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Resumo e conclusions

Unha pregunta cldsica en xeometria de Riemann € a seguinte: Dada unha variedade diferenciable
n-dimensional M, existe algunha estrutura Riemanniana que se poida considerar a "mellor" nela?

As métricas Einstein son un bo candidato a ser ditas métricas xa que aparecen coma métricas
criticas para o funcional de Hilbert-Einstein

E:g r—>/ Tdvoly,
M

restrinxido a métricas de volume constante, sendo 7 a curvatura escalar. P6dese ver que o gra-
diente deste funcional vén dado por V& = —p + 7g, onde p denota o tensor de Ricci. Debido ao
Teorema de Gauss-Bonnet en dimension dous, obtense a indentidade universal

-
2
que non € madis que a condicién Einstein en dita dimension.

E posible xeneralizar esta idea para dimensions maiores. En dimension catro, se tomamos o
funcional

P=359;

Fige / 4RI — 4llo|]? + 7)dvol,,
M

sendo R € o tensor de curvatura, podese calcular o seu gradiente e buscar métricas criticas coma
no caso anterior. Utilizando o Teorema de Gauss-Bonnet-Chern, Berger obtivo en [4] a seguinte
identidade de curvatura en dimension catro,

_|IRI? ? ’
(3— s g> tr(p-Tg) -2 <ﬁ— ] g) 2 (R[p] -1l g) —0, (a7

onde R, j e R[p] son os campos de tensores simétricos de tipo (0, 2) que vefien dados por R;; =
Riave R;%™, pi; = piap”; € Rlplij = Riapjp™. Nesta situacion, se asumimos que a métrica €
Einstein, entén todos os termos agrupados en paréntese da Ecuacién (1.7) se anulan. Agora ben,
a pregunta que nos atende € xusto a oposta, se algunha das expresions entre parénteses non
correspondente 4 expresion da condicion Einstein se anula, € a métrica Einstein? Polo tanto,
aparece asi a cuestion sobre que sucede cando algin destes tensores € un multiplo da métrica e
esta non € Einstein. Isto 1évanos a definir o que chamaremos as condicidns debilmente Einstein.

XI
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Definiciéon 1.11 Unha variedade de Riemann ,(M, g), dise

1. R-Einstein se R = —=g.

2. p-Einstein se p = T -g.

3. R|[p]-Einstein se R[p] = H’; g

Ademais dise debilmente Einstein se verifica algunha das condicions anteriores.

Estas condiciéns xogan un papel importante no estudo de métricas criticas para funcionais
cuadréticos da curvatura. Se tomamos os funcionais S(g) = [,, 7°dvoly e F,(g9) = [, {llpl|> +
tTQ}dvolg restrinxidos a métricas de volume constante, unha métrica é S-critica se e so se se
satisfai a ecuacion

AT T
Q(HessT—T ) —27’( —Zg> =0, 2.7)

e analogamente, unha métrica é J;-critica se e sO se se satisfai

A 2
Hess, — Ap+ 2t <HessT — TTg) -2 (R[p] — @g) — 2tT (p - ig) =0. (2.8

Pédese ver nestas ecuacions a relacion que gardan as condiciéns debilmente Einstein co estudo
de métricas criticas para estes funcionais.

Durante o desenvolvemento da primeira parte deste traballo, analizamos o comportamento
das condiciéns debilmente Einstein en diferentes contextos. A sda eleccidon non € arbitraria e o
obxectivo de estudo de cada un destes campos irase motivando antes de presentar os resultados
obtidos.

Por outra banda, as condicions debilmente Einstein tefien interese mais alé delas mesmas. A
identidade (1.7) p6édese escribir equivalentemente coma

. R|I? 1
R— %g =3Pt 2W o], (5.1

onde pg = p — Zg, Wlpolij = Wia;p§" € W é o tensor de Weyl. A condicién W po] = 0, que é
equivalente a W [p] = 0 xa que o tensor de Weyl non ten traza, claramente xeneraliza a condicién
Einstein, pero ademais tamén o fai coa de ser localmente conformemente cha (W = 0). Asi
mesmo, séguese de (5.1) que W[p] = 0 e ser R-Einstein son equivalentes se e sé se a curvatura
escalar é cero. Outro aspecto a ter en conta é que tensor de Bach rediicese 4 W [p| se a métrica
considerada ten divy divy W = 0 (en particular, se o tensor de Weyl € harmoénico, e en xeral,
cando o tensor de Cotton tefia diverxencia cero). Ao longo da memoria, chamaremos a esta
condicidén a condicién Einstein xeneralizada e serd estudada na stia segunda parte.

No primeiro capitulo, introducimos algtns resultados bdsicos e técnicos sobre xeometria de
Riemann, topoloxia e dlxebra que utilizamos ao longo do traballo, tales coma o Teorema de
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Gauss-Bonnet-Chern ou as bases de Grobner. Introducimos tamén a definicién de métrica debil-
mente Einstein e mostramos a existencia de exemplos que satisfan todas as condicions debilmen-
te Einstein sen ser métricas de Einstein.

Empezaremos a nosa andlise no contexto das variedades localmente conformemente chds.
E un resultado cofiecido que se unha variedade de dimensién maior ou igual que catro satisfai
esta propiedade, entén o seu tensor de Weyl € identicamente nulo. Ademais, se engadimos a
condicién de ser Einstein, enton esta dltima implica que a variedade é de curvatura seccional
constante xa que o tensor de curvatura estd totalmente determinado polo tensor de Ricci, que
neste caso, serd un multiplo escalar da métrica polo Lema de Schur. Polo tanto, as condicidns
debilmente Einstein son un paso intermedio de cara a clasificacion das variedades localmente
coformemente chds. Debido a isto, no segundo capitulo, prébase o seguinte resultado.

Teorema 2.2 Sexa ()M, g) unha variedade de Riemann localmente conformemente chd. Ent6n
(M,g) ¢

1. R-FEinstein se e s6 se cumpre que

(i) dimM = 4 e (M, g) ten curvatura escalar nula.
(ii)) dimM # 4e
(ii.a) (M, g) é localmente homotética a un produto deformado da forma Z x; N(c),
con métrica g = dt? + f%gy, onde Z € un intervalo real e (N(c), gy) € unha
variedade de curvatura seccional constante ¢ € {0, +1}. Ademais a funcién de
deformacién vén dada por
(ia.l) f(t)2=t*—1,sec=1,eZ = (1,+0),
(i.a2) f(t)*=t,sec=0,eZ = (0,+00),
(i.a3) f(t))’=1—t%sec=—1,eZ = (—o0,1).
(ii.b) (M, g) é localmente simétrica e localmente homotética a un produto
M = N*(c¢) x NJ*(—c), onde m > 2.

2. R|[p]-Einstein se e s6 se é un produto da forma de 1.(ii.b).

3. p-Einstein se e s6 se € un produto da forma de 1.(ii.b) ou localmente un produto deformado
T x;R™ !, con

n

ft) = (2(”— 1) (at+b))2<n1)7

n

cont € (=2, +o00) ea,b € R.
Obtemos, deste xeito, novos exemplos de métricas debilmente Einstein diferentes das cofiecidas
ata o de agora. A clasificacion faise salvo homotecia, dado que as condicidns debilmente Einstein
son invariantes por estas.

A diferenza das métricas Einstein, as debilmente Einstein non verifican un andlogo ao Lema
de Schur. Nas métricas dadas no Teorema 2.2, a norma do tensor de curvatura ou a do tensor
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de Ricci non tefien por que ser necesariamente constantes. De feito, un produto deformado R-
Einstein de dimensién cinco coa métrica dada polo Teorema 2.2-1.(4i.a,1) ten norma do tensor

de curvatura

40
IR|* = ———.
(= 1)

que € claramente non constante.

No que respecta s métricas criticas para funcionais cuadréticos da curvatura, o caso trivial
debilmente Einstein N?(c) x N?(—c) é sempre S-critica e F;-critica para t € R, polo que é
omitido ao longo da anélise. Para os casos restantes temos o seguinte resultado.

Teorema 2.15 Sexa (M, g)unha variedade de Riemann localmente conformemente chd debil-
mente Einstein de dimensién catro. Enton

1. Se (M, g) é R-Einstein, enton é S-critica e JF;-critica se e 6 se

Ap= -2 (1) - ”'1“29) |

2. Se (M, g) é p-Einstein, entén F;-critica parat = —

W=

Outro contexto axeitado onde estudar estas condicions € o das hipersuperficies. Polo Teore-
ma de Nash [57], toda variedade de Riemann é unha subvariedade de R" para algin N € N.
O problema reside en saber cando esta pode ser unha subvariedade de codimensiéon minima, é
dicir, unha hipersuperficie. As hipersuperficies de Einstein foron clasificadas por Fialkow [25].
No terceiro capitulo, analizamos as condiciéns debilmente Einstein en hipersuperficies en espa-
zos forma, obtendo unha clasificacion parcial en funcién das curvaturas principais, que son 0s
autovalores do operador forma. Cando estes autovalores son constantes, a hipersuperficie dise
isoparamétrica. Cecil e Ryan recollen en [15] unha clasificacion deste tipo de hipersuperficies
(dependendo do niimero de curvaturas principais) cando o espazo ambiente € un espazo forma
real (o espazo euclideo, a esfera ou o espazo hiperbdlico). Ademais, cando se tefien ddas curva-
turas principais (non necesariamente constantes), sendo unha delas simple e funcién da outra, do
Carmo e Dajczer [13] proban que esta € unha hipersuperficie de revolucion. O seguinte resultado
recapitula os exemplos obtidos.

Teorema 3.1 Sexa (M, g) unha hipersuperficie nun espazo forma real Q"!, con ¢ = 0, 41, con
ddas curvaturas principais. Se ()M, g) é debilmente Einstein ent6n é o produto de duas esferas, o
produto dunha esfera e dun espazo hiperbdlico ou unha hipersuperficie de revolucion sobre unha
curva perfil.

No capitulo cuarto, centrdmonos no estudo das métricas homoxéneas e a sua relacién coas
propiedades debilmente Einstein. As métricas homoxéneas debilmente Einstein en dimension
tres tefien un compartamento totalmente diferente ao que terdn as de dimension catro. Caeiro-
Oliveira proba en [11] que unha variedade homoxénea de dimensién tres é R-Einstein se e s6 se
o seu operador de Ricci € de rango un, e polo tanto, € isométrica a un grupo de Lie unimodular
cuxa 4lxebra de Lie estd determinada por
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[61762] = (>\1 + )\2)63, [62, 63] = \eq, [63761] = A\aea.

Ademais, tamén proba que unha variedade homoxénea de dimension tres € p-Einstein se e s6 se
ten operador de Ricci dado por @), = diag[A, A, —A], o que implica que ten curvatura seccional
constante ou € homotética ao grupo de Heisenberg cunha xeometria Nilz. Por dltimo, proba que
unha variedade homoxénea de dimension tres é R|p|-Einstein se e s6 se o seu operador de Ricci
¢ (), = diag[A, A, 2], e consecuentemente, ¢ isométrica a unha esfera de Berger determinada
pola dlxebra de Lie

4
le1, €] = §>\€3, lea, €3] = Aep,  [es, e1] = Aes.

Como xa indicamos, o resultado en dimensién catro non segue a mesma lifia. Arias-Marco e
Kowalski [1] clasificaron as variedades homoxéneas de dimension catro que cumpren a condi-
cién R-Einstein. Neste traballo, conseguimos mellorar este resultado, mostrando que as métricas
homoxéneas R-Einstein constitiien unha tnica clase homotética. Para a condicién p-Einstein, a
casuistica € moito madis rica. Atopamos tanto exemplos con curvatura escalar nula coma unha fa-
milia uniparamétrica de clases homotéticas de variedades homoxéneas p-Einstein, entre outros.
A condicién R][pl|-Einstein é moito mdis rixida e tan s6 permite que unha métrica cumpla esta
condicidn se € simétrica, e polo tanto, o produto de ddas variedades de curvatura seccional cons-
tante e oposta unha da outra ou unha variedade Einstein. Estes resultados xeneralizan o traballo
de Jensen [45], que clasificou as métricas homoxéneas Einstein de dimensién catro, mostrando
que eran simétricas. De forma madis concisa, os resultados estdn recollidos no seguinte teorema.
Teorema 4.2 Sexa (M, g) unha variedade homoxénea simplemente conexa e de dimensién catro.
Enton

(1) (M,qg)é R-Einstein e non simétrica se e s6 se ¢ homotética a un grupo de Lie R x R3 con
métrica invariante pola esquerda determinada pola alxebra de Lie

lea,e1] = €1, [es,ea] = —ez,  [es, €3] = —e3,
onde {ey, ..., e4} é unha base ortonormal.

(2) (M, g) é p-Einstein e non simétrica se e s6 se é homotética a un dos seguintes grupos de
Lie:

(2.a) O grupo de Lie SU(2) x R con métrica invariante pola esquerda determinada pola
alxebra de Lie

le1,e0) = (4 + 2\/5)63, leg, €3] = (3£ 2\/5)61, les, €1] = e,
leq, e1] = —ea, 4, 2] = (34 2v/2)ey,

onde {ey, ..., e4} € unha base ortonormal.
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(2.b) O grupo de Lie R x H? con métrica invariante pola esquerda determinada pola 4lxebra

de Lie
1 1

—€1, [62764] = — <€y,

[617 62] = €3, [615 64] = 2 2

onde {ey, ..., e4} € unha base ortonormal.

(2.c) O grupo de Lie R x R? con métrica invariante pola esquerda determinada pola dlxebra

de Lie
ener] = &1 — a(l+a+a?) . a(1+a+a2)e
PRI e+ 1)2(a—1) 2a+1
leq, €2] = a(l+ata?) e1 +ae +—(1+a+&2)e
[ ] a(l +a+ a?) (1+a+a?) N
ey, €3] = — er — ey — —=e

onde {ey, ..., es} € unha base ortonormal e & € (—1,1), v # —1, a # 0.

(3) (M, g) é R[p]-Einstein se e sé se é simétrica.

Respecto 4s métricas criticas para funcionais cuadraticos da curvatura, como no caso homo-
xéneo a curvatura escalar € constante, a condicidn de ser S-critica reddcese a ter curvatura escalar
nula ou ser Einstein, polo que esta condicion reducese a unha comprobacion directa. O resultado
obtido € o seguinte.

Teorema 4.12 Sexa (M, g) unha variedade de Riemann homoxénea simplemente conexa debil-
mente Einstein de dimension catro. Enton,

1. (M, g) é S-critica se e s6 se é homotética ao grupo de Lie SU(2) x R con métrica invariante
pola esquerda determinada pola dlxebra de Lie

[e1,e0] = (4£2v2)es, [ea,e3] = (3£2v2)ey, [es,el] = ea,

[eq, €1] = —ea, [e4, €2] = (3 4 2v/2)ey.
onde {ey, ..., e4} € unha base ortonormal.
2. (M, g) é Fpcriticase e s6 se t = —2 e (M, g) ¢ homotética ao grupo de Lie R x R? con

métrica invariante pola esquerda determinada pola dlxebra de Lie

[64’ 61] = [64’ 62] = —62, [647 63] = —é€s,

onde {ey, ..., e4} é unha base ortonormal.

A segunda parte de memoria céntrase no estudo das variedades Einstein xeneralizadas e o
fluxo renormalizado de segunda orde.

Recordamos que as variedades Einstein xeneralizadas estendian non sé a condicién de Eins-
tein, senén tamén a condicidn de ser localmente conformemente cha. Ao igual que as variedades
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Einstein homoxéneas foron clasificadas por Jensen, as localmente conformemente chds homoxé-
neas foron clasificadas por Takagi [63], que mostrou que eran de curvatura seccional constante
ou produtos R x N(c) ou N(¢) x N(—c).

O estudo da condicién Einstein xeneralizada no marco das métricas homoxéneas de dimen-
sion catro faise no capitulo cuarto e estd resumido no seguinte resultado.

Teorema 5.2 Sexa ()M, ¢g) unha variedade homoxénea, non simétrica e de dimension catro. Entén
o campo de tensores W [p] andlase se e s6 se (M, g) é homotética ao produto semi-directo R x H3
do grupo de Heisenberg con métrica invariante pola esquerda determinada pola dlxebra de Lie

1 1
[61762] = €3, [64761] = M€y, [64,62] = —562, [64,63} = (# - ﬂ)e?n

con(0 < p < \/%, onde {ey, €2, €3, €4} € unha base ortonormal.

Esta familia uniparamétrica de clases homotéticas contén exemplos especialmete relevantes
como € o caso dos espazos 3-simétricos, que corresponden ao valor p = %

As métricas JF;-criticas tamén estdn relacionadas coa propiedade W [p] = 0 xa que a Ecuacién
(2.8) podese escribir como

144t

Ap — (14 26)V?r + 5

2
ATg+ 2 (t + 5) Tpo — 2p0 + 2Wp| = 0,

polo que tamén se estudan as métricas criticas que sexan Einstein xeneralizadas.

Teorema 5.9 Sexa ()M, ¢g) unha variedade de Riemann homoxénea simplemente conexa, Einstein
xeneralizada e de dimensién catro. Entén, (M, g) é Fy-critica se e s6 se ¢t = —1 e (M, g) é
homotética ao grupo de Lie R x H? con métrica invariante pola esquerda determinada pola

alxebra de Lie

[e1,e2] = €3, [er,ea] = —Ser, [eg,eq] = €2, [e3,e4] = Ses,

2 2

onde {ey, ..., e4} € unha base ortonormal.

Tamén € interesante estudar esta condicion no contexto dos fluxos. Definese o fluxo renor-
malizado de segunda orde (ou fluxo RG2) coma

o ="2~ %R, 6.1)
onde o € R. Este fluxo obtense coma a aproximacién de orde dous do fluxo de Ricci e esta
relacionado co tensor R ( [21], [33], [34], [35]). No fluxo de Ricci, toda solucién auto-similar
(é dicir, unha solucién do fluxo da forma ¢(t) = o(t)¢;g, onde o é unha funcién real tal que
0(0) = 1 e ¢; € unha familia uniparamétrica de difeomorfismos de M) € un soliton de Ricci
(unha métrica satisfacendo %E xg+ p = Ag, onde X € un campo de vectores e L é a derivada de
Lie). O contrario tamén se dd. Sen embargo, mentras que o primeiro € certo para o fluxo RG2,
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o segundo tan sé o € cando o solitén € estable (A = 0), xa que, mentras que o fluxo de Ricci
mantense por homotecias, o fluxo RG2 non o fai [64].

Neste contexto, e tendo en conta (5.1), comprdbase que se W [p] = 0, entdn, se 7 é non nula,
p+ %R € un multiplo da métrica para @ = — 17—2 e polo tanto da lugar a unha solucién auto-similar
do fluxo RG2. Se 7 = 0, entén a métrica e R-Einstein. Se estamos na situacién homoxénea,
o Unico exemplo posible é o obtido por Arias-Marco e Kowalski, pero este non ten curvatura
escalar nula, polo tanto non se poderia dar este caso.

No capitulo seis, estudamos puntos fixos xenuinos de dito fluxo para métricas homoxéneas
de dimension catro. Chamaselle punto fixo xenuino de RG2 a unha métrica que satisfai p +
%R — 0. E salientable o feito de que, se tomamos trazas nesta tltima igualdade, obtense que
a = —47||R|| 2. O seguinte resultado recolle toda a casuistica posible.

Teorema 6.4 Unha variedade homoxénea simplemente conexa de dimension catro é un punto
fixo xenuino para o fluxo RG2 se e s6 se é Einstein, un produto R x N3(c), un produto R? x N?(c)
ou homotética ao grupo de Lie SU(2) x R con métrica invariante pola esquerda

[617 62] = €3, [627 63] = €1, [637 61] - %627
onde {ey, ..., e4} € unha base ortonormal su(2) x R.

Ademais, estudamos tamén puntos fixos xeométricos, é dicir, soluciéns fixas do fluxo salvo
difeomorfismos e homotecias. Wears deu en [64] a clasificacion dos soliténs RG2 de dimensién
tres no caso unimodular. Neste traballo, estendemos este resultado ao caso non unimodular e
tamén demostramos o seguinte teorema, onde estudamos a existencia de solitons RG2 alxébricos
en Grupos de Lie homoxéneos de dimensidn catro irreducibles. Se temos un grupo de Lie de
dimension tres H, entén podemos construir un grupo de Lie de dimensioén catro G = R x H,
e polo tanto, se H € un solitoén, tamén o serd GG. Reciprocamente, se temos un grupo de Lie
de dimensidn catro GG e a hipdtese extra de ter un campo de vectores paralelo invariante pola
esquerda, entén G pode escribirse coma R x H. Entén, se GG € un solitén, tamén o serd H. Asi,
se o grupo non € irreducible, basta con estudar o caso de dimension tres. Cabe destacar que todo
soliton alxébrico dd lugar a un solitén, mentras que o reciproco € un resultado aberto.

Teorema 6.6 Un grupo de Lie simplemente conexo non Einstein irreducible de dimensién catro
G € un solitén alxébrico estable RG2 se e s6 se é homotético a un grupo de Lie determinado
polas seguintes dlxebras de Lie, onde {eq, ..., €4} é unha base ortonormal:

2

1. Rx ¢(1,1), con constante o = =

dada por
[61,63] = €9, [62763] = €1, [61764] = Keéq, [62764] = Keég,
onde K > 0, k # 1.

2. R x b3, con constante o = 2, dada por

[e1, e2] = e3, [e1, €4) = %eh

_ k3 _ (s+DVB
le2, 4] = s 78mmer les el = 5 75omes

onde xk € [—1,1).
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3. R x h?, con constante o = %, dada por
[617 62] = €3, [ela 64] = Kéq, [627 64] = _ﬁe% [637 64] = (K; - ﬁ) €3,
onde k € (0,3], k # $vV2— V3.
4. R x t3, con constante o = %, dada por
[61, 64] = €1, [62764] = Keéa, [63764] = des,

onde (k,0) € {(z,y) e Rz € (0,1],0 £y < z}\{(1,1)}.

2

5. R x t3, con constante o = R

dada por

le1,eq] = €1, [e2,€4] = kea + hes, [es, eq] = —hes + pes,

onde os pardmetros p e h vefien dados por p = 3 (1 + /1 —4k(k — 1)) e

b — <ﬁ2(2p2+1)+p2—1

1
Slnp)? )2, para calquera x € (0, 1).

Todos os exemplos anteriores cumplen que p + %R = 0. Sen embargo, non son métricas chds
(nen sequera Ricci chds). Este resultado estd en contraste cos solitons de Ricci, para os cales os
solitons estables homoxéneos son métricas chas.

En canto a estudo das métricas criticas nestes dous ultimos contextos, obtéfiense os dous
seguintes resultados.

Teorema 6.20 Sexa (), g) un punto fixo xenuino do fluxo renormalizado de segunda orde ho-
moxéneo. Entén, (M, g) é F-critico se e s0 se:

1. (M, g) ¢ homotético a R? x N%(c)et = —1.

2. (M, g) é homotéticoa R x N3(c) et = —3.

Teorema 6.21 Sexa (M, g) un soliton estable RG2 homoxéneo de dimensién catro. Enton, (M, g)
é F,-critico se e sO se:
1. (M, g) é homotético a R x F(1,1) con dlxebra de Lie
le1,e3] = €2, [ez,e3] =1, [er,eq] = Ker, [eq, e4] = ke,

__1—|—/@2
ondex >0,k # 1,et = T

2. (M, g) é homotético a R x H?® con dlxebra de Lie

[e1, €] = e3, [e1, €] = 2\/%617
Dv3
ez, e1] = srtren lessed = e

3(1+k+rx2
onde k € [-1,1),et = _m'
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3. (M, g) é homotético a R x R con dlxebra de Lie
[61, 64] = €1, [62764] = keéy, [63764] = des,

onde (5.9) € {(r,y) € R € (0.1],0 £ y < sh{(1, D},
_ 1464k
t= T 2(140462+k+0k+K2) "




Summary and conclusions

A classical question in Riemannian geometry is the following: Given a smooth n-dimensional
manifold M, is there any Riemannian structure that can be considered the "best" on it?

Einstein metrics arise as a good candidate to be those metrics due to they appear as critical
metrics to the Hilbert-Einstein functional

E:g r—>/ Tdvoly,
M

restricted to constant volume metrics, being 7 is the scalar curvature. One can see that the
gradient of this functional is given by V& = —p + 7 g, where p denotes the Ricci tensor. Due to
the Gauss-Bonnet Theorem in dimension two, we obtain the universal curvature identity

-
2
which is no more than the Einstein condition in this dimension.

One can generalize the same for higher dimension. In dimension four, if we take the func-
tional

P=359;

Fige / 4RI — 4llo|]? + 7)dvol,,
M

being R the curvature tensor, one can compute its gradient and look for critical metrics as in
the previous case. Using the Gauss-Bonnet-Chern Theorem, Berger obtained in [4] the four-
dimensional curvature identity

_|IRI? ? ’
(3— s g> tr(p-Tg) -2 <ﬁ— ] g) 2 (R[p] -1l g) —0, (a7

where R, j and R[p] are the symmetric tensor fields of type (0,2) given by Rij = Rjup.R;%,
pii = piap®j and R[pli; = Riap;p™. In this situation, if we assume that the metric is Einstein,
then every term into brackets of (1.7) vanish. However, the questions that concerns us is the
converse, if the any of the expressions into brackets which does not correspond to the Einstein
one vanishes, is the metric Einstein? Thus, it arises the question about what happens when these
tensors are a multiple of the metric and they are not Einstein. This leads us to define what we
call from now the weakly-Einstein conditions.

XXI
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Definition 1.11 A Riemannian manifold (M, g) is said to be

2

1. R-Einstein if R = ”}ZH qg.

ol

2. p-Einstein if p =

3. R|p]-Einstein if R[p] = 14 g,

Moreover, it is said weakly-Einstein if any of the conditions above is satisfied.

These conditions play an important role in the study of critical metrics for quadratic curvature
functionals. If we take the functionals S(g) = [,, 7%dvoly e Fi(g) = [, Allpll*> + t7>}dvol,
restricted to constant volume metrics, a metric is said to be S-critical if and only if the equation

2 (HessT — %g) — 27 (p — —g) =0, 2.7)

is satisfied. Analogously, a metric is said to be F;-critical if and only if

2
Hess, — Ap+ 2t <H655T - %g) -2 (R[p] - ||p4|| g) — 2tT <,0 - %g) =0, (2.8)
is satisfied. One can see in these equations the relation between weakly-Einstein conditions and
the study of critical metrics for these functionals.

During the development of the first part of this work, we analyse the behaviour of the weakly-
Einstein conditions in different fields. This choice is not arbitrary and the purpose to study these
fields is motivated before introducing the results obtained.

On the other hand, weakly-Einstein conditions have interest beyond themselves. Identity
(1.7) can be written equivalently as

- ||RI? 1
R— %g = 37Po+2Wpo), (.1
where pg = p — 79, Wipo)i; = wanipat and W is the Weyl tensor. W([pg] = 0 condition,

which is equivalent to W |[p] = 0 since the Weyl tensor is traceless, clearly generalizes Einstein
condition, but it also generalizes locally conformally flat one (W = 0). Moreover, it follows
from (5.1) that W [p| = 0 and being R-Einstein are equivalent if and only if the scalar curvature
is vanishing. Another point to take into account is that the Bach tensor reduces to W |p] if the
considered metric has div; divy W = 0 (in particular, if the Weyl tensor is harmonic, and in
general, when the Cotton tensor has vanishing divergence). Throughout the memoir, we call this
condition generalized Einstein and we study it in the second part.

In the first chapter, we introduce some basic and technical results about Riemannian geome-
try, topology and algebra that we use along the work, such as the Gauss-Bonnet-Chern Theorem
and Grobner basis. We also introduce the definition of weakly-Einstein metrics and show the
existence of examples that fulfil every weakly-Einstein condition without satisfying the Einstein
one.
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We start our analysis in the context of locally conformally flat weakly-Einstein manifolds. It
is well known that if a manifold of dimension greater or equal than four satisfies this property,
then its Weyl tensor vanishes identically. Moreover, if we add the Einstein condition, in that
case this last one implies that the manifold is of constant sectional curvature due to the curvature
tensor is totally determined by the Ricci tensor. Therefore, weakly-Einstein conditions are an
intermediate step towards the classification of locally conformally flat manifolds. Because of
that, in the second chapter, the following result is proved.

