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Introduction

Intuitively, symmetry is the property that makes objects look similar when regarded from
different perspectives. This is an important quality from the viewpoint of disciplines such
us biology, chemistry and art. The concept of symmetry also has a place in the field of
mathematics. In this context, it should be noted that symmetry is a property not only
applicable to geometric figures, but also to more abstract objects. The study of such
objects has led to important results in various areas of mathematics. For instance, Galois
theory asserts that if a polynomial equation does not have adequate symmetries, then it
is not solvable by radicals. Another example is the well-known Noether theorem, which
claims that the symmetries of a physical system are translated into conservation laws.

The notion of symmetry can be defined in a rigorous way by means of group theory.
Indeed, given a group G, we say that a certain object is G-symmetric if it is invariant
under the action of G. Thus, the notion of symmetry is not an isolated concept, but it is
linked to the action of a group, which actually specifies the kind of symmetry that such
object has.

In the context of semi-Riemannian geometry, the natural group to consider is the isom-
etry group, that is, the group consisting of the transformations of the space that preserve
its metric. In the Riemannian setting, where the metric induces a distance, the isometry
group turns out to be the group of transformations of the space preserving distance. The
action of a subgroup of the isometry group on a given manifold is said to be an isometric
action. A semi-Riemannian manifold is said to be homogeneous if its isometry group acts
transitively on it. A submanifold is called (extrinsically) homogeneous if it arises as an
orbit of the action of a subgroup of the isometry group.

The problem of classifying isometric actions on a given semi-Riemannian manifold turns
out to be very involved. For this reason, it is common to restrict this problem and focus
on classifying specific types of isometric actions which are more manageable. For example,
transitive actions, in which the only orbit is the manifold itself, have been thoroughly
studied in several contexts.

Another special type of isometric actions that has given rise to a fruitful area of research
is that of cohomogeneity one actions. An isometric action is said to be of cohomogeneity
one if it has an orbit of codimension one. Classifying cohomogeneity one actions on a
given manifold is equivalent to studying homogeneous hypersurfaces on such manifold.
There are not many known results concerning the classification of cohomogeneity one
actions on Lorentzian manifolds. One of the main purposes of this thesis is to get a better
understanding of this type of actions starting with the simplest Lorentzian manifold: the

1



2 Introduction

Minkowski spacetime.
However, in the Riemannian setting, several results related to the classification of coho-

mogeneity one actions have already been obtained. For instance, the problem of classifying
cohomogeneity one actions on spaces of constant curvature, namely, Euclidean spaces Rn,
spheres Sn and real hyperbolic spaces RHn, has been achieved by several authors. More
specifically, the classification of homogeneous hypersurfaces in Euclidean spaces can be
derived from two works of Levi-Civita [49] and Segre [68] which deal with isoparametric
hypersurfaces in such spaces. The classification in spheres can be deduced from a work
about minimal submanifolds due to Hsiang and Lawson [44], whereas homogeneous hyper-
surfaces in real hyperbolic spaces have been studied by Cartan in [20].

The classification of homogeneous submanifolds turns out to be much more difficult
when the ambient manifold is equipped with a Kähler structure, for example, when deal-
ing with complex space forms, namely, complex Euclidean spaces Cn, complex projective
spaces CP n and complex hyperbolic spaces CHn. However, the classification of homo-
geneous hypersurfaces in these spaces has been successfully achieved. In particular, the
classification in the projective case has been obtained by Takagi in [70], whereas homo-
geneous hypersurfaces in complex hyperbolic spaces have been classified by Berndt and
Tamaru in [15].

A large part of this thesis focuses on the study of submanifold geometry in the context of
nonflat complex space forms, in which the underlying complex structure plays an important
role. In general, in the Kähler setting, it is possible to define the notions of both totally real
and complex submanifold, which depend on the complex structure of the ambient manifold.
The notion of CR submanifold constitutes a generalization of these two concepts. In this
work we study homogeneous CR submanifolds in complex hyperbolic spaces. There exist
several known examples of homogeneous CR submanifolds in CHn which motivate this
problem, for instance the so-called Berndt-Brück submanifolds [11], and in particular, the
Lohnherr hypersurface [50].

The Lohnherr hypersurface of CHn satisfies interesting properties. For example, it can
be characterized as the only homogeneous minimal hypersurface in the complex hyperbolic
space [13]. It is also the only complete hypersurface of CHn having constant principal
curvatures that is ruled [51]. The notion of ruled real hypersurface in a complex space
form is intimately related to the complex structure of the ambient space. Several results
concerning ruled real hypersurfaces in nonflat complex space forms have been obtained.
In this work, we present some classification results of ruled real hypersurfaces in nonflat
complex space forms satisfying some important additional geometric properties.

We now present the main contributions and goals of this thesis.
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Ruled real hypersurfaces in nonflat complex space forms

A ruled real hypersurface in a nonflat complex space form, namely CP n or CHn, is a
submanifold of real codimension one that is (locally) foliated by totally geodesic complex
hypersurfaces of the ambient space, namely CP n−1 or CHn−1, respectively. Ruled hyper-
surfaces in nonflat complex space forms constitute a large class of real hypersurfaces, so it
becomes an interesting problem to classify these objects under some additional geometric
assumptions. For instance, Lohnherr and Reckziegel have classified ruled minimal hyper-
surfaces in nonflat complex space forms into three classes [51]: Kimura-type hypersurfaces
in CP n or CHn, bisectors in CHn, or Lohnherr hypersurfaces in CHn.

In Chapter 2 we present the classification of ruled real hypersurfaces in nonflat complex
space forms that satisfy some additional properties related to the constancy of its higher
order mean curvatures. The higher order mean curvatures of a given hypersurface are
defined to be the elementary symmetric polynomials in the principal curvatures of such
hypersurface. Any ruled real hypersurface in a nonflat complex space form is known to
have only two nonzero principal curvatures, say α and β, so there exist only two nontrivial
elementary symmetric polynomials, which turn out to be the (first order) mean curvature
α + β and the second order mean curvature αβ. In Section 2.3 we study ruled real hy-
persurfaces in nonflat complex space forms with constant mean curvature, finding that all
the examples are minimal, and hence deriving their complete classification. Ruled real
hypersurfaces with constant second order mean curvature in nonflat complex space forms
have been characterized in [48].

The squared norm of the shape operator, α2 + β2, which can be expressed in a simple
way in terms of the mean curvatures of first and second orders, constitutes another clas-
sical geometric invariant of hypersurfaces. Thus, it seems natural to pose the question:
what happens with ruled real hypersurfaces in nonflat complex space forms whose shape
operators have constant norm? This is what we study in Section 2.4, obtaining a complete
classification which includes a new inhomogeneous example.

Finally, motivated by a recent result due to Sasahara [67], where biharmonic ruled
hypersurfaces in complex projective spaces are classified, we study these objects in the
general context of nonflat complex space forms. This is settled in Section 2.5, where we
prove that such hypersurfaces must be minimal, from where their classification follows.

Homogeneous CR submanifolds in complex hyperbolic spaces

A submanifold of a Hermitian manifold is said to be a CR (Cauchy-Riemann or complex-
real) submanifold if its maximal holomorphic tangent subspaces define a distribution and
its complementary distribution is totally real. In other words, a CR submanifold of a
Hermitian manifold is a submanifold satisfying that the tangent space at each point can be
decomposed into an orthogonal direct sum of a totally real subspace and a complex one.
This notion has been introduced by Bejancu in [10], and generalizes the concepts of both
totally real and complex submanifolds.

In this work we are mainly interested in the classification of homogeneous CR subman-
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ifolds in complex hyperbolic spaces. Our motivation comes from the fact that this kind
of submanifolds include several special examples of interest in the context of Hermitian
symmetric spaces, such as real hypersurfaces, Kähler or Lagrangian submanifolds, among
others.

For instance, the classification of homogeneous real hypersurfaces, or equivalently, of
cohomogeneity one actions, in complex hyperbolic spaces has been shown to be a very
involved problem that has been successfully solved by Berndt and Tamaru in [15]. Ho-
mogeneous Kähler submanifolds in complex hyperbolic spaces have also been classified by
Di Scala, Ishi and Loi in [26], finding that the only examples are totally geodesic complex
hyperbolic subspaces.

Lagrangian submanifolds, that is, totally real submanifolds of maximal dimension, con-
stitute a nice particular case of CR submanifolds. Classifying homogeneous Lagrangian
submanifolds in complex hyperbolic spaces seems to be a very involved problem due to
the noncompactness of the isometry group of the ambient space. However, some partial
results have been achieved. For instance, Hashinaga and Kajigaya have obtained in [43] the
classification of homogeneous Lagrangian submanifolds that arise as orbits of a subgroup
of the solvable part of the Iwasawa decomposition of the isometry group of CHn.

In view of the above results, we restrict our attention to classifying homogeneous CR
submanifolds in complex hyperbolic spaces that arise as orbits of the solvable part of the
Iwasawa decomposition of the isometry group of CHn. We point out that our classification
includes uncountably many congruence classes of examples, some of them of particular
importance, such as some Berndt-Brück submanifolds or certain orbits of polar actions.
This is accomplished in Chapter 3.

Cohomogeneity one actions on the 4-dimensional Minkowski spacetime

One of the main motivations of this thesis is to study isometric actions on Lorentzian
manifolds. In the context of Lorentzian geometry, the Minkowski spacetime Ln+1, that is,
the Lorentzian analog to the Euclidean space, is the simplest example of manifold. From
the physical viewpoint, the particular case of the four-dimensional Minkowski spacetime
constitutes an important example of Lorentzian manifold since it is the space which models
the Theory of Special Relativity.

Several results concerning the classification of isometric actions on Lorentzian manifolds
have been achieved. For example, Adams and Stuck studied transitive isometric actions on
Lorentzian manifolds in [2] and [3]. In this thesis we are mainly interested in the particular
case of cohomogeneity one actions.

In the Riemannian setting it is customary to assume that the actions are proper due
to the nice properties that their isotropy groups and orbits satisfy. For example, isotropy
groups are compact, orbits are closed embedded submanifolds and the set of orbits is a
Hausdorff space. Proper cohomogeneity one actions on Minkowski spacetimes have been
investigated, for example, in [4]. However, in the Lorentzian case, there exist simple ex-
amples which motivate the study of nonproper actions. For instance, the natural action
of the Lie group SO0(1, n) on the (n+ 1)-dimensional Minkowski spacetime is not proper:
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indeed, the past and future lightcones are orbits of this action, but they are not closed
submanifolds. Thus, we will not assume the actions to be proper. Then, a (not necessarily
proper) isometric action is said to be of cohomogeneity one if the minimum possible codi-
mension of an orbit is one. A classification of cohomogeneity one actions on the Minkowski
spacetimes of dimensions two and three has been achieved in [14]. In Chapter 4, we present
the corresponding classification in the four-dimensional case. Moreover, we derive a split-
ting theorem and some structural results for cohomogeneity one actions on Minkowski
spacetimes of arbitrary dimensions.

Structure of the thesis

This thesis is organized as follows.
Chapter 1 is devoted to introducing the basic notation and terminology needed for

this thesis. More precisely, we introduce the notion of semi-Riemannian manifold (Sec-
tion 1.1), some important tools in the setting of submanifold geometry (Section 1.2), the
main concepts for studying isometric actions (Section 1.3) and the construction of the
Iwasawa decomposition of a semisimple Lie group (Section 1.4). We finish this chapter by
presenting the construction and description of nonflat complex space forms (Section 1.5),
focusing on the algebraic description of complex hyperbolic spaces, as well as Minkowski
spacetimes (Section 1.6).

The original contributions of this thesis are presented in Chapters 2, 3, and 4.
Chapter 2 is devoted to classifying ruled real hypersurfaces satisfying some additional

geometric properties in complex projective and hyperbolic spaces. In order to do so, we
will firstly recall some basic definitions and known results concerning ruled hypersurfaces
in nonflat complex space forms (Section 2.1) and compute the Levi-Civita connection of an
arbitrary ruled real hypersurface in this kind of spaces (Section 2.2). After that, we present
our classification results. In particular, we study ruled real hypersurfaces in nonflat complex
space forms that have constant mean curvature (Section 2.3), whose shape operators have
constant norm (Section 2.4), and finally, those ones that are biharmonic (Section 2.5).

In Chapter 3 we investigate homogeneous CR submanifolds in complex hyperbolic
spaces that arise as orbits of the solvable part AN of the Iwasawa decomposition of the
isometry group of this symmetric space. We start by introducing the definition of CR
submanifold of a Hermitian manifold (Section 3.1) and by characterizing homogeneous CR
submanifolds in Hermitian symmetric spaces of noncompact type in terms of Lie algebras
(Section 3.2). The rest of this chapter is devoted to presenting the classification of this
type of submanifolds. More specifically, we firstly study the subgroups of AN that pro-
duce a CR orbit (Subsection 3.3.1), and after that, we decide whether the remaining orbits
of such subgroups are CR submanifolds or not (Subsection 3.3.2). Finally, we study the
congruence classes of the examples that we have previously obtained (Section 3.4).

Finally, Chapter 4 is devoted to studying cohomogeneity one actions on Minkowski
spacetimes. We will firstly recall some known results needed for this study (Section 4.1)
and give an alternative proof for the classical classification result of cohomogeneity one
actions on Euclidean spaces of arbitrary dimension (Section 4.2). To finish, we derive
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some structural results on cohomogeneity one actions on Minkowski spacetimes of arbi-
trary dimension, and present the classification of cohomogeneity one actions on the four-
dimensional Minkowski spacetime up to orbit equivalence (Section 4.3).



Chapter 1

Preliminaries

This first chapter is devoted to introducing the basic concepts, notation and known results
that we are going to use throughout this thesis. In Section 1.1 we recall the definition
of semi-Riemannian manifold and fix our sign convention for the curvature tensor. Sec-
tion 1.2 is devoted to reviewing the main concepts and equations of submanifold geometry
needed for this thesis. In Section 1.3 we present the basic terminology related to isometric
actions on a semi-Riemannian manifold. In Section 1.4 we briefly recall some fundamental
facts concerning the theory of semisimple Lie groups. Moreover, we present the Iwasawa
decomposition of the semisimple Lie algebras so(1, n) and su(1, n). Section 1.5 is devoted
to introducing both the description and construction of the nonflat complex space forms,
namely complex projective and hyperbolic spaces. Finally, in Section 1.6 we settle the
main notation concerning the Minkowski spacetime Ln+1.

1.1 Semi-Riemannian manifolds

Let M be a smooth manifold of dimension n. For each p ∈M , TpM will denote the tangent
space of M at p. The tangent bundle to M is denoted by TM and Γ(TM) is the module
of smooth vector fields on M . If D is a distribution along M , then Γ(D) will denote the
module of sections of D, that is, those vector fields X ∈ Γ(TM) satisfying that Xp ∈ Dp
for every p ∈M .

Let T denote a symmetric bilinear tensor of type (0,2) in a given vector space V . T is
said to be symmetric if T (x, y) = T (y, x) for all x, y ∈ V , and nondegenerate if T (x, y) = 0
for each y ∈ V implies that x = 0. As a symmetric nondegenerate tensor, T is linearly
congruent to a diagonal matrix of the form diag(−1, r. . .,−1, 1, s. . ., 1). The signature of T
is precisely the pair (r, s).

Let V denote a vector space equipped with a symmetric bilinear form 〈·, ·〉. An element
v ∈ V is said to be spacelike, timelike or lightlike if 〈v, v〉 is positive, negative or zero,
respectively. For each v ∈ V , we write |v| =

√
|〈v, v〉|. If U and W are subspaces of V , we

denote U 	W = {u ∈ U : 〈u,w〉 = 0, for all w ∈ W}. Notice that, in particular, if 〈·, ·〉 is
positive definite, this notation stands for the orthogonal complement of W in U .

A semi-Riemannian manifold is a pair (M, 〈·, ·〉), where M is a smooth manifold and
〈·, ·〉 is a nondegenerate symmetric bilinear tensor field of type (0, 2) and constant signature.
This fact means that, in particular, at each point p ∈M , the tangent space TpM is endowed
with a nondegenerate symmetric bilinear tensor 〈·, ·〉p. M is said to be a Riemannian
manifold if its signature is (0, n). If the signature of M is (1, n−1), it is called a Lorentzian
manifold.

7



8 1 Preliminaries

In the setting of semi-Riemannian geometry, one of the most important concepts is
the curvature. The curvature information of a semi-Riemannian manifold is codified in its
curvature tensor R, which is a tensor of type (1,3) that we define with the following sign
convention:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where ∇ denotes the Levi-Civita connection of M , that is, the unique torsion-free metric
connection on M .

A semi-Riemannian manifold M is said to be flat if its curvature tensor vanishes iden-
tically. It is said to have constant curvature c if its curvature tensor can be written as
R(X, Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y ) for every X, Y , Z ∈ Γ(TM). The only connected,
complete, simply connected Riemannian manifolds having constant curvature are the so-
called (real) space forms, that is, Euclidean spaces Rn (c = 0), spheres Sn (c > 0) and real
hyperbolic spaces RHn (c < 0).

1.2 Submanifold geometry

This section is devoted to introducing the main definitions and fundamental formulas for
studying submanifolds of a given semi-Riemannian manifold. For more information on this
topic, we refer to [12, Chapters 1 and 10] for the Riemannian case and to [59, Chapter 4]
for the case of arbitrary signature.

Let (M̄, 〈·, ·〉) be a semi-Riemannian manifold and M an embedded submanifold of M̄
in such a way that the restriction of 〈·, ·〉 to M is nondegenerate. Then, M is called a
semi-Riemannian submanifold of M̄ . We denote by νM and Γ(νM) the normal bundle of
M and the module of normal vector fields to M , respectively. At each point p ∈ M , the
canonical orthogonal decomposition TpM̄ = TpM⊕νpM holds. In this work, the symbol ⊕
will denote direct sum (not necessarily orthogonal direct sum). Moreover, if X ∈ Γ(TM̄)
is a vector field along M , then X> and X⊥ will denote the orthogonal projections of X
onto TM and νM , respectively.

In this thesis, we are mostly interested in studying the extrinsic geometry of semi-
Riemannian submanifolds, which refers to the geometry of such submanifolds in relation
to the geometry of the ambient manifold.

We denote by ∇̄ and R̄ the Levi-Civita connection and curvature tensor of M̄ , and
by ∇ and R the corresponding objects for M , respectively. With the notation above, one
can decompose ∇̄XY into its tangent and normal parts. The tangent part (∇̄XY )> turns
out to be the Levi-Civita connection of M whereas the normal part defines the second
fundamental form II of M . Thus, we have an orthogonal decomposition

∇̄XY = ∇XY + II(X, Y ),

for every X, Y , Z ∈ Γ(TM), which is known as the Gauss formula. Let ξ ∈ Γ(νM) a
normal vector field to M . The shape operator of M with respect to ξ is the operator Sξ
on M defined by 〈SξX, Y 〉 = 〈II(X, Y ), ξ〉 for any X, Y ∈ Γ(TM). Moreover, if we denote
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by ∇⊥ the normal connection of M , that is, ∇⊥Xξ = (∇Xξ)
⊥ for every X ∈ Γ(TM) and

ξ ∈ Γ(νM), then we have the following orthogonal decomposition

∇̄Xξ = −SξX +∇⊥Xξ,

which is known as the Weingarten formula.
The Gauss equation gives the relation between the curvature tensors of M̄ and M by

means of the second fundamental form and, for X, Y , Z, W ∈ Γ(TM), it reads

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − 〈II(Y, Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉.

In this work we will also use the Codazzi equation,

〈R̄(X, Y )Z, ξ〉 = 〈(∇⊥XII)(Y, Z)− (∇⊥Y II)(X,Z), ξ〉,

where ξ ∈ Γ(νM) and the covariant derivative of the second fundamental form is given by

(∇⊥XII)(Y, Z) = ∇⊥XII(Y, Z)− II(∇XY, Z)− II(Y,∇XZ).

The last of the three fundamental equations of second order in submanifold geometry is
the Ricci equation,

〈R⊥(X, Y )ξ, η〉 = 〈R(X, Y )ξ, η〉+ 〈[Sξ,Sη]X, Y 〉,

where X, Y ∈ Γ(TM), ξ, η ∈ Γ(νM), and R⊥ denotes the curvature tensor of the normal
bundle to M , defined by R⊥(X, Y )ξ = [∇⊥X ,∇⊥Y ]ξ −∇⊥[X,Y ]ξ.

A submanifold whose second fundamental form II vanishes identically is said to be
totally geodesic. This is equivalent to saying that every geodesic in M is also a geodesic in
M̄ .

The mean curvature vector field H of a semi-Riemannian submanifold is defined as the
trace of the second fundamental form. In terms of a local orthonormal basis {Ei}i, one
may write H =

∑
i〈Ei, Ei〉II(Ei, Ei). The norm of the mean curvature vector field |H| is

commonly called the mean curvature function. A submanifold is said to be minimal if its
mean curvature function vanishes.

Two semi-Riemannian submanifolds M1 and M2 of M̄ are said to be congruent if there
exists an isometry of M̄ which takes M1 onto M2.

Geometry of hypersurfaces

Assume now that M is a hypersurface of M̄ , that is, a submanifold of codimension one.
Since we keep on assuming that M is a nondegenerate submanifold, it follows that, locally
and up to sign, there exists a unique normal vector field ξ ∈ Γ(νM) with ε := 〈ξ, ξ〉 ∈
{−1, 1}. We will write S = Sξ to denote the shape operator of M with respect to ξ. In
this case, the Gauss and Weingarten formulas can be written as

∇̄XY = ∇XY + ε〈SX, Y 〉ξ, ∇̄Xξ = −SX.
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Thus, Gauss and Codazzi equations reduce to

〈R̄(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − ε〈SY, Z〉〈SX,W 〉+ ε〈SX,Z〉〈SY,W 〉,
〈R̄(X, Y )Z, ξ〉 = 〈(∇XS)Y − (∇Y S)X,Z〉,

whereas the Ricci equation does not give further information for hypersurfaces.
When dealing with hypersurfaces of a semi-Riemannian manifold, the second funda-

mental form is a multiple of ξ, and hence, the mean curvature is proportional to ξ. Thus,
we will usually talk about the mean curvature of the hypersurface, which is defined as the
trace of its shape operator S.

Let ξ be a unit normal vector field defined on an open subset U of the hypersurface M .
Given p ∈ U , we say that λ ∈ R is a principal curvature at p if there exists a tangent vector
X ∈ TpU such that SξX = λX. In this case, X is said to be a principal curvature vector at
p, and the eigenspace of λ, which we will denote by Tλ(p), is commonly called the principal
curvature space associated with λ. A continuous function λ : U → R is called a principal
curvature (function) of M on U if λ(p) is a principal curvature at p for any p ∈ U . If each
principal curvature space has constant dimension on U , then there exists an orthonormal
frame consisting of principal curvature vector fields. If M̄ is a Riemannian manifold, the
shape operator S is diagonalizable at every point since it is a self-adjoint operator and
the metric is positive definite. In this case, the multiplicity of a principal curvature λ is
defined to be the dimension of its associated principal curvature space, or equivalently, the
multiplicity of λ as a eigenvalue of the shape operator.

A connected hypersurface is said to have constant principal curvatures if the eigenvalues
of the shape operator are the same at every point. In this case, if the ambient manifold is
Riemannian, the multiplicities of the principal curvatures are constant.

1.3 Isometric actions

In this section we briefly recall the main terminology and notation for the study of isometric
actions on semi-Riemannian manifolds. For more information, we refer to [6, Chapter 3],
[12, Chapter 2] and [59, Chapter 9].

Let M̄ denote a semi-Riemannian manifold and G a Lie group. An isometric action of
G on M̄ is a smooth map

ϕ : G× M̄ → M̄, (g, p) 7→ ϕ(g, p) = gp,

satisfying the following properties:

(i) (gg̃)p = g(g̃p), for all g, g̃ ∈ G and p ∈ M̄ ;

(ii) ep = p for any p ∈ M̄ , where e is the identity element of G;

(iii) the map ϕg : M̄ → M̄ defined by ϕg(p) = gp is an isometry of M̄ for each g ∈ G.
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For each p ∈ M̄ , the orbit of the action of G through p is

G · p = {gp : g ∈ G},

and the isotropy group or stabilizer at p is defined as

Gp = {g ∈ G : gp = p}.

If G ·p = M̄ for some p ∈ M̄ , and hence for each p ∈ M̄ , then ϕ is said to be a transitive
action. In this case, we say that M̄ is a homogeneous G-space. The action is said to be
trivial if each point in M̄ is a fixed point, i.e. G · p = {p} for all p ∈ M̄ .

Let I(M̄) denote the isometry group of M̄ , which is known to be a Lie group (see [57]
and [59, Chapter 9, Theorem 32]). Then, we have a Lie group homomorphism ρ : G →
I(M̄) given by ρ(g) = ϕg. If ρ is an injective map, the action is said to be effective, which
means that the Lie group G is isomorphic to a subgroup of I(M̄). The action is called free
if for every p ∈ M̄ and every g, h ∈ G, the equality gp = hp implies g = h. If the action is
free and transitive, we will say that G acts simply transitively on M̄ .

Two isometric actions G × M̄ → M̄ and G′ × M̄ ′ → M̄ ′ are said to be conjugate or
equivalent if there exists a Lie group isomorphism ψ : G→ G′ and an isometry f : M̄ → M̄ ′

in such a way that f(gp) = ψ(g)f(p), for each p ∈ M̄ and g ∈ G. We say that they are orbit
equivalent if there exists an isometry f : M̄ → M̄ ′ which maps the orbits of the G-action
on M̄ onto the orbits of the G′-action on M̄ ′. Clearly, two conjugate actions are orbit
equivalent.

Each orbitG·p of an isometric actionG×M̄ → M̄ is a (generally immersed) submanifold
of M̄ . One may study the intrinsic geometry of this orbit with the induced metric. However,
we will be mostly interested in studying the geometry of the orbit G · p in relation to the
geometry of M̄ , that is, its extrinsic geometry. An (extrinsically) homogeneous submanifold
of M̄ is an orbit of an isometric action on M̄ . With respect to the induced (possibly
degenerate) metric, each orbit G · p is a homogeneous space G · p = G/Gp on which G acts
transitively by isometries.

Any isometric action induces certain (pseudo-)orthogonal representations in a natural
way. Recall that a representation of a Lie group G on a vector space V is a Lie group
homomorphism ρ : G → GL(V ), and that, if V is endowed with a nondegenerate inner
product, ρ is said to be (pseudo-)orthogonal if ρ(g) is a (pseudo-)orthogonal transformation
of V for any g ∈ G.

Let ϕ : G × M̄ → M̄ be an isometric action on M̄ and consider p ∈ M̄ . Since the
isotropy group Gp fixes p and leaves the orbit G · p invariant, the differential of each
isometry ϕg : M̄ → M̄ , p 7→ gp, for g ∈ Gp, leaves both the tangent space Tp(G · p) and
the normal space νp(G · p) invariant. The action

Gp × Tp(G · p)→ Tp(G · p), (g,X) 7→ (ϕg)∗pX,

is called the isotropy representation of the action ϕ at p, and

Gp × νp(G · p)→ νp(G · p), (g, ξ) 7→ (ϕg)∗pξ,
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is said to be the slice representation of the action ϕ at p. If G · p is a semi-Riemannian
submanifold, these representations are pseudo-orthogonal with respect to the induced inner
products on Tp(G · p) and νp(G · p).

Let M̄/G denote the set of orbits of the action of G on M̄ and equip M̄/G with the
quotient topology relative to the canonical projection M̄ → M̄/G, p 7→ G · p. In general,
M̄/G is not a Hausdorff space. In order to avoid this unpleasant behavior, the particular
type of proper isometric actions has been introduced. An isometric action of G on M̄ is
said to be proper if, for any two points p, q ∈ M̄ , there exist open neighborhoods Up and
Uq of p and q in M̄ , respectively, in such a way that {g ∈ G : gUp ∩ Uq 6= ∅} is relatively
compact in G. An equivalent definition is that the map

G× M̄ → M̄ × M̄, (g, p) 7→ (p, gp)

is a proper map, that is, the inverse image of each compact set in M̄ × M̄ is also compact
in G × M̄ . Every compact Lie group action is proper. If G is a Lie subgroup of I(M̄)
and M̄ is a Riemannian manifold, then the G-action is proper if and only if G is closed
in I(M̄). Proper actions satisfy nice properties. For example, the quotient space M̄/G is
Hausdorff, each isotropy group Gp is compact, and every orbit G · p is closed, and hence
an embedded submanifold of M̄ [56].

One can distinguish three different types of orbits of a proper action. Let G · p be an
orbit, for some p ∈ M̄ . If for each q ∈ M̄ the isotropy group Gp is conjugate in G to some
subgroup of Gq, then G · p is called a principal orbit. The union of all the principal orbits
is an open and dense subset of M̄ . Any principal orbit has maximal dimension. An orbit
of maximal dimension which is not principal is said to be an exceptional orbit. A singular
orbit is an orbit whose dimension is lower than the dimension of a principal orbit. The
cohomogeneity of a proper action is defined to be the codimension of a principal orbit.

Restricting to the study of proper actions in the semi-Riemannian setting does not
seem to be a natural assumption. For instance, the action of the connected component
of the identity of SO(1, n) (see Subsection 1.4.2) on the (n + 1)-dimensional Minkowski
spacetime Ln+1 is a natural action which, nevertheless, is not proper. Indeed, this action
has four types of orbits: a fixed point, the past and future lightcones, and the hyperbolic
and De Sitter spaces (see Section 1.6). Since the lightcones are not closed in Ln+1, one
deduces that this action cannot be proper. In any case, we can consider a natural notion
of cohomogeneity even in the semi-Riemannian setting. Thus, a not necessarily proper
isometric action of G on a semi-Riemannian manifold M̄ is said to be of cohomogeneity k
if the minimum codimension of the orbits of such action is k.

Finally, let us comment on an important kind of isometric actions on the particular
setting of Riemannian manifolds, namely the class of polar actions. A proper isometric
action of a connected Lie group G on a Riemannian manifold M̄ is called polar if there
exists an immersed submanifold Σ of M̄ satisfying:

(i) Σ intersects every G-orbit, and

(ii) for any p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit
through p at p, Tp(G · p), are orthogonal.
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Under these conditions, the submanifold Σ is called a section of the G-action, and it is
always a totally geodesic submanifold of M̄ . Any polar action admits sections through any
given point. Every cohomogeneity one action on a Riemannian manifold is polar.

1.4 Semisimple Lie algebras

The main purpose of this section is to briefly recall some basic definitions and properties
concerning semisimple Lie groups and Lie algebras, with a focus on their Iwasawa decom-
position. We refer the reader to [12], [45] and [46] to get further information on the Iwasawa
decomposition of a semisimple Lie algebra. Subsections 1.4.1 and 1.4.2 below will be de-
voted to describing the Iwasawa decompositions of two well-known examples of semisimple
Lie algebras that will play an important role in this thesis: so(1, n) and su(1, n).

We firstly fix some notation concerning Lie groups and Lie algebras. Given a Lie group
G, we will denote its associated Lie algebra by the corresponding gothic letter g. Let Exp
denote the Lie exponential map. For each g ∈ G, the conjugation map is Ig : G → G,
h 7→ ghg−1. We will denote by Aut(g) the group of automorphisms of g, that is, the linear
bijective transformations ϕ : g→ g satisfying ϕ([X, Y ]) = [ϕ(X), ϕ(Y )], for any X, Y ∈ g.
Then, the Lie group adjoint map Ad: G → Aut(g) is defined by Ad(g) = (Ig)∗e, where
g ∈ G and e denotes the identity element of G. Furthermore, the differential of Ad at e
defines the Lie algebra adjoint map ad: g→ Aut(g), X 7→ ad(X) = [X, ·]. Moreover, the
following relation holds:

Ad(Exp(X))(Y ) = ead(X)(Y ) =
∞∑
k=0

adk(X)(Y )

k!
.

The Killing form of g is the bilinear map B : g × g → R defined by B(X, Y ) =
tr(ad(X) ◦ ad(Y )), for each X, Y ∈ g. Note that, given any automorphism σ ∈ Aut(g),
then B(σ(X), σ(Y )) = B(X, Y ).

From now on, we will suppose that g is a semisimple Lie algebra, which means that
the Killing form B is nondegenerate. A Cartan involution is an involutive homomor-
phism θ : g → g in such a way that the map given by Bθ(X, Y ) = −B(θX, Y ) is a posi-
tive definite inner product on g. It follows immediately that this inner product satisfies
Bθ(ad(X)Y, Z) = −Bθ(X, ad(θX)Z), for any X, Y , Z ∈ g. Any semisimple Lie algebra ad-
mits a Cartan involution. As any involution, the Cartan involution θ has two eigenvalues,
+1 and −1. Let us denote by k and p the eigenspaces associated with these eigenvalues,
respectively. Then, the Lie algebra g can be rewritten as the direct sum g = k⊕p, which is
known as the Cartan decomposition of g. It is known that k turns out to be the Lie algebra
of a maximal compact Lie subgroup K of G, and that p is its orthogonal complement in
g with respect to B. Moreover, the restriction to k of the Killing form is negative definite,
the corresponding restriction to p is positive definite, and the following relations hold:

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (1.1)



14 1 Preliminaries

Now, we consider a maximal abelian subspace a of p and denote by a∗ its dual space.
Given H ∈ a and X, Y ∈ g, we have that Bθ(ad(H)X, Y ) = Bθ(X, ad(H)Y ), which implies
that each operator ad(H) ∈ End(g) is self-adjoint with respect to the inner product Bθ.
Moreover, if H1, H2 ∈ a, then [ad(H1), ad(H2)] = ad([H1, H2]) = 0, since a is abelian.
Thus, {ad(H) : H ∈ a} is a commuting family of self-adjoint endomorphisms of g. In
particular, they diagonalize simultaneously. The common eigenspaces are said to be the
restricted root spaces and their associated nonzero eigenvalues are called the restricted roots
of g. In other words, if for each covector λ ∈ a∗ we define

gλ = {X ∈ g : [H,X] = λ(H)X, for all H ∈ a},

then any gλ 6= 0 is a restricted root space, and any λ 6= 0 such that gλ 6= 0 is a restricted
root. Notice that g0 6= 0 since a ⊂ g0, and that g0 = k0 ⊕ a, where k0 denotes the
centralizer of a in k. Let Σ be the set of restricted roots of g. Then, given λ ∈ Σ, we
have that θgλ = g−λ. In particular, λ ∈ Σ if, and only if, −λ ∈ Σ. Moreover, we have
the bracket relation [gλ, gµ] ⊆ gλ+µ for any λ, µ ∈ a∗. One can consider the restricted root
space decomposition of g, that is, the direct sum of vector subspaces defined by

g = g0 ⊕

(⊕
λ∈Σ

gλ

)
,

which is an orthogonal decomposition with respect to Bθ.
We now choose a criterion of positivity on the set of restricted roots by defining a root

to be positive if it lies at the same side of a hyperplane in a∗ which does not contain any
root. Let Σ+ be the set of positive roots. We define

n =
⊕
λ∈Σ+

gλ,

which turns out to be a nilpotent Lie subalgebra of g by virtue of the properties of the
root space decomposition of g. Moreover, a ⊕ n is a solvable Lie subalgebra of g since
[a⊕n, a⊕n] = n is nilpotent. The Iwasawa decomposition theorem states that, at the level
of Lie algebras,

g = k⊕ a⊕ n

is a direct sum of vector spaces (but not an orthogonal direct sum), and at the level of Lie
groups, that there exists an analytic diffeomorphism K × A × N → G, (k, a, n) 7→ kan,
where A and N denote the connected and simply connected subgroups of G with Lie
algebras a and n, respectively. Since a normalizes n, the semidirect product AN is the
connected Lie subgroup of G whose Lie algebra is a ⊕ n. Furthermore, since A is abelian
and N is nilpotent, and both are simply connected, then each of them is diffeomorphic to
a Euclidean space [46, Theorem 1.127]. Then, AN is also diffeomorphic to a Euclidean
space.
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1.4.1 The Iwasawa decomposition of so(1, n)

We now give an explicit description of the Iwasawa decomposition of the Lie algebra of the
semisimple Lie group

SO(1, n) = {A ∈ GL(n+ 1,R) : AI1,nA
t = I1,n, det(A) = 1},

where I1,n denotes the diagonal matrix I1,n = diag(−1, 1, . . . , 1) and At is the transpose
matrix of A. Its associated semisimple Lie algebra is

so(1, n) = {X ∈ gl(n+ 1,R) : XI1,n + I1,nX
t = 0, tr(X) = 0}

= {(X, v) : X ∈ so(n), v ∈ Rn},

where

(X, v) ≡
(

0 vt

v X

)
.

Let (X, v), (Y,w) ∈ so(1, n). With the notation above, the Killing form of so(1, n) is
B((X, v), (Y,w)) = (n − 1) tr((X, v)(Y,w)), the Cartan involution is given by θ(X, v) =
−(X, v)t = (X,−v), and hence, we have an inner product Bθ in so(1, n) given by

Bθ((X, v), (Y,w)) = −B(θ(X, v), (Y,w)) = (n− 1)(tr(X tY ) + 2vtw).

With respect to the Cartan involution, we have the Cartan decomposition so(1, n) =
so(n)⊕ p, where we identify so(n) with the subgroup {(X, 0) : X ∈ so(n)} of so(1, n) and
p = {(0, v) : v ∈ Rn} ∼= Rn.

Consider e1 = (1, 0, . . . , 0) ∈ Rn and define a = R(0, e1), which turns out to be a
maximal abelian subspace of p. The root space decomposition is very simple in this case:
there exist only two roots, ±α, and hence so(1, n) = g−α ⊕ g0 ⊕ gα, where

gα =


0 0 vt

0 0 vt

v −v 0

 : v ∈ Rn−1

 ∼= Rn−1, g−α = θgα,

k0 =


0 0 0

0 0 0
0 0 X

 : X ∈ so(n− 1)

 ∼= so(n− 1), g0 = k0 ⊕ a.

Defining n = gα, we obtain the Iwasawa decomposition so(1, n) = k ⊕ a ⊕ n. The Lie
subalgebra k0 ⊕ a ⊕ n is known to be a maximal proper subalgebra of so(1, n), called a
parabolic subalgebra. In this work, an element in k0 ⊕ a⊕ n will be written as

Y + a+ v ≡

0 a vt

a 0 vt

v −v Y

 , where a ∈ R, v ∈ Rn−1 and Y ∈ so(n− 1).

Reductive subalgebras, that is, subalgebras of the form so(1, k) ⊕ so(n − k), for some k ∈
{0, 1, . . . , n−1}, are also maximal proper subalgebras of so(1, n). Any maximal subalgebra
of so(1, n) is either reductive or parabolic (see, for example, [62, Chapter 6, Theorem 1.9]
or [16]).
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1.4.2 The Iwasawa decomposition of su(1, n)

In this section we describe the Iwasawa decomposition of the Lie algebra of the semisimple
Lie group

SU(1, n) = {A ∈ GL(n+ 1,C) : AI1,nA
∗ = I1,n, det(A) = 1},

where, again, I1,n denotes the diagonal matrix I1,n = diag(−1, 1, . . . , 1) and A∗ is the
conjugate transpose matrix of A. Its corresponding semisimple Lie algebra is

su(1, n) = {X ∈ gl(n+ 1,C) : XI1,n + I1,nX
∗ = 0, tr(X) = 0}

= {(λ, v,X) : λ ∈ R, v ∈ Cn, X ∈ u(n), iλ+ tr(X) = 0},

where

(λ, v,X) ≡
(
iλ v∗

v X

)
.

Let now (λ, v,X), (µ,w, Y ) ∈ su(1, n). With the notation above, the Killing form of
su(1, n) is B((λ, v,X), (µ,w, Y )) = 2(n + 1) tr((λ, v,X)(µ,w, Y )). The Cartan involution
is given, in this case, by θ(λ, v,X) = −(λ, v,X)∗ = (λ,−v,X). Thus, we have an inner
product Bθ in su(1, n) induced by the Killing form, which is given by

Bθ((λ, v,X), (µ,w, Y )) = −B(θ(λ, v,X), (µ,w, Y )) = −2(n+ 1) tr((λ,−v,X)(µ,w, Y )).

With respect to the Cartan involution, one can consider the Cartan decomposition of
su(1, n), that is, su(1, n) = k⊕ p, where

k = {(λ, 0, X) : λ ∈ R, X ∈ u(n), iλ+ tr(X) = 0} = s(u(1)⊕ u(n)),

p = {(0, v, 0) : v ∈ Cn} ∼= Cn.

Let e1 = (1, 0, . . . , 0) ∈ Cn and define a = R(0, e1, 0), which turns out to be a maximal
abelian subspace of p. In this case, the set of roots consists of four elements, {±α,±2α},
so the root space decomposition of su(1, n) reads su(1, n) = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α,
where g−λ = θgλ, for λ ∈ {α, 2α}, and

gα =


0 0 v∗

0 0 v∗

v −v 0

 : v ∈ Cn−1

 ∼= Cn−1,

g2α =


iµ −iµ 0
iµ −iµ 0
0 0 0

 : µ ∈ R

 ∼= R,

g0 =


iµ x 0
x iµ 0
0 0 X

 : x, µ ∈ R, X ∈ u(n− 1), 2iµ+ tr(X) = 0

 .

If we define n = gα ⊕ g2α, we obtain the Iwasawa decomposition su(1, n) = k ⊕ a ⊕ n.
The Lie subalgebra a⊕ n of su(1, n) is a solvable Lie algebra which will play an important
role in several chapters of this thesis.
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1.5 Complex space forms

This section is devoted to presenting the construction and main properties of the two
families of Hermitian symmetric spaces of rank one: complex projective and hyperbolic
spaces. We refer to [35] and [60] for more information on this topic.

We start by recalling some terminology concerning complex, Hermitian and Kähler
manifolds. See [74] for more details. Let V be a vector space equipped with an inner
product 〈·, ·〉. An orthogonal transformation J of V satisfying J2 = − Id is said to be
a complex structure on V . In particular, if J is a complex structure on V , the following
properties are satisfied for every u, v ∈ V :

(i) 〈Ju, Jv〉 = 〈u, v〉, that is, 〈·, ·〉 is a Hermitian inner product;

(ii) 〈Ju, v〉 = −〈u, Jv〉, that is, J ∈ so(V ).

A complex manifold is a smooth manifold M̄ that admits charts with image onto open
subsets of Cn in such a way that the coordinate transitions are holomorphic. This induces
an almost complex structure J on M̄ , that is, an endomorphism of the tangent bundle of
M̄ satisfying J2 = − Id. In particular, complex manifolds have even (real) dimension. M̄
is said to be a Hermitian manifold if it is Riemannian and complex, and J restricts to
a complex structure on each tangent space TpM̄ , with p ∈ M̄ . A Kähler manifold is a
Hermitian manifold M̄ such that ∇̄J = 0, where ∇̄ denotes the Levi-Civita connection of
M̄ . The endomorphism J is called the Kähler structure or the complex structure of M̄ .

