en el Capitulo [2| construimos y describimos geométricamente los ejemplos de hipersuperfi-
cies isoparamétricas en el espacio hiperbdlico complejo. Después de ello, en el Capitulo
clasificamos las hipersuperficies isoparamétricas en CH™. De hecho, dicha clasificacion se
reduce a comprobar que cualquier hipersuperficie isoparamétrica del espacio hiperbdlico
complejo se corresponde con alguno de los ejemplos previamente construidos en el Capitu-
lo 2| Es interesante destacar que, al revés de lo que ocurre en espacios euclideos o en
espacios hipérbolicos reales, en cualquier espacio hiperbdlico complejo de dimensién mayor
que dos aparecen ejemplos de hipersuperficies isoparamétricas que no son homogéneas [41].
Hasta donde nosotros sabemos y desde la clasificacién de Cartan [25] en el ano 1938 para
espacios hiperbodlicos reales, la clasificacién recogida en el Capitulo [3| es la primera clasifi-
cacién de hipersuperficies isoparamétricas en una familia completa de espacios simétricos.
Dicha clasificacién ha dado lugar a la publicacién de los articulos [43] y [44].

El primer paso para la demostracion de este resultado consiste en entender el com-
portamiento de las hipersuperficies isoparamétricas con respecto a la fibracién de Hopf.
Dicho de un modo mas preciso, lo primero que hemos hecho ha sido comprobar que una
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hipersuperficie del espacio hiperbdlico complejo es isoparamétrica si y solo si lo es también
su pullback o levantamiento con respecto a la aplicacién de Hopf. De este modo, es posible
investigar las hipersuperficies isoparamétricas del espacio hiperbdlico complejo mediante
el estudio de hipersuperficies isoparamétricas lorenztianas en el espacio de anti-De Sitter.
Hay dos razones principales que sustentan el comenzar el estudio de las hipersuperficies
isoparamétricas del espacio hiperbédlico complejo mediante el andlisis de sus correspon-
dientes levantamientos lorentzianos: la ecuacion de Jacobi es mas facil de resolver en el
espacio de anti-De Sitter (dado que tiene curvatura seccional constante) que en el espacio
hiperbdlico complejo y por tanto es més sencillo tratar con el desplazamiento normal de
hipersurficies; ademaés, en el espacio de anti-De Sitter contamos con una generalizacion
de la férmula de Cartan que permite fundamentalmente obtener cotas para el niimero de
curvaturas principales del levantamiento lorentziano de la hipersuperficie de partida.

De este modo, gran parte del trabajo para la classificacién de hipersuperficies isopa-
ramétricas en el espacio hiperbolico complejo se realiza en el espacio de anti-De Sitter,
donde resulta mas sencillo obtener la informacién geométrica de la hipersuperficie a través
de su operador de configuracion y deducir sus implicaciones sobre la hipersuperficie inicial.
A continuacion, utilizando toda esta informacién geométrica, probamos un resultado de ri-
gidez en CH™ que revela aspectos profundos e interesantes de la geometria de los ejemplos.
Todos estos argumentos nos permiten probar el siguiente resultado de clasificacion:

Teorema 1. Sea M una hipersuperficie conexa real en el espacio hiperbolico complejo CH™,
n > 2. Entonces, M es una hipersuperficie isoparamétrica si y solo si M es congruente a
una parte abierta de:

(i) un tubo alrededor de un espacio hipérbolico complejo totalmente geodésico CH®, k €
{0,...,n— 1},

(ii) un tubo alrededor de un espacio hiperbdlico real totalmente geodésico RH",
(iii) una horosfera,

(iv) una hipersuperficie de Lohnherr reglada minimal homogénea W?"~1, o alguna de sus
hipersuperficies equidistantes,

(v) un tubo alrededor de una subvariedad reglada minimal homogénea W;”_k, construida
por Berndt-Briick, para k € {2,...,n— 1}, p € (0,7/2],

(vi) un tubo alrededor de una subvariedad reglada minimal homogénea W, para algin
subespacio propio w de g, = C"! tal que v, el complemento ortogonal de 1o en g,,
tiene dngulo de Kahler no constante.

Los ejemplos , , del resultado que acabamos de enunciar se corresponden con
los ejemplos de la lista de Montiel, que son ejemplos de hipersuperficies Hopf homogéneas.
Noétese que, con la notacién del Teorema , de manera natural, podemos pensar en CF+!
incluido en C™™! (respectivamente R C C"*1); luego también es natural pensar en CH*
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como subvariedad totalmente geodésica de CH™ (respectivamente RH"™ C CH"). De esta
manera, construyendo tubos alrededor de estas dos subvariedades obtenemos ejemplos de
hipersuperficies isoparamétricas. Asi quedan descritos los ejemplos (i) v (i) del Teorema
Las horosferas, , se construyen mediante la accion de N, la parte nilpotente de la
descomposicion de Iwasawa del grupo de isometrias de CH™.

