

O PROGRAMA ESTATÍSTICO guía rápida das principais utilidades e funcións

María Isabel Borrajo García, Mercedes Conde Amboage e Rosa María Crujeiras Casais (Departamento de Estatística, Análise Matemática e Optimización)

R é unha linguaxe de programación orientada ao ámbito da estatística. Trátase dunha linguaxe interpretada que se emprega maioritariamente de xeito interactivo, distribuída baixo licenza GNU, e que dispón dunha serie de características no módulo base que se pode ir ampliando por medio de librarías. O proceso de instalación e toda a información relativa ao programa pode atoparse en http://www.r-project.org/.

Para poder empregar calquera das librarías ou paquetes os pasos que cómpre seguir son:

- Instalar a libraría dende o repositorio CRAN (precísase de conexión á Rede), para o que se emprega a orde install.packages ("nome_da_libraría").
- Cargar a libraría na sesión de **R** actual para poder empregar as funcións que contén, isto farase coa sentenza library(nome_do_paquete).

Para calquera dúbida sobre estas ou outras funcións do programa, pode consultarse a súa páxina de axuda tecleando na consola ?nome_da_función ou help(nome_da_función).

O programa estatístico **R** dispón de diversas interfaces gráficas máis amigables para as persoas usuarias non expertas. Unha das máis habitualmente empregadas é RStudio, que pode obterse de xeito libre dende https://rstudio.com/, outra opción dispoñible é *R Commander*, unha interface incluída dentro do propio **R** mediante a libraría Rcmdr.

BÁSICOS

O primeiro que debemos de saber para manexar \mathbf{R} é que a asignación (gardar un valor nunha variable) faise mediante o símbolo = ou <-, por exemplo, x=5 ou x<-5 para gardar o valor 5 nunha variable denominada x.

O seguinte que se debe coñecer son as distintas clases de obxectos que 🗬 permite manexar:

- logical: consta unicamente de dous valores de tipo lóxico que son TRUE (denotado tamén por T) ou FALSE (denotado tamén por F).
- integer: almacena valores de tipo enteiro (números naturais e opostos, sen decimais).
- numeric: almacena valores de tipo real.
- complex: almacena valores de tipo complexo (parte real e parte imaxinaria).
- character: almacena valores de tipo carácter, é dicir, secuencias de letras ou texto.
- factor: almacena variables de tipo categórico, onde as categorías constitúen os niveis do factor.

A continuación verase unha colección de comandos básicos para traballar cos distintos tipos de obxectos, así como coas diferentes estruturas de datos que se poden manexar en **R** : vector, matrix (matriz), list (lista), data.frame (base de datos),...

Creación de datos

c()	función para combinar argumentos separados por comas e formar un vector.
dende:ata	xera unha secuencia que comeza en dende e remata en ata con paso unha unidade.
<pre>factor(x,levels=lev)</pre>	crea un obxecto de tipo factor con categorías dadas en lev.
matrix(datos,nrow=n, ncol=m, byrow=F)	crea unha matriz a partir de datos de dimensión nxm onde os elementos se colocan por columnas; colocaranse enchendo filas se o argumento byrow=T.
rbind(x1,x2,); cbind(x1,x2,)	combina os elementos x1,x2, (vector, matriz ou base de datos) concatenándoos por filas (r) ou columnas (c).
<pre>rep(x,times=v)</pre>	constrúe un vector repetindo v veces o elemento x, que pode ser un valor, un vector, unha matriz, unha lista,
seq(dende,ata,by=p, length=l)	xera unha secuencia que comeza en dende e remata en ata, ben con paso ${\tt p}$ ou ben de lonxitude 1.

C R Console	
> x [1] 1 2 3 4 5	
> > A=matrix(1:6,nr=2,nc=3)	
> A [,1] [,2] [,3]	
[1,] 1 3 5	
[2,] 2 4 6	

BÁSICOS (cont.)