It is known that Kähler manifolds of constant curvature and dimension greater than
two are necessarily flat. A suitable concept is then introduced in this context. Let M̄ be
a Kähler manifold with complex structure J and curvature tensor R̄. The holomorphic
sectional curvature K̄hol of M̄ is the restriction of the sectional curvature K̄ to J-invariant
two-dimensional subspaces of the tangent space. These subspaces are generated by pairs
of the form {v, Jv}, with v ∈ TpM̄−{0} for p ∈ M̄ , so the holomorphic sectional curvature
can be understood as the function which maps each unit tangent vector v ∈ TM̄ to the
real number K̄hol(v) = K̄(v, Jv) = 〈R̄(v, Jv)Jv, v〉.

A Kähler manifold M̄ is said to have constant holomorphic sectional curvature if K̄hol(v)
is equal to a constant value c for each unit tangent vector v to M̄ . If M̄ has constant
holomorphic sectional curvature c, its curvature tensor can be written as

R̄(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X,Z〉Y + 〈JY, Z〉JX − 〈JX,Z〉JY − 2〈JX, Y 〉JZ). (1.2)

Any complete, simply connected Kähler manifold of constant holomorphic sectional
curvature c is isometric to one of the following spaces: a complex Euclidean space Cn, if
c = 0; a complex projective space CP n, if c > 0; or a complex hyperbolic space CHn, if
c < 0. These spaces are the so-called complex space forms. A complex Euclidean space is
nothing but an even dimensional Euclidean space equipped with a complex structure. A
description of complex projective and hyperbolic spaces is settled below.



18 1 Preliminaries

1.5.1 Symmetric spaces

Both complex projective and hyperbolic spaces are particular examples of symmetric
spaces, so this section is devoted to presenting a brief review on this kind of Riemannian
manifolds. We refer to [45], [52] and [53] to get further information on this topic.

Let M̄ be a connected Riemannian manifold and let o ∈ M̄ . Consider r > 0 sufficiently
small so that normal coordinates are defined on the open geodesic ball Br(o) = {p ∈ M̄ :
d(o, p) < r}. One may consider the local geodesic symmetry at o, that is, the smooth map
so : Br(o)→ Br(o) given by expo(v) 7→ expo(−v), for v ∈ ToM̄ . In this thesis, exp denotes
the exponential map of a (semi-)Riemannian manifold. The Riemannian manifold M̄ is
said to be locally symmetric if at each point there exists a geodesic ball in such a way that
the corresponding local geodesic symmetry is an isometry. Locally symmetric spaces are
characterized by the fact that ∇̄R̄ = 0. A connected Riemannian manifold M̄ is called
a (Riemannian) symmetric space if each local geodesic symmetry so can be extended to
a global isometry so : M̄ → M̄ . Equivalently, M̄ is a symmetric space if, for each point
o ∈ M̄ , there exists an involutive isometry of M̄ such that o is an isolated fixed point of
such isometry. This involutive isometry turns out to be, precisely, so.

One may deduce some properties from the definition of symmetric space. For example,
any symmetric space is complete, which follows from the fact that geodesics can be extended
by means of geodesic reflections. Moreover, every symmetric space is a homogeneous space,
that is, for any p, q ∈ M̄ , there exists an isometry ϕ of M̄ such that ϕ(p) = q (indeed, it
is enough to consider the geodesic reflection ϕ = sm, where m denotes the midpoint of a
geodesic joining p and q).

We now give a more algebraic description of Riemannian symmetric spaces. In order to
do so, let us denote by G = I0(M̄) the connected component of the identity of the isometry
group I(M̄), and let g be the Lie algebra of G. We can consider the action G× M̄ → M̄
given by (g, p) 7→ g(p), which turns out to be transitive since M̄ is homogeneous. In
what follows, we fix a point o ∈ M̄ and define K as the isotropy group of G at o, which
is compact. Then, M̄ is diffeomorphic to the quotient space G/K by means of the map
Φ: G/K → M̄ given by gK 7→ g(o). Let 〈·, ·〉 denote the metric in G/K obtained after
pulling back the metric of M̄ . Then, Φ becomes an isometry and the metric 〈·, ·〉 is G-
invariant, which means that the map gK 7→ hgK is an isometry for any h ∈ G. The isotropy
representation of the symmetric space M̄ = G/K at o is the orthogonal representation
defined by K × ToM̄ → ToM̄ , (k, v) 7→ k∗v, where k∗ denotes the differential of k ∈ K.

Consider now the map σ : G→ G given by g 7→ sogso, which is an involutive automor-
phism of G. Moreover, G0

σ ⊂ K ⊂ Gσ, where Gσ = {g ∈ G : σ(g) = g} and G0
σ is the

connected component of the identity of Gσ. Consider the differential θ = σ∗ : g→ g, which
is a Lie algebra homomorphism called the Cartan involution of the symmetric space. The
Lie algebra of K turns out to be k = {X ∈ g : θ(X) = X}, and its complementary in g,
namely p = {X ∈ g : θ(X) = −X}, can be identified with ToM̄ by means of Φ∗. Then,
p can be equipped with an inner product that turns out to be Ad(K)-invariant. In fact,
the isotropy representation of G/K is equivalent to the adjoint representation of K on p,
K × p → p, (k,X) 7→ Ad(k)X. As in Section 1.4, the so-called Cartan decomposition
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g = k ⊕ p is an orthogonal decomposition with respect to the Killing form B of g and
relations (1.1) hold.

In the description above we have taken G = I0(M̄). However, when dealing with
concrete examples, it is customary to use a coset description G/K of M̄ where G is a finite
covering of I0(M̄). More precisely, one has to require the pair (G,K) to be an (almost
effective) symmetric pair, which means that G is a connected Lie group, K is a compact
subgroup of G, there is an involutive automorphism σ of G such that G0

σ ⊂ K ⊂ Gσ, and
G acts almost effectively on G/K. The condition that G acts almost effectively on G/K
means that the isotropy groups of such transitive action are finite, and this is equivalent, in
terms of the Cartan decomposition, to saying that g and k do not share any nonzero ideals.
In what follows, whenever we refer to a symmetric space M̄ ∼= G/K, we will implicitly
assume that (G,K) is a symmetric pair.

Let M̄ = G/K be a symmetric space and let us denote by M̃ its universal covering space,
which is also a symmetric space. Consider the isotropy representation restricted to the
connected component of the identity of K, say K0. If such representation is irreducible, we
say that M̄ is an irreducible symmetric space. Equivalently, the universal covering space M̃
does not split as a nontrivial product of symmetric spaces (unless M̄ is an Euclidean space).
If a symmetric space M̄ is not irreducible, then it is called reducible. The De Rham theorem
ensures that the universal covering space M̃ can be decomposed as M̃ = M̃0×M̃1×· · ·×M̃k,
where M̃0 is isometric to a Euclidean space and, for each i ∈ {1, . . . , k}, M̃i is a simply
connected irreducible symmetric space.

A symmetric space M̄ = G/K is called semisimple if the Euclidean factor of its universal

covering space has dimension zero. In such case, the Lie algebra of the isometry group of M̃
is semisimple, so one may apply the theory of semisimple Lie algebras given in Section 1.4.
A semisimple symmetric space M̄ = G/K is said to be of compact type if all the De Rham

factors of the universal covering space M̃ are compact, and it is said to be of noncompact
type if all the De Rham factors of M̃ are non-Euclidean and noncompact. The Lie algebra
g of the isometry group of a symmetric space of compact (resp. noncompact) type is
compact (resp. noncompact). By definition, an irreducible symmetric space must be of
one of the following three types: of Euclidean type (that is, a flat Euclidean space Rn),
of compact type, or of noncompact type. Moreover, if B is the Killing form of g, then
the symmetric space is of compact, noncompact, or Euclidean type if, and only if, B|p×p is
negative definite, positive definite, or identically zero, respectively.

In particular, if M̄ ∼= G/K is a symmetric space of noncompact type, g is a semisimple
Lie algebra and the restriction of the Killing form B to p is positive definite. One can
consider the Iwasawa decomposition g = k⊕ a⊕ n, and hence the corresponding Iwasawa
decomposition at the level of Lie groups, G = KAN . Moreover, every symmetric space
of noncompact type can be regarded as a solvable Lie group endowed with a left-invariant
metric. Indeed, consider the smooth function φ : G → M̄ given by h 7→ h(o). By the
Iwasawa decoposition, the restriction φ|AN : AN → M̄ turns out to be a diffeomorphism,
so a ⊕ n can be identified with the tangent space ToM̄ using φ∗. The metric g of M̄ can
be pulled back to obtain a Riemannian metric (φ|AN)∗g on AN . Thus, (AN, (φ|AN)∗g)
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and (M̄, g) are isometric Riemannian manifolds. Let Lh denote the left translation in G
by the element h ∈ G. The metric g on M̄ is invariant under isometries, and hence under
elements of G. Then it follows that, for any h ∈ G,

L∗h(φ
∗g) = L∗h φ

∗(h−1)∗g = (h−1 ◦ φ ◦ Lh)
∗g = φ∗g,

since (h−1◦φ◦Lh)(h
′) = h−1(hh′(o)) = h′(o) = φ(h′) for all h′ ∈ G. Thus, every symmetric

space of noncompact type M̄ can be seen as the solvable Lie group AN endowed with a
left-invariant metric (φ|AN)∗g.

An important particular class of symmetric spaces is that of Hermitian symmetric
spaces. A symmetric space M̄ is said to be Hermitian if it is a Hermitian manifold,
and for each p ∈ M̄ , the geodesic symmetry sp is a holomorphic transformation. Any
Hermitian symmetric space is Kähler. Irreducible nonflat Hermitian symmetric spaces
G/K are characterized by the property that K is not semisimple (indeed K has one-
dimensional center).

The rank of a symmetric space M̄ is defined to be the dimension of a maximal flat,
totally geodesic submanifold of M̄ , or equivalently, as the dimension of a maximal abelian
subspace of p. In this thesis, we are mostly interested in rank one irreducible semisimple
Hermitian symmetric spaces. These are, precisely, the nonflat complex space forms, namely
the complex projective spaces CP n and the complex hyperbolic spaces CHn, which we will
describe in the next subsections.

1.5.2 The complex projective space

As a smooth manifold, the complex projective space of complex dimension n (real dimen-
sion 2n), commonly denoted by CP n, is the set of complex lines of Cn+1 through the origin,
or equivalently, it is the quotient manifold of a sphere S2n+1(r) ⊂ Cn+1 of radius r by the
equivalence relation given by z ∼ λz, where z ∈ Cn+1 and λ ∈ S1 ⊂ C. We denote by π
the Hopf map, that is, the quotient projection of the sphere onto the complex projective
space, π : S2n+1(r)→ CP n, which is a smooth surjective submersion. The metric that we
consider in CP n is the one which makes the Hopf map a Riemannian submersion.

We now give a more detailed description of the complex projective space. In order to
do so, we consider a complex structure J on R2n+2 which allows us to identify R2n+2 with
Cn+1, where the multiplication by the imaginary unit i is induced by J . Consider the
scalar product on Cn+1 given by

〈z, w〉 = Re

(
n∑
k=0

zkw̄k

)
,

for z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1, which yields the standard Euclidean
metric 〈·, ·〉 on R2n+2.

The (2n + 1)-dimensional sphere of radius r is S2n+1(r) = {z ∈ Cn+1 : 〈z, z〉 = r2}
and its tangent space at z ∈ S2n+1(r) is TzS

2n+1(r) = {w ∈ Cn+1 : 〈z, w〉 = 0}. The



1.5.2 The complex projective space 21

restriction of the above inner product yields a Riemannian metric of constant curvature
1/r2 on S2n+1(r). A unit normal vector field along S2n+1(r) is given by ξz = 1

r
z.

Consider the equivalence relation on S2n+1(r) generated by z ∼ λz, with λ ∈ S1 ⊂ C,
which defines a principal fiber bundle over CP n with total space S2n+1(r), fiber S1 and
projection map π : S2n+1(r)→ CP n. Define V = Jξ. Then, V is a unit tangent vector to
S2n+1(r) and we can write

TS2n+1(r) = RV ⊕ V ⊥,

where V ⊥ denotes the orthogonal complement to V . Notice that if z ∈ S2n+1(r), RVz is
precisely the kernel of π∗z, where π∗ is the differential of π. Then, π∗ maps V ⊥z isomorphi-
cally onto Tπ(z)CP n, and for each X ∈ Tπ(z)CP n one can define the horizontal lift XL

z of X
to z as the unique tangent vector in V ⊥z such that π∗X

L
z = X. The map t 7→ ϕt(z) = eitz

is exactly the geodesic in S2n+1(r) starting at z with initial speed Jz = iz = rVz. We have
π ◦ ϕt = π, and so XL

ϕt(z)
= (ϕt)∗zX

L
z .

The complex structure J on CP n is defined by JX = π∗(JX
L) for X ∈ TCP n, whereas

the metric on CP n is given by 〈X, Y 〉 = 〈XL, Y L〉, for every X, Y ∈ TpCP n, p ∈ CP n.
This metric, called the Fubini-Study metric, makes π : S2n+1(r) → CP n a Riemannian
submersion, and moreover, it satisfies 〈JX, JY 〉 = 〈X, Y 〉 for any tangent vectors X and
Y . By virtue of the formulas for Riemannian submersions [58], the Levi-Civita connection
of CP n is given by

∇̄XY = π∗

(
∇̃XLY L

)
,

for all tangent vector fieldsX, Y on CP n, where ∇̃ is the Levi-Civita connection of S2n+1(r).
Using this formula, one can prove that J is Kähler.

The theory of Riemannian submersions [58] allows us to compute the holomorphic
sectional curvature of CP n, which turns out to be K̄hol(X) = 4/r2 for any unit tangent
vector X ∈ TCP n. Therefore, CP n is a space of constant holomorphic sectional curvature
c = 4/r2.

The unitary group U(n + 1) = {A ∈ GL(n + 1,C) : AA∗ = Id}, where A∗ denotes the
conjugate transpose matrix of A, preserves the standard metric of R2n+2 ≡ Cn+1. Since it
preserves complex lines through the origin of Cn+1 and acts transitively on them, U(n+ 1)
acts transitively by isometries on CP n by A(p) = π(Az), where p = π(z) ∈ CP n and
A ∈ U(n + 1). However, this action is not effective since all the transformations of the
form z Id, with |z| = 1, act trivially on CP n. The subgroup SU(n+ 1) consisting of those
matrices of U(n+ 1) whose determinant is one keeps acting transitively on CP n, but with
finite kernel constituted by the matrices of the form z Id, where z is an (n + 1)-th root of
the unit.

Hence, CP n is a homogeneous Riemannian manifold. The isotropy group at, for ex-
ample, the point p = π(r, 0, . . . , 0) ∈ CP n is S(U(1)U(n)), which is isomorphic to U(n).
Then, the complex projective space turns out to be the Hermitian symmetric space of rank
one given by CP n = SU(n+1)/S(U(1)U(n)). The fact that its rank is one can be deduced,
for example, from a classification of totally geodesic submanifolds, which implies that any
totally geodesic, flat submanifold of maximal dimension in CP n is a geodesic [73]. More
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precisely, any totally geodesic submanifold of CP n is holomorphically congruent to an open
part of a real projective space RP k for some k ∈ {1, . . . , n}, or to a complex projective
space CP k for some k ∈ {0, 1, . . . , n}. Moreover, any two totally geodesic submanifolds of
CP n are locally holomorphically congruent to each other if, and only if, they are locally
isometric.

1.5.3 The complex hyperbolic space

The construction of the complex hyperbolic space is formally quite similar to the one of
the complex projective space. However, their geometries turn out to be very different.

As in the previous section, consider the complex structure J on R2n+2, which allows us
to identify R2n+2 with Cn+1. Now we take the scalar product on Cn+1 defined by

〈z, w〉 = Re

(
−z0w̄0 +

n∑
k=1

zkw̄k

)
,

for z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1, which yields a standard semi-
Riemannian metric of signature (2, 2n).

The anti-De Sitter space of radius r, which can be regarded as the Lorentzian analog
to the real hyperbolic space, is defined as

H2n+1
1 (r) = {z ∈ Cn+1 : 〈z, z〉 = −r2}

Its tangent space at z ∈ H2n+1
1 (r) is TzH

2n+1
1 (r) = {w ∈ Cn+1 : 〈z, w〉 = 0}. The restriction

of the previous inner product yields a Lorentzian metric of constant sectional curvature
−1/r2 on H2n+1

1 (r). A unit normal vector field ξ along H2n+1
1 (r) is given by ξz = 1

r
z,

which, in this case, satisfies 〈ξ, ξ〉 = −1.
The complex hyperbolic space, as a smooth manifold, is defined as the space of time-

like lines through the origin of Cn+1, or equivalently, as the quotient manifold CHn =
H2n+1

1 (r)/ ∼, where ∼ is the equivalence relation generated by z ∼ λz, with λ ∈ S1 ⊂ C.
The canonical projection π : H2n+1

1 (r) → CHn is called the Hopf map of CHn. As a Rie-
mannian manifold, the metric of CHn is induced by the metric of the anti-De Sitter space
through the map π.

Define V = Jξ. Then V turns out be a unit tangent vector field to H2n+1
1 (r), where

now unit means 〈V, V 〉 = −1. Thus, both ξ and V are timelike vector fields. One can write

TH2n+1
1 (r) = RV ⊕ V ⊥,

where V ⊥ denotes the orthogonal complement to V with respect to the Lorentzian metric
on H2n+1

1 (r). If z ∈ H2n+1
1 (r), then RVz is in fact the kernel of π∗z. Thus, π∗z maps V ⊥z

isomorphically onto Tπ(z)CHn, and for each X ∈ Tπ(z)CHn one can define the horizontal
lift XL

z of X to z as the unique tangent vector in V ⊥z satisfying π∗X
L
z = X. The map

t 7→ ϕt(z) = eitz is exactly the geodesic on H2n+1
1 (r) starting at z with initial speed

Jz = iz = rVz. We have π ◦ ϕt = π, so XL
ϕt(z)

= (ϕt)∗zX
L
z .
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The complex structure J on CHn is then defined by JX = π∗(JX
L), for each X ∈

TCHn, and the metric on CHn is given by 〈X, Y 〉 = 〈XL, Y L〉, for every X, Y ∈ TpCHn,
p ∈ CHn.

It is important to point out that the metric of H2n+1
1 (r) is positive definite on V ⊥z and

thus the metric on CHn is positive definite. Hence, the complex hyperbolic space becomes a
Riemannian manifold. This metric, commonly called the Bergman metric of CHn, makes
the Hopf map π : H2n+1

1 (r) → CHn a semi-Riemannian submersion. Moreover, it is a
Hermitian metric, that is, 〈JX, JY 〉 = 〈X, Y 〉 for any tangent vectors X and Y . By virtue
of the formulas for semi-Riemannian submersions [59], the Levi-Civita connection of CHn

is given by

∇̄XY = π∗

(
∇̃XLY L

)
,

for tangent vector fields X, Y on CHn, where ∇̃ denotes here the Levi-Civita connection
of H2n+1(r). Using this formula, one can show that J is Kähler.

Again, the theory of semi-Riemannian submersions allows us to compute the holo-
morphic sectional curvature of CHn, which turns out to be K̄hol(X) = −4/r2 for any
X ∈ TCHn. Thus, CHn is a space of constant holomorphic sectional curvature c = −4/r2.

The indefinite unitary group U(1, n) = {A ∈ GL(n,C) : AI1,nA
∗ = I1,n}, where I1,n is

the diagonal matrix diag(−1, 1, . . . , 1), leaves invariant the metric of R2n+2 ≡ Cn+1 with
signature (2, 2n) that we have considered above. Moreover, it preserves timelike complex
lines through the origin of Cn+1 and acts transitively on them. Hence, one deduces that
U(1, n) acts transitively by isometries on CHn. As in the projective case, we can restrict
to SU(1, n), that is, the subgroup consisting of those matrices of U(1, n) with determinant
one, which still acts transitively on CHn. Then, CHn is a homogeneous Riemannian
manifold. Furthermore, the complex hyperbolic space is a Hermitian symmetric space
CHn = SU(1, n)/S(U(1)U(n)).

The fact that the complex hyperbolic space has rank one as a symmetric space comes
from a known result, which also completely determines both the extrinsic and intrinsic
geometry of totally geodesic submanifolds of CHn. More precisely, every totally geodesic
submanifold of CHn is holomorphically congruent to an open part of a real hyperbolic
space RHk for some k ∈ {1, . . . , n}, or to a complex hyperbolic space CHk for some
k ∈ {0, 1, . . . , n}. Moreover, any two totally geodesic submanifolds of CHn are locally
holomorphically congruent to each other if, and only if, they are locally isometric.

1.5.4 The solvable Lie group model of CHn

As we have pointed out in Subsection 1.5.1, any symmetric space of noncompact type can
be regarded as a solvable Lie group and its metric is left-invariant with respect to the Lie
group structure. In this section we focus on the particular case of the complex hyperbolic
space, and we give a description of CHn as a symmetric space and as a solvable Lie group.
In order to do so, we will use the notation introduced in Section 1.4 and Subsections 1.4.2,
1.5.1 and 1.5.3. We refer to [31] and [35] for more information on this topic.
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Recall from Subsection 1.5.3 that, as a symmetric space, the complex hyperbolic space
can be identified with the quotient space G/K, where, up to a finite quotient, G = SU(1, n)
is the connected component of the identity element of the isometry group of CHn and
K = Go = S(U(1)U(n)) is the stabilizer of a fixed element o ∈ CHn. The Lie algebras
of these two Lie groups are g = su(1, n) and k = s(u(1) ⊕ u(n)), respectively. Consider
the Iwasawa decompositions of G and g, which have been described in Section 1.4.2. It
follows from the Iwasawa decomposition at the Lie group level that the solvable part of
the Iwasawa decomposition of G, AN , acts simply and transitively on G/K ∼= CHn.

Consider the smooth map φ : G → CHn given by h 7→ h(o). Recall from Subsec-
tion 1.5.1 that, since AN acts simply and transitively on CHn, the restriction φ|AN : AN →
CHn is a diffeomorphism, so a⊕n can be identified with the tangent space ToCHn using φ∗.
The Bergman metric g of CHn can be pulled back to obtain a Riemannian metric (φ|AN)∗g
on AN , which makes (AN, (φ|AN)∗g) and (CHn, g) isometric Riemannian manifolds. As
we have proved in Subsection 1.5.1, CHn can be regarded as the solvable Lie group AN
endowed with the left-invariant metric (φ|AN)∗g which, from now on, will be denoted by
〈·, ·〉. If X, Y ∈ a⊕ n, the relation between 〈·, ·〉 and Bθ(·, ·) is given, up to homothety of
the metric of CHn, by

〈X, Y 〉 = Bθ(Xa, Ya) +
1

2
Bθ(Xn, Yn),

where the subscripts mean, in this case, the orthogonal projections, with respect to Bθ,
onto a and n, respectively.

Moreover, the Lie group AN can be equipped with a Kähler structure induced by the
Kähler structure of CHn via φ|AN . One obtains then a complex structure on AN , and
hence also on a⊕n, which will be denoted by J . The complex structure J on a⊕n satisfies
that gα is a J-invariant subspace and that Ja = g2α, where gα and g2α are the positive
root spaces whose sum is precisely n (see Subsection 1.4.2).

Thus, we have obtained a model for the complex hyperbolic space as a solvable Lie group
AN endowed with a left-invariant Riemannian metric whose Lie algebra a⊕n = a⊕gα⊕g2α

can be identified with the tangent space ToCHn, and such that gα can be seen as the
complex vector space Cn−1.

Let B ∈ a a unit vector and define Z = JB ∈ g2α. In particular, 〈B,B〉 = Bθ(B,B) = 1
and 2〈Z,Z〉 = Bθ(Z,Z) = 2. If U , V ∈ gα, the Lie bracket of a⊕n is given by the following
relations:

[B,Z] =
√
−cZ, [B,U ] =

√
−c
2

U, [Z,U ] = 0, [U, V ] =
√
−c〈JU, V 〉Z,

where c denotes the constant holomorphic sectional curvature of CHn. Moreover, the
expression for the Levi-Civita connection ∇̄ of (AN, 〈·, ·〉) is (cf. [17])

1√
−c
∇̄aB+U+xZ(bB + V + yZ) =

(
1

2
〈U, V 〉+ xy

)
B

− 1

2
(bU + yJU + xJV ) +

(
1

2
〈JU, V 〉 − bx

)
Z,
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where a, b, x, y are real numbers.
For each restricted root λ ∈ Σ = {±α,±2α}, we define pλ = (1− θ)gλ, the projection

onto p of the restricted root space associated with λ. Then, p = a⊕pα⊕p2α. Let i denote the
complex structure of p. Then, for each U ∈ gα, 2iB = (1−θ)Z and i(1−θ)U = (1−θ)JU .

Notice that the orthogonal projection map 1
2
(1−θ) : a⊕gα⊕g2α → a⊕pα⊕p2α defines

an equivalence between the adjoint K0-representation on a⊕ gα⊕ g2α and the adjoint K0-
representation on p = a ⊕ pα ⊕ p2α, where K0 denotes the connected Lie subgroup of K
whose Lie algebra is k0, which is isomorphic to U(n − 1). Furthermore, such equivalence
is an isometry between (a ⊕ gα ⊕ g2α, 〈·, ·〉) and (p, Bθ|p×p), and 1

2
(1 − θ) : gα → pα is a

complex linear map.

Geometric interpretation

To finish this section, we briefly present some ideas about the geometric interpretation of
the groups K, A and N which arise in the Iwasawa decomposition of the isometry group
of the complex hyperbolic space. For more information, we refer to [35] and [38].

Let M̄ be a complete, simply connected Riemannian manifold of nonpositive curvature
and denote by d̄ its Riemannian distance. Two complete unit speed geodesics γ and σ
in M̄ are said to be asymptotic if there exists a positive constant C in such a way that
d̄(γ(t), σ(t)) ≤ C, for every t ≥ 0. In the case of symmetric spaces of rank one, and
in particular for the complex hyperbolic space, if γ and σ are asymptotic, then we have
limt→∞ d̄(γ(t), σ(t)) = 0. This definition yields an equivalence relation among the complete
geodesics of M̄ . Each one of the equivalence classes is said to be a point at infinity of M̄ ,
and the set of the points at infinity of M̄ is the so-called ideal boundary of M̄ , commonly
denoted by M̄(∞).

If one considers the particular case M̄ = CHn, it is possible to equip CHn ∪ CHn(∞)
with the so-called cone topology, which makes CHn∪CHn(∞) homeomorphic to the closed
unit ball of R2n in such a way that the ideal boundary of CHn corresponds to the unit
sphere of R2n. In this model, two geodesics are asymptotic if they converge to the same
point of the unit sphere. Moreover, for each p ∈ CHn and each x ∈ CHn(∞), there exists
a unique geodesic γpx : R→ CHn satisfying

|γ̇px| = 1, γpx(0) = p, lim
t→∞

γpx(t) = x.

The Lie subalgebra a of g is a one-dimensional abelian subspace of p. In p ' ToCHn,
the Riemannian exponential map exp and the Lie group exponential map Exp coincide,
that is, Exp(tX) · o = expo(tX), for any X ∈ p and t ∈ R. It follows then that the
orbit A · o is the trace of a geodesic through o whose tangent space at o is given by
a ⊂ p ' ToCHn. This totally geodesic one-dimensional submanifold determines two points
at infinity, depending on the orientation we choose to parametrize it as a geodesic curve.
Choose one of them, say x. Then, the submanifold A of AN corresponds to γox(R) under
the isometry φ|AN : AN → CHn. In other words, γox(R) is the orbit of A through o, while
the remaining orbits of A are equidistant curves to A · o. The geodesic A · o intersects
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orthogonally all K-orbits, which are the fixed point o ∈ CHn and the geodesic spheres
centered at o.

Finally, we comment on the action of the nilpotent part of the Iwasawa decomposition,
N . Since N has dimension 2n− 1 and AN acts simply and transitively on CHn, it follows
that N acts isometrically with cohomogeneity one on CHn. Then it turns out that the
orbits of such action are hypersurfaces in CHn that are orthogonal at every point to the
integral curves of the left-invariant vector field B ∈ a. These integral curves are, according
to the notation above, geodesics with common point at infinity x.

More precisely, the orbits of the action of N are the horospheres of CHn determined
by the point at infinity x. To define this concept, consider a complete unit speed geodesic
curve γ in CHn. The Busemann function with respect to γ is the real function given as
follows:

f : CHn → R, fγ(p) = lim
t→∞

(d̄(γ(t), p)− t).

The horospheres are defined as the level sets of a Busemann function, which are parallel
real hypersurfaces of CHn defining a regular Riemannian foliation, all of whose leaves have
the same limit set of points at infinity, namely {x}. Thus, the N -orbits turn out to be the
horospheres adherent to x.

As we have said above, once we choose the maximal abelian subspace a of p, the orbit
of A through o can be parametrized in exactly two ways as unit speed geodesics, which
determine two points at infinity, say x and −x. The fact that the horospheres of the action
of N have x, and not −x, as limit set comes from the choice of the criterion of positivity in
the set of restricted roots {±α,±2α} (see Section 1.4.2). Thus, there exist two equivalent
ways of defining a particular Iwasawa decomposition of a semisimple Lie algebra g. The
algebraic one, described in Section 1.4, depends on the choice of a Cartan decomposition,
a maximal abelian subspace a of p and a criterion of positivity in the set of roots. The
geometric one, described in the present section, depends on the choice of a point o in the
associated symmetric space and a point at infinity x.

1.6 The Minkowski spacetime

In the setting of Lorentzian geometry, the simplest manifold is the Minkowski spacetime
Ln+1, that is, the Lorentzian analog to the Euclidean space. In this section, we present the
main properties of this space to be used in this work. We refer the reader to [59].

As a notational convention, in this thesis we will denote in bold font vectors of Ln+1

in order to distinguish them from vectors lying in other vector spaces. Throughout this
section, we will denote by Ln+1 the (n+ 1)-dimensional Minkowski spacetime, that is, the
smooth manifold Rn+1 equipped with the Minkowski metric, which is the flat Lorentzian
metric defined by

〈u,v〉 = −u0v0 +
n∑
i=1

uivi,
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where u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn) and ui, vi ∈ R for i ∈ {0, . . . , n}. In
this thesis, we are mainly interested in the case n = 3, that is, in the four-dimensional
Minkowski spacetime, which is used to model Special Relativity.

Since the Minkowski spacetime is a Lorentzian manifold, a tangent vector v ∈ TLn+1

can be spacelike, timelike or lightlike depending on whether 〈v,v〉 is positive, negative or
zero, respectively (see Section 1.1). Moreover, a vector v ∈ TLn+1 is said to be causal if
〈v,v〉 ≤ 0.

There exist several important subspaces of the Minkowski spacetime. The hyperbolic
space of radius r is the set H(r) = {v ∈ TpLn+1 : 〈v,v〉 = −r2}, while the De Sitter space
of radius r is S(r) = {v ∈ TpLn+1 : 〈v,v〉 = r2}, for p ∈ Ln+1. Moreover, the lightlike
cone at p is the set Cp = {v ∈ TpLn+1 : 〈v,v〉 = 0}, whereas the timelike cone is defined
by {v ∈ TpLn+1 : 〈v,v〉 < 0}.

One may introduce the notion of time-orientation, which is intimately related to the
concept of timelike cone, as follows. At each point p ∈ Ln+1, one can consider the timelike
cone in TpLn+1, which has two connected components. Once we have chosen one of these
connected components, we say that TpLn+1 has been time-oriented. The connected com-
ponent that we have chosen is called future of p, whereas the remaining one is called past
of p. Moreover, the Minkowski spacetime is time-orientable since it is possible to make
this choice at each point of Ln+1 in a continuous way.

Consider the Lie group O(1, n) = {A ∈ GL(n+ 1,R) : AI1,nA
t = I1,n}, usually referred

to as Lorentz group, where I1,n denotes the diagonal matrix I1,n = diag(−1, 1, . . . , 1) and
At is the transpose matrix of A. The isometry group of the Minkowski spacetime is known
to be the semidirect product I(Ln+1) = O(1, n) ×Φ Ln+1, called Poincaré group, where Φ
is defined by

Φ: O(1, n)→ Aut(Ln+1), Φ(a)(v) = av.

Thus, the natural operation of this group is given by (a,v)(b,w) = (ab,v +aw), for (a,v),
(b,w) ∈ I(Ln+1). Moreover, the inverse of an element (a,v) ∈ I(Ln+1) can be calculated
as (a,v)−1 = (a−1,−a−1v). Any connected Lie subgroup of the isometry group I(Ln+1)
acts on Ln+1 in the obvious way by (a,v) · p = ap + v.

The connected component of the identity of the isometry group of Ln+1 is known to
be the Lie group I0(Ln+1) = SO0(1, n)×Φ Ln+1, where SO0(1, n) denotes the subgroup of
O(1, n) consisting of those matrices of determinant one which preserve both orientation and
time-orientation. Its corresponding Lie algebra is the semidirect sum i(Ln+1) = so(1, n)⊕φ
Ln+1, where φ is given as follows:

φ : so(1, n)→ Der(Ln+1), φ(X)(v) = Xv.

The Lie bracket is given by the expression

[X + v, Y + w] = (XY − Y X) + (Xw− Y v),

for X + v, Y + w ∈ i(Ln+1). Moreover, the adjoint representation is, in this case,

Ad(a,v)(X + w) = aXa−1 − aXa−1v + aw,
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where (a,v) ∈ I0(Ln+1) and X + w ∈ i(Ln+1).
One may consider the rotational part of the Lie algebra i(Ln+1), that is, so(1, n),

whose Iwasawa decomposition has been described in Section 1.4.1. The so-called parabolic
subalgebra of so(1, n), that is, k0 ⊕ a ⊕ n, is known to be a maximal proper subalgebra
of so(1, n) which will play an important role throughout Chapter 4. Notice that, if we
define e = (1, 1, 0, . . . , 0) ∈ Ln+1, then it follows that this Lie algebra can be regarded
as k0 ⊕ a ⊕ n = {X ∈ so(1, n) : Xe ∈ Re}. Moreover, with the notation established in
Section 1.4.1, if p = (p0, p1, p) ∈ Ln+1, with p0, p1 ∈ R and p ∈ Rn−1, we have

(Y + a+ v) · p =
(
ap1 + vtp, ap0 + vtp, (p0 − p1)v + Y p

)
.



Chapter 2

Ruled real hypersurfaces in nonflat complex
space forms

This chapter is devoted to classifying ruled real hypersurfaces satisfying some additional
geometric properties in nonflat complex space forms. These properties include having
constant mean curvature, having shape operator of constant norm, or being biharmonic.
The results of this chapter have given rise to the articles [36], [37] and [66].

In Section 2.1, we will briefly recall some basic definitions and known results concern-
ing ruled hypersurfaces in complex space forms. Moreover, we will give the construction
and description of ruled minimal hypersurfaces in this type of ambient manifolds. In Sec-
tion 2.2, we will compute the Levi-Civita connection of an arbitrary ruled real hypersurface
in a nonflat complex space form. After that, we will impose several particular geometric
assumptions to get simpler expressions of the Levi-Civita connection and to finally obtain
classification results. Specifically, Section 2.3 is devoted to classifying ruled real hypersur-
faces in nonflat complex space forms having constant mean curvature, and in Section 2.4
we study ruled real hypersurfaces whose shape operators have constant norm. Finally, in
Section 2.5 we focus on biharmonic ruled real hypersurfaces.

2.1 Ruled hypersurfaces

To start with, we briefly review the terminology concerning ruled real hypersurfaces in
nonflat complex space forms needed for this work. We refer the reader to [22, Chapter 8],
[51] and [54].

Throughout this chapter, M̄ = M̄n(c) will denote a nonflat complex space form with
complex structure J and nonzero constant holomorphic sectional curvature c. Let M ⊂ M̄
be a real hypersurface, that is, a submanifold of real codimension one. Then, locally, there
exists a unique unit normal vector field to M , up to sign, say ξ. Denote by S = Sξ the
shape operator of M with respect to ξ. The tangent vector field Jξ is the so-called Hopf
vector field of M .

We now introduce the functions g, h : M → N, where g(p) is the number of distinct
principal curvatures of M at p ∈ M , and h(p) is the number of eigenspaces of S onto
which Jξ has nontrivial projection. If h = 1, then M is called a Hopf hypersurface, which
is equivalent to saying that the Hopf vector field is an eigenvector of the shape operator S
of M .

In the setting of non-Hopf hypersurfaces, ruled ones constitute a nice particular class.
A ruled hypersurface M of M̄ is a real hypersurface satisfying S(Jξ)⊥ ⊂ RJξ, where (Jξ)⊥

29
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denotes the distribution on M given by the tangent vectors to M that are orthogonal to Jξ.
However, there exist equivalent definitions for the notion of a ruled hypersurface in a nonflat
complex space form which turn out to be geometrically more clear. For example, from [22,
Proposition 8.27], a ruled real hypersurface in a nonflat complex space form M̄ can be
characterized as a real hypersurface satisfying that the maximal holomorphic distribution
(Jξ)⊥ is integrable and its leaves are totally geodesic submanifolds of M̄ . This result means
that any ruled hypersurface M ⊂ M̄ is foliated by totally geodesic leaves, commonly called
rulings, which are in fact open subsets of totally geodesic CP n−1 or CHn−1, depending on
whether the ambient space M̄ is CP n or CHn, respectively.

Let us introduce some notation to deal with ruled real hypersurfaces. For an arbitrary
real hypersurface M ⊂ M̄ , we define the functions λ = 〈SJξ, Jξ〉 and µ = |SJξ − λJξ|,
which give a measure of how far Jξ is from being a principal vector. Notice that, in
particular, if M is a Hopf hypersurface, then λ turns out to be the principal curvature
associated with Jξ, and µ vanishes identically on M . However, in the non-Hopf setting
(for example, if M is ruled), µ is nonvanishing on an open subset of M . In this case,
on such open subset we can consider a smooth unit vector field U1 in such a way that
SJξ − λJξ = µU1. Note that the pair {Jξ, U1} is orthonormal.

The notion of a ruled hypersurface in a nonflat complex space form can be characterized
in terms of the functions λ and µ, and the vector field U1 (see, for example, [1]). More
specifically, a real hypersurface M ⊂ M̄ is ruled if, and only if, the following conditions
hold:

(a) the function µ does not vanish on any open subset of M , and

(b) the unit vector field U1 defined above satisfies SJξ = λJξ + µU1, SU1 = µJξ and
SX = 0 for any X ∈ TM 	 span{Jξ, U1}.

Note that condition (b) can be reformulated by saying that the only nonzero elements of
the matrix expression of S with respect to an orthonormal basis {Jξ, U1, . . . , U2n−2} lie in
its 2× 2 upper-left submatrix, which has the form

S|span{Jξ,U1} =

(
λ µ
µ 0

)
.

Moreover, M is minimal if, and only if, λ = 0.
This algebraic description of the shape operator of M will allow us to easily deduce

some properties of ruled real hypersurfaces in nonflat complex space forms concerning, for
example, their principal curvatures. Such description will be used in Section 2.2 in order
to compute the Levi-Civita connection of M .

Any ruled real hypersurface in a nonflat complex space form M̄ can be constructed as
follows (see, for example, [1], [22], [51]). We consider a unit speed curve γ : I ⊂ R → M̄ ,
which will be called generating curve, and at each point γ(s), we attach totally geodesic
complex hyperplanes CP n−1 or CHn−1 (depending on the ambient space) orthogonally to
the plane spanned by {γ̇(s), Jγ̇(s)}, where γ̇ denotes the velocity of γ. The union of these
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hyperplanes yields a ruled real hypersurface of M̄ . Locally, ruled real hypersurfaces are
embedded, but globally they may have singularities, so in general one may have to restrict
to a small neighborhood of γ in order to avoid them. Every integral curve of the Hopf
vector field Jξ on a ruled real hypersurface M is a generating curve of M and, conversely,
any generating curve of a ruled real hypersurface M is an integral curve of Jξ, up to
reparametrization.

2.1.1 Geometry of a ruled real hypersurface in terms of a gener-
ating curve

Lohnherr and Reckziegel [51] investigated the extrinsic geometry of a ruled real hypersur-
face M in terms of the geometry of a generating curve γ. In this subsection we summarize
some of their results, which will be needed in Section 2.4. It will be enough, for our
purposes, to restrict to complex hyperbolic spaces, although similar results hold for the
projective case.

Let then γ : I → CHn be a unit speed curve, where I ⊂ R denotes an open interval
with 0 ∈ I. We decompose ∇̄γ̇ γ̇ into its (Jγ̇) and (Cγ̇)⊥ components as

∇̄γ̇ γ̇ = −λγJγ̇ +Nγ,

where λγ is a smooth function along γ, and Nγ is a smooth vector field in (Cγ̇)⊥ along γ.
We also denote µγ = |Nγ|.

Fix a linear isomorphism between Cn−1 and (Cγ̇(0))⊥. Then, for each unit vector
v ∈ Cn−1 ∼= (Cγ̇(0))⊥ and s ∈ R, let us denote by Zsv(t) the parallel transport of sv along γ

with respect to the connection ∇̃ of the bundle (Cγ̇)⊥ given by ∇̃XY := (∇̄XY )(Cγ̇)⊥ , where
the subscript means orthogonal projection. Now we can consider the (maybe singular)
parametrization f : I × Cn−1 → CHn given by

f(t, sv) = expγ(t) Zsv(t),

which formalizes the construction of a (maybe singular) ruled real hypersurface M :=
f(I × Cn−1). The singular points of M , that is, the points f(t, sv) such that f∗(t,sv) is not
an immersion, turn out to be precisely the points for which f∗(t,sv)(∂t) = 0, which happens
exactly when the function

ρ(t, sv) := |f∗(t,sv)(∂t)| =
(
x(t, sv)2 + y(t, sv)2

)1/2
(2.1)

vanishes, where

x(t, sv) := cosh

(√
|c|
2

s

)
− 2√

|c|
〈Zv(t), Nγ(t)〉 sinh

(√
|c|
2

s

)
, (2.2)

y(t, sv) := − 2√
|c|
〈Zv(t), JNγ(t)〉 sinh

(√
|c|
2

s

)
.
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It easily follows that the ruling Mt = {f(t, sv) : sv ∈ Cn−1} through γ(t) contains singular
points if, and only if, µγ(t) >

√
−c/2. Let Mreg = {f(t, sv) : ρ(t, sv) 6= 0} be the open

subset of M of regular points. It turns out that Mreg is connected. Moreover, Mreg is a
smooth ruled real hypersurface with unit normal vector field ξf(t,sv) = −Jf∗(t,sv)(∂t)/ρ(t, sv)
and Hopf vector field Jξf(t,sv) = f∗(t,sv)(∂t)/ρ(t, sv). In particular, the facts stated at the
beginning of this section hold for Mreg. It turns out that the functions µ and λ describing
the shape operator of Mreg are given by

µ(t, sv) =

(
1

ρ(t, sv)2

(
µγ(t)

2 +
c

4

)
− c

4

)1/2

, (2.3)

λ(t, sv) =
1

ρ(t, sv)

(
λγ(t) +

1

ρ(t, sv)2
(y∂tx− x∂ty)(t, sv)

)
.