Theorem 2.2 Let (M, g) be a locally conformally flat Riemannian manifold. Then (M, g) is
1. R-Einstein if and only if one of the following holds

(i) dimM = 4 and (M, g) has vanishing scalar curvature.
(ii) dimM +# 4 and
(ii.a) (M, g) is locally homothetic to a warped product of the form Z x ; N(c), with
metric g = dt* + f?gy, where Z is a real interval and (N(c), gn) is a manifold
of constant sectional curvature ¢ € {0,41}. Furthermore the warping function
is given by
(ia.l) f(t)2 =1 —1,ifc=1,and T = (1, +oo0),
(ii.a2) f(t)2 =t ifc=0,and T = (0,+00),
(ii.a.3) f(t)2*=1—+¢*ifc=—1,and Z = (—o0, 1).
(ii.b) (M, g) is locally symmetric and locally isometric to a product M = N"*(¢) X
N3*(—c), where m > 2.

2. R|[p]-Einstein if and only if it is a product as in 1.(ii.b).

3. p-Einstein if and only if it is a product as in 1.(ii.b) or locally a warped product Z x ; R,

with <m U(t+m)<">
fo) = (R T

n

with ¢ € (=2, +00) and a,b € R.

We obtain, in this way, new examples of weakly-Einstein metrics different from the ones
known so far. The classification is done up to homothety as the weakly-Einstein conditions are
invariant by them.

Unlike Einstein metrics, weakly-Einstein ones do not verify a Schur’s Lemma analogous. In
the metrics from Theorem 2.2, the norms of the curvature tensor and the Ricci tensor need not to
be necessarily constant. In fact, a five-dimensional R-Einstein warped product with metric given
by Theorem 2.2-1.(4i.a.1) has norm of the curvature tensor

40

2 _
HRH - (tz - 1)4)

which is clearly non-constant.
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Regarding critical metrics for quadratic curvature functionals in this part, the trivial weakly-
Einstein case of a product N%(c) x N?(—c) is always S-critical and JF;-critical for ¢ € R, and
hence, it will be omitted during the analysis. For the remaining cases we have the following
result.

Theorem 2.15 Let (M, g) be a four-dimensional locally conformally flat Riemannian manifold.
Then

1. If (M,g) is R-Einstein, then it is S-critical and it is J,-critical if and only if Ap =
2
> (1 - )

2. If (M, g) is p-Einstein, then it is F_1 -critical.

5

Another suitable field where one can study these conditions is the hypersurface one. Due
to Nash Theorem [57], every Riemannian manifold is a submanifold of RY for some N € N.
The problem is trying to know when this can be a submanifold with minimum codimension,
namely, a hypersurface. Einstein hypersurfaces were classified by Fialkow [25]. In the third
chapter, we analyse weakly-FEinstein conditions in space forms, obtaining a partial classification
depending on the principal curvatures, which are the eigenvalues of the shape operator. When
these eigenvalues are constant, the hypersurface is said to be isoparametric. Cecil and Ryan
summarize in [15] the classification of these sort of hypersurfaces (depending on the number of
principal curvatures) when the ambient space is a real space form (the Euclidean space, the sphere
or the hyperbolic space). Furthermore, when one has two principal curvatures (not necessarily
constant), being one of them simple and a function of the other, do Carmo and Dajczer [13] prove
that this is a rotation hypersurface. The next result gather the examples obtained.

Theorem 3.1 Let (M, g) be a hypersurface in a real space form Q""!, with ¢ = 0, +1, with two
principal curvatures. If (M, g) is weakly-Einstein, then it is a product of two spheres, a product
of a sphere and a hyperbolic space or a rotation hypersurface over some profile curve.

In chapter four, we focus on the study of four-dimensional homogeneous metrics. Three-
dimensional weakly-Einstein homogeneous metrics have a totally different behaviour than the
four-dimensional ones. Caeiro-Oliveira proved in [11] that a three-dimensional homogeneous
manifolds is R-Einstein if and only if its Ricci operator has rank one, and thus, is isometric to an
unimodular Lie group whose Lie algebra is determined by

le1,ea] = (A1 4+ A2)es,  [ea,e3] = Aer,  [es, e1] = Aqen.

Moreover, he also proved that a three-dimensional homogeneous manifold is p-Einstein if and
only if it has Ricci operator given by (), = diag[A, A, —A], which implies that it has constant
sectional curvature or it is homothetic to the Heisenberg group with Nil; geometry. Lastly, he
proves that a three-dimensional homogeneous manifold is R[p]-Einstein if and only if its Ricci
operator is (), = diag[A, A, 2], and consequently, it is isometric to a Berger sphere determined
by the Lie algebra

[61,62} = 5)\63, [62,63} = ey, [63761] = \ep.
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As we have said, four-dimensional case does not behave in the same way. Arias-Marco and
Kowalski [1] classified four-dimensional homogeneous manifolds satisfying R-Einstein condi-
tion. In this work, we are able to improve this result working up to homothetic class, showing
that the R-Einstein are a single homothetic class. For the p-Einstein condition, the casuistic
is greater. We find both, examples with vanishing scalar curvature or a uniparametric family
of homothetic classes of p-Einstein homogeneous manifolds, among others. The R[p|-Einstein
condition is much more rigid and it only allows that a metric fulfils this condition if it is sym-
metric, and thus, the product of two manifolds of constant sectional curvature, one opposite of
each other, or an Einstein manifold. These results generalize Jensen’s work [45], who classified
four-dimensional Einstein metrics, which are symmetric. In brief, the results are gathered in the
following Theorem.

Theorem 4.2 Let (M, g) be a four-dimensional simply connected homogeneous manifold. Then

(1) (M, g) is R-Einstein and non-symmetric if and only if it is homothetic to the Lie group
R x R3 with left-invariant metric determined by the Lie algebra

[647 61] = €1, [647 62] = —€y, [647 63] = —e€g,
where {e,...,e4} is an orthonormal basis.

(2) (M, g) is p-Einstein and non-symmetric if and only if it is homothetic to one of the follow-

ing:
(2.a) The Lie group SU(2) x R with left-invariant metric determined by the Lie algebra

[61, 62] = (4 + 2\/5)63, [62, 63] = (3 + 2\/5)61, [63, 61] = €9,
[64, 61] = —€9, [64, 62] = (3 + 2\/5)61,

where {e1,...,e4} is an orthonormal basis.

(2.b) The Lie group R x H? with left-invariant metric determined by the Lie algebra

1 1

—€1, [62764] = — <€y,

[617 62] = €3, [617 64] = 2 2

where {e1,...,e4} is an orthonormal basis.

(2.c) The Lie group R x R? with left-invariant metric determined by the Lie algebra

leaer] = €1 — a(1+a—|—a2)e a(1+a+a2)e
leq, €2] = a(1+a+a2)e+ae +—(1+a+a2)e
PR e+ 1)2(a—1) " ? alw+2)
e e]__a(l—l—oz+oz2)e _(1+a+a2)e L,
4,C3] — 2&+1 1 Ct(Oé—i—Q) 2 at1 3

where {ey, ..., e} is an orthonormal basis and o € (—1,1), « # —%, a # 0.
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(3) (M, g) is R|p]-Einstein if and only if it is symmetric.

Regarding the analysis of critical metrics for quadratic curvature functionals, due to in the
homogeneous setting the scalar curvature is constant, the condition to be S-critical reduces to
either having vanishing scalar curvature or being Einstein, therefore, this condition reduces to a
direct proof. The obtained result is the following.

Theorem 4.12 Let (M, g) be an simply connected homogeneous four dimensional weakly-
Einstein Riemannian manifold. Then,

1. (M, g) is S-critical if and only if it is homothetic the Lie group SU(2) x R with left-
invariant metric determined by the Lie algebra

[61,62] = (4:i: 2\/5)63, [62,63} = (3 + 2\/5)61, [63,61] = €9,
leg, €1] = —e, leg,€0] = (3£ 2v/2)e;.

where {ey, ..., e} is an orthonormal basis.

2. (M, g) is Fy-critical if and only if ¢ = —2 and (M, g) is homothetic to the Lie group R x R?
with left-invariant metric determined by the Lie algebra

lea,e1] = €1, [es,ea] = —ez,  [es, €3] = —e3,

where {ey, ..., e} is an orthonormal basis.

Second part of the memoir is devoted to the study of generalized Einstein manifolds and the
two-loop renormalization flow.

Recall that generalized Einstein manifolds not only generalized the Einstein condition, but
the locally conformally flat one too. Like homogeneous Einstein manifolds were classified by
Jensen, homogeneous locally conformally flat ones were classified by Takagi [63], who showed
that they were of constant sectional curvature or products R x N(c) or N(¢) x N(—c).

The study of generalized Einstein condition into four-dimensional homogeneous metrics set-
ting is carried out in chapter four and it is summarized as follows.

Theorem 5.2 Let ()M, g) be a non-symmetric four-dimensional homogeneous manifold. Then
the tensor field W|[p] vanishes if and only if (M, g) is homothetic to a semi-direct product R x H3
of the Heisenberg group with left-invariant metric determined by the Lie algebra

1 1
[61762] = €3, [64a 61] = peq, [64762] = _5627 [647 63} = (M - 5)637

with 0 < pu < \/%, where {e, €2, €3, €4} is an orthonormal basis.

This uniparametric family of homothetic classes includes specially relevant examples such
as the case of 3-symmetric spaces, which corresponds to the value y = %
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J-critical metrics are also related to W |p| = 0 property since (2.8) can be written like

144t

Ap— (1+26)V?r + 5

2
ATg+2 (t + §) Tpo — 2p0 + 2Wp| = 0,

so that generalized Einstein critical metrics are also studied.

Theorem 5.9 Let (M, g) be an simply connected homogeneous four dimensional generalized
Einstein Riemannian manifold. Then, (M, g) is Fy-critical if and only if ¢ = —1 and (M, g) is
homothetic to the Lie group R x H? with left-invariant metric determined by the Lie algebra

1 1

e1,e2] = €5, er,eq] = SRS [ea, 4] = €2, [e3, 4] = 568

where {ey, ..., e} is an orthonormal basis.

It is also interesting studying this condition in the context of flows. It is defined the two-loop
renormalization flow (or RG2 flow) by

=9t = —2p— R, 6.1)

where € R. This flow is given as a second order approximation of the Ricci flow and it
is related with the R tensor field ( [21], [33], [34], [35]). In the Ricci flow, every self-similar
solution (namely, a solution for the flow given by ¢(t) = o(t)¢;g, where o is a real valued
function such that o(0) = 1 and ¢, a uniparametric family of diffeomorphisms of M) is a Ricci
soliton (a metric satisfying %L’ xg+p = Ag, where X is a vector field and L is de Lie derivative).
The converse also holds. However, while the first is true for RG2 flow, the second is only true
if the soliton is steady (A = 0) since the Ricci flow is preserved under homotheties, whereas the
RG?2 flow does not [64].

In this context, and taking into account (5.1), one can check that if W [p| = 0, then, if 7 is not
vanishing, p + %R is a multiple of the metric for o = —1—3 and thus it leads us to a self-similar
solution of RG2 flow. If 7 = 0, then the metric is R-Einstein. If we are in the homogeneous
setting, the only possible example is the one given by Arias-Marco and Kowalski, but this one
has non-vanishing scalar curvature, hence this case cannot occur.

In chapter six, we study genuine fixed points for this flow among four-dimensional homoge-
neous metrics. A metric is said a genuine fixed point for the RG2 flow if it satisfies p+ %R =0.It
is remarkable the fact that, if we take traces in this last identity, one obtains that « = —47|| R|| 2.
The following result gathers all the possible casuistic.

Theorem 6.4 A simply connected four-dimensional homogeneous manifold is a genuine fixed
point of the RG2 flow if and only if it is Einstein, a product R x N3(c), a product R? x N?(c) or
homothetic to the Lie group SU(2) x R with left-invariant metric

[e1, e2] = e3, e, €3] = e, e3, 1] = %627

where {ey, ..., e} is an orthonormal basis of su(2) x R.
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In addition, we also study geometrical fixed points, i.e., fixed solutions of the flow up to dif-
feomorphisms and homotheties. Wears gave in [64] a classification of RG2 solitons in dimension
three in the unimodular setting. In this work, we extend this result to the non-unimodular case
and we also prove the following theorem, where we study the existence of algebraic RG2 soli-
tons in four-dimensional irreducible homogeneous Lie groups. If one has a three-dimensional
Lie group H, then you can construct a four-dimensional Lie group G = R x H, and so, if H is
a soliton, G will be as well. Conversely, if one has a four-dimensional Lie group and the extra
hypothesis of having a left-invariant parallel vector field, then G can be given by R x H. Hence,
if G is a soliton, then H is as well. Thus, if the group is not irreducible, it is enough studying the
three-dimensional case. Notice that every algebraic soliton is a soliton, whereas the converse is
an open problem.

Theorem 6.6 A simply connected non-Einstein four-dimensional irreducible Lie group G is an
RG@G2 algebraic steady soliton if and only if it is homothetic to one of the Lie groups determined
by the following Lie algebras, where {eq, ..., e4} is an orthonormal basis:

1. R x e(1,1), for a coupling constant v = —+, given by
[61,63] = €3, [62763] = €1, [61764] = Ke€y, [62764] = Kea,
where k > 0, k # 1.

2. R x b3, for a coupling constant o = 2, given by

[e1, e2] = e3, [e1, €4) = %eh
1)vV3
e2,ea] = 588 s, [en,ea) = sumliies,

where x € [—1,1).

3. R x b3, for a coupling constant ov = %ﬁil, given by
le1,e0] = e3, [e1,eq]) = Key, [ea,eq4] = —ﬁBQ, les, €4] = (/f — ﬁ) €3,
where x € (0, %], K # %\/m
4. R x t3, for a coupling constant ov = %, given by
le1,e4]) = €1, [ea,e4] = Kea, es, eq] = des,

where (k,0) € {(z,y) € R%z € (0,1],0 £y < z}\{(1,1)}.

5. R x t3, for a coupling constant v = given by

2

K24p??
le1,eq] = €1, [ea, e4] = Keg + hes, e, eq] = —hey + pes,

where the parameters p and h are given by p = % <1 + /1 —4kr(k — 1)) and

1
h— (%)2, for any x € (0, 1).
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Every example from Theorem 6.6 satisfies that p+%1:2 = (. However, they are not flat metrics
(not even Ricci flat). This result is in sharp contrast with Ricci solitons, where homogeneous
steady Ricci solitons are flat metrics.

Regarding the study of critical metrics in this last two situations, the following results are
obtained.

Theorem 6.20 Let (1, g) be a four-dimensional homogeneous fixed point for the two-loop renor-
malization flow. Then, it is F;-critical if and only if

1. (M, g) is homothetic to R? x N?(c) and t = —1.

2. (M, g) is homothetic to R x N3(c) and t = —3.

Theorem 6.21 Let (M, g) be a four-dimensional simply connected homogeneous RG2 algebraic
steady soliton. Then, it is JF;-critical if and only if

1. (M, g) is homothetic to R x E(1,1) with Lie algebra

[61,63] = €3, [62763] = €1, [61,64] = Ke€q, [62764] = Keég,
where K > 0,k # 1, and t = —llj?)’fg.

2. (M, g) is homothetic to R x H? with Lie algebra

le1, ea] = es, le1, 4] = %617

_ K3 _ (k+D)VB
[62a 64] — ) €2, [637 64] — P €3,
2V Kk4+k+1 2V Kk +k+1

where k € [—1,1),and ¢t = _2(2)(%;;3))’

3. (M, g) is homothetic to R x R? with Lie algebra
len,eq] = €1, [ea,eq] = Kea, e, 4] = deg,

where (k,0) € {(z,y) € R*%z € (0,1],0 # y < z}\{(1,1)}, and
_ 14624 k2
t= _2(1+5+j5r2+:+5n+ﬁ2)’







Chapter 1
Preliminaries

In this chapter we introduce the notation to be used throughout this work. Firstly, we give
some basic definitions about Riemannian geometry and then present some basic results needed
in subsequent chapters.

1.1 Riemannian geometry

First of all, we fix some notation. We mainly follow the books of Kiihnel [47] and Lee [53].

1.1.1 Tensors and metrics

Let M" be a n-dimensional smooth manifold. Let 7. (M) be the space of tensor fields of type
(r,s) on M. If M has local coordinates (x!, ..., z™), then an element T' € T (M) can be locally
written as
T =T ® @0 @da™ © - @ da'™,

where 9, denotes the coordinate vector fields and dx? denotes the dual locally defined 1-forms.

A n-dimensional smooth manifold endowed with a symmetric positive-definite (0, 2)-tensor
field g is called a Riemannian manifold.

Whenever we have a Riemannian manifold, the Levi-Civita connection is determined by the
Koszul formula

29(VxY,Z2)=Xg(Y,Z)+Yg(X,Z) — Zg(X,Y)
- g(Xv D/a Z]) - g(Y, [X7 Z]) +g(Zv [Xa Y]),

for X,Y, Z € X(M).

The metric allows us to rewrite every (r, s)-tensor field as a (0, + s)-tensor field and vice
versa. In particular, let 7 = Tj;dz’ ® da’ be a (0,2)-tensor field, one can define a (1,1)-
tensor field Q7 by the relation T(X,Y) = g(Q7(X),Y’). Thus, the local coordinates of 7" and
Qr = Qr)0, ® da’ are related by Tj; = Q% gr.

1.1.2 Curvature

Let (M, g) be a n-dimensional Riemannian manifold. The (1, 3)-tensor field, given by

R(X,Y)Z =VxVyZ — VyVxZ — Vixy|Z,

1
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is called the curvature tensor of A/. One can define the (0, 4) curvature tensor as

R(X,Y,Z,T)=g(R(X,Y)Z,T).
This tensor field satisfies the following identities.
R(X,)Y,Z,T)=—-R(Y,X,Z,T)=—-R(X,Y,T,7),
RX,Y,Z,T)=R(ZT,X,Y),
RX,)Y,Z,T)+R(Y,Z, X, T)+ R(Z,X,Y,T) =0,

(VxR)(Y,Z,T,U)+ (VyR)(Z,X,T,U) + (VZzR)(Y, X, T,U) = 0.

We say that a (0, 4)-tensor field on a vector space V' is an algebraic curvature tensor if it
satisfies the first three identities above. We define the standard algebraic curvature tensor by

Ro(X.Y,2,T) =g(Y, 2)g(X,T) — g(X, Z)g(Y.T).
The sectional curvature of a plane IT = span{ X, Y'} is defined by

R(X,Y,Y, X)

k() = Ro(X,Y,Y,X)

If (M, g) satisfies that K (IT) = ¢ for every plane IT C T'M at each point p € M, then we say that
M has constant sectional curvature. Moreover, its curvature tensor is determined by the standard
curvature tensor as follows.

R(X,Y,Z,T) = cRo(X,Y, Z,T).

A complete and simply connected Riemannian manifold with constant sectional curvature is
called a space form. They are isometric to the sphere S, the hyperbolic space H" and the eu-
clidean space R", depending on whether the sectional curvature is positive, negative or vanishing,
respectively.

(M, g) is said to be flat if every point has a neighborhood that is isometric to an euclidean
space. This condition is equivalent to having vanishing curvature tensor (see [53]).

We now define the Ricci tensor, given by

§(X,Y) = {2 RZ XY} = S g(RB, X)Y, E) = 3 R(E, X, Y. F),

where {E1, ..., E,} is a local orthonormal frame.
We define the Ricci operator as the (1, 1)-tensor field given by

p(X,Y) =g(Q,X,Y),
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and define the scalar curvature of M by

T=1tr@,.

In dimension two, the scalar curvature determines the curvature tensor, whereas in dimension
three, the Ricci tensor does.
A metric g is said to be Einstein if and only if the Ricci tensor is a multiple of the metric, i.e.,

pP=—g
n

By Schur’s Lemma (see [53]), if dimension of M is greater that two, one has that if the metric is
Einstein, then 7 is constant.

1.1.3 Differential operators

In this section, we introduce some differential operators naturally associated to the Riemannian
structure. Let f : M — R be a real function. We define the gradient, which we also denote by
V, as

9(Vf, X) = X(f).

Moreover we define the Hessian operator by
hessfp(X) =VxV,
and its corresponding (0, 2) symmetric tensor field
Hess(X,Y) = g(hess¢(X),Y).
It immediately follows that
Hess;(X,Y) = XY (f) — (VxY)(f).
From this, we also define the Laplacian of f as
Af = trhessy.

Let 7" be a (0, s)-tensor field, the divergence of 1" is the (0, s — 1)-tensor field given by

n

divT(Xy,..., Xe1) = > (VeT)(X1,..., Xo, E),

=1

where {E;} is a locally define orthonormal frame.



4 1 Preliminaries

1.1.4 Locally conformally flat manifolds

Let A and B be two (0, 2) symmetric tensor fields. We define the Kulkarni-Nomizu product as

A-B(X,Y,Z,T) =AY, Z)B(X,T) — A(X, Z)B(Y, T)
+AX,T)B(Y, Z) — A(Y,T)B(X, Z).

Remark 1.1. The standard curvature tensor can be written as Ry = % g-g.

)

and thus, the Weyl tensor is given by

Define the Schouten tensor

W=R-S5-g.

Equivalently, one has

W(X,Y,Z,T) =R(X,Y,Z,T)
T

T D gy W 29X T) — g(X, 2)g(Y, 1)}

- ﬁ{pm 2)9(X,T) = p(X, Z)g(Y, T)

We denote the Weyl tensor of type (1,3) by W. We also introduce the Cotton tensor,

C(X7 Y, Z) = (n - 2){(VXS)<Y> Z) - (VYS>(X7 Z)}

The Cotton tensor measures the symmetry of the derivative of the Schouten tensor. Moreover,
the next result gives a relation between the Cotton and the Weyl tensors.

Lemma 1.2 ([53]). Let (M, g) be a n-dimensional Riemannian manifold such that n > 4. Then

n—3
n—2

diviV = C.

Let (M, g1) and (Ms, go) be Riemannian manifolds and let ¢ : M; — M5 be a smooth map
between them. We say that ® is a conformal map if there exists a non-zero function o : M; — R
such that for all p € M;,

920() (P (p) X, 2. (p)Y) = 0*(p)g1p(X,Y).
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If o is constant (respectively o = 1), we say that ® is an homothety (respectively, an isometry).
If we have a conformal map between M; and M, (respectively, an homothety or an isometry),
we say that M, and M, are conformally related (respectively, homothetic or isometric). We refer
to o as the conformal factor.

A Riemannian manifold (M, g) is said to be locally conformally flat if for each point of
the manifold, there exist a neighbourhood where it is conformally related to a flat space. If the
conformal factor is defined in all M, then M is said to be conformally flat.

Conformal transformations are strongly related with the Weyl tensor.

Lemma 1.3 ([47]). Let (M, g1) and (Ms, g2) be two conformally related Riemannian manifolds
and let W, and W, be their Weyl tensors respectively. Then, W, = Wy and Wy = €2 W, being
o : My — R the conformal factor. In particular, if a Riemannian manifold is locally conformally
flat, then W = Q.

One can check that if dimM = 3, then W = 0 automatically. Thus, locally conformal
flatness condition behaves different in dimension three.

Theorem 1.4 ([47]). Let (M, g) be a n-dimensional Riemannian manifold. Then,
e Ifn >4, M is locally conformally flat if and only if W = (.
* Ifn =3, M is locally conformally flat if and only if C' = 0.

Remark 1.5. Notice that if n > 4 and locally conformally flat, then W = 0, and since the Cotton
tensor was a multiple of the divergence of W, C' = 0, and thus, (VxS)(Y, Z) = (VyS)(X, Z).
The converse does not hold in general.

1.2 Homogeneous spaces

We recall the classification of four-dimensional homogeneous spaces given by Bérard-Bergery.

A Riemannian manifold (M, g) is said to be homogeneous if for each pair of points p, g € M,
there exists an isometry ® of (M, g) such that ®(p) = ¢. Consequently, every homogeneous
space is complete.

Every Lie group with a left-invariant metric is homogeneous as the translation maps are
isometries. Moreover, every symmetric space is homogeneous.

In dimension three, a complete simply connected manifold is homogeneous if and only if it
is symmetric or a Lie group (see [54]). Since every symmetric space is locally symmetric, then
the Ricci operator is parallel and either (), = £ 1d, with & € R or ), = diag|0, x, x| and (M, g)
is isometric to a product R x N (k).

Three-dimensional Lie groups with a left-invariant metric are divided into two classes: the
unimodular and the non-unimodular. Let us give a brief explanation first.

Let g and b be two Lie algebras and let ¢ : h — Der(g) be an homomorphism from b to
the derivations of g. One can prove that there exist a Lie algebra structure in g & b such that
[v1, 03] = [v1,02]g, (w1, ws] = [wy, ws]y and [v, w] = ¢(w)(v) for all v;,v € g and w;, w € bh.
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With this bracket, g & b is said to be the semidirect product of g by h via ¢ and it is denoted
by g x, h. This concept can be extended to Lie groups. One can see that the correspondent Lie
algebra of the semidirect product G x H, where (&, and H are Lie groups with Lie algebras g
and b, is the semidirect product g x b.

Milnor showed in [56] that there exist an orthonormal basis {e1, 2, 3} where the Lie algebra
of the unimodular case can be written as

[61762] = Ases, [617 63] = Aaea, [62763] = Ases,

where the sign of \; determined the algebra. Trough the memoir, we take the simply connected
Lie group associated to each Lie algebra. The casuistic is summarized as follows.

A1 A2 Az | Lie Group
+ + + ] SU@©
+ + — | SL2,R)
+ 4+ 0] E@©

+ — 0| E@1
+ 0 0 Hs

0 0 0 R3

The description of each Lie group from the table is the following.

» SU(2) is the group of unitary 2 x 2 matrices with determinant one. Its Lie algebra is s1(2),
which is made up of the anti-hermitian traceless 2 x 2 matrices.

—~

* SL(2,R) is the universal covering of the group of real 2 x 2 matrices with determinant
one. Its Lie algebra is s[(2, R), which are all the real traceless 2 x 2 matrices. We denote
itby SL(2,R).

« E (2) is the universal covering of the group of rigid motions into the Euclidean plane,
which has Lie algebra ¢(2), the euclidean algebra, given by the semidirect product t* x t,
determined by an endomorphism of t? with complex eigenvalues. We denote it by F(2).

* F(1,1) is the group of rigid motions into the Minkowski plane. Its Lie algebra is ¢;, the
Poincaré algebra, given by the semidirect product t* x t, determined by an endomorphism
of t* with real eigenvalues.

* Hj is the Heisenberg group, which is made up of the real 3 x 3 matrices given by

1
0
0

O = Q2
= o o

whose Lie algebra, b3, is the algebra of upper triangular matrices with vanishing diagonal.
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Milnor also described the non-unimodular case as the three-dimensional Lie groups with
Lie algebra R., X g;, given by

le1, €2] = aveg + Bes,  er, e3] = yeq + des, [ea,e3] =0,

(27).

has trace a + § = 2 and g, = {e9, e3} is the abelian subalgebra.

such that the matrix

1.2.1 Four-dimensional homogeneous spaces

Bérard-Bergery, in [3], proved the following.

Theorem 1.6. Let M be a four-dimensional homogeneous, simply connected Riemannian mani-
fold. Then M is either symmetric or isometric to a Lie group with a left-invariant metric. If it is a
Lie group, it is either SU(2) X R or SL(2,R) x R or a solvable Lie group, which are R x E(2),
Rx E(1,1), R x H and R x R>.

Groups from Theorem 1.6 can be constructed from their Lie algebras in a generic way. The
idea is taking a basis on a three-dimensional Lie algebra and then expanding it. In order to
do that, we take a fourth vector and make a new bracket depending on the three-dimensional
algebra derivations. The calculation lead us to a new orthonormal basis for a four-dimensional
Lie algebra. For the solvable ones, the construction is as follows.

Take g = R x g, a extension of the unimodular three-dimensional algebra g;. Take an
inner product (-, ) in g. Following Milnor’s work [56], there exist an orthonormal basis of g5,
{v1, v9,v3}, such that the Lie algebra g, is given by

(U9, v3] = A1, [Us, V2] = Aava, U1, V2] = Agvs, (1.1)

and take R = span{vs}, which does not need to be orthogonal to g;. Now we define the Lie
brackets as

[”UZ',U]'} = [Uhfl}j]gy [U4avi] = DUi? Z?] = 172737

where D is a derivation of g;. Lastly, we normalize the basis. Take k; = (v4,v;) and make a
new basis for g, {ey, s, 3,64}, where ¢; = v;, i = 1,2,3 and ¢4 = }%{m — Z?:l kv;}, being

i=1""
for any of the solvable semi-direct products from the Theorem 1.6. Once we know the brackets
of the algebra, we can obtain all its geometrical properties constructing the Christoffel symbols
using the Koszul formula.
As for the non-solvable cases, the construction follows the same idea but we define [vy, v;] =
0 instead.