Extraer valores	
x[k]	accede ao elemento k-ésimo do vector x.
x[-k]	accede a todos os elementos do vector x salvo ao k-ésimo.
x[c(1,3,7)]	accede ao primeiro, terceiro e sétimo elementos do vector x.
x[x<2]	accede a todos os elementos de x que cumpran a condición de seren menores que 2.
x[i,k]	accede ao elemento da fila i e columna k da matriz ou base de datos x.
x[i,]	accede á fila i-ésima da matriz ou base de datos x.
x[,k]	accede á columna k-ésima da matriz ou base de datos x.
x[,c(2,4)]	accede ás columnas segunda e cuarta da matriz ou base de datos x.
x[[k]]	accede ao elemento k-ésimo da lista x.
x[["nome"]]	accede ao elemento da lista x denominado nome.
x\$nome	accede ao elemento da lista ou base de datos denominado nome. 🛛 💝 🍣
Información sobre variables	
class(x)	devolve o tipo de obxecto que é x.
dim(x)	devolve a dimensión (nº de filas e nº de columnas) da matriz ou base de datos x.
is.numeric(x)	devolve cun valor lóxico indicando se o obxecto x é (T) ou non é (F) de tipo numérico. Análogo para is.character, is.na, is.complex, is.data.frame,
length(x)	devolve o número de elementos do obxecto x.
<pre>nrow(x);ncol(x)</pre>	devolve o número de filas (nr) ou columnas (nc) da matriz ou base de datos x.
summary(x)	resume a información contida no obxecto x; dependendo da clase de x proporciona dife- rente información.
Selección e manipulación de datos	
choose(x,k)	calcula as posibles combinacións de coller k elementos en n repeticións.
<pre>cut(x,breaks=b)</pre>	crea a partir do obxecto x un novo obxecto de tipo factor mediante a división de x en intervalos (categorías); b pode ser o número de intervalos, ou os propios puntos de corte

det(x) diag(x)eigen(x) match(x,y)

round(x,digits=nd) rowsum(x);colsum(x) rowMeans(x);colMeans(x) solve(x) sort(x, decreasing=F)

t(x) x%*%y which(x<2)

which.min(x);which.max(x)

Lectura e escritura de datos

data(nome)

load(...) read.table(file="nome.ext", sep="";",dec="",header=T)

calcula os autovalores e autovectores da matriz x. define un vector da mesma lonxitude de x, cos elementos de x que están en y e NA (valor co que ඹ codifica os datos ausentes) noutro caso.

 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix}$

redondea os valores numéricos de x ao número de decimais dado por nd.

calcula a suma por filas (row) ou columnas (col) da matriz ou base de datos x.

calcula a media por filas (row) ou columnas (col) da matriz ou base de datos x.

calcula a matriz inversa da matriz x.

que delimitan os intervalos.

accede á diagonal da matriz x.

calcula o determinante da matriz x.

ordena de xeito crecente (ou decrecente se decreasing=T) os elementos de x. Empregando o argumento index.return=T pódese obter o valor da posición dos elementos segundo a súa orde (crecente ou decrecente).

calcula a matriz trasposta da matriz x.

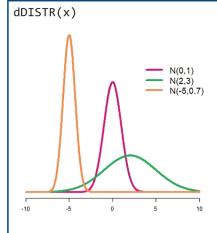
calcula o produto escalar ou matricial dos vectores ou matrices x e y.

determina a/as posición/s dos elementos de x que cumpran a condición de ser menores que 2.

determina a posición que ocupa en x o seu elemento de menor (min) ou maior (max) valor.

carga o conxunto de datos nome gardado en \mathbf{R} ; se non se especifica ningún argumento, lista os conxuntos de datos dispoñibles na sesión actual de 😱.

carga datos dende unha área de traballo previamente gardada (en xeral con save).


carga os datos almacenados no arquivo nome, de extensión .ext (.txt, .dat). Co argumento sep determínase o elemento que serve para separar valores no arquivo, con dec indícase o símbolo empregado para o separador decimal e header é un argumento lóxico que indica se a primeira fila da base de datos contén os nomes das variables (T) ou contén os valores do primeiro individuo (F). Análogo read.csv para extensións .csv.