Este resultado de clasificacion tiene numerosas e interesantes consecuencias. Destacamos
a continuacién algunas de las mas relevantes. En primer lugar, se deduce de la clasificacion
que todas las hipersuperficies isoparamétricas con curvaturas principales constantes del es-
pacio hiperbdlico complejo son homogéneas. Ademads, dadas las curvaturas principales (en
un punto) de una hipersuperficies isoparamétrica del espacio hiperbélico complejo, exis-
te una hipersuperficie homogénea del espacio hiperbdlico complejo que tiene exactamente
esas curvaturas principales (constantes). Otra consecuencia interesante es que la subvarie-
dad focal de cualquier hipersuperficie isoparamétrica del espacio hiperbdlico complejo es
localmente homogénea.

Hipersuperficies isoparamétricas espaciales en el espacio de anti-De Sitter

El concepto de hipersuperficie isoparamétrica también tiene sentido desde el punto de
vista de la geometria semi-riemanniana. De hecho, simplemente hay que anadir en la de-
finiciéon dada para el contexto riemanniano que la métrica inducida sea no degenerada.
Ademas, como se sigue del trabajo de Hahn [56], una hipersuperficie en un espacio forma
semi-riemanniano es isoparamétrica si y solo si tiene curvaturas principales constantes con
multiplicidades algebraicas constantes.

Las hipersuperficies isoparamétricas han sido investigadas también en el contexto de
la geometria semi-riemanniana. Ademas, el abanico de ejemplos parece ser mucho mas
amplio que en el caso riemanniano. En particular, estos objetos geométricos se suponen
clasificados en el espacio de Minkowski por Magid [80], aunque Burth [23] afirma haber
encontrado algunos problemas en los argumentos de Magid. Més alla, también se han obte-
nido resultados interesantes en espacios de De Sitter. De hecho, Nomizu [83] probd que las
hipersuperficies isoparamétricas espaciales del espacio de De Sitter son tubos alrededor de
subvariedades totalmente geodésicas. La demostracion de este resultado se basa en el he-
cho de que dichas hipersuperficies tienen a los sumo dos curvaturas principales diferentes.
Nomizu conjetur6 en ese mismo trabajo [83] que en el espacio de anti-De Sitter apare-
cerian ejemplos de hipersuperficies isoparamétricas espaciales con mas de dos curvatures
principales.

El principal objetivo del Capitulo [4] es precisamente obtener una respuesta negativa
a la conjetura propuesta por Nomizu. En efecto, en el Capitulo 4| probamos que una hi-
persuperficie isoparamétrica espacial en el espacio de anti-De Sitter tiene a lo sumo dos
curvaturas principales diferentes. Para probar esta cota hemos generalizado al contexto
semi-riemanniano el trabajo de Ferus [52]. Ademas, la obtencién de tal cota para el nime-
ro de curvaturas principales nos ha permitido deducir una clasificacién para las hipersu-
perficies isoparamétricas espaciales en los espacios de anti-De Sitter: toda hipersuperficie
isoparamétrica espacial no totalmente umbilica en el espacio de anti-De Sitter es un tubo
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alrededor de una subvariedad totalmente geodésica.

Subvariedades CPC

El Capitulo |5| lo dedicamos al estudio de las subvariedades CPC, es decir, subvariedades
cuyas curvaturas principales, contadas con multiplicidades, no dependen de la direccién nor-
mal. Arriba hemos enfatizado la importancia de las subvariedades CPC y su relaciéon con
muchos otros objetos geométricos de interés tales como las hipersuperficies isoparamétri-
cas, las acciones de cohomogeneidad uno, las subvariedades austeras, las subvariedades
totalmente geodésicas o las subvariedades minimales. Sin embargo, no conocemos de la
existencia de un estudio profundo y sistematico o con técnicas propias de estas subvarieda-
des en contextos mas generales. Esto puede resultar sorprendente dado lo simple y natural
que resulta el concepto de subvariedad CPC.

De este modo, el Capitulo[5|se centra en el desarrollo de una serie de técnicas para cons-
truir, describir y clasificar subvariedades CPC en espacios simétricos de tipo no compacto
y rango mayor que uno. Es importante recordar en este punto que tanto las subvariedades
totalmente geodésicas como las érbitas singulares de acciones de cohomogeneidad uno son
ejemplos de subvariedades CPC. Asi, el principal objetivo del Capitulo [5|es el de construir
una nueva y amplia familia de subvariedades CPC que no son totalmente geodésicas y que
no admiten una descripcion como orbitas singulares de acciones de cohomogeneidad uno.
Hasta donde nosotros sabemos, solo se conocia una subvariedad con estas caracteristicas
en espacios simétricos de tipo no compacto: se trata de un ejemplo 11-dimensional en el
plano de Cayley hiperbdlico [41]. Los resultados del Capitulo [5{ han sido publicados en [14]
¥y, junto con otros resultados, han dado lugar al articulo expositivo [45].