R = 4/1— ZS k?. Now we have an orthonormal basis for a four-dimensional Lie algebra
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1.2.2 Conformal transformations in homogeneous spaces

During this section, we study conformal changes between homogeneous spaces. We have seen
that if two Riemannian manifolds are conformally related then their Weyl tensors are propor-
tional. The converse is not true in general, but Hall, in [41], claims the following. Let (M, g) be
a four-dimensional Riemannian manifold with Weyl tensor W,. If ¢’ is other metric on A/ whose
Weyl tensor is such that YW, = W, then g and ¢’ are conformally related.

On the other hand, Kulkarni showed in [48] the following.

Theorem 1.7 ([48]). Let (M, g) and (M’,g") be two n-dimensional (n > 3) Riemannian man-
ifolds and let ® : M — M’ be a curvature preserving diffeomorphism. Then ® is a conformal
transformation.

Moreover, in the homogeneous setting we have the following result.

Lemma 1.8. Let (M, g) and (M, g') be two n-dimensional homogeneous Riemannian manifolds
and let ® : M — M’ be a conformal transformation. Then, either ® is an homothety or (M, g)
and (M', g') are locally conformally flat.

Proof. Let W and W’ be the respective Weyl (0, 4)-tensor field. Recall Theorem 1.3, which said
that if two Riemannian manifolds are conformally related, then their Weyl tensors are related by

W = W',

and thus
IW||? = e*||w’||>.

Now, notice that these norms have to be constant because we are in a homogeneous space, and
since they are related, they are constant if only if both are vanishing, and hence M and M’ are
locally conformally flat, or ¢ is constant, and then ® is an homothety. ]

The converse does not hold in general. That is, if two homogeneous manifolds have the
same Weyl tensor, they do not need to be homothetic, which shows a contradiction with Hall’s
statement. One can check the following.

Example 1.9. Let (G1,(, )1) be the Lie group endowed with a inner product and with Lie
algebra g; given by

[e1,ea] = €1, [ea,ea] = 3ea,  [e3,e4] = €3
and (Gs, (, )2) the Lie group with Lie algebra g, given by

le1,e4] = €1, [e2,eq4] =4dea, |es,eq] = 3es,

where {e, €2, €3, €4} is an orthonormal frame.
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Now take the left-invariant metrics (, )1~ = 36(, ); and (, )2« = 90(, )2. After rescaling,
both metrics have scalar curvature 77 = 75, = —1 and

where E*; denotes the matrix with 1 in the position (i, j) and zero otherwise. By Hall’s result,
then both Lie groups should be homothetic but we have that

17 169

where R; is curvature tensor of (¢;. This two examples cannot be homothetic as they have differ-
ent norm of the curvature tensor, which is a necessary condition since the scalar curvature was
rescalated previously. This shows that a result like that of Hall cannot be expected for the Weyl
tensor.

1.3 The Gauss-Bonnet-Chern Theorem: Weakly-Einstein con-
ditions

We introduce the definition of the main topic of the work, the weakly-Einstein conditions. In
order to do that, we give a generalization of the Gauss-Bonnet Theorem for greater dimension.
Let S be a compact surface. The Gauss-Bonnet theorem claims that

/Kdvolg = 27mx(9), (1.2)
s

where K is the Gaussian curvature of S and 7x(S) its Euler characteristic.

Now think of the Gauss-Bonnet integrand as the Riemannian functional £ : g — |, g Kdvoly,
which is known as the Hilbert-Einstein functional. Since the Euler characteristic is one of the
simplest topological invariants, then every metric is critical for £. If one takes derivatives in
(1.2), we obtain

VE=p-— % g=0.
Thus, the two-dimensional identity

p2597

holds for every compact surface.
Chern, in [17], generalized the Gauss-Bonnet Theorem to even higher dimension. In dimen-
sion four, the Gauss-Bonnet-Chern integrand is

4/ (7% — d]lp|2 + | RI12)dvol, = 327 x(M). (1.3)
M
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Again, if we define a functional with the above expression (denote it by JF), in order to study its
critical metrics, we call

S(g) = / Tdvoly, T(g) = / Ipl2dvol,,  R(g) = / | R||>dvol,
M M M
One has that (see [4], [14])

1
VS =2A71g + 2HessT — 21p + 57'29, (1.4)
_ 1 1
VT =Ap+ Hesst + §ATg — 2R[p] + él‘pHZQ, (1.5)
_ . 1
VR =4Ap + 2Hesst — 4R[p| — 2R + 4p + §||R||Qg, (1.6)

where Ap = Ap — 2p + 2R[p] and R, p and R[p] are the symmetric tensor fields of type
(0,2) given by Rij = RiaweR;%, pij = piap®; and R[pli; = Ria;p™. Again, since the Euler
characteristic is a topological invariant, then VJF = 0 and every metric is critical. Therefore,
from (1.4), (1.5) and, (1.6), we obtain

1
ZV}" =VS —4VT + VR

1
=2AT1g+ 2HessT — 27p + 5729

— 4Ap — 4Hesst — 2A7g + 8R[p] — 2|Ip*g
_ . 1
+4Ap 4+ 2Hesst — 4R[p] — 2R +4p + §||R||29

1 1
= —27p+57°g +4Rlp] = 2p|*g — 2R +4p+ S| RII*g = 0,

Reordering, we obtain the following four-dimensional curvature identity,

(R—@@ +T(p—£g> —%ﬁ—@g) —2 (R[p]—@g) =0. (1.7)

This identity was shown by Berger in [4]. Euh, Park and Sekigawa extended it to the non-
compact case [23]. Labbi was able to extend this study to higher dimension in [49].

If ¢ is Einstein, then, in (1.7), the second, the third and the forth bracket vanish directly as
p=Rlp] = % g= % g, and therefore, the first one also vanishes as it is the only one remaining.
Hence, every four-dimensional Einstein metric satisfies that the tensor fields R, 5 and R|p] are a
multiple of the metric.

In this situation, it is a natural question asking what happens the other way round: if one
of these three tensor fields is a multiple of the metric, is the metric Einstein? Euh, Park and
Sekigawa gave this counterexample.

Example 1.10 ([23]). Let M;(c) and M>(—c) be two Riemannian surfaces with Gaussian curva-
ture ¢ and —c. Then, the Riemannian product M (c) x Ma(—c) is not Einstein but satisfies that
R, p and R|[p] are a multiple of the metric.
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Thus, we define what we are calling the weakly-Einstein conditions.
Definition 1.11. Let (), g) be a Riemannian manifold. Then we say that

* (M, g) is said to be R-Einstein if R = 1||p||g.

* (M, g) is said to be p-Einstein if p = *||p[|%g.

* (M, g) is said to be R[p]-Einstein if R[p] = +p||%g.

From this starting point, we classify this kind of metrics all along the memoir, assuming that
they are not Einstein.

Remark 1.12. If all weakly-Einstein conditions are fulfilled at once, then (1.7) remains

_
r(p-79) =0

Therefore, the metric is either Einstein or has vanishing scalar curvature.

1.4 Hypersurfaces in real space forms

Let M" be a smooth manifold, (Mv ™ g) a Riemannian manifold with n < m and ¢ : M — M
the inclusion. If we endow M with the metric ¢ = *g, (M, g) is said to be a Riemannian

submanifold of (]\A/[/ ,g) (which is said to be the ambient space).
The tangent bundle of M can be split up into a tangent and a normal space respect to M as
follows,

TM =TM & NM =TM & (TM)*,

where 7'M is the tangent bundle of M. We define the tangential and normal projections as
7" TMyy — TM,

7t TMjy — NM,

and for every vector field X, define X7 = 77X and X+ = 71 X. Now we can decompose the
Levi-Civita connection of M as its normal and tangent component,

VY = (ViV)T + (VxY)*
We define the normal component as the second fundamental form of M
II(X,Y) = (VxY)*.

The Levi-Civita connection and the curvature tensor of M and M are related as follows.
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Theorem 1.13 (The Gauss formula, [53]). Let X,Y be vector fields on M and extend them to
M, the following holds in M.

VxY = VxY +1I(X,Y).

Theorem 1.14 (The Gauss equation, [53]). For any X,Y, Z,T vector fields in M, then the fol-
lowing equation holds

R(X,Y,Z,T) = R(X,Y,Z,T) + g(I(Y,2),II(X,T)) — g(II(X, Z), II(Y,T)).

Assume now that M is a hypersurface (M has codimension 1) into a real space form (R™*1,
S™t1 or H™*1). Choose a distinguished unit normal vector field and denote it by N. Thus, we
define the scalar second fundamental form by

hMX,Y)=g(II(X,Y),N),

where % is a (0,2)-symmetric tensor field. The second fundamental form can be written as
II(X,Y) = h(X,Y)N. We can get the (1, 1)-tensor field corresponding to h. Thus, we define
the shape operator S of M by

h(X,Y)=g¢(SX,Y).

The eigenvalues of the shape operator are called principal curvatures and its eigenspaces principal
directions. If the principal curvatures are constant functions, then the hypersurface is said to be
isoparametric. Moreover, the Gauss formula becomes

VyY = VyY + g(SX,Y)N

and the Gauss equation
R(X,Y, Z,T) = cRo(X,Y, Z,T) + g(SY, 2)9(SX.T) — 9(SX, Z)g(SY,T),

where ¢ = —1, 0, 1, depending on if we are into the hyperbolic space, the euclidean space or the
sphere, respectively.

1.5 Warped products and Codazzi tensors

All definitions and results we give are shown in [53] and [60].
Let (B, gp) and (F, gr) be Riemannian manifolds. Let f : B — R be a smooth function. A
warped product B X s F'is a Riemannian manifold endowed with a metric

9=mp(gs) + (f o mp)*7i(gr).

where 7p : B X F' = B and 7p : B X ' — I are the canonical projections.

B is said to be the base of the product and F', the fibre. The function f is said to be the
warping function. Observe that if f = 1, then we have a Riemannian product.

The Levi-Civita connection in a warped product is given by the following result.
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Proposition 1.15 ([60]). Let B x s F' be a warped product and X,Y and U,V vector fields along
B and F, respectively. One have the following.

e VxY is the lift of VXY in B.

* VxV =VyX = @V.

9(U, V)
f

« (VuV)" is the lift of VEV on F.

Now, we define the curvature tensor.

« (VoV)" =I1I(U,V) = — V7.

Proposition 1.16 ([60]). Let B x ¢ I be a warped product with curvature tensor R and dimF =
d>1IfX,Y,Zand U, V,W are vector fields along B and F, respectively, then

* R(X,Y)Z is the lift of R®(X,Y)Z on B.

V)Y — HessjcfXY)V

(X, V)
R(X,Y)V = R(U V)X =0.
(U, X))V = 1% pess £(X).
« R(U,V)W = RF(U, V)W — S8 Ro(U, V)W
Moreover, the Ricci tensor is given by
* p(X,Y) =pP(X)Y) — §Hessp(X,Y).
e p(X,V)=0.

« p(U,V)=p"(UV)—gUV) (% + (d — 1)9(V]J:évf)) .

1.5.1 Codazzi tensors

Let M be a Riemannian manifold such that dimM > 3. A (0, 2)-symmetric tensor field 7" is
said Codazzi if it satisfy the symmetry

(VxT)(Y,Z) = (VyT)(X, Z).
Analogously, a (1, 1)-tensor field Q1 is Codazzi if

(Vx@Qr)Y = (VyQr)X
Example 1.17.

1. A parallel tensor field, i.e, VT = 0, is Codazzi.

2. If (M, g) is locally conformally flat and dim M = 3, then the Schouten tensor S is Codazzi
by Theorem 1.4. If dimM > 4, then, by Remark 1.5, S is also Codazzi. Therefore, if
(M, g) is locally conformally flat, the Schouten tensor is Codazzi.
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1.6 Grobner basis

During the work, we find systems of polynomials that cannot be solved using the classical meth-
ods, so we have to look for another ways to work with them. Grobner basis give us a really
powerful tool for this. The main idea of Grobner basis is constructing an ideal with the poly-
nomials of a given system, dividing them and eliminating those which are redundant, getting a
new system which is equivalent to the first one but with simpler factors. For more details about
Grobner basis, see [22].

Let IF be a field and denote by F[z1, . . ., x,,] the ring of polynomials with variables x1, . . ., z,.
A monomial ordering in Flzy, ..., z,] is a relation on the set of monomials z* = z{* ... 2%
with o € Z%, denoted by >, such that

* The relation is a total ordering in Z%,.
e Ifa> Bandy € Z%, thena + v > B+ 7.

* The relation is a well-ordering in Zgo, 1.e., there is a smallest element under the relation.

Example 1.18.

1. Lexicographical order. We say that o >, [ if the leftmost nonzero entry in o — 5 € Z"
is positive.

2. Graded lexicographical order. We say that o >, [ if || > |3 or |a| = |3] and

n

a >, B, where |of = )1 | ;.

3. Graded reverse lexicographical order. We say that & > j,cpier 5 if || > |5] or || = |5]
and the rightmost nonzero entry in o — [ is positive.

Letp = ) a,z® be a polynomial in Flzy, ..., z,], a, € F and > be a monomial ordering.
The multidegree of p is
mldeg(p) = max{a € Z%; | a, # 0}.

We call leading term of p to
mideg(p)

LT<p> - amldeg(p)x .
Theorem 1.19 (The division algorithm, [22]). Let > be a monomial ordering and let () =
{q1,...,qs} be an ordered s-tuple of polynomials in Flz1, ..., x,|. Then everyp € Flxy, ..., z,]
can be written as

p:f1QI+"‘+fSQS+r7

where f; € Flxy,...,x,] and r either can be zero or it is a linear combination, with coefficients
in F, of monomials such that none of them are divisible by any of LT (q;). We call r the remainder
of p on the division by Q. In addition, if ¢; f; # 0, then mldeg(p) > mldeg(q; f;)-
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The division algorithm is an important part in Grobner basis theory since it is essential to
prove their existence .

A monomial ideal / C F[x,...,x,] is an ideal such that all its polynomials are finite sums
of the form ) hoz®, where h, € Flzy, ..., x,]. We write [ = (2* | a € Z2).

Lemma 1.20 ([22]). Let I = (2° | a € Z%,) be a monomial ideal. Then, 2? € I if and only if
x® divides 7.
Lemma 1.21 ([22]). Let I be a monomial ideal and let p € F[z1, ..., x,] be a polynomial. The
following are equivalent.

i) pel

i1) Every term of p are in I.

iii) p is a F-linear combination of elements of I.

One can get a basis of I such that z{* does not divide z§' whenever ¢ # j. This basis is unique
and we say that is a minimal basis of /.

Now denote by LT'(]) the set of leading terms of the elements of I and (L7'(I)) the monomial
ideal generated by LT'(1).

Fix a monomial ordering on F|xy,...,x,]. A finite subset G = {¢1,...,¢,} of an ideal [
(not necessarily monomial) is said to be a Grobner basis if

(LT(D)) = (LT(g1),-- -, LT(gr))-
Now we shall see that there always exist such a basis.

Proposition 1.22 ([22]). Let I C Flxy, ..., x,| be a non-zero ideal (not necessarily monomial).
Then there exist polynomials py . .. ,p; € I such that

(LT(I)) = (LT(p), .., LT(n).

Theorem 1.23 (Hilbert basis Theorem, [22]). Every ideal I C F[x1,...,x,] has a finite gener-
ating set, that is, [ = (py,...,p;) for some py,...,p; € 1.

Proof. If I = {0} the statement is trivial. If it is non-zero, then I has a (LT'(I)). By proposition
1.22, there are polynomials p; ..., p; € I such that (LT(I)) = (LT (p1),..., LT (p:)). Since all
the p; are in I, then the ideal generated by those is included in 7, so let us see the converse.

Let f € I be any polynomial, we apply the division algorithm. Then we can write

f=qap+-+qps+r,

where 7 is not divisible by any of LT (p;).

If we proof that » = 0, then, by Lemma 1.21, f is a linear combination of elements of
(p1,...,ps) and so f is in that ideal. As f is an arbitrary element of /, then I C (py,...,ps) and
the result follows. Thus, let us see that » = 0. We have that

r=f—(qp1+---+gsps) €1
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Then, if » # 0, LT(r) € (LT(I)) = (LT (p1),...,LT(p:)). Then, by Lemma 1.20, LT'(r) is
divisible by some of the LT'(p;), but r was the remainder, so we get a contradiction and thus,
r=0. ]

As a consequence of this result we have the following.

Corollary 1.24 ( [22]). Every ideal has a Grobner basis. Moreover, this basis is also a basis of

the ideal.

Proof. Given aset G = {g1,...,¢,} as in the proof of the previous Theorem is a Grobner basis
by definition. Moreover, the argument given in that proof also assure us that (G) = I, so G is a
basis of I. n

Once we have established what a Grobner basis is, one may think of its computation. There
is different ways to do it, but the original was given by Buchberger, which works as following.

1. Take anideal I C F[xy,...,x,]. Take a pair of generators ¢;, g; € I with multidegrees «
and [ respectively.
2. Calculate
S(9i:95) L, L
gi, 95) = i Bl
7 LT(g)”  LT(g;)™

where v = mazx(ay, §;).

3. Compute the reminder of the division of S(g;, g;) by all the polynomials of . If it is not
zero, add S(g;, g;) to 1.

4. Repeat until all the reminders of all S(g;, g;) are zero.



Part 1

Weakly-Einstein Conditions
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Einstein metrics are a large research field in Riemannian geometry. They arise from the study
of critical metrics for the Hilbert-Einstein functional, which was given by

E:g |—>/ Tgdvoly,
M

and try to answer the question about if there exist a "perfect" metric into a Riemannian manifold.
Einstein metrics are the best candidate to this as they "distribute" the metric along the mani-
fold homogeneously. Henceforth, this field has been applied to several contexts in differential
geometry and physics.

Moreover, being Einstein is a strong condition due to it implies other different properties.
For instance, a locally conformally flat Einstein manifold has constant sectional curvature. It
also implies the constancy of the scalar curvature due to the Schur Lemma. To see more topics
about Einstein manifolds, see [5,47].

Thus, it is a natural goal trying to weaken the Einstein condition in order to obtain new
geometric objects. There are a few known generalizations of this condition.

Since the Ricci tensor of an Einstein metric is parallel, one may think about linear general-
izations. Gray, in [37], considered this situation, where they appear metrics with cyclic-parallel
Ricci tensor and Codazzi Ricci tensor.

Furthermore, if there is an Einstein metric into the conformal class of a given one, then
this metric is called conformally Einstein. Brinkmann [7] introduced necessary and sufficient
conditions for this in terms of positive solutions for a differential equation. More generalizations
come from the notion of Ricci solitons, which are self-similar solutions of the Ricci flow. A
metric is said to be a Ricci soliton if

Lxg+p=2Ag,
for some X € X(M) and A € R, where L is the Lie derivative. If A < 0, A = 0 or A > 0, the
soliton is called expanding, steady or shrinking, respectively.
Recall the identity (1.7), given by Berger in [4],

(R—@g)+7<p—£g)—2(ﬁ—@g> —2(3[/)]—@9) = 0.

As we have said in the first chapter, this identity implies that if the metrics is Einstein, then
the terms into brackets which are not related to the Einstein condition vanish, and thus, each
tensor within is a multiple of the metric. The example given by Euh, Park and Sekigawa showed
that the converse does not happen. This shows the existence of R, p and R]p]-Einstein metrics
which are not Einstein. Before that, Gray and Willmore considered the Einstein and the R-
Einstein condition together (what they called super-Einstein manifold) into mean-value theorems
in Riemannian geometry [38]. Chen and Vanhecke studied this in the context of geodesic spheres
and tangent unit bundles [6, 16].

Singer and Thorpe [62] proved that a four-dimensional Riemannian manifold is Einstein if
and only if there exists a Singer-Thorpe basis at each point of the manifold, which is an orthonor-
mal basis satisfying

R1212 = R34347 R1313 = R24247 R1414 = R23237
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and R;;;; = Oforalli, j,k € {1,...,4}. Euh, Park and Sekigawa, in [24], gave a first generaliza-
tion of this, giving explicit conditions for the curvature tensor, which they call a Singer-Thorpe
generalized basis. They proved that a four-dimensional Riemannian manifold is R-Einstein if
and only if it has an orthonormal basis which satisfies

2 _ P2 2 _ P2 2 _ 2
R1212 - R34347 R1313 - R24247 Rl414 - R23237

and R;;;, = O0foralld, j, k € {1,...,4}.

Following this path, Arias-Marco and Kowalski, in [1], classified R-Einstein condition for
four-dimensional homogeneous Riemannian manifolds, generalizing the classification of four-
dimensional homogeneous Einstein metrics given by Jensen [45].

In dimension three, there is an analogous of this identity. Since every three-dimensional
manifold can be embedded in a four-dimensional space by taking M x R, any three-dimensional
manifold satisfies that

§¢ (p— %9) -2 (ﬁ— @g) - (R[/)} - @@ = 0.

Haji-Badali, Atashpeykar and Zaeim study all weakly-Einstein conditions in dimension three for
the Lorentzian setting [39,40].

During the memoir, we analyse the weakly-Einstein conditions, and then, we study their
relations with other generalizations, which will be introduced when necessary for the comfort of
the reader.

The aim of this fist part is classifying all three weakly-Einstein conditions in different fields.
Our aim is giving geometrical structures satisfying these conditions in order to create new exam-
ples of weakly-Einstein manifolds.

Observe that we define weakly-Einstein manifolds in a slightly different way. In [23] and
[24], the definition given for the weakly-Einstein condition is what we call R—Einstein, whereas
we use the name of weakly-Einstein for all conditions mentioned and then we specify each one
by themselves.

We can split this first part into two: In chapter two, we give a classification for weakly-
Einstein locally conformally flat manifolds. In order to do that, we take each condition separately
and we study the algebraic structure of each tensor, which depends on the Ricci operator. From
there, we stablish algebraic conditions, up to dimension, for the Ricci curvatures and then we
study the geometric structure via the Schouten tensor, which, in the locally conformally flat case,
is Codazzi.

In chapter three, following the same structure, we classify weakly-Einstein hypersurfaces
in real space forms (R"*!, S"*! and H"*!), which presents a much harder problem than the
previous one since the curvature tensor in a space form depends on the shape operator, which
gives a quartic equation on the principal curvatures.

The second path follows Arias-Marco and Kowalski’s work. We complete the classification
of all weakly-Einstein four-dimensional homogeneous Riemannian metrics. For the Lie-group
setting, we find non-linear systems of polynomials depending on the structure constants of the
group, which is a hard problem using classic methods. Therefore, we use Grobner basis theory
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on these systems in order to get "better" polynomials and then we classify each family up to
homothety class.

Metrics given in this part are new examples of R and p-Einstein metrics. R][p]-Einstein
condition is much more rigid, so the only non-Einstein example that appears is the product of
two manifolds of opposite sectional curvature, which was known already.






Chapter 2
Locally conformally flat weakly-Einstein
manifolds

In this chapter, we classify weakly-Einstein locally conformally flat Riemannian manifolds.
Some results of this chapter are shown in [28].

2.1 Introduction

In the previous chapter we presented locally conformally flat metrics as those where the Weyl
tensor vanishes, unless for dimension three, where the Cotton tensor does. Having this property
allows us to simplify the study of the curvature tensor since the Weyl tensor is given by

W(X,Y,Z,T) =R(X,Y, Z,T)
T

=D —2) ¥
_ %{p(y, Z2)9(X,T) — p(X, Z)g(Y,T)

+ KZ)g(XvT)_g(sz>g(Y7T)}

+p(X, T)g(Y, Z) = p(Y, T)g(X, Z)}.

Hence, if it is vanishing, we have that the curvature tensor is given by

RXY,ZT) = =g oV, 2)9(X, 1) = g(X, 2)g(V, 1)}
—}-ﬁ{p(}/, Z2)g(X,T) — p(X, Z)g(Y,T) (2.1

+p<X, T).g(Y? Z) o P(Y; T>g<X7 Z)}

In this situation, the study of algebraic properties of the curvature tensor is simpler as it only
depends on the Ricci tensor. In fact, some properties can be easily seen directly. For instance, if
the metric is also Einstein, then it is of constant curvature. Other examples shall be shown.

Example 2.1.

1. Any two-dimensional Riemannian manifold is locally conformally flat.

23
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2. Any Riemannian manifold of constant sectional curvature is locally conformally flat.

3. A Riemannian product M (c1) X My(cq), where M;(¢;) is a Riemannian manifold of con-
stant sectional curvature c;, is locally conformally flat if and only if ¢c; = —cy [65].

4. A warped product R x ; N(c) is locally conformally flat [8].

During this chapter, we describe weakly-Einstein locally conformally flat metrics in the fol-
lowing way. First of all, we give a description of the algebraic conditions a metric of this kind has
to satisfy to be weakly-Einstein. We do this by solving a polynomial equation depending on the
Ricci tensor. Then, once we stablish its algebraic structure, we show that the manifold can only
realize as items 3 or 4 from Example 2.1 or, for the R-Einstein condition, as a four-dimensional
manifold with vanishing scalar curvature.

The main purpose of this chapter is proving the next result.

Theorem 2.2. Let (M, g) be a locally conformally flat Riemannian manifold. Then (M, g) is
1. R-Einstein if and only if one of the following holds

(i) dimM = 4 and (M, g) has vanishing scalar curvature.
(ii) dimM # 4 and
(ii.a) (M, g) is locally homothetic to a warped product of the form I x ¢ N(c), with
metric g = dt* + f?gn, where T is a real interval and (N (c), gn) is a manifold
of constant sectional curvature ¢ € {0, £1}. Furthermore the warping function
is given by
(iial) fO)>)=t*—1,ifc=1,and T = (1, +00),
(iia.2) f(t)* =t ifc=0,and T = (0, +00),
(iia.3) ft)>’=1—1t%ifc=—1,and T = (—o0, 1).
(ii.b) (M, g) is locally symmetric and locally isometric to a product M = N*(c) X
N3*(—c), where m > 2.

2. R|pl|-Einstein if and only if it is a product as in 1.(ii.b).

3. p-Einstein if and only if it is a product as in 1.(ii.b) or locally a warped product T x ; R" !,

il <2( 1)(t+b))<">
fo) = (R

n
witht € (=2, 4+00) and a,b € R.

a

2.2 R-Einstein locally conformally flat metrics

Firstly, we may study the three-dimensional case since the locally conformal flatness property is
slightly different for this dimension and the curvature tensor of every three-dimensional Rieman-
nian manifold is determined by its Ricci tensor.
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2.2.1 Three-dimensional case

The curvature of all three-dimensional Riemannian manifold directly depends on the Ricci op-
erator as the Weyl tensor is always vanishing. It does not matter that it is locally conformally
flat or not. Thus, we start taking any three-dimensional Riemannian manifold and try to figure
out its algebraic structure assuming that it satisfies the R-Einstein condition. This structure is as
follows.

Lemma 2.3. Let (M, g) be a three-dimensional Riemannian manifold. Then it is R-Einstein if
and only if its Ricci operator is of rank one.

Proof. Let {e1, 3, €3} be an orthonormal frame of eigenvectors for the Ricci operator Qp, i€,
an orthonormal frame such that ),(e;) = A;e;, where J; is the corresponding eigenvalue of e;.
Since the curvature tensor was given by (2.1), then

Rij = 2(=7 + 2(Xi + ) {0jx0a — dindji},

where 9;; is the Kronocker delta. Therefore, R;;; = 0 and if we compute the R tensor in terms
of the frame, we obtain

3
R(eq, e5) E R(eq, €, €j,er)R(eg, e;, €5, ex)
k=1

177

3
= E R 6(17617617604)R(6,3aeiaeiaea)
=1

3
+ E R(ea, €i, eq,e:)Rees, €, eq, €;).
=1

Since we cannot have three different indices, then & = 3 necessarily. So an orthonormal frame
for the Ricci operator diagonalizes the R operator. Moreover, due to the symmetry R;ji =
— Ry of the curvature tensor we finally have that

ea, o) =2 Z RZ. .
i#a
Therefore, by (2.1), we have the following.

R(eq, €q) 22(———1— (Aa —i—)\))

i#a

_QZ{ + (A2 4+ 224 200) — (Aa+&-)}

iFa
—2{ +1pl1? + 2720 — A2 — T{ ) —i-T}}

:2HpH2 — 724 20a(7 — Aa).
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Now, notice that we want R to be a multiple of the metric, so we need that R(ea, o) =
R(egs, ep), for all v, . Thus, we obtain the system of equations

Aa =) {T—(ANa+23)}=0 (2.2)

As 7 is the sum of the three eigenvalues, system (2.2) holds if and only if the Ricci operator is a
multiple of the identity, in which case it is Einstein, or it is of rank one. L]

2.2.2 Higher-dimensional case

Now assume that (M, g) is a n-dimensional locally conformally flat Riemannian manifold with
n > 4. We work again with the Ricci operator to obtain an equation which has to satisfy.