BÁSICOS (cont.)

Lectura e escritura de datos (cont.) attach(dat) carga no contorno de traballo as variables da base de datos dat. complete.cases(x,y) indica as posicións comúns sen NA nos elementos x e y. head(dat) amosa as seis primeiras liñas do elemento dat. names(dat) indica os nomes dos elementos almacenados en dat. save(nome,file=arquivo) garda o elemento nome en arquivo. save.image() garda todos os elementos que se atopen na memoria da sesión nese momento nun arquivo .RData. View(dat) permite visualizar a base de datos dat nun formato de táboa ao estilo dunha folla de cálculo. write.table(x, garda o elemento x nun arquivo .ext (.txt, .csv) tras convertelo en base de datos. file="nome.ext")

ESTATÍSTICA DESCRITIVA	
addmargins(tab)	engade a fila e columna dos totais (marxinais) a unha táboa de dobre entrada tab.
barplot(tab)	representa o diagrama de barras asociado ás frecuencias tab, que se poden obter, por exemplo, coa función table.
<pre>boxplot(x)</pre>	representa un diagrama de caixa para os valores de x.
boxplot(x~y)	representa un diagrama de caixa para os valores de x agrupados segundo as categorías do factor y.
cov(x,y);cor(x,y)	calcula a cuasicovarianza (cov) ou correlación (cor) entre os valores de x e de y.
<pre>cumsum(x);cumprod(x)</pre>	vector no que o elemento i-ésimo é a suma (sum) ou produto (prod) acumulados dos elementos x[1:i].
describe(x)	calcula numerosas características dos elementos de x: tamaño da mostra, número de valores perdidos, media, cuantís, táboa de frecuencias, Esta función está dispoñible na libraría Hmisc.
diff(x)	calcula un vector de lonxitude unha unidade menor que a lonxitude de x coas diferenzas itera- das dos elementos de x.
hist(x,breaks=b,freq=T)	representa un histograma con b+1 intervalos (ou cos intervalos dados en b); se freq=T repre- senta as frecuencias absolutas, en caso contrario representa densidades.
IQR(x)	calcula o rango intercuartílico (terceiro menos primeiro cuartil) dos elementos de x.
kurtosis(x)	calcula o coeficiente de curtose para os valores de x. Esta función está dispoñible na libraría moments.
max(x)	calcula o valor máximo dos elementos de x.
mean(x)	calcula a media da mostra x. Engadindo o argumento trim=p, calcula a media recortada coa proporción de datos eliminados dada por p.
median(x)	calcula a mediana da mostra x.
min(x)	calcula o valor mínimo dos elementos de x.
pie(tab)	representa o diagrama de sectores asociado ás frecuencias tab, que se poden obter, por exem- plo, coa función table.
pie3D(tab)	representa o diagrama de sectores con volume (3D) asociado ás frecuencias tab, que se poden obter, por exemplo, coa función tab1e.
<pre>proportions(tab,margin=m)</pre>	calcula as proporcións condicionadas da táboa tab dadas as marxinais m.
qqplot(x,y)	representa os cuantís de x fronte aos cuantís de y.
<pre>quantile(x,probs=p)</pre>	calcula o cuantil dos elementos de x definido pola probabilidade en p. Tamén é valido que p sexa un vector de probabilidades.
range(x)	calcula simultaneamente os valores mínimo e máximo dos elementos de x.
skewness(x)	calcula o coeficiente de asimetría para os valores de x. Esta función está dispoñible na libraría moments.
<pre>sum(x);prod(x)</pre>	calcula a suma (sum) ou produto (prod) dos elementos de x.
<pre>table(x)</pre>	conta os elementos dos distintos valores de x.
<pre>table(x,y)</pre>	realiza unha táboa de dobre entrada dos elementos x e y.
unique(x)	vector cos elementos de x eliminando os elementos repetidos.
var(x);sd(x)	calcula a cuasivarianza (var) ou cuasidesviación típica (sd) dos elementos de x. 🔤 🖉 👘
<pre>weighted.mean(x,w)</pre>	calcula a media da mostra x ponderada polo vector de pesos w.