Sea II el conjunto de raices simples del sistema de raices ¥ de un espacio simétrico
G/K de tipo no compacto. Sea IT el conjunto de raices « € II tales que 2« ¢ 3 (véase la

Seccién para consultar los detalles). A continuacién, enunciamos el resultado principal
del Capitulo [5

Teorema 2. Sea s = a® (n© V) una subdlgebra de a ®n con V C @, oy ga- Sea S el
subgrupo conexo y cerrado de AN cuya dlgebra de Lie es s. Entonces, la orbita S-o es una

subvariedad CPC de M = G /K si y solo si se cumple alguna de las siguientes condiciones:

(I) Eziste una raiz simple A € I' tal que V' C g,.

(IT) Existen dos raices simples y no ortogonales o, aq € II' con |ag| = |au| y subespacios
Vo € 8ap ¥ Vi C go, tales que V = Vo @& Vi y se cumple una de las siguientes
condiciones:

(1) Vo ® Vi = gag D Gons
(i) Vo @ Vi es un subconjunto propio de goy D Ga; Y

(a) Vo y Vi son isomorfos a R; o
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(b) Vo y Vi son isomorfos a C y existe un elemento T' € & tal que ad(T) define
estructuras complejas para Vo y Vi y se anula cuando se restringe a [Vo, Vi,
0

(¢) Vo y Vi son isomorfos a H y existe un subespacio | C € tal que ad(l) define
estructuras cuaternionicas para Vo y Vi y se anula cuando se restringe a

[Vo, Vil.

Ademds, solo las subvariedades descritas en (1) y (I1)(i) son érbitas singulares de acciones
de cohomogeneidad uno.

Para construir y describir esta nueva familia de subvariedades CPC hemos desarrollado
un técnica original y muy prometedora basada en traducir geométricamente la informacion
algebraica codificada en el sistema de raices de cada espacio simétrico de tipo no compacto.
Para argumentar esta afirmacién o describirla de un modo mas preciso, recordemos que la
conexion de Levi-Civita constituye una de las herramientas fundamentales de la teoria de
subvariedades. En el caso de los espacios simétricos, contamos con potentes herramientas
algebraicas que permiten reescribir o expresar de manera algebraica y manejable dicha
conexion. Sin embargo, en dicha expresion se relacionan entre si y de un modo a priori
complicado los distintos espacios de raices. Para desenmaranar esta complicaciéon, hemos
rescatado y generalizado el concepto de a-string de A [69, p. 152], donde o y A denotan
dos raices cualesquiera. De manera informal, podriamos decir que esta generalizacion del
concepto de string nos permite entender mucho mejor cémo la conexiéon de Levi-Civita
relaciona los diferentes espacios de raices entre si. Asi, resulta mucho més sencillo organizar
la informacién para calcular la geometria (el operador de configuracién) de la subvariedad
que estemos estudiando.

Subvariedades austeras en espacios simétricos de tipo no compacto

Una de las principales herramientas para el estudio de los espacios simétricos de tipo no
compacto y rango mayor que uno se sigue de su descomposicién horosférica, que esta a
su vez relacionada con la teoria de subdlgebras parabdlicas de algebras reales semisimples.
Estas subdalgebras estdn parametrizadas (salvo conjugacién) por los subconjuntos ¢ de un
conjunto de raices simples II del sistema de raices de un algebra de Lie real semisimple. Asi,
dado un espacio simétrico de tipo no compacto M = G /K, la descomposicién horosférica
asociada con cada eleccién @ C Il nos conduce a que M es difeomorfo al producto cartesiano
cierta subvariedad totalmente geodésica By de M, un subgrupo abeliano Ag de G y un
subgrupo nilpotente Ng de G. Ademas, el subgrupo resoluble conexo S = AeNg de G
actua libre e isométricamente en M, y todas las orbitas de dicha acciéon son congruentes
entre si. Tamaru [102] probé que estas 6rbitas son subvariedades Einstein resolubles desde
un punto de vista intrinseco, y subvariedades minimales de M desde el punto de vista de
su geometria extrinseca.

En los Capitulos [6] y [7] investigamos bajo qué condiciones las 6rbitas de Sg resultan
austeras. En tales capitulos mostramos que esta condicién de austeridad estd codificada
de algiin modo en ciertas propiedades algebraicas y combinatorias del par (II, ®). Analizar
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estas propiedades requiere un perfecto entendimiento del sistema de raices de cada espacio
simétrico. Por ello, recurrimos de nuevo y como hicimos en el Capitulo , a (una nueva ge-
neralizacién de) la nocién de string. La clave de este trabajo reside en asociar un diagrama
a cada uno de los strings. Este diagrama facilita la comprensién del operador de configura-
cion de la orbita de Sg considerada. De hecho, de un modo informal, la austeridad de cada
orbita depende de las simetrias de los diagramas de los strings. De este modo, después de
probar varios resultados de caracter general sobre los strings y sus diagramas, llevamos a
cabo un exhaustivo analisis caso por caso de los sistemas de raices existentes.