From the first expression, it follows that either µ <
√
−c/2, µ =

√
−c/2 or µ >

√
−c/2 on

each ruling. Indeed, we have either µ(Mt∩Mreg) = [0,
√
−c/2), µ(Mt∩Mreg) = {

√
−c/2},

or µ(Mt ∩Mreg) = (
√
−c/2,+∞), respectively.

As we have already mentioned, similar formulas as above (with spherical trigonometric
functions instead of hyperbolic functions) hold when the ambient space is a complex pro-
jective space, although some behaviors are different. For example, in the projective case,
each ruling has singularities (i.e. Mt ∩Mreg 6= Mt, for each t ∈ I), and µ(Mt ∩Mreg) is
always [0,+∞). For more details, we refer to [51].

2.1.2 Ruled minimal hypersurfaces. The examples

Ruled minimal hypersurfaces constitute an important subclass of ruled real hypersurfaces in
complex projective and hyperbolic spaces. The classification of ruled minimal hypersurfaces
in nonflat complex space forms has been achieved by Lohnherr and Reckziegel in [51] (see
also [1]), where they proved that any ruled minimal hypersurface in M̄ must be an open
part of one of the following hypersurfaces:

(i) a Kimura-type hypersurface in a complex projective or hyperbolic space, or

(ii) a bisector in a complex hyperbolic space, or

(iii) a Lohnherr hypersurface in a complex hyperbolic space.

One can easily construct ruled minimal hypersurfaces in nonflat complex space forms
as above by requiring the generating curve γ to be a circle contained in a totally geodesic
real projective plane RP 2 or in a totally geodesic real hyperbolic plane RH2, depending
on whether M̄ is a complex projective or hyperbolic space, respectively. By definition
(see [12, Subsection 10.4.2]), a circle is a smooth curve γ : I → M̄ parametrized by arc
length with constant curvature κ = |∇̄γ̇ γ̇| satisfying the relation ∇̄γ̇∇̄γ̇ γ̇ = −κ2γ̇. Indeed,
every generating curve of an arbitrary minimal ruled hypersurface in a nonflat complex
space form is a circle which lies in some totally geodesic real projective or hyperbolic plane
of constant sectional curvature c/4, RP 2 or RH2, respectively (see, for example, [1]).
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There exist three types of circles in RH2 depending on the value of the curvature κ
with respect to the critical value

√
|c|/2. If κ =

√
|c|/2, the circle is a horocycle, that

is, a one-dimensional horosphere in RH2. If κ >
√
|c|/2, the circle is a one-dimensional

geodesic sphere in RH2 (we call it also a closed circle), whereas if κ <
√
|c|/2, we obtain an

equidistant curve to a geodesic in RH2, which we will call unbounded circle. Each of the
three types of circles corresponds exactly to a type of ruled minimal hypersurface in CHn

according to Table 2.1. Recall that by c we denote the constant holomorphic sectional
curvature of the ambient complex space form M̄ .

Circle type κ Hypersurface type

Closed circle κ >
√
|c|/2 Kimura-type hypersurface

Horocycle κ =
√
|c|/2 Lohnherr hypersurface

Unbounded circle κ <
√
|c|/2 Bisector

Table 2.1: Circle types and ruled minimal hypersurfaces in CHn

In the projective case, there exists a unique type of circle in RP 2 (one-dimensional
geodesic spheres, which we call also closed circles), which corresponds with the unique
type of minimal ruled hypersurfaces in CP n.

We now give a more detailed description of these three examples of minimal ruled
hypersurfaces in nonflat complex space forms.

Kimura-type hypersurfaces

A Kimura-type hypersurface [47] in a nonflat complex space form M̄ is the ruled minimal
hypersurface constructed by attaching totally geodesic complex hyperplanes CP n−1 or
CHn−1 orthogonally to the points of a closed circle (of curvature κ >

√
|c|/2 in the

hyperbolic case) contained in a totally geodesic real projective or hyperbolic plane, RP 2

or RH2, respectively.

If n = 2, this hypersurface is called a Clifford cone and it can also be constructed as
follows. The Lie group U(1)× U(1) acts polarly with cohomogeneity two on M̄2(c). Such
action has three fixed points in CP 2 whereas it has only one fixed point in CH2. Let p
denote one of these fixed points and let S3

p(r) be a geodesic sphere centered at p. Then,
the Clifford cone with vertex p is the singular hypersurface consisting of all geodesic rays
starting from p and hitting the only two-dimensional orbit of the action of U(1) × U(1)
that is minimal as a submanifold of S3

p(r) (see [28]). If n > 2, one can construct a Kimura-
type hypersurface using a Clifford cone as follows. We consider a Clifford cone inside a
totally geodesic complex projective or hyperbolic plane, CP 2 ⊂ CP n or CH2 ⊂ CHn, and
we attach totally geodesic CP n−2 or CHn−2, respectively, perpendicularly to the complex
projective or hyperbolic plane along the points of the Clifford cone.
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Bisectors

A bisector in a complex hyperbolic space is a ruled minimal hypersurface constructed by at-
taching totally geodesic hyperplanes CHn−1 perpendicularly to the points of an unbounded
circle of curvature κ <

√
|c|/2 contained in a totally geodesic real hyperbolic plane RH2.

One can give an alternative definition of a bisector as a geometric locus. Indeed, given
two points p, q ∈ CHn, the bisector they determine is the set of points which are equidistant
to p and q. In the setting of real space forms, bisectors are totally geodesic hypersurfaces.
However, in the context of complex space forms, totally geodesic hypersurfaces cannot
occur (see [72]), so bisectors constitute one of the examples of real hypersurfaces in such
spaces that are closer to being totally geodesic.

The Lohnherr hypersurface

The Lohnherr hypersurface of CHn (also called a fan [40]) is the ruled minimal hypersurface
constructed by attaching totally geodesic hyperplanes CHn−1 orthogonally to a horocycle
contained in a totally geodesic real hyperbolic plane RH2.

It is known that the Lohnherr hypersurface can be characterized as the unique com-
plete ruled hypersurface of CHn (or even of a nonflat complex space form) having constant
principal curvatures [51]; specifically, its principal curvatures are ±

√
−c/2, both with mul-

tiplicity one, and 0. Furthermore, the Lohnherr hypersurface is also the only minimal
hypersurface of CHn which is homogeneous [13].

Taking into account its homogeneity, one can give an alternative construction of the
Lohnherr hypersurface using the Lie group structure of the isometry group I(CHn). Fol-
lowing Subsections 1.4.2 and 1.5.4, let G = SU(1, n), which is a finite covering of the
connected component of the identity of the isometry group of the complex hyperbolic
space, and consider its Iwasawa decomposition G = KAN , where K = S(U(1)U(n)) is
the isotropy group of a fixed point o ∈ CHn. Consider also the Iwasawa decomposition
at the level of Lie algebras, that is, g = k ⊕ a ⊕ n, where n = gα ⊕ g2α according to the
root space decomposition theorem. We now choose a linear hyperplane w ⊂ gα and define
s = a⊕w⊕g2α, which turns out to be a Lie subalgebra of the solvable part of the Iwasawa
decomposition of g, a⊕ n. Let us denote by S the connected Lie subgroup of G whose Lie
algebra is s. The orbit of this subgroup S through o is a Lohnherr hypersurface of CHn

that will be denoted by W 2n−1 := S · o.

2.2 The Levi-Civita connection of a ruled hypersur-

face in a complex space form

The main purpose of this section is to compute the Levi-Civita connection of an arbitrary
ruled real hypersurface in a nonflat complex space form. Let then M be a ruled real
hypersurface in a nonflat complex space form M̄ with (locally defined) unit normal vector
field ξ. We start by studying the principal curvatures of such a hypersurface. Recall that
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h : M → N is the function which gives, for each point p ∈M , the number of eigenspaces of
the shape operator of M at p onto which the Hopf vector field Jξ has nontrivial projection.

Proposition 2.2.1. Let p ∈ M such that h(p) 6= 1. Then h(p) = 2, M has exactly two
nonzero principal curvatures α, β at p, both of multiplicity one, and 0 is always a principal
curvature of M . Moreover, Jξp = au+ bv for u ∈ Tα(p), v ∈ Tβ(p) and a, b ∈ R such that
a2 + b2 = 1 and

a2 =
α

α− β
, b2 =

β

β − α
. (2.4)

Proof. Fix p ∈ M . From the definition of ruled real hypersurface in a nonflat complex
space form above we know that S(Jξ)⊥ ⊂ RJξ, and hence, the shape operator S of M at
p satisfies

SJξp = λJξp + µz, Sz = µJξp, Sw = 0,

for certain unit vector z ∈ TpM orthogonal to Jξp, and for all w ∈ TpM perpendicular
to Jξp and z. Let α and β be the eigenvalues of S restricted to the invariant subspace
RJξp⊕Rz, and u, v some corresponding orthogonal eigenvectors of unit length. Thus, one
can write Jξp = au + bv for some a, b ∈ R with a2 + b2 = 1. Moreover, a 6= 0 6= b since
h(p) 6= 1 by assumption, and hence, we must have h(p) = 2. Then

λ = 〈SJξp, Jξp〉 = 〈aαu+ bβv, au+ bv〉 = a2α + b2β.

Moreover, we have λ = α+β due to the invariance of the trace of S. Both equations imply
α 6= β, since otherwise this would give us that α = λ = 2α, producing α = β = 0, which
contradicts h(p) 6= 1. Finally, combining again both equations with a2 + b2 = 1 we obtain
the formulas for a2 and b2 in the statement.

Notice that, from the matrix form of the shape operator S given in the previous section,
without restriction of generality, the principal curvatures α and β of M can be expressed
in terms of the functions λ and µ defined in Section 2.1 as follows:

α =
λ−

√
λ2 + 4µ2

2
and β =

λ+
√
λ2 + 4µ2

2
.

It is known that ruled hypersurfaces in a nonflat complex space form cannot be Hopf.
This implies that no open subset of a ruled hypersurface M in M̄n(c), c 6= 0, is Hopf.
Thus, by virtue of Proposition 2.2.1, h = 2 on an open and dense subset U of M .

Again by Proposition 2.2.1 we know that, at each point, U has exactly two distinct
nonzero principal curvatures. Altogether, U has exactly two nonzero principal curvature
functions α and β, both of multiplicity one at every point. We also have Jξ = aU + bV for
some unit vector fields U ∈ Γ(Tα) and V ∈ Γ(Tβ) and smooth functions a, b : U → R with
a2 + b2 = 1, and again by Proposition 2.2.1, satisfying (2.4). In particular, since h = 2 on
U , this equation implies α 6= 0 6= β at every point of U . From now on we will work on the
open and dense subset U of M .

The following result has been proved under slightly different assumptions in [27], [28]
and [29]. Although the proof in our setting is similar, we include it for completeness.
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Proposition 2.2.2. With the notation above, there exists A ∈ Γ(T0) such that

Jξ = aU + bV, JU = −bA− aξ,
JA = bU − aV, JV = aA− bξ.

Proof. The Hopf vector field Jξ is a unit tangent vector field to M that has nontrivial
projection onto the principal curvature spaces Tα and Tβ. Then, one can write Jξ =
aU + bV , where U ∈ Γ(Tα) and V ∈ Γ(Tβ) are unit vector fields, and a, b are smooth
functions on U such that a2 + b2 = 1 and a, b > 0.

Since −ξ = J2ξ = aJU + bJV and a 6= 0, taking inner product with V one gets
〈JU, V 〉 = 0. Moreover, 〈JU, ξ〉 = −〈U, Jξ〉 = −〈U, aU + bV 〉 = −a. Then, there exists a
unit vector field A ∈ Γ(T0) such that JU ∈ span{A, ξ}, and since U has length 1, we get
〈JU,A〉 = ±b. By changing the sign of A if necessary, we can assume that JU = −bA−aξ.
Similarly, one can show that JV = aA− bξ. Finally, these expressions imply 〈JA,U〉 = b,
〈JA, V 〉 = −a and 〈JA, ξ〉 = 0, from where JA = bU − aV .

With these ingredients, we compute the Levi-Civita connection of M .

Proposition 2.2.3. Let M be a ruled hypersurface in a nonflat complex space form. Then,
its Levi-Civita connection satisfies the following equations:

〈∇UU, V 〉 =
V (α)

α− β
, 〈∇V V, U〉 = − U(β)

α− β
,

〈∇UU,A〉 =
4A(α)− 3abc

4α
, 〈∇V V,A〉 =

4A(β) + 3abc

4β
,

〈∇UV,A〉 =
3c

4(α− β)
+ α− aA(α)

bα
, 〈∇VU,A〉 =

3c

4(α− β)
− β − bA(β)

aβ
,

〈∇AU, V 〉 =
acβ − 4aαβ2 − 4bαA(β)

4aβ(α− β)
, ∇AA = 0.

Moreover, for any unit vector field orthogonal to A in the 0-principal curvature distribution,
W ∈ Γ(T0 	 RA), the following relations hold:

〈∇UU,W 〉 =
W (α)

α
, 〈∇V V,W 〉 =

W (β)

β
, 〈∇WU, V 〉 =

bαW (β)

aβ(β − α)
,

〈∇UV,W 〉 = −aW (α)

bα
, 〈∇VU,W 〉 = −bW (β)

aβ
.

In addition,

U(β) = −β
2U(α) + 2abα(α− β)V (β)

3αβ
, V (α) =

2abβ(α− β)U(α)− α2V (β)

3αβ
,

A(α) =
b(α− β)(aβ(4αβ − c) + 2bαA(β))

2β2
, W (α) = −α

β
W (β).
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Proof. Since U and V are orthogonal eigenvectors of the shape operator S associated with
the eigenvalues α and β, respectively, we have

〈(∇US)V, U〉 = 〈∇U(SV )− S∇UV, U〉 = 〈∇U(βV ), U〉 − α〈∇UV, U〉
= 〈U(β)V + β∇UV, U〉 − α〈∇UV, U〉 = −(α− β)〈∇UV, U〉.

As U has constant length, 〈∇VU,U〉 = 0, and thus, proceeding as before,

〈(∇V S)U,U〉 = 〈∇V (SU)− S∇VU,U〉 = 〈∇V (αU), U〉 − α〈∇VU,U〉
= 〈V (α)U + α∇VU,U〉 − α〈∇VU,U〉 = V (α).

Using the expression for the curvature tensor of a complex space form (1.2) and the relations
given in Proposition 2.2.2, we obtain that 〈R̄(U, V )U, ξ〉 = 0. Then, using the previous
relations and applying the Codazzi equation to the triple (U, V, U), we get

0 = V (α) + (α− β)〈∇UV, U〉, (2.5)

which gives the first relation in the statement. Analogously, the Codazzi equation applied
to the triple (V, U, V ) yields

0 = U(β)− (α− β)〈∇VU, V 〉, (2.6)

which is equivalent to the second relation in the statement.
Since ∇̄J = 0, using the definition of the shape operator and the relations Jξ = aU+bV

and 〈∇UU,U〉 = 0, we obtain

U(a) = U〈Jξ, U〉 = 〈∇̄UJξ, U〉+ 〈Jξ, ∇̄UU〉 = 〈J∇̄Uξ, U〉+ 〈Jξ,∇UU〉
= 〈SU, JU〉+ 〈aU + bV,∇UU〉 = b〈V,∇UU〉 = −b〈∇UV, U〉.

By multiplying this expression by 2a and taking into account that

2aU(a) = U(a2) = U

(
α

α− β

)
=
αU(β)− βU(α)

(α− β)2
,

we get, using (2.5),
0 = βU(α)− αU(β) + 2ab(α− β)V (α). (2.7)

Analogously, expanding the relation V (a) = V 〈Jξ, U〉, we deduce, inserting (2.6), that

0 = βV (α)− αV (β)− 2ab(β − α)U(β). (2.8)

Equations (2.7) and (2.8) constitute a linear system in the unknowns U(β) and V (α).
After some calculations using (2.4), we get that the determinant of the matrix of this
system vanishes if and only if αβ does, which cannot occur in U . Then, there exists a
unique solution given by

U(β) = −2abα(α− β)V (β) + β2U(α)

3αβ
, V (α) =

2abβ(α− β)U(α)− α2V (β)

3αβ
. (2.9)
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Proceeding as above, the Codazzi equation applied to the triples (U,A, U), (V,A, V ),
(A,U,A) and (A, V,A) yields

〈∇UU,A〉 =
4A(α)− 3abc

4α
, 〈∇V V,A〉 =

3abc+ 4A(β)

4β
, (2.10)

〈∇AA,U〉 = 0, 〈∇AA, V 〉 = 0.

Since ∇̄J = 0 and Jξ = aU + bV , expanding the relations 0 = U〈Jξ, A〉 and 0 =
V 〈Jξ, A〉, inserting the expressions for 〈∇UA,U〉 and 〈∇VA, V 〉 that follow from (2.10),
and using (2.4), we have

〈∇UV,A〉 =
3c

4(α− β)
+ α− aA(α)

bα
, 〈∇VA,U〉 =

bA(β)

aβ
+ β − 3c

4(α− β)
. (2.11)

Now, the Codazzi equation applied to the triple (V,A, U) yields, after inserting the
expression for 〈∇VA,U〉 given in (2.11),

0 = 〈R̄(V,A)U, ξ〉 − 〈(∇V S)A,U〉+ 〈(∇AS)V, U〉

=
c(2α + β)

4(α− β)
+ α〈∇VA,U〉 − (α− β)〈∇AV, U〉

= − c
4

+ αβ + (β − α)〈∇AV, U〉+
bαA(β)

aβ
,

from where

〈∇AV, U〉 =
4bαA(β) + 4aαβ2 − acβ

4aβ(α− β)
. (2.12)

Similarly, applying the Codazzi equation to the triple (U, V,A) and using the expressions
for 〈∇UV,A〉 and 〈∇VU,A〉 given by (2.11), we obtain

0 = 〈R̄(U, V )A, ξ〉 − 〈(∇US)V,A〉+ 〈(∇V S)U,A〉

= − c
4
− β〈∇UA, V 〉+ α〈∇VA,U〉 =

c

2
− 2αβ +

aβA(α)

bα
− bαA(β)

aβ
,

from where, using (2.4), we get the following relation between A(α) and A(β):

A(α) =
b(α− β)(aβ(4αβ − c) + 2bαA(β))

2β2
. (2.13)

Finally, let W ∈ Γ(T0 	 RA) be an arbitrary unit vector field orthogonal to A in the
0-principal curvature distribution. Using the expressions for Jξ, JU and JA given in
Proposition 2.2.2, the Codazzi equation applied to the triple (A,U,W ) yields 〈∇AU,W 〉 =
0, from where we deduce, using (2.10), that ∇AU is proportional to V . In particular,
since T0 	 RA is a complex distribution, 〈∇AU, JW 〉 = 0. Expanding the relation 0 =
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A〈JU,W 〉, and taking the previous fact into account, as well as the expression for JU
given in Proposition 2.2.2, one gets

b〈∇AA,W 〉 = 〈∇AU, JW 〉 = 0.

Then, 〈∇AA,W 〉 = 0, and in fact, using (2.10), we obtain that ∇AA = 0.
Proceeding as above, the Codazzi equation applied to the triples (U,W,U) and (V,W, V )

yields

〈∇UU,W 〉 =
W (α)

α
, 〈∇V V,W 〉 =

W (β)

β
. (2.14)

Expanding the relations 0 = U〈Jξ,W 〉 and 0 = V 〈Jξ,W 〉 and inserting the expressions
for 〈∇UU,W 〉 and 〈∇V V,W 〉 given by (2.14), we have

〈∇UV,W 〉 = −aW (α)

bα
, 〈∇VU,W 〉 = −bW (β)

aβ
. (2.15)

After some calculations using (2.14) and (2.15), the Codazzi equation applied to the
triple (V,W,U) yields

〈∇WV, U〉 =
bαW (β)

aβ(α− β)
, (2.16)

and analogously, the Codazzi equation applied to the triple (U, V,W ) reads

0 =
aβW (α)

bα
− bαW (β)

aβ
,

from where we get, after using (2.4), the last formula in the statement.

2.3 Ruled hypersurfaces with constant mean curva-

ture

The motivation for studying ruled hypersurfaces with constant mean curvature in a given
Riemannian manifold comes from a classical theorem due to Catalan [21], which claims that
the only ruled minimal surfaces in the Euclidean space R3 are planes and helicoids. This
result has been extended in several directions in the context of spaces of constant curvature.
In particular, Barbosa and Delgado proved in [9] that there are no ruled hypersurfaces with
nonzero constant mean curvature in nonflat real space forms other than the 3-sphere. The
aim of this section is to present the complex analog of this result, that is, the classification
of ruled real hypersurfaces with constant mean curvature in nonflat complex space forms.
More specifically, we prove the following result.

Theorem 2.3.1. Let M be a ruled real hypersurface with constant mean curvature in a
nonflat complex space form. Then, M is minimal.
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This theorem, together with the result in [1] and [51] described in Subsection 2.1.2,
yields the classification of ruled real hypersurfaces with constant mean curvature in complex
projective and hyperbolic spaces. In the flat setting, the corresponding classification follows
form the results in [8] and [9], which deal with ruled hypersurfaces with constant mean
curvature in the real space forms.

In order to prove Theorem 2.3.1, let H = α + β be the mean curvature of M on the
open subset U defined in Subsection 2.2. By hypothesis, H is a constant function, say k,
so X(k) = 0 for each X ∈ TU or, equivalently,

X(α) = −X(β) for each X ∈ TU . (2.17)

Considering this fact, one can rewrite some of the relations given in Proposition 2.2.3 in
an easier way.

Proposition 2.3.2. The Levi-Civita connection of the open subset U satisfies the following
equations:

∇UU = −ab(c+ 8α(k − α))

4α
A, ∇UV =

c+ 4kα

4(2α− k)
A,

∇V V =
ab(c+ 8α(k − α))

4(k − α)
A, ∇VU =

c+ 4k(k − α)

4(2α− k)
A.

Moreover,

U(α) = V (α) = W (α) = 0, and A(α) =
ab

2
(c+ 4α(α− k)), (2.18)

where W ∈ Γ(T0 	 RA) denotes an arbitrary unit vector field orthogonal to A in the 0-
principal curvature distribution.

Proof. First of all, we prove that U(α) = V (α) = 0. In order to do so, we rewrite the ex-
pressions for U(β) and V (α) given in Proposition 2.2.3 using (2.17). Some straightforward
calculations show that these equations are equivalent to

β(3α− β)U(α) + 2abα(α− β)V (α) = 0,

2abβ(α− β)U(α)− α(3β − α)V (α) = 0,

which constitute a homogeneous linear system in the unknowns U(α) and V (α). Us-
ing (2.4), one deduces that the determinant of the matrix of this system is 3αβ(α − β)2,
which cannot vanish because αβ 6= 0 and α 6= β on the open subset U . Thus, U(α) =
V (α) = 0.

Using again (2.17), some easy calculations involving (2.4) show that the expression
for A(α) given in Proposition 2.2.3 can be rewritten as A(α) = ab(c − 4αβ)/2, which is
equivalent to the last formula in the statement since β = k − α.

Let W ∈ Γ(T0 	 RA). By virtue of Proposition 2.2.3, W (α) = −αW (β)/β and,
using (2.17), W (α) = αW (α)/β. Since α 6= β on the open set U , it follows that W (α) = 0.
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Inserting the expressions for U(α), V (α),W (α) and A(α) that we have just obtained
into the relations given in Proposition 2.2.3, and using (2.17) and the fact that β = k−α,
one gets, after some calculations involving (2.4), the formulas for ∇UU, ∇UV, ∇VU and
∇V V in the statement.

Now we can conclude the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. According to the discussion before Proposition 2.2.2, there is an
open and dense subset U of M where h = 2. Propositions 2.2.2 and 2.3.2 hold on this open
subset. By (2.18), the definition of the Lie bracket of M yields

[U, V ](α) = U(V (α))− V (U(α)) = 0. (2.19)

On the other hand, using the fact that the Levi-Civita connection of M is torsion-free, and
inserting the expressions for ∇UV , ∇VU and A(α) given in Proposition 2.3.2, we obtain

[U, V ](α) = (∇UV )(α)− (∇VU)(α) =

(
c+ 4kα

4(2α− k)

)
A(α) +

(
c+ 4k(k − α)

4(k − 2α)

)
A(α)

= kA(α) =
kab

2
(c+ 4α(α− k)). (2.20)

Assume that the mean curvature H = k of M is nonzero. Then, since on U we have
a 6= 0 6= b, (2.19) and (2.20) imply that c + 4α(α − k) = 0, from where we deduce that α
is constant on U , and by the density of U on M , also on M . Therefore, M has constant
principal curvatures. Then, the work of Lohnherr and Reckziegel [51, Remark 5] (or the
classification of real hypersurfaces with constant principal curvatures and h = 2 [27],
together with their explicit principal curvatures [13]) implies that M must be congruent to
the Lohnherr hypersurface in CHn, which is minimal. Hence, H = 0, which gives us the
desired contradiction.

2.4 Ruled hypersurfaces with shape operator of con-

stant norm

From a general viewpoint, the higher order mean curvatures of a hypersurface are defined
as the elementary symmetric polynomials in the principal curvatures of such hypersurface.
As we have pointed out in the previous sections, any ruled real hypersurface in a nonflat
complex space form has exactly two nonzero distinct principal curvatures, both of multi-
plicity one, α and β. Hence, for this kind of hypersurfaces there exist only two nontrivial
elementary symmetric polynomials: the mean curvature, H = α+ β, and the second order
mean curvature, αβ.

The norm of the shape operator constitutes yet another geometric invariant for hy-
persurfaces. As well as for the mean curvature, the constancy of the norm of the shape
operator is a classical property in Differential Geometry, insofar as it arises naturally in
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important problems, such as the longstanding Chern’s conjecture: a closed minimal hyper-
surface of a round sphere having shape operator of constant norm must be isoparametric,
that is, have constant principal curvatures [7, 23]. In the particular case of ruled real hy-
persurfaces in nonflat complex space forms, the squared norm of the shape operator reads
|S|2 = α2 +β2. Moreover, it can be written in a simple way in terms of the mean curvature
and the second order mean curvature as |S|2 = H2 − 2αβ.

In Section 2.3 we have classified ruled real hypersurfaces in nonflat complex space forms
having constant mean curvature, and a characterization of ruled real hypersurfaces with
constant second order mean curvature (or, equivalently, with constant scalar curvature)
has been achieved in [48] in terms of lightlike curves in an indefinite complex projective
space. Then, in view of the simple relation among the three geometric invariants above,
and in order to contribute to the general problem of identifying and characterizing the
“simplest” ruled hypersurfaces, cf. [22, p. 446], we wonder what happens with ruled real
hypersurfaces whose shape operators have constant norm in nonflat complex space forms.
This is what we study in the present section. In particular, we prove the following theorem.

Theorem 2.4.1. Let M be a ruled real hypersurface in a nonflat complex space form.
Then, the shape operator S of M has constant norm if, and only if, M is an open part of:

1. A Lohnherr hypersurface of CHn, or

2. The ruled real hypersurface which is constructed by attaching totally geodesic complex
hyperbolic spaces CHn−1 perpendicularly to a circle of curvature κ =

√
−c/2 in a

totally geodesic complex hyperbolic line CH1.

In order to prove this result, we firstly present Theorem 2.4.2, in which we show that
there are no such hypersurfaces in complex projective spaces, whereas any possible example
in a complex hyperbolic space must have certain geometric property.

Theorem 2.4.2. Let M be a ruled real hypersurface in a nonflat complex space form whose
shape operator has constant norm. Then, M is a strongly 2-Hopf real hypersurface in CHn

with |S|2 = −c/2. In particular, there are no ruled hypersurfaces in complex projective
spaces whose shape operator has constant norm.

The notion of strongly 2-Hopf hypersurface has been introduced in [28] in relation to the
study of cohomogeneity one real hypersurfaces in complex space forms. A real hypersurface
M in a nonflat complex space form is said to be strongly 2-Hopf if the following conditions
hold:

(i) The smallest S-invariant distribution D of M that contains the Hopf vector field Jξ
has rank 2.

(ii) D is integrable.

(iii) The spectrum of S|D is constant along the integral submanifolds of D.
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Notice that, in particular, the first condition is equivalent to h = 2.

To prove Theorem 2.4.2, let |S|2 = α2 + β2 be the squared norm of the shape operator
of M along U . Since by hypothesis |S|2 is a constant function, say k, then X(k) = 0 for
each X ∈ TU . Thus, αX(α) + βX(β) = 0, from where

X(β) = −αX(α)

β
, for each X ∈ TU . (2.21)

Considering this fact, one can rewrite some of the relations given in Proposition 2.2.3 in
an easier way.

Proposition 2.4.3. Suppose that α 6= −β on an open subset of U . Then, with the previous
notations, the Levi-Civita connection of such open subset satisfies the following equations:

∇UU = −ab(8αβ
2 + c(3α + β))

4α(α + β)
A, ∇UV =

c(3α + β) + 4α(α2 + β2)

4(α2 − β2)
A,

∇V V =
ab(8α2β + c(α + 3β))

4β(α + β)
A, ∇VU =

c(α + 3β) + 4β(α2 + β2)

4(α2 − β2)
A.

Moreover:

U(α) = V (α) = W (α) = 0, and A(α) =
abβ(c− 4αβ)

2(α + β)
, (2.22)

for any W ∈ Γ(T0 	 RA).

Proof. First of all, in order to prove that U(α) = V (α) = 0, we rewrite the expressions
for U(β) and V (α) given in Proposition 2.2.3 using the relation (2.21). Some calculations
using (2.4) show that such equations are equivalent to:

β(3α2 − β2) U(α) + 2abα2(α− β) V (α) = 0,

−2abβ2(α− β) U(α) + α(3β2 − α2) V (α) = 0,

which constitute a homogeneous linear system in the unknowns U(α) and V (α). The de-
terminant of the matrix of such system can be easily deduced to be, using (2.4), −3αβ(α2−
β2)2, which cannot vanish since αβ 6= 0 and α 6= ±β on an open subset of U . Then, we
conclude that U(α) = V (α) = 0.

Again, using (2.21), we can rewrite the expression for A(α) given in Proposition 2.2.3.
Some calculations using (2.4) lead us to conclude that 2(α+β)A(α) = abβ(c−4αβ), which
is equivalent to the last formula in the statement.

Given W ∈ Γ(T0 	 RA), W (α) = −αW (β)/β by Proposition 2.2.3 and W (β) =
−αW (α)/β by (2.21). Then W (α)(1− α2/β2) = 0, from where we deduce, since α 6= ±β,
that W (α) = 0.

Inserting the expressions for U(α), V (α), W (α) and A(α) that we have just obtained
into the relations given in Proposition 2.2.3, one gets, after some calculations involv-
ing (2.4), the formulas for ∇UU, ∇UV, ∇VU, ∇V V in the statement.
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We can now prove Theorem 2.4.2.

Proof of Theorem 2.4.2. First of all notice that, if α = −β on U , then 0 = X(k) =
X(2α2) = 4αX(α), which implies that X(α) = 0 for any X ∈ TU . Since X ∈ TM is
arbitrary, we deduce that both α and β have to be constant on U , and by the density of
U , also on M .

Suppose now that there exists a point p ∈ U such that α(p) 6= −β(p). Then, in an
open neighborhood of p, α 6= −β. Taking the expressions given by (2.22) into account, the
definition of the Lie bracket of M yields

[U, V ](α) = U(V (α))− V (U(α)) = 0. (2.23)

On the other hand, using the fact that the Levi-Civita connection of M is torsion-free,
inserting the expressions for ∇UV and ∇VU given in Proposition 2.4.3, we obtain

[U, V ] = ∇UV −∇VU =
c+ 2(α2 + β2)

2(α + β)
A. (2.24)

Then, either A(α) = 0 or c + 2(α2 + β2) = c + 2k = 0. If A(α) = 0 on an open subset,
since U(α) = V (α) = W (α) = 0 for any W ∈ Γ(T0	RA), both α and β must be constant,
and thus, M has constant principal curvatures on such open subset. Suppose now that
2k + c = 0, or equivalently, that k = −c/2 on an open subset of U .

In the projective case, since c > 0, the equation α2 + β2 = −c/2 has no solution, and
on the other hand, there is no ruled hypersurface in the complex projective case having
constant principal curvatures [51, Remark 5]. Therefore, there is no example of ruled
hypersurface in CP n whose shape operator has constant norm.

In the hyperbolic case, let D := span{U, V } be the smallest S-invariant distribution of
U that contains Jξ, which clearly has rank 2. On the one hand, if an open subset of M
has constant principal curvatures, then it is an open part of a Lohnherr hypersurface [51,
Remark 5], which is known to be strongly 2-Hopf and to satisfy |S|2 = −c/2. This can be
checked directly from Proposition 2.4.3: taking into account that it has constant principal
curvatures α =

√
−c/2, β = −

√
−c/2 and 0, it follows that [U, V ] = ∇UV − ∇VU = 0;

hence D is integrable, and moreover D(α) = D(β) = 0. On the other hand, if an open
subset of M satisfies k = −c/2, it follows from (2.24) that D is integrable, and by virtue
of (2.22) and the assumption that α2 + β2 is constant, again D(α) = D(β) = 0. Thus,
in any case, M is a strongly 2-Hopf hypersurface with |S|2 = −c/2, which concludes the
proof.

Notice that, in particular, Lohnherr hypersurfaces, as homogeneous ruled hypersur-
faces, are examples of ruled real hypersurfaces with shape operator of constant norm. The
problem of deciding if the Lohnherr hypersurface is the only ruled one having shape oper-
ator of constant norm is what we address in Theorem 2.4.1. In order to prove this result,
we will combine the information derived so far with some other geometric arguments to
determine a particularly nice integral curve γ of the Hopf vector field Jξ. This γ will
be a generating curve to which we must attach the totally geodesic complex hyperbolic
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hyperplanes CHn−1 to recover the inhomogeneous ruled hypersurface M described in item
(2) of Theorem 2.4.1.

Proof of Theorem 2.4.1. Let M be a ruled real hypersurface in a nonflat complex space
form whose shape operator has constant norm. Recall from Section 2.1 that the shape
operator of M satisfies SJξ = λJξ + µU1, SU1 = µJξ and SX = 0 for any X ∈ TM 	
span{Jξ, U1}, where {Jξ, U1} is an orthonormal set. In terms of the notation of Section 2.2,
we can assume that U1 = JA. Moreover, with respect to a set of principal curvature vector
fields whose first two elements are U and V , the shape operator adopts a diagonal matrix
form whose only nonzero entries are α and β. In terms of the functions λ and µ, the
squared norm of the shape operator of M can be written as |S|2 = λ2 + 2µ2, where µ ≥ 0.

Let us observe that we have the relation

∇̄JξJξ = µA+ λξ. (2.25)

Indeed, using the fact that the ambient space is a Kähler manifold, the definition of the
shape operator, and tacking into account that S(Jξ) = λJξ + µJA, we obtain

∇̄JξJξ = J∇̄Jξξ = −JS(Jξ) = µA+ λξ.

Therefore, since integral curves of Jξ are precisely generating curves, for any generating
curve γ of M the functions λγ and µγ defined at the beginning of Subsection 2.1.1 agree
with the functions λ and µ along the curve γ, respectively.

By virtue of Theorem 2.4.2, ruled real hypersurfaces whose shape operators have con-
stant norm do not exist in complex projective spaces, so we may assume that the ambient
manifold is a complex hyperbolic space CHn. Theorem 2.4.2 also implies that M is a
strongly 2-Hopf hypersurface and |S|2 = −c/2. Moreover, since |S|2 = λ2 + 2µ2, we get
µ ≤
√
−c/2 on M .

Assume firstly that there exists a point p ∈ M in such a way that µ(p) =
√
−c/2.

On the one hand, since M is a strongly 2-Hopf hypersurface, the principal curvatures α
and β, or equivalently, the functions λ and µ, are constant along the integral submanifolds
of D = span{U, V } = span{Jξ, JA}. On the other hand, by virtue of Subsection 2.1.1
(discussion after (2.3)), we know that µ =

√
−c/2 is constant along the integral submanifold

of (Jξ)⊥ containing p. Therefore, we deduce that µ =
√
−c/2 is constant on M , and as

|S|2 = λ2 + 2µ2, then λ = 0 on M . Hence, M has constant principal curvatures, and thus,
M is an open part of a Lohnherr hypersurface in CHn, which corresponds to the first case
in the statement.

Assume now that µ <
√
−c/2 on M . In such case, it follows from the discussion

after (2.3) in Subsection 2.1.1 that the extension M̃ =
⋃
p∈M expp(Jξp)

⊥ of M , given by

the union of every totally geodesic CHn−1 containing an integral submanifold of (Jξ)⊥,
is a ruled hypersurface without singular points. Let us still denote by ξ and Jξ the unit
normal and Hopf vector fields of M̃ . It follows from the expressions (2.3) that the functions
λ and µ2 are real analytic when restricted to any geodesic which is contained in a ruling
of M̃ . Since λ2 + 2µ2 = −c/2 on the open subset M of M̃ , this property also holds on the
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whole M̃ , and thus, M̃ is a strongly 2-Hopf hypersurface by Theorem 2.4.2. Furthermore,
as M̃ is smooth and its rulings are complete, it follows from the discussion after (2.3) in

Subsection 2.1.1 (see also [1, Lemma 1]) that there exists a point p ∈ M̃ such that µ(p) = 0,

and hence, λ(p) = ±
√
−c/2. Since M̃ is strongly 2-Hopf, both λ and µ are constant along

the integral curves of the Hopf vector field Jξ of M̃ . Let us denote by γ the integral curve
of Jξ with γ(0) = p. Then, λ(γ(t)) = ±

√
−c/2 and µ(γ(t)) = 0 for every t ∈ R where γ

is defined.
Since equation (2.25) also holds on M̃ , we obtain that the integral curve γ of Jξ with

γ(0) = p satisfies the following differential equations

∇̄γ̇ γ̇ = ∓
√
−c
2
Jγ̇, ∇̄γ̇∇̄γ̇ γ̇ =

c

2
γ̇, (2.26)

which means that γ is a circle of curvature κ =
√
−c/2 inside a totally geodesic complex

hyperbolic line CH1 (see [1, Section 2]). This corresponds to the second case in the
statement.

To finish the proof of this result, it remains to check that the ruled real hypersur-
face constructed as in item (2) of the statement is smooth and its shape operator has
constant norm. In order to do so, we consider a complete circle γ : R → CHn of curva-
ture κ =

√
−c/2 inside a totally geodesic CH1. Notice that, since

√
−c/2 <

√
−c, γ is an

equidistant curve to a geodesic in such a totally geodesic CH1. Let M =
⋃
t∈R expγ(t)(Cγ̇)⊥

be the corresponding ruled real hypersurface. Since M and γ satisfy the relations (2.25)
and (2.26), respectively, and γ̇ = Jξ along γ (changing the sign of ξ if necessary), we obtain
λ◦γ =

√
−c/2 and µ◦γ = 0. Under these conditions, it follows from Subsection 2.1.1 that

M is an immersed hypersurface of CHn and, moreover, the functions µ and λ are given by
the expressions

λ(σ(r)) =

√
−c
2

sech

(√
−c
2

r

)
, µ(σ(r)) =

√
−c
2

tanh

(√
−c
2

r

)
,

where r ≥ 0 and σ(r) = expγ(t)(rX) is a unit speed geodesic in the ruling of M through

γ(t), for each unit X ∈ (Cγ̇(t))⊥ and any t ∈ R. Therefore, the squared norm of the shape
operator of M satisfies |S|2 = λ2 + 2µ2 = −c/2, as we wanted to show. Finally, notice that
M is closed and embedded in CHn due to the fact that the totally geodesic CHn−1 which
are perpendicular to the totally geodesic CH1 determine a smooth foliation of CHn.

2.5 Biharmonic ruled hypersurfaces

The motivation for studying biharmonic submanifolds comes from the fact that they con-
stitute a natural generalization of minimal submanifolds of a Riemannian manifold. In this
section we study biharmonic ruled hypersurfaces in nonflat complex space forms. In order
to do so, we firstly introduce some definitions and terminology. We refer the reader to [63]
and [69] for more information on this topic.
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Let (M1, g1) and (M2, g2) be two Riemannian manifolds and consider a smooth map
ϕ : (M1, g1) → (M2, g2) between them. Let ∇1 and R1 be the Levi-Civita connection and
the curvature tensor of M1, and denote by ∇2 and R2 the corresponding objects for M2.
The smooth function e(ϕ) = 1

2
|ϕ∗|2, where ϕ∗ denotes the differential of ϕ, is called the

energy density of ϕ. The energy functional with respect to the compact subset Ω ⊂ M is
defined as

E(ϕ) =

∫
Ω

e(ϕ)dx,

for any smooth map ϕ as above. Moreover, one may define the tension field of ϕ, τ(ϕ), as
the trace of its second fundamental form ∇ϕ∗, which is given by

∇ϕ∗(X, Y ) = ∇2
ϕ∗X ϕ∗Y − ϕ∗(∇1

XY ),

for X, Y ∈ TM1. The smooth function ϕ is said to be harmonic if it is a critical point
of the energy functional for any compact subset Ω ⊂ M . Equivalently, ϕ is a harmonic
function if, and only if, its tension field vanishes identically. Minimal submanifolds can be
characterized as those submanifolds whose defining isometric immersions ϕ : M → M̄ are
harmonic maps.

The notion of harmonic function can be generalized in the following way. The bienergy
density of ϕ is defined as the smooth function e2(ϕ) = 1

2
|τ(ϕ)|2. With this notation, one

may introduce the bienergy functional, which gives a measure of how far a smooth function
ϕ is from being harmonic. More specifically, the bienergy functional with respect to the
compact domain Ω ⊂M is defined by

E2(ϕ) =

∫
Ω

e2(ϕ)dx,

for all smooth ϕ. Moreover, if we denote by ∇ϕ the induced connection, then the bitension
field of ϕ is defined by

τ 2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ
∇1)τ(ϕ)− trR2(ϕ∗, τ(ϕ))ϕ∗.

With this notation, ϕ is said to be a biharmonic function if it is a critical point of the
bienergy functional for any compact subset Ω ⊂ M . It is possible to characterize the
critical points of the bienergy functional by constructing the Euler-Lagrange equations of
E2. From these equations one deduces that ϕ is a biharmonic function if, and only if, its
bitension field vanishes identically. A submanifold M of a Riemannian manifold M̄ is said
to be biharmonic if its defining isometric immersion ϕ : M → M̄ is a biharmonic function.

From now on, we focus our attention on codimension one biharmonic isometric immer-
sions, that is, on biharmonic hypersurfaces, for which there exists an explicit formula that
characterizes them.