VARIABLES ALEATORIAS

fitdistr(x,densfun="NOME")

calcula a función de masa de probabilidade (función de densidade) nun punto x asociada a unha variable DISTR discreta (variable continua). Amais, os argumentos desta función dependen da DISTR considerada. As principais variables que podemos empregar con \mathbf{R} son:

DISTRIBUCIÓN	DISTR	ARGUMENTOS
Binomial (<i>n,p</i>)	binom	size=n, prob=p
Binomial negativa (<i>n,p</i>)	nbinom	size=n, prob=p
Poisson (λ)	pois	lambda=λ
Uniforme (<i>a,b</i>)	unif	min=a, max=b
Normal (μ,σ)	norm	mean=μ, sd=σ
Exponencial (λ)	exp	rate=λ
Gamma (n,λ)	gamma	shaper=n, rate= λ
T-Student con <i>gl</i> graos de liberdade	t	df=gl
χ^2 con <i>gl</i> graos de liberdade	chisq	df=gl
F de Snedecor con $gl_1 e gl_2$ graos de liberdade	f	df1=gl1, df2=gl2

density(x)

ecdf(x)

pDISTR(x)

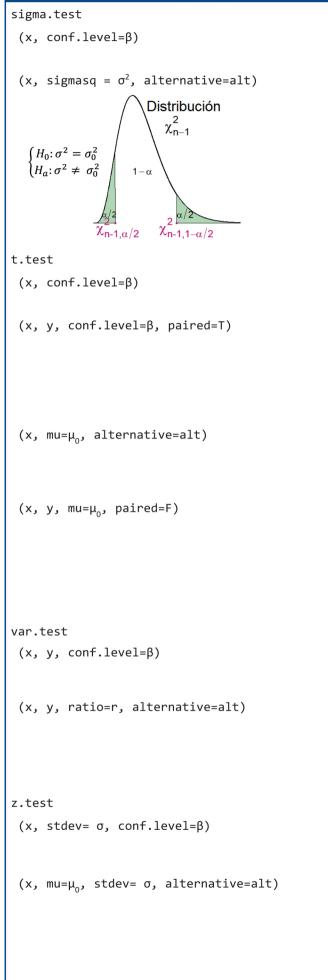
estima a función de densidade asociada a unha mostra x empregando métodos non paramétricos.

calcula a función de distribución empírica asociada a unha mostra x.

emprega o método de máxima verosemellanza para axustar os parámetros asociados a unha distribución NOME para a mostra x. As distintas distribucións compatibles con esta función poden verse en ?fitdistr. Esta función está dispoñible na libraría MASS.

calcula a función de distribución nun punto x asociada a unha variable DISTR discreta ou continua. Esta función pódese aplicar para as mesmas distribucións que dDISTR.

qDISTR(τ) calcula o cuantil de orde τ asociado a unha variable DISTR discreta ou continua. Esta función pódese aplicar para as mesmas distribucións que dDISTR.


qqPlot(x) representa os cuantís asociados á mostra x fronte aos cuantís dunha distribución normal. Esta función está dispoñible na libraría car.

rDISTR(n) xera n datos asociados a unha variable DISTR discreta ou continua. Esta función pódese aplicar para as mesmas distribucións que dDISTR.