Dada la extension de este trabajo, hemos dividido su exposiciéon en dos partes. En
primer lugar, en el Capitulo [0] concretamos las herramientas y enfoque del problema, in-
troducimos las propiedades fundamentales de los strings y sus diagramas, y clasificamos
la érbitas de S austeras en los espacios simétricos de tipo no compacto clasicos. Final-
mente, la clasificacion de tales orbitas en los espacios simétricos excepcionales, junto con
la presentacion de algunas herramientas especificas para su estudio, aparece recogida en el
Capitulo [7] Enunciamos a continuacién el resultado principal de los Capitulos [0y [7]}

Teorema 3. Sea G/K un espacio simétrico de tipo no compacto y sea ® un subconjunto
propio del conjunto de raices simples 11.

(a) Si el diagrama de Dynkin de 11 adopta una de las siguientes configuraciones

o— - - - —--2O0 o— — — — — (OO0
aq Ay aq Op—1 Q.
Qr_1
o— — - - ——Oo————9 o— - — =
a1 Qr_q Qy &3] Q2 Qy

donde el sequndo diagrama puede ser de tipo B, o C.., entonces la subvariedad Sg - 0
es austera si y solo si se cumple alguna de las siguientes condiciones:

(i) ® es discreto, o

(il) ® = @q y satisface las condiciones especificadas en el Cuadro |1, o

(iii) @ = ®y U @y, donde Py es ortogonal a 1 y ambos satisfacen las condiciones
especificadas en el Cuadro |1| (en la fila de color gris se asume ademds que todas
las raices de ¥ tienen la misma multiplicidad).
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N o | & |
A, | Simétrico, conexo 0
B, B, n<r Discreto
B, {ay_2,0,_1} Discreto
C, Cp,n<r Discreto
BC, BC,,n<r Discreto
D, D,,n<r Discreto
D, | {a,—3,a,—2,a,_1} | Discreto
D, {a,_3,,_9,0a,} | Discreto

Cuadro 1: Clasificacién en espacios simétricos clasicos.

(b) Si1l tiene un diagrama de Dynkin de tipo Go, entonces Sg - 0 es austera.

(c) Sill tiene un diagrama de Dynkin de tipo Fy de la forma

oO— M (O0—0—0O
a1 Q2 o5 QY

con |ay| = |ae| < |ag] = |ay|, entonces la subvariedad S¢ - 0 es austera si y solo si se
cumple una de las siguientes condiciones:
(i) ® es un subconjunto discreto de 11, o

(ii) @ es un subsistema simple de tipo B, con n € {2,3}, equivalentemente, ® =
{ag, a3} 0 & = {as, a3, a4}, 0

(i) @ es un subsistema simple de tipo Cs, equivalentemente, ® = {ay, az, a3}, o

(iv) ® = {as, a4} y todas las raices de X tienen la misma multiplicidad.

(d) Sill tiene un diagrama de Dynkin de tipo Eg, E7 o Eg contenido en el diagrama

%)

O O
ag (6%4 (07 (673 Oy (0% (651

entonces la subvariedad Sg - 0 es austera si y solo si se cumple una de las siguientes
condiciones:
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(i) & =D 0 & = PyUPy, donde Py es un subsistema simple de tipo Az conteniendo
la raiz cy como una raiz central en su diagrama de Dynkin, es decir, el subsistema
simple ®g tiene un diagrama de Dynkin de la forma

O
El Oy [?2

con (1, B2) € {(as, as), (a2, a3), (ag,a5)} y ®1 = {5} es ortogonal a @y, donde
B#ar, yB#assill=FEg, o

(ii) @ =Py 0 & = Py U Py, donde Py es un subsistema simple de tipo Dy y Py es un
subcongunto discreto de II ortogonal a ®¢, o

(iii) II es un sistema simple de tipo Eg y ® = {aq, a3, aq, as, a6} es un subsistema
simple de tipo As, o

(iv) II es un sistema simple de tipo Er 0 Eg y ® = {ag, as, ay, as, ag} es un subsistema
sitmple de tipo Ds, o

(v) II es un sistema simple de tipo E; or Egs y ® = {ag, a3, a4, a5, a6, 7} €s un
subsistema simple de tipo Dg, o

(vi) II es un sistema simple de tipo Eg y ® = IT1\{ag} es un subsistema simple de tipo
E7, 0

(vii) ® es discreto.

245






Bibliography

1]

2]

[10]

[11]

[12]

L. Bérard-Bergery, Sur de nouvelles variétés riemanniennes d’Einstein, Ins. Elie
Cartan 6 (1982), 1-60.

J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyper-
bolic space, J. Reine Angew. Math. 395 (1989), 132-141.

J. Berndt, Homogeneous hypersurfaces in hyperbolic spaces, Math. Z. 229 (1998),
589-600.

J. Berndt, Hyperpolar homogeneous foliations on symmetric spaces of noncompact
type, Proceedings of the 13th International Workshop on Differential Geometry and
Related Fields, Vol. 13, 37-57, Natl. Inst. Math. Sci. (NIMS), Taejon, 2009.