Lemma 2.4. A n-dimensional locally conformally flat Riemannian manifold with n > 4 is R-
Einstein if and only if one of the following holds

(i) dim M = 4 and the scalar curvature vanishes, or

(ii) dim M > 5 and the Ricci operator has exactly two-distinct eigenvalues A\ and |1 =
—4)(n—-1)+2
_ (n (_n4) (n)(_nl) +)2—€n ilm) A\, where m is the multiplicity of the eigenvalue ).
Proof. As M is locally conformally flat, then the curvature tensor is written like (2.1). Thus, the
curvature tensor depends on the Ricci tensor. If we compute 2, we obtain

R(X, Y)= Z R(X,eiej,ex)R(Y, e, e, ex)

i7j7k

=Y (e e e (X k) — g es)ensen)}

i7j7k

+ ﬁ{P(eu ¢;)9(X; ex) = p(X; e5)g(es, ex)

+ p(X, ek)Q(eiv ej) - :0<6i7 €k>g(X7 ek‘)})

(n—2)(n— 1){9(% ej)g(Yier) — g(Y,ej)(es ex)}

{pn(es, €j)g(Y, ex) — p(Y, ej)g(ei, €k)

X (—

1
(n—2)
+p(Y,en)gles €;) — plei,ex)g(Yer)}).
Expanding each term, we get that
- 2 2T
R(X>Y) = 2{(n_4)p2(XaY)+ (n_1>

(n—2)
9(X.Y)}.

p(X,Y)

(n—Dllpll* — 7*
(n—1)
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Hence, the corresponding operator () j; is

2 -1 2 _ 2
r (=1l Tm},

2 2
%= g {99+ g

Now we compute its trace, which is || R||?,

Furthermore, (M, g) is R-Einstein if and only if R = g, then, we obtain the equation

1R
n

2 —4 272
(n—4)Q°+ ——Q, - <<" )||p||2+n(n—7_1)> 1d = 0. (2.3)

n—1 n

The eigenvalues of the Ricci operator must satisfy this equation, so we can only have two
different at most. Notice that not every solution of the equation has to be an eigenvalue in general.
Therefore, we can have just one or two, but in the first case, the metric would be Einstein, so we
need that they are exactly two.

If n = 4, then the equation becomes

T(Qp—ild) —0,

so either the metric is Einstein or it has vanishing scalar curvature.
In higher dimension, due to the Vieta formulae [27], if we have two different eigenvalues, we

have the following relation.
2T

(n—4)(n—1)
with A and p eigenvalues of (),. Since 7 = mA + (n — m)p, being m the multiplicity of A, we
get to

A p=—

2m+ (n—1)(n —4)
2(n—m)+ (n—1)(n—4)
This completes the proof. []

A

H=—

2.2.3 Geometric structure

Let us recall the Schouten tensor

]

In dimension three, a metric is locally conformally flat if and only if S is a Codazzi tensor.
Moreover, as we said in Remark 1.5, in higher dimension, if the metric is locally conformally
flat, then W = 0, so the Cotton tensor is also vanishing and thus S is Codazzi.
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Now, if we assume that the metric is also R-Einstein, then we have shown that either the
Ricci operator is rank one or it has two different eigenvalues, one a scalar multiple of the other.
Knowing this, we use the following result on Codazzi tensors given by Merton [55] to finish the
classification.

Theorem 2.5 ( [55]). Let (M, g) be a Riemannian manifold such that dimM > 3 and T a
Codazzi tensor on (M, g). Let X be an eigenfunction of T with eigenspace V. If dimVy > 2,
then VX is orthogonal to V. In addition, if T has exactly two different eigenfunctions \ and p
with dimVy < dimV),,, then

(i) M is locally a product if dimVy > 2.

(ii) M is locally a warped product with one-dimensional base and non-trivial warping function
if and only if

(ii.a) dimV, =1,
(ii.b) the eigenfunction p is not constant and V X is orthogonal to V,.

The next result includes all possibilities of geometric realizations for the algebraic structures
we obtained in the previous Lemma.

Lemma 2.6. Let (M",qg) be a R-Einstein locally conformally flat Riemannian manifold with
n # 4. Then

(i) If the Ricci eigenvalues \ and . have multiplicity greater than one, then (M, g) is locally
symmetric and locally isometric to a product N{"(c) x NJ*(—c).

(ii) If the Ricci curvature \ has multiplicity one, then (M, g) is locally isometric to a warped
product of the form R x ¢ F', where (F, gr) is of constant curvature.

Proof. First, we are focusing on the case of dimension greater than four.
Assume that dimM > 5. It follows from Lemma 2.4 that the scalar curvature is given by
(n—4)(n—1)(n —2m)
(n—4)(n—1)+2(n—m)

T=—

Also from the same Lemma, as the Ricci operator had two eigenvalues, we obtain that the
Schouten tensor has also two-distinct eigenvalues given by

2m —3n+4 N 2m+n —4 2m+n—4 -

\ = =
Adm —2n2 +6n —8 ' H

" Am—2n% + 6n—8 C2m—3n+4""

where m is the multiplicity of \. We call Vj to the eigenspace associated to \ (respectively with
ft). Assume that dimVy < dimV/;.
If dimV5 > 2 (and thus, V;; > 2), since the Schouten is a Codazzi tensor, then, by Theorem

2.5, (M, g) is locally a product and by Theorem 4 from [65], locally conformal flatness implies
that M = N, (c) x Na(—c), where N; (k) is a Riemannian manifold of constant sectional curvature
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k. Now let dimN; = m;. A Riemannian product M{" (¢1) X M3?(c2) of manifolds with constant
sectional curvature has a R operator

Ry 0

0 Ry )’

Moreover, if N (k) is a Riemannian manifold of constant sectional curvature, then its curvature
tensor is given by Ry ) = kRy, and thus, its R tensor is

R(X,Y) =k Ro(X,ei e, ex)Ro(Y, € €5, ) = 2k°(dimN — 1)g(X,Y),

i7j7k

where the {¢;} is an orthonormal frame. Therefore, a product M{" (c;) x Mj?(c,) is R-Einstein
if and only f
ci(ng — 1) = c3(ng — 1).

Consequently, if ¢; = —c,, then the product is R-Einstein if and only if m; = ms. This com-
pletes Assertion 1.(i)

Assume now that dimVy = 1 and dimV;; = n — 1. By Theorem 2.5, Vi is orthogonal to V}
and, as i is a scalar multiple of ), then VX is orthogonal to V. Moreover [i cannot be constant
because if it is, then ) is as well, and then, the Ricci operator would be parallel, implying that
the manifold would be O-curvature homogeneous. Takagi [63] showed that M/ = R x N(c) in
this situation, so this would imply that A = 0 and then the M would be flat. Thus, Theorem
2.5 shows that M is a warped product with one-dimensional base and, due to locally conformal
flatness [8], the fiber is of constant sectional curvature.

Assume now that dimM = 3. Then, by Lemma 2.3, the Ricci operator is of rank one
Q, = diag|x, 0, 0], for some function . Hence, the Schouten tensor has eigenvalues \ = %Fa and
= —i/i. Then, as S is Codazzi and dimV,, = 2, Vu is orthogonal to V, and as V) = —%V/L,
then V\ is also orthogonal to V,,. Moreover & is not a constant function unless it is vanishing
following the same idea as before. Takagi’s result would imply that M = R x N? and this would
be a contradiction with (), being of rank one. Then, by Theorem 2.5, (1, g) is locally a warped
product of the form R x ; F’ for some surface (£, gr).

Now, the warped product metric is in the conformal class of a product metric since dt ® dt +
f(t)2gr = f(t)*{f(t)"2dt ® dt + gr}. Hence the product metric f(t)2dt @ dt + g is locally
conformally flat and thus the corresponding Schouten tensor is Codazzi. Since dim F' = 2,
its Ricci operator satisfies Qf = %TF Id, and thus the Schouten tensor of the product manifold
(M, f(t)2dt®@dt+ gp) is given by S = 77" diag[—1, 1, 1]. Set X = 0, and take Y to be a vector
field on M tangent to F'. Now it follows from the condition Codazzi properties, (VxS)Y =
(Vy S)X, that the scalar curvature 77 is constant. Hence, since dimF = 2, the fibre (F, gr) is
of constant sectional curvature. This completes the proof. ]

What is left to determine is if the existence of a warped product which satisfies R-Einstein
condition is possible, so we need to give a description of the warping function. If we are able to
compute it, then Assertion 1.(ii.a) of Theorem 2.2 follows.

First, in order to do that, we compute R tensor of a generic warped product.
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Lemma 2.7. Let B X I’ be a warped product manifold with dim F' = d. Then
(i) R(X,Y)=RP(X,Y)+ % hy [Pg(X,Y).
(ii) R(X,V) =0.
e = h
(iii) R(U,V) = 5 RE (U, V) = AL 07 (0, V) 4 2186 4 (d - 1)y, v).
where X, Y, Z (resp., U, V, W) are lifts to M of vector fields on B (resp., vector fields on F).

Proof. Let {éy,...,é,} = {e1,...,€n_a,V1,...,04} be an orthonormal frame for B x; F,
where {ey,...,e,_q} is the lift of an orthonormal frame of (B, gr) (respectively {vy,...,v4}
and (F, gr)). Recall the curvature formulas for a general warped product from Proposition 1.16.
Take X,Y € X(B) and U,V € X(F'). Now we have different non-zero combinations of vectors
on the basis and the fibre. Thus, we have

R(X, Y) = Z R(X, €iy s 6]'1, ék)R(Y, €i1s ejl, ék)
+ R(X, Ui2, 6]'17 ék)R(Y, Ui2, €j1 s ék)
+ R(X7 Vigy Vjg,s ék)R(Yv Viyy Ujy,s ék)?

and that is

X7€j1)

ROXY) —RE0EY) + 3 FES R g, )

wg(hesSf(X)7 ék,)wg(h(ESSf(Y), €)

+
f f
5B 2d 2
where the indices i1,71 = 1,...,n—d, 2,50 =1,...,dand k=1,...,n

Using vectors in the fibre instead of in the basis we obtain

R<U7 V) = Z R(U7 €iys €y 5 ék)R<Vv €i1y € ék)
+ R(Ua €i15 Vjay ék)R(‘/u €i1yVjas ék)
+ R(Uv Viyy Vjy,s ék)R(‘/a Vigs Vjg,s ék)?
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and thus,
ROV = Z Hessf;eil, ejl)g(U, &) Hessf(feil, ejl)g(V, &)
Hessfj(ceil, ék)g(U, Uj2>Hessf;ez~1, ék)g(V, o))

+ <RF(U, Viy, Ujy, €k) — vajstRo(U, viz,,vh,ék))

X (RF(V, Viy, Ujy, €k) — va—éano(V, viz,vh,ék)) :
which is

R(U,V) :%RF(U, V) — 4”?{”2,)1?((], V)
+ 2{H}};2H2 + (d — 1)va—‘§H4}g(U, V).

Lastly, R(X,U) = 0 for every X and U due to the warped product curvature. O

Lemma 2.8. A warped product I x; N with fibre N(c) of constant sectional curvature c is
R-Einstein if and only if it is homothetic to one of the following

(i) f)*=t>—1,ifc=1,and T = (1, +00),
(ii) f(t)>=1t,ifc=0,and T = (0, +00),
(iii) f(t)>’=1—1t% ifc=—1,and T = (-0, 1).

Proof. Let (N, gn) be an (n — 1)-dimensional Riemannian manifold with constant sectional
curvature c. Then py = ¢(n — 2)gy and R{V = 2¢%(n — 2)gn. A direct application of Lemma
2.7 shows that a manifold M =7 x ¢ N is R-Einstein if and only if

where we used that g(U, V) = f2gn (U, V). From this, one gets
(F) = 2" = 2e(f) + ¢ =,

which can be written as

(f/2_ff//_c) (f'2+ff”—c):0.
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On the one hand, a standard calculation shows that the solutions of f/(¢)*— f(t) f"(t) —c = 0 are
given by f(t) = & (e~ 0720 — Leee"™HD) if ¢ £ 0 and f(t) = ae if ¢ = 0 for constants
a,b € R. In both situations, the metric obtained is Einstein, so we discard these cases. On the
other hand, the solutions for f'(¢)? + f(¢)f”(t) — ¢ = 0, are of the form

B \/02(b + t)2 — e2a

The Ricci operator of Z x ¢ N satisfies
Q, = h(t) diag|(n — 1), —(n — 3),7:}, —(n - 3)],
where h(t) = (L> ifc# 0and h(t) =

, forc#0, and f(t) =aVv2t—0>b, for c¢=0.

T2 (b0 = 2t) if ¢ = 0. Now Assertions 1.(ii.a.1) and

1.(ii.a.3) in Theorem 2.2 follows after rescaling. O]

2.3 R|p|-Einstein locally conformally flat metrics

We start, as in the previous section, with the three-dimensional case. We study the algebraic
structure of the metric before its geometric one, following previous section’s procedure. We
obtain an algebraic classification and then we study the geometric realizability.

2.3.1 Three-dimensional case
We proceed as in the previous section. We take an orthonormal basis for the Ricci operator and
try to figure out its structure, which is given in the next statement.

Lemma 2.9. Let (M, g) be a three-dimensional Riemannian manifold. Then it is R|p|-Einstein
if and only if its Ricci operator is given by

A0 0
Q,=(0 X 0
0 0 2\

Proof. Let {e1, ey, €3} be an orthonormal frame of eigenvectors of the Ricci operator. We are
computing R[p| tensor. First of all, since p(e;, e;) = 0if i # j, Qgj, operator is diagonal. If we
compute its components, we obtain

Rlpl(ea,e0) = Z R(e;, eq, e €i)p(ei, €;)

—Z “{9(eas ea)glenes) = gles ea)gleas I
+ {p(€q,a)g(€i, €) — plei, ea)g(€q, €;)
+ plea; ea)gle, ei) — plei, ea)g(eas €i) ) A;

3T 72
=224 ), 2 11d.
2+ e Lol - 5
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Now, as we have a diagonal tensor, it is a multiple of the metric if and only if R[p|na—R|[p|ss = 0,
for all o, 5. Thus, we obtain the equation

(Ao — Ag) (—4(Xa + Ag) +37) = 0.

From this system, we obtain that either (), is a multiple of the metric, then (17, g) is an Einstein
manifold, or ), = diag(\, A, 2)). Il

2.3.2 Higher-dimensional case

Let (M, g) be a n-dimensional locally conformally flat Riemannian manifold with n > 4. The
algebraic structure for the Ricci operator is given in the next result.

Lemma 2.10. A n-dimensional locally conformally flat Riemannian manifold with n > 4 is

R|pl|-Einstein if and only if the Ricci operator has exactly two-distinct eigenvalues \ and |1 =
2(n—1)

m/\ where m is the multiplicity of .

Proof. Let {ey,...,e,} be an orthonormal frame of Ricci eigenvectors. As M is locally confor-
mally flat, then the curvature tensor is as in Equation (2.1). Therefore, if we compute the R[p]
tensor, we obtain that

R[p](X,Y) :ZR ei, X, Y, e;)p(ei, ;)

o Z n _ 2 1){9(X7 Y)g(eia ej) - g(ei, Y)g(X, ej)}p(ei, ej)

+ #{p(X, Y)g(ei,ej) — ples, Y)g(X, €))

(n=2)
p(X, Y)g<€i7ej> - p(€i7y)g(X7 ej)})p(eivej)v
which is,
RIAXY) = = o5 (XY )+ oy ey (X0Y)
gl — g by,
and thus,
2 9 1 2 ’
o =G g% (e e
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Now we want to see when this tensor is a multiply of the identity, so we need that

2
P
Qi) — ”n” Id = 0.

We obtain the equation

2
QP+ Q+{L d _2)}Id:0. 2.4)

= lol? -
(n—2) (n—1)(n—2) nn—2)"" T D

Thus, since this equation needs to be satisfied by every eigenvalue, then we can have two at most.
If we have just one, then the manifold would be Einstein, then, we have exactly two. Moreover,
using the Vieta’s Formulae, one has that

nr
A S 2.5
+p 2 1)’ (2.5)
and, since 7 = mA + (n — m)u, both eigenvalues are related by
2(n—1) —mn
= . 2.6
a n(n—m)—2(n—1) 26)
]

2.3.3 Geometric structure

As we have two different eigenvalues for the Ricci operator, then the Schouten tensor has also
two different. Consequently, we can apply the Merton’s result and classify the metric.

Lemma 2.11. Let (M", g) be a R|p|-Einstein locally conformally flat Riemannian manifold.
Then it is locally symmetric and locally isometric to a product N{"(c) x NJ*(—c).

Proof. As the Schouten tensor is Codazzi and it has two eigenvalues, we can apply again Theo-
rem 2.5. Now, if dim V5 > 2, then M is locally a product and due to locally conformal flatness it
is a product M™ (¢) x M™(—c). One can easily see that a manifold /N (k) of constant sectional
curvature has R[p] tensor as

Rp)(X,Y) = kRo(e;, X, Y, ¢j)k(n — 1)g(ei, ¢;) = k*(n — 1)’9(X,Y),

1,J

where {ey,...,e,} is an orthonormal frame. If we have a product, then the R[p] tensor of the
whole manifolds splits into a diagonal depending on the respective tensors of each term, so if
N™{(cq) x N™(cq), itis R[p]-Einstein if and only if

t(n1 —1)* = 3(ny — 1)%,

and, as ¢; = —c», then ny = no.
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If dim V5 = 1, then Vj is orthogonal to Vj, but, as fi is a multiple of ), then Vi is also
orthogonal to V5. Besides, /i is not constant. Otherwise, A would be constant as well, which
would imply that A and p would be constant. Hence we would have a locally conformally flat
manifold with constant Ricci curvatures, which is curvature homogeneous, and by Takagi [63], it
is locally symmetric. Then M splits as a product of the form R x N (c), whose factors corresponds
to the Ricci curvatures, so A would be vanishing and so ;4 and M would be flat. Thus we
have a warped product and due to locally conformal flatness, the fibre has to be of constant
sectional curvature. Three-dimensional case follows as in the proof for the R-Einstein condition
but changing the algebraic structure of that case for the one in here.

Now, if we are in a warped product R x s N(c), then, by Lemma 1.16 the Ricci operator is
written like

"

Q) =— (n—1)=0,

f
o) = ((-25 - -5 - D) x

We had that the Ricci eigenvalues were related by A = (n — 1)y, and then, we obtain the
relation

fl2_0:0a

which only have solution if ¢ > 0, and in that case, it is a linear function, what gives Einstein
metrics. Therefore we cannot have R|[p|-Einstein warped products in this way, so this completes
the proof. ]

Remark 2.12. This last argument to obtain the differential equation for the warping function does
also work in the R-Einstein case.

2.4 p-Einstein locally conformally flat metrics

In the field of locally conformally flat metrics, the Ricci tensor has no specific representation in
terms of other algebraic objects as the curvature tensor does. Moreover, the respective operator
for p, ()5, taking a orthonormal basis for the Ricci tensor, is the square of the Ricci operator.
Thus, we have not much information whenever we try to get an equation to study its algebraic
structure. Nonetheless, this is enough to get a classification.

2.4.1 Algebraic structure

In a locally conformally flat manifold, while the curvature tensor is determined by the Ricci one,
this last one does not have any special property, so we are studying it in general dimension. Its
algebraic structure is given by the following.
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Lemma 2.13. Let (M, g) be a n-dimensional Riemannian manifold. Then it is p-Einstein if and
only if the Ricci operator has two eigenvalues related by |1 = —\.

2 . .
Proof. We want that (); = Han Id, and since ()5 = Q%, we have the equation

I”

Id = 0.

2 HP
Q, —

n

Again, we can have just two eigenvalues. Now check that there is no coefficient with degree
one in the equation. Then, by Vietta’s Formula, we have that A + ;1 = 0, being A and p the
eigenvalues of the Ricci operator. [

2.4.2 Geometric structure

We use the same arguments to get a full classification for p-Einstein condition. In the following
result we stablish the geometric structure of manifolds satisfying this condition.

Theorem 2.14. A locally conformally flat Riemannian manifold is p-Einstein if and only if
N™(c) x N™(—c) or a warped product X s R"~* with

() = (2(”— 1) (Gt+b))2<n"1)7

n

with t € (=2, +00) and a,b € R.
Proof. Since we assume that the manifold is locally conformally flat, then the Schouten tensor is
Codazzi, and since we have two different Ricci eigenvalues, A and ;x = — A, the Schouten tensor
has two different eigenvalues as well. Therefore, applying Merton’s result, if dim V), > 2 then
we have a product N™(¢) x N"2(—c) and the condition to a product of this kind to be p-Einstein
is that

(i —1)* = 3(ny — 1)%,

SO N1 = Na.
If dim V), = 1, then we have a warped product R x ; N(c) using the same arguments as in
previous cases, and as we know that © = —\, we can use again Lemma 1.16 and obtain the

differential equation
nff"+n—2)f*—(n—-2)c=0.

Now, take derivatives on both sides to get

nff”/—i- (371—4>f/f” —0.

Since f and f” cannot be zero as we would have flat metrics, then we have

(4—3n)£’:f_’”
n f f//'
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Next, we integrate both parts of the equations and get

M1nf:1nf"+K.
n

If we take the exponentials, the equations becomes

7(4_713") — er//7
and now, multiplying both sides by 2/,
_ (4—3n)
2¢ Kf/fin ZQfIfH-

We have standard integrals on both parts, so we get

n 4—2n

K = = f?
4 — an .
where K = 2¢~ . Finally, we isolate f’
~ 2—n
flf=Kf+,
3 _ 3
where K = (K 1 n2 ) . The solution for this last differential equation is
—2n

2(717:1)

fo) = 2(n—1) (f(t + a) |

n

where a € R. Thus, we obtain a solution for the derivative of the original equation. Now, if some
function is a solution for the original equation, it is a solutions for its derivative, and as we know
the solution for this last one, the solution of the original equation needs to be of this form. So if
we put this f in the original equation, we get that it is a solution for it if and only if

(n—2)c=0.

Therefore, we are in a warped product of the form R x ; R"~! and we have no other possibility
here. [

2.5 Critical metrics for the functionals S and F;

In this section, we stablish when the metrics obtained along the chapter are critical for the func-
tionals S = [, Tdvoly and F; = [, {||p||*> + tm*}dvol,.
First of all, Besse showed in [5] that a metric is S-critical if and only if
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AT T
2 (HessT — Tg) — 27 (p — Zg) =0, 2.7)

and it is F;-critical if and only if

2
Hess, — Ap+ 2t (HessT — %g) -2 (R[p] — @g) —2tr (p — ig) =0, (2.8)
witht € R.

We study the four-dimensional case because all curvature functionals are equivalent to this
two. The case where (M, g) is N*(c) x N?(—c) is S-critical and F;-critical for all ¢ € R
since it has vanishing scalar curvature, then S is identically zero. Moreover, since this product
fulfilled all weakly-Einstein conditions, then Equation (2.8) reduces to —Ap = 0, but p =
diaglc, ¢, —¢, —c|, with ¢ € R, so it is vanishing. Later on, when we study each condition, we
will omit this example.

Theorem 2.15. Let (M, g) be a four-dimensional locally conformally flat weakly-Einstein Rie-
mannian manifold. Then

1. If (M, g) is R-Einstein, then it is S-critical and F;-critical if and only if
2
p
ap= -2 (- 12y ).

2. If (M, g) is p-Einstein, then it is F_1-critical.

1
3

Proof. In order to study (2.7) and (2.8), we define the tensors S and F as the (0,2)-tensor field
given by the left-hand side of both equations, i.e., the (0, 2)-tensor field associated to each gradi-
ent, respectively. Thus, a metric is S-critical if and only if S is vanishing (respectively, J;-critical
and F).

First, if (M, g) is four-dimensional and R-Einstein, on the one hand, it has vanishing scalar
curvature, so it is trivially S-critical. On the other hand,

P —ap—2 (r - 128),

but the only condition the R-Einstein property gave was having vanishing scalar curvature, which
admit many different structures for the Ricci tensor, so we just can say that it is F;-critical if and

only if Ap = —2 (R[p] - Wg).
If (M, g) is p-Einstein, then it is a warped product Z X ; R* with warping function f(s) =
2

(M) °In this situation, the first component of the tensor S is

12a*

T B a)”



2.5 Critical metrics for the functionals S and F;

39

then, it is vanishing if and only if @ = 0, but in that case f is linear, and thus, M is Einstein.
The non-zero components of F are given by

4a*(3t + 1)

Fiu = KFop = KFog = KFu = —= 00

ol

2
where K = —2(3—)4. Thus, M is F;-critical for ¢t = —%.
(as+b)3

If (M, g) is R|p]-Einstein, then it is M?(c) x M?(—c), which has been studied already.

]

Remark 2.16. If (M*, g) is a R-Einstein warped product Z x ; N3(c), with warping function
£/ c2(b+s)2—e2a . . . .
f(s) =+t>——F——ifc#0or f(s) = av2s — bif c = 0, which were the warping functions

given in Theorem 2.2, then it is F;-critical.






Chapter 3
Weakly-Einstein hypersurfaces in real space

forms

In this chapter, we classify weakly-Einstein metrics in hypersurfaces. In order to do that, we
work with the shape operator, which is Codazzi when the ambient space is a real space form.
Some results of this chapter can be seen in [28].

3.1 Introduction

Hypersurfaces theory is well known topic in differential geometry. In the first chapter, we in-
troduced some topics about it, showing how the connection and the curvature tensor were con-
structed and their dependence on the ambient space. Specifically, we show that the curvature
tensor of a hypersurface in a space form, i.e, a complete simply connected Riemannian manifold
with constant sectional curvature, was given by

R(X,Y,Z,T) = cRo(X,Y,Z,T) + g(SY, 2)9(SX,T) — g(§X, Z)g(SY, T),

where S is the shape operator, which is given as the operator related to the second fundamental
form I1(X,Y) = g(SX,Y).

Recall that we have three possibilities for a real space form: it is either R**1, S**1 or H" !
depending on if the constant sectional curvature is vanishing or +1 [46]. From now on, whenever
we do not specify any of them, we denote these as Q7! where c is its sectional curvature.

Since the curvature tensor only depends on the shape operator, we can work easily with it
as in the locally conformally flat case and try to achieve an algebraic structure for the principal
curvatures which allows us to classify the geometry of weakly-Einstein hypersurfaces.

The purpose of this chapter is similar to the previous one. We assume that some of the
weakly-Einstein condition is fulfilled, we compute an equation for the principal curvatures and
then we see if that structure can realize as any hypersurface. Unfortunately, this case give us
much more casuistic and more difficult equations, so we work in general dimension n whenever
itis possible, but some results are given for dimension four, which was where the original weakly-
Einstein problem came from.

The aim of this chapter is proving the following.

Theorem 3.1. Let (M, g) be a hypersurface in a space form Q"+, with ¢ = 0,41, with two
principal curvatures. If (M, g) is weakly-Einstein, then it is a product of two spheres, a product
of a sphere and a hyperbolic space or a rotation hypersurface over some profile curve.

41
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Notice that this is not a complete classification, but a starting point. Depending on the space
form we take, we have different results. In R"*!, we have a complete classification for the R-
Einstein condition, whereas in the corresponding R[p] and p-Einstein ones, we just have partial
results depending on the dimension. Analogously, in S"*! and H""!, the same occurs with each
condition since the casuistic is much more harder to handle. The result given is just a summary
of the examples obtained assuming just two different principal curvatures, but the family of
weakly-Einstein hypersurfaces may be larger considering a higher number of these. However,
we are able to determine that in some cases there exists no examples. Details on this fact are
given along the chapter.

Firstly, we introduce some topics about rotation hypersurfaces. These will help us in further
classifications.

3.1.1 Rotation hypersurfaces

Rotation hypersurfaces are a generalization of surfaces of revolution. The main idea of their
construction is taking a curve and rotating it using the action of a group. The different copies of
the curve are called parallels and the curve made by the action is called meridian. All the results
concerning to this section are shown in the work of do Carmo and Dajczer [13].

Let L" be the set of n-tuples (z1,...,x,), P* the k-dimensional subspace of L" passing
through the origin and O(P*) the set of orthogonal transformations of L™ that leaves P* fixed.
One can defines a rotation hypersurfaces as follows.

Choose P? C P? such that P> N QI = (. Let C be a regular curve in P? N Q2" that
does not meet P?. The orbit of C' under the action of O(P?) is called a rotation hypersurface
M C Q! generated by C around P2.