Proposition 2.5.1. [63, Theorem 2.1] Let M̄ be a Riemannian manifold and M ⊂ M̄ a
hypersurface with unit normal vector field ξ. M is biharmonic if, and only if, it satisfies
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the following relations {
∆H−H|S|2 +HRic(ξ, ξ) = 0,

2S(∇H) +H∇H− 2H(Ric(ξ))> = 0,
(2.27)

where H = tr(S) is the mean curvature of the hypersurface, ∇ denotes the gradient, ∆ is
the Laplace-Beltrami operator of M , Ric denotes both the (0,2) and the (1,1) Ricci tensors
of M̄ , and > denotes the tangent projection on M .

It is known that minimal hypersurfaces are biharmonic. There exist some known results
and conjectures claiming that the converse is, under certain assumptions, also true. For
instance, Chen conjectured that any minimal hypersurface in the Euclidean space is bihar-
monic, and in the context of Riemannian manifolds of nonpositive curvature, it has been
proved that both compact biharmonic hypersurfaces and biharmonic hypersurfaces with
constant mean curvature are precisely the minimal ones [42, 63]. However, if one removes
these conditions, we cannot ensure (in principle) minimality. Indeed, deciding whether
biharmonicity implies minimality in ambient spaces of nonpositive curvature is the content
of the generalized Chen’s conjecture, proposed by Caddeo, Montaldo and Oniciuc in [19].
Ou and Tang have constructed some counterexamples which prove that this conjecture
is not true [64], but due to the incompleteness of such examples, the generalized Chen’s
conjecture is still one of the main motivations for studying biharmonic hypersurfaces in
Riemannian manifolds of nonpositive curvature. Thus, it becomes interesting to study
biharmonic hypersurfaces satisfying other conditions, such as ruled hypersurfaces.

It has recently been proved that biharmonic ruled hypersurfaces in complex projective
spaces are minimal [67]. The aim of this section is to extend this result to the entire context
of nonflat complex space forms. In particular, we present the following result.

Theorem 2.5.2. Let M be a biharmonic ruled real hypersurface in a nonflat complex space
form. Then, M is minimal.

This theorem, combined again with the results in [1] and [51], yields the classification of
biharmonic ruled hypersurfaces in nonflat complex space forms. Such a hypersurface must
then be an open part of a Kimura type hypersurface in a complex projective or hyperbolic
space, a bisector in a complex hyperbolic space, or a Lohnherr hypersurface in a complex
hyperbolic space.

From now on, in order to prove Theorem 2.5.2, M̄ will denote a complex space form of
constant holomorphic sectional curvature c 6= 0. In this case, the Ricci tensor of M̄ satisfies
Ric(ξ, ξ) = c(n+ 1)/2 and (Ric(ξ))> = 0, which follows immediately from the formula for
the curvature tensor of a complex space form. Thus, in our case, equations (2.27) can be
rewritten as follows (cf. [39, Proposition 2.1]):{

∆H−H|S|2 + 1
2
Hc(n+ 1) = 0,

2S(∇H) +H∇H = 0.
(2.28)
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Proof of Theorem 2.5.2. Let M be a biharmonic ruled hypersurface in a nonflat complex
space form and let H = α + β denote the mean curvature of the ruled hypersurface M .
Recall that, according to the discussion before Proposition 2.2.2, there is an open and dense
subset U of M where h = 2. Proposition 2.2.3 and relations given in Proposition 2.2.2 hold
in this open subset. In what follows, we will work in terms of an orthonormal local reference
of principal curvature vector fields {U, V,A,W4, . . . ,W2n−1}, where Wi ∈ Γ(T0 	 RA),
i ∈ {4, . . . , 2n− 1}.

Suppose that the mean curvature, H = α + β, is not zero in an open subset of U . We
will work in this open subset of M from now on. Since M is a biharmonic hypersurface, it
satisfies equations (2.28).

With respect to the orthonormal basis {U, V,A,W4, . . . ,W2n−1}, we have

∇H = U(H)U + V (H)V + A(H)A+
2n−1∑
i=4

Wi(H)Wi.

On the other hand, since U , V , A and Wi, for i ∈ {4, . . . , 2n − 1}, are orthogonal eigen-
vectors of the shape operator S of M associated with eigenvalues α, β and 0, respectively,
we have

S(∇H) = αU(H)U + βV (H)V.

Thus, inserting these relations into the second equation in (2.28), we obtain

0 = 2S(∇H) +H∇H

= (2α +H)U(H)U + (2β +H)V (H)V +HA(H)A+
2n−1∑
i=4

HWi(H)Wi.

Since H 6= 0 by assumption, one can deduce that A(H) = 0 and Wi(H) = 0 for i ∈
{4, . . . , 2n− 1}. Moreover, one of the following conditions holds on an open subset:

(1) U(H) = V (H) = 0.

(2) α = β = −H/2.

(3) U(H) = 0 and 2β +H = 0.

(4) V (H) = 0 and 2α +H = 0.

Neither case (1) nor case (2) are possible. Indeed, if U(H) = V (H) = 0 on an open
subset, then such subset has constant mean curvature, and since it is ruled, H = 0 due to
Theorem 2.3.1, which gives a contradiction. Analogously, since M is ruled, α 6= β on any
open subset.

Suppose that U(H) = 0 and 2β +H = 0, or equivalently, H = 2α/3 (case (4) is anal-
ogous). Then, both α and β can be expressed as α = 3H/2 and β = −H/2, respectively.
Inserting these expressions in the formula for A(α) given in Proposition 2.2.3, one gets

3

2
A(H) = A(α) = 2b(a(c+ 3H2)− 3bA(H)).
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Moreover, A(H) = 0 on U , from where ab(3H2 + c) = 0. Since a and b are not zero in U ,
M has constant mean curvature on U , and as M is a ruled, it must be minimal by virtue
of Theorem 2.3.1, which concludes the proof.



Chapter 3

Homogeneous CR submanifolds in complex
hyperbolic spaces

This chapter is devoted to presenting the classification of homogeneous CR submanifolds
in complex hyperbolic spaces that arise as orbits of the solvable part of the Iwasawa decom-
position of the isometry group of CHn. In order to do so, we firstly review, in Section 3.1,
some basic terminology concerning the notion of CR submanifold of a Hermitian manifold
and study, in Section 3.2, some algebraic properties of homogeneous CR submanifolds in
Hermitian symmetric spaces of noncompact type. The classification of homogeneous CR
submanifolds in complex hyperbolic spaces arising as orbits of the solvable part of the
Iwasawa decomposition of SU(1, n) is settled in Section 3.3. Finally, in Section 3.4, we
study the congruence classes of the examples that we have obtained in the classification
theorem. The results of this chapter have given rise to the article [32].

3.1 CR submanifolds of a Hermitian manifold

In this section we introduce the main notation to deal with CR submanifolds of a Hermitian
manifold. Consider V a complex vector space with complex structure J and inner product
〈·, ·〉. Recall that a subspace W ⊂ V is said to be complex if it is invariant by the complex
structure, that is, if JW ⊂ W . On the other hand, W is said to be totally real if JW is
orthogonal to W .

In the setting of Hermitian manifolds, one can generalize these concepts by introducing
the notions of complex and totally real submanifolds. Let M̄ be a Hermitian manifold
with complex structure J . A submanifold M ⊂ M̄ is said to be complex (totally real) if,
at each point p ∈M , the tangent space TpM is a complex (totally real) vector subspace of
TpM̄ . The subspace J(TpM) ∩ TpM is a J-invariant subspace. In fact, it is the maximal
complex subspace of TpM .

The notion of CR submanifold in a Hermitian manifold includes both complex and
totally real submanifolds as particular examples. A submanifold M ⊂ M̄ is said to be
a CR (Cauchy-Riemann or complex-real) submanifold if there exists a pair of orthogonal
complementary distributions of the tangent bundle of M , TM = C⊕R, where C is complex
and R is totally real. In other words, M is a CR submanifold of M̄ if the maximal complex
subspaces have constant dimension and their orthogonal complements in each tangent
space are totally real subspaces. We refer to [10] and [34] for more information on CR
submanifolds of a Hermitian manifold.

51
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In the setting of submanifold geometry, an interesting problem is to classify homoge-
neous CR submanifolds in several important families of Kähler manifolds, such as Her-
mitian symmetric spaces or, more specifically, complex space forms. The importance of
studying homogeneous CR submanifolds in this setting comes from the fact that they
include several special examples of submanifolds of interest in the context of symmetric
spaces, such as real hypersurfaces, Kähler submanifolds or Lagrangian submanifolds. We
review below some known classification results regarding these types of CR submanifolds
in the context of complex space forms.

Homogeneous CR submanifolds in complex space forms

Homogeneous real hypersurfaces, that is, submanifolds of real codimension one, consti-
tute an important subclass of homogeneous CR submanifolds in complex space forms that
has been thoroughly studied by many authors. More specifically, the classification of
homogeneous real hypersurfaces, or equivalently, of cohomogeneity one actions, in com-
plex Euclidean spaces follows from a classical work on isoparametric hypersurfaces due to
Segre [68]. The corresponding classification in complex projective spaces CP n has been
obtained by Takagi in [70], whereas the classification in complex hyperbolic spaces has
been achieved by Berndt and Tamaru in [15].

Another important subclass of homogeneous CR submanifolds in complex space forms
is that of Kähler ones. Di Scala, Ishi and Loi have proved in [26] that the only examples
of homogeneous Kähler submanifolds in complex Euclidean and hyperbolic spaces Cn and
CHn are totally geodesic Ck and CHk, with k ∈ {0, . . . , n}, respectively. The correspond-
ing classification in complex projective spaces, CP n, achieved by Takeuchi in [71], includes
more examples.

Lagrangian submanifolds, that is, totally real submanifolds of maximal dimension, con-
stitute a nice particular example of CR submanifolds in complex space forms. Although
the classification of homogeneous Lagrangian submanifolds in these ambient manifolds is
still an open problem, several partial results have been achieved. For instance, Bedulli and
Gori have obtained the classification of homogeneous Lagrangian submanifolds in complex
projective spaces induced by the action of a simple compact subgroup of SU(n + 1). Un-
der additional assumptions, such as the parallelity of the second fundamental form, some
results have also been derived; see [61] for a survey. In the hyperbolic case, classifying ho-
mogeneous Lagrangian submanifolds has been shown to be a very involved problem, mainly
due to the noncompactness of its isometry group. However, Hashinaga and Kajigaya have
obtained some partial results in [43]. In particular, they have classified homogeneous La-
grangian submanifolds in complex hyperbolic spaces induced by the action of a subgroup
of the solvable part of the Iwasawa decomposition of the isometry group of CHn.

In the following sections we focus on the classification of homogeneous CR submanifolds
in complex hyperbolic spaces that arise as orbits of subgroups of the solvable part of the
Iwasawa decomposition of the isometry group of CHn.
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3.2 The Lie algebra of a CR orbit

In this section we introduce a result which allows us to characterize homogeneous CR
submanifolds in a Hermitian symmetric space of noncompact type in terms of the Lie
subalgebras associated with the Lie subgroups that determine such CR submanifolds. With
the notation established in Section 1.4 and Subsection 1.5.1, let M̄ = G/K be a Hermitian
symmetric space of noncompact type, where G is (up to finite covering) the connected
component of the identity element of the isometry group of M̄ , and K = Go is the isotropy
at some fixed point o ∈ M̄ . Let g and k be the Lie algebras of G and K, respectively, and
consider the Iwasawa decomposition g = k ⊕ a ⊕ n with respect to o ∈ M̄ , as well as the
Iwasawa decomposition at the level of Lie groups, G = KAN .

As we have pointed out in Subsection 1.5.1, every symmetric space of noncompact type
can be regarded as a solvable Lie group endowed with a left-invariant metric. We recall
some basic facts and notation in relation to such identification. Consider the smooth func-
tion φ : G→ M̄ given by g 7→ g(o). The restriction φ|AN : AN → M̄ is a diffeomorphism,
so a⊕n can be identified with the tangent space ToM̄ using φ∗. By pulling back the metric
ḡ of M̄ , one can endow AN with a left-invariant metric (φ|AN)∗ḡ. Furthermore, AN can
also be equipped with the complex structure induced by the one in M̄ by means of φ|AN .

Under these conditions, we prove the following result.

Lemma 3.2.1. Let H be a connected Lie subgroup of G with Lie algebra h. Then, the
H-orbit through o, H · o, is a CR submanifold if, and only if, the projection of h onto a⊕n
with respect to the direct sum decomposition g = k ⊕ a ⊕ n splits as an orthogonal direct
sum of a complex subspace and a totally real one.

Proof. By definition, the orbit H · o is a CR submanifold if at each point h(o) ∈ M̄ , with
h ∈ H, the tangent space to H · o at h(o) splits as an orthogonal direct sum of a totally
real subspace of and a complex one.

Consider the smooth map φ : G → M̄ , g 7→ g(o), defined above, whose differential is
given as follows:

φ∗e : g→ ToM̄, X 7→ φ∗eX =
d

dt t=0

Exp(tX)(o),

where Exp denotes the Lie exponential map and e is the identity element of G. The
restriction of φ∗e to a⊕n is an isomorphism, so we can identify a⊕n ∼= ToM̄ . In particular,
if we denote by ha⊕n the projection of h onto a⊕n with respect to the direct sum g = k⊕a⊕n,
the tangent space to the orbit H · o at o is To(H · o) = φ∗ha⊕n. Moreover, if L denotes the
left translation, the tangent space of H · o at any other point h(o) ∈ M̄ , with h ∈ H, can
be calculated as follows:

Th(o)(H · o) = h∗To(H · o) = h∗φ∗ha⊕n = (h ◦ φ)∗ha⊕n = φ∗ Lh∗ ha⊕n = φ∗ha⊕n,

since h ◦ φ = φ ◦ Lh. In particular, Th(o)(H · o) = h∗To(H · o) = φ∗ha⊕n for each h ∈ H.
Moreover, since the restriction of φ∗ to a⊕ n is a linear holomorphic isometry, it preserves
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both maximal holomorphic subspaces and totally real ones. Taking these facts into account,
we deduce that the orbit H · o is a CR submanifold if, and only if, ha⊕n splits into an
orthogonal direct sum of a complex subspace and a totally real one.

By virtue of this result, it follows that the problem of classifying homogeneous CR
submanifolds in a Hermitian symmetric space of noncompact type M̄ = G/K reduces to
finding all the Lie subalgebras h ⊂ g such that the projection onto a ⊕ n, ha⊕n, can be
decomposed into an orthogonal direct sum of a totally real subspace and a complex one.

From now on, we will focus on the study of homogeneous CR submanifolds in complex
hyperbolic spaces. We briefly discuss below some important examples. In order to do so,
we will use the notation established in Subsection 1.4.2. Recall that, if G = SU(1, n) is
the connected component of the identity of the isometry group of CHn and g denotes its
corresponding Lie algebra, then the Iwasawa decomposition (at the level of Lie algebras)
reads g = k⊕ a⊕ n, where a is a one-dimensional abelian subspace and n is a nilpotent Lie
subalgebra which can be decomposed as n = gα ⊕ g2α, with gα ∼= Cn−1 and g2α

∼= R.

The Berndt-Brück submanifolds of CHn

Let w⊥ be a totally real k−dimensional vector subspace of gα and denote by w = gα	w⊥ its
orthogonal complement in gα. Consider the Lie subalgebra of a⊕n given by s = a⊕w⊕g2α,
and let S be the connected Lie subgroup of AN whose Lie algebra is s. Since the exponential
map Exp: a⊕n→ AN is a diffeomorphism, S is simply connected and closed in AN . The
Berndt-Brück submanifold with totally real normal bundle of rank k in CHn, commonly
denoted by W 2n−k, is defined as the orbit of S through o. In particular, when k = 1,
W 2n−1 is the Lohnherr hypersurface of CHn, which we have defined in Section 2.1. Berndt-
Brück submanifolds with k > 1 arise as singular orbits of cohomogeneity one actions on
complex hyperbolic spaces, whereas the Lohnherr hypersurface is the only minimal orbit
of a cohomogeneity one action without singular orbits [13].

We now show that W 2n−k is a CR submanifold. Indeed, s can be decomposed into an
orthogonal direct sum of a complex subspace and a totally real one as follows:

s = (a⊕ c⊕ g2α)⊕ Jw⊥,

where c = w 	 Jw⊥ is a complex subspace of gα. Thus, Lemma 3.2.1 ensures that the
Berndt-Brück submanifold W 2n−k is a CR-submanifold.

CR submanifolds given by polar actions

With a similar description to the one presented above, one can easily construct more
examples of homogeneous CR submanifolds in complex hyperbolic spaces. Indeed, consider
the Lie subalgebra of su(1, n) defined by s = w⊕g2α, where w denotes a subspace of gα. If
w is a CR subspace of gα, that is, if w splits as an orthogonal direct sum of a totally real
subspace of gα and a complex one, then the orbit through o of the associated connected Lie
subgroup, S ·o, is a CR submanifold contained in the horosphere N ·o, where N denotes the
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nilpotent part of the Iwasawa decomposition of SU(1, n). These submanifolds are not orbits
of cohomogeneity one actions (except in the particular case w = gα), but orbits of polar
actions on CHn [30, Theorem A (ii)]. Similarly, the Lie subalgebra s = a⊕w⊕ g2α, where
w is a CR subspace of gα, gives rise to a minimal (singular, except if w has codimension
one in gα) orbit of a polar action on CHn [30, Theorem A (ii)].

Homogeneous real hypersurfaces in CHn

Homogeneous real hypersurfaces, that is, homogeneous submanifolds of real codimension
one, also constitute a particular example of homogeneous CR submanifolds in CHn. The
classification of homogeneous real hypersurfaces, or equivalently, of cohomogeneity one
actions, in complex hyperbolic spaces has been obtained by Berndt and Tamaru in [15].
Some of the examples given in this classification result are induced by the action of a
connected subgroup of the solvable part of the Iwasawa decomposition of the isometry
group of CHn, AN . More specifically, such homogeneous real hypersurfaces of CHn are
horospheres, Lohnherr hypersurfaces and their equidistant hypersurfaces.

3.3 The classification

The aim of this section is to present the classification of homogeneous CR submanifolds in
complex hyperbolic spaces which arise as orbits of connected subgroups of the solvable part
of the Iwasawa decomposition of G, AN . To tackle this problem, we proceed as follows:
first of all, in Section 3.3.1, we study which are the subgroups of AN that produce a CR
orbit. Secondly, in Section 3.3.2, in order to get a classification result, we check whether
any of the remaining orbits of these subgroups is also a CR submanifold or not. In order
to do so, we will use the notation established in Subsection 1.5.4.

3.3.1 Actions with a CR orbit

This subsection is devoted to determining the connected Lie subgroups H of AN which
act on CHn producing a CR orbit. Since AN acts transitively on CHn, we can assume,
without loss of generality, that such CR orbit is precisely H · o.

Proposition 3.3.1. Let H ⊂ AN be a connected Lie subgroup of the solvable part of the
Iwasawa decomposition of G acting on CHn in such a way that the orbit through o, H · o,
is a CR-submanifold. Then, its Lie algebra h is conjugate by an element of AN to one of
the following subalgebras:

1. h = r, or

2. h = a⊕ r, or

3. h = c⊕ r⊕ g2α, or
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4. h = a⊕ c⊕ r⊕ g2α,

where r is totally real subspace of gα and c is a complex one.

To prove this result, let h denote the Lie algebra of H and consider the projection onto
a⊕g2α, π : g→ a⊕g2α. We denote by ha⊕g2α := π(h) the image of h under π. Then, ha⊕g2α
must be one of the following subspaces:

ha⊕g2α ∈ {0, a, g2α,R(aB + bZ), a⊕ g2α}, (3.1)

for some nonzero a, b ∈ R. Notice that, since AN consists of holomorphic isometries, a
homogeneous submanifold of CHn is CR if, and only if, its tangent space is a CR subspace
of the tangent space of CHn at some point. Thus, and taking into account Lemma 3.2.1,
it will be enough to study these cases separately, trying to find those subalgebras of a⊕ n
that can be decomposed into an orthogonal direct sum of a totally real subspace and a
complex one and whose projection onto a⊕ g2α is one of the subspaces given in (3.1).

Case (i): ha⊕g2α = 0.

Let U , V ∈ h. Then, due to the definition of the Lie bracket of a⊕ n, [U, V ] = 〈JU, V 〉Z,
which lies in h since h is a Lie algebra, but also in g2α = RZ. As g2α∩ h = 0, one gets that
〈JU, V 〉 = 0, from where we deduce that h is a totally real subspace. This corresponds to
Case 1 in the statement.

Case (ii): ha⊕g2α = a.

In this case, h = R(B + X)⊕w, where w is a subspace of gα and X ∈ gα 	w. Given U ,
V ∈ w, using the expression for the Lie bracket of a⊕ n, we have

[U, V ] = 〈JU, V 〉Z ∈ g2α ∩ h = 0,

[B +X,U ] = [B,U ] + [X,U ] =
1

2
U + 〈JX,U〉Z ∈ h.

As above, from the first equation we obtain that w is a totally real subspace. From
the second one, since h is a Lie subalgebra, we get that 〈JX,U〉 = 0, and consequently,
JX ∈ gα 	w. Thus, one gets 〈J(B + X), U〉 = 〈Z + JX,U〉 = 0. Hence, the Lie algebra
h is a totally real subspace of a⊕ n. Moreover, Ad(Exp(2X))h = e2 adXh = a⊕w, since

e2 adX(B +X) = B and e2 adX(U) = U.

This corresponds to Case 2 in the statement.
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Case (iii): ha⊕g2α = g2α.

In this case, there exists X ∈ gα such that h = w ⊕ R(X + Z), where w ⊂ gα and
X ∈ gα 	w. Let U , V ∈ w. Due to the definition of the Lie bracket of a⊕ n,

[U, V ] = 〈JU, V 〉Z ∈ g2α ∩ h,

[U,X + Z] = [U,X] + [U,Z] = 〈JU,X〉Z ∈ g2α ∩ h.

Since h is a Lie algebra, from the first equation we deduce that 〈JU, V 〉 = 0 or X = 0.
Analogously, from the second one, we get that X = 0 or 〈JU,X〉 = 0. In particular, if
X = 0 it is also true that 〈JU,X〉 = 0. Thus, from the second relation we deduce, in any
case, that JX ∈ gα 	 w. Moreover, 〈J(X + Z), U〉 = 〈JX − B,U〉 = 0, so J(X + Z) is
orthogonal to h.

We distinguish two possibilities, depending on whether w contains a complex subspace
or w is a totally real subspace. If w contains a complex subspace, then it is clear that
X = 0. Consequently, the Lie algebra h is of the form h = c ⊕ r ⊕ g2α, where c denotes
a complex subspace of gα and r a totally real one. This corresponds to Case 3 in the
statement. Otherwise, if w is a totally real subspace, then h = w ⊕ R(X + Z), where
X ∈ gα 	Cw. Moreover, for τ = 1/|X|2, Ad(Exp(τJX))h = eτ ad JXh = w⊕RX. Indeed,

eτ ad JXU = U and eτ ad JX(X + Z) = X.

Thus, the Lie algebra h is conjugate to a totally real subspace of gα. This corresponds
again to Case 1 in the statement.

Case (iv): ha⊕g2α = R(aB + bZ) for some nonzero a, b ∈ R.

In this case, h = R(aB + X + bZ) ⊕ w, where w ⊂ gα and X ∈ gα 	 w. Let U , V ∈ w.
Then, taking brackets,

[U, V ] = 〈JU, V 〉Z ∈ g2α ∩ h,

[aB +X + bZ, U ] = a[B,U ] + [X,U ] + b[Z,U ] =
a

2
U + 〈JX,U〉Z ∈ h.

From the first equation, we get that 〈JU, V 〉 = 0, which implies that w is a totally real
subspace of gα. From the second one, taking into account that aU/2 ∈ w ⊂ h, we deduce
that 〈JX,U〉 = 0, from where JX ∈ gα 	w. Moreover, for τ = b/|X|2, we have

eτ ad JX(U) = U,

eτ ad JX(aB +X + bZ) = aB +X + bZ − aτ

2
JX − τ |X|2Z = aB +X − ab

2|X|2
JX.

Thus, Ad(Exp(τJX))h = w⊕ R(aB + Y ), where Y = X − ab
2|X|2JX ∈ w, which has been

shown to be conjugate to a⊕w. This corresponds again to Case 2 in the statement.
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Case (v): ha⊕g2α = a⊕ g2α.

In such case, there exist a vector subspace w ⊂ gα and X, Y ∈ gα 	 w such that h =
R(B +X)⊕w⊕ R(Y + Z). Due to the definition of the Lie bracket of a⊕ n, we have:

[U, V ] = 〈JU, V 〉Z ∈ h;

[B +X,U ] = [B,U ] + [X,U ] =
1

2
U + 〈JX,U〉Z ∈ h;

[Y + Z,U ] = [Y, U ] + [Z,U ] = −〈JU, Y 〉Z ∈ h;

[B +X, Y + Z] = [B, Y ] + [B,Z] + [X, Y ] + [X,Z] =
1

2
Y + (1 + 〈JX, Y 〉)Z ∈ h.

From these relations, we obtain the following conclusions:

• From the first equation, 〈JU, V 〉 = 0 for all U , V ∈ w (and so w is a totally real
subspace), or Y = 0.

• From the second one, we deduce that 〈JX,U〉 = 0 for all U ∈ w, or Y = 0.

• Third equation yields 〈JU, Y 〉 = 0 (the other possibility is Y = 0, which implies
〈JU, Y 〉 = 0).

• The last equation implies that Y = 0 or 1
2
Y + (1 + 〈JX, Y 〉)Z is proportional to

Y + Z, from where we deduce that 〈JX, Y 〉 = −1/2.

We distinguish two cases depending on whether Y = 0 or Y 6= 0.

Subcase (v)-(a). Assume that Y = 0. Then, h = R(B + X) ⊕ w ⊕ g2α. We
firstly show that w is a CR subspace of gα. In order to do so, let c = w ∩ Jw be the
maximal holomorphic subspace of w. Notice that h 	 c is not a totally real subspace
since 〈J(B + X), Z〉 6= 0, where B + X, Z ∈ h 	 c. Then, it follows that there exists
ξ′ ∈ (h ∩ Jh) 	 c, ξ′ 6= 0. Let us put ξ′ = a(B + X) + W ′ + bZ, for some W ′ ∈ w, and
where a, b ∈ R cannot vanish simultaneously. With this notation,

Jξ′ = aZ + aJX + JW ′ − bB = −b(B +X) + bX + aJX + JW ′ + aZ ∈ h.

Hence, bX+aJX+JW ′ ∈ w. We take ξ = (aξ′− bJξ′)/(a2 + b2) ∈ (h∩Jh)	 c, which has
the form ξ = B +X +W , with W = (aW ′ − bJW ′ − b2X − abJX)/(a2 + b2) ∈ w. Then,
Jξ = JX+JW +Z ∈ h, where JX+JW ∈ w. In this situation, η := JX+JW − (|X|2 +
|W |2)Z ∈ h	Cξ. Let us decompose η = ηc + ηr, where ηc ∈ h∩ Jh and ηr ∈ h	 (h∩ Jh).
Since h is a CR subspace of a⊕ n, Jη = Jηc + Jηr, where Jηc ∈ h and Jηr ∈ (a⊕ n)	 h.
However,

Jη = −X −W + (|X|2 + |W |2)B

=

(
|W |2

1 + |X|2
(B +X)−W

)
+

1 + |X|2 + |W |2

1 + |X|2
(|X|2B −X),
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where the first addend belongs to h and the second one is orthogonal to h. In particular,
one deduces that

Jηc =
|W |2

1 + |X|2
(B +X)−W and − |W |2

1 + |X|2
(Z + JX) + JW = ηc ∈ h.

Since Z, JX + JW ∈ h, we get that JX, JW ∈ h. In particular, JX ∈ w. Then,

h = C(B +X)⊕ R(|X|2Z − JX)⊕ (w	 RJX)

is a C-orthogonal direct sum, from where we deduce that w is a CR subspace of gα. Now,
taking into account that

e2 adX(B +X) = B, e2 adXU = U, e2 adXZ = Z,

one can deduce that Ad(Exp(2X))h = e2 ad(X)h = a ⊕ w ⊕ g2α. Thus, since w is a CR
subspace of gα, say w = c⊕ r, we obtain the last case in the statement.

Subcase (v)-(b). To finish, assume that Y 6= 0. In this situation,

• 〈JU, V 〉 = 0 for all U , V ∈ w, that is, w is a totally real subspace of gα;

• 〈JX,U〉 = 0 for all U ∈ w, that is, X ∈ gα 	 Cw;

• 〈JY, U〉 = 0 for all U ∈ w, that is, Y ∈ gα 	 Cw;

• 〈JX, Y 〉 = −1/2.

By assumption, h is a CR subspace of a ⊕ n ∼= Cn. Since w is totally real, it follows
that R(B + X) ⊕ R(Y + Z) is either complex or totally real. Observe that if it is totally
real, then

0 = 〈J(B +X), Y + Z〉 = 〈Z + JX, Y + Z〉 = 1 + 〈JX, Y 〉.
This equation yields 〈JX, Y 〉 = −1, which contradicts 〈JX, Y 〉 = −1/2. Consequently,
R(B +X)⊕ R(Y + Z) is a complex subspace. Since J(B +X) = Z + JX, then Y = JX
necessarily. Hence, −1/2 = 〈JX, Y 〉 = |X|2, which gives a contradiction. Thus, this case
is not possible.

3.3.2 Homogeneous CR submanifolds in CHn

Now that we know the subgroups H of AN that have a CR orbit (which has been assumed
to be the one through o ∈ CHn), we must study which of the remaining H-orbits are CR
submanifolds in order to get a classification result.

Observe that Proposition 3.3.1 can be rephrased by saying that any homogeneous CR
submanifold induced by a Lie subgroup of AN is congruent to an orbit of the action of
one of the four possible types in Proposition 3.3.1. Thus, since AN acts transitively on
the complex hyperbolic space, it will be enough to decide which elements g ∈ AN satisfy
that the orbit H · g(o) is a CR submanifold for each of the four types of subgroups. This
is what we address in the following result.
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Theorem 3.3.2. An orbit of the action of a connected Lie subgroup H of AN with Lie
algebra h is a CR submanifold of CHn if, and only if, it is congruent to the orbit H · g(o)
for one of the following cases:

1. h = r and g ∈ AN ; in this case, all the H-orbits are totally real submanifolds that
constitute a homogeneous subfoliation of a horosphere foliation.

2. h = a ⊕ r and g ∈ Exp((gα 	 Cr) ⊕ g2α); in this case, the CR orbits are totally real
equidistant submanifolds to a totally geodesic RHk, for k ∈ {1, . . . , n}.

3. h = c ⊕ r ⊕ g2α and g ∈ AN ; in this case, all the orbits of H are CR submanifolds
that are congruent to each other, and constitute a homogeneous subfoliation of a
horosphere foliation.

4. h = a⊕ c⊕ r⊕ g2α and g ∈ Exp(Jr); in this case, the CR orbits are the leaves of a
homogeneous polar foliation with exactly one minimal leaf (which turns out to be a
Berndt-Brück submanifold) on a totally geodesic CHk in CHn, for k ∈ {2, . . . , n}.

Here, r stands for a totally real subspace of gα, and c for a complex subspace of gα.

The rest of this section is devoted to proving Theorem 3.3.2. In order to do so, recall
that, by definition, the orbit H · g(o) is a CR submanifold of CHn if, and only if, its
tangent space at each point splits as an orthogonal direct sum of a totally real subspace of
Tg(o)(H · g(o)) and a complex one. Due to the homogeneity hypothesis and the fact that
H, as a subgroup of G, consists of holomorphic transformations, it is actually enough to
check the CR condition at the point g(o). Notice that, since H · g(o) = g(g−1Hg · o), the
tangent space to the orbit H · g(o) at g(o) can be written in terms of the Lie algebra h as
follows:

Tg(o) (H · g(o)) = g∗
(
To
(
g−1H · g(o)

))
= g∗Ad(g−1)h.

Thus, since g is a holomorphic isometry, it is enough to study which g ∈ AN satisfy
that Ad(g−1)h decomposes into an orthogonal direct sum of a totally real subspace and a
complex one. By virtue of Proposition 3.3.1, the Lie algebras h we have to work with are
the following:

h ∈ {r, a⊕ r, c⊕ r⊕ g2α, a⊕ c⊕ r⊕ g2α},

where r denotes a totally real subspace of gα and c is a complex one.

Case 1

We deal firstly with the case h = r, where r denotes a totally real subspace of gα. In
order to do so, we compute Ad(g−1)h, where the element g−1 ∈ AN can be written as
g−1 = Exp(T ), with T = aB+W +U +V + bZ for some W ∈ r, U ∈ Jr, V ∈ gα	Cr and
a, b ∈ R.
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If a 6= 0, given W̃ ∈ r,

Ad(g−1)(W̃ ) = ead(T )(W̃ ) =
∞∑
k=0

ak

2kk!
W̃ +

∞∑
k=1

ak−1(2k − 1)

2k−1k!
〈JU, W̃ 〉Z

= ea/2W̃ +
2

a
ea/2(ea/2 − 1)〈JU, W̃ 〉Z.

Thus, if a 6= 0, we identify the tangent space to the orbit g−1Hg · o at o with Ad(g−1)h =

{ea/2W̃ + 2
a
ea/2(ea/2− 1)〈JU, W̃ 〉Z : W̃ ∈ r}, which can be written as the following orthog-

onal direct sum:

Ad(g−1)h = (r	 RJU)⊕ R
(
JU +

2(ea/2 − 1)|U |2

a
Z

)
. (3.2)

Otherwise, if a = 0, Ad(g−1)(W̃ ) = W̃ + 〈JU, W̃ 〉Z, so the tangent space to the orbit
g−1Hg · o at o can be identified with

Ad(g−1)h = (r	 RJU)⊕ (JU + |U |2Z). (3.3)

In any case, Ad(g−1)h is totally real since, for any R ∈ r	 RJU ,

〈JR, JU +
2(ea/2 − 1)|U |2

a
Z〉 = 0 and 〈JR, JU + |U |2Z〉 = 0.

Therefore, the corresponding orbit g−1Hg · o is a CR submanifold. As g−1 ∈ AN is
arbitrary, one concludes that every H-orbit is totally real, and thus, a CR submanifold.
Moreover, since h ⊂ n, each H-orbit is contained in one of the leaves of the horosphere
foliation induced by the nilpotent Lie group N , from where Case 1 in the statement follows.

Case 2

We study now the case h = a ⊕ r, where r denotes a totally real subspace of gα. Notice
that the Lie algebra h can be identified with the tangent space to the orbit H · o at o,
To(H · o), and then, the normal space to H · o at o can be identified with the orthogonal
complement to h in a⊕ n, νo(H · o) = (gα 	 r)⊕ g2α =: l. This normal subspace νo(H · o)
is in fact a Lie subalgebra of a ⊕ n, and since Exp: a ⊕ n → AN is a diffeomorphism,
L := Exp ((gα 	 r)⊕g2α) is a Lie subgroup of AN . The orbit of this Lie subgroup through
o, L ·o, turns out to be a submanifold of CHn which intersects every orbit of the H-action.
To show this, it is enough to check that the smooth map

ϕ : H × L→ AN

(h, `) 7→ h`

is surjective. On the one hand, L acts polarly on AN with section H · e (see [30]), which
implies that each L-orbit intersects H · e orthogonally. Then, for each g ∈ AN there exist
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` ∈ L and h ∈ H such that `g = h, or equivalently, g = `−1h. This actually shows that the
map φ : L×H → AN , (`, h) 7→ `h, is surjective. On the other hand, H normalizes L, that
is, for each h ∈ H and each ` ∈ L, h`h−1 ∈ L, or equivalently, Ih L ⊂ L, where Ih denotes
the conjugation by h ∈ H. To prove this fact, we show that Ad(h)l = (Ih)∗l ⊂ l. Let
h = Exp(aB +W ) ∈ H, with a ∈ R and W ∈ r. Then, given U + xZ ∈ l, with U ∈ gα 	 r
and x ∈ R,

Ad(h)(U + xZ) = ead(aB+W )(U + xZ) =
∞∑
k=0

adk(aB +W )(U + xZ)

k!
,

which lies in l since each addend does, as [aB +W,U + xZ] = a
2
U + (ax+ 〈JW,U〉)Z ∈ l.

This proves that (Ih)∗l ⊂ l for each h ∈ H. Hence, the connected Lie subgroup with Lie
algebra (Ih)∗l, Ih L = hLh−1 is contained in L.

Considering these two facts, it easily follows that ϕ is a surjective map. Indeed, since
φ is surjective, there exist h ∈ H and ` ∈ L in such a way that g = `h ∈ Lh, that also
lies in hL since H normalizes L. Then, there exists ˜̀∈ L such that g = h˜̀, which finally
proves that ϕ is surjective.

Then, taking into account that L · o intersects any H-orbit, in order to know if the
remaining orbits of the H-action are CR submanifolds it is enough to decide which g ∈
Exp(νo(H · o)) satisfy that Ad(g−1)h splits into an orthogonal direct sum of a totally real
subspace and a complex one. Consider then g−1 = Exp(U + V + xZ), where U ∈ Jr,
V ∈ gα 	 Cr and x ∈ R. It is easy to check that

Ad(g−1)(B) = B − 1

2
(U + V )− xZ and Ad(g−1)(W̃ ) = W̃ + 〈JU, W̃ 〉Z,

for each W̃ ∈ r. Then, the tangent space to the orbit g−1Hg · o at o can be identified with
the Lie subalgebra

Ad(g−1)h = R
(
B − 1

2
(U + V )− xZ

)
⊕ R

(
JU + |U |2Z

)
⊕ (r	 RJU). (3.4)

Now we determine when Ad(g−1)h is a CR subspace of a⊕ n. Note that Ad(g−1)h is a
totally real subspace if, and only if, the inner product

〈J
(
B − 1

2
(U + V )− xZ

)
, JU + |U |2Z〉

= 〈Z − 1

2
J(U + V ) + xB, JU + |U |2Z〉 =

|U |2

2

vanishes, which happens if, and only if, U = 0. Then, the orbit g−1Hg · o is a totally real
submanifold if and only if g ∈ Exp

(
(gα 	 Cr)⊕ g2α

)
.

On the other hand, in order to check if Ad(g−1)h produces a not totally real CR
submanifold for some g ∈ Exp(νo(H · o)), we compute the maximal holomorphic subspace
m of Ad(g−1)h, and study whether its orthogonal complement in Ad(g−1)h is a totally real
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subspace. In this case, since we are looking for CR submanifolds that are not totally real,
we get U 6= 0. Notice that R (JU + |U |2Z)⊕ (r	RJU) is a totally real subspace and that
B− 1

2
(U +V )−xZ is complex orthogonal to r	RJU . Moreover, J(B− 1

2
(U +V )−xZ) =

xB + Z − 1
2
(JU + JV ) cannot be proportional to JU + |U |2Z, from where we deduce

that Ad(g−1)h does not contain a nontrivial complex vector subspace. Then, the maximal
holomorphic subspace is, in this case, m = J(Ad(g−1)h)∩Ad(g−1)h = 0, and its orthogonal
complement in Ad(g−1)h is precisely Ad(g−1)h, which is not a totally real subspace.

Thus, we conclude that the only CR H-orbits, which are in fact totally real submani-
folds, are of the form g−1Hg · o, where g ∈ Exp((gα 	 Cr)⊕ g2α). Furthermore, the orbit
H · o is a totally geodesic RHk, with k = dim(r) + 1, and thus the remaining H-orbits are
equidistant to it. This corresponds to Case 2 in the statement.

Case 3

We study now the case h = c⊕ r⊕ g2α, where c⊕ r denotes a CR subspace of gα. In order
to determine which of the remaining orbits of the action of the corresponding connected
Lie subgroup H of AN are CR submanifolds, we compute Ad(g−1)h, where g ∈ AN is
arbitrary. Consider g−1 = Exp(T ), where T = aB + R + JR′ + U + W + bZ for some R,
R′ ∈ r, U ∈ c, W ∈ gα 	 (Cr⊕ c) and a, b ∈ R.

If a 6= 0, given Ũ ∈ c and R̃ ∈ r,

Ad(g−1)(Z) = ead(T )(Z) =
∞∑
k=0

ak

k!
Z = eaZ,

Ad(g−1)(Ũ) = ead(T )(Ũ) =
∞∑
k=0

ak

2kk!
Ũ +

∞∑
k=1

ak−1(2k − 1)

2k−1k!
〈JU, Ũ〉Z

= ea/2Ũ +
2ea/2(ea/2 − 1)

a
〈JU, Ũ〉Z,

Ad(g−1)(R̃) = ead(T )(R̃) =
∞∑
k=0

ak

2kk!
R̃−

∞∑
k=1

ak−1(2k − 1)

2k−1k!
〈R′, R̃〉Z

= ea/2R̃− 2ea/2(ea/2 − 1)

a
〈R′, R̃〉Z.

Otherwise, if a = 0, given Ũ ∈ c and R̃ ∈ r,

Ad(g−1)(Z) = Z, Ad(g−1)(Ũ) = Ũ + 〈JU, Ũ〉Z, Ad(g−1)(R̃) = R̃− 〈R′, R̃〉Z.

Thus, in any case, Ad(g−1)h = h for any g ∈ AN . It follows immediately that every
H-orbit is then a CR submanifold of CHn and, moreover, that all H-orbits are mutually
congruent. Since h ⊂ n, the H-orbits are contained in the leaves of the horosphere foliation
induced by N . This corresponds to Case 3 in the statement.
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Case 4

Finally, we study the last case in the statement, that is, h = a ⊕ c ⊕ r ⊕ g2α, where c ⊕ r
denotes a CR subspace of gα. The Lie algebra h can be identified with the tangent space
to the orbit H · o at o, and then, the corresponding normal space can be identified with
the orthogonal complement to h in a ⊕ n, νo(H · o) = gα 	 (c ⊕ r) = Jr ⊕ c′, where
c′ = gα 	 (c⊕ r⊕ Jr) is a complex subspace of gα. We denote Σ = Exp(Jr⊕ c′), which is
a submanifold of AN (since Exp: a ⊕ n → AN is a diffeomorphism) but not a subgroup
in general. Proceeding as in Case 2, we will prove that Σ intersects every orbit of the
H-action, and thus, it will be enough to decide which g ∈ Exp(νo(H · o)) satisfy that the
orbit g−1Hg · o is a CR submanifold of CHn.

Again, to see that Σ intersects each H-orbit, we show that the smooth map

ϕ : H × Σ→ AN

(h, p) 7→ (h, p) = hp.

is surjective. To do so, let g = hp ∈ AN , where h = Exp(aB + U + V + xZ) ∈ H and
p = Exp(JV ′ +W ) ∈ Σ for some U ∈ c, V, V ′ ∈ r, W ∈ c′ and x ∈ R.