J. Berndt, M. Briick, Cohomogeneity one actions on hyperbolic spaces, J. Reine
Angew. Math. 541 (2001), 209-235.

J. Berndt, S. Console, C. Olmos, Submanifolds and holonomy, Chapman &
Hall/CRC Research Notes in Mathematics, 434, Chapman & Hall/CRC, Boca Ra-
ton, FL, 2003.

J. Berndt, S. Console, C. Olmos, Submanifolds and holonomy. Second edition,
Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL,
2016.

J. Berndt, J. C. Diaz-Ramos, Real hypersurfaces with constant principal curvatures
in complex hyperbolic spaces, J. London Math. Soc. T4 (2006), 778-798.

J. Berndt, J. C. Diaz-Ramos, Real hypersurfaces with constant principal curvatures
in the complex hyperbolic plane, Proc. Amer. Math. Soc. 135 (2007), 3349-3357.

J. Berndt, J. C. Diaz-Ramos, Homogeneous hypersurfaces in complex hyperbolic
spaces, Geom. Dedicata, 138 (2009), 129-150.

J. Berndt , J. C. Diaz-Ramos, Polar actions on the complex hyperbolic plane, Ann.
Global Anal. Geom. 43 (2013) 99-106.

J. Berndt, J. C. Diaz-Ramos, H. Tamaru, Hyperpolar homogeneous foliations on
symmetric spaces of noncompact type, J. Differential Geom. 86 (2010) 191-235.

247



248

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

J. Berndt, M. Dominguez-Véazquez, Cohomogeneity one actions on some noncom-
pact symmetric spaces of rank two, Transform. Groups. 20 (2015), no. 4, 921-938.

J. Berndt, V. Sanmartin-Lépez, Submanifolds with constant principal curvatures in
Riemannian symmetric spaces, arXiv:1805.10088.

J. Berndt, H. Tamaru, Homogeneous codimension one foliations on noncompact
symmetric spaces, J. Differential Geom. 63 (2003), no. 1, 1-40.

J. Berndt, H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces
with a totally geodesic singular orbit, Tohoku Math. J. (2) 56 (2004) 163-177.

J. Berndt, H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces
of rank one, Trans. Amer. Math. Soc. 359 (2007), 3425-3438.

J. Berndt, H. Tamaru, Cohomogeneity one actions on symmetric spaces of noncom-
pact type, J. Reine. Angew. Math. 683 (2013) 129-159.

J. Berndt, F. Tricerri, L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci
harmonic spaces, Lecture Notes in Mathematics 1598, Springer-Verlag, Berlin,
1995.

A. L. Besse, Finstein manifolds, Reprint of the 1987 edition. Classics in Mathemat-
ics, Springer-Verlag, Berlin, 2008.

C. Bohm, Inhomogeneous Einstein metrics on low-dimensional spheres and other
low-dimensional spaces, Invent. Math. 134 (1998), no. 1, 145-176.

R. L. Bryant, Some remarks on the geometry of austere manifolds, Bull. Braz. Math.

Soc. (N.S.) 21 (1991), 133-157.

T. Burth, Isoparametrische Hyperflichen in Lorentz- Raumformen, Master Thesis,
University of Cologne, 1993.

E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math.
France 54 (1926), 214-264.

E. Cartan, Familles de surfaces isoparamétriques dans les espaces a courbure con-
stante, Ann. Mat. Pura Appl., IV. Ser. 17 (1938), 177-191.

E. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les
espaces sphériques, Math. Z. 45 (1939), 335-367.

E. Cartan, Sur quelques familles remarquables d’hypersurfaces, C. R. Congres
Math. Liége (1939), 30—41.

T. E. Cecil, Isoparametric and Dupin hypersurfaces, SIGMA Symmetry Integrability
Geom. Methods Appl., 4 (2008), 062, 28 pp.



Bibliography 249

[29]

[30]

[31]

32]

33]

[34]

[35]

T. Cecil, Q.-S. Chi, G. Jensen, Isoparametric hypersurfaces with four principal
curvatures, Ann. of Math. (2) 166 (2007), 1-76.

B.-Y. Chen, T. Nagano, Totally geodesic submanifolds of symmetric spaces, [. Duke
Math. J. 44 (1977), 745-755.

B.-Y. Chen, T. Nagano, Totally geodesic submanifolds of symmetric spaces, II. Duke
Math. J. 45 (1978), 405-425.

Q.-S. Chi, The isoparametric story, NCTS/TPE 2012 Geometry Summer Course.
Available at math.wustl.edu/~chi/SummerCourse.pdf (April 2019).

Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures I1I, J. Differ-
ential Geom. 94 (2013), 469-504.

Q.-S. Chi, Isoparametric hypersurfaces with four principal curvatures, IV, Preprint
arXiv:1605.00976 [math.DG], to appear in J. Differential Geom.

Q.-S. Chi, Classification of isoparametric hypersurfaces, Proceedings of the Sixth In-
ternational Congress of Chinese Mathematicians. Vol. I, 437-451, Adv. Lect. Math.
(ALM ), 36, Int. Press, Somerville, MA, 2017.