INFERENCIA ESTATÍSTICA	
ks.test(x,"pDISTR")	realiza un contraste de Kolmogorov-Smirnov para contrastar se a mostra x (que procede dunha variable aleatoria continua) segue unha distribución DISTR.
chisq.test(x,y)	realiza un contraste de independencia sobre dúas variables categóricas das que se coñe- cen as mostras x e y. Tamén se podería realizar o contraste introducindo simplemente unha táboa de continxencia.
prop.test	
(x, n, conf.level=β)	calcula un intervalo de confianza de nivel β para a probabilidade de éxito asociado a un experimento de Bernoulli do que se observaron n realizacións das cales x foron éxi- tos. Se n e x fosen vectores de dimensión 2, calcularía un intervalo de confianza de nivel β para a diferenza das probabilidades de éxito asociadas a dous experimentos de Bernoulli.
(x, n, p=p, alternative=alt)	realiza un contraste de hipóteses para a probabilidade de éxito asociado a un experi- mento de Bernoulli do que se observaron n realizacións, das cales x foron éxitos. O valor da probabilidade de éxito que se quere contrastar será p mentres que o tipo de con- traste vén determinado polo argumento alternative*. Amais, se n e x fosen vectores de dimensión 2, realizaría un contraste para a diferenza das probabilidades de éxito aso- ciadas a dous experimentos de Bernoulli (neste caso o argumento p non se emprega).
<pre>shapiro.test(x)</pre>	realiza un contraste de normalidade para unha variable X da que se ten a mostra x.

* Nas funcións prop.test, sigma.test, t.test, var.test e z.test o argumento alternative pode ser "two.sided" (contraste bilateral), "less" (contraste unilateral esquerdo) ou "greater" (contraste unilateral dereito).

INFERENCIA ESTATÍSTICA (cont.)

calcula un intervalo de confianza de nivel β para a varianza poboacional dunha distribución normal da que se coñece unha mostra x.

realiza un contrate de hipóteses para a varianza poboacional dunha distribución normal da que se coñece unha mostra x. O valor da varianza poboacional que se quere contrastar será σ^2 mentres que o tipo de contraste vén determinado polo argumento alternative^{**}.

Esta función está dispoñible na libraría TeachingDemos.

calcula un intervalo de confianza de nivel β para a media poboacional dunha distribución normal da que se coñece unha mostra x.

calcula un intervalo de confianza de nivel β para a diferenza de medias poboacionais de dúas distribucións normais dependentes (paired=T) ou independentes (paired=F) das que se coñecen as mostras x e y. No caso de que paired=F, emprégase o argumento var.equal=T ou F para indicar que as varianzas poboacionais son iguais ou non.

realiza un contrate de hipóteses para a media poboacional dunha distribución normal da que se coñece unha mostra x. O valor da media poboacional que se quere contrastar será μ_0 mentres que o tipo de contraste vén determinado polo argumento alternative**.

calcula un contraste de hipóteses para a diferenza de medias poboacionais de dúas distribucións normais dependentes (paired=T) ou independentes (paired=F) con varianzas coñecidas ou descoñecidas (var.equal=T ou F) das que se coñecen as mostras x e y. O valor da diferenza de medias poboacionais que se quere contrastar será μ_0 mentres que o tipo de contraste vén determinado polo argumento alternative**.

calcula un intervalo de confianza de nivel β para o cociente das varianzas poboacionais de dúas distribucións normais das que se coñecen as mostras x e y.

realiza un contrate de hipóteses para o cociente das varianzas poboacionais de dúas distribucións normais das que se coñecen as mostras x e y. O valor do cociente de varianzas poboacionais que se quere contrastar será r mentres que o tipo de contraste vén determinado polo argumento alternative^{**}.

calcula un intervalo de confianza de nivel β para a media poboacional dunha distribución normal con desviación típica σ coñecida da que se coñece unha mostra x.

realiza un contrate de hipóteses para a media poboacional dunha distribución normal con desviación típica σ coñecida da que se coñece unha mostra x. O valor da media poboacional que se quere contrastar será μ_0 mentres que o tipo de contraste vén determinado polo argumento alternative**.