If a 6= 0 then, by [17, Subsections 4.1.3 and 4.1.4],

g = Exp(aB + U + V + xZ) · Exp(JV ′ +W )

=

(
Expn

(
2(ea/2 − 1)

a
(U + V ) +

x(ea − 1)

a
Z

)
, a

)
·
(

Expn(JV
′ +W ), 0

)
=

(
Expn

(
2(ea/2 − 1)

a
(U + V ) + ea/2(JV ′ +W ) +

x(ea − 1)

a
Z

+
ea/2

2

[
2(ea/2 − 1)

a
(U + V ), JV ′ +W

]
, a

))
=(Expn(W̃ + yZ), a),

where

W̃ =
2(ea/2 − 1)

a
(U + V ) + ea/2(JV ′ +W ), y =

ea/2(ea/2 − 1)

a
〈V, V ′〉+

ea − 1

a
x.

Analogously, if a = 0, g = hp = Exp(U + V + xZ) · Exp(JV ′ + W ) then, by [17,
Subsections 4.1.3 and 4.1.4],

Exp(U + V + xZ) · Expa⊕n(JV
′ +W )

= (Expn(U + V + xZ), 0) · (Expn(JV
′ +W ), 0)

=

(
Expn

(
U + V + JV ′ +W + xZ +

1

2
[U + V, JV ′ +W ]

)
, 0

)
=
(

Expn(W̃ + yZ), 0
)
,
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where W̃ = U + V + JV ′ + W and y = x + 1
2
〈V, V ′〉. From these expressions it is

straightforward to check that ϕ is a surjective map.
Therefore, it is enough to study which g−1 = Exp(JR + C), with R ∈ r and C ∈ c′,

satisfy that g−1Hg · o is a CR submanifold. Let V ∈ r, U ∈ c. Then,

Ad(g−1)(B) = B − 1

2
(JR + C), Ad(g−1)(U) = U,

Ad(g−1)(V ) = V − 〈R, V 〉Z, Ad(g−1)(Z) = Z,

from where

Ad(g−1)h = R
(
B − 1

2
(JR + C)

)
⊕ c⊕ r⊕ g2α. (3.5)

Now we check if this Lie algebra corresponds to the tangent space of a CR sub-
manifold. Proceeding as in Case 2, we compute the maximal holomorphic subspace
m = J(Ad(g−1)h) ∩ Ad(g−1)h and check if its orthogonal complement in Ad(g−1)h is a
totally real subspace. After some easy calculations, one obtains that the maximal holo-
morphic subspace is, in this case,

m =

{
c, if C 6= 0;

R
(
Z + 1

2
R
)
⊕ c⊕ R

(
B − 1

2
JR
)
, if C = 0.

We study these two cases separately, depending on whether C = 0 or C 6= 0.
If C 6= 0, then the orthogonal complement to the maximal complex subspace is

Ad(g−1)h	m = R
(
B − 1

2
(JR + C)

)
⊕ r⊕ g2α,

which is not a totally real subspace since

〈J
(
B − 1

2
(JR + C)

)
, Z〉 = 〈Z +

1

2
(R− JC), Z〉 = 1 6= 0.

Then, g−1Hg ·o is not a CR submanifold when C 6= 0. Otherwise, if C = 0, the orthogonal
complement to the maximal complex subspace is

Ad(g−1)h	m = (r⊕ RZ)	 R
(
Z +

1

2
R

)
= (r	 RR)⊕ R

(
|R|2

2
Z −R

)
.

Given R̂ ∈ r	 RR, it follows that

〈R̂, J
(
|R|2

2
Z −R

)
〉 = −〈R̂, |R|

2

2
B + JR〉 = 0,

and so Ad(g−1)h	m is a totally real subspace. Thus we conclude that the orbit g−1Hg · o
is a CR submanifold if, and only if, g ∈ Exp(Jr). Moreover, it cannot be a totally real
submanifold since the maximal holomorphic subspace m is not trivial in this case. Notice
that Exp(h ⊕ Jr) · o is a totally geodesic CHk, with k = dimC(h ⊕ Jr). The H-orbits
that foliate this CHk constitute a homogeneous polar regular foliation whose leaf H · o is
minimal and indeed it is a Berndt-Brück submanifold of such CHk, which follows from [30,
Theorem A and Corollary 6.2]. This corresponds to Case 4 in the statement.
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3.4 Congruence classes

This section is devoted to classifying the examples that we have obtained in Theorem 3.3.2,
up to congruence. This problem is settled in the following result.

Theorem 3.4.1. Let H1 and H2 be two Lie subgroups of AN and denote by h1 and h2

their Lie algebras, respectively. Assume that H1 and H2 act on CHn in such a way that
H1 ·g1(o) and H2 ·g2(o) are CR submanifolds, with g1, g2 ∈ AN as given by Theorem 3.3.2.
Then, H1 · g1(o) and H2 · g2(o) are congruent orbits if, and only if, h1 and h2 correspond
to the same type in Theorem 3.3.2 and, according to the type:

1. gi = Exp(aiB+Wi+Ui+Vi+biZ), with ai, bi ∈ R, Wi ∈ r, Ui ∈ Jr, Vi ∈ gα	Cr, for
i ∈ {1, 2}, and ρ(a2)|U1| = ρ(a1)|U2|, where ρ : R → (0,∞) is the analytic function
defined by ρ(0) = 1 and ρ(t) = 2(et/2 − 1)/t for any t 6= 0;

2. gi = Exp(Vi + xiZ), with xi ∈ R, Vi ∈ gα 	 Cr, for i ∈ {1, 2}, and |V1| = |V2|,
|x1| = |x2|;

3. In this case, all the orbits are congruent;

4. gi = Exp(JRi), with Ri ∈ r, for i ∈ {1, 2}, and |R1| = |R2|.
The rest of this section is devoted to proving Theorem 3.4.1. We start by studying each

case separately.

Case 1

We firstly study the congruence among the orbits of the form H · g(o), where h = r is a
totally real subspace of gα and g−1 = Exp(aB+W +U +V + bZ) for some W ∈ r, U ∈ Jr,
V ∈ gα 	 Cr and a, b ∈ R. Recall that two totally real subspaces of gα are congruent by
an element of K0

∼= S(U(1)U(n)), and hence the actions of the corresponding connected
Lie subgroups of AN are conjugate if, and only if, both have the same dimension. Then,
we can fix r in the rest of the proof.

First of all, consider the element g̃−1 = Exp(Ũ), where Ũ ∈ Jr. Then, given W̃ ∈ r, we

have Ad(g̃−1)(W̃ ) = ead(Ũ)(W̃ ) = W̃ + 〈JŨ, W̃ 〉Z, from where

Ad(g̃−1)h = (r	 RJŨ)⊕ R(JŨ + |Ũ |2Z).

Notice that, in particular, if a 6= 0, one may consider the element

Ũ =
2

a
(ea/2 − 1)U ∈ Jr. (3.6)

Then, we obtain

Ad(g̃−1)h = (r	 RJU)⊕ R

(
2

a
(ea/2 − 1)JU +

∣∣∣∣2a(ea/2 − 1)U

∣∣∣∣2 Z
)

(3.7)

= (r	 RJU)⊕ R
(
JU +

2

a
(ea/2 − 1)|U |2Z

)
= Ad(g−1)h,
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where the last equality follows from the relation (3.2). Otherwise, if a = 0, taking g̃−1 =
Exp(U), it follows from (3.3) that

Ad(g̃−1)h = Ad(g−1)h = (w	 RJU)⊕ R(JU + |U |2Z). (3.8)

Thus, we deduce that g−1Hg ·o is congruent to g̃−1Hg̃ ·o, or equivalently, that H ·g(o) is
congruent to H · g̃(o), where g̃−1 = Exp(ρ(a)U) and ρ : R→ (0,∞) is the analytic function
defined by

ρ(t) =

{
1, if t = 0,
2(et/2−1)

t
, if t 6= 0.

(3.9)

Therefore, in order to settle the congruence problem for Case 1, we just have to consider
elements of the form g ∈ Exp(Jr). In the following result, we study the mean curvature of
these orbits.

Lemma 3.4.2. Let h = r be a totally real subspace of gα and let g−1 = Exp(U), with
U ∈ Jr. If s = dim(r 	 RJU), the squared norm of the mean curvature vector H of the
orbit H · g(o) is given by

|H|2 =
4|U |2 + (1 + s+ (2 + s)|U |2)2

4(1 + |U |2)2
.

Proof. Let g−1 = Exp(U), with U ∈ Jr. Since H · g(o) is congruent to g−1Hg · o, we
compute the mean curvature for the latter. By homogeneity, it is enough to do so at
o ∈ CHn. Recall that the tangent space of the orbit g−1Hg · o at o, which we identify with
Ad(g−1)h, is

To(g
−1Hg · o) = (r	 RJU)⊕ R(JU + |U |2Z).

Analogously, the normal space at o, which can be identified with the orthogonal comple-
ment of Ad(g−1)h in a⊕ n, is

νo(g
−1Hg · o) = a⊕ Jr⊕ (gα 	 Cr)⊕ R(Z − JU). (3.10)

Let W ∈ r 	 RJU with |W | = 1 and T = JU+|U |2Z
|U |
√

1+|U |2
be left-invariant unit tangent vector

fields to g−1Hg ·o at o. Using the expression for the Levi-Civita connection of the complex
hyperbolic space in terms of left-invariant vector fields of AN (Subsection 1.5.4), it follows
that

∇̄WW =
1

2
B and ∇̄TT =

1 + 2|U |2

2(1 + |U |2)
B +

1

1 + |U |2
U.

Recall that, given an orthonormal basis {Ei}i of To(g
−1Hg · o), the mean curvature of

g−1Hg · o at o can be computed as follows:

H =
∑
i

II(Ei, Ei) =
∑
i

(∇̄EiEi)
⊥,
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where II is the second fundamental form of g−1Hg · o. If we denote s = dim(r 	 RJU),
using the expressions of the Levi-Civita connection above, and projecting onto the normal
space according to (3.10), it follows that the mean curvature of the orbit g−1Hg · o is

H =

(
s

2
+

1 + 2|U |2

2(1 + |U |2)

)
B +

1

1 + |U |2
U. (3.11)

The result follows after computing the squared norm of this vector.

In order to finish the proof of this case, we consider g−1
i = Exp(Ui), with Ui ∈ Jr,

for i ∈ {1, 2}. We distinguish two possibilities, depending on whether |U1| = |U2| or
|U1| 6= |U2|.

Case 1.a

Assume firstly |U1| = |U2|. The connected component of the identity of the normalizer of r
in K0, which is given by N0

K0
(r) ' SO(dim(r))×U(n−dim(r)−1), acts transitively on the

spheres of r centered at the origin. Hence, there exists an element k ∈ N0
K0

(r) satisfying
Ad(k)(U1) = U2. As k ∈ N0

K0
(r) and K0 ' U(n− 1), then k ∈ NK0(gα 	Cr). Considering

these facts, it follows that

Ad(k) Ad(g−1
1 )h = Ad(k)

(
(r	 RJU1)⊕ R(JU1 + |U1|2Z)

)
=
(
(r	 RJU2)	 R(JU2 + |U2|2Z)

)
= Ad(g−1

2 )h.

Since k fixes o ∈ CHn, it follows that k(g−1
1 Hg1 ·o) = g−1

2 Hg2 ·o, which shows that H ·g1(o)
is congruent to H · g2(o).

Case 1.b

Now we study the congruence between the orbits H · g1(o) and H · g2(o) when |U1| 6= |U2|.
The expression for |H|2 given in Lemma 3.4.2 allows us to conclude that, if |U1| 6= |U2|,
the orbits H · g1(o) and H · g2(o) cannot be congruent since the squared norms of their
associated mean curvatures are different. Indeed, if we denote by |Hi|2 the squared norm
of the mean curvature of the orbit H · gi(o), for i ∈ {1, 2}, then |H1|2 = |H2|2 provided
that

(|U1|2 − |U2|2)
(
2s(1 + |U1|2)(1 + |U2|2) + 3(2 + |U1|2 + |U2|2)

)
= 0,

which happens if, and only if, |U1| = |U2|.

To finish with this case, let now g−1
i = Exp(aiB+Wi +Ui +Vi + biZ), where ai, bi ∈ R,

Wi ∈ r, Ui ∈ Jr, Vi ∈ gα 	 Cr, for i ∈ {1, 2}. Then, taking into account relations (3.7)

and (3.8), as well as the expressions (3.6) and (3.9) of the definition of Ũ and the function
ρ, respectively, one concludes that the orbits H · g1(o) and H · g2(o) are congruent if, and
only if, ρ(a2)|U1| = ρ(a1)|U1|.
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Case 2

We now analyze the congruence among the orbits of the form H · g(o), where h = a⊕ r, r
is a totally real subspace of gα, and g = Exp(2V + xZ), with V ∈ gα 	Cr and x ∈ R. Let
g1 = Exp(2V1 + x1Z), g2 = Exp(2V2 + x2Z), with Vi ∈ gα 	 Cr and xi ∈ R for i ∈ {1, 2}.
Again, recall that two totally real subspaces of gα are congruent if, and only if, both have
the same dimension. Then, we can fix r in the rest of the proof.

To start with, we compute the squared norm of both the mean curvature and the second
fundamental form of a Type 2 orbit H · g(o).

Lemma 3.4.3. Let h = a ⊕ r, where r denotes a totally real subspace of gα, and let
g = Exp(2V + xZ), with V ∈ gα 	Cr and x ∈ R. Then, if s = dim(r), the squared norms
of the mean curvature and the second fundamental form of the orbit H · g(o) are given by
the following expressions:

|H|2 =
(1 + s)2|V |4 + (2 + s)2x2(1 + x2) + |V |2 (1 + 8x2 + s2(1 + 2x2) + 2s(1 + 3x2))

4(1 + x2 + |V |2)2
,

|II|2 =
(1 + s)|V |4 + (4 + 3s)x2(1 + x2) + |V |2 (1 + s+ 4x2(2 + s))

4(1 + x2 + |V |2)2
.

Proof. Let g = Exp(2V + xZ), with V ∈ gα 	Cr and x ∈ R. Since H · g(o) and g−1Hg · o
are congruent orbits, we compute the mean curvature and the second fundamental form
for the latter. From relation (3.4), the Lie subalgebra Ad(g−1)h = R(B + V + xZ) ⊕ r
can be identified with the tangent space To(g

−1Hg · o). Consider an arbitrary W ∈ r with
|W | = 1 and

X =
B + V + xZ√
1 + x2 + |V |2

,

which are left-invariant unit tangent vector fields to g−1Hg · o at o. Consider also JW̃ ,
with W̃ ∈ r and |W̃ | = 1, JV/|V | (in case V 6= 0), V ′ ∈ (gα 	 Cr)	 CV and

ξ1 =
xB − Z√

1 + x2
, ξ2 =

(1 + x2)V − |V |2B − x|V |2Z

|V |
√

(1 + x2)
(
1 + x2 + |V |2

) ,
which are normal vectors. Now, we compute the shape operators with respect to these unit
normal vectors. Using again the formula for the Levi-Civita connection of the complex
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hyperbolic space, one obtains

Sξ1W =
x

2
√

1 + x2
W, Sξ1X =

x(2 + 2x2 + |V |2)

2(1 + x2 + |V |2)
√

1 + x2
X,

Sξ2W = − |V |

2
√

(1 + x2)
(
1 + x2 + |V |2

) W, Sξ2X = − |V |

2
√

(1 + x2)
(
1 + x2 + |V |2

) X,
SJW̃W = − x〈W, W̃ 〉

2
√

1 + x2 + |V |2
X, SJW̃X = − x

2
√

1 + x2 + |V |2
W,

SJV
|V |
W = 0, SJV

|V |
X = − x|V |

1 + x2 + |V |2
X,

SV ′W = 0, SV ′X = 0.

Given orthonormal bases {Ei}i and {ξk}k of To(g
−1Hg·o) and νo(g

−1Hg·o), respectively,
the squared norms of the mean curvature and the second fundamental can be calculated
as follows:

|H|2 =
∑
k

tr(Sξk)2, |II|2 =
∑
i,j,k

〈SξkEi, Ej〉2.

In particular, if we denote s = dim(r), inserting the relations of the shapes operators
above, one gets the explicit expressions for these two geometric invariants given in the
statement.

Subtracting the two equalities given in Lemma 3.4.3, we obtain a third geometric in-
variant:

|H|2 − |II|2 =
s(1 + s)(x2 + |V |2)

4(1 + x2 + |V |2)
.

We will use these expressions in order to prove that there exists a 2-parameter family
of orbits of Type 2, up to congruence. More specifically, if g1 = Exp(2V1 + x1Z), g2 =
Exp(2V2 + x2Z), with Vi ∈ gα	Cr and xi ∈ R, for i ∈ {1, 2}, we will show that the orbits
H · g1(o) and H · g2(o) are congruent if, and only if, |V1| = |V2| and |x1| = |x2|.

Case 2.a

We firstly show that if |V1| 6= |V2| or |x1| 6= |x2|, the orbits H · g1(o) and H · g2(o) cannot
be congruent. We distinguish two possibilities, depending on whether s = 0 or s 6= 0.

Case s 6= 0. To tackle this problem, we prove that the system in |V | and x2 given by
the expressions for S := |H|2 − |II|2 and T := |II|2,

S =
s(1 + s)(x2 + |V |2)

4(1 + x2 + |V |2)
,

T =
(1 + s)|V |4 + (4 + 3s)x2(1 + x2) + |V |2 (1 + s+ 4x2(2 + s))

4(1 + x2 + |V |2)2
,
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has a unique nonnegative solution. From the first equation we get

|V |2 =
−s(1 + s)x2 + 4S(1 + x2)

s2 + s− 4S
. (3.12)

Inserting this expression for |V |2 into the second equality of the system, we obtain a
quadratic equation in x2 with necessarily nonnegative discriminant, which implies that
there exist two solutions for x2 (which may coincide). However, inserting these two values
of x2 into (3.12), one gets that one of the resulting values of |V |2 is strictly negative.
Indeed, the denominator is a positive number (since s2 +s−4S = (s2 +s)/(1+x2 + |V |2)),
but the coefficient of x2 is negative, so |V |2 would be a negative number provided that
−s(1 + s)x2 + 4S(1 +x2) < 0 for some value of x2. In particular, this happens if such value
of x2 is higher than 4S

s2+s−4S
. The highest value of x2 obtained from (3.12) satisfies this

inequality, and hence, the corresponding value of |V |2 is negative, which is a contradiction.
Thus, the previous system has a unique nonnegative solution (|V |, x2).

Case s = 0. In this case, h = a and, with the notation above, Ad(g)h = RX. In
particular, every orbit of the corresponding Lie subgroup H is one-dimensional. Notice
that, since s = 0, |H|2 = |II|2. So, in order to get a system of two equations in |V | and x,
we compute yet another geometric invariant: the complex curvature 〈∇̄XX, JX〉 [55, Sec-
tion 5]. Again, using the formula for the Levi-Civita connection of the complex hyperbolic
space, we obtain

∇̄XX =
1

1 + x2 + |V |2
∇̄B+V+xZ(B + V + xZ)

=
1

2(1 + x2 + |V |2)

(
(|V |2 + 2x2)B − V − 2xJV − 2xZ

)
.

Then, since JX = (Z + JV − xB)
/√

1 + x2 + |V |2,

〈∇̄XX, JX〉 =
1

2(1 + x2 + |V |2)3/2
〈(|V |2 + 2x2)B − V − 2xJV − 2xZ, Z + JV − xB〉

=
−x

2(1 + x2 + |V |2)3/2

(
3|V |2 + 2(1 + x2)

)
.

Let λ = x2, µ = |V |2 and, to shorten notation, let us denote S = 〈∇̄XX, JX〉2,
T = |H|2. Then we have the following system in λ and µ:

S =
λ(2 + 2λ+ 3µ)2

4(1 + λ+ µ)3
, T =

4λ(1 + λ) + µ(1 + 8λ+ µ)

4(1 + λ+ µ)2
.

We now show that this system has only one nonnegative solution for nonnegative S and
T , or equivalently, that the map

F : [0,+∞)× [0,+∞)→ [0,+∞)× [0,+∞)

(λ, µ) 7→
(
λ(2 + 2λ+ 3µ)2

4(1 + λ+ µ)3
,
4(λ+ λ2) + µ(1 + 8λ+ µ)

4(1 + λ+ µ)2

)
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is injective. Suppose that, on the contrary, F is not an injective map. In such case, there
exists a pair of distinct points, (λ1, µ1) and (λ2, µ2) that have the same image under F .
Consider the straight line joining both points. Then, each one of both components of F
should have a critical point in the open segment between (λ1, µ1) and (λ2, µ2).

Suppose firstly that these two points satisfy λ1 = λ2 =: λ. Hence, there exists a
straight vertical line (λ, t) joining them. Restricted to the points of this vertical segment,
the function F has the form

F (λ, t) =

(
λ(2 + 2λ+ 3t)2

4(1 + λ+ t)3
,
4(λ+ λ2) + t(1 + 8λ+ t)

4(1 + λ+ t)2

)
,

and its derivative with respect to t is

dF

dt
(λ, t) =

(
−3λt(2 + 2λ+ 3t)

4(1 + λ+ t)4
,
1 + λ+ t− 6λt

4(1 + λ+ t)3

)
.

If λ 6= 0, since t > 0, the first component of this derivative is strictly negative, so there is
no critical point, which yields a contradiction. Otherwise, if λ = 0, the second component
of this derivative, t/4(1 + t)2, is strictly positive and hence there is no critical point, which
yields again a contradiction.

Suppose now that there exists a pair of distinct points, (λ1, µ1) and (λ2, µ2), having the
same image under the function F , and assume that there exists a nonvertical straight line
(t,mt+ n) joining such points. Restricted to this segment, F has the form

F (t,mt+ n) =

(
t(2 + 3n+ (2 + 3m)t)2

4(1 + n+ t+mt)3
,
4t(1 + t) + (mt+ n)(1 + n+ (8 +m)t)

4(1 + n+ t+mt)2

)
.

Moreover, the corresponding derivative with respect to t is

dF

dt
(t,mt+ n) =

(
((3m+ 2)t+ 3n+ 2)(n(3mt+ 3n+ 5) + (5m+ 2)t+ 2)

4(mt+ n+ t+ 1)4
,

t(m(m+ 6n+ 11) + 4) + (n+ 1)(m+ 6n+ 4)

4(mt+ n+ t+ 1)3

)
.

If m ≥ 0 and n ≥ 0, since t ≥ 0, the first component of this derivative is strictly
positive. Thus, there is no critical point and we get a contradiction.

On the other hand, assumem ≤ 0 and consider the change of variable t = λ, n = µ−mλ.
Taking into account that λ, µ ≥ 0, it follows that n ≥ 0, and thus, the first component of
the derivative of F is strictly positive. Again, this means that there is no critical point,
from where we get a contradiction.

We finally deal with the case m > 0 and n < 0, checking the injectivity of F directly.
Suppose that there exist two values of t in such a way that the corresponding images under
F take the same value (S, T ), for some fixed S, T ≥ 0. We will get a contradiction in order
to prove that these two values for t are, necessarily, equal.
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We firstly determine such values of t. In order to do so, we use the second component
of F to derive the following equation:

t2(4 + 8m+m2 − 4(1 +m)2T ) + t((4 +m)(1 + 2n)− 8(1 +m)(1 + n)T ) (3.13)

+(1 + n)(n− 4(1 + n)T ) = 0.

We assume that 4 + 8m + m2 − 4(1 + m)2T 6= 0 because, otherwise, this equation would
have only one solution for t and we would be done. Moreover, notice that the two solutions
coincide whenever this equation has vanishing discriminant, that is, if

T =
m(m+ 8) + 16(1 + 3n(1 + n))

48(n−m)(1 + n)
. (3.14)

Now, inserting the two solutions of (3.13) into the first component of F , we get two
expressions that must coincide, which happens if and only if√

48(n+ 1)T (m− n) +m(m+ 8) + 16(3n(n+ 1) + 1) = 0 or

m2 +m(12(n+ 1)T − 9n− 4) + 4(1− 3n(n+ 1)(T − 1)) = 0.

Notice that the vanishing of the first relation is equivalent to the vanishing of the discrim-
inant (3.14). In this case, the two values of t must be the same and we are finished. So we
assume that the second expression vanishes, or equivalently,

T =
4− 4m+m2 + 12n− 9mn+ 12n2

12(n−m)(1 + n)
. (3.15)

Inserting this value of T into (3.14), the expression of the discriminant above reduces to
−3m(−8+m−12n), which must be strictly positive in order to obtain two different values
for t. Since we are assuming that m > 0 and n < 0, it follows immediately that n+ 1 > 0
and m − n > 0. However, considering these facts, an elementary calculation using (3.15)
shows that T < 0, which is a contradiction. Then, there exists a unique possible value for
t. Thus, we finally conclude that F is an injective map.

Remark 3.4.4. We give now an alternative geometric argument to study the congruence
classes of orbits of the one-dimensional Lie group A. Recall, from Subsection 1.4.2, that
A · o is a geodesic. Let γ : R→ CHn be a unit speed parametrization of A · o, and assume
that limt→∞ γ(t) = x, the point at infinity determined by a and the fact that α is a positive
root. If A · g(o), with g ∈ Exp(gα ⊕ g2α), is another orbit of the action of A, it can be
parametrized as β(t) = expγ(t)(rξγ(t)), where ξ is an equivariant unit normal vector field
along A · o (see [12, Subsection 2.1.8]), and r is a positive constant (it is, in fact, the
distance to A · o). Now, we apply the law of cosines [38, Corollary 1.4.4(3)] to the points
o, γ(t) and β(t). Notice that limt→∞ d(o, γ(t)) = ∞, but d(γ(t), β(t)) is bounded, which
comes from the fact that A · o and A · g(o) are equidistant submanifolds. Then, the angle
^o(γ(t), β(t)) subtended from o between γ(t) and β(t) approaches 0 as t→∞. According
to the definition of the cone topology of CHn∪CHn(∞) (see, for example, [38, Proposition
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1.7.6]), we conclude that limt→∞ β(t) = limt→∞ γ(t) = x. Analogously, one can show that
limt→−∞ β(t) = limt→−∞ γ(t) = −x, the other point at infinity of the geodesic A · o.

Let now gi = Exp(2Vi+xiZ) ∈ Exp(gα⊕g2α), where Vi ∈ gα and xi ∈ R, for i ∈ {1, 2},
and write, according to the relation (3.4), Ad(g−1

i )a = R(B+Vi+xiZ). Assume that there
exists an isometry φ of the full isometry group of CHn mapping A · g1(o) to A · g2(o). Due
to the discussion above, φ must map the limit points of one orbit to the limit points of
the other orbit. Since these limit points are x and −x, we deduce that φ leaves the subset
{−x, x} ⊂ CHn(∞) invariant. In particular, the unique geodesic of CHn whose limit set
is {−x, x} is A · o. Thus, φ maps A · o to itself.

Let c denote the complex conjugation of projective coordinates of CHn as a quotient
of the pseudo-Hermitian flat space C(1,n) − {0}, as explained in Subsection 1.5.3. Thus, c
is an anti-holomorphic isometry of CHn fixing o. Considering the matrix expressions for
B and Z given in Subsection 1.4.2, it follows that

Ad(c)(B) = B and Ad(c)(Z) = −Z.

In particular, c maps x to itself.
There exists an element a ∈ A in such a way that φa(o) = o. Therefore, k = φa maps

A · o to itself, A · g1(o) to A · g2(o), and fixes o ∈ CHn. Define h = fk, where f is the
identity transformation if k(x) = x, or it is the geodesic symmetry at o, so, if k(x) = −x.

Then, h(x) = x, which implies that h ∈ K̃0 := K0 t cK0. Since f normalizes A, we have
h(A · g1(o)) = fk(A · g1(o)) = f(A · g2(o)) = A · f(g2(o)). It is not difficult to check that
there exists a unique g ∈ N such that g(o) ∈ A · f(g2(o)), and if g = Exp(2V + xZ), with
V ∈ gα, x ∈ R, then |V | = |V2| and |x| = |x2|. Indeed, this is clear when f is the identity
transformation. Otherwise, if f = so is the geodesic symmetry at o, we have

A · so(g2(o)) = A · sog2s
−1
o so(o) = A · σ(g2)(o) = A · Exp(θ(2V2 + x2Z)),

where σ = Iso ∈ Aut(G) and θ = σ∗ is the Cartan involution, given by θ = −(·)∗. Then,
using the matrix expression of elements of a ⊕ n (see Subsection 1.5.1), and working in
projective coordinates of CHn, one can check that the system

e2V+xZe1 = eiϕetBe−(2V2+x2Z)∗e1,

where e1 = (1, 0, . . . , 0)t, or equivalently, the system1 + ix+ 2|V |2

ix+ 2|V |2

2V

 = eiϕ


1
2
e−t(1 + e2t + 2ix2 + 4|V2|2)

1
2
e−t(−1 + e2t − 2ix2 − 4|V2|2)

−2V2,


admits a unique solution for V ∈ gα ∼= Cn−1, x, t, ϕ ∈ R in terms of V2 and x2. Such
solution is given by:

x = −x2, t =
1

2
log
(
4x2

2 + (1 + 4|V2|2)2
)
,

ϕ = arctan

(
−2x2

1 + 4|V2|2

)
, V = − 1 + 4|V2|2 − 2x2i√

4x2
2 + (1 + 4|V2|2)2

V2.
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Now, as K̃0 normalizes AN , we have h∗|ToCHn ≡ Ad(h)|a⊕n. Since h(A · g1(o)) = A · g(o),

and K̃0 acts trivially on a and leaves gα and g2α invariant, we have

R(B + V + xZ) = Ad(g−1)a = Ad(h) Ad(g−1
1 )a

= Ad(h)(R(B + V1 + x1Z)) = R(B + Ad(h)V1 ± x1Z).

As K̃0 acts transitively on the spheres of gα, we get |V1| = |V | = |V2| and |x1| = |x| = |x2|,
which finishes the argument for s = 0.

Case 2.b

Assume now that |V1| = |V2| and x1 = x2. The connected component of identity of the
normalizer of r in K0, which is given by

N0
K0

(r) ∼= SO(dim(r))× U(n− 1− dim(r)),

acts transitively on the spheres of gα 	 Cr centered at the origin. Thus, if |V1| = |V2| and
x1 = x2, the orbits H · g1(o) and H · g2(o) are congruent.

The congruence classes do not depend on the sign of x

To finish with this case, we show that the congruence class does not depend on the sign of
x, that is, if g1 = Exp(2V + xZ) and g2 = Exp(2V − xZ), with V ∈ gα 	 Cr and x ∈ R,
then the orbits H · g1(o) and H · g2(o) are congruent. In order to do so, let c denote the
complex conjugation considered above, which is an anti-holomorphic isometry, but fixes
o ∈ CHn. We can find an element of K0 mapping the totally real subspace r to a subspace
of gα whose elements are real vectors. Thus, we can assume that Ad(c)|r = Idr.

Again, from the matrix expressions for B and Z one gets Ad(c)(B) = B and Ad(c)(Z) =
−Z. Moreover, assuming without loss of generality that V has only real entries, we have
Ad(c)(V ) = V . Thus, Ad(c)(B + V + xZ) = B + V − xZ and Ad(c)r = r, as we wanted
to show.

Case 3

Let H be the connected Lie subgroup of AN with Lie algebra h = c ⊕ r ⊕ g2α. It follows
from Theorem 3.3.2 that the orbits H · g1(o) and H · g2(o) are congruent for every g1,
g2 ∈ AN since Ad(g−1)h = h for any g ∈ AN .

Let now H1 and H2 be connected subgroups of G of Type 3, and denote by hi =
ci⊕ ri⊕ g2α, with i ∈ {1, 2}, their corresponding Lie algebras. Since isometries of SU(1, n)
are holomorphic, it follows that h1 and h2 are conjugate if, and only if, dim(c1) = dim(c2)
and dim(r1) = dim(r2). Therefore, H1 · o and H2 · o are congruent orbits if, and only if,
dim(c1) = dim(c2) and dim(r1) = dim(r2).

In the following result, we compute the mean curvature of these orbits.
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Lemma 3.4.5. Under these conditions, the squared norm of the mean curvature vector H
of any H-orbit is given by the expression

|H|2 =
(2 + dim(c⊕ r))2

4
.

Proof. Using [30, Corollary 6.2], it is easy to check that the mean curvature of an orbit of
Type 3, H · g(o), with g ∈ AN , is given by

H =
2 + dim(c⊕ r)

2
B. (3.16)

The result follows taking squared norm.

Case 4

We now compare Type 4 orbits. Recall from Theorem 3.3.2 that any Type 4 orbit has the
form H · g(o), where h = a ⊕ c ⊕ r ⊕ g2α, c is a complex subspace of gα and r is a totally
real one, and g ∈ Exp(Jr).

Let H1 and H2 be connected subgroups of G with Lie algebras hi = a ⊕ ci ⊕ ri ⊕ g2α,
for i ∈ {1, 2}. Since isometries of SU(1, n) are holomorphic, the Lie algebras h1 and h2 are
conjugate if, and only if, dim(c1) = dim(c2) and dim(r1) = dim(r2). Then, the orbits H1 · o
and H2 · o are congruent if, and only if, dim(c1) = dim(c2) and dim(r1) = dim(r2). Thus,
from now on we fix c and r.

The next result is devoted to computing the squared norm of the mean curvature of an
orbit H · g(o).

Lemma 3.4.6. Let h = a⊕ c⊕ r⊕ g2α, where c⊕ r denotes a CR subspace of gα, and let
g−1 = Exp(JR), with R ∈ r. Then, the squared norm of the mean curvature vector H of
the orbit H · g(o) is given by the expression

|H|2 =
|R|2 (3 + dim(c⊕ r))2

4(4 + |R|2)
.

Proof. Let g−1 = Exp(JR), where R ∈ r. Since the orbits H · g(o) and g−1Hg · o are
congruent, we calculate the mean curvature of the latter. In this case, it follows from
relation (3.5) that the tangent space at o can be identified with Ad(g−1)h = R(B−JR/2)⊕
c⊕ r⊕ g2α. Then, by virtue of [30, Lemma 6.1], the mean curvature of g−1Hg · o reads:

H =
3 + dim(c⊕ r)

2(4 + |R|2)

(
|R|2B + 2JR

)
. (3.17)

The formula in the statement follows after calculating the squared norm of H.

We now analyze if the orbits H · g1(o) and H · g2(o), where g−1
1 = Exp(JR1), g−1

2 =
Exp(JR2), and R1, R2 ∈ r, are congruent.
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Case 4.a

We firstly show that if |R1| = |R2|, then H ·g1(o) and H ·g2(o) are congruent orbits. Recall
from (3.5) that the tangent space to the orbit H · gi(o) at gi(o) can be identified with
Ad(g−1

i )h = R(B + JRi/2)⊕ c⊕ r⊕ g2α, for i ∈ {1, 2}. The connected component of the
identity of the normalizer of r in K0, which is given by

N0
K0

(r) ' SO(dim(r))× U(n− 1− dim(r)),

acts transitively on the spheres of r. Thus, there exists an element k ∈ N0
K0

(r) in such a
way that Ad(k)(JR1) = JR2 and Ad(k)c = c. Then,

Ad(k) Ad(g−1
1 )h = Ad(g−1

2 )h,

so the orbits H · g1(o) and H · g2(o) are congruent.

Case 4.b

We now show that if |R1| 6= |R2|, then the corresponding orbits H ·g1(o) and H ·g2(o) cannot
be congruent. Indeed, denoting by Hi the mean curvature of the submanifold H · gi(o), for
i ∈ {1, 2}, we have that |H1|2 = |H2|2 if, and only if,

|R2|2(4 + |R1|2) = |R1|2(4 + |R2|2),

which only occurs when |R1| = |R2|.

Thus, the orbits H · g1(o) and H · g2(o), with g−1
1 = Exp(JR1), g−1

2 = Exp(JR2), R1,
R2 ∈ r, are congruent if, and only if, |R1| = |R2|.

Noncongruence of the different types

We finally study the noncongruence among the four different types of orbits listed in
Theorem 3.3.2. In order to do so, we firstly notice that orbits of Type 1 and Type 3
are contained in horospheres while none of the orbits of Type 2 and Type 4 satisfies this
property. Indeed, the limit set of the orbits of an action of Type 2 or 4 has, at least, two
points at infinity (corresponding to the geodesic A · o), whereas the limit set of an orbit
contained in a horosphere has, at most, one point at infinity. Considering this fact, it
follows that none of the orbits of Type 1 or Type 3 is congruent to any orbit of Type 2 or
Type 4.

On the other hand, every Type 2 orbit is a totally real submanifold, while any orbit of
Type 4 has nontrivial holomorphic part. Thus, none of the orbits of Type 2 is congruent
to any Type 4 orbit.

It only remains to analyze the congruence between orbits of Type 1 and Type 3. In
order to do so, we denote by Hi the connected Lie subgroup of G with Lie algebra hi,
i ∈ {1, 3}, where h1 = (r1	RJU)⊕R(JU + |U |2Z), with U ∈ Jr1, and h3 = c3⊕ r3⊕ g2α.
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Here, ri denotes a totally real subspace of gα for each i ∈ {1, 3}, and c3 ⊂ gα denotes a
complex one.

Suppose that an H1-orbit is congruent to an H3-orbit. In such case, since every Type
1 orbit is a totally real submanifold and the maximal holomorphic subspace of a Type 3
orbit is precisely the complex subspace c3, then dim(c3) = 0. Moreover, the dimensions of
their totally real subspaces must coincide. In particular,

dim(r1 	 RJU) = dim(r3) =: s.

With this notation, the squared norms of the associated mean curvatures read

|H1|2 =
4|U |2 + (1 + s+ (2 + s)|U |2)2

4(1 + |U |2)2
and |H3|2 =

(2 + s)2

4
.

As we are assuming that the orbits are congruent, |H1|2 = |H3|2, or equivalently,

3 + 2s(1 + |U |2) = 0,

which never happens. Thus, none of the orbits of Type 1 is congruent to any Type 3 orbit.
This concludes the proof of Theorem 3.4.1.



Chapter 4

Cohomogeneity one actions on Minkowski
spacetimes

The aim of this chapter is to present some structural results for cohomogeneity one actions
on Minkowski spacetimes. We also give a classification of cohomogeneity one actions on
the four-dimensional Minkowski spacetime L4. In order to do so, we firstly settle, in
Section 4.1, some known results and notation that we will need throughout this chapter.
After that, in Section 4.2, we give an alternative proof to the classical classification result of
cohomogeneity one actions on the n-dimensional Euclidean space, up to orbit equivalence.
Finally, Section 4.3 is devoted to presenting a classification of cohomogeneity one actions
on the four-dimensional Minkowski spacetime, up to orbit equivalence. The results of this
chapter can be found in [33].

4.1 Motivation and main tools

One of the main purposes of this thesis is to get a better understanding of isometric actions
on Lorentzian manifolds. In this context, several results have been achieved. For instance,
transitive isometric actions on Lorentzian manifolds have been studied by Adams and
Stuck in [2] and [3]. It is common to assume, in the Riemannian setting, that isometric
actions are proper, mainly due to the nice properties that these actions satisfy. However,
this is not a natural assumption when studying isometric actions on Lorentzian manifolds.
Indeed, the natural action of the Lie group SO0(1, n) on the (n+1)-dimensional Minkowski
spacetime Ln+1 is not proper; we refer to Section 1.6 for more information on the Minkowski
spacetime, its isometry group and the notation we use in this chapter. Ahmadi and Kashani
have investigated proper cohomogeneity one actions on Minkowski spacetimes in [4]. A
study of not necessarily proper cohomogeneity one actions on Minkowski spacetimes of
dimensions 2 and 3 has been developed by Berndt, Dı́az-Ramos and Vanaei in [14]. More
specifically, the next theorem deals with the classification result of such actions in dimension
2.

Theorem 4.1.1. [14, Theorem 5.1] Let G be a connected Lie subgroup of I0(L2) =
SO0(1, 1) ×Φ L2 acting on L2 with cohomogeneity one. Then, the action of G is orbit
equivalent to one of the following:

(i) The action of a line ` by translations. There exist three equivalence classes, depending
on whether ` is a spacelike, timelike or lightlike line;

79
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(ii) The action of SO0(1, 1).

The classification of cohomogeneity one actions on the three-dimensional Minkowski
spacetime is settled in the next result.

Theorem 4.1.2. [14, Theorem 6.1] Let G be a connected Lie subgroup of I0(L3) =
SO0(1, 2) ×Φ L3 acting on L3 with cohomogeneity one. Consider the Iwasawa decom-
position SO0(1, 2) = KAN , and let k, a and n be the Lie subalgebras of K, A and N ,
respectively. Then, the action of G is orbit equivalent to one of the following:

(i) The action of a plane v by translations. There exist three equivalence classes, depend-
ing on whether the metric on v is Riemannian, Lorentzian or degenerate;

(ii) The action of SO(2)× `, where ` denotes a timelike line in L3;

(iii) The action of SO0(1, 1)× `, where ` denotes a spacelike line in L3;

(iv) The action of SO0(1, 1)× `, where ` is a lightlike line in L3;

(v) The action of N × `, where ` is a lightlike line in L3;

(vi) The action of the Lie group whose Lie algebra is R(B + (0, 0, y)) ⊕ R(1, 1, 0), where
y > 0 and B is a generator of a;

(vii) The action of the Lie group whose Lie algebra is R(U + (y, 0, 0)) ⊕ R(1, 1, 0), where
U is a generator of n;

(viii) The action of SO0(1, 2);

(ix) The action of the solvable part of the Iwasawa decomposition of SO0(1, 2), AN .

In this chapter we continue the study of cohomogeneity one actions on Minkowski
spacetimes. We develop several structural results, and then provide explicit calculations
to get a classification of cohomogeneity one actions on the four-dimensional Minkowski
spacetime L4. The four-dimensional Minkowski spacetime is the mathematical model for
Special Relativity; thus, it is interesting not only from the mathematical viewpoint, but
also from the point of view of physics. In the rest of this section we present some known
results that we are going to need throughout this chapter.

First of all, we present a brief proposition, due to M. Alexandrino, which states that,
in order to determine whether two isometric actions are orbit equivalent, it is enough to
check that the tangent spaces to the orbits are the same. This is what we settle in the
following result.

Proposition 4.1.3. Let G1 and G2 act isometrically on a semi-Riemannian manifold M .
Then, the actions of G1 and G2 are orbit equivalent if, and only if, there exists an isometry
φ : M →M in such a way that φ∗p(Tp(G1 · p)) = Tφ(p)(G2 · φ(p)), for all p ∈M .
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Remark 4.1.4. Let G act isometrically on the semi-Riemannian manifold M , and let g be
its Lie algebra. As a matter of notation, if X ∈ g, we will denote by X∗ the vector field
on M defined as follows:

X∗p =
d

dt t=0

Exp(tX)(p),

where p ∈ M , and Exp is the Lie exponential map. Since the flow of X∗ is by isometries,
X∗ turns out to be a Killing vector field.

Proof. Let G1 and G2 act isometrically on a semi-Riemannian manifold M and denote by
g1 and g2 their corresponding Lie algebras.

If G1 and G2 are orbit equivalent, the relation between the corresponding tangent spaces
follows after differentiation.