The analogous example of a surface of revolution would be if we take a curve in the plane
ZY (which plays the role of P?) that does not intersect axis Z (respectively, P?) and rotate the
curve around it.

The parametrizations of these hypersurfaces are given by do Carmo and Dajczer in [13].
They depend on the ambient space and on the type of subspace P*. Furthermore, in their work,
they also give some sufficient conditions for a hypersurface to be a rotation one.

Theorem 3.2 ( [13]). Let M™ — Q"' be an arbitrary hypersurface in a real space form with
n > 3. Assume that its principal curvatures satisfy kK1 = -+ = Kp_1 = A\, K, = p = p(A) and
A # u. Then M is contained in a rotation hypersurface.

As a consequence of this result we have the following.

Corollary 3.3 ( [13]). Let M", with n > 4, be a conformally flat hypersurface into a real space
form. If it has two different principal curvatures \ with multiplicity n — 1 and = (). Then
M is contained in a rotation hypersurface.

Remark 3.4. Rotation surfaces can be seen as a warped product. If we take a plane curve
(f(v),0,g(v)) and we rotate it over the 7 axis, we obtain a parametrization

X(v,0) = (f(v)cost, f(v)sinb, g(v)),
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Compute now the metric tensor, obtaining that ¢ = dt*> + f?d6?, which is a warped product
metric. We can always take a plane curve like this since we can take rigid motion and move the
curve into other plane. This shows that a rotation hypersurface may be seen as a warped product
I x,, Q"~1, where x is the first coordinate of the profile curve as seen in [13].

3.2 Algebraic structure

3.2.1 R-Einstein condition

Let M™ be a hypersurface in Q"*!. We consider R-Einstein condition on ). We recall Gauss
equation

RYM(X,Y,Z,V) = cR (X,Y,Z,V) + g(SY, Z)g(SX,V) — g(SX, Z)g(SY, V).

Now we shall compute the R tensor field in terms of the shape operator.

R(X,)Y) = Z R(X,e;,ej,er)R(Y, e, €5, ex),

i7j7k

= Z{cg(ei, e;)9(X, er) —cg(X,e;)g(ei, er)}

F g(Sere)g(SX.ex) — g(SX.ey)gleren)}
x> f{egles e)g(Yier) — cg(Vieg)gles ex)}

/L‘?j)k

+ 9(Se;, ej)g(SY, ex) — 9(SY, €j>g(€ia er)}-

Therefore we have

R(X,Y) =2c%(n —1)g(X,Y) + 4c(trS)g(SX,Y)
+ (2trS? — 4¢)g(S?X,Y) — 29(S*X,Y).

Then the (1, 1)-tensor field @ 3 is given by
Qp = 2(c*(n — )Id + 2¢(trS)S + (trS* — 2¢)8* — S%),
and since || R||* = ¢trQ 3, one has that

|R|? =2(c*n(n — 1) + 2c(trS)? + (trS* — 2¢)trS* — trS*).

- ~ 2
Then, as M is R-FEinstein if and only if R = Hi” g, its principal curvatures must satisfy the
equation

1
S = (ISI° = 20)8” = (2neH)S = —{IS*|* = (ISI* = 20)[IS|I* — 2¢(nH)*}1d = 0.
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where H = + tr S is the mean curvature, [|S||? = trS? is the length of the shape operator and
|S8%]|? = tr S*.

3.2.2 R][p]-Einstein condition
Assume now that M is R[p|-Einstein and proceed in the same way. In this case, we have that
p(X.Y)=> R(e;, X,Y,e;) = c(n— 1)g(X,Y) + g(SX,Y)nH — g(S’X,Y),
Y]

where {ey,...,e,} is an orthonormal frame. Thus, we have

R[p](X, Y) = Z R(eia X, Y> ej)p(eia ej)

= Z{cg(X, Y)g(ei e;) —cgle, Y)g(X, e5)}

+g(SX,Y)g(Seise) — g(Se Vgl )
x {c(n —1)g(ei, ej) + g(Sei, e;)nH — g(S?e;, e5)}.

We obtain

Qrp =S — (tr8)S® — c(n — 2)8% + (c(n — 2) tr S + tr S tr(S?) — tr(S*))S
+c(e(n —1)* + (tr 8)* — tr(8?)),

and as tr Qg = ||p|/*, then

IOIE L 7) — 21 (S") + (12 8)2 18(8%) — 2e(n — 1)((1r)* — 1x(S?)
+ A (n —1)%n).

Finally, M is R|p|-Einstein if and only if its principal curvatures satisfies the equation

St — (nH)S? — c¢(n — 2)8% + (c(n — 2)nH + nH||S|]* — tr(S*))S
1

+ ﬁ(_HS2H2 +2nH tr(8*) — (nH)?||S|]* + c¢(n — 2)||S||* — c¢(n — 2)(nH)?) = 0.
3.2.3 p-Einstein condition

As we have computed ||p[|? in the previous section, the only condition we have left is j-Einstein
one. Thus,
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pIXY) =D p(X eple:Y)
= Z{c(n —1)g(X,e) + 9(SX,eynH — 9(S8%X, e}
x {c(n—1)g(Y,e:) + g(SY,eynH — g(S°Y, e;) }.

Consequently, we obtain

Qs =8* —2(tr 8)S® + (tr(8)? — 2¢(n — 1))S* + 2ctr S(n — 1)S + (n — 1)?,

hence, M is p-Einstein if and only if the following equation is satisfied

S* —2(nH)S* + ((nH)* — 2¢(n — 1))S* + 2cnH(n — 1)S
%(I|S2H2 = 2nH tx(8°) + (nH)*||S*|[*2¢(n — 1)((nH)* - [|8%(1*)) = 0.

3.3 Geometrical structure

From the previous section, we have that each weakly-Einstein condition is satisfied if and only if
the principal curvatures satisfies an equation of degree four. Recall that every principal curvature
must satisfy the equation, but not every solution of the equation may be a principal curvature as
the coefficients of it depends on different terms involving the shape operator. Thus, we know
that, at most, we can have four different eigenvalues for each one, but we have to think about the
possibilities when we have just two or three (if we have one, then the metric is Einstein).

This adds much complexity to the problem that one may think at first. If we assume that we
have four different eigenvalues, then we have a lot of different possibilities with the multiplicities
of each one, being them simple or greater than one. Adding four different multiplicities to the
problem adds four more unknowns to the equation, and thus, it becomes quite hard to manage.

Another possibility is classifying up to dimension. If we are in dimension four, the different
casuistic for the multiplicities reduces to just four cases. Therefore, we are classifying cases of
three and four different principal curvatures for this dimension, whereas the case of two different
can be done in general dimension as the shape operator of hypersurfaces in real space forms is
Codazzi (Example 1.17-2), and since we have two eigenvalues, then we can use Merton’s result
(Theorem 2.5) to classify the submanifold.

We split up this problem in different parts. The first assumption depends on the space form,
the second one, on the weakly-Einstein condition and the third one, on the number of principal
curvatures.
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3.3.1 Hypersurfaces in R""!

Assume now that ¢ = 0. As we have said above, we work in general dimension whenever is
possible and we reduce it to four in order to simplify the problem when needed.

R-Einstein

In the next result, we see that this kind of hypersurface are in the same family as the examples
given in the previous chapter.

Lemma 3.5. Let M" — R"*! be a hypersurface. Then, M is R-Einstein if and only if it is locally
isometric to a warped product given in Theorem 2.2. Moreover, M is a rotation hypersurface.

Proof. We need that R(e;, e;) — R(ej, e;) = 0, with i # j, then we obtain the equation

(N = A+ M) ((my — DAZ + (my = AT+ > mhy) =0,
i#k#j

where m,, is the multiplicity of the principal curvature \,. Thus, this system is only fulfilled
if § has rank one, which would give us an Einstein hypersurfaces, or if we have two principal
curvatures, one opposite of each other, i.e,

S = diag[\, ., A=A T —AL

Now, we apply Merton’s result as the shape operator of a hypersurface into a space form is
Codazzi. If we have both principal curvatures with multiplicity greater that two (m > 2), then
the gradient of one eigenfunction is orthogonal to its own eigenspace, and as both are multiple
of each other, then it is also perpendicular to the other one. Therefore, the only way that this
can occur is that the gradient of each principal curvatures is zero and then they are constant
eigenfunctions. Therefore we are in an isoparametric hypersurface.

In [15], Cecil and Ryan summarize a classification of isoparametric hypersurfaces in each
real space form. Regarding the Euclidean space, a isoparametric hypersurface with two principal
curvatures is an open subset of a spherical cylinder S™ x R™~"™, but this kind of hypersurface has
shape operator of the form

S = diag[A, .., k, 0,77 0],

which is not the structure we have.

On the other hand, if we have one principal curvature with multiplicity one, then, a result
by Nishikawa and Maeda in [58] ensure that the hypersurface is locally conformally flat. Then,
because of Theorem 2.2 in chapter two, the hypersurface is locally isometric to a warped product
with an specific non-trivial warping function. Moreover, by Corollary 3.3, we have a rotation
hypersurface. [
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R|[p|-Einstein

In contrast with the previous case, this one is much harder to study in general dimension n. Thus,
we only work in this case when we assume that we have two principal curvatures, whereas in the
other two cases we are working in dimension four.

First, assume that we have two different principal curvatures, call them A and .

Lemma 3.6. There is no R[pl|-Einstein hypersurface M™ — R™" with two different principal
curvatures.

Proof. The condition R|[p|(e;, e;) — R|p](ej, ;) = 0 give us the equation

(Am — 1) + pu(n = m — 1)) (X2(m = 1) + 1220 — m — 1)) = 0,

where m is the multiplicity of .
If m > 2, since A\ and p are real eigenfunctions, then this only vanishes if the first bracket
does, then we have that
n—m-—1
A= —p——
m—1
Using Merton’s result, we can only have an isoparametric hypersurface in the Euclidean space,
so it has to be a open subset of a cylinder S x R"~™, which has a different shape operator
structure. Therefore, this cannot happen. If m = 1, then ; = 0 and thus we obtain an Einstein

example. L

Remark 3.7. We can also proof the case where m = 1 by Nishikawa and Maeda’s work [58],
since the hypersurface is locally conformally flat and there were no examples of R[p]-Einstein in
that field, as we have seen in the previous chapter.

Now, once we have analysed the case with two principal curvatures, we consider smaller
dimension to try to simplify the problem. The advantage of working in dimension four is that,
knowing that we have four different principal curvatures at most, then we can only have two
possible configurations for the shape operator: either we have three different principal curvatures
with § = diag[\, A, u, y] or four different with S = diag[A, i, 7, d]. Next Lemma shows that
there are no examples in this setting

Lemma 3.8. There is no four-dimensional R|p|-Einstein hypersurface M* — R> with three or
four different principal curvatures.

Proof. Assume now that we have three principal curvatures in dimension four, call them A, p
and 7.

Now we work with the condition R[p] — ”’)4”2

g = 0. This gives us the system of equations

V(N = 1) = 29N+ N (N )
Y2 (=32 4 20+ p?) — 29N (A2 — A+ p?) + A2 (=A% + 2 + p?)
VEN = 1) 4+ 29X (N2 + A+ p2) + A2 (= (A2 + 20p + 3p?))

0
0
0
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With these three polynomials, we construct a Grobner basis G C R\, p, ], with respect to
the lexicographic order, in order to solve it. After a thorough analysis of G, we see that the
polynomial

Ay =) (P = v+ A2+ )

is in the basis, and since every solution of the system is also a solution of the basis, then it has
to be vanishing. If A = 0, then we obtain from the first polynomial of the system that v2u? = 0,
which is not possible since A # v # u # \. Therefore, we need that v = ’\(/\)‘TZ”) If we add this

to construct a new basis G; = G U {y(A — u) — A(A + )}, we have that

PV ((r+ 1) +29% + 200°)
is in the basis. The second term only vanishes if ¥ = p = 0, which is not possible, so we need that
v = 0, but in that case, we have that the first polynomial of the system becomes A\?(\% + p?) = 0,
and then we have no real solution different from zero.
If we assume now four different principal curvatures (A, p, v and 9) and the same condition,
we obtain the system

VMG + A+ 1) + PNy + A+ ) + AP (y+ 5+ ) = 1ak = ¢
V(8 4 A+ 1) + 82y + A+ )+ Ny + 6+ p) — 12— ¢
YOy + A+ 1) + Ny + 0+ )+ Py + 0+ 0 = e =0 7
V(84 A4 1) + SN2y + 6+ p) + 0p2(y + 5+ A) — L2 — ¢

where

1
lolP* =7 (=7 + A+ 1)° = * (v + A+ 1)° = Ny + 0+ p)°
+ 2 (—(v+3+N)?))

Now, in order to solve this system, we construct a Grobner basis G C R[\, u, v, d] with respect
to the lexicographic order with the system. After a deep analysis of the basis, we find that the
polynomial

(v = 0)(y = 1)(8 = ) (¥%8 +70% + VA + YA + A + u(y* + 76 + %))

is in G. Since every principal curvature is different from each other, then we need that the last
bracket vanishes, and so we have that

R e e A R LA R
Y2+ 6+ 62 '
Now we take this value and make a new basis to obtain that the polynomial

(7 +0) (7207 + 720X +¥° N2 + 6% X + 70N° + 6°)?)
Y2+ y0 + 62
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is in the basis. The second bracket only vanishes if

04007+ V=207 (7 4 0)° + 297 + 26%)
N 2(y2+ 0+ 62) ’

but this is a complex number unless v = 0 or § = 0, but in both cases A = 0. Then we necessarily
need that v = —¢. In that case, we obtain that

(6 = A5+ N)(0% + A\?)
is in the basis, but if any of the brackets is zero, then not every principal curvature is different,
then we cannot have any solution for this system. ]
p-Einstein

This part follows as before. First assume two principal curvatures in a n-dimensional hypersur-
face and then reduce the dimension to four and assume that we have three and four different
principal curvatures.

Lemma 3.9. Let M" — R"" be a hypersurface with two principal curvatures. If M is p-
Einstein, then it is locally isometric to a warped product given in Theorem 2.2. Moreover, M is
extrinsically a rotation hypersurface.

Proof. Assume that we have two principal curvatures. The condition p(e;, e;) — p(e;, e;) = 0,
when i # j, gives the equation

N((m = DA+ (n = m)p)® = p*(mA+ (n —m = 1)p)* =0,

where m is the multiplicity of A. If m > 2, then the solutions of the equation are

+v/(n—2m)2+4(n—1)—n
2(m —1) '

n—m-—1

A=———"" " and A:u<

m—1

Thus, one principal curvature is a multiple of the other and with the same argument as in the
previous proofs, the hypersurface is isoparametric and then it has to be a cylinder S™ x R"™™,
which is not possible.

If m = 1, by Nishikawa and Maeda, the hypersurface is locally conformally flat, and thus,
the hypersurface is one of the warped products given in Theorem 2.2. Moreover, the equation
becomes

pA = p)(n = 2)(n(A + 1) = 21) = 0,
and thus A = —"7_2 . By Corollary 3.3, is a rotation hypersurface. U

Lemma 3.10. There is no four-dimensional p-Einstein hypersurface M* — R® with three or
four different principal curvatures.
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Proof. Assume now that we have three principal curvatures in dimension four, call them A, p

and . Now condition p — % g = 0 gives us the system of equations
—2A + p)? + 2N (Y + A+ p)? P (— (v +20)%) =0
RN+ p)? =20 (v + A+ p)? + 3P (v +20)2 =0

3Y2(2A + ) = 2X%(y + A+ ) + p? (= (7 +24)%) = 0

Make a Grobner basis with these polynomials and obtain that

Ay = 1) (YA + e+ Ap)

is in the basis. As this has to vanish, then or A = 0 or v = ﬁ/’f If the first happens, then the first

polynomial of the system becomes v2:2 = 0, but all principal curvatures are different, so A # 0.
If the second happens, then the first polynomial becomes

2X3(A2 4 A — 2u?)
A+

which only vanishes if A\ = pu, which is not possible, or if A = —2u and in that case A = ~, so
we have no possible solution for this system.
Now, if we assume that we have four different principal curvatures, the we obtain

=0,

A+ ) =Py A+ ) 3N (Y I+ p)? P (—(v I+ N)?) =
O+ A+ )2 =P+ A+ p)? = Ny + 0+ p)? + 3P (v + 6+ N)? =
3VHE+ A+ )2 = (v + A+ )2 = N (v + 5+ )2+ p? (—(v+ 0+ N)?) =
A+ A+ )2+ 32 (v A+ )P = Ny + 0+ p)? + i (—(v+ 6+ A)?) =

Again we are solving the system using Grobner basis with respect to to the lexicographic order.
We have that the polynomial

(v = )N+ ) (296 + YA+ yp + 6N + op),

—MTT’(\S”’\. In the first case, if we make a new basis

with this polynomial, then we obtain that ( + §)u? is in the basis, so 7 = —4 because if y = 0
then © = A = 0. If we have this setting, then the condition reduces to only one polynomial,
which is 2(y* — A*) = 0, which gives no possible solutions.

If o = —MT%, we make a new basis and find that

is in the basis. So either A = —p or p =

Y8 (72 + 0%) (V2 4+ 496 + 62) (A + (6 + X))
(v +9)?
is in the basis. Here we have several possibilities which we analyse separately. We can discard
v = 0 and 0 = O since, in that case, 4 = —\ and we are in the previous case. If the second
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bracket vanishes then § = (—2 4 1/3)7, and with this setting the first equation of the system
becomes

N (521 + 296v/3) g

18 ’
which is not possible because if v = 0 then § = 0 and this cannot happen.
If the last bracket is zero, then A = _5%' Making a new basis with this term we obtain

that 4263 is in the basis, which only vanishes if one of this is zero, but that implies that A = 0.
Therefore, as we have analysed all possibilities, we have no solution.
]

3.3.2 Hypersurfaces in S"*! and H" !

In this section we assume that ¢> = 1. Now equations are harder as the term involving the
curvature does not vanish and much more coefficients appear in the equations.

R-Einstein

First, we study the case of two different principal curvatures in a n-dimensional hypersurface and
then we take smaller dimension in order to get particular results in the four-dimensional case.

Lemma 3.11. Let M" — Q"*', with ¢ = 1, be a R-Einstein hypersurface with two different
principal curvatures. Then, it is either a product of two spheres, a product of a hyperbolic space
and a sphere or a rotation hypersurface over a curve.

Proof. Firstly, assume that both principal curvatures, A and p, have multiplicity m and n — m
respectively, both greater than two. The R-Einstein tensor gives the equation

AP(m— 1)+ Np(m —1) + X (2¢(m — 1) + p*(n —m — 1))
+ 2 (n—m —1) + 2cu(n —m — 1) = 0.

Thus A\ and p are related, and since the shape operator is Codazzi in space forms, then the
hypersurface is isoparametric. The summary given by Cecil and Ryan states that, in S"*!, an
isoparametric hypersurface has to be a product of two spheres S™ (sin =) x S"~™ (cos™2 )
[15], where sin™>¢ and cos™? 0 are the sectional curvature of each sphere, with § € (0,%).
Recall that a product N™ (¢;) x N"(c,) is R-Einstein if and only if ¢?(n; — 1) = c3(n; — 1).
Then we need that

4 m—1

tan® ) = ——
n—m—1.

One can use the same argument in H" !, where the only possibility is a product S™ (sinh_2 0) X
H"~™ (— cosh™? ) [15], where

-1
tanh40:m—.
n—m-—1
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Now assume that A has multiplicity one. We know that the hypersurface is locally conformally
flat by [58] and one can see that A is a function of u since the condition to be R-Einstein reduces
to the polynomial

p(n = 2)(2¢ + pA + p?) = 0,
so i = 0, which gives an Einstein metric, or A = —#. Then, by [13], we have a rotation
hypersurface with a plane curve as profile. [

Remark 3.12. In the first case, if m = n — m, then we have that cos*# = sin* 6, and since
0 e (O, g), cos = sin 6, which gives us an Einstein hypersurface. In the second case we have
that tanh*(#) = 1, so the sectional curvatures are vanishing, so this cannot happen. Thus we can
discard the cases where both principal curvatures have the same multiplicity.

Assume now that we have four different principal curvatures. We state the following.

Lemma 3.13. There is no R-Einstein hypersurface M* — QP, with ¢* = 1, with four different
principal curvatures.

Proof. Recall the R-Einstein equation for a hypersurface,

1
S = (ISI° = 20)8* = (2ncH)S = —{||S%|* = (ISI* = 20)[IS|I* = 2¢(nH)*}1d = 0.

As all the eigenvalues of S have to satisfy the equation, and due to Vieta’s formulae, we have
that the sum of all of them are zero, and therefore, 4H = A+ [+ + 0 = 0 and M is a minimal
hypersurface. The remaining polynomial is biquadratic, so the solutions for it are

_JUSIE = 20) + VISP — 2¢([IS]]P - 2¢)
A= 5 =X

_JUSIP = 2¢) = VIIS2? = 2e([ISIP —2¢)
)\3_ 2 - )\47

and so
ISI]? = 22T + 2X5 = 2(||S][* — 2¢),

which gives that ||S||? = 4c.
On the one hand, ¢ cannot be —1 as the length of the shape operator is a non-negative number.
On the other hand, one can see in [18] that the only minimal submanifold into the sphere S°

with ||S||> = 4 is the product of two spheres S™ (VTE) x §t—m (—”;m), where m = 1,2,

which has two distinct principal curvatures. Consequently, we do not have any weakly Einstein
hypersurface in this category.
[]



3.3.2 Hypersurfaces in S"*! and H"! 53

Remark 3.14. The case of the hyperbolic space can be seen from another point of view. If we
assume that the hypersurface is minimal and ¢ = —1, then if we make R(e,, e,) — R(eg, eg) = 0,
being e,, eg, with o, 5 = 1, ..., n an orthonormal basis of principal directions, we obtain that

(o = A) e + ADISIZ +2 = (2 +A2)} = 0.

If we develop the third part, we have

2+ (Mo — A2+ (mg — DAZ+ > md? =0,
i#a,f

where m,, denote the multiplicity of A, and so on. As m, > 0 for all « and the last summation
is strictly positive, then the equation can only be solved if |\,| = |\s|. Consequently, a n-
dimensional minimal hypersurface in the hyperbolic space is R-Einstein if and only if it has two
different principal curvatures, one opposite of each other.

R][p]-Einstein

In this section we classify the condition for two principal curvatures in the n-dimensional case.

Lemma 3.15. Let M" — Q""!, with ¢*> = 1, be a hypersurface with two different principal
curvatures. If M is R|p|-Einstein, then it is a product of two spheres if ¢ = 1 or a product of a
sphere and a hyperbolic space if c = —1.

Proof. The case where one of the principal curvatures has multiplicity one gives us a locally con-
formally flat example, where we have seen that there is no hypersurface satisfying this condition.
Now, assume that both principal curvatures have multiplicities greater than two. The condition
R[p|(easea) — Rlpl(ep, e) = 0 gives the following equation.

A=) Am —1) + p(=m+n—1)) (c(n —2) + X*(m — 1) + p*(-=m+n—1)) =0,

where the possible real solutions are

—2n—m—1) — _ oy —
A:i\/ pn-—m-1)—-cn=-2 A:_Mn_ml
m—1 m—1

Y

and in that case, as the Schouten tensor is Codazzi, we can apply Merton’s result. Now, the
gradient of each eigenfunction is orthogonal to its own eigenspace due to m > 2. Taking the first

. o +(n—m—1)p . o o
solution, we have that V) = Y T pe—— Vu,andif p = 0,then VA =0and A € R,
but in that case S = diag[A,..., A, 0,...,0], but there is no isoparametric hypersurface of this

form in H"™!. Thus, we may assume that ;1 # 0 and therefore, VA = 0 since it is orthogonal to
the whole space and then A € R. Hence the hypersurface is isoparametric. The same happens
with the second solution since it is a scalar multiple.
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Cecil and Ryan show in [15] that M has to be a product of two spheres S™(sin"26) x
S"=™(cos™2 6), where the brackets are the sectional curvature of each space. As the condition of
a product manifold to be R[p]-Einstein was c3(n; — 1) = c3(ny — 1)?, then we need that

tan" 0 = | ——— | .
n—m-—1
The same occurs if we are in the hyperbolic space. In that case, we have a product S” (sinh ™2 6) x
H"~™(cosh™2 @) [15], so the condition to be satisfied is

m—1 2
fanh? § — (________) |
n—m-—1
L]

Remark 3.16. Notice that the first solution given in the proof above can be real if and only if
¢ = —1. Therefore, we cannot discard it.

p-Einstein

Again, we just classify for two principal curvatures in the n-dimensional case.

Lemma 3.17. Let M™ — Q"' with ¢ = 1, be a hypersurface with two different principal
curvatures. If M is p-Einstein, then it is either a product of two spheres, a product of a hyperbolic
space and a sphere or a rotation hypersurface over a curve.

Proof. Assume first that both principal curvatures, A and p, both different, have multiplicities
greater than two m and n — m respectively. The condition p(e,, e,) — p(es, es) = 0 gives the
following equation.

(e(n = 1)+ AA(m = 1) + p(n = m)))* = (c(n — 1) + p(Am + p(n — m — 1)))* = 0,

which has two solutions given by

s~/ ((n = 2m)? + 4(n — 1)) — 8c(m — 1)(n — 1)

d
2(m — 1) .

n—m-—1
A= T

In the first case we obtain that

4 ((n72m)2+4(n71));¢ 0
U= V/ ((n—2m)2+4(n—1))u2—8c(m—1)(n—1) -
B 2(m — 1)

L
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and the bracket does not vanish for any real value. Thus, since all solutions depends on one
principal curvature and using the same arguments as in the previous proof, we obtain the same
result using Merton’s Theorem.

If A\ has multiplicity one, then we have a locally conformally flat hypersurface. Moreover,
the equation for the condition remains

p(n = 2)(A = p)(2c(n = 1) + p(n(X + p) — 2u)) = 0
from we can get that
2c(n — 1) + p?(n — 2)

ny
Thus, by Corollary 3.3 from [13], it is a rotational hypersurface over a curve. [

A= —







Chapter 4
Homogeneous four-dimensional
weakly-Einstein manifolds

In this chapter, we classify homogeneous weakly-Einstein metrics in dimension four. The main
results are shown in [29].

4.1 Introduction

Bérard-Bergery showed in [3] that a four-dimensional homogeneous manifolds is either a Lie
group with a left-invariant metric or a symmetric manifold. We have seen in the introduction
that we can construct this groups knowing the brackets of a three-dimensional Lie algebra and
then extending to a four-dimensional one. Once we know the brackets, we can use the Koszul
formula to obtain the Christoffel symbols and then all the geometrical objects involving them
as the curvature and the Ricci tensors. Thus, we can construct all the weakly-FEinstein tensors,
providing a new ambient where we can get new examples. The classification of these metrics is
harder since the polynomials involved are in terms of the structure constants of the groups, so we
may have many different unknowns. To get through this issue, we use Grobner Basis.

There are some previous works in this field. Jensen in [45] classified homogeneous four-
dimensional manifolds which are a complex or a real space form or a product of two surfaces
M (c) x Ms(c) with the same constant sectional curvature. Moreover, Arias-Marco and Kowalski
classified in [1] R-Einstein manifolds in the same setting, turning out being a product of two
surfaces M, (c) x My (—c) with opposite curvature or a Lie group with Lie algebra

leq, €1] = aer, e, €3] = —aey — Pes, [es, €3] = Pea — aes,

with {ey, ..., es} an orthonormal frame and o, § € R, o # 0.

The aim of this chapter is to extend the result by Arias-Marco and Kowalski to the other
weakly-Einstein conditions. Moreover, our classification is done up to homothetic class. Thus,
we also give a class including Arias-Marco and Kowalski’s example.

The locally symmetric case is classified as follows.

Lemma 4.1. Let (M, g) be a non-Einstein locally symmetric four-dimensional manifold. Then
the following are equivalent

(i) (M, g) is R-Einstein.

(ii) (M, g) is p-Einstein.
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58 4 Homogeneous four-dimensional weakly-Einstein manifolds

(iii) (M, g) is R[p]-Einstein.
(iv) (M, g) is homothetic to the product M = S* x H>.