J. T. Cho, M. Kimura, Austere hypersurfaces in 5-sphere and real hypersurfaces
in complex projective plane, Differential Geometry of Submanifolds and its Related
Topics, pp. 245-259, World Science Publisher, Hackensack (2014).

M. Cveti¢, G. W. Gibbons, H. Lii, C. N. Pope, Hyper-Kéhler Calabi metrics, L? har-
monic forms, resolved M2-branes, and AdS,/CFTj correspondence, Nuclear Phys. B
617 (2001), no. 1-3, 151-197.

M. Dajczer, L. Florit: A class of austere submanifolds, lllinois J. Math. 45 (2001),
735-755.

J. C. Diaz-Ramos, Proper isometric actions, arXiv:0811.0547v1 [math.DG].

J. C. Diaz-Ramos, M. Dominguez-Vazquez, Inhomogeneous isoparametric hyper-
surfaces in complex hyperbolic spaces, Math. Z. 271 (2012), 1037-1042.

J. C. Diaz-Ramos, M. Dominguez-Vazquez, Isoparametric hypersurfaces in Damek-
Ricci spaces, Adv. Math. 239 (2013), 1-17.

J. C. Diaz-Ramos, M. Dominguez-Vazquez, A. Kollross, Polar actions on complex
hyperbolic spaces, Math. Z. 287 (2017), 1183-1213.

J. C. Diaz-Ramos, M. Dominguez-Véazquez, V. Sanmartin-Lépez, Isoparametric hy-
persurfaces in complex hyperbolic spaces, Adv. Math. 314 (2017), 756-805.



250

Bibliography

[44]

[47]

[48]

[49]

J. C. Diaz-Ramos, M. Dominguez-Vazquez, V. Sanmartin-Lépez, Anti-De Sitter
spacetimes and isoparametric hypersurfaces in complex space forms, Lorentzian
Geometry and Related Topics, Proceedings of the Sth International Meeting on
Lorentzian Geometry, GELOMA 2016, Malaga, September 20-23, Springer, 2017,
87-101.

J. C. Diaz-Ramos, M. Dominguez-Vazquez, V. Sanmartin-Lépez, Submanifold ge-
ometry in symmetric spaces of noncompact type, to appear in Sao Paulo J. Math.
Sci. (2019), doi:10.1007/s40863-019-00119-6, 1-36.

M. Dominguez-Vazquez, Isoparametric foliations on complex projective spaces.
Trans. Amer. Math. Soc. 368 (2016), no. 2, 1211-1249.

M. Dominguez-Vazquez, Canonical extension of submanifolds and foliations in non-
compact symmetric spaces, Int. Math. Res. Not. IMRN 2015, no. 22, 12114-12125.

M. Dominguez-Viazquez, C. Gorodski, Polar foliations on quaternionic projective
spaces, Tohoku Math. J. (2) 70 (2018), no. 3, 353-375.

J. Dorfmeister, E. Neher, Isoparametric hypersurfaces, case ¢ = 6, m = 1, Comm.
Algebra 13 (1985), 2299-2368.

P. B. Eberlein, Geometry of nonpositively curved manifolds. Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL, 1996.

J.-H. Eschenburg, Lectures notes on symmetric spaces, Available online at
http://myweb.rz.uni-augsburg.de/~eschenbu/symspace.pdf (April 2019).

D. Ferus, Notes on isoparametric hypersurfaces, Fscola de Geometria Diferencial,
Universidade Estadual de Campinas (1980).

D. Ferus, H. Karcher, H. F. Miinzner, Cliffordalgebren und neue isoparametrische
Hyperflichen, Math. Z. 177 (1981), 479-502.

J. Ge , Z. Tang, Geometry of isoparametric hypersurfaces in Riemannian manifolds,
Asian J. Math. 18 (2014) 117-125.

J. F. Glazebrook, F. W. Kamber, Transversal Dirac families in Riemannian folia-
tions, Comm. Math. Phys. 140 (1991), no. 2, 217-240.

J. Hahn, Isoparametric hypersurfaces in the pseudo-Riemannian space forms, Math.
Z. 187 (1984), 195-208.

R. Harvey, H. B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47-157.

E. Heintze, C.E. Olmos, G. Thorbergsson, Submanifolds with constant principal
curvatures and normal holonomy groups, Internat. J. Math. 2 (1991) 167-175.



Bibliography 251

[59]

[60]

[61]

[62]

[67]

[68]

[69]

[70]

[71]

[72]

73]

S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Corrected
reprint of the 1978 original. Graduate Studies in Mathematics, 34, American Math-
ematical Society, Providence, RI, 2001.

S. Helgason: Geometric analysis on symmetric spaces. Second edition. Mathemati-
cal Surveys and Monographs, 39. American Mathematical Society, Providence, RI,
2008.

W.-Y. Hsiang, H. B. Lawson Jr., Minimal submanifolds of low cohomogeneity,
J. Differential Geom. 5 (1971), 1-38.