Conversely, after conjugation, one can assume Tp(G1 · p) = Tp(G2 · p) for all p ∈ M .
We have to show that G1 · p = G2 · p for all p ∈ M . In order to do so, we will use some
concepts of singular Riemannian foliations; we refer to [6] for further information.

Let p ∈ M and consider X1, . . . , Xk ∈ g1 such that {X∗1 (p), . . . , X∗k(p)} is a basis of
Tp(G1 · p). We consider the foliation F induced by X∗1 , . . . , X

∗
k in a neighborhood of p. By

making this neighborhood small enough, we may assume that this foliation is regular. For
any q ∈ G2 · p in this neighborhood, we have TqFq ⊂ Tq(G1 · q) = Tq(G2 · q), where Fq is
the leaf of F through q. Moreover, by construction and hypothesis, we have the following
chain of equalities:

dim(TqFq) = dim(TpFp) = dim(G1 · p) = dim(G2 · p) = dim(G2 · q).

Hence, TqFq = Tq(G2 · q). This implies that G2 · p is tangent to a leaf of the regular
foliation F . Then, it is known that G2 · p and Fp coincide locally. Since Fp and G1 · p
coincide locally by construction, the result follows.

We now introduce three well-known results which turn out to be useful when dealing
with compact Lie groups and Lie algebras. A Lie algebra g is said to be compact if there
exists a compact Lie group G whose Lie algebra is g. For example, g = R is a compact Lie
algebra since the Lie algebra of the compact Lie group G = S1 is, precisely, R.

Theorem 4.1.5 (Cartan’s fixed point theorem). [38, Theorem 1.4.6] Let M be a complete,
simply connected manifold of nonpositive curvature and let G be a subgroup of the isometry
group of M . If there exists a point p ∈ M in such a way that the orbit G · p is bounded,
then G fixes a point q ∈M .

In particular, notice that this result applies when G is a compact subgroup of the
isometry group I(M).

Proposition 4.1.6. [18, Chapter IX, Section 1, Proposition 2] A Lie subalgebra of a
compact Lie algebra is compact.
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Theorem 4.1.7. [18, Chapter IX, Section 1, Proposition 5] Let G be a Lie group whose
Lie algebra g is compact. If G is connected, then it has a maximal compact Lie subgroup
K, which is connected. There exists a closed abelian subgroup T of G in such a way that
G = T ×K.

This result can be reformulated at the level of Lie algebras. Let t and k denote the Lie
algebras of T and K, respectively. Then, t turns out to be an abelian Lie algebra, k is
compact and semisimple and g = t⊕ k.

4.2 A proof in the Euclidean case

In this section we present an alternative proof of the classification of cohomogeneity one
actions on Euclidean spaces Rn using Lie group theory. This is done in order to illustrate
an easier case than the one we are dealing with. See, for example, [22, pp. 96–97], [24]
or [68] for other proofs.

It is well-known that the connected component of the identity of the isometry group of
the Euclidean space Rn is the semi-direct product I0(Rn) = SO0(n)×Φ Rn, where

Φ: SO(n)→ Aut(Rn) is given by Φ(a)(v) = av.

The natural operation of this Lie group is given by (a, v)(b, w) = (ab, v + aw), for (a, v),
(b, w) ∈ I0(Rn), and any Lie subgroup of I0(Rn) acts on Rn by (a, v)x = ax + v, where
now x ∈ Rn. The Lie algebra of I0(Rn) is i(Rn) = so(n)⊕φ Rn, where

φ : so(n)→ Der(Rn) is given by φ(X)(v) = Xv.

The corresponding Lie bracket is given by [X + v, Y +w] = (XY −Y X) + (Xw−Y v), for
X + v, Y + w ∈ i(Rn). With this notation, we prove the following result.

Theorem 4.2.1. Let G be a connected Lie subgroup of I0(Rn) acting isometrically with
cohomogeneity one on the Euclidean space Rn. Then, the action of G is orbit equivalent to
one of:

1. the action of SO(n), whose orbits are concentric spheres around a point;

2. the action of SO(n− k)× Rk, for some k ∈ {1, . . . , n− 2}, whose orbits are coaxial
cylinders around an affine Rk;

3. the action of Rn−1, whose orbits are parallel hyperplanes.

Proof. In order to prove Theorem 4.2.1, let g denote the Lie algebra of G and define
v = g ∩ Rn to be its pure translational part, which is an ideal of g.

The same proof as in Lemma 4.3.2 in the next section can be used to show that the
action of G is orbit equivalent to the action of a subgroup H×v, where H ⊂ SO(v⊥)×Φv

⊥,
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and v⊥ denotes the orthogonal complement of v in Rn. Thus, it is enough to study the
action of H on v⊥. In view of this assertion, we can assume that g ∩ Rn = 0.

Consider the projection π : g → so(n), which is a homomorphism of Lie algebras.
Since ker(π) = g ∩ Rn = 0, g and π(g) are isomorphic Lie algebras, and by virtue of
Proposition 4.1.6, g is compact.

Using Theorem 4.1.7, one can write g as the direct sum g = t⊕ k, where t is an abelian
Lie algebra and k is compact and semisimple. At the level of Lie groups, we have the
corresponding decomposition G = T ×K, where T is a closed abelian Lie subgroup, K is
a compact semisimple Lie subgroup of G, and both T and K are connected.

Taking into account that K is compact, Theorem 4.1.5 (Cartan’s fixed point theorem)
ensures that there exists an element p ∈ Rn such that K · p = p, and thus, k · p = 0.

If t = 0, then G = K ⊂ SO(n) since K fixes a point of Rn, so the orbits of G would be
contained in spheres. Since G acts on Rn with cohomogeneity one, we conclude that G is
orbit equivalent to the action of SO(n). Therefore, we henceforth assume t 6= 0.

Let Y + u ∈ k. Conjugating by Ad(I,−p), we get

Ad(I,−p)(Y + u) = Y + Y p+ u = Y + (Y + u) · p = Y,

from where we can assume k ⊂ so(n).
Since the elements of so(n) are skew-symmetric matrices, they have pure imaginary

eigenvalues, so we can define the following spaces:

tλ = {v ∈ Rn : X2v = −λ(X)2v, for all X ∈ π(t)}, (λ ∈ π(t)∗).

We denote ∆ = {λ ∈ π(t)∗ − {0} : tλ 6= 0}. With this notation,

t0 =
⋂

X∈π(t)

ker(X), and t⊥0 =
⊕
λ∈∆

tλ.

Let Y ∈ k, v ∈ tλ and X ∈ π(t). Since t and k commute, X2Y v = Y X2v = −λ(X)2Y v,
and thus Y v ∈ tλ. Then, we deduce that, for each λ ∈ ∆ ∪ {0}, k · tλ ⊂ tλ.

Now, since t is an abelian Lie algebra, a result by Di Scala [25, Proof of Theorem 2.1]
yields

t = span{X1 + d1 −X1c, . . . , Xk + dk −Xkc},

for some Xi ∈ so(t⊥0 ), di ∈ t0 and c ∈ t⊥0 .
Let X + d − Xc ∈ t and Y ∈ k. Since t and k commute, 0 = [X + d − Xc, Y ] =

[X, Y ] − Y d + Y Xc, which implies [X, Y ] = 0 and Y Xc − Y d = 0. As Y d ∈ t0 and
Y Xc ∈ t⊥0 , we get Y Xc = Y d = 0. In particular, since X + d − Xc ∈ t is arbitrary,
XY c = Y Xc = 0 implies Y c ∈ t0. As c ∈ t⊥0 and k · t0 ⊂ t0, we get Y c = 0.

Now, conjugating by Ad(I,−c), we obtain

Ad(I,−c)(X + d−Xc) = X +Xc+ d−Xc = X + d,

Ad(I,−c)(Y ) = Y + Y c = Y,
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whenever X + d−Xc ∈ t and Y ∈ k. Thus, one deduces that g is conjugate to span{X1 +
d1, . . . , Xk + dk} ⊕ k, with k ⊂ so(n).

Given an element p ∈ Rn, we set p = p0 +
∑

λ∈∆ pλ, where p0 ∈ t0 and pλ ∈ tλ for each
λ ∈ ∆. Taking Y ∈ k and X + d ∈ t, we can write Y =

∑
λ∈∆∪{0} Yλ and X =

∑
λ∈∆Xλ,

with Yλ, Xλ ∈ so(tλ). Then,

Y p =
∑

λ∈∆∪{0}

Yλpλ and (X + d) · p =
∑
λ∈∆

Xλpλ + d.

Since Xλ and Yλ are skew-symmetric and d ∈ t0, it follows that g · p is orthogonal to pλ for
each λ ∈ ∆. Thus, the cohomogeneity of the action of G is at least the cardinal of ∆. Since
by hypothesis the cohomogeneity of G is one, it follows that ∆ has just one element, from
where Rn = t0 ⊕ tλ. Since the elements of π(t) have only one nonzero eigenvalue and they
have a simultaneous diagonalization, it follows that dim(π(t)) = 1, and thus, dim(t) = 1.
We can write t = R(X + d) for some X ∈ so(tλ) and d ∈ t0 = ker(X). We can assume
d 6= 0; otherwise G would be compact and its orbits would be contained in a sphere, and
thus, for dimension reasons, the action of G would be orbit equivalent to the action of
SO(n).

For any Y ∈ k, we have 0 = [X + d, Y ] = −Y d. Thus, since k · tλ ⊂ tλ and k · t0 ⊂ t0,
we have k ⊂ so(tλ) ⊕ so(t0 	 Rd). If we take p ∈ Rn, we can write p = xd + p0 + pλ,
where x ∈ R, p0 ∈ t0 	 Rd and pλ ∈ tλ. If Y ∈ k, we can also write Y = Y0 + Yλ, with
Y0 ∈ so(t0	Rd) and Yλ ∈ so(tλ). Thus, (X +d) · p = Xpλ +d and Y · p = Y0p0 +Yλpλ. By
skew-symmetry, pλ and p0 are orthogonal to g ·p. If pλ or p0 vanishes, then the codimension
of g ·p is greater than two. In any case, the codimension of g ·p is greater or equal than two.
Since G acts with cohomogeneity one, we must have t0 	 Rd = 0, which implies t0 = Rd,
so(tλ) = so(Rn 	 Rd) ∼= so(n− 1).

We have therefore proved that, up to conjugation, g ⊂ so(Rn 	 Rd) ⊕ Rd, which
implies that the orbits of G are contained in coaxial cylinders. Since the action of G is of
cohomogeneity one, they must be cylinders. This concludes the proof.

Notice that we can summarize Theorem 4.2.1 by saying that any cohomogeneity one
action on Rn is orbit equivalent to the action of SO(n−k)×Rk, for some k ∈ {0, . . . , n−1}.
Moreover, the only cohomogeneity one action on Rn that is neither ‘reducible’ (not a
product) nor ‘full’ (orbits are not contained in parallel lower dimensional Euclidean spaces)
is the action of SO(n).

We conclude this section by exhibiting an example that shows that the singular homo-
geneous foliation given by an axis and its coaxial cylinders can be induced by an action of
a group without pure translational part.

Example 4.2.2. We introduce an example of a Lie subgroup of I0(R5) without pure trans-
lational part (that is, not of the form K × v) acting on R5 with cohomogeneity one, and
whose orbits are cylinders. We consider

I =

(
1 0
0 1

)
, J =

(
0 −1
1 0

)
,
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and define the following matrices by blocks:

A =

J 0 0
0 J 0
0 0 0

 , B =

J 0 0
0 −J 0
0 0 0

 , C =

0 −I 0
I 0 0
0 0 0

 , D =

0 J 0
J 0 0
0 0 0

 .

Consider the Lie algebra given by

g = spanR{A+ (0, 0, 0, 0, 1), B, C,D}.

The connected Lie subgroup of I0(R5) whose Lie algebra is g acts with cohomogeneity
one on R5. Its orbits are coaxial cylinders around the axis determined by (0, 0, 0, 0, 1).
Thus, the action of G is orbit equivalent to the action of SO(4)×r, where r = R(0, 0, 0, 0, 1).

4.3 Cohomogeneity one actions on Ln+1

The aim of this section is to present some partial results related to the study of coho-
mogeneity one actions on Minkowski spacetimes Ln+1. Moreover, we give a classification
of cohomogeneity one actions on the four-dimensional Minkowski spacetime, up to orbit
equivalence. This result has recently been obtained independently by Ahmadi, Safari and
Hassani in [5] by a different method.

Theorem 4.3.1. Let G be a connected Lie subgroup of I0(L4) = SO0(1, 3)×Φ L4 with Lie
algebra g acting with cohomogeneity one on L4. Consider the Iwasawa decomposition of
the rotational part of I0(L4), SO0(1, 3) = KAN , and also the corresponding decomposition
at the level of Lie algebras, so(1, 3) = k⊕ a⊕ n. Then, the action of G is orbit equivalent
to one of the following:

1. Actions with nondegenerate translational part:

(a) The action of SO(k)× L4−k, with k ∈ {1, 2, 3};
(b) The action of SO0(1, k)× R3−k, with k ∈ {0, 1, 2, 3};
(c) The action of AÑ×R, where R is a spacelike line in L4, and AÑ is the solvable

part of the Iwasawa decomposition of SO0(1, 2);

(d) The action of QAN , where Q ∈ {{I}, K0};
(e) The action of the Lie group whose Lie algebra is R(E + e)⊕ n, where

R(E + e)⊕ n = R

0 0 0t

0 0 0t

0 0 E

+ e

⊕ n;

(f) The action of the Lie group whose Lie algebra is R(E + 1)⊕ n, where

R(E + 1)⊕ n = R

0 1 0t

1 0 0t

0 0 E

⊕ n;
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2. Actions with degenerate translational part:

(a) The action of W3;

(b) The action of Exp(v)×W2, where v is the subspace of n generated by the element
(0, 1) ∈ n ∼= R2;

(c) The action of the Lie group whose Lie algebra is g = R(v + (1, 0, 0, 0)) ⊕W2,
where v = (0, 1) ∈ n ∼= R2, and

R (v + (1, 0, 0, 0))⊕W2 = R


0 0 vt

0 0 vt

v −v 0

+


1
0
0
0


⊕W2;

(d) The action of the Lie group whose Lie algebra is g = R(1 + (0, 0, 0, λ)) ⊕W2,
where λ > 0, and

R (1 + (0, 0, 0, λ))⊕W2 = R


0 1 0t

1 0 0t

0 0 0

+


0
0
0
λ


⊕W2;

(e) The action of QN ×W1, where Q ∈ {{I}, K0};
(f) The action of K0A×W1;

(g) The action of AExp(v)×W1, where v is a one-dimensional subspace of n;

(h) The action of the Lie group whose Lie algebra is R(1+(0, 0, b))⊕v⊕φW1, where
v is a one-dimensional subspace of n, b ∈ R2, and

R (1 + (0, 0, b))⊕ v⊕φ W1 = R

0 1 0t

1 0 0t

0 0 0

+

0
0
b

⊕ v⊕φ W1;

(i) The action of the Lie group whose Lie algebra is given by
(
R(u + (0, 0, x)) ⊕

R(v + (0, 0, y))
)
⊕φ W1, where {u, v} is an orthonormal basis of n, x, y ∈ R2,

and(
R(u+ (0, 0, x))⊕ R(v + (0, 0, y))

)
⊕φ W1

= R

0 0 ut

0 0 ut

u −u 0

+

0
0
x

⊕ R

0 0 vt

0 0 vt

v −v 0

+

0
0
y

⊕φ W1.

In the statement of the previous theorem, as well as in its proof, we use the notation
settled in Subsection 1.4.1 and Section 1.6. Consider the Iwasawa decomposition of the
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semisimple Lie group SO0(1, n), KAN , and also the corresponding decomposition at the
level of Lie algebras, so(1, n) = k⊕ a⊕ n, where k ∼= so(n), a ∼= R and n = gα ∼= Rn−1. In
particular, if n = 3, the Iwasawa decomposition of so(1, 3) reads k⊕a⊕n, where k ∼= so(3),
a ∼= R and n = gα ∼= R2. In this case, k0 is isomorphic to the one-dimensional Lie algebra
so(2). A typical generator of so(2) is

E =

(
0 −1
1 0

)
.

Recall that any maximal proper subalgebra of so(1, n) is either a reductive subalgebra,
so(1, k)⊕ so(n− k), with k ∈ {0, 1, . . . , n− 1}, or a parabolic subalgebra, k0 ⊕ a⊕ n.

Let now {e0, e1, . . . , en} be an orthonormal basis of Ln+1, where 〈e0, e0〉 = −1 and
〈ei, ei〉 = 1 for i ∈ {1, . . . , n}. In general, for 1 ≤ k ≤ n, Lk will denote the subspace of
Ln+1 defined by Lk = span{e0, e1, . . . , ek−1}. With this notation,

e = e0 + e1

is a lightlike vector of Ln+1, and we will denote by W1 the lightlike line that it determines.
We also define the degenerate subspace Wk = Re ⊕ Re2 ⊕ · · · ⊕ Rek, for k ∈ {2, . . . , n}.
In the particular case n = 3, we will consider

W2 = Re⊕ Re2, W3 = Re⊕ Re2 ⊕ Re3.

Now, we present some structural results related to the study of cohomogeneity one
actions on Ln+1, which will allow us to prove Theorem 4.3.1. Let then G be a connected
Lie subgroup of I0(Ln+1) = SO0(1, n) ×Φ Ln+1 acting on Ln+1 with cohomogeneity one.
We emphasize the fact that the action of G is not necessarily proper. Let g denote the
Lie algebra of G, which is a Lie subalgebra of i(Ln+1) = so(1, n) ⊕φ Ln+1, and define
v = g ∩ Ln+1 the pure translational part of g. Note that v is an ideal of g, which can also
be identified with a vector subspace of Ln+1.

Consider the projection onto the first factor π : so(1, n) ⊕φ Ln+1 → so(1, n), which is
a homomorphism of Lie algebras whose kernel is, precisely, ker(π|g) = v. We proceed
separately, depending on whether the translational part of g is degenerate or not.

4.3.1 Nondegenerate translational part

We assume firstly that v is a nondegenerate subspace of Ln+1, that is, v has either a
Riemannian or Lorentzian metric, and let v⊥ denote its orthogonal complement in Ln+1.
Since v is nondegenerate, it follows that Ln+1 = v⊕ v⊥.

Let X + u ∈ g ⊂ i(Ln+1) and v ∈ v. Since v is an ideal of g, Xv = [X + u,v] ∈ v.
Thus, Xv ⊂ v and, as v is a nondegenerate subspace, Xv⊥ ⊂ v⊥. This implies π(g) ⊂
so(v)⊕ so(v⊥), and thus, g ⊂ (so(v⊥)⊕φ v⊥)⊕ (so(v)⊕φ v). Notice that v⊥ is Lorentzian
when v is Riemannian and viceversa, so exactly one of so(v) or so(v⊥) is isomorphic to an
so(k) and the other to an so(1, l), for some k and l.
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Consider now the projection σ : (so(v⊥)⊕φ v⊥)⊕ (so(v)⊕φ v) → so(v⊥)⊕φ v⊥, which
is a homomorphism of Lie algebras. Thus, h = σ(g) is a Lie subalgebra of so(v⊥) ⊕φ v⊥.
Let us denote by H the connected Lie subgroup of I0(Ln+1) whose Lie algebra is h.

Lemma 4.3.2. Under these conditions, the actions of H × v and G are orbit equivalent.

Proof. By virtue of Proposition 4.1.3, it is actually enough to show T(p,q)(G · (p, q)) =
T(p,q)((H × v) · (p, q)), for each (p, q) ∈ v⊥ × v = Ln+1.

Let X + w ∈ h ⊂ so(v⊥)⊕φ v⊥ and v ∈ v. By definition, there exists Y + u ∈ g in such
a way that σ(Y + u) = X + w. We write Y = X + Y >, with Y > ∈ so(v). Since v ⊂ g, we
can assume, without loss of generality, that u ∈ v⊥, that is, u = w. Then,

(X+w+v) · (p, q) = Xp+w+v = Xp+Y >q+u+v−Y >q = (Y +u+(v−Y >q)) · (p, q),

which belongs to g · (p, q) because v − Y >q ∈ v ⊂ g.
Conversely, let Y +u ∈ g ⊂ (so(v⊥)⊕φ v⊥)⊕ (so(v)⊕φ v). We can write Y = Y ⊥+Y >,

with Y ⊥ ∈ so(v⊥), Y > ∈ so(v), and u = u⊥ + u>, with u⊥ ∈ v⊥ and u> ∈ v. Then, by
definition, Y ⊥ + u⊥ ∈ h, and

(Y + u) · (p, q) = Y ⊥p+ Y >q + u⊥ + u> = (Y ⊥ + u⊥) · p+ (Y >q + u>),

which belongs to (h⊕ v) · (p, q), as we wanted to prove.

In order to prove Theorem 4.3.1, we will mainly focus on the case n = 3. In view of
Lemma 4.3.2, one deduces that the action of G reduces to a cohomogeneity one action on
v⊥. We proceed separately, depending on whether v is Riemannian or Lorentzian.

Lorentzian translational part

Assume firstly that v is Lorentzian. Then, v⊥ is Riemannian. Note that, in this case,
dim(v) ≥ 1. The classification of cohomogeneity one actions on Euclidean spaces follows
from Theorem 4.2.1. More specifically, a cohomogeneity one action on a Euclidean space
in Rn is orbit equivalent to the action of SO(k) × Rn−k, for k ∈ {1, . . . , n}. Combining
this result with Lemma 4.3.2, we get that the action of G on L4 is orbit equivalent to
SO(k)×L4−k, for some k ∈ {1, 2, 3}. The orbits of this action are coaxial elliptic cylinders
for k ∈ {2, 3}, and parallel Lorentzian hyperplanes if k = 1. This corresponds to Case
1.(a) of Theorem 4.3.1.

Riemannian translational part

Assume now that v is a Riemannian subspace such that dim(v) ≥ 1. Then, v⊥ is Lorentzian.
In this case, the classification, up to orbit equivalence, reduces to the classifications in L2 or
L3, that is, to Theorem 4.1.1 and Theorem 4.1.2. In these classifications we only consider
the cases with no pure translational part in order to avoid repetitions. Thus, in this case,
the action of G is orbit equivalent to one of the following:
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(i) the actions of SO0(1, 2) × ` and AÑ × `, where ` is a spacelike line and AÑ is the
solvable part of the Iwasawa decomposition of SO0(1, 2);

(ii) the action of SO0(1, 1)× R2;

(iii) the action of R3 by translations.

This corresponds to Cases 1.(b) and 1.(c) of Theorem 4.3.1.

Finally, it remains to deal with the case dim(v) = 0, that is, when there is no pure
translational part. In this case, the projection π : so(1, n)⊕φLn+1 → so(1, n) is an injective
map, so g is isomorphic to π(g), which is a Lie subalgebra of so(1, n). We will use the
following notation for elements of so(1, n):

(X, v) + (x0, x) ≡
(

0 vt

v X

)
+

(
x0

x

)
,

where X ∈ so(n), x, v ∈ Rn and x0 ∈ R. We firstly focus on the case π(g) = so(1, n),
which we analyze in the following result.

Lemma 4.3.3. If π(g) = so(1, n), then the action of G is orbit equivalent to the action of
SO(1, n) on Ln+1.

Proof. Let h = π−1(so(n)) and denote by H the connected Lie subgroup of G whose Lie
algebra is h. Then, h is a compact Lie algebra, and it follows from Theorem 4.1.7 that h
can be written as a direct sum of Lie algebras h = t⊕ k, where t is abelian and k is compact
and semisimple. We also have, at the level of Lie groups, H = T ×K, where T is a closed
abelian Lie subgroup and K is compact and semisimple. In this case, π : g → so(1, n)
is an isomorphism of Lie algebras. In particular, h is semisimple, and hence, t = 0 and
h = k ∼= so(n).

Notice that the action of K on Ln+1 induces an isometric action on the space Rn =
{(x0, . . . , xn) ∈ Ln+1 : x0 = 0} as follows:((

1 0
0 a

)
+

(
x0

x

))
· p = ap+ x.

Since K is compact, by virtue of Theorem 4.1.5, there exists an element p ∈ Rn in such a
way that K · p = p. Thus, k · p = 0, and it follows that

Ad(I,−(0, p)) ((X, 0) + (x0, x)) = (X, 0) + (x0, 0) + (0, Xp) + (0, x) = (X, 0) + (x0, 0),

for any (X, 0) + (x0, x) ∈ k. Thus, after doing such a conjugation, we can assume that the
elements of k are of the form (X, 0) + (x0, 0), with X ∈ so(n) and x0 ∈ R. Moreover, if
(X, 0) + (x0, 0), (Y, 0) + (y0, 0) ∈ k, we have

[(X, 0) + (x0, 0), (Y, 0) + (y0, 0)] = ([X, Y ], 0) + (0, 0) ∈ k ∩ so(n).
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Since k is a semisimple Lie algebra, we have [k, k] = k, so the above equality implies that
k ⊂ so(n), and indeed k = so(n) by the semisimplicity of k.

Now, let (0, u) + (x0, x), (0, v) + (y0, y) ∈ g, with u and v orthogonal, that is, 〈u, v〉 =
utv = 0. Since g is a Lie algebra and π(k) = k = so(n),

[(0, u) + (x0, x), (0, v) + (y0, y)] = (uvt − vut, 0) + (uty − vtx, y0u− x0v) ∈ k.

Hence, 〈u, y〉 = 〈v, x〉, and since u and v are linearly independent, we get x0 = y0 =
0. Thus, if (0, u) + (x0, x) ∈ g, we have x0 = 0. Moreover, if we take (0, u) + (0, x),
(0, u) + (0, x′) ∈ g, then (0, x− x′) ∈ g ∩ Ln+1 = 0, so x is uniquely determined.

Taking now another element (0, w) + (0, z) ∈ g, we obtain[[
(0, u) + (0, x), (0, v) + (0, y)

]
, (0, w) + (0, z)

]
=(

0, (uvt − vut)w
)

+
(
0, (uvt − vut)z − w(uty − vtx)

)
=(

0, 〈v, w〉u− 〈u,w〉v
)

+
(
0, 〈v, z〉u− 〈u, z〉v

)
=

〈v, w〉
(
(0, u) + (0, x)

)
− 〈u,w〉

(
(0, v) + (0, y)

)
,

where the last equality follows from the uniqueness of the translational part. Thus, we
have

〈v, w〉x− 〈u,w〉y = 〈v, z〉u− 〈u, z〉v.

In particular, setting (0, w) + (0, z) = (0, u) + (0, x) and (0, w) + (0, z) = (0, v) + (0, y),
respectively, in the previous equation, and taking into account that 〈u, v〉 = 0, one obtains

〈u, u〉y = −〈v, x〉u+ 〈u, x〉v, 〈v, v〉x = 〈v, y〉u− 〈u, y〉v.

Finally, taking inner product with u and v in the previous two equations, we get

〈v, x〉 = 0, 〈u, y〉 = 0, 〈v, y〉〈u, u〉 = 〈u, x〉〈v, v〉,

and therefore,

x = λu, y = λv, with λ =
〈v, y〉
〈v, v〉

=
〈u, x〉
〈u, u〉

.

In other words, if (0, u) + (0, x) ∈ g, then x = λu, where λ ∈ R is a constant that is
independent of (0, u) + (0, x) ∈ g.

All in all this means that Ad(I, (λ, 0))g = so(1, n), and thus, the action of G on Ln+1

is orbit equivalent to the action of SO0(1, n).

For n = 3, Lemma 4.3.3 yields an example in Case 1.(b) (with k = 3) of Theorem 4.3.1.

Now we assume that π(g) ( so(1, 3), and consider a maximal subalgebra of so(1, 3)
containing π(g), say l. Recall that, up to conjugation, l is either a reductive Lie algebra
l = so(1, k)⊕ so(3− k), with k ∈ {0, 1, 2}, or l is parabolic, l = k0 ⊕ a⊕ n.
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Reductive case
To start with, we focus on the reductive case, that is, l = so(1, k) ⊕ so(3 − k), with

k ∈ {0, 1, 2}.
Assume firstly that π(g) ⊂ so(3), up to conjugation. Since G acts with cohomogeneity

one and dim(so(3)) = 3, we must have π(g) = so(3), and as π is injective, then g is
isomorphic to so(3). Since g is compact and semisimple, it follows that G is also a compact
and semisimple Lie group. Moreover, since g is a compact Lie algebra, Cartan’s fixed point
theorem ensures that there exists a point p ∈ L4 such that g·p = 0. Then, given X+v ∈ g,

Ad(I,−p)(X + v) = X + v −Xp = X + (X + v) · p = X.

All in all, G is conjugate to SO(3). However, SO(3) acts on L4 with cohomogeneity two,
which follows from the fact that its action on R3 ⊂ L4 is of cohomogeneity one.

Assume now that π(g) ⊂ so(1, 1) ⊕ so(2). In this case, dim(π(g)) ≤ 2 and, thus, G
cannot act with cohomogeneity one on L4.

Finally, assume that π(g) ⊂ so(1, 2). Since G acts on L4 with cohomogeneity one and
dim(so(1, 2)) = 3, we must have that π(g) = so(1, 2). Lemma 4.3.4 shows that, in this
case, the action of G cannot be of cohomogeneity one.

Lemma 4.3.4. If π(g) = so(1, 2), the action of G is orbit equivalent to the action of
SO(1, 2) on L4, which is of cohomogeneity two.

Proof. First of all, if π(g) = so(1, 2), we can assume, after conjugation by an element of
SO(1, 3) if necessary, that L3 = {(x0, x1, x2, 0) ∈ L4 : xi ∈ R} is invariant by the action of
SO(1, 2).

Let u = (1, 0, 0)t and v = (0, 1, 0)t, and define X = vut − uvt ∈ so(2) ⊂ so(3). In
particular, Xu = v. Then, the set {(X, 0), (0, u), (0, v)} constitutes a basis of so(1, 2).
Since g∩L4 = 0, one deduces that there exist unique (x0, x), (y0, y), (z0, z) ∈ L4 such that

{(X, 0) + (x0, x), (0, u) + (y0, y), (0, v) + (z0, z)}

is a basis of g. Then, we have the brackets

[(X, 0) + (x0, x), (0, u) + (y0, y)] = (0, v) + (−〈u, x〉, Xy − x0u),

[(X, 0) + (x0, x), (0, v) + (z0, z)] = (0,−u) + (−〈v, x〉, Xz − x0v),

[(0, u) + (y0, y), (0, v) + (z0, z)] = (−X, 0) + (〈u, z〉 − 〈v, y〉, z0u− y0v).

Since the right-hand sides of these equations are elements of g, we must have

z0 = −〈u, x〉, y0 = 〈v, x〉, x0 = −〈u, z〉+ 〈v, y〉,
z = Xy − x0u, y = −Xz + x0v, x = −z0u+ y0v.

As X(R3) = R2, and u, v ∈ R2, the last row readily implies x, y, z ∈ R2. Moreover, x0 = 0,
y0 = 〈x, v〉, z0 = −〈x, u〉, 〈z, u〉 = 〈y, v〉 = 0, and 〈y, u〉 = 〈z, v〉. Using these facts, we
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obtain

Ad
(
I, (〈y, u〉, 〈x, v〉,−〈x, u〉, 0)

)(
(X, 0) + (0, x)

)
= (X, 0),

Ad
(
I, (〈y, u〉, 〈x, v〉,−〈x, u〉, 0)

)(
(0, u) + (〈x, v〉, 〈y, u〉u)

)
= (0, u),

Ad
(
I, (〈y, u〉, 〈x, v〉,−〈x, u〉, 0)

)(
(0, v) + (−〈x, u〉, 〈y, u〉v)

)
= (0, v).

Therefore, Ad
(
I, (〈y, u〉, 〈x, v〉,−〈x, u〉, 0)

)
g = so(1, 2), and thus the action of G on L4 is

orbit equivalent to the action of SO(1, 2) on L4. Since SO(1, 2) acts with cohomogeneity
one on L3, the action of SO(1, 2) is of cohomogeneity two on L4.

All in all we have proved that, if π(g) is contained in a maximal reductive subalgebra
of so(1, 3), then the action of G on L4 cannot be of cohomogeneity one.

Parabolic case

We turn our attention to the parabolic case. We assume then that π(g) ⊂ k0 ⊕ a ⊕ n.
In the rest of this section, we will use the following notation:

(X + a+ u) + (x0, x1, x) ≡

0 a ut

a 0 ut

u −u X

+

x0

x1

x

 ,

where X ∈ so(2), u, x ∈ R2, and a, x0, x1 ∈ R. Recall from the beginning of this section
that E is the generator of so(2) defined by

E =

(
0 −1
1 0

)
,

and e is the lightlike vector of L4 given by e = e0 + e1 = (1, 1, 0, 0).

The following result is devoted to determining the connected Lie subgroups G of I0(L4)
acting with cohomogeneity one on L4 whose Lie algebra g satisfies π(g) ⊂ k0 ⊕ a⊕ n.

Lemma 4.3.5. Under the previous hypotheses, the action of G is orbit equivalent to the
action of the connected Lie subgroup of I0(L4) whose Lie algebra is given by one of the
following possibilities:

(i) R(E + e)⊕ n,

(ii) a⊕ n,

(iii) R(E + 1)⊕ n,

(iv) k0 ⊕ a⊕ n.
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Proof. Let us denote by σ : (k0 ⊕ a ⊕ n) ⊕φ L4 → a ⊕ n the projection onto the solvable
part of the Iwasawa decomposition of so(1, 3).

Assume firstly that σ(g) ( a ⊕ n. Then, dim(σ(g)) ≤ 2 and we have ker(σ|g) =
g ∩ (k0 ⊕ L4). Since g ∩ L4 = 0 and k0

∼= so(2) is one-dimensional, it follows that dim(g ∩
(k0 ⊕ L4)) ≤ 1. Moreover, as dim(g) = dim(σ(g)) + dim(g ∩ (k0 ⊕ L4)) and G acts on L4

with cohomogeneity one, then dim(σ(g)) = 2 and dim(g ∩ (k0 ⊕ L4)) = 1.
Let then X + (x0, x1, x) ∈ g ∩ (k0 ⊕ L4), with X ∈ k0 a nonzero element, x0, x1 ∈ R,

and x ∈ R2.
Assume that σ(g) = a ⊕ v, where v is a one-dimensional subspace of n, and let u ∈ v

be a nonzero vector. In this case, there exist b0, b1, y0, y1 ∈ R and b, y ∈ R2 in such a way
that, with the notation above, the set

{X + (x0, x1, x), 1 + (b0, b1, b), u+ (y0, y1, y)}

is a basis of g. Now, taking the bracket

[X + (x0, x1, x), u+ (y0, y1, y)] = Xu+ (−〈u, x〉,−〈u, x〉, Xy − (x0 − x1)u) ∈ g,

we get, in particular, that Xu ∈ v. But X is a nonzero skew-symmetric matrix of so(2)
and v = Ru ⊂ R2 is one-dimensional, which yields a contradiction. Therefore, σ(g) = a⊕v
is not possible if v 6= n.

Assume now σ(g) = n. Consider an orthonormal basis {u, v} of n, and assume Xu = v;
thus, Xv = −u. Then, there exist y0, y1, z0, z1 ∈ R and y, z ∈ R2 such that

{X + (x0, x1, x), u+ (y0, y1, y), v + (z0, z1, z)}

constitutes a basis of g. We have the brackets

[X + (x0, x1, x), u+ (y0, y1, y)] = v + (−〈x, u〉,−〈x, u〉, Xy − (x0 − x1)u),

[X + (x0, x1, x), v + (z0, z1, z)] = −u+ (−〈x, v〉,−〈x, v〉, Xz − (x0 − x1)v),

[u+ (y0, y1, y), v + (z0, z1, z)] = (〈z, u〉 − 〈y, v〉, 〈z, u〉 − 〈y, v〉, (z0 − z1)u− (y0 − y1)v).

Since the right-hand sides are elements of g, one obtains the equations

z0 = z1 = −〈x, u〉, −y0 = −y1 = −〈x, v〉, 〈z, u〉 = 〈y, v〉,
z = Xy − (x0 − x1)u, −y = Xz − (x0 − x1)v.

Taking inner product with u and v, and using the third equation above, we get x0 = x1,
〈z, u〉 = 〈y, v〉 = 0, and z = Xy. Thus, the previous basis of g becomes

{X + (x0, x0, x), u+ (〈v, x〉, 〈v, x〉, λu), v + (−〈u, x〉,−〈u, x〉, λv)},

where λ = 〈y, u〉. Now, we have

Ad(I, (λ, 0, 〈v, x〉u− 〈x, u〉v))(X + (x0, x0, x)) = X + (x0, x0, 0),

Ad(I, (λ, 0, 〈v, x〉u− 〈x, u〉v))(u+ (〈v, x〉, 〈v, x〉, λu)) = u,

Ad(I, (λ, 0, 〈v, x〉u− 〈x, u〉v))(v + (−〈u, x〉,−〈u, x〉, λv)) = v.
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This shows that g is conjugate to R(X + x0 e)⊕ n.
It remains to prove that gλ = R(X+λ e)⊕n, with λ ∈ R, gives indeed a cohomogeneity

one action. For an arbitrary element (p0, p1, p) ∈ L4, we have

(X + λ e) · (p0, p1, p) = (λ, λ,Xp) = (λ, λ,−〈p, v〉u+ 〈p, u〉v),

u · (p0, p1, p) = (〈p, u〉, 〈p, u〉, (p0 − p1)u),

v · (p0, p1, p) = (〈p, v〉, 〈p, v〉, (p0 − p1)v).

Moreover, since ∣∣∣∣∣∣
λ 〈p, u〉 〈p, v〉

−〈p, v〉 p0 − p1 0
〈p, u〉 0 p0 − p1

∣∣∣∣∣∣ = λ(p0 − p1)2,

the tangent space T(p0,p1,p)(Gλ · (p1, p1, p)) = gλ · (p0, p1, p) is three-dimensional whenever
λ 6= 0 and p0 6= p1, where Gλ denotes the connected subgroup of I0(L4) whose Lie algebra is
gλ. Hence, the action of Gλ on L4 is of cohomogeneity one whenever λ 6= 0. Moreover, it is
easy to see that gλ ·(p0, p1, p) is independent of λ 6= 0. Hence, by virtue of Proposition 4.1.3,
the action of Gλ is equivalent to the action of G1. With a suitable change of basis, we can
also assume X = E, and thus this action corresponds to Case (i) in Lemma 4.3.5.

Finally, assume σ(g) = R(a+ u)⊕Rv with a ∈ a ∼= R, a 6= 0, and u, v ∈ n unit vectors
in such a way that 〈u, v〉 = 0. We consider

g = Exp
(1

a
u
)

=

1 + |u|2
2a2

− |u|
2

2a2
1
a
ut

|u|2
2a2

1− |u|
2

2a2
1
a
ut

1
a
u − 1

a
u I

 ∈ N.
Since [k0 ⊕ a ⊕ n, a ⊕ n] = a ⊕ n, it follows that σ(Ad(g, 0)(g)) = a ⊕ v for certain one-
dimensional subspace v ⊂ n. This reduces the study to a previous case, from where it
follows that G does not act with cohomogeneity one.

We now deal with the case σ(g) = a⊕ n. Let then {u, v} be an orthonormal basis of n.
It is not restrictive to assume, making a change of basis if necessary, that Eu = v. Since
σ(g) = a⊕ n there exist b0, b1, y0, y1, z0, z1, β, µ, ν ∈ R, and b, y, z ∈ R2, in such a way that

(βE + 1) + (b0, b1, b), (µE + u) + (y0, y1, y), (νE + v) + (z0, z1, z) ∈ g.

Taking brackets, we have

[(βE + 1) + (b0, b1, b), (µE + u) + (y0, y1, y)]

= (u+ βv) + (y1 − 〈b, u〉, y0 − 〈b, u〉, βEy − (b0 − b1)u− µEb),
[(βE + 1) + (b0, b1, b), (νE + v) + (z0, z1, z)]

= (−βu+ v) + (z1 − 〈b, v〉, z0 − 〈b, v〉, βEz − (b0 − b1)v − νEb),
[(µE + u) + (y0, y1, y), (νE + v) + (z0, z1, z)]

= (−µu− νv) + (〈z, u〉 − 〈y, v〉, 〈z, u〉 − 〈y, v〉, (z0 − z1)u+ µEz − (y0 − y1)v − νEy).
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In the first place we get µ+βν = 0, ν−βµ = 0, −µ2− ν2 = 0, which follows from the fact
that π(g) is a Lie algebra. Thus, µ = ν = 0. Using this fact, one also obtains the relations

y0 + βz0 = y1 − 〈b, u〉, z0 − βy0 = z1 − 〈b, v〉, 〈z, u〉 = 〈y, v〉,
y1 + βz1 = y0 − 〈b, u〉, z1 − βy1 = z0 − 〈b, v〉,
y + βz = βEy − (b0 − b1)u, z − βy = βEz − (b0 − b1)v, (z0 − z1)u = (y0 − y1)v,

Since u and v are linearly independent, we easily obtain y0 = y1 and z0 = z1. Then,
〈b, v〉 = βy0, 〈b, u〉 = −βz0. Taking inner product with u and v, we get

〈y, u〉+ 2β〈z, u〉 = b1 − b0,

−β〈y, u〉+ 〈z, u〉+ β〈z, v〉 = 0,

−2β〈z, u〉+ 〈z, v〉 = b1 − b0,

whose solution is 〈y, u〉 = 〈z, v〉 = b1 − b0, 〈z, u〉 = 〈y, v〉 = 0. In particular, we have
b = −βz0u+ βy0v, z = (b1 − b0)v, and y = (b1 − b0)u.

Now we conjugate to obtain

Ad(I, (b1, b0, y0u+ z0v))((βE + 1) + (b0, b1,−βz0u+ βy0v)) = βE + 1,

Ad(I, (b1, b0, y0u+ z0v))(u+ (y0, y0, (b1 − b0)u)) = u,

Ad(I, (b1, b0, y0u+ z0v))(v + (z0, z0, (b1 − b0)v)) = v.

Thus, we can assume βE + 1, u, v ∈ g.
Now, if dim(g) = 3, the three elements above constitute a basis of g. We define

gβ = R(βE + 1)⊕ n. For an arbitrary p = (p0, p1, p) ∈ L4, we have

(βE + 1) · (p0, p1, p) = (p1, p0, β〈p, v〉u− β〈p, u〉v),

u · (p0, p1, p) = (〈p, u〉, 〈p, u〉, (p0 − p1)u),

v · (p0, p1, p) = (〈p, v〉, 〈p, v〉, (p0 − p1)v).

We obtain gβ · p = (Rp)⊥, if p0 6= p1, gβ · (p0, p0, 0) = Re, if p0 6= 0, and gβ · 0 = 0,
independently of β. In particular, gβ ·p is three-dimensional whenever p0 6= p1. Therefore,
the corresponding connected Lie subgroup Gβ of I0(L4) whose Lie algebra is gβ acts on L4

with cohomogeneity one.
If β = 0, we get exactly a⊕n, and thus, the action of G is orbit equivalent to the action

of AN , as in Case (ii) of Lemma 4.3.5. In this case, (a⊕ n) · (p0, p0, p) = Re if p0 6= 0 and
p 6= 0.