Proof. Let (M, g) be a symmetric space. Since the Ricci tensor is parallel, the Ricci curvatures
are constant and the corresponding eigenspaces are parallel. Let {x1, ..., x4} be the Ricci cur-
vatures. If (M, g) is non-Einstein, then there are at least two-distinct Ricci curvatures since the
space splits in each eigenspace. Let x be a Ricci curvature appearing with multiplicity one. Then
the associated eigenspace splits off a one-dimensional manifold so that (), g) is locally isomet-
ric to R x N for some three-dimensional symmetric manifold V. Now such a product R x N is
R-Einstein, p-Einstein or R|[p]-Einstein if and only if it is flat. Hence the only possibility is that
the Ricci operator has exactly two-distinct Ricci curvatures with multiplicity two. Moreover, in
such case the Ricci curvatures «; and k4 satisfy k1 = —ko and the result follows. ]

Hence, we focus on the left-invariant metrics in what remains. The purpose is proving the
next theorem.

Theorem 4.2. Let (M, g) be a four-dimensional simply connected homogeneous manifold. Then
(1) (M,q) is R-Einstein and non-symmetric if and only if it is homothetic to the Lie group
R x R? with left-invariant metric determined by the Lie algebra
[647 el] = €1, [647 62] = —é€g, [647 63] = —€3,

where {e1, ..., e,} is an orthonormal basis.

(2) (M, g) is p-Einstein and non-symmetric if and only if it is homothetic to one of the follow-

ing:
(2.a) The Lie group SU(2) x R with left-invariant metric determined by the Lie algebra
[e1,e5] = (4 2v2)es, [ea,e3] = (3E2v2)er, [es,el] = ea,
leg, €1] = —eo, leg, 9] = (3% 2\/5)61,
where {e1, ..., e4} is an orthonormal basis.
(2.b) The Lie group R x H? with left-invariant metric determined by the Lie algebra
1 1

[e1,e2] = €5, er,eq] = 9L €2, e4] = — €0,

2
where {e, ..., e4} is an orthonormal basis.

(2.c) The Lie group R x R3 with left-invariant metric determined by the Lie algebra

~ a(lt+ata?) a(l+ a+a?)
evel = - B P - ® da+1 ¥
leq, €2] = a(l+a+a) e1 + ae +—(1—|—a+a2)6

[ ] a(l+a+a?) (1+a+a?) N
€4, €3] = — er — ey — —2-e
e 200+ 1 ! ala+2) 2 aflt®
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where {e1, ..., es} is an orthonormal basis and o € (—1,1), « # —%, a # 0.
(3) (M, g) is R|p|-Einstein if and only if it is symmetric.

Remark 4.3. Let G be a Lie group with Lie algebra g. A left-invariant metric is called an algebraic
Ricci soliton if

D=0Q,— A\ld,

with A € R and © is a derivation of the algebra. The metric defined in Theorem 4.2.(1) is the
only algebraic Ricci soliton for A = —3.

4.1.1 Four-dimensional homogeneous Lie groups

We have shown how these four-dimensional groups can be constructed following the work of
Milnor [56]. We have two cases whether the group is unimodular or non-unimodular.

The direct products SL(2,R) x Rand SU(2) x R
Let {vy, v2, v3} be an orthonormal basis of the Lie algebra g; (s[(2, R) or su(2)) such that
[02, Us] = A\vy, [U37U1] = Mgy, [Uh Uz] = A303, A1AzA3 # 0.

Here A1, Ay and A3 are all positive for the Lie algebra su(2) and A\; A2 A3 < 0 in the s[(2, R) case.
Take v, (not necessarily orthogonal to g3) so that [vy, v;] =0, foralli = 1,2, 3 and let (-, -) be
an inner product on the four-dimensional algebra. Set e, = v, (K = 1,2, 3) and normalize the

vector vy — Zle (vg,v;)v; so that {eq, ..., e4} is an orthonormal basis with brackets given by
[61762] = Azes, [62, 63] = \ey, [63761] = A\gey,
1 1
[61, 64] = E{k‘:a)\z@z - k‘z)\3€3}, [62, 64] = E{kl)\SQS - k‘g)\161}, 4.1

1
les, eq] = E{]@/\lel — k1 A2e2},, R >0,
where k; = (v4, ;).

The semi-direct products Re, x E(1,1) and Rey x E(2)

Let g, be either the Poincare algebra ¢(1, 1) or the Euclidean algebra ¢(2). There exist an or-
thonormal basis {vy, v9, v3} of g; such that

[/017 U?] = 07 [U2a UB] = )\1/017 [U37U1] = )\21)2,
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where A\ Ay # 0. Moreover A\jAy > 0if g3 = E(2) (M2 < 0if g3 = E(1,1)). Writing a
derivation of g; with respect to {vy, v2, v3}, one has

b a c
A

der(g;) = —A—ja b d |;a,bec,deR
0 0 0

Extend {v, v, v3} to a basis {vy, vg, v3,v4} so that ad(vy) is determined by the derivation and
consider an orthonormal basis {e;} so that e; = v; for i = 1,2, 3 and e, is obtained after normal-
ization of vy — ZZ k;v;. Then one has the non zero Lie brackets

[e2, €3] = Areq, [es, e1] = Azea,

1
)\% + k3)ea}, lea, e2] = E{(a +RadJer +bez 4.2)

1
[64, 63] = E{(C — I<:2/\1)61 + (d + /61)\2)62}, R >0,

1
[64,61] = E{bel — )\2(

The semi-direct product Re, x H?

Let g = R x b3 be a semi-direct product of R with the Heisenberg algebra h3. Let {v, ve, v3} be
an orthonormal basis of h3 so that

[Ula U?] = 7YU3, ['U27 U3] = 07 [Ulv U3] = 07 7 7& 0.

The derivations of ; with respect to the basis {v;, v2, v3} are given by

a c 0
der(h;) = —c d 0 ca,c,d,hy f €R
h f a+d

Let {vy, v2,v3,v4} be a basis of g, where ad(e,) is determined by a derivation as above. After
normalization, as in the previous cases, there is an orthonormal basis {ey, €2, 3, e4} of (g, (-, - ))
where the nonzero Lie brackets are given as follows

1
[61, 62] = "es, [64, 61] = E{ael —ceg + (h + kﬂ)ezz},
4.3)

1 1
[e4, €3] = E(a +d)es, [es, €2 = E{Cﬁ +des + (f — k1v)est, R>0.

The semi-direct product Re, x R3

Let v3 be the three-dimensional Abelian Lie algebra. The corresponding algebra of derivations
is gl(3,R). For any D € gl(3,R), decomposing it into its symmetric and skew-symmetric part,
one has that any D € gl(3,R) is conjugate to one of the matrices given by

a —b —c
b f —h ;aabac7fah7pER
¢c h p
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The corresponding semi-direct product R x v expresses in an orthonormal basis {ey, ..., e, } as

1 1

leq, e1] = E(ael + bey + ces), leq, €2] = }—%(—bel + fes + hes),
1

leq, €3] = E(—cel — hey +pes), R > 0.

(4.4)

4.2 Left-invariant p-Einstein metrics

During the next section we prove Theorem 4.2 (2). All cases follow the same structure. Firstly,
we get a system of polynomials related with the condition and then we use Grobner basis in order
to reduce some variables. Finally, we classify up to homothetic class.

4.2.1 The direct products SL(2,R) x Rand SU(2) x R

Lemma 4.4. SU(2) x R admits a non-Einstein p-Einstein left invariant metric if and only if it is
homothetic to the Lie group determined by the Lie algebra given by

e1,€2) = (4£2V2)es, [er, €3] = —e, [e2, €3] = (3£ 2v2)e;
4.5)
leg; €1] = —e, 4, 2] = (3% 2\/5)617
where {e1,...,e4} is an orthonormal basis. Moreover, SL(2,R) x R does not admit any left-
invariant p-Einstein metric.
Proof. Take the algebra given in Equation (4.1) and let py = p — }l||p\|2g be the trace-free p-

tensor. A straightforward calculation shows that the p, components are given by
16R*po,, = €11, 4Rpo,, = €1u,  4R%po,, = €5, 4R%po,, = €y,
16R* po,y = €,ay, ARpoy, = €o,  4Rpo,, = €, 16R*fo,, = €55,
4R3,5034 = Csm 16R4f’044 = €44>

where the polynomials €;; are determined as follows.
€11 = RO 4 4RI, — 10R*A2A2 4+ 4k2R2M A3 + 4R*A A3 — 3k4AS — 2k2R2M 4+ RN
+ k‘g(/\l — )\2)2()\% + 61 A + )\%) + 4R4)\‘%>\3 + 12R4>\%>\2)\3 — 4]’6%R2)\1)\%)\3
— AR A N2A3 4 4KEA3 A — 8K2ZRZA3N3 — 12RIA3As — T0R*A2A2 — 4k2 R2\ A \2
— AR\ XA} — 2k1A3A3 + 20kF R2AZAS + 22RININE + 43 RZN NS + 4R A3
+ 4k A3 — 8KZR2AoNS — 12R* Mo A3 — 3k{AS — 2K2R20\S + RAMS
+ k51 — A3)2(A2 + 6M1 03 + A2) + 2k3(R2(A1 — A3)(AF + A2 (200 + 5)3)
+ )\1(—4)\% + 8o A3 — 5)\%) — A3(4)\§ — 63 + /\%)) — k%(}\%AQ(AQ — 2)\3)
FA3(=2X0 4 A3) — 201 A3(A2 — 3Aods + A2)) + K2 4 A2M2 + 203 (\g 4 A3)
+ 2)\1)\2)\3()\2 + )\3) — 2)\%(2)\% + A3 + 2)\%))) + 2]6%(]@%(—)\%()\2 - 2/\3)
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+ A3(2X2 — A3) Az + 221 22(A3 — BA2As 4+ A3)) + R (A1 — M) (AT + AT (5 Ao
+2X\3) + )\1(—5)\% + 8o A3 — 4/\§) - )\2()\% — 623 + 4)%))),

C1o = kika(REAZAZ — K2MA3 — 4R2A2A0As — ARZAIN3Ns + REAZAZ + k2A1 AoA2
4 BRZAMAAZ + K2AIAZ + R2AZAZ — k20 — B2 — K202 — A2)(Ahe — A2)
+ k%(A%A% - )\%Ag - )\%)\3 + )\1)\2)\%)),

13 = kiks(R2A2AZ — K2ME — R2M — AR2A2A0As + K2A1A3As + 6R2A AN + R2AZA2
— ARPA DR + K2ABAZ + R2NIAZ — K2AA3 — K2(A2 — A2)(=A2 + Mg Ag)
+ k3 (=M A2 + A3 A3 + ATA — M),

Cra = —k1((R2(—=M + (M2 — A3)D) + k2(Xa — A3)2) (A2 — A3)2 + k22 (A1 — A3) (Ao
— )\1)\3()\2 + )\3) — )\3(2 )\% —4Xo A3 + )\%)) + k‘%()\l — )\2)()\%)\3 — )\1)\2()\2 + )\3)
—Aa( A2 — 4ho)s +2)2),

Con = RN + AR*AINg — SEZRZAZAZ — 10RAZAZ + 4K2R2A A3 + 4R A NS + KIS
+ 2K2R205 4+ RIS + k(M1 — 2A2)2(A2 4+ 60102 + A3) — 12R*AIN; — AR M)
12K R2A AN + 12RA NI + 4kIA3Ns + 8K2R2A3N; + 4AR*A3N; + SEZRZAZA2
+ 22RININZ — 4E2RZA A0)3 — AR\ MaNE — 10K1A3A3 — 202 R2AZ03 — 10RA3)3
—12K2R2MAE — 12RMANE + 4EIA0A3 + SE2R2A0AE + ARAAS + kAN + 282 R2A
R — B — Ag)2(302 + 2012 + 3A2) — 2K2(R2(A1 — Ag)2(A2 — 2M s
4+ 613 — 2X2)\3 + )\:2;) + k‘%()\il + 6)\%)\2)\3 + )\% )\% — 2)\?()\2 + )\3)
- 2)\1)\2)\3()\2 + )\3)) + k%(/\%)\g(/\g — 2)\3) + /\%(-2/\2 + )\3) — 2/\1)\30\% — 3A2)\3
+ )\%))) + ng(k%()\%()\% + 2X9 A3 — 4)\%) + 2)\1)\2()\% — X3 + )\%) + )\%(—4)\% + 2X9 A3
+ )\%)) -+ RZ()\l — AQ)(A:I’ + /\%(5 Ay — 6)\3) — /\2()\% + 2X0A3 — 4/\%) + )\1(—5)\%
— 8Xo)s +422))),

Cos = koks(—R2A + R2A2AS — K2IAAS + K2A2Aos + 6RZAIAAs — 4R2A A3Ns
FR2AZAZ — ARPADAZ + E2AZA2 + REAZAZ — B2A03 — K202 — A2)(M2 — Mg As)
= k3T = Xad3)(A] — A3)),

Cop = —ka(RENE — RENIAZ + K2A03 + k2(M1 — Aa)t — 4R2A303 — 2k2A2000g — 2K2A1 A2)s
2RZAINA; + 2K2AA2 + 6RZAZAZ + 5EIAAAL — K2A2A2 — R2AZAZ — 4k AR
— 4R2)\1/\g + k%)\% + R2)\§ + k%(A1 — /\2)()\“;’ + )\%( Ay — 4A3) — )\%)\3 + A1 /\3(A2
+2X3))),

Cs3 = RIN] — 12RNI g + 8KTRZNIN3 + 22RININS — 12K2 R2A A3 — 12RMA\ A3 + kiAg
F2RIRIN 4 RO — KM — A2)2(3X2 + 2100 + 3A3) + 4RAIN; — 4R1A2Ao0s
— ARZREAAZAg — AR N2 As + ARIA3Ns + 8K2R2A3As + ARIAINs — SK2ZRZAZA2
— TOR*NINZ + 127 R2 A1 0002 + 12R4 A1 Mo 02 — 10K1A303 — 20k2 R2A202 — 10R*A3\2
FARZRZA NS + ARDAS + 4kINoAd + 8K2R2M0AE + ARMLAS + KINL + 2k2 R2 )\
+ R4>\§ + k%()\l — )\3)2(>\% + 61 A3 + )\:25) — ng(RQ()\l — )\2)2(>\% 4+ 61 Ao + )\%
— 2\ g — 2)\2/\3) + k%(/\g(/\g — 2)\3) + /\%Ag(—2A2 + )\3) — 2)\1)\2()\% — 323
+A2))) + 262(—k2(NE + 6M2hads + A2 A2 — 2X3(Ag + A3) — 20 dads (Ao + A3))
+ R2(A1 — A3) (A3 + A2(—6 A2 + 5A3) + A1(4A3 — 82Xz — 5A3) — A3(—4A3 + 2203
+23)) +EEAT (A3 4 22023 — 4A3) + 201 03(A3 — Aods + A3) + A3(—4A5 + 2X0);
+239)),
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Caq = —kg(REN] + k2(A1 — Xo)* —4R2A Do + 2K2 0303 + 6R2AINS — 4K\ A3 — AR2M\ A3
+ k2N + R2A] — 2K3N3 o3 + 5EIAIA3As — RZAIAZ — 2k3 A1 Ao + 2R2 A Ao
— 2NN — RZXN3NZ + K23 + k30 — A3) (AT — DA + A2 (=4 + A3) +
AA2(2X2 + A3))),
Cag = —3RIN] + ARNINg — 2RININZ + 42 R2 A NS + AR NS + kA3 — 2K3R2)\]
— 3RS + k(A1 — X2)2(02 — 10A1 M0 + A2) + AR A3 — AR N2 Ao)\3 — 4k2 R2A 10303
— AR\ N33 — 12K A3 — 8KTRZA3As + 4R A3A3 — 2RANIN3 — 4T R2\ Ao Ns
— AR A Mo)2 4 22K A303 + 20K2 R2AZA2 — 2RANZNE + 42 R2A 03 + 4RI S
— 12k{AoA3 — BEZR2AoA3 + AR + kIAS — 2k3R2AS — BRI, + k3 (A1 — A3)? (A
— 10\ A3 + )\:2))) + 2]{}%(—R2()\1 — /\3)2()\% —2XM A2 + 6A1 A3 — 203 + )\%) + k‘g()\%
+ )\%)\% — 6)\:1))(/\2 + )\3) — 6/\1)\2)\3()\2 + )\3) + 2)\%(2/\% + TAo A3 + 2)\%)) + k%(/\%(ll)\%
— 6X2A3 + )\%) — 2)\1)\3(3)\% — TAa)3 + 3)\%) + )\%(/\% — 6XoA3 + 4)\%))) — 2]€32)(R2(>\1
—X2)2(A2 + 6A1 A2 + A3 — 20103 — 2X0)3) — KZ(AZ(4A3 — 6)0)3 + A3) — 2A102(3)3
— TAoA3 + 3)3) + A3(A3 — 623 + 4A2))).
Hence a left-invariant metric is p-Einstein if and only if the system {€;; = 0} has a real
solution. First of all, observe that if Ay = Ay = A3, then the Ricci operator takes the form
, = 3 diag[A}, A], A7, 0], which shows that it cannot be j-Einstein.
Now, we consider the terms k; from Equation (4.1). Up to a permutation of the basis
{eq, ea, €3} one may assume that one of the following holds:

(i) kikaks £ 0, (ii) ky = 0, koks £ 0, (idd) ky = ko = 0, ks # 0.

We analyze the different possibilities separately.

(i) kikaks # 0

Let Z C Rlky, ko, k3, A1, A2, A3, R] be the ideal generated by the polynomials €;;. We compute
a Grobner basis G of Z with respect to the lexicographical order and a detailed analysis of that
basis (using that k1 kok3 # 0) shows that the polynomial

RN (NS — A3Az 4+ Aads — A3)

belongs to G. Since R*A\;\3\2 # 0, one has that A3 = 4+ \s.

Next, we compute a Grobner basis G; of the ideal generated by G U {3 + A} with respect
to the lexicographical order so that the polynomial R*\2)\3 belongs to G;, which gives a contra-
diction since the \; are not vanishing. Proceeding in the same way, let G, be the ideal generated
by G U {\3 — Ay} with respect to the lexicographical order. Then R%\; A3 belongs to Gs, thus
showing that no p-Einstein left-invariant metrics may exist.

(’LZ) kl = O, kzl{?g 7é O

We compute a Grobner basis G of the ideal generated by the polynomials of the original system
{€i;} C Rlka, k3, A1, A2, A3, R| with respect to the lexicographical order so that

g1 = RPAAJ(10A5 + 19X0A3 4+ 10X3) € G.
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Since RA2\3 # 0 and 10)\3 + 19X A3 + 10)@ = 0 has no real solutions, we get that no p-Einstein
left-invariant metric may exist.

(ZZZ) k’l == ]{ZQ = 0, ]{Zg 7é 0

We compute a Grobner basis G of the ideal generated by {€;;} C R[A1, A2, A3, k3, R| with respect
to the lexicographical order so that g; = k3R%(k2 — R*)\] € G. Since k3 RA3 # 0, the only
possible solutions of g; = 0 are ks = = R.

Assume k3 = R and compute a Grobner basis G, of the ideal generated by GU{k;— R}. Since
the polynomial go = R*(\; + Ay — )\3))\2 € G, one has that \3 = A\; + 9. Proceeding exactly in
the same way under the assumption k5 = — R, one gets as in the previous case that A3 = A\; + \s.
Now a straightforward calculation shows that €34 = —R3(A\; —Xg)2(A2 —6A Mo+ A3). If A\; = Ao,
then €;; = —16R*\3 # 0. Hence assume A2 — 6\;\y + A3 = 0, and thus \; = (3 £2v/2))\s. A
straightforward calculation now shows that the Ricci operator takes the form

4432 0 0 0
Q, = 222 0 —4F3v2 0 0
P 2 0 0 3+2v2 3£2V2 |’
0 0 3+2v2 —3F2V2
from where it follows that the left-invariant metric determined by k3 = R, A} = A3 — Ao,
A3 = (4 + 2v/2))\, is p-Einstein and non-Einstein. Finally, considering the homothetic basis
er = %Qek, the Lie algebra structure (4.5) is obtained, thus completing the proof. ]

Observe that, in sharp contrast with Lemma 4.4, neither SL(2,R) x R nor SU(2) x R admits
left-invariant Einstein metrics.

4.2.2 The semi-direct products Re;, x F(1,1) and Rey x F(2)

Lemma 4.5. Rey X FE(1,1) and Rey X E(2) do not admit non-Einstein p-Einstein left invariant
metrics.

Proof. Take the algebra given in (4.2). To simplify the notation, set A = )\i + k3, C =c— ko)
1

1
and D = d + ki )\o. Moreover, since A1 Ay # 0, we work with an homothetic basis é; = )\—ei, SO
1
that we may assume \; = 1.
A straightforward calculation shows that the components of gy = p — 1| p||?g are given by
16}%4:6011 =&, 4R415012 =€y, 4R415013 = (’:13’ 4R3ﬁ014 = 9:14?
16R4ﬁ022 = Qtzz» 4R4:5023 = Qzlsv 4R3:5024 = 0:247 16R4,5033 = 0:337

4R3:503,4 = ¢y, 16R4/3044 =y,

where the polynomials € now become
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€11 = 16b* + C* — 202D? — 3D* + 202 R? + R* + 4C?R?*)\y + 4D?R?)5 + 4R* )y
—8C?R*)\3 — 2D?R?)\% — 10R* )3 + 4R*\3 + R} — 4AbC'D(5 + A2)
+ A (=14 X2)2(1 46X + A2) + 24%(R? + 2D Xy + 4R? Xy — D?)\3 — 10R%\}
+AR2A3 + R2M + C2(1 4 2Xa — 4)\3) + 16b%(—1 + A\3)) — 2b*(7C? + 9D?
— 16R?(—1+ \3)),

C1o = —A2CDXy + CD(V? + C% + D% — R2\y) + Ab(—16b%(—1 + o)
— D%(24 X\o) + C%(1 4 2)\2)),

Ci3 = 6bC(2b2 + RQ(—l + )\2))\2) + AQbC(—l —2Xo + 3)\%) + ASD()\Q — )\%)
— AD(C? + 2b*(=3 + 5X2) + Ao (D? + R*(—1+ A3))),

€1y = —(AZDXo (=14 A3) + AbC(1 — 4Xg + 3A3) + D(C? + \o(8b% + D?
+ R} =1+ A3)))),

Cop = 16b* — 3C* — 2C2%D? + D* — 2C?R? — 8D?R? + R* + 4C%R?*)\y + 4D?R? )\
+ 4R\ + 2D%R?)\3 — 10R* )3 + 4R*\3 + R\ + 44bC'D(1 + 5)9)
+ A (=14 A2)?(1 4 6)g + A2) + 24%(—4D? + R? + 2D?)\y + 4R%*)\y + D?)\3 — 10R?)\3
+ 4RI + R20] + C2(—1+ 2)2) — 166%(—1 + A\2)) — 26%(9C2 + 7D?
+16R2(—1 + A\2)),

Cog = 66D (2% — R?(—1+ A\2)) — A2bD(—3 + 2o + A\3) + A3(C — C)2)
+ AC(C? + R? 4+ b?(10 — 6)2) + D?Xo — R2)3),

Cos = —AbD(3 — 4Ny + A\3) + A%(C — CA3) + C(8b* + C? + R* + D?Xy — R*)\3),

C33 = —48b* + C* + 2C?D? + D* 4 18v*(C? + D?) + 2C%*R? + 8D?R? + R*
— 20AbCD(—1+ A\2) — 12C?R2)\y — 12D?R?)\y — 12R*)\g + 8C?R?)\2 + 2D? R?)\3
+22R*N2 — 12R*N\3 + R4S — A(—1 + X2)%(3 4+ 2X2 + 3A3) — 242%(C? + R?
+ 8b%(—1 + X9)? — 2C% Ny — 2D? Xy + 4R* Ny + D)3 — 10R?)3 + 4R?)\3 + R2)\}),

C3q = —(3bCD(—=14 A2) + A3(=1+ Xo)* + A(2D? + R% + 4b*(—1 + A\2)? — 4D?)\y
—4R?Xg + D?)\3 + 6R2)\2 — AR2)3 + R2)\5 + C2(1 — 4)2 + 2)3))),

€4y = 16b* + C* + 202D? + D* + 146*(C? + D?) — 2C*R? — 3R*
+4AbCD(—1 + \g) +4C%R? )y + 4D?R? Xy + 4R*\y — 2D2R2)\2 — 2R*\2
+ 4R — 3R*N\S + AY(—1+ X9)%(1 — 10Xg + A\3) +24%(4D? — R?
+8b?(—1+ X9)2 — 6D?*\y — 4R?Xg + D)3 + 10R?*)\3 — 4R?)\5 — R?\}
+ C?(1 — 6)g +4)2)).

Hence a left-invariant metric determined by (4.2) is p-Einstein if and only if the system of
equations {€; = 0} is satisfied. Let Z C R[A,b, Ao, C, D, R] be the ideal generated by the
polynomials &;;. We compute a Grobner basis G C Z with respect to the lexicographic order so
that the polynomial gy = CD?*(C? + D?*)R*(5C? + D? + R?) belongs to G. Hence C' = 0 or

D =0, since R > 0.
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CaseC' =0

Assuming C' = 0, we compute a Grobner basis G, of the ideal generated by G U {C'} with respect
to the lexicographical order. Since g; = AD* belongs to G, one has that either A = 0 or D = 0.

If we have C' = D = 0, then €,, = —(16A0*>(—1 + X2)). Hence A=0,b=0o0r \y = 1. If
A = 0, then we have that

€y = 160 + 3202 R?(A3 — 1) + R* (M2 — 1)3(1 + 6X9 + A3)
¢, = 160 — 3202 R*(\3 — 1) + RY (A3 — 1)2(1 + 6Xa + A2)
€, = —48b* + RH(A2 — 1)2(1 — 10Xy + \2)

€,y = 160* — RY (A2 — 1)3(3 + 22Xy + 3A2).

Now b = £R and A\, = —1, leading to an Einstein metric. Assume now that A # 0 and b = 0.
Then €,, = —(A(A? + R*)(—1 + A\2)?) and one has that Ay = 1, leading again to an Einstein
metric. Finally, assuming A # 0, b # 0 and A\, = 1, we obtain that €,, = b*, which has no

solution since b # 0.
Next assume C' = A = 0, D # 0. Then €,; = 6bD(2b> — R?*(—1 + \3)) shows that

2

2b
either b = O or Ay = 1 + 7 If b = 0 then €,, = —DXy(D? + R*(—1 + A\3)) and thus

R2(1 — \3). Now a straightforward calculation gives
€, =€, = 2RY(—1+4) — 3)2)
€, = 2RY (=3 + 4N — \3)
€,y = 2RY(5 — 12X + TA2).
Then Ay = 1 and thus D = 0, which is a contradiction.
2b? 1
Assume now \y = 1+ ¥ and b # 0. Then €, = —ﬁD(Qb2 + R?)(4b* + 120 R + D% R?).

Since €,, = 0 has no real solutions, no p-Einstein metrics may occur in this setting.

Case D=0

Assume C' # 0 and compute a Grobner basis G, of the ideal generated G U { D} with respect to

the lexicographic order. Since the polynomial g; = AC*)3 belongs to G,, one has that A = 0.
A standard calculation now gives €,; = 60C(20* + R*(—1 + A\2)\2), and so either b = 0

orb = i\/ii R%2(1 = MX)Ag. If b = 0, then €,, = C(C? — R*(—1 + \2)), and thus C' =

+R+/)3 — 1. Then the polynomials €;; reduce to
C= —203(1 — 4o + 302)
€, =€, =—-2X\(3—4)\+ \3)
€, = 2)3(7 — 12X + 5A2).
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Therefore Ay = 1 and thus C' = 0, which is a contradiction.

Setting b = i\/% R2(1 — Ay) A2 and assuming b # 0, one has that the polynomial €,, =
C(C? + R*(1 + 4Xy — 5A2)). Hence C' = +Ry/—1 — 4)\y + 53 and thus &; = +R*\y(—3 +
13Xy — 1322 + 3)3), forall s = 1,2,3,4. Since Xy # 0, the solutions of the equations €; = 0

are \g = 1, Ay = 3 and )\ = 3" The solution \; = 1 gives b = 0 which is a contradiction.

1
Moreover, if Ay = 3 then b cannot be real. Analogously, if Ay = 3 then C' is complex. This
completes the proof. O]

4.2.3 The semi-direct product Re, x H?

Lemma 4.6. Re, x H? admits a non-Einstein p-Einstein left invariant metric if and only if it is
homothetic to the Lie group determined by the Lie algebra

1 1

[617 62] = €3, [647 61] - _5617 [647 62] - 5637 (46)

where {ey, ..., e4} is an orthonormal basis.