O. Ikawa, T. Sakai, H. Tasaki, Weakly reflective submanifolds and austere subman-
ifolds, J. Math. Soc. Japan 61 (2009), no. 2, 437-481.

S. Immervoll, On the classification of isoparametric hypersurfaces with four principal
curvatures in spheres, Ann. of Math. (2) 168 (2008), 1011-1024.

M. Tonel, T. Ivey, Austere submanifolds of dimension four: examples and maximal
types, Illinois J. Math. 54 (2010), no. 2, 713-746.

M. Ionel, T. A. Ivey, Austere submanifolds in CP", Comm. Anal. Geom. 24 (2016),
no. 4, 821-841.

K. Iwata, Classification of compact transformation groups on cohomology quater-
nion projective spaces with codimension one orbits, Osaka J. Math. 15 (1978), no. 3,
475-508.

K. Iwata, Compact transformation groups on rational cohomology Cayley projective
planes, Tohoku Math. J. (2) 33 (1981), no. 4, 429-442.

D. Joyce, Special Lagrangian m-folds in C™ with symmetries, Duke Math. J. 115
(2002), no. 1, 1-51.

AW. Knapp, Lie groups beyond an introduction. Second edition. Progress in Math-
ematics, 140, Birkhauser Boston, Inc., Boston, MA, 2002.

M. Kimura, Real hypersurfaces and complex submanifolds in complex projective
space, Trans. Amer. Math. Soc. 296 (1986), 137-149.

S. Klein, Totally geodesic submanifolds of the complex and the quaternionic 2-
Grassmannians. Trans. Amer. Math. Soc. 361 (2009), no. 9, 4927-4967.

S. Klein, Totally geodesic submanifolds of the exceptional Riemannian symmetric
spaces of rank 2. Osaka J. Math. 47 (2010), no. 4, 1077-1157.

S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II, Reprint of
the 1969 original. Wiley Classics Library John Wiley & Sons, Inc., New York, 1996.



252

Bibliography

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

A. Kollross, A classification of hyperpolar and cohomogeneity one actions, Trans.
Amer. Math. Soc. 354 (2002), 571-612.

T. Levi-Civita, Famiglie di superficie isoparametriche nell’ordinario spazio euclideo,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (6) 26 (1937), 355-362.

L. Zhen-qi, X. Xian-hua, Space-like isoparametric hypersurfaces in lorentzian space
forms, From. Math. China. 1 (2006), 130-137.

M. Lohnherr, H. Reckziegel, On ruled real hypersurfaces in complex space forms,
Geom. Dedicata 74 (1999), 267-286.

O. Loos, Symmetric spaces. I, General theory, W. A. Benjamin, Inc., New York-
Amsterdam, 1969.

O. Loos, Symmetric spaces. II: Compact spaces and classification, W. A. Benjamin,
Inc., New York-Amsterdam, 1969.

M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1)
(1985), 165-197.

R. Miyaoka, Isoparametric hypersurfaces with (g, m) = (6,2), Ann. of Math. (2)
177 (2013), 53-110.

S. B. Myers, N. E. Steenrod, The group of isometries of a Riemannian manifold,
Ann. of Math. (2) 40 (1939), no. 2, 400-416.

K. Nomizu, On isoparametric hypersurfaces in the Lorentzian space forms, Japan.
J. Math. 7, (1981), no. 1, 217-226.

S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan
37 (1985), 515-535.

B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13
(1966), 459-4609.

B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic
Press, 1983.

H. Ozeki, M. Takeuchi, On some types of isoparametric hypersurfaces in spheres I,
Téhoku Math. J. (2) 27 (1975), no. 4, 515-559.

R. S. Palais, C. L. Terng, Critical point theory and submanifold geometry, Lecture
Notes in Mathematics, 1353, Springer-Verlag, 1988.

A. Pelayo, D. Peralta-Salas, A geometric approach to the classification of the equi-
librium shapes of self-gravitating fluids, Comm. Math. Phys. 267 (2006), no. 1,
93-115.



Bibliography 253

[90]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

H. Reckziegel, On the problem whether the image of a given differentiable map
into a Riemannian manifold is contained in a submanifold with parallel second
fundamental form, J. Reine Angew. Math. 325 (1981), 87-104.

H. Samelson, Notes on Lie algebras, Second edition, Universitext, Springer-Verlag,
New York, 1990.

V. Sanmartin-Lépez, Spacelike isoparametric hypersurfaces, Differential Geom.
Appl. 54, Part A (2017), 53-58.

B. Segre, Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un
qualunque numero di dimensioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (6) 27 (1938), 203-207.

J. Serrin, The form of interfacial surfaces in Korteweg’s theory of phase equilibria,
Quart. Appl. Math. 41 (1983-1984), no. 3, 357-364.

A. Siffert, Classification of isoparametric hypersurfaces in spheres with (g, m) =
(6,1), Proc. Amer. Math. Soc. 144 (2016), no. 5, 2217-2230.

C. Somigliana, Sulle relazioni fra il principio di Huygens e 1'ottica geometrica, Atti
Acc. Sc. Torino LIV (1918-1919), 974-979.