If β 6= 0, then gβ · (p0, p0, p) = (Re⊕ Rp)⊥ for p0 6= 0, p 6= 0, independently of β 6= 0.
Hence, the action of Gβ is not orbit equivalent to the action of AN because gβ · (p0, p0, p)
is a two-dimensional subspace. Moreover, if β1, β2 6= 0, then the actions of Gβ1 and Gβ2

are orbit equivalent. This corresponds to Case (iii) in the statement of Lemma 4.3.5.
Finally, we still have to consider the case dim(g) = 4. Then, π(g) = k0 ⊕ a⊕ n. Thus,

there exists (x0, x1, x) ∈ L4 in such a way that {E + (x0, x1, x), βE + 1, u, v} is a basis of
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g. Since

[E + (x0, x1, x), u] = v + (〈x, u〉, 〈x, u〉, (x0 − x1)u),

[E + (x0, x1, x), v] = −u+ (〈x, v〉, 〈x, v〉, (x0 − x1)v),

[E + (x0, x1, x), βE + 1] = −βEx− (x1, x0, 0),

are elements of g, we get x0 = x1 = 0 and x = 0. Then, g = k0⊕a⊕n, and the corresponding
connected Lie subgroup G = K0AN of I0(L4) whose Lie algebra is g is known to act on
L4 with cohomogeneity one, as real hyperbolic spaces are orbits of this action (see [14]).
This corresponds to Case (iv) of Lemma 4.3.5.

The results of this section imply part (1) of Theorem 4.3.1. Indeed, let G be a connected
Lie subgroup of I0(L4) with Lie algebra g acting with cohomogeneity one on L4. Recall
from Lemma 4.3.2 that, if the purely translational part v = g ∩ L4 is nondegenerate, then
the action of G reduces to a cohomogeneity one action on v⊥, the orthogonal complement
of v in L4. We have the following possibilities:

• If v is a Lorentzian subspace, the action of G is orbit equivalent to the action of
SO(k)× L4−k, for k ∈ {1, 2, 3}, which corresponds to Case 1.(a) of Theorem 4.3.1.

• If v is a Riemannian subspace and dim(v) ≥ 1, the action of G is orbit equivalent to

the action of SO0(1, k)×R3−k, for k ∈ {0, 1, 2, 3}, or the action of AÑ ×R, where R
denotes a spacelike line in L4 and AÑ is the solvable part of the Iwasawa decompo-
sition of SO0(1, 2). This corresponds to Cases 1.(b) and 1.(c) of Theorem 4.3.1.

• Finally, if dim(v) = 0, we distinguish two possibilities, depending on whether the
projection of g onto so(1, 3), π(g), is contained in a reductive subalgebra of so(1, 3)
or it is contained in a parabolic one. If π(g) is contained in a reductive subalgebra, the
action of G on L4 cannot be of cohomogeneity one, whereas if π(g) is contained in a
parabolic subalgebra, then g must be one of the Lie subalgebras listed in Lemma 4.3.5,
up to orbit equivalence. More specifically, if g ∈ {a⊕n, k0⊕a⊕n} we get Case 1.(d)
of Theorem 4.3.1, if g = R(E + e)⊕ n we get Case 1.(e), and if g = R(E + 1)⊕ n we
obtain Case 1.(f).

4.3.2 Degenerate translational part

Now we assume that v = g ∩ Ln+1 is a degenerate subspace of Ln+1.

Lemma 4.3.6. Let v be a degenerate subspace of Ln+1. Then, there exists g ∈ SO0(1, n)
such that g·v = Re⊕w, where e = (1, 1, 0, . . . , 0) ∈ Ln+1 and w ⊂ Rn−1 = {(x0, x1, . . . , xn) ∈
Ln+1 : x0 = x1 = 0}. In particular, the metric is positive definite on w.

Proof. Since v is degenerate, there is a nonzero vector z ∈ v such that 〈z,v〉 = 0, for all
v ∈ v. In particular, z is a lightlike vector. As SO0(1, n) acts transitively on the set of
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future-oriented lightlike vectors, by conjugating by an element of SO0(1, n) one can assume
that this vector is, precisely, z = e. Now we complete this vector to a basis of v and get
v = Re⊕span{w1, . . . ,wk}. We write wi = (wi0, . . . , win). Since 0 = 〈e,wi〉 = −wi0 +wi1,
we can take w = span{w1 − w10e, . . . ,wk − wk0e} and the result follows.

According to Lemma 4.3.6, we can write v = Re ⊕ w, with w a Riemannian vector
subspace orthogonal to e.

Let X + u ∈ g and w ∈ w be arbitrary elements. Then,

Xe = [X + u, e] ∈ g ∩ Ln+1 = v, Xw = [X + u,w] ∈ g ∩ Ln+1 = v.

Thus, we can write Xe = λe + w0, with λ ∈ R and w0 ∈ w. Since Xw0 ∈ v, we have

0 = 〈Xw0, e〉 = −〈w0, Xe〉 = −〈w0, λe + w0〉 = −〈w0,w0〉

and, as w is Riemannian, we get w0 = 0. This implies Xe ∈ Re, and therefore, X ∈
k0 ⊕ a⊕ n.

Now we write X ≡ Y + a+ v, with Y ∈ k0, a ∈ a, v ∈ Rn−1, and w = (0, 0, w) for some
w ∈ Rn−1. Then, (〈v, w〉, 〈v, w〉, Y w) = Xw ∈ v = Re⊕w, and since w ∈ w is arbitrary,
we get Yw ⊂ w. Nondegeneracy of w means that Yw⊥ ⊂ w⊥, where w⊥ denotes the
orthogonal complement of w in Rn−1.

This gives a further decomposition of several spaces. On the one hand, we have Y ∈
so(w⊥)⊕ so(w). We can also write n = w⊥⊕w. Thus, Y = Y ⊥+Y >, with Y ⊥ ∈ so(w⊥),
Y > ∈ so(w), and v = v⊥ + v>, with v⊥ ∈ w⊥, v> ∈ w. Since w ⊂ g, if X + u is an
arbitrary element of g, one can also assume u = (u0, u1, u

⊥), with u⊥ ∈ w⊥. In particular,
π(g) ⊂ so(w⊥)⊕ so(w)⊕ a⊕ n ⊂ k0 ⊕ a⊕ n.

We define the projection

σ : (so(w⊥)⊕ so(w)⊕ a⊕ n)⊕φ Ln+1 → (so(w⊥)⊕ a⊕w⊥)⊕φ (Ln+1 	w),

which is a Lie algebra homomorphism. Consider h = σ(g), and let H be the connected Lie
subgroup of I0(Ln+1) whose Lie algebra is h. Notice that Re ⊂ h.

Lemma 4.3.7. Under these conditions, the actions of H ×w and G are orbit equivalent.

Proof. We continue using the notation described above. Consider then the element p =
(p0, p1, p

⊥, p>) ∈ Ln+1, with p0, p1 ∈ R, p⊥ ∈ w⊥ and p> ∈ w.
We firstly show that (h⊕w)·p ⊂ g·p. Let Y ⊥ ∈ so(w⊥), v⊥ ∈ w⊥ ⊂ n, u⊥ ∈ w⊥, w ∈ w

and a, u0, u1 ∈ R, such that Y ⊥+ a+ v⊥+ (u0, u1, u
⊥) ∈ h. Then, by definition of h, there

exists Y > ∈ so(w) and v> ∈ w ⊂ n in such a way that Y ⊥+Y >+a+v⊥+v>+(u0, u1, u
⊥) ∈

g. Since −〈v>, p>〉e− (p0 − p1)v> − Y >p> ∈ v and

(Y ⊥ + a+ v⊥ + (u0, u1, u
⊥) + w) · p =


ap1 + 〈v⊥, p⊥〉+ u0

ap0 + 〈v⊥, p⊥〉+ u1

(p0 − p1)v⊥ + Y ⊥p⊥ + u⊥

w


=
(
Y ⊥ + Y > + a+ v⊥ + v> + (u0, u1, u

⊥)− 〈v>, p>〉e− (p0 − p1)v> − Y >p> + w
)
· p
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lies in g · p, we obtain (h⊕w) · p ⊂ g · p.
Conversely, let Y ⊥ ∈ so(v⊥), Y > ∈ so(v), v⊥ ∈ w⊥ ⊂ n, v> ∈ w ⊂ n, u⊥ ∈ w⊥, w ∈ w

and a, λ, u0, u1 ∈ R, such that Y ⊥ + Y > + a+ v⊥ + v> + (u0, u1, u
⊥) ∈ g and λe + w ∈ v.

Then, Y ⊥ + a+ v⊥ + (u0, u1, u
⊥) ∈ h, (〈v>, p>〉+ λ)e ∈ Re ⊂ h, Y >p> ∈ w, and thus

(Y ⊥ + Y > + a+ v⊥ + v> + (u0, u1, u
⊥) + λe + w) · p

=


ap1 + 〈v⊥, p⊥〉+ 〈v>, p>〉+ λ+ u0

ap0 + 〈v⊥, p⊥〉+ 〈v>, p>〉+ λ+ u1

(p0 − p1)v⊥ + Y ⊥p⊥ + u⊥

(p0 − p1)v> + Y >p> + w


= (Y ⊥ + a+ v⊥ + (u0, u1, u

⊥) + (〈v>, p>〉+ λ)e + w + Y >p>) · p,

which belongs to (h⊕w) · p.
Therefore the orbits of G and H ×w coincide by virtue of Proposition 4.1.3.

We now turn our attention to the particular case n = 3 in order to continue the proof
of Theorem 4.3.1. In view of Lemma 4.3.7, the action of G reduces to a cohomogeneity one
action on L4	w whose purely translational part is Re. For dimension reasons, we clearly
have 0 ≤ dim(w) ≤ 2.

If dim(w) = 2, we have to determine cohomogeneity one actions on L2 by a group H
such that h ∩ L2 = Re. It follows from Theorem 4.1.1 that the only such action, up to
orbit equivalence, is the action of Re itself. Thus, the action of G is orbit equivalent to
the action of W3, which corresponds to Case 2.(a) of Theorem 4.3.1.

If dim(w) = 1, we have to determine cohomogeneity one actions on L3 by a Lie group
H such that h∩L3 = Re. It follows from Theorem 4.1.2 that we have the following actions:

(i) The action of Ñ × R(1, 1, 0), where Ñ is the nilpotent part of the Iwasawa decom-
position of SO0(1, 2). Hence, in L4, we get the action of the Lie group G whose Lie
algebra is g = R(1, 0)⊕φ

(
Re⊕R(0, 0, 0, 1)

)
, where (1, 0) ∈ n ∼= R2. This corresponds,

after rearranging components, to Case 2.(b) of Theorem 4.3.1.

(ii) The action of the Lie group whose Lie algebra is R(u+ (1, 0, 0))⊕R(1, 1, 0), where u
is a unit vector of ñ, the nilpotent part of the Iwasawa decomposition of so(1, 2). This
induces the action of the Lie group whose Lie algebra is g = R((1, 0) + (1, 0, 0, 0))⊕φ(
Re ⊕ R(0, 0, 0, 1)

)
, where (1, 0) ∈ n ∼= R2. This corresponds to Case 2.(c) of Theo-

rem 4.3.1.

(iii) The action of the Lie group whose Lie algebra is R(1 + (0, 0, λ)) ⊕ R(1, 1, 0). This
induces the action on L4 of the Lie group whose Lie algebra is given by g = R(1 +
(0, 0, λ, 0))⊕φ

(
Re⊕ R(0, 0, 0, 1)

)
. This corresponds to Case 2.(d) of Theorem 4.3.1.

Finally, we have to study the case w = 0. To tackle this problem, we have to determine
cohomogeneity one actions on L4 by a connected Lie subgroup G of I0(L4), with Lie algebra
g, in such a way that g ∩ L4 = Re.
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Since π(g) ⊂ k0 ⊕ a ⊕ n, we will firstly determine the conjugacy classes of the Lie
subalgebras of k0 ⊕ a ⊕ n. Patrangenaru has given a classification of the Lie subalgebras
of so(1, 3), up to conjugacy in SO0(1, 3), in [65]. This classification result includes the
subalgebras of k0 ⊕ a⊕ n. However, in our proof it is essential for this classification to be
up to conjugacy in K0AN , so that Re remains invariant. Hence, we include the result for
k0 ⊕ a⊕ n below.

Lemma 4.3.8. If h is a nontrivial proper Lie subalgebra of k0⊕ a⊕n, then h is conjugate,
by an element of K0AN , to one of the following:

(i) If dim(h) = 1: k0, a, R(αE + 1), α 6= 0, or a one-dimensional subspace of n.

(ii) If dim(h) = 2: k0 ⊕ a, a⊕ v, where v is a one-dimensional subspace of n, or n.

(iii) If dim(h) = 3: R(αE + a)⊕ n, where αE + a 6= 0.

Proof. Assume firstly that h is one-dimensional. It is clear that k0, a, R(αE + 1), and
n are not conjugate because the Jordan canonical forms of their matrix representations
are different (pure imaginary diagonal, real diagonal, complex diagonal, and nilpotent,
respectively). Assume h = R(αE+a+u). If α = 0 and a = 0, then we get that h is a one-
dimensional subspace of n. If α = 0 but a 6= 0, conjugating by Exp( 1

a
u) we get Ad(g)h = a.

Finally, suppose α 6= 0. It is clear that αE + a Id is an isomorphism of n ∼= R2. Thus,
there exists v ∈ n such that (αE + a Id)v = −u. Conjugating h by g = Exp(v), we obtain
Ad(g)h = R(αE+a). If a = 0, then Ad(g)h = k0, whereas if a 6= 0, Ad(g)h = R(αE/a+1).

Now we assume dim(h) = 2. The nonconjugacy of the examples given in the statement
is again a consequence of the different Jordan canonical forms of their corresponding matrix
representations. If h has trivial projection onto n, we get k0⊕a. Assume that the dimension
of the orthogonal projection of h onto n is one. In such a case, there is a basis {αE +
a + u, βE + b} of h. We have [αE + a + u, βE + b] = −bu − βEu. Since E acts as a
skew-symmetric transformation of n, Eu is orthogonal to u, which implies β = 0. We can
then take b = 1 and a = 0. However, the right-hand side of the previous equation is in h
if, and only if, α = 0. Thus, h = a⊕ v, where v denotes a one-dimensional subspace of n.

We deal now with the case dim(h) = 2, and where the orthogonal projection of h onto
n is n. In this case, a basis of h can be taken as {αE + a + u, βE + b + v}, where {u, v}
is an orthonormal basis of n in such a way that Eu = v, Ev = −u. Taking brackets, we
obtain [αE + a+ u, βE + b+ v] = −(b+α)u+ (a− β)v. The fact that the right-hand side
of this equation is in h implies

(a− β)β − α(b+ α) = 0, (a− β)b− (b+ α)a = 0.

If β = α = 0, we get {a+ u, b+ v} as a basis of h. In this case, if a 6= 0, we conjugate
by g = Exp( 1

a
u) and we get Ad(g)h = a ⊕ R(v − bu/a). Similarly, if b 6= 0, conjugating

g = Exp(−1
b
v) we obtain Ad(g)h = a⊕R(u+ av/b). This two cases are of the form a⊕ v,

with v a one-dimensional subspace of n. If a = b = 0, we get h = n.
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If β = 0 but α 6= 0, then a = 0 and b = −α. We get h = R(αE + u) ⊕ R(−α + v).
Conjugating by g = Exp(− 1

α
v) gives Ad(g)h = k0 ⊕ a.

Now assume β 6= 0. On the one hand, the second equation gives b = −αa/β, and hence,
the first equation transforms into (a− β)(α2 + β2) = 0. Since β 6= 0, we must have a = β,
and thus, b = −α. Then, h = R(αE + β + u)⊕ (βE − α+ v). In this case, conjugation by
the element

g = Exp
( β

α2 + β2
u− α

α2 + β2
v
)

yields, after some elementary calculations, Ad(g)h = k0 ⊕ a again. This settles the two-
dimensional case.

Finally, we assume that h is a three-dimensional Lie subalgebra of k0 ⊕ a ⊕ n. Then,
there exists a vector ξ ∈ k0 ⊕ a ⊕ n that is orthogonal to h. Let us write such a vector
as ξ = αE + a + u. We prove that u = 0. Indeed, there exist v ∈ (n 	 Ru) ∩ h and
βE + γu ∈ h. Then, [βE + γu, v] = β[E, v] ∈ h is not orthogonal to ξ unless u = 0. This
implies h = R(αE + a)⊕ n, and finishes the proof of the lemma.

Now we turn our attention again to the study of cohomogeneity one actions on L4

with one-dimensional degenerate translational part. This is what we study in the following
result.

Lemma 4.3.9. Let G be a connected Lie subgroup of I0(L4) = SO0(1, 3) ×Φ L4 with Lie
algebra g. Assume that G acts isometrically on L4 in such a way that g∩L4 = Re. Then,
the action of G is orbit equivalent to the action of the connected Lie subgroup of I0(L4)
whose Lie algebra is given by one of the following possibilities:

(i) W3;

(ii) (k0 ⊕ n)⊕φ Re;

(iii) (k0 ⊕ a)⊕φ Re;

(iv) (a⊕ v)⊕φ Re, where v is a one-dimensional subspace of n;

(v)
(
R(1 + (0, 0, b)) ⊕ v) ⊕φ Re, where v denotes a one-dimensional subspace of n and
b ∈ R2;

(vi) n⊕φ Re;

(vii)
(
R(u+ (0, 0, x))⊕R(v+ (0, 0, y))

)
⊕φ Re, where {u, v} is an orthonormal basis of n,

and x, y ∈ R2.

Proof. As we have seen, π(g) is a Lie subalgebra of k0⊕a⊕n and g∩L4 = Re. If there is an
orbit through p ∈ L4 with dim(G ·p) = 3, then dim(G) ≥ 3, which implies dim(π(g)) ≥ 2.
The conjugacy classes of subalgebras of k0⊕ a⊕n by elements of K0AN are a consequence
of Lemma 4.3.8.
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We start with the case π(g) = k0 ⊕ a ⊕ n. As before, let us consider an orthonormal
basis {u, v} of n in such a way that Eu = v, Ev = −u. Then, a basis of g can be written
as

{E + (a0, a1, a), 1 + (b0, b1, b), u+ (x0, x1, x), v + (y0, y1, y), e},
where a0, a1, b0, b1, x0, x1, y0, y1 ∈ R, and a, b, x, y ∈ R2. In order to shorten the
notation, let us write a2 = 〈a, u〉, a3 = 〈a, v〉, b2 = 〈b, u〉, b3 = 〈b, v〉, x2 = 〈x, u〉,
x3 = 〈x, v〉, y2 = 〈y, u〉, and y3 = 〈y, v〉 The relevant Lie brackets that we need here are

[E + (a0, a1, a), 1 + (b0, b1, b)] = (−a1,−a0,−b3u+ b2v),

[u+ (x0, x1, x), v + (y0, y1, y)] = (y2 − x3, y2 − x3, (y0 − y1)u− (x0 − x1)v),

[E + (a0, a1, a), u+ (x0, x1, x)] = v + (−a2,−a2,−(x3 + (a0 − a1))u+ x2v),

[1 + (b0, b1, b), u+ (x0, x1, x)] = u+ (x1 − b2, x0 − b2, (b1 − b0)u),

[1 + (b0, b1, b), v + (y0, y1, y)] = v + (y1 − b3, y0 − b3, (b1 − b0)v).

The fact that the right-hand sides of the previous equations are elements of g has the
following implications. From the first equation, we get 〈b, u〉 = 〈b, v〉 = 0, which means
b = 0. Moreover, (−a1,−a0) must be proportional to (1, 1), so a0 = a1, but since e ∈ g,
we may subtract a0e, and thus, we can assume a0 = a1 = 0. The second equation gives
x0 = x1, y0 = y1, and since e ∈ g, we may set x0 = x1 = y0 = y1 = 0. Now, the
right-hand side of the third equation must be the sum of v + (0, 0, y) and a multiple of e.
Then, 〈y, u〉 = −〈x, v〉 and 〈y, v〉 = 〈x, u〉. From the last two equations we readily have
〈x, u〉 = b1 − b0 and 〈x, v〉 = 0. Thus, our original basis reads now

{E + (0, 0, a), 1 + (b0, b1, 0), u+ (0, 0, (b1 − b0)u), v + (0, 0, (b1 − b0)v), e}.

Consider the element g = (I, (b1, b0, a3u− a2v)). Then, we have

Ad(g)(E + (0, 0, a)) = E, Ad(g)(u+ (0, 0, (b1 − b0)u)) = u− 〈a, v〉e,
Ad(g)(1 + (b0, b1, 0)) = 1, Ad(g)(v + (0, 0, (b1 − b0)v)) = v + 〈a, u〉e,
Ad(g)(e) = e,

which implies Ad(g)g = (k0 ⊕ a ⊕ n) ⊕φ Re. Since one of the orbits of K0AN is a real
hyperbolic space and Re is transversal to it, it follows that the action of its corresponding
Lie subgroup is of cohomogeneity zero.

Assume now that π(g) = R(αE + a)⊕ n and consider the basis

{(αE + a) + (b0, b1, b), u+ (x0, x1, x), v + (y0, y1, y), e},

where α, a, b0, b1, x0, x1, y0, y1 ∈ R, b, x, y ∈ R2, and {u, v} is an orthonormal basis of
n in such a way that Eu = v, Ev = −u. In order to shorten the notation, let us write
b2 = 〈b, u〉, b3 = 〈b, v〉, x2 = 〈x, u〉, x3 = 〈x, v〉, y2 = 〈y, u〉, and y3 = 〈y, v〉. Firstly, we
have

[u+ (x0, x1, x), v + (y0, y1, y)] = (y2 − x3, y2 − x3, (y0 − y1)u− (x0 − x1)v).
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Since the right-hand side of the previous equation lies in g, we have x0 = x1, y0 = y1. Since
e ∈ g, we can take x0 = x1 = y0 = y1 = 0. Considering these facts, we have

[(αE + a) + (b0, b1, b), u+ (0, 0, x)] = (au+ αv)− (b2, b2, (b0 − b1 + αx3)u− αx2v),

[(αE + a) + (b0, b1, b), v + (0, 0, y)] = (av − αu)− (b3, b3, αy3u− (b1 − b0 + αy2)v),

which implies

b1 − b0 − αx3 = ax2 + αy2, αx2 = ax3 + αy3, (4.1)

− αy3 = −αx2 + ay2, b1 − b0 + αy2 = −αx3 + ay3.

If a 6= 0, we can assume a = 1 (just changing the first element of the basis by itself
divided by a). We get x2 = b1 − b0, x3 = 0, y2 = 0, and y3 = b1 − b0. Considering the
element g = (I, (b1, b0, 0)), we obtain Ad(g)g = R(αE + 1) + (0, 0, b)) ⊕ n ⊕φ Re. For a
given p = (p0, p1, p) ∈ L4 we have

((αE + 1) + (0, 0, b)) · p = (p1, p0, (b2 − α〈p, v〉)u+ (b3 + α〈p, u〉)v),

u · p = (〈p, u〉, 〈p, u〉, (p0 − p1)u),

v · p = (〈p, v〉, 〈p, v〉, (p0 − p1)v).

Recall that Ad(g)g·p can be identified with the tangent space of the orbit of gGg−1 through
p. Then, since ∣∣∣∣∣∣∣∣

p1 〈p, u〉 〈p, v〉 1
p0 〈p, u〉 〈p, v〉 1

b2 − α〈p, v〉 p0 − p1 0 0
b3 + α〈p, u〉 0 p0 − p1 0

∣∣∣∣∣∣∣∣ = −(p0 − p1)3,

we conclude that there are orbits of dimension 4 whenever p0 6= p1, which implies that G
acts with cohomogeneity zero.

It remains to deal with the case a = 0. We can set α = 1. Solving (4.1) yields y2 = −x3,
y3 = x2, and b1 = b0. Conjugating by g = (I, (x2, 0, b3u− b2v)), we get

Ad(g)(E + (0, 0, b)) = E, Ad(g)(e) = e,

Ad(g)(u+ (0, 0, x)) = x3v − b3e, Ad(g)(v + (0, 0,−x3u+ x2v) = −x3u+ b2e.

Thus, {E, u+(0, 0, λv), v+(0, 0,−λu), e}, with λ ∈ R, is a basis of g. In order to determine
the tangent space at a point p = (p0, p1, p) ∈ L4, we calculate

E · p = −〈p, v〉u+ 〈p, u〉v,
(u+ (0, 0, λv)) · p = 〈p, u〉e + (p0 − p1)u+ λv,

(v + (0, 0,−λu)) · p = 〈p, v〉e− λu+ (p0 − p1)v.

If λ = 0, it follows from the previous equations that g · p = Re ⊕ Ru ⊕ Rv whenever
p0 6= p1, but g·(p0, p0, p) = Re⊕R(−〈p, v〉u+〈p, u〉v). However, if λ 6= 0, the tangent space
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is always g ·p = Re⊕Ru⊕Rv ∼= Re⊕R2 = W3. This means that, using Proposition 4.1.3,
for λ 6= 0, the action of G is orbit equivalent to the action of W3 by translations, which
corresponds to Case (i) of Lemma 4.3.9. If λ = 0 we get, up to orbit equivalence, the
action of K0N ×φ Re, as stated in Case (ii) of Lemma 4.3.9.

Assume now π(g) = k0 ⊕ a and consider the following basis of g:

{E + (a0, a1, a2, a3), 1 + (b0, b1, b2, b3), e},

where ai, bi ∈ R, for i ∈ {0, 1, 2, 3}. Since

[E + (a0, a1, a2, a3), 1 + (b0, b1, b2, b3)] = (−a1,−a0,−b3, b2) ∈ g,

it follows that a0 = a1 and b2 = b3 = 0. Moreover, since e ∈ g, we can assume a0 = a1 = 0.
A simple calculation shows that Ad(I, (b1, b0, a3,−a2))g = (k0 ⊕ a) ⊕φ Re. Thus, we can
assume g = (k0 ⊕ a)⊕φ Re.

We calculate the tangent space of an orbit through p = (p0, p1, p). If p0 = p1, then
g · p = Re ⊕ (R2 	 Rp), whereas if p0 6= p1 we have g · p = L2 ⊕ (R2 	 Rp). Thus, this
action is of cohomogeneity one and corresponds to Case (iii) of Lemma 4.3.9.

We deal now with the case g = a⊕ v, where v is a one-dimensional subspace of n. Let
u ∈ n be a unit vector in such a way that v = Ru. We can take a basis of g of the form

{1 + (b0, b1, b), u+ (x0, x1, x), e}.

Taking brackets, we have

[1 + (b0, b1, b), u+ (x0, x1, x)] = u+ (x1 − 〈b, u〉, x0 − 〈b, u〉, (b1 − b0)u) ∈ g.

Since this element must be the sum of u+ (x0, x1, x) and a multiple of e, we have x0 = x1,
〈x, u〉 = b1 − b0, and 〈x, v〉 = 0. Since e ∈ g, we can set x0 = x1 = 0. Conjugating by
(I, (b1, b0, 0)) yields the new basis {1 + (0, 0, b), u, e}, with b ∈ R2.

We calculate the tangent space g · p, where p = (p0, p1, p) ∈ L4. Assume b = 0. If
p0 = p1, then g·p = Re, whereas if p0 6= p1 then g·p = L2⊕Ru, which is three-dimensional.
Now, assume b 6= 0. If p0 = p1, then g · p = Re ⊕ Rb, whereas if p0 6= p1 then g · p is
again three-dimensional. Therefore, the actions with b = 0 and b 6= 0 cannot be orbit
equivalent because in the latter case there are no one-dimensional orbits. They correspond
to Cases (iv) and (v) of Lemma 4.3.9.

Finally, assume π(g) = n. Let {u, v} be an orthonormal basis of n and consider the
following basis of g:

{u+ (x0, x1, x), v + (y0, y1, y), e},
where x0, x1, y0, y1 ∈ R, and x, y ∈ R2. Since

[u+ (x0, x1, x), v+ (y0, y1, y)] = (〈y, u〉 − 〈x, v〉, 〈y, u〉 − 〈x, v〉, (y0− y1)u+ (x1− x0)v) ∈ g,

we can set x0 = x1 = y0 = y1 = 0. For p = (p0, p1, p) ∈ L4, we have

(u+ (0, 0, x)) · p = 〈p, u〉e + (p0 − p1)u+ x,

(v + (0, 0, y)) · p = 〈p, v〉e + (p0 − p1)v + y.
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Thus, g · p = span{e, (p0 − p1)u + x, (p0 − p1)v + y}. This implies that the dimension of
an orbit of G depends on the rank of the matrix(

〈x, u〉 − (p1 − p0) 〈y, u〉
〈x, v〉 〈y, v〉 − (p1 − p0)

)
.

Assume 〈x, v〉 = 〈y, u〉 = 0 and λ := 〈x, u〉 = 〈y, v〉. Conjugating by the element
g = (I, (λ, 0, 0, 0)), one obtains Ad(g)g = n ⊕φ Re. For a point p = (p0, p1, p) ∈ L4, we
have Ad(g)(g) · p = Re if p0 = p1, and Ad(g)(g) · p = Re ⊕ R2 if p1 6= p0. Hence, the
corresponding action is of cohomogeneity one and corresponds to Case (vi) of Lemma 4.3.9.

Otherwise, the matrix above can never be identically zero. Its rank is 2 whenever

(p1 − p0)2 − (〈x, u〉+ 〈y, v〉)(p1 − p0) + 〈x, u〉〈y, v〉 − 〈x, v〉〈y, u〉 6= 0,

that is, when p1−p0 is not an eigenvalue of the matrix (x|y) whose columns are the vectors
x and y. Thus, the action of G is in this case of cohomogeneity one. This corresponds to
Case (vii) of Lemma 4.3.9.

The results of this section imply part (2) of Theorem 4.3.1. Indeed, let G be a connected
Lie subgroup of I0(L4) acting with cohomogeneity one on L4. Let g denote the Lie algebra
ofG and consider v = g∩L4 its pure transaltional part. Recall from Lemma 4.3.6 that, if v is
a degenerate subspace of L4, then it can be written as v = Re⊕w, where e = (1, 1, 0, 0) and
w is a Riemannian subspace. Moreover, under these conditions, Lemma 4.3.7 ensures that
the action of G reduces to a cohomogeneity one action on L4	w whose pure translational
part is Re. We have the following possibilities:

• If dim(w) = 2, the action of G is orbit equivalent to the action of W3 by translations,
which corresponds to Case 2.(a) of Theorem 4.3.1.

• If dim(w) = 1, the action of G is orbit equivalent to the action of the connected Lie
subgroup of I0(L4) whose Lie algebra is one of the following:

– R(1, 0)⊕φ
(
Re⊕R(0, 0, 0, 1)

)
, which corresponds to Case 2.(b) of Theorem 4.3.1;

– R
(
(1, 0) + (1, 0, 0, 0)

)
⊕φ
(
Re⊕R(0, 0, 0, 1)

)
, which corresponds to Case 2.(c) of

Theorem 4.3.1;

– R
(
1 + (0, 0, λ, 0)

)
⊕φ
(
Re ⊕ R(0, 0, 0, 1)

)
, which corresponds to Case 2.(d) of

Theorem 4.3.1.

• Finally, if dim(w) = 0, the action of G is orbit equivalent to the action of the
connected Lie subgroup of I0(L4) whose Lie algebra is one of the subalgebras given
in Lemma 4.3.9. More specifically, if g ∈ {(k0 ⊕ n) ⊕φ Re, n ⊕φ Re} we obtain
Case 2.(e) of Theorem 4.3.1, whereas Cases (i), (iii), (iv), (v) and (vii) of Lemma 4.3.9
correspond to Cases 2.(a), 2.(f), 2.(g), 2.(h) and 2.(i) of Theorem 4.3.1, respectively.



Conclusions and open problems

The first contribution of this thesis consists of several classification results of ruled real
hypersurfaces satisfying some additional geometric properties in nonflat complex space
forms, namely complex projective and hyperbolic spaces (see Chapter 2). More specifically,
we have obtained the following results:

• We have proved that any ruled real hypersurface having constant mean curvature in
a nonflat complex space form must be minimal. Then, the classification of ruled real
hypersurfaces with constant mean curvature in nonflat complex space forms follows
from a known result due to Lohnherr and Reckziegel.

• We have obtained a complete classification of ruled real hypersurfaces whose shape
operators have constant norm in nonflat complex space forms. In particular, this
classification result contains a new inhomogeneous example in the complex hyperbolic
space, whereas there are no examples in complex projective spaces.

• We have proved that every biharmonic ruled real hypersurface in a nonflat complex
space form must be minimal. Their classification follows from a known result due to
Lohnherr and Reckziegel.

In Chapter 3 we have focused on the study of homogeneous CR submanifolds in complex
hyperbolic spaces. In particular, we have derived the following results:

• We have proved a result that allows us to characterize homogeneous CR submanifolds
in Hermitian symmetric spaces of noncompact type in terms of the Lie algebras of
the Lie subgroups determining such submanifolds.

• We have obtained the classification of homogeneous CR submanifolds in complex
hyperbolic spaces that arise as orbits of connected Lie subgroups of the solvable part
of the Iwasawa decomposition of the isometry group of the ambient space. We have
also studied the congruence classes of the examples in this classification.

Finally, in Chapter 4, we have studied cohomogeneity one actions on Minkowski space-
times. These are the main achievements we have obtained:

• We have given an alternative proof for the classification of cohomogeneity one actions
on Euclidean spaces using Lie group theory.
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• We have obtained some structural results in relation to the study of cohomogeneity
one actions on Minkowski spacetimes Ln+1.

• We have derived the classification of cohomogeneity one actions on the Minkowski
spacetime of dimension four L4, up to orbit equivalence, finding the existence of
examples of actions with degenerate orbits.

In view of these results, there are still some open problems and questions to be solved in
relation to the geometric objects investigated in this thesis. We comment on the following
ones:

• Obtain new examples of ruled real hypersurfaces satisfying additional geometric prop-
erties of interest.

• Characterize ruled real hypersurfaces in nonflat complex space forms whose principal
curvatures are related by means of a general quadratic function.

• Study biharmonic Hopf hypersurfaces in nonflat complex space forms. See [67] for
some partial result in this line.

• Complete the classification of homogeneous CR submanifolds in complex hyperbolic
spaces. This seems to be a very involved problem, so any progress may be of interest.
The particular case of homogeneous Lagrangian submanifolds appears to be of special
relevance.

• Investigate homogeneous CR submanifolds in complex projective spaces.

• Extend the results obtained in Chapter 3 to the entire context of Hermitian symmetric
spaces of noncompact type.

• Apply the methods and techniques developed in Chapter 4 to the study of not nec-
essarily proper cohomogeneity one actions on Minkowski spacetimes of arbitrary di-
mension.

• Develop new methods in order to classify cohomogeneity one actions on the setting
of semi-Riemannian space forms.



Resumo en galego

Intuitivamente, a simetŕıa é a propiedade dos obxectos que fai que resulten semellantes
cando os observamos desde diferentes perspectivas. Trátase dunha cualidade importante
desde o punto de vista de disciplinas coma a biolox́ıa, a qúımica ou a arte. O concepto de
simetŕıa tamén ten cabida no campo das matemáticas. Neste contexto, convén sinalar que
a simetŕıa non é unha propiedade unicamente aplicable a figuras xeométricas, senón que
outros obxectos máis abstractos tamén poden ter simetŕıas. O estudo de ditos obxectos deu
lugar a importantes resultados en diversas áreas das matemáticas. Por exemplo, a teoŕıa
de Galois asegura que se unha ecuación polinómica non ten as simetŕıas axeitadas, entón
non é resoluble por radicais. Outro exemplo constitúeno os coñecidos teoremas de Noether,
que afirman que as simetŕıas dun sistema f́ısico se traducen en leis de conservación.

O concepto de simetŕıa pode definirse de xeito rigoroso empregando a terminolox́ıa da
teoŕıa de grupos. Aśı, dado un grupo G, dise que un obxecto é G-simétrico se é invariante
baixo a acción de G. En particular, a noción de simetŕıa sempre está vinculada á acción
dun grupo que, de feito, especifica o tipo de simetŕıa que un determinado obxecto ten.

No marco da xeometŕıa semi-riemanniana, é natural considerar como obxecto de estudo
o grupo de isometŕıas da variedade, é dicir, o grupo constitúıdo polas transformacións da va-
riedade que preservan a súa métrica. A acción dun subgrupo do grupo de isometŕıas nunha
determinada variedade semi-riemanniana denomı́nase acción isométrica. Unha variedade
semi-riemanniana dise homoxénea se o seu grupo de isometŕıas actúa transitivamente sobre
ela. Unha subvariedade é (extrinsecamente) homoxénea se coincide coa órbita da acción
dun subgrupo do grupo de isometŕıas da variedade ambiente.

A experiencia demostrou que o problema de clasificación de accións isométricas ou,
equivalentemente, de subvariedades homoxéneas, nunha variedade semi-riemanniana dada
pode resultar moi complicado. Por esta razón, é usual restrinxir a nosa atención e limitarnos
ao estudo de certos tipos espećıficos de accións isométricas que sexan máis manexables.
Por exemplo, o estudo de accións transitivas, isto é, aquelas nas que a propia variedade é
a única órbita da acción, foi abordado en diversos contextos.

As accións de cohomoxeneidade un constitúen outra clase particular de accións isométri-
cas en variedades semi-riemannianas que teñen atráıdo considerable atención. Unha acción
isométrica dise de cohomoxeneidade un se as súas órbitas teñen codimensión un. No contex-
to particular da xeometŕıa lorentziana non existen demasiados resultados de clasificación
en relación a este tipo de accións isométricas. Un dos principais obxectivos desta tese é
o de estudar e clasificar accións de cohomoxeneidade un en variedades de Lorentz, salvo
equivalencia de órbitas. Máis concretamente, abordamos este problema tomando como va-
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riedade ambiente o espazo-tempo de Minkowski, é dicir, o análogo ao espazo euclidiano con
signatura lorentziana.

Non obstante, no marco da xeometŕıa de Riemann si se obtiveron numerosos e impor-
tantes resultados en relación ao problema de clasificación de accións de cohomoxeneidade
un ou, equivalentemente, de hipersuperficies homoxéneas. Por exemplo, a clasificación de
accións de cohomoxeneidade un nos espazos de curvatura constante, é dicir, os espazos
euclidianos Rn, as esferas Sn e os espazos hiperbólicos reais RHn, foi abordado e, final-
mente, resolto por varios autores. Máis concretamente, a clasificación de hipersuperficies
homoxéneas nos espazos euclidianos dedúcese de dous traballos de Levi-Civita [49] e Se-
gre [68] dedicados ao estudo das hipersuperficies isoparamétricas de ditos espazos. A clasifi-
cación en esferas, que resultou ser un problema moito máis complexo, séguese dun traballo
de Hsiang e Lawson [44] relacionado con subvariedades minimais neste tipo de variedades.
As hipersuperficies homoxéneas nos espazos hiperbólicos reais foran clasificadas bastante
antes por Cartan en [20].

A complexidade do problema de clasificación de hipersuperficies homoxéneas nunha
determinada variedade riemanniana aumenta considerablemente cando dita variedade está
dotada dunha estrutura de Kähler. Os exemplos máis sinxelos de variedades de Kähler
son os espazos forma complexos, constitúıdos por tres importantes familias de variedades:
os espazos euclidianos complexos Cn, os espazos proxectivos complexos CP n e os espazos
hiperbólicos complexos CHn. O problema de clasificación de hipersuperficies homoxéneas
neste tipo de variedades foi abordado e conclúıdo por diversos autores. En particular, a
clasificación no caso proxectivo resolveuna Takagi en [70], mentres que as hipersuperficies
homoxéneas nos espazos hiperbólicos complexos foron clasificadas por Berndt e Tamaru
en [15].

Un dos principais obxectivos desta tese é o estudo da xeometŕıa de subvariedades no
contexto dos espazos forma complexos non chans, é dicir, nos espazos proxectivo e hiperbóli-
co complexos. Por suposto, a estrutura complexa subxacente xoga un papel fundamental á
hora de resolver problemas neste marco de traballo. En xeral, no contexto das variedades
de Kähler e, máis concretamente, no dos espazos forma complexos, é posible definir os
conceptos de subvariedades complexas e totalmente reais, que dependen precisamente da
estrutura complexa da variedade ambiente. A noción de subvariedade CR constitúe un-
ha xeneralización destes dous tipos de subvariedades. Nesta tese estudamos subvariedades
CR homoxéneas no espazo hiperbólico complexo empregando, para tal fin, a estrutura de
grupo de Lie do grupo de isometŕıas de dita variedade ambiente. Existen varios exemplos
coñecidos de subvariedades CR homoxéneas no espazo hiperbólico complexo que moti-
van este problema, tales como as subvariedades de Berndt-Brück [11] e, en particular, as
hipersuperficies de Lohnherr [50].

A hipersuperficie de Lohnherr de CHn satisfai numerosas propiedades importantes que
a convirten nun atractivo obxecto de estudo. Por exemplo, pode ser caracterizada como
a única hipersuperficie minimal e homoxénea no espazo hiperbólico complexo [13]. Carac-
teŕızase tamén por ser a única hipersuperficie en CHn con curvaturas principais constantes
que é, ademais, regrada [51]. O concepto de hipersuperficie regrada nun espazo forma com-
plexo garda unha estreita relación coa estrutura complexa da variedade ambiente. Nos
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últimos anos obtivéronse diversos traballos sobre o estudo de hipersuperficies reais regra-
das nos espazos forma complexos. Nesta tese centrámonos tamén na clasificación de certas
hipersuperficies regradas que satisfán determinadas propiedades xeométricas adicionais nos
espazos proxectivo e hiperbólico complexos.

A continuación, presentamos os resultados orixinais desta tese.

Hipersuperficies reais regradas en espazos forma complexos

Unha hipersuperficie real regrada nun espazo proxectivo ou hiperbólico complexo CP n ou
CHn é unha subvariedade de codimensión real un que está foliada localmente por hiper-
superficies complexas totalmente xeodésicas da variedade ambiente, máis concretamente,
CP n−1 ou CHn−1, respectivamente.

As hipersuperficies reais regradas nos espazos forma complexos non chans constitúen
unha clase moi ampla de hipersuperficies reais. Por este motivo, é natural centrarse no
estudo deste tipo de hipersuperficies impoñendo algunha condición xeométrica adicional.
Por exemplo, Lohnherr e Reckziegel obtiveron en [51] a clasificación das hipersuperficies
regradas minimais nos espazos proxectivo e hiperbólico complexos. Máis concretamente,
se M denota unha hipersuperficie minimal regrada nun espazo forma complexo non chan,
entón M debe ser unha parte aberta dalgunha das seguintes hipersuperficies:

(i) unha hipersuperficie de tipo Kimura (cf. [47]) en CP n o CHn,

(ii) un bisector en CHn, ou

(iii) unha hipersuperficie de Lohnherr en CHn.