Esta función está dispoñible na libraría TeachingDemos.

** Nas funcións prop.test, sigma.test, t.test, var.test e z.test o argumento alternative pode ser "two.sided" (contraste bilateral), "less" (contraste unilateral esquerdo) ou "greater" (contraste unilateral dereito).

MODELOS DE REGRESIÓN	
aov(y~grupos)	realiza un contraste de igualdade de medias poboacionais asociadas a unha distribución normal (da que coñecemos unha mostra y) medida en diferentes grupos (determinados polo vector grupos).
boxcox(y~x1+x2++xd)	calcula o parámetro λ óptimo asociado a unha transformación tipo Box-Cox que permite corrixir a falta de cumprimento das hipóteses básicas do modelo de regresión linear múltiple con variable resposta y e variables explicativas x1,x2,,xd. Esta función está dispoñible na libraría MASS.
Box.test(x, lag = γ, type="Ljung-Box"))	realiza o contraste de Ljung-Box que comproba se as observacións da mostra × son non correladas fronte á hipótese alternativa de que exista correlación secuencial de orde γ.
confint(mod, level = β)	calcula intervalos de confianza de nivel $\boldsymbol{\beta}$ asociados aos parámetros do modelo de regresión mod.
$glm(y \sim x1 + x2 + + xd, family = NOME)$	estima un modelo de regresión linear xeneralizado con variable resposta y e variables explicativas x1,x2,,xd. O argumento family permite seleccionar a función de enlace adecuada en función da natureza da variable resposta.
hmctest(mod)	contrasta a homocedasticidade do modelo de regresión linear múltiple mod. Esta función está dispoñible na libraría lmtest.
lm(y~x1+x2++xd)	estima un modelo de regresión linear múltiple con variable resposta y e variables explicati- vas x1,x2,,xd empregando o método de mínimos cadrados.
	Variable Explicativa
names(mod)	proporciona os nomes das estimacións asociadas a un modelo de re- gresión, como os residuos (mod\$residuals) ou os valores axustados (mod\$fitted.values).
nls(y~fun(θ 1, θ 2,, θ k, start=list((θ 1=n ₁ , θ 2=n ₂ ,, θ k=n _k))	estima un modelo de regresión non linear cuxa expresión vén determinada por fun (coñecida) salvo polos parámetros θ1,θ2,,θk. Co argumento start introdúcese o punto de arranque do algoritmo iterativo de estimación.
<pre>plot(mod)</pre>	realiza catro representacións gráficas que permiten levar a cabo unha vali- dación e diagnose do modelo de regresión múltiple mod.
predict(mod,data.frame(x1= δ_1 ,x2= δ_2 ,,xd= δ_d))	calcula predicións puntuais da variable resposta dun modelo de regresión mod con covariables x1,x2,,xd dada unha nova observación $(\delta_1, \delta_2,, \delta_d)$ das covariables. Tamén permite calcular intervalos de confianza para a es- peranza condicional (interval="confidence") e intervalos de predición (interval="prediction").
resettest(y ~ x, power=2/3)	realiza o contraste do modelo linear simple con variable reposta y e variable explicativa x fronte a modelos polinómicos de orde 2/3. Esta función está dispoñible na libraría 1mtest.
<pre>sm.regression(x,y, model="linear")</pre>	contrasta a linearidade dun modelo de regresión linear múltiple con covaria- bles x (como máximo de dimensión 2) e variable resposta y. Esta función está dispoñible na libraría sm.
summary(mod)	proporciona unha lista de estatísticos resumo asociados a un modelo de re- gresión mod, como por exemplo, contrastes de significación dos coeficientes, a estimación da desviación típica do erro ou o coeficiente de determinación.