Proof. Take the algebra of R x H? given in (4.3). In order to simplify the notation, set F' =
1

f — kiyand H = h + kyy. Moreover, since y # 0, working with an homothetic basis ¢; = —e;,
Y

so that we may assume v = 1. Then the components of the trace free tensor gy = p — +||p||%g

4
are given by
16R4pv011 = €ll7 4R4p012 = Q:lla 4R4p013 = Q:l37 4R3,5014 = 6147
16R4PV022 = €22> 4R4:5023 = 623’ 4R3:5024 = €247 16R415033 = €3‘»37
4R3/5034 =y, 16R4ﬁ044 =&y,

where the polynomials & are as follows

€11 = 16a* — 48d* — 16d*F? — 3F* — 28cdF H + 18d*H? — 2F?H? + H*
+2c%(4d? + F? — H?) — 2F?R? + 2H?R? + R* + 2a®(4c? — 56d* — 9F? + 16 H? + 16 R?)
— 4a(4c?d + 3cFH + 2d(16d? 4 3F? — TH? — 4R?)),
C19 = 8adc — 2FH + 2a?(4ed + 5FH) + cd(—8d* — 4F? + H? — 4R?)
+ FH(10d? + F? + H? + R?) 4 a(21dFH — ¢(8d? + F? — 4(H? + R?))),
€13 = 16a>H — 2c2dH + d(12d*> — F?)H + a?(—2cF + 48dH) + a(—14cdF + 2c2H
+ (44d® + F?)H) + cF(—8d? + F? + H?),

¢4 = 8a*F + 8adF + 4d*F + F3 — 2acH + 2¢dH + FH? + FR?,

Cop = —48a* — 128a3d + 16d* + 32d%F? + F* + 12cdFH — 18d*H? — 2F?H? — 3H*
+ 2a?(4c® — 56d% + 9F? — 8H?) + 2¢%(4d*> — F? + H?) + 32d*R? + 2F?R? — 2H*R?
+ R* — 4a(4c?d — TcFH — 2d(TF? — 3H? + 4R?)),
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o3 = 12a3F + 2¢2dF + a?(44dF + 8cH) + dF(16d2 + H?) — cH(—2d* + F? + H?)
+ a(—2c2F + 48d%F + l4cdH — FH?),
Cos = —(2¢dF + 4a’H + a(—2cF + 8dH) + H(8d*> + F? + H? + R?)),
€33 = 16a* 4 128a°d + 16d* — 32d*F? + F* + 4cdF H — 14d°H* 4+ 2F*H? + H*
+2c?(—4d? + F? + H?) — 32d*R? + 2F?R? + 2H?R? + R* — 2a%(4c¢? — 104d?
+TF? + 16H? + 16 R?) + 4a(4c*d — cFH + 2d(16d* — 5F? — 5H? — 8R?)),
€3y = (—a+d)FH — ¢(F? + H?),
Cyq = 16a* + 16d* + 16d*F? + F* + 12cdF H + 14d°H? + 2F*H? + H* — 2¢*(4d? + F? + H?)
+ 2a%(—4c® + 8d? + TF? + 8H?) + 4a(4c*d — 3cFH + 2d(F? + H?)) — 2F*R?
— 2H?R?* — 3R*.

Hence a left-invariant metric determined by (4.3) is p-Einstein if and only if the system
of equations {&; = 0} is satisfied. Let Z C Ra,c,d, H, F, R] be the ideal generated by the
polynomials &;. We compute a Grobner basis G C 7 with respect to the lexicographic order so
that the polynomial gy = FH(F? + H* + R*)?*(15F* + 15H? + 32R?) belongs to G. Hence
F=0or H=0,since R > 0.

Assume F' = 0 and compute a Grobner basis Gp; of the ideal generated G U { F'} with respect
to the lexicographic order. Since the polynomial gy, = H?(H? + R?*)(4H? + 9R?) belongs
to Go1, one has that H = 0. On the other hand, assuming H = 0 and computing a Grobner
basis Goo of the ideal generated G U { H} with respect to the lexicographic order, one has that
g2 = F?(F? + R?)(4F? + 9R?) € Gy, thus showing that F' = 0.

We assume therefore that /' = H = 0 in what follows. Then one has that

€., = 4c(a — d)(2a® + 4ad + 2d* + R?)

and the only possible real zeros are ¢ = 0 and a = d.
If ¢ = 0, then the only remaining equations are
¢,, = 16a* — 112a%d? — 128ad?® — 48d* + 32a’R? + 32adR? + R*
¢,, = —48a* — 128a%d — 112a%d* + 16d* + 32adR* + 32d*R? + R*
¢,, = 16a* + 128a3d + 16d* — 32d° R? + R* + 16a*(13d* — 2R?)
+ 64a(2d® — dR?)
¢, = —3R*+16(a* + a*d* + d*),

and the only possible solutions for the system are d = +a and 2a = £ R. The cases correspond-

ing to d = a are Einstein so we assume d = —a and 2a = +R. A straightforward calculation
1

now shows that Ricci operator @), = 5 diag|—1, —1, 1, —1] and hence the left-invariant metric is

p-Einstein. This shows 4.6.

Finally, assuming a = d, ¢ # 0, one has that ¢,, = 3(—R* + 16a*). Hence 2a = R, and
the corresponding left-invariant metrics are Einstein. ]
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4.2.4 The semi-direct product Re, x R3

Lemma 4.7. Re, x R? admits a non-Einstein p-Einstein left invariant metric if and only if it is
homothetic to a Lie group determined by a solvable Lie algebra given by

leq, e1] = e1 + bey + ces, leq, e2] = —bey + aeq + hes, @7
4, €3] = —cey — hey — ﬁe& ‘
where {e1, ..., e4} is an orthonormal basis and
:—a(1+&+a2)7 h:—(1+a+a2)7 C:—a(1+a+a2>, O(ER,O[?EO
(a+1)2(a—1) ala+2) 2a0+1

Proof. Take the algebra from (4.4). Furthermore, considering the homothetic basis €, = Rey,
one may assume 2 = 1 in what follows.
A straightforward calculation shows that gy = g — 1||p||?¢ is determined by

2R415011 - Qzlla R4ﬁ012 = 0:127 R4ﬁ013 - 0:137 ﬁ014 = 07
2R415022 = Q:lZa R4ﬁ023 = 9:237 p024 = 07 R4p033 = 0:337
:5034 = 0’ 2R4ﬁ044 = Q:447

where the polynomials €;; are given by

€y = —(—a' = V2 f2 + f1+ f2h% + fop — 2fhPp — *p® + 2f%p? + h?p* + fp° +p!
—30%(f +p) = a®(V + & +3fp) + a(2?f + 7 + 2% + [*p+ f1* + p°)),

Cip = —a®b +a(bf? + ch(f — p)) + chp(—=f + p) — a*b(f +p) + bf*(f + p),
€13 = —a’c+ bfh(—f +p) — ac(f +p) + cp®(f +p) + a(bh(f — p) + cp?),

9:22 — _(a4 _ be2 _ f4 _ f2h2 _ 3f3p+ 2fh2p+ C2p2 _ h2p2 + fp3 +p4
+a*(f +p) + a0 f —3f3 —2¢%p = 3f2p + fp® + p°) + a*(—b* + 2 + p(f + 2p))),

Co3 = a’be — f3h — f2hp + hp* — a(be + h(f — p))(f +p) + fp(be + hp),

Cgg = —(a’ + 02 f2 + f1 = [2h% + fPp + 2fhPp — *p* — h*p® = 3fp* — p'
+a®(f+p) +a(=20°f + f° + 2°p + fPp = 3fp? = 3p°) + &’ (0? — 2 + f(2f +p))),

9:44 — _(_a4 + b2f2 _ f4 + f2h2 + f3p _ 2fh2p+c2p2 _ 2f2p2 + h2p2 + fp3 _p4
+a*(f +p) + a0+ =22+ fp—2p%) + a(=20°f + f> = 2Pp + fPp+ fp* +p°)).

Further observe from (4.4) that the structure constants are symmetric (up to a change of
basis) in the parameters b, c, h as well as in the parameters a, f,p. This clearly influences the
polynomials &;;. We are firstly considering the following four cases showing that none of them
supports a p-Einstein metric.
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a=f

Then €,, = ch(f —p)?. One easily checks that if f = p then the metric is Einstein. Hence f # p
and either c = 0 or h = 0.

If c = 0, then €,; = h(—2f3— f2p+2fp*+p?). Now, if h = 0, then €,, = (f—p)*(2f?+p?),
which contradicts f # p. If h # 0, then either p = —2f or p = —f. Setting p = —2f one gets
¢, = —9f%(2f% + h?). Hence f = 0 and thus f = p = 0 which is a contradiction. Finally, if
p = —f, then one gets €,, = —2f2(f% + h?), which also leads to a contradiction.

If h=0and ¢ # 0, then €,; = ¢(—2f% — f*p+ 2fp* + p*) and hence p = —2f orp = —f.
Proceeding in a completely analogous way as in the previous case with the coefficient €,, one
gets that no p-Einstein metrics may exist in this case.

Since the system of polynomial equations is symmetric up to a change of the basis {e; }, the
previous case also includes the situations ¢ = p and f = p. Hence we assume in what follows

thata # p,a # fandp # f.

a=—f

Then €5 = ch(—f% + p?) and, since a # p, a # fandp # f,one has c = 0 or h = 0.
If ¢ = 0 then €33 = hp(—f% + p?) and thus b = 0 or p = 0. If h = 0, then we have the
system of equations

¢,.=0¢, :4b2f2 _2f4 _f2p2 _p4
Cyy = —4b7f* = 2f* = 3f%p* + p*
Cpy = —4V?f2 + 6 f* + 5f%p* + p*,
which has no real solutions. If p = 0, h # 0 then €;3 = —2bf?h. Hence b = 0 and then
&y =— f2(2 2+ h2), which has no zeroes. This shows that ¢ cannot be zero.
If h =0, c # 0then €3 = cp(—f? + p?) and the only possibility is p = 0, but then
Cy3 = 2bcf?, which implies that b = 0 and thus €5, = — f?(c? + 2f?), which has no zeroes.

Therefore, we have seen that a # —f. Hence, by considering appropriate changes on the
basis {e;} one has that a® # f2, a® # p?, f? # p*.

c=0

Then €15 = —b(a® — f?)(a + f + p), and thus either b =0 ora + f + p = 0.

Ifa+ f+p = 0then €3 = bh(—2f2+ fp+p?), and hence either b = 0, h = 0 or p = —2f.
Note that the latter condition is not possible since a+ f +p = 0 and p = —2 f would give a = f,
which is a contradiction. If b = 0, then we have

€ =2(—f* =2f%p + fp(h* = 2p*)) — p*(h* 4 2p*) — f1?(h1* 4 6p1°)
€, =€, =-2f1—4f3p+ f2(h? — 6p?) + p*(h? — 2p?) — 2fp(h* + 2p?)
¢y = _h2<f - p)2 + 6(f2 + fp —l—p2)2,
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which has no real solution. Assuming A = 0 and b # 0, one has

Q:ll = Q:zz = b2(2f +p)2 - 2(f2 + fp +p2)2

<55 = —b*(2f +p)* = 2(f* + fp+p?)?

9:44 = _hQ(f - p)2 + 6<f2 + fp —|—p2)2,
which again has no real solution.

Setnow b = 0 and assume a + f + p # 0. Then €33 = —h(a + f + p)(f* — p*) shows that
h = 0. Now the system of polynomial equations becomes

¢, =a' = fH+3a®fp— fPp—2fp* — fp* - p
+3a®(f +p) —alf*+ fPp+ fp* +1°)

€, = —a* + [+ 3f°p— fp* —p* = a®(f +p)
—a’p(f +2p) —a(=3f° = 3f*p + fp* + )

€y =—a* — f* = fPp+3fp* +p* = a®(f +p)
—a?f(2f +p) —a(f’ + fPp = 3fp* — 3p?)

¢y = —20*(a+ [ +p)* = [Pa+ [ +p)?
—p*a+ f+p)?+3(a®+ f2+p?)?,

and again it has no real solution.

Hence we may assume ¢ # 0 and, up to a change of basis, one has that ¢ # 0, b # 0 and
h # 0.

a+ f+p=0

Then €15 = —ch(f* + fp — 2p?) and thus p = f or p = —1 f, which contradicts a® # f? and
2 4 2
p* # a’.

We now return to the original system {€;; = 0}. Based on the analysis of the previous cases,
the polynomial

¢, = —a’b+ a(bf* + ch(f — p)) + chp(—f + p) — a®b(f + p) + bf*(f +p),

ch(a —p)(f —p)
(a* = f2)(a+ f +p)

(aﬂcfz;ci{w) ¢, = at + f3p — B2p? + 3d3(f + p) — F2(h2 — 2p?)
+a(3f7 + Tfp+3p®) + f(2h*p + p*)

+a(f>+ 5 +5fp* +p?).

gives b = . Substituting b in &, ;, it becomes
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2
Hence h? = @l (a(_}_ . (C)L;L f+p) . Replacing again in the equations, one gets
—p
(a+£éa_4}§+p) ¢23 _ f4 + 3f3p . 62p2 + 3f2p2 + fp3 + a3(f +p)
+a* (= + 37+ 5fp + 2p°)
+a(3f+22p + Tf*p + 5fp* + p?),
2

and thus ¢? = (a+ N +p )(a2—|— f+p) . Now, the only remaining equations are ¢;; = €y =

(a—p)
¢33 = ¢4y, where

Ci=a’(f+p)+alf+p)°+ fo(f>+ fp+p°) +a(f*+3fp+1p?).

The only real solutions of €; = 0 are a = f = 0 (which gives an Einstein metric) or p =
af
a+ f
Next observe that setting €; = es, €5 = €1, €3 = e3, €4 = €4 one gets an isometry inter-
changing a and f. Furthermore since p # a, p # f the constants a, f satisfy af # 0. Hence
considering the homothetic basis ¢, = %ek one may assume that ¢ = 1. Finally setting f = «

one has that p = — %5 and the remaining structure constants are given by

1+a+a? 14+ a+o? 1+a+a?

hegltota) _ elltatad) . alltatal)

ala+2) 200+ 1 (a+1)2(a—1)
where € = £2 = 1. Finally since €] = —ey, €} = —ey (resp., €; = —ey, € = —ez and €5 = —eq,
e; = —es ) determines an isometry interchanging the signs of ¢ and h (resp., the signs of b and h
and the signs of b and c) we may assume ¢, = €. = 1. We recall that the values o = 0, « = —2,
o = —1 and o = +1 are not possible since a* # f%, a® # p? and f? # p®. Furthermore, the

isometry interchanging a and f induces an isometry interchanging o with é
Finally observe that the Ricci operator takes the form

-1 55 o 0
1+ a+o? QLH —a 1 0
Q= —
a+tl a 1 20
a+
1+a+a?
0 0 0 —%
which shows that the left-invariant metrics (4.7) are p-Einstein but not Einstein. O

4.3 Left-invariant R|p|-Einstein metrics

This section follows the exact same procedure as the previous one. We compute a trace free
tensor field and check when it satisfies the condition required.
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4.3.1

The direct products SL(2,R) x Rand SU(2) x R

Lemma 4.8. SL(2,R) x R and SU(R) x R do not admit R|p|-Einstein left invariant metrics.

Proof.
shows

Let R[p|o be the trace-free tensor R[plo = R[p| — 1||p|*g. A straightforward calculation
that the components of R|[p|, for any left-invariant metric (4.1) are given by

16R4R[P]011 = R, 8R4R[P]012 = NR.,, 8R4R[P]013 =R,

8R3R[plo,, = Ry 16R*R[plo,, = Rasy 8RYR[ploys = Rus,

8RRploys = Rayy  L6R'R[ploy, = Rys, 8RZR[plo,, = Ry,

16R R[plo,, = Ry

where the polynomials R;; are

Ri1 =

Rig =

Riz =

Rig =

Roo =

—TRN + 8RNIy + 10RININS — 4k2 R2A A3 — 16 R\ NS — 3k + 2kIR2A]

+ 5R4)\§1 — kg()\l — )\2)2(7)\% + 61\ — 5)\%) + 8R4)\%)\3 — 28R4)\%)\2)\3

+ AR RZA N3N + 1I6RMAIA; + 4k2A3Ns + SK2RZA3s + 4R A3A; + 10R*AZAZ
FARZRIA AN + 16R A ANE — 2600202 — 20K2R2A2A2 — 1SRIAZAZ — 4K2R2A A3
CI6RMAL + 40N + SEZR2AAE + ARN0AE — 3KINE 1 2K2R2A + RIS

— kg(Al — )\3)2(7)\% + 6A1 A3 — 5)\%) + 2]{2?2)(—R2()\1 — )\2)(7)\:{’ — )\%()\2 + 4)\3)

+ A2(5A% + 2X0X3 — 4A3) + A1 (=113 + 10A2A3 — 223)) + kT (AT (4ha — HA3) A3
FAX3) 20 M52 Aodg — AZ) £ A2(2X2 — Adop)s + A2)) + k2(—TAL + 5A2A2

+ 4)\?()\2 + )\3) - 8)\1)\2)\3()\2 + )\3) + 2)\%()\% 4+ 393 + )\g)) — R2()\1 — )\3)(7)\:{’

— )\%(4 Ao + )\3) + )\1(—2)\% + 1023 — 11)\%) + )\3(—4)\% + 203 + 5)\%))),

kle(R2)\‘;’)\2 — 2R2)\%/\% + 2k%)\1)\% + R2/\1>\% + 5R2)\%)\2)\3 — 2/€%)\1)\%)\3
+BR2ZAAZA; — AR2AIAZ — 2k2\ A2 — TARZA AN — 4R2AZA2 — ARZA2N2

+ 2k%/\1>\§ + 8R2)\1)\§ + Sk%)\gx\g + 8R2>\2)\§ — 4k%)\§ — 4R2)\§

+ 2]{2%()\1 - )\3)2()\1>\2 + ( Ao — 2)\3))\3) + k‘%()\l — )\2)2((>\2 — 3)\3))\3 + )\1()\2 + )\3))),
k1k3(—4R2)\%)\§ + 216%/\1)\% + 8R2)\1)\% — 4]€%/\§ — ZJIRQ/\ZQ1 + RZ)\?)\g + 5R2)\%/\2/\3

— 23N M35 — TARZA A30s + 8kZA3 N3 + SR2A3A3 — 2RZAINE — 2k2 A1 Mo A3

+ 5R2)\1/\2)\§ — 4]?%)\%)\123 — 4R2)\%/\§ + 2k%)\1)\§ + R2/\1)\§ + 2k§()\1 — /\2)2(—2)\%

+ A1 A3+ AaAg) + k%(/\l — )\3)20\2(—3)\2 + A3) + (A2 + A3))),

kl(kg(}\l — )\2)(—4)\1)\% + 4)\% + )\%)\3 + 2X1 A 23 + 6)\%)\3 — 3)\1)\% — 6)\2)\%)

+ E3(A1 — A3) (A2 — 6A203 4+ 6222 + 403 + A1 (=322 + 20003 — 4)2))

—2(A2 — )\3)2(2R2(—)\1 + Ao + )\3)2 — ]{7%(/\2 + A3)(A1 —2(A2 + A3)))),

SRANT — 16 R N N\g + 4k2 R2AIN2 + 10R*N2AZ + 82 R2 M A3 + 8RN NS — TkiNS

— 142 R2NS — TRANS + k3 (01 — X2)2(5A2 — 6A 10 — TAZ) + 4R A3 + 42 R2AI )3
+ 16R*A2 A3 — 28k2 RZA1 N33 — 28 RAN A3N3 + 8EFAS A3 + 16KZ RZA3 )3

+ 8RIN3N3 — 8KZR2AINZ — 18RIAIN2 + 16K2 R2A 1 A2 A3 + 16 RIAN Mo A3 + 10k1A303

+ 2062 R2N3N2 + 10R*NINZ + 42 R2A A3 + AR A3 — 16ki A3 — 327 R2M\ N3
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Roz =

Rog =

Rzz =

Rag =

Rys =

— 16R* X A3 + 5EFAS + 10k2R2AS + 5RAAS — k3 (A1 — A3)2(3A2 + 2X\1 A3 + 3)3)

+ 2k2(R2(A\1 — A3)2(A2 — 2X1 02 + 6A1 03 — 2X0)3 + A2) + k2(\f — 5AZ)N2

+ 2)\%)\3()\2 + )\3) + 2)\1)\2)\3(2)\2 + )\3) — 2)&()\2 + 2)\3))

+ E2(A3(=2X2 + A3) + 221 03(22A3 4+ A2 A3 — 2A2) + A2(—=5A3 + 2X2\3 + 2)3)))
+2k2(R2(M1 — A2)(BA3 + A2(—11)g + 2X3) + A2(7A3 — 4Xo A3 — 2)2)

— )\1()\% — 10)\2)\3 + 4)\%)) + k‘%(?)\l)\g(2)\% + 3/\2)\3 — 4)\:25) + )\%(—7)\% + 4)\2/\3

+ 2)\3) -+ )\%(2)\% — 8X2 A3 + 5)\%))),

koks(—4R2\} + 8R2X3 g — 3kIN2A2 — 4R2XN2A2 4+ K2\ A3 + SR2A3 N3 + 6k3A2 003
— TARZX2MoA3 — kPN N33 + 5RZA N3N + E2A33 + R2A33 — 3kININZ — 4R?A2\2
— E2A 0022 + 5R2A A0 AE — 2k20302 — 2RZA2AZ + K2A3 + K203 + R2A0A3
—2k3( A1 — A3)2(20% — A1 A2 — A2A3) — 2K2( A1 — A2)2(207 — A1 Az — A2)3)),

—ko(AR2M} — 8RZXN3N\g + 3K2A2A2 + AR2AINZ — K203 4+ 3kIA2 003 + 8R2A2)\0);

— k2A N33 — 8RZA AN — 6KIAIA2 — 8RZAZAZ — 4k N Mo A2 + SR2A 1 \0N3

+ 4kININS + ARZA3N3 + 63N NS — 8kFAoA3 — 8RZ Ao + 4kTINS + 4R2N3

+ 2k§()\1 — )\3)2()\1 + )\3)(2 A — Ao+ 2)\3) + kg()\l — )\2)(4)\? + 2/\1(/\2 — 3)\3))\3

+ A2(X2 — 3A3) A3 + AT(—4X2 + 6)3))),

SRAN + 4RI Xy — BRI RZAIAS — 18RINIAS + 4k RZM A3 + 4R A1AS + 5kTA;

+ 10T R2A3 + BRUAS — k(AL — A2)?(BAT + 2A1 A2 + 3A3) — 16R* A A3 + 4k R*AT Ao )3
+ 16R NI A3 + 162 R2A 1 A3As + 16 RIN A3IAs — 16kTA3As — 32T RZA3 A3

— 16R*N3N3 + 4k2R2AIN2 + 10R*N2AZ — 28K2 RZA1 Ao )2 — 28 R* A1 Ao A3 + 10kFAZN2
+ 2062 R2A3N2 + 10R*NIN2 + 82 RZA A3 + SRAIN A3 + 8KkF Ao NS + 16K2 R2A0A3

+ 8RMoAS — ThIAY — 14KkI RN — TRAAS + k5 (M1 — X3)2(5AF — 6M103 — TA3)

+ ng(RZ()\l — )\2)2(/\% + 61 A + )\% — 2\ A3 — 2)\2/\3) + k%(/\g()\g — 2)\3)

+ A2(223 + 2X2)3 — 5A2) + 22X A2(—2A3 + A2 A3 + 2A3))) + 2k3 (k2 (A} — 5AZN2

+ 2/\%)\2()\2 + /\3) — 2)\‘;’(2)\2 + )\3) + 2)\1/\2)\3()\2 + 2)\3)) + R2(>\1 — /\3)(5)\%

+ )\%(2 Ay — 11)\3) — )\1(4)\% — 10X A3 + )\%) + )\3(—2 )\% —4Xo A3 + 7)\%))

+ E2(A2(202 + 4dad3 — TAZ) + A2(5A3 — 8X2A3 + 2A3) + A1 (—8A2)3 + 6X202 + 4)3))),
—k3(4R2A} — 6kININ — SR2AZA3 + 6KZ A NS + 4kIN3 + 4R2A\S

+ 2]{%()\1 — )\2)2()\1 + )\2)(2 A+ 2X — )\3) — SRQA:{’)Q, + 3]43%)\%)\2)\3

+ 8RZNI Ao A3 — 42X A3 + 8REN A3As — 8KZA3 N3 — 8RZA3A; + 3kIAIA3
FARPAZAZ — k2N 002 — 8RZA AoAS + 4kININE + AR2A2A2 — k2N NS

+ k3 (A1 — A3)(4X] + AT(6 Ao — 4A3) + 2X1A2(—3X2 + A3) + Aod3(—3X2 + A3))),
—3RIN AR g + 4R2RPN2D3 — 2R*N2A2 — 8KZR2A NS + AR\ NS + 5kiNS

+ 22 R3S — 3RANS + ki(A1 — X2)2(BA2 + 14\ 100 + 5)02) + 4R A3)3 — 8KZRZA2 A0\ 3
— 4R4)\%>\2)\3 + Sk%Rz)\l)\%)\g — 4R4)\1>\%)\3 + 4]45%)\%)\3 + 8]42%R2)\§)\3 + 4R4>\§’)\3
+ARIR2AINE — 2RUNINZ + SEZR2 A1 Mo)3 — AR A1 Mo N2 — 18KTAZNZ — 20k2 R2A3N2

— 2RININE — 8KIRZNIAS + AR A3 + 4k{ Mo} + 8KIRZ? Do N3 + AR A3 + 5EIAG

+ 2k2R2AE — 3RAAS + k3( A1 — A3)2(BA2 + 14\ 03 + 5)A2) + 2k2(R2 (A1 — \9)2 (N2

+ 6A1 A2 + A3 — 4X A3 — 4AoAs + 202) + EZ(AZ(502 4 2X00)3 — 402) + 20102 (N\3

— B3 + )\%) + )\%(—4 /\% + 203 + 5)\%))) + 2]€%(R2(>\1 — )\3)2()\% —4X Ao
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+ 2)\% 4+ 6A1 A3 — 4o A3 + )\%) + k§(5)\411 + 5)\%)\% + 2)\‘%()\2 + )\3) + 2)\1)\2)\3()\2
+ A3) — 2A2(203 + 5Aads + 203)) + kT (AZ(5A3 + 2X2)3 — 4A3)
+ 20 A3(A5 = 5Aadz + A7) + A(—4 A3 + 2003 + 5A3))).

We proceed as in the proof of Lemma 4.4, thus, the metric is R[p]-Einstein if and only if the
{M;;} are vanishing.

Assuming A\; = A\, = A3, one has that 01 R[p]y = 1 diag(A}, Af, A}, —3A}), thus showing
that the metric is not R[p]-Einstein since A\;A\o\3 # 0. Now, we consider the terms k; at (4.1).
Up to a permutation of the basis {e1, €2, e3} one may assume that one of the following holds:

(Z) klkgkg 7£ 0, (ZZ) k’l = O, ]i’2]€3 % O, (’LZZ) ]{71 = kQ - 0, kg 7£ O

We analyse the different possibilities separately.

(i) kikoks # 0

Let Z C R[ky, ko, k3, A1, A2, A3, R] be the ideal generated by the polynomials ;; (after simplifi-
cation due to k1 koks # 0) and compute a Grobner basis G; of Z with respect to the lexicographi-
cal order. Since the polynomial g; = R*A\;A2A\2(A\3 — \2) belongs to G; one has that A3 — A3 = 0.
Computing a Grobner basis G;; of the ideal generated by G; U {\2 — A2}, one has that R*A\I\3
belongs to G;;, which is a contradiction.

(i1) k1 = 0, kaks # 0

We firstly simplify the polynomials fRo3, SRo4 and R34 by using that kok3 # 0 and then compute
a Grobner basis G, of the ideal Z C Rlko, k3, A1, A2, A3, R] generated by the polynomials fR;;
(after simplification). Since go = ROA2A3(\y — \3) € G, one has that A, = \3. Computing a
Grobner basis Go; of the ideal generated by Go U {\s — A3}, one has that R*\; A3 belongs to Goy,
which is a contradiction.

(2”) kl - k’g = 0, k’g 7é 0

Let Z C Rlks, A1, A2, A3, R] be the ideal generated by the polynomials 9R;; (after simplifying
R34 due to k3 # 0) and compute a Grobner basis G3 of Z with respect to the lexicographical
order. Since the polynomial gz = ROA2A3(A\3 — A2)? belongs to G5 one has that A3 — \2 = 0.
Computing a Grobner basis Gs; of the ideal generated by Gz U {\2 — A2}, one has that ROAI\3
belongs to G3;, which is a contradiction.