S. Stolz, Multiplicities of Dupin hypersurfaces, Invent. Math. 138 (1999), 253-279.

R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka
J. Math. 10 (1973), 495-506.

R. Takagi, Real hypersurfaces in a complex projective space with constant principal
curvatures, J. Math. Soc. Japan 27 (1975), 43-53.

R. Takagi, Real hypersurfaces in a complex projective space with constant principal
curvatures, 11, J. Math. Soc. Japan 27 (1975), 507-516.

Y. Taketomi, On a Riemannian submanifold whose slice representation has no
nonzero fixed points, Hiroshima Math. J. 48 (2018), no. 1, 1-20.

H. Tamaru, Parabolic subgroups of semisimple Lie groups and Einstein solvmani-
folds, Math. Ann. 351 (2011) 51-66.

G. Thorbergsson, A survey on isoparametric hypersurfaces and their generaliza-
tions, Handbook of differential geometry, Vol. I, 963-995, North-Holland, Amster-
dam, 2000.

G. Thorbergsson, Singular Riemannian foliations and isoparametric submanifolds,
Milan J. Math. 78 (2010), no. 1, 355-370.



254

Bibliography

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

H. Urakawa, Equivariant theory of Yang-Mills connections over Riemannian mani-
folds of cohomogeneity one, Indiana Univ. Math. J. 37 (1988), no. 4, 753-788.

L. Xiao, Lorentzian isoparametric hypersurfaces in H!™ Pacific J. Math. 189
(1999), 377-397.

Q. M. Wang, Isoparametric functions on Riemannian manifolds, I, Math. Ann. 277

(1987), 639-646.

J.A. Wolf, Elliptic spaces in Grassmann manifolds, lllinois J. Math. 7 (1963) 447—
462.

J. A. Wolf, Spaces of constant curvature. Sixth edition, AMS Chelsea Publishing,
Providence, RI, 2011.

K. Yano, M. Kon, Structures on manifolds, Series in Pure Math. 3, World Scientific,
Singapore, 1984.

S.-T. Yau, Open problems in geometry, Differential Geometry: Partial Differential
Equations on Manifolds (Los Angeles, 1990), Editors R. Greene and S.-T. Yau,
Proc. Sympos. Pure Math., Vol. 54, Amer. Math. Soc. Providence, RI, 1993, Part 1,
439-484.

W. Ziller, Lie groups, representation theory and symmetric spaces, Available online
at math.upenn.edu/~wziller/math650/LieGroupsReps.pdf (April 2019).



	Páginas desdeportada144
	victor
	Introduction
	Preliminaries
	Semi-Riemannian manifolds
	Geometry of submanifolds
	Isometric actions
	Cohomogeneity one actions

	Symmetric spaces
	Symmetric spaces of non-compact type
	Root space and Iwasawa decompositions
	The solvable Lie group model

	Anti-De Sitter and complex hyperbolic spaces

	Isoparametric hypersurfaces in the complex hyperbolic space: the examples
	Origin of the problem
	Some classification results
	The complex hyperbolic space described as a symmetric space
	Real subspaces of a complex vector space
	The examples
	The standard examples
	Tubes around the submanifolds Ww


	Isoparametric hypersurfaces in the complex hyperbolic space: the classification
	Complex hyperbolic space and the Hopf map
	Lorentzian isoparametric hypersurfaces
	Type I points
	Type II points
	Type III points
	Type IV points
	Variation of the Jordan canonical form

	Type III hypersurfaces
	Covariant derivatives of an isoparametric hypersurface
	Parallel hypersurfaces and the focal manifold
	Algebraic study of the focal submanifold

	Rigidity of the focal submanifold
	The structure of the normal bundle
	Proof of Theorem 3.4.1

	Proofs of Theorem 3.0.4 and Theorem 3.0.9

	Isoparametric hypersurfaces in the anti-De Sitter space 
	General procedure
	Spacelike isoparametric hypersurfaces in the anti-De Sitter space

	CPC submanifolds
	Motivation and main tools
	Construction of CPC submanifolds
	Canonical extensions of CPC submanifolds
	The classification
	Description of the examples
	Further geometric explanations

	Austere submanifolds in classical symmetric spaces
	-strings and their diagrams
	The shape operator of So
	The diagram of a -string
	Conditions for the austerity of So

	The study of -strings
	Study of -strings of classical type

	The classification in classical spaces
	Symmetric spaces of type Ar
	Symmetric spaces of type Br
	Symmetric spaces of types Cr and BCr
	Symmetric spaces of type Dr


	Austere submanifolds in exceptional symmetric spaces
	F4 case
	E6 case
	 containing a component of type A2
	Extreme roots of -strings
	 containing a component of type A3
	 containing a component of type A4
	The classification in spaces of type E6

	E7 case
	 containing a component of type A5
	 containing a component of type D5
	The classification in spaces of type E7

	E8 case
	 containing a component with 6 roots
	The classification in spaces of type E8


	Conclusions and open problems
	Resumen en castellano
	Bibliography