No Caṕıtulo 2 desta tese abordamos o problema de clasificación de hipersuperficies
reais regradas nos espazos forma complexos non chans que satisfán, adicionalmente, certas
propiedades relacionadas coa constancia das curvaturas medias de orde superior. En xeral,
def́ınense as curvaturas medias de orde superior dunha hipersuperficie como os polinomios
simétricos elementais nas variables dadas polas curvaturas principais de dita hipersuperfi-
cie. É un feito coñecido que toda hipersuperficie regrada nun espazo forma complexo non
chan ten exactamente dúas curvaturas principais non nulas, α e β. Polo tanto, existirán
unicamente dous polinomios simétricos elementais non triviais: a curvatura media (de orde
un), α + β, e a curvatura media de orde dous, αβ. Dedicamos a Sección 2.3 á clasifica-
ción de hipersuperficies regradas con curvatura media constante nos espazos proxectivo e
hiperbólico complexos. Máis concretamente, demostramos o seguinte resultado, que deu
lugar ao artigo [36].

Teorema 1. Sexa M unha hipersuperficie real regrada con curvatura media constante nun
espazo proxectivo ou hiperbólico complexo. Entón, M é minimal.

A clasificación de hipersuperficies reais regradas con curvatura media constante obtense
a partir deste teorema, empregando a clasificación de hipersuperficies regradas minimais
de Lohnherr e Reckziegel [51] previamente citada.
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Por outra banda, as hipersuperficies reais regradas en CP n e CHn cuxa curvatura media
de orde dous é constante foron recentemente caracterizadas por Kimura, Maeda e Tanabe
en [48].

A norma ao cadrado do operador de configuración, α2 + β2, que pode expresarse dun
xeito sinxelo en termos das curvaturas medias de primeira e segunda orde, constitúe un
terceiro invariante xeométrico clásico no estudo das hipersuperficies. É natural interesar-
se, polo tanto, por aquelas hipersuperficies reais regradas nos espazos forma complexos
non chans tales que a norma do seu operador de configuración é constante. Tratamos este
problema na Sección 2.4, na cal obtemos unha clasificación completa que inclúe un no-
vo exemplo non homoxéneo. Máis concretamente, probamos o seguinte resultado. A súa
demostración deu lugar aos artigos [37] e [66].

Teorema 2. Sexa M unha hipersuperficie real regrada nun espazo proxectivo ou hiperbólico
complexo. Entón, a norma do operador de configuración de M é constante se, e só se, M
é unha parte aberta dalgunha das seguintes hipersuperficies:

1. unha hipersuperficie de Lohnherr en CHn, ou

2. a hipersuperficie real regrada constrúıda adxuntando CHn−1 totalmente xeodésicos
perpendicularmente a un ćırculo de curvatura κ =

√
−c/2 nunha recta hiperbólica

complexa totalmente xeodésica CH1, onde c < 0 denota a curvatura seccional holo-
morfa do espazo ambiente CHn.

En particular, todos os exemplos proporcionados por este teorema de clasificación sa-
tisfán a propiedade de ser hipersuperficies fortemente 2-Hopf. A noción de hipersuperficie
fortemente 2-Hopf foi introducida en [28] e resulta ser unha propiedade importante á hora
de constrúır o exemplo non homoxéneo de hipersuperficie real regrada cuxo operador de
configuración ten norma constante proporcionado neste teorema.

Para finalizar, centramos a nosa atención nas hipersuperficies reais regradas nos espazos
forma complexos non chans que son, ademais, biharmónicas. O concepto de hipersuperficie
biharmónica xeneraliza o de hipersuperficie minimal. Con máis precisión, unha hipersuper-
ficie é biharmónica se a inmersión isométrica que a define é un punto cŕıtico do funcional
de bienerx́ıa ou, equivalentemente, se o seu campo de bitensión asociado é identicamente
nulo.

Motivados por un recente teorema de Sasahara [67] no que presenta unha clasificación
das hipersuperficies reais regradas biharmónicas no espazo proxectivo complexo, dedicamos
a Sección 2.5 a estender este resultado ao contexto xeral dos espazos forma complexos non
chans. Máis concretamente, probamos o seguinte teorema, que pode atoparse no artigo [66].

Teorema 3. Sexa M unha hipersuperficie real regrada nun espazo proxectivo ou hiperbólico
complexo. Entón, M é biharmónica se, e só se, é minimal.

Novamente, a clasificación das hipersuperficies reais regradas biharmónicas nos espazos
forma complexos non chans obtense ao combinar este teorema co resultado de clasificación
de hipersuperficies regradas minimais de Lohnherr e Reckziegel [51].
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Subvariedades CR homoxéneas no espazo hiperbólico complexo

Dise que unha subvariedade dunha variedade hermitiana é unha subvariedade CR (subva-
riedade de Cauchy-Riemann ou complexa-real) se os seus subespazos tanxentes holomorfos
maximais definen unha distribución e, ademais, a distribución complementaria é totalmen-
te real. Dito doutro xeito, unha subvariedade dunha variedade hermitiana é CR se satisfai
que o espazo tanxente en cada un dos seus puntos pode ser descomposto como unha suma
directa ortogonal dun subespazo complexo e un subespazo totalmente real. Este concepto
foi introducido por Bejancu en [10] e xeneraliza as nocións de subvariedades complexas e
totalmente reais.

Nesta tese estamos particularmente interesados na clasificación das subvariedades CR
homoxéneas no espazo hiperbólico complexo. Este tipo de subvariedades inclúe diversos
exemplos de interese no contexto dos espazos simétricos hermitianos, como as hipersuper-
ficies reais, as subvariedades de Kähler ou as subvariedades lagrangianas, entre outras.

Por exemplo, as hipersuperficies reais homoxéneas ou, equivalentemente, as accións
isométricas de cohomoxeneidade un, no espazo hiperbólico complexo foron clasificadas por
Berndt e Tamaru en [15]. As subvariedades de Kähler homoxéneas en CHn foron tamén
clasificadas en [26] por Di Scala, Ishi e Loi. Neste caso, os únicos exemplos do resultado de
clasificación son subespazos hiperbólicos complexos totalmente xeodésicos CHk.

As subvariedades totalmente reais de máxima dimensión dunha variedade hermitia-
na denomı́nanse subvariedades lagrangianas. O problema de clasificación de subvariedades
lagrangianas homoxéneas no espazo hiperbólico complexo resulta bastante complicado de-
bido, fundamentalmente, ao feito de que o grupo de isometŕıas desta variedade ambiente
non é compacto. A pesar de que este problema segue aberto, recentemente obtivéronse
diversos resultados parciais relacionados coa clasificación de subvariedades lagrangianas
homoxéneas en CHn. Máis concretamente, Hashinaga e Kajigaya obtiveron en [43] a cla-
sificación das subvariedades lagrangianas homoxéneas do espazo hiperbólico complexo que
xorden como órbitas de subgrupos da parte resoluble da descomposición de Iwasawa do
grupo de isometŕıas de CHn.

En vista destes resultados, centramos a nosa atención na clasificación das subvarieda-
des CR homoxéneas no espazo hiperbólico complexo obtidas como órbitas de subgrupos da
parte resoluble da descomposición de Iwasawa do grupo de isometŕıas da variedade ambien-
te, AN . Dedicamos o Caṕıtulo 3 a abordar este problema. Os resultados obtidos en dito
caṕıtulo están recollidos no traballo [32]. Para comezar, probamos o seguinte resultado.

Teorema 4. Unha órbita da acción dun subgrupo conexo de AN é unha subvariedade CR
de CHn se, e só se, é congruente á órbita H · g(o), onde H é un subgrupo de Lie conexo
de AN con álxebra de Lie h e g ∈ AN , para algún dos seguintes casos:

1. h = r e g ∈ AN ; neste caso, todas as H-órbitas son subvariedades totalmente reais
que constitúen unha subfoliación homoxénea da foliación de CHn por horoesferas.

2. h = a⊕ r e g ∈ Exp((gα	Cr)⊕g2α); neste caso, as H-órbitas CR son subvariedades
totalmente reais equidistantes a un RHk totalmente xeodésico, con k ∈ {1, . . . , n}.
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3. h = c⊕ r⊕ g2α e g ∈ AN ; neste caso, todas as H-órbitas son subvariedades CR con-
gruentes entre si e, ademais, constitúen unha subfoliación da foliación por horoesferas
de CHn.

4. h = a⊕ c⊕ r⊕ g2α e g ∈ Exp(Jr); neste caso, as H-órbitas CR son as follas dunha
foliación polar homoxénea cuxa única folla minimal é unha subvariedade de Berndt-
Brück nun CHk totalmente xeodésico en CHn, con k ∈ {2, . . . , n}.

Aqúı, c e r denotan un subespazo complexo e outro totalmente real de gα, e o ∈ CHn é o
punto fixo da parte compacta da descomposición de Iwasawa baixo consideración.

Tamén estudamos, neste caṕıtulo, as clases de congruencia deste resultado de clasifica-
ción. Convén sinalar que o noso teorema inclúe unha cantidade non numerable de clases de
congruencia de exemplos, algúns deles de especial relevancia, como algunhas subvariedades
de Berndt-Brück ou determinadas órbitas de accións polares.

Accións de cohomoxeneidade un no espazo-tempo de Minkowski

Un dos obxectivos fundamentais deste traballo é o de estudar e comprender as accións
isométricas en variedades dotadas dunha métrica de Lorentz. No contexto da xeometŕıa de
Lorentz, o espazo-tempo de Minkowski Ln+1, isto é, o análogo ao espazo euclidiano con sig-
natura lorentziana, constitúe o exemplo de variedade máis sinxelo. Dende o punto de vista
da F́ısica, o espazo-tempo de Minkowski de dimensión catro é un exemplo particularmente
interesante, pois é a variedade sobre a que se modela a Teoŕıa da Relatividade Especial.

Diversos resultados relacionados co estudo de accións isométricas foron obtidos no mar-
co da xeometŕıa de Lorentz. Por exemplo, Adams e Stuck investigaron accións transitivas
en variedades de Lorentz en [2] e [3]. Nesta tese estamos interesados nun caso particular de
accións non transitivas: as accións de cohomoxeneidade un no espazo-tempo de Minkowski.

No contexto da xeometŕıa de Riemann, é común asumir que as accións isométricas
a clasificar son propias, pois estas satisfán importantes propiedades que fan que o seu
estudo sexa moito máis sinxelo có das accións isométricas arbitrarias. Se unha acción é
propia, entón os seus grupos de isotroṕıa son compactos, as súas órbitas son subvariedades
pechadas mergulladas e o espazo de órbitas da acción é Hausdorff. O estudo de accións
propias de cohomoxeneidade un xa foi abordado no contexto das variedades de Lorentz e,
en particular, no espazo-tempo de Minkowski, por Ahmadi e Kashani [4].

Non obstante, existen exemplos que motivan o estudo das accións de cohomoxeneidade
un, non necesariamente propias, en variedades de Lorentz. En efecto, a acción natural do
grupo SO0(1, n) no espazo-tempo de Minkowski (n + 1)-dimensional, Ln+1, non é propia
xa que, en caso de selo, todas as súas órbitas seŕıan subvariedades pechadas mergulladas.
Porén, os conos de luz pasado e futuro son órbitas non pechadas de dita acción. Nesta tese
non asumimos o carácter propio das accións e dicimos, nestas condicións, que unha acción
isométrica non necesariamente propia é de cohomoxeneidade un se a menor codimensión
das súas órbitas é un.
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Motivados por un traballo recente no que Berndt, Dı́az-Ramos e Vanaei obtiveron
a clasificación das accións de cohomoxeneidade un nos espazo-tempos de Minkowski de
dimensións dous e tres [14], dedicamos o Caṕıtulo 4 desta tese a abordar o correspondente
problema de clasificación no caso de dimensión arbitraria, empregando, para tal fin, a
estructura de grupo de Lie do grupo de isometŕıas da variedade ambiente.

Para comezar, introducimos un resultado de factorización. Este resultado afirma que
se G é un subgrupo de Lie conexo do grupo de isometŕıas do espazo-tempo de Minkowski
I0(Ln+1) actuando con cohomoxeneidade un en Ln+1, entón ten as mesmas órbitas que a
acción dun grupo de Lie da forma H × v. Aqúı, H denota un subgrupo de G que actúa
con cohomoxeneidade un en Ln+1 	 v e v é un subespazo non dexenerado de Ln+1. Este
resultado está recollido en [33].

Por último, centramos a nosa atención no caso particular n = 3 e presentamos unha
clasificación das accións de cohomoxeneidade un, non necesariamente propias, no espazo-
tempo de Minkowski catro-dimensional L4, salvo equivalencia de órbitas. A continuación,
presentamos o enunciado de dito teorema de clasificación, que tamén está recollido en [33].

Teorema 5. Sexa G un subgrupo de Lie conexo de I0(L4) = SO0(1, 3)×Φ L4 con álxebra
de Lie g e supoñamos que G actúa con cohomoxeneidade un en L4. Consideremos a des-
composición de Iwasawa SO0(1, 3) = KAN , e tamén a correspondente descomposición a
nivel de álxebras de Lie, so(1, 3) = k ⊕ a ⊕ n. Entón, a acción de G é, salvo equivalencia
de órbitas, unha das seguintes:

1. Accións cuxa parte traslacional é non dexenerada:

(a) a acción de SO(k)× L4−k, con k ∈ {1, 2, 3};
(b) a acción de SO0(1, k)× R3−k, onde k ∈ {0, 1, 2, 3};
(c) a acción de AÑ × R, onde R denota unha recta espacial en L4 e AÑ é a parte

resoluble da descomposición de Iwasawa de SO0(1, 2);

(d) a acción de QAN , onde Q ∈ {{I}, K0};
(e) a acción do subgrupo de Lie conexo cuxa álxebra de Lie é R(E + e)⊕ n, onde

R(E + e)⊕ n = R

0 0 0t

0 0 0t

0 0 E

+ e

⊕ n;

(f) a acción do subgrupo de Lie conexo cuxa álxebra de Lie é R(E + 1)⊕ n, onde

R(E + 1)⊕ n = R

0 1 0t

1 0 0t

0 0 E

⊕ n;

2. Accións cuxa parte traslacional é dexenerada:

(a) a acción de W3;
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(b) a acción de Exp(v) × W2, onde v é o subespazo de n xerado polo elemento
(0, 1) ∈ n ∼= R2;

(c) a acción do grupo de Lie cuxa álxebra de Lie é g = R(v+(1, 0, 0, 0))⊕W2, onde
v = (0, 1) ∈ n ∼= R2 e

R (v + (1, 0, 0, 0))⊕W2 = R


0 0 vt

0 0 vt

v −v 0

+


1
0
0
0


⊕W2;

(d) a acción do grupo de Lie cuxa álxebra de Lie é g = R(1+(0, 0, 0, λ))⊕W2, onde
λ > 0 e

R (1 + (0, 0, 0, λ))⊕W2 = R


0 1 0t

1 0 0t

0 0 0

+


0
0
0
λ


⊕W2;

(e) a acción de QN ×W1, onde Q ∈ {{I}, K0};
(f) a acción de K0A×W1;

(g) a acción de AExp(v)×W1, onde v denota un subespazo de n de dimensión un;

(h) a acción do subgrupo de Lie conexo cuxa álxebra de Lie é R(1+(0, 0, b))⊕v⊕φW1,
onde v é un subespazo de n de dimensión un, b ∈ R2 e

R (1 + (0, 0, b))⊕ v⊕φ W1 = R

0 1 0t

1 0 0t

0 0 0

+

0
0
b

⊕ v⊕φ W1;

(i) a acción do subgrupo de Lie conexo cuxa álxebra de Lie está dada por
(
R(u +

(0, 0, x))⊕R(v+ (0, 0, y))
)
⊕φW1, onde {u, v} é unha base ortonormal de n, x,

y ∈ R2 e(
R(u+ (0, 0, x))⊕ R(v + (0, 0, y))

)
⊕φ W1

= R

0 0 ut

0 0 ut

u −u 0

+

0
0
x

⊕ R

0 0 vt

0 0 vt

v −v 0

+

0
0
y

⊕φ W1.

Neste enunciado, denotamos por e o vector lumı́nico e = (1, 1, 0, 0) ∈ L4 e por W1 a
recta xerada por e. Ademais, W2 e W3 denotan os subespazos dexenerados de L4 dados
por

W2 = Re⊕ Re2, W3 = Re⊕ Re2 ⊕ Re3,

onde {e0, e1, e3, e3} é unha base ortonormal de L4 tal que 〈e0, e0〉 = −1 e 〈ei, ei〉 = 1, para
i ∈ {1, 2, 3}. Por último, E é o xenerador de k0 = Nk(a) ∼= so(2) dado por

E =

(
0 −1
1 0

)
.



Resumen en castellano

Intuitivamente, la simetŕıa es la propiedad de los objetos que hace que resulten semejantes
cuando los observamos desde diferentes perspectivas. Se trata de una cualidad importante
desde el punto de vista de disciplinas como la bioloǵıa, la qúımica o el arte. El concepto
de simetŕıa también tiene cabida en el campo de las matemáticas. En este contexto, cabe
señalar que la simetŕıa no es una propiedad únicamente aplicable a figuras geométricas,
sino que otros objetos más abstractos también pueden tener simetŕıas. El estudio de dichos
objetos ha dado lugar a importantes resultados en diversas áreas de las matemáticas. Por
ejemplo, la teoŕıa de Galois asegura que si una ecuación polinómica no tiene las simetŕıas
adecuadas, entonces no es resoluble por radicales. Otro ejemplo lo constituyen los conocidos
teoremas de Noether, que afirman que las simetŕıas de un sistema f́ısico se traducen en leyes
de conservación.

El concepto de simetŕıa puede ser definido de modo riguroso empleando la terminoloǵıa
de la teoŕıa de grupos. Aśı, dado un grupo G, se dice que un objeto es G-simétrico si es
invariante bajo la acción de G. En particular, el concepto de simetŕıa siempre está vinculado
a la acción de un grupo que, de hecho, especifica el tipo de simetŕıa que un determinado
objeto tiene.

En el marco de la geometŕıa semi-riemanniana, es natural considerar como objeto de
estudio el grupo de isometŕıas de la variedad, es decir, el grupo constituido por las transfor-
maciones de la variedad que preservan su métrica. La acción de un subgrupo del grupo de
isometŕıas en una determinada variedad semi-riemanniana se denomina acción isométrica.
Una variedad semi-riemanniana se dice homogénea si su grupo de isometŕıas actúa transi-
tivamente sobre ella. Una subvariedad es (extŕınsecamente) homogénea si coincide con la
órbita de la acción de un subgrupo del grupo de isometŕıas de la variedad ambiente.

La experiencia ha demostrado que el problema de clasificación de acciones isométricas
o, equivalentemente, de subvariedades homogéneas, en una determinada variedad semi-
riemanniana puede resultar de lo más complicado. Por este motivo, es usual restringir
nuestra atención y limitarnos al estudio de determinados tipos espećıficos de acciones
isométricas que sean más manejables. Por ejemplo, el estudio de acciones transitivas, esto
es, aquellas en las que la propia variedad es la única órbita de la acción, ha sido abordado
en diversos contextos.

Las acciones de cohomogeneidad uno constituyen otra clase particular de acciones
isométricas en variedades semi-riemannianas que han atráıdo considerable atención. Una
acción isométrica se dice de cohomogeneidad uno si sus órbitas tienen codimensión uno.
En el contexto particular de la geometŕıa lorentziana no existen demasiados resultados de
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clasificación en relación a este tipo de acciones isométricas. Uno de los principales objeti-
vos del presente trabajo es el de estudiar y clasificar acciones de cohomogeneidad uno en
variedades de Lorentz, salvo equivalencia de órbitas. Más concretamente, abordamos este
problema tomando como variedad ambiente el espacio-tiempo de Minkowski, es decir, el
análogo al espacio eucĺıdeo con signatura lorentziana.

No obstante, en el marco de la geometŕıa de Riemann śı se han obtenido numerosos e
importantes resultados en relación al problema de clasificación de acciones de cohomoge-
neidad uno o, equivalentemente, de hipersuperficies homogéneas. Por ejemplo, la clasifica-
ción de acciones de cohomogeneidad uno en los espacios de curvatura constante, es decir,
los espacios eucĺıdeos Rn, las esferas Sn y los espacios hiperbólicos reales RHn, ha sido
abordado y, finalmente, resuelto por varios autores. Más concretamente, la clasificación de
hipersuperficies homogéneas en los espacios eucĺıdeos puede deducirse de dos trabajos de
Levi-Civita [49] y Segre [68] dedicados al estudio de las hipersuperficies isoparamétricas de
dichos espacios. La clasificación en esferas, que ha resultado ser un problema mucho más
complicado, se sigue de un trabajo de Hsiang y Lawson [44] relacionado con subvarieda-
des minimales en este tipo de variedades. Las hipersuperficies homogéneas en los espacios
hiperbólicos reales ya hab́ıan sido clasificadas bastante antes por Cartan en [20].

La complejidad del problema de clasificación de hipersuperficies homogéneas en una
determinada variedad riemanniana aumenta considerablemente cuando dicha variedad está
dotada de una estructura de Kähler. Los ejemplos más sencillos de variedades de Kähler
son los espacios forma complejos, constituidos por tres importantes familias de variedades:
los espacios eucĺıdeos complejos Cn, los espacios proyectivos complejos CP n y los espacios
hiperbólicos complejos CHn. El problema de clasificación de hipersuperficies homogéneas
en este tipo de variedades ha sido abordado y concluido por diversos autores. En particular,
la clasificación en el caso proyectivo ha sido resuelta por Takagi en [70], mientras que las
hipersuperficies homogéneas en los espacios hiperbólicos complejos han sido clasificadas
por Berndt y Tamaru en [15].

Uno de los principales objetivos de esta tesis es el estudio de la geometŕıa de subva-
riedades en el contexto de los espacios forma complejos no llanos, es decir, en los espacios
proyectivo e hiperbólico complejos. Por supuesto, la estructura compleja subyacente juega
un papel fundamental a la hora de resolver problemas en este marco de trabajo. En general,
en el contexto de las variedades de Kähler y, más concretamente, en el de los espacios forma
complejos, es posible definir los conceptos de subvariedades complejas y totalmente reales,
que dependen precisamente de la estructura compleja de la variedad ambiente. La noción
de subvariedad CR constituye una generalización de estos dos tipos de subvariedades. En
esta tesis estudiamos subvariedades CR homogéneas en el espacio hiperbólico complejo ha-
ciendo uso, para tal fin, de la estructura de grupo de Lie del grupo de isometŕıas de dicha
variedad ambiente. Existen varios ejemplos conocidos de subvariedades CR homogéneas en
el espacio hiperbólico complejo que motivan este problema, tales como las subvariedades
de Berndt-Brück [11] y, en particular, las hipersuperficies de Lohnherr [50].

La hipersuperficie de Lohnherr de CHn satisface numerosas propiedades importantes
que la convierten en un atractivo objeto de estudio. Por ejemplo, puede ser caracterizada
como la única hipersuperficie minimal y homogénea en el espacio hiperbólico complejo [13].
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También se caracteriza por ser la única hipersuperficie en CHn con curvaturas principa-
les constantes que es, además, reglada [51]. El concepto de hipersuperficie reglada en un
espacio forma complejo guarda una estrecha relación con la estructura compleja de la va-
riedad ambiente. Diversos trabajos sobre el estudio de hipersuperficies reales regladas en
los espacios forma complejos han sido obtenidos en los últimos años. En esta tesis tam-
bién nos centramos en la clasificación de ciertas hipersuperficies regladas que satisfacen
determinadas propiedades geométricas adicionales en los espacios proyectivo e hiperbólico
complejos.

A continuación, presentamos los resultados originales de esta tesis.

Hipersuperficies reales regladas en espacios forma complejos

Una hipersuperficie real reglada en un espacio proyectivo o hiperbólico complejo CP n o CHn

es una subvariedad de codimensión real uno que está foliada localmente por hipersuperficies
complejas totalmente geodésicas de la variedad ambiente, más concretamente, CP n−1 o
CHn−1, respectivamente.

Las hipersuperficies reales regladas en los espacios forma complejos no llanos constitu-
yen una clase muy amplia de hipersuperficies reales. Por este motivo, es natural centrarse
en el estudio de este tipo de hipersuperficies imponiendo alguna condición geométrica
adicional. Por ejemplo, Lohnherr y Reckziegel obtuvieron en [51] la clasificación de las hi-
persuperficies regladas minimales en los espacios proyectivo e hiperbólico complejos. Más
concretamente, si M denota una hipersuperficie minimal reglada en un espacio forma com-
plejo no llano, entonces ha de ser una parte abierta de alguna de las hipersuperficies
siguientes:

(i) una hipersuperficie de tipo Kimura (cf. [47]) en CP n o CHn,

(ii) un bisector en CHn, o

(iii) una hipersuperficie de Lohnherr en CHn.

En el Caṕıtulo 2 de esta tesis abordamos el problema de clasificación de hipersuperficies
reales regladas en los espacios forma complejos no llanos que satisfacen, adicionalmente,
ciertas propiedades relacionadas con la constancia de las curvaturas medias de orden supe-
rior. En general, las curvaturas medias de orden superior de una hipersuperficie se definen
como los polinomios simétricos elementales en las variables dadas por las curvaturas prin-
cipales de dicha hipersuperficie. Es un hecho conocido que toda hipersuperficie reglada
en un espacio forma complejo no llano tiene exactamente dos curvaturas principales no
nulas, α y β. Por ello, existirán únicamente dos polinomios simétricos elementales no tri-
viales: la curvatura media (de orden uno), α + β, y la curvatura media de orden dos, αβ.
La Sección 2.3 está dedicada a la clasificación de hipersuperficies regladas con curvatura
media constante en los espacios proyectivo e hiperbólico complejos. Más concretamente,
demostramos el siguiente resultado, que ha dado lugar al art́ıculo [36].
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Teorema 1. Sea M una hipersuperficie real reglada con curvatura media constante en un
espacio proyectivo o hiperbólico complejo. Entonces, M es minimal.

La clasificación de hipersuperficies reales regladas con curvatura media constante se
obtiene a partir de este teorema, haciendo uso de la clasificación de hipersuperficies regladas
minimales de Lohnherr y Reckziegel [51] previamente citada.

Por otra parte, las hipersuperficies reales regladas en CP n y CHn cuya curvatura media
de orden dos es constante han sido recientemente caracterizadas por Kimura, Maeda y
Tanabe en [48].

La norma al cuadrado del operador de configuración, α2+β2, que puede ser expresada de
una manera muy sencilla en términos de las curvaturas medias de primer y segundo orden,
constituye un tercer invariante geométrico clásico en el estudio de las hipersuperficies. Es
natural interesarse, por tanto, en aquellas hipersuperficies reales regladas en los espacios
forma complejos no llanos tales que la norma de su operador de configuración es constante.
Tratamos este problema en la Sección 2.4, en la cual obtenemos una clasificación completa
que incluye un nuevo ejemplo no homogéneo. Más concretamente, probamos el siguiente
resultado. Su demostración ha dado lugar a los art́ıculos [37] y [66].

Teorema 2. Sea M una hipersuperficie real reglada en un espacio proyectivo o hiperbólico
complejo. Entonces, la norma del operador de configuración de M es constante si, y solo
si, M es una parte abierta de alguna de las siguientes hipersuperficies:

1. una hipersuperficie de Lohnherr en CHn, o

2. la hipersuperficie real reglada construida adjuntando CHn−1 totalmente geodésicos
perpendicularmente a un ćırculo de curvatura κ =

√
−c/2 en una recta hiperbóli-

ca compleja totalmente geodésica CH1, donde c < 0 denota la curvatura seccional
holomorfa del espacio ambiente CHn.

En particular, todos los ejemplos proporcionados por este teorema de clasificación satis-
facen la propiedad de ser hipersuperficies fuertemente 2-Hopf. La noción de hipersuperficie
fuertemente 2-Hopf ha sido introducida en [28] y resulta ser una propiedad importante a la
hora de construir el ejemplo no homogéneo de hipersuperficie real reglada cuyo operador
de configuración tiene norma constante proporcionado en este teorema.

Para finalizar, centramos nuestra atención en aquellas hipersuperficies reales regladas
en los espacios forma complejos no llanos que son, además, biarmónicas. El concepto de
hipersuperficie biarmónica generaliza el de hipersuperficie minimal. Con más precisión,
una hipersuperficie es biarmónica si la inmersión isométrica que la define es un punto
cŕıtico del funcional de bienerǵıa o, equivalentemente, si su campo de bitensión asociado
es idénticamente nulo.

Motivados por un reciente teorema de Sasahara [67] en el que presenta una clasifica-
ción de las hipersuperficies reales regladas biarmónicas en el espacio proyectivo complejo,
dedicamos la Sección 2.5 a extender este resultado al contexto general de los espacios for-
ma complejos no llanos. Más concretamente, probamos el siguiente teorema, que puede
encontrarse en el art́ıculo [66].
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Teorema 3. Sea M una hipersuperficie real reglada en un espacio proyectivo o hiperbólico
complejo. Entonces, M es biarmónica si, y solo si, es minimal.

De nuevo, la clasificación de las hipersuperficies reales regladas biarmónicas en los
espacios forma complejos no llanos se obtiene combinando este teorema con el resultado
de clasificación de hipersuperficies regladas minimales de Lohnherr y Reckziegel [51].

Subvariedades CR homogéneas en el espacio hiperbólico complejo

Se dice que una subvariedad de una variedad hermitiana es una subvariedad CR (subva-
riedad de Cauchy-Riemann o compleja-real) si sus subespacios tangentes holomorfos ma-
ximales definen una distribución y, además, la distribución complementaria es totalmente
real. Dicho de otro modo, una subvariedad de una variedad hermitiana es CR si satisface
que el espacio tangente en cada uno de sus puntos se descompone como una suma directa
ortogonal de un subespacio complejo y un subespacio totalmente real. Este concepto fue
introducido por Bejancu en [10] y generaliza las nociones de subvariedades complejas y
totalmente reales.

En esta tesis estamos particularmente interesados en la clasificación de las subvariedades
CR homogéneas en el espacio hiperbólico complejo. Este tipo de subvariedades incluye
diversos ejemplos de interés en el contexto de los espacios simétricos hermitianos, como las
hipersuperficies reales, las subvariedades de Kähler o las subvariedades lagrangianas, entre
otras.

Por ejemplo, las hipersuperficies reales homogéneas o, equivalentemente, las acciones
isométricas de cohomogeneidad uno, en el espacio hiperbólico complejo han sido clasificadas
por Berndt y Tamaru en [15]. Las subvariedades de Kähler homogéneas en CHn también
han sido clasificadas en [26] por Di Scala, Ishi y Loi. En este caso, los únicos ejemplos
del resultado de clasificación son subespacios hiperbólicos complejos totalmente geodésicos
CHk.

Las subvariedades totalmente reales de máxima dimensión de una variedad hermitiana
se denominan subvariedades lagrangianas. El problema de clasificación de subvariedades
lagrangianas homogéneas en el espacio hiperbólico complejo resulta bastante complicado
debido, fundamentalmente, al hecho de que el grupo de isometŕıas de esta variedad am-
biente no es compacto. A pesar de que este problema sigue abierto, recientemente se han
obtenido diversos resultados parciales relacionados con la clasificación de subvariedades la-
grangianas homogéneas en CHn. Más concretamente, Hashinaga y Kajigaya han obtenido
en [43] la clasificación de las subvariedades lagrangianas homogéneas del espacio hiperbólico
complejo que surgen como órbitas de subgrupos de la parte resoluble de la descomposición
de Iwasawa del grupo de isometŕıas de CHn.

En vista de estos resultados, centramos nuestra atención en la clasificación de subva-
riedades CR homogéneas en el espacio hiperbólico complejo obtenidas como órbitas de
subgrupos de la parte resoluble de la descomposición de Iwasawa del grupo de isometŕıas
de la variedad ambiente, AN . Dedicamos el Caṕıtulo 3 a abordar este problema. Los re-
sultados obtenidos en dicho caṕıtulo están recogidos en el trabajo [32]. Para comenzar,
probamos el siguiente resultado.
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Teorema 4. Una órbita de la acción de un subgrupo conexo de AN es una subvariedad
CR de CHn si, y solo si, es congruente a la órbita H · g(o), donde H es un subgrupo de
Lie conexo de AN con álgebra de Lie h y g ∈ AN , para alguno de los casos siguientes:

1. h = r y g ∈ AN ; en este caso, todas las H-órbitas son subvariedades totalmente reales
que constituyen una subfoliación homogénea de la foliación de CHn por horoesferas.

2. h = a⊕r y g ∈ Exp((gα	Cr)⊕g2α); en este caso, las H-órbitas CR son subvariedades
totalmente reales equidistantes a un RHk totalmente geodésico, con k ∈ {1, . . . , n}.

3. h = c ⊕ r ⊕ g2α y g ∈ AN ; en este caso, todas las H-órbitas son subvariedades
CR congruentes entre śı y, además, constituyen una subfoliación de la foliación por
horoesferas de CHn.

4. h = a ⊕ c ⊕ r ⊕ g2α y g ∈ Exp(Jr); en este caso, las H-órbitas CR son las hojas
de una foliación polar homogénea cuya única hoja minimal es una subvariedad de
Berndt-Brück en un CHk totalmente geodésico en CHn, con k ∈ {2, . . . , n}.

Aqúı, c y r denotan un subespacio complejo y otro totalmente real de gα, y o ∈ CHn es el
punto fijo de la parte compacta de la descomposición de Iwasawa que hemos considerado.

También estudiaremos, en dicho caṕıtulo, las clases de congruencia de este resultado
de clasificación. Cabe señalar que nuestro teorema incluye una cantidad no numerable de
clases de congruencia de ejemplos, algunos de ellos de especial relevancia, como algunas
subvariedades de Berndt-Brück o determinadas órbitas de acciones polares.

Acciones de cohomogeneidad uno en el espacio-tiempo de Minkowski

Uno de los objetivos fundamentales de este trabajo es el de estudiar y comprender las
acciones isométricas en variedades dotadas de una métrica de Lorentz. En el contexto de la
geometŕıa de Lorentz, el espacio-tiempo de Minkowski Ln+1, esto es, el análogo al espacio
eucĺıdeo con signatura lorentziana, constituye el ejemplo de variedad más sencillo. Desde
el punto de vista de la F́ısica, el espacio-tiempo de Minkowski de dimensión cuatro es un
ejemplo particularmente interesante, puesto que es la variedad sobre la que se modela la
Teoŕıa de la Relatividad Especial.

Diversos resultados relacionados con el estudio de acciones isométricas se han obtenido
en el marco de la geometŕıa de Lorentz. Por ejemplo, Adams y Stuck han investigado ac-
ciones transitivas en variedades de Lorentz en [2] y [3]. En este trabajo estamos interesados
en un caso particular de acciones no transitivas: las acciones de cohomogeneidad uno en el
espacio-tiempo de Minkowski.

En el contexto de la geometŕıa de Riemann, es común asumir que las acciones isométri-
cas a clasificar son propias, puesto que satisfacen importantes propiedades que hacen que su
estudio sea mucho más sencillo que el de las acciones isométricas arbitrarias. Si una acción
es propia, entonces sus grupos de isotroṕıa son compactos, sus órbitas son subvariedades
cerradas embebidas y el espacio de órbitas de la acción es Hausdorff. El estudio de acciones
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propias de cohomogeneidad uno ya ha sido abordado en el contexto de las variedades de
Lorentz y, en particular, en el espacio-tiempo de Minkowski, por Ahmadi y Kashani [4].

Sin embargo, existen ejemplos que motivan el estudio de acciones de cohomogeneidad
uno, no necesariamente propias, en variedades de Lorentz. En efecto, la acción natural del
grupo SO0(1, n) en el espacio-tiempo de Minkowski (n+1)-dimensional, Ln+1, no es propia
ya que, si lo fuera, todas sus órbitas seŕıan subvariedades cerradas embebidas. No obstante,
los conos de luz pasado y futuro son órbitas no cerradas de dicha acción. En esta tesis no
asumimos el carácter propio de las acciones y decimos, en estas condiciones, que una acción
isométrica no necesariamente propia es de cohomogeneidad uno si la menor codimensión
de sus órbitas es uno.

Motivados por un trabajo reciente en el que Berndt, Dı́az-Ramos y Vanaei han ob-
tenido la clasificación de las acciones de cohomogeneidad uno en los espacio-tiempos de
Minkowski de dimensiones dos y tres [14], dedicamos el Caṕıtulo 4 de esta tesis a abordar
el correspondiente problema de clasificación en el caso de dimensión arbitraria, haciendo
uso, para tal fin, de la estructura de grupo de Lie del grupo de isometŕıas de la variedad
ambiente.

Para comenzar, introducimos un resultado de factorización. Dicho resultado afirma que
si G es un subgrupo de Lie conexo del grupo de isometŕıas del espacio-tiempo de Minkowski
I0(Ln+1) actuando con cohomogeneidad uno en Ln+1, entonces tiene las mismas órbitas
que la acción de un grupo de Lie de la forma H × v. Aqúı, H denota un subgrupo de G
que actúa con cohomogeneidad uno en Ln+1 	 v y v es un subespacio no degenerado de
Ln+1. Este resultado está recogido en [33].

Por último, centramos nuestra atención en el caso particular n = 3 y presentamos
una clasificación de las acciones de cohomogeneidad uno, no necesariamente propias, en
el espacio-tiempo de Minkowski cuatro-dimensional L4, salvo equivalencia de órbitas. A
continuación, presentamos el enunciado de dicho teorema de clasificación, que también
está recogido en [33].

Teorema 5. Sea G un subgrupo de Lie conexo de I0(L4) = SO0(1, 3)×Φ L4 con álgebra de
Lie g y supongamos que G actúa con cohomogeneidad uno en L4. Consideremos la descom-
posición de Iwasawa SO0(1, 3) = KAN , y también la correspondiente descomposición a
nivel de álgebras de Lie, so(1, 3) = k⊕a⊕n. Entonces, la acción de G es, salvo equivalencia
de órbitas, una de las siguientes:

1. Acciones cuya parte traslacional es no degenerada:

(a) la acción de SO(k)× L4−k, con k ∈ {1, 2, 3};

(b) la acción de SO0(1, k)× R3−k, donde k ∈ {0, 1, 2, 3};

(c) la acción de AÑ×R, donde R denota una recta espacial en L4 y AÑ es la parte
resoluble de la descomposición de Iwasawa de SO0(1, 2);

(d) la acción de QAN , donde Q ∈ {{I}, K0};
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(e) la acción del subgrupo de Lie conexo cuya álgebra de Lie es R(E+e)⊕n, donde

R(E + e)⊕ n = R

0 0 0t

0 0 0t

0 0 E

+ e

⊕ n;

(f) la acción del subgrupo de Lie conexo cuya álgebra de Lie es R(E+ 1)⊕n, donde

R(E + 1)⊕ n = R

0 1 0t

1 0 0t

0 0 E

⊕ n;

2. Acciones cuya parte traslacional es degenerada:

(a) la acción de W3;

(b) la acción de Exp(v)×W2, donde v el subespacio de n generado por el elemento
(0, 1) ∈ n ∼= R2;

(c) la acción del grupo de Lie cuya álgebra de Lie es g = R(v + (1, 0, 0, 0)) ⊕W2,
donde v = (0, 1) ∈ n ∼= R2 y

R (v + (1, 0, 0, 0))⊕W2 = R


0 0 vt

0 0 vt

v −v 0

+


1
0
0
0


⊕W2;

(d) la acción del grupo de Lie cuya álgebra de Lie es g = R(1 + (0, 0, 0, λ)) ⊕W2,
donde λ > 0 y

R (1 + (0, 0, 0, λ))⊕W2 = R


0 1 0t

1 0 0t

0 0 0

+


0
0
0
λ


⊕W2;

(e) la acción de QN ×W1, donde Q ∈ {{I}, K0};
(f) la acción de K0A×W1;

(g) la acción de AExp(v) ×W1, donde v denota un subespacio de n de dimensión
uno;

(h) la acción del subgrupo de Lie conexo cuya álgebra de Lie es R(1 + (0, 0, b)) ⊕
v⊕φ W1, donde v es un subespacio de n de dimensión uno, b ∈ R2 y

R (1 + (0, 0, b))⊕ v⊕φ W1 = R

0 1 0t

1 0 0t

0 0 0

+

0
0
b

⊕ v⊕φ W1;
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(i) la acción del subgrupo de Lie conexo cuya álgebra de Lie está dada por
(
R(u+

(0, 0, x)) ⊕ R(v + (0, 0, y))
)
⊕φ W1, donde {u, v} es una base ortonormal de n,

x, y ∈ R2 y(
R(u+ (0, 0, x))⊕ R(v + (0, 0, y))

)
⊕φ W1

= R

0 0 ut

0 0 ut

u −u 0

+

0
0
x

⊕ R

0 0 vt

0 0 vt

v −v 0

+

0
0
y

⊕φ W1.

En este enunciado, denotamos por e el vector luminoso e = (1, 1, 0, 0) ∈ L4 y por W1 la
recta generada por e. Además, W2 y W3 denotan los subespacios degenerados de L4 dados
por

W2 = Re⊕ Re2, W3 = Re⊕ Re2 ⊕ Re3,

donde {e0, e1, e3, e3} es una base ortonormal de L4 tal que 〈e0, e0〉 = −1 y 〈ei, ei〉 = 1,
para i ∈ {1, 2, 3}. Por último, E es el generador de k0 = Nk(a) ∼= so(2) dado por

E =

(
0 −1
1 0

)
.
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[21] E. Catalan, Sur les surfaces réglées dont l’aire est un minimum, J. Math. Pures Appl.
(1) 7 (1842), 203–211.

[22] T. E. Cecil, P. J. Ryan, Geometry of hypersurfaces, Springer Monographs in Mathe-
matics, Springer, New York, 2015.

[23] S. Chang, On minimal hypersurfaces with constant scalar curvatures in S4, J. Differ-
ential Geom. 37 (1993), 523–534.

[24] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer.
Math. Soc. 288 (1985), 125–137.

[25] A. J. Di Scala, Minimal homogeneous submanifolds in Euclidean spaces, Ann. Global
Anal. Geom. 21 (2002), 15–18.

[26] A. Di Scala, H. Ishi, A. Loi, Kähler immersions of homogeneous Kähler manifolds into
complex space forms, Asian J. Math. 16 (2012), no. 3, 479–488.

[27] J. C. Dı́az-Ramos, M. Domı́nguez-Vázquez, Non-Hopf real hypersurfaces with constant
principal curvatures in complex space forms, Indiana Univ. Math. J. 60 (2011), no. 3,
859–882.

[28] J. C. Dı́az-Ramos, M. Domı́nguez-Vázquez, C. Vidal-Castiñeira, Strongly 2-Hopf hy-
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