Hence the Lie algebra structure (4.5) does not support any R[p|-Einstein metric. ]

4.3.2 The semi-direct products Re, x F(1,1) and Rey x E(2)

Lemma 4.9. Any left-invariant R|p]-Einstein metric in Rey X E(1,1) or Rey X E(2) is Einstein.
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Proof. Let R[p|o be the trace-free tensor R[plo = R[p] — 1||p]|%g. A straightforward calculation
shows that the components of R|[p|, for any left-invariant metric (4.2) are

16R*R[plo,, = R, SR'R[plo, = Rus,  8R'R[plo,;, = Ris,
8R*R[plo,, = Ruy,  16R'R[plo,, = Raay SRIR[plo,, = R,
8R°R(plo,, = Ry 16R'Rplog, = Ry, 4R’R[plo,, = Ry,
16 R*R[plo,, = R,

where the polynomials 2R;; are given by

N1 = 16b* — 7C* — 1002 D? — 3D* — 14C%R? — TR* + 8C%R?)\y — 4D?R?)\y + 8R* )\,
+4C?R?XA2 4+ 2D?R2)\3 + 10R*)\2 — 16 R*\3 + 5R*\] 4+ 8AC'D(—1 + 2)2)
—2b%(9C? — 3D? + 8R?(—1 + M) A2) + A (=1 4+ A2)%(=7 — 6] + 5)2)

+ 2A2(=TR? + 8V?(—1+ A2) — 2D?)g + 8R?Xa + D?)2 + 10R?)\3 — 16 R?\3
+ BRI\ + C%(—T7+ 42 + 2)2)),

Riz = —(A20D(—1+ X2)? + 6430(—1 + \2)® + CD(126% + 2C% + 2D? + R? — 2R% )\,
+ R2)\3) + Ab(—7D? — 6R? 4+ 8b*(—1 + \a) + 5D%X\y + 18R%2\y — 18R%\3
+6R2\3 4 C%(—5 +TA2))),

Riz = —4A3D(—1+ A2)? Ay + 4A26C(2 — 3Xg + A3) + bC(24b? + TC% + TD? + TR? + 4R? )\
— 11R?)\3) — AD(—2D? +4D?Xy + 4R?\y — SR2)\} + 4R?X\3 + 4% (1 + o)
+C2%(—1+3)\)),

Rig = —4A2D(—1+ X2)? Ay + AbC (1 — 16A2 + 1503) + D(C? 4+ 2D? — 3C? )y — 4D?)y
—4R?Xg + 8R2A\2 — 4R2)3 4 207 (1 + \2)),

Rop = 16b* — 3C* — 10C%2D?% — 7D* + 2C%R? + 4D?R? + 5R* + 2b(3C? — 9D?

+ 8R?(—1 4 X)) +8AbCD(—2 4 \o) — 4C%2R? Xy + 8D?R?\y — 16R* o

— 14D%R2)3 4+ 10R*)\3 + 8RN — TR\ — A (—1 + X2)%(=5 + 62 + 7)\3)
—2A2(C? (=14 2)\2) + D?(=2 — 4Aa + TA3) + (=1 + X2)(8b% A2

+ R2(5 — 11X — A3 + 7A3))),

Roz = 4A3C(—1 4 A2)2 + 4A%bD(1 — 3)\g + 2)2) + bD (246> + 7C? + 7D? — 11R? 4+ 4R? )y
+ TR2M\2) + AC(3D? + 4R? — 202 (=2 + Xg) — D?Xg — 8R% X\ + 4R?)\2 + 4% (1 + \2)),

Rog = 4A2C (=1 + X2)? + AbD(15 — 16X2 + \3) — C(=3D? — 4R? + 2C?(=2 + \2) + D?*)9
+ 8R?\y — 4R?X\3 + 2b%(1 + \2)),

R33 = —48b* +5C* +10C%?D? + 5D* + 10C?R? — 8D?R? + 5R* — 2b*(C? + D?
—8R*(—1+ X2)?) + 124bCD(—1 4 A2) + 4C?R*\y + 4D?R?)\g + 4R )\
—8C?R?)\3 + 10D2R?)\3 — 18R*\Z + 4R*N\3 + 5RAN\; — A% (—1+ X2)2(3 + 22
+3)A3) +242(2D? + R — 8b%(—1 + A2)? — 4D?Xg + 4R?)\o + D?\3 — 10R?)\3
+4ARZAS + R2A5 + C?(1 — 4)a + 2)2)),

Rizs = —(—6bCD(—1+ Aa) + 243(=1 + A3)? + A(—3D? + 2R? + 8b*(—1 + A2)? + 3D? ),
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+2D2)\3 — 4R*)} 4+ 2R?\] + C%(2 4 3X\2 — 3A3))),
R4 = 16b* + 5C* +10C%2D? + 5D* 4 14b%(C? + D?) + 2C%?R? + 4D?R? — 3R*

—36AbCD(—1+ A2) — 8C2R*)\y — 8D?R?)\g + 4R* )\ + 4C?R?)\% + 2D? R2)\3

—2RAN3 + AR — 3RS + A (—1+ X2)%(5 + 14)\g + 5A3) + 2A42(—4D? + R?

+ 16b%(—1 + A2)? 4+ 2D\ + 4R%X\o + 5D?X3 — 10R2\3 + 4R?)\3 + R2\}

+ C?(5 + 29 — 4A3)).

Let Z C R[A,b, A2, C, D, R] be the ideal generated by the polynomials {R;;} and compute

a Grobner basis Gy C Z with respect to the lexicographic order. Since the polynomial g, =
D3(C? + D*)? € G, one has that D = 0. Computing a Grobner basis Gy, of the ideal Gy U { D},
one has that C 5/\3 € Go1, and thus C' = (. Once again, compute a Grobner basis Gy of the ideal
Go1 U{C'} to see that Ab* € Gp;;. Therefore either A = 0 or b = 0. We analyze both possibilities
separately.

A=0

Compute a Grobner basis G, of the ideal Gy U { A} to see that R*(\y —1)*(X\y+ 1) € G;. Hence
Ay = +1. Setting Ay = 1. If \y = 1, then the R[p|-Einstein equations reduce to b = 0, in which
case the metric is Einstein. Moreover, if Ay = —1, then the R|[p|-Einstein equations reduce to
b?> = R? and the metric is Einstein.

b=0

Compute a Grobner basis G of the ideal Gy1; U {b} to see that R*(A% + R*)(\2 — 1)? € Gs.
Hence \; = +1. If Ay = 1, then the resulting metric is Einstein while in the case A = —1 the
R[p]-Einstein equations become 77 (A% + R?)? = 0 which has no solutions with R > 0. O

4.3.3 The semi-direct product Re, x H?>
Lemma 4.10. Any left-invariant R[pl|-Einstein metric in Rey x H?® is Einstein.

Proof. Let R[p]y be the trace-free tensor R[p]o = R[p] — ;[|p||*g. A straightforward calculation
shows that the components of R|[p], for any left-invariant metric (4.3) are

16R'R[plo,, = R, 4R'R[plo,, = Ri.,  8R'Rplo,, = Ris,

4R*R[plo,, = Ru, 16R*R[ploy, = Ra.xy, 8R*R[plo,s = Rus,

ARPR[ploy, = Ray,  16R'R[ploy, = Rys, 8R°Rlplo,, = Ry,

16! Rplo,, = Ry,

where the polynomials 2R;; are given by

MR = 16a* — 48d* — 16d*F? — 3F* + 12¢cdFH — 2d*H? + 2F?H? + 5H*
—2¢%(4d? + F? + H?) + 16d°R? + 2F2R? + 10H?R? + 5R* — 2a?(4¢® + 8d?
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— 3F? 4+ 8R?) + 4a(4c?d — cFH — 2d(8d? + F? + 3H? — R?)),

Rz = 8a’c + a?(—ded + 2FH) — cd(8d% + 2F? + 3H? — 3R?) + 2FH(d* + F? + H? + R?)
+a(—6dFH + c(4d? + 3F? + 2H? — 3R?)),

Ri3 = 8a3H + a?(—8cF + 12dH) — cF(8d? + 2F? + 2H? + R?) + aH (28d? + 5F?
+6(H? 4+ R?)) + dH(24d? + 8F? 4+ 7(H? + R?)),

Ry = —a?F + 8d*F — 3cdH + 2a(5dF + 3cH) + 2F(F? + H? + R?),

Moy = —48a* — 64a3d + 16d* + 5F* + 4cdFH + 6d>H? + 2F?H? — 3H* — 2¢%(4d? + F?

+ H?) — 16d?R? + 10F?R? + 2H?R? + 5R* — 2a?(4c* + 8d°? + F? + 8H? — 8R?)
+ 4a(4c*d — 3cFH — 2d(3F? + H? — R?)),

Roz = 24a®F + 8d®F + 8cd*H + 4a*(7dF + 2cH) + cH(2F? + 2H? + R?) + dF(6F? + 5H?
+6R?) + aF(12d% + 7F? + 8H? 4 TR?),

Moy = 6cdF — 8a’H — a(3cF + 10dH) + H(d?> — 2(F? + H? + R?)),

R33 = —(—16a* — 32a3d — 16d* + 16d*F? + TF* — 20cdF H + 18d°H? + 14F?H? + 7H*
+2c%(4d? + F? + H?) + 2a%(4c® — 8d> + 9F? + 8H?) — 4a(4c*d + 8d% — 5¢cF H
—4d(F? + H?)) + 14F?R? + 14H?R? + TRY),

R34 = 4a’c — dFH + a(—8cd + FH) + c(4d® + F? + H?),

Ry = 16a* + 32a3d + 16d* + 32d*F? + 5F* — 36cdFH + 14d°H? + 10F?H? + 5H*
+6c%(4d? + F? + H?) + 2a*(12¢? + 8d% + TF? + 16 H?) + 2F?R? + 2H?R?

— 3R* + da(—12¢%d + 9cF H + 4d(2d* + 3F? + 3H? — R?)).

Therefore Re, x H is R[p|-Einstein if and only if the system of equations {§R; = 0} is
satisfied. Let Z C Rla, ¢, d, H, F, R] be the ideal generated by the polynomials {R;;} and com-
pute a Grobner basis Gy C Z with respect to the lexicographic order. Since the polynomial
go = FHR*(F? + H? + R*)(2H? + R?)? € Gy one has that FH = 0. Computing a Grobner
basis Gy of the ideal Gy U { F'H } with respect to the lexicographic order, one has that the poly-
nomials H R?(H?+ R?)? and F R*(F? + R?)? belong to Gy, and hence F' = H = 0. Computing
again a Grobner basis Gop; of the ideal Gy U { F, H } with respect to the lexicographic order, one
has that the polynomial (4d*> — R?)R® € Gy;1. Once again we compute a Grobner basis Ggy1; of
the ideal Gyy; U {(4d* — R*} and get that the polynomial (a — d)R* € Gy111. Thus a = d and the
resulting metric is Einstein. [

4.3.4 The semi-direct product Re, x R3

Lemma 4.11. Any left-invariant R[p|-Einstein metric on Rey x R3 is Einstein.

Proof. We proceed as in Lemma 4.7 and consider a left-invariant metric on Rey x R? given as
in (4.4). Then the components of the trace-free tensor R|p|, become

2R4R[p]011 =Ry, R4R[p]012 =Ry, R4R[p]013 = 9{137 R[P]OM =0,
2R4R[p]022 =N, R4R[p]023 = N, Rplo,, =0, 2R4R[p]033 =R,
R[p]034 = 07 2R4R[p]044 = 9%447
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where the polynomials 2R;; are given by

+aP(f +p) +a® (VP + =2+ fp—2p%) — a2V f + 2+ 2% + fPp + f° +p?)),
Rz = —(b(a — f)(a® — af + f* +p?)),
Rz = —(c(a —p)(@® + 2 —ap + p?)),
%22 — *(CL4 + b2f2 _ f4 + f2h2 + f3p _ 2fh2p+ C2p2 _ 2f2p2 + h2p2 o fp3 +p4

+a*(=f +p) + a0 + ¢ = 2f% = fp+2p°) + a(=20*f + [? = 2¢°p + f2p — fp* +p%)),
Noz = —(h(f —p)(a® + f* — fp + 1)),
Naz = —(a* + V2 f2 + f* + [P0 + a®(f — p) = fPp — 2fh%p + 2p? — 2f%p? + 1Pp* + fp

—pt+ a0+ +2f2 — fp—2p%) +a(=20°f + f° — 27p — fPp+ fr® + 7)),
m44 — CL4 + 3b2f2 + f4 + 3f2h2 + f3p_ 6fh2p+362p2 _ 2f2p2 —|—3h2p2 + fp3 +p4

+a?(f +p) +a®(30* + 3¢ = 2f* — fp— 2p*) + a(=6V*f + f> — 6*p — f*p — fp* + p?).

Hence a left-invariant metric (4.4) is R[p|-Einstein if and only if the system of polynomial

equations {JR; = 0} is satisfied. Let Z C Rla,b,c, f, h,p, R] be the ideal generated by the
polynomials {R;;} and compute a Grobner basis G, with respect to the lexicographic order.

Since the polynomial gy = p”(f3 — p?) belongs to Gy, one has that either p = 0 or p = f. We
analyze the two cases separately.

p=0

Compute a Grobner basis G; of the ideal Gy U {p} to see that f7 € G, and thus f = 0. Compute
again a Grobner basis Gy, of the ideal G; U f. It now becomes that the new Grobner basis is given
by

gll = {p> fv a2(b2 + 62)7 a307 a2b7 a4}‘

Hence a = 0 and the resulting metric is flat.

p=/[fp#0
Compute a Grobner basis G, of the ideal Gy U {p — f} to see that p°(a — p) € G,. Since p # 0,
one has p = a. The resulting metric is now flat, which finishes the proof. ]

4.4 Homothety classes

Assertion (3) in Theorem 4.2 follows at once from last section. In order to prove Assertion
(1), we recall that the (1, 3)-Weyl curvature operator is invariant by conformal transformations.
Indeed, if two Riemannian metrics are conformally equivalent (i.e., § = €2g), then their Weyl
curvature operators W and W are equal. The converse does not hold in general.

Furthermore, since Takagi proved in [63] that homogeneous locally conformally flat metrics
are symmetric, non-symmetric conformally related homogeneous metrics are necessarily homo-
thetic.
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Thus, an homothety between two conformally related metrics can be obtained from the work
of Kulkarni [48] just considering the curvature endomorphisms R(e;, €;) of the Lie algebra.

Arias-Marco and Kowalski showed in [1] that any non-symmetric homogeneous R-Einstein
metric is determined by the Lie algebra structure

[647 61} = ey, [647 62] = —OG€y — ﬁ€37 [647 63] = /862 — (eg, (48)

where o # 0 and 3 are constants and {ej,...,es} is an orthonormal basis. Now, an explicit
calculation shows that the endomorphisms R(e;, e;) of any metric (4.8) satisfy

vl
—~
[y
s
D
[N}
N—

I

CY2(E12—E21), R(617€3) ZQQ(EIS_Egl)a
o2(EY — EYY), R(es,e3) = a?(E3y — E?3)
R(GQ, 64) = OéQ(E24 — E42), R(€3, 64) = O[Q(E34 — E43)

!
—
)
s
D
Ny
N—

I

where E’; denotes the matrix with 1 in the position (4, j) and zero otherwise. This shows that
these endomorphisms are independent of the parameter 5 in Equation (4.8).

Hence the Lie group determined by (4.8) is homothetic (but not isomorphically homothetic)
to the Lie group determined by the Lie algebra

[647 61] = aeq, [647 62] = —Qe€y, [647 63] = —Ges. (49)

Finally, the Lie groups determined by (4.9) are all isomorphically homothetic to the Lie group
structure in Theorem 4.2-(1) by taking the change ¢; = éei, thus showing Assertion (1).

The Riemannian structure corresponding to Theorem 4.2-(2.a) has zero scalar curvature,
while the scalar curvature in the cases (2.b) and (2.c) is strictly negative, so the Lie group cor-
responding to Assertion (2.a) cannot be homothetic to any of (2.b) or (2.c) in Theorem 4.2.
Furthermore, the structure defined by Assertion (2.b) satisfies

T=-1 |ol*=1, [|IR|*=3.

On the other hand, replacing the metric (-, - ),, in Assertion (2.c) by the homothetic one (-, - )¥ =
%( -, *)as» a straightforward calculation shows that

3+ a(l+a)(9+a(l+a)(7 +3a(l +a)))

Ta = —1, HpocHQZ L, ||R04H2: (1+oz+a2)3

Now, any homothety between the metric in Assertion (2.b) and any of the metrics in Assertion
(2.c) must induce an isometry between the metric (2.b) and some metric (-, -)*. Hence it must
preserve the norm of the curvature tensor, and thus || R,||? = 3 for some a. A straightforward
calculation now shows that || R, ||* = 3 if and only if either &« = 0 or &« = —1 and none of these
cases may occur. Therefore the structure in Assertion (2.b) cannot be homothetic to any of the
structures given by Assertion (2.c).
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4.5 Critical metrics for S and 7,

Now we consider each family of metrics obtained, determining whether or not are S or F;-
critical. We just consider the non-symmetric case since the symmetric one was studied in chapter
two. Since we work with homogeneous spaces, then the Ricci tensor is parallel and the scalar
curvature is constant. Recall that a metric is S-critical if and only if

AT T
2 (HessT - Tg> _9r (p . Zg) —0. 4.10)

Therefore, an homogeneous metric is S-critical if and only if it is Einstein or it has vanishing
scalar curvature.
All critical metrics are considered in the next result.

Theorem 4.12. Let (M, g) be a homogeneous four dimensional weakly-Einstein Riemannian
manifold. Then,

1. (M, g) is S-critical if and only if it is homothetic to the Lie group SU(2) x R with left-
invariant metric determined by the Lie algebra

[61,62] = (4:i: 2\/5)63, [62,63} = (3 + 2\/5)61, [63,61] = €9,
[64, 61] = —€2, [64, 62} = (3 + 2\/5)61.

where {e1, ..., e,} is an orthonormal basis.

2. (M, g) is Fy-critical if and only if t = —% and (M, g) is homothetic to the Lie group R x R?
with left-invariant metric determined by the Lie algebra

[64’ 61] = €1, [647 62] = —€9g, [64; 63] = —¢€3,
where {e1, ..., e,} is an orthonormal basis.

Proof. Recall that a Riemannian metric is J;-critical if and only if

A 2
Hess, — Ap+ 2t (HessT — TTg) —2 (R[p} — @g) — 2tT (p — ig) =0. 4.11)

Define the (0, 2)-tensor field F as the tensor field given by the left-hand side of the equation.
Thus, a metric is F;-critical if and only if F = 0.

Recall that the non-symmetric cases from Theorem 4.2 were homothetic to the following Lie
algebras

(1) The Lie group R x R3 with left-invariant metric determined by the Lie algebra

[64’ 61] =61, [647 62] = —€2, [647 63] = —é€s3.
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(2.a) The Lie group SU(2) x R with left-invariant metric determined by the Lie algebra

[61, 62] = (4 + 2\/5)63, [62, 63] = (3 + 2\/5)61, [63, 61] = €9,
[64, 61] = —€9, [64, 62] = (3 + 2\/5)61.

(2.b) The Lie group R x H? with left-invariant metric determined by the Lie algebra

1 1
=€, [62764] = —5é€a.

[ela 62] = €3, [617 64] = 2 2

(2.c) The Lie group R x R? with left-invariant metric determined by the Lie algebra

leaer] = €1 — a(l+ a+ a?) . a(1+a+a2)e
(ea, e2] = a(l+a+a?) o 4 ae +(1+a+a2)e
P a1)2(e—1) 2 alw+2)
le e]——a<1+&+a2)e —(1+&+a2)e - e
b 200+ 1 ! ala+2) 7 e

and o € (—1,1), a # —3, a £ 0.

Now, we consider each algebra separately.

The non-zero components of F for (1) are F33 = Fyy = —4(3+4t), so it s critical for t = —32,

The algebra from (2.a) cannot be F;-critical since the component F1; = 16(89 & 63v/2),
which never vanishes.

The metric from (2.b) is never critical since Fyy = —% and Fy; = —1 — £, so this cannot be
zero simultaneously.

Finally, the family of metrics from (2.c) is never critical. One has that

22+ t)(1+ a+a?)?
(I+a) ’

F44:_

and then, ¢ = —2. However, with this setting, we have that

42+ a+1) (a®—3a—1)(a®(a+3)—1)
(a—1)(a+1)°(2a+1) '

The first bracket only has complex solutions. If the second vanishes, then F1, is zero if and only if
205+ «(724+385c) = 0 and Fo4 is zero if and only if 887+ 2«/(1567+835«) = 0, which cannot
vanish simultaneously. The same happens if the third bracket of F;; is vanishing. In that case Fy4
is zero if and only if —134+«(46+4-385«) = 0 and Fo4 if and only if —6001+a(2084+17279«) =
0. Thus, F cannot be vanishing and the metric cannot be JF;-critical.

Regarding S-critical metrics, the only Lie algebra given in Theorem 4.2 with vanishing scalar
curvature is (2.a) and the results follows. O

Fii=—
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The study of flows has been a research topic that has grown a lot of attention in differential
geometry over the years as it has many different applications in other fields. The most famous
one is the Ricci flow. Let (M, ¢g) be a n-dimensional Riemannian manifold. The Ricci flow is the
family of metrics g;, ¢ > 0, go = g, evolving respect to the equation

0
1% = ~2Pae

where p,, is the Ricci tensor according to the metric g(¢). Ricci flow was introduced by Hamil-
ton in [42]. Hamilton proved that any closed three-dimensional manifold with positive Ricci
curvatures is diffeomorphic to a quotient of a three-sphere under a finite group of isometries.
For this, Hamilton considered the evolution of the metric under the Ricci flow. Over the years,
many results were obtained using the same technique, such that the Thurston’s geometrization
conjecture, which provide a classification of closed three-dimensional manifolds. To see more
topics and examples about Ricci flow, see [19,20].

On the other hand, another well studied topic in Riemannian geometry is the concept of Ricci
soliton. A Riemannian manifold ()M, g) is called a Ricci soliton if there exists an smooth vector
field X such that the equation

Lxg+p=2Ayg,

1s satisfied for some real constant A. To see more about Ricci solitons, we address to [12].
Clearly, Ricci solitons represents a generalization of Einstein manifolds. Furthermore, a
Ricci soliton is a self- similar solution for the Ricci flow, i.e., a solution of the form g, = o (¢)} g,
where 1);, with 1y = Id, is a family of diffeomorphisms. Because of this, both topics are strongly
related.
From this point of view, one may think of other ways to generalize the Einstein condition.
Identity (1.7) can be seen as (see [5])

5 IIRIP 1
o L AL
1 9= 37P0+ 2Wlpd,
where pg = p — Tg is the traceless Ricci tensor and W/po] is defined as R[p]. This last tensor
is interesting by itself. If the metric is Einstein, then W |[p,] = 0 automatically, but not the

converse. For instance, a R-Einstein with zero scalar curvature has vanishing W /[po] tensor.
Thus, this condition generalizes the Einstein one. Moreover, if the metric is locally conformally
flat, then T [py] is vanishing as well, so it also generalize this property.

The main aim of this second part of the memoir is studying generalizations of Einstein metrics
in four-dimensional homogeneous manifolds using the same techniques as in chapter four. For
that purpose, in chapter five we study the condition W |[p] = 0, which is the same as W |p,] = 0.
We point out some interesting geometric properties that this examples has.

In chapter six we introduce the two-loop renormalization flow, which is a second-order vari-
ation of the Ricci flow [33-35], given by

o -
agt = _21Ogt - §Rgt7



86 Two-loop renormalization group flow

where o € R. This topic has awaken much interest in Physics, applying this flow in black holes
metrics [50,51]. In this chapter, we study solitons and fixed points to this flow, given a complete
classification up to homothety.

Notice that these two conditions are related. If W [p] = 0, then by the given identity, the
metric is directly a self-similar solution for the two-loop flow for a specific constant o, so W [p| =
0 has physical meaning by itself.



Chapter 5
Generalized Einstein condition

We introduce Generalized Einstein manifolds and then we classify homogeneous generalized
Einstein manifolds in dimension four. The results shown in this chapter can be seen in [31].

5.1 Introduction

All along the memoir, we have been studying conditions for the weakly-Einstein tensors to be
a multiple of the metric one by one, so it is a natural question to see what happens when they
interact with each other. Recall identity (1.7)

(R—@g)+7(p—£g>—2(ﬁ—@g> —2(R[p]—@g) = 0.

Moreover, Besse showed that (see [5])

- R|? 1

R — H 4H 9=737ho + 2W [po], (5.1
where W po|;; = aijbpgb and pg = p — g is the traceless Ricci tensor. Using both identities
one can see that

(PR
Wipo] = 3 (2R0 — Po— R[P]o) )
3 RII2 2 2
where Ry = R — I=I g, P0=p— el ———gand R[p|o = R[p] — HPH ———g. Thus, we are interested in
n

studying when W {p] is a multiple of the metric. Since this tensor is traceless, the condition we
are looking for is whenever it is vanishing. Moreover, this is the same as checking when W |p],
constructed analogously, is vanishing. We call this condition generalized Einstein. Regarding
identity (5.1), it is clear that if the metric is Einstein, then W [p] is vanishing, so these conditions
clearly generalize the Einstein one. It is also clear that if the metric is locally conformally flat,
then this tensor is also zero, so this also generalized locally conformally flat metrics. Conse-
quently, we are interested in metrics satisfying that W[p] = 0 which are not Einstein nor locally
conformally flat.

Remark 5.1. In dimension four, the condition R-Einstein is equivalent to Wlp] = 0 if and only
if the scalar curvature is vanishing.

The main purpose of this chapter is proving the following theorem.

87
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Theorem 5.2. Let (M, g) be a non-symmetric four-dimensional simply connected homogeneous
manifold. Then the tensor field W |p| vanishes if and only if (M, g) is homothetic to a semi-direct
product R x H? of the Heisenberg group with left-invariant metric determined by the Lie algebra

1

1 1
[61762] = €3, [64761] = peq, [64,62] = —562, [64763] = (M - @)63, 0<p< ﬁ’

where {e1, ea, €3, e4} is an orthonormal basis.

5.2 Generalized Einstein four-dimensional homogeneous man-
ifolds

Using again the result by Bérard-Bergery [3], we have that a four-dimensional homogeneous
manifold is either symmetric or a Lie group. We study the symmetric ones first.

Lemma 5.3. Let (M, g) be a four-dimensional symmetric space. Then W p| = 0 if and only if
(M, g) is Einstein or locally conformally flat.

Proof. Let (M, g) be a four-dimensional symmetric space, then its Ricci operator can have either
one or two eigenvalues. If it has one, (M, g) is Einstein and Wp|] = 0 trivially. Assume now
that it has two Ricci eigenvalues. Then (M, g) splits isometrically due to the parallelizability
of its eigenspaces. If one of the eigenvalues has multiplicity one, then (M, g) is isometric to
R x N(c), which is locally conformally flat. If both has multiplicity two, then the manifold splits
as a product of two surfaces Ny(c;) X Na(cy). Now, the condition that needs to be fulfilled in
order to get W[p] = 0 is ¢} = ¢2, and consequently, the metric is Einstein if we take the positive
root and locally conformally flat if we take the negative one. ]

The nonsymmetric case give us the example given en Theorem 5.2. The proof of this is
given in a case by case analysis in each homogeneous Lie group with a left-invariant metric. The
condition W [p] = 0 reduces to solving a polynomial system on the structure constant of each
group, where we use again Grobner basis to solve it.

5.2.1 The direct products SL(2,R) x Rand SU(2) x R

Lemma 5.4. Let G be a product SL(2,R) x R or SU(2) x R. Then G does not admit any
non-symmetric left-invariant metric with Wp| = 0.

Proof. Take the algebra given in (4.1). A long but straightforward calculation shows that the
components W |[p];; of the W |[p]-tensor field are determined by

12R4W[p]11 = QUH, 24R4W[,0]12 = Qﬁm, 24R4W[p]13 = ing,

24R3W [pl1a = Wi, 12RW plag = Waa, 24R'W|[plaz = W,

24R3W [plag = Waa, 12R*Wplsz = Waz, 24R3W |pl3s = Wa,
0]

12RYW [plag = Waa,
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&9

where the coefficients 2J;; are polynomials on the structure constants given by

Wiy = —4(A2 — A3)° (A3 + AF + AeAg) ki — (A1 — A3) (201 + 3Aa) ks

— (A1 = AP (221 4 3Xa)kE — (A — A3)(BA1 + Ag) (222 — A2 — Aoy kK2
(AL = A2)(BA1 4 M)Az — Ag) (g + 2X3) k22 — (ANF — 3X3 (Mg + As)

+ 202 (A3 + A3 — 5A2A3) — BAINS + TA Ao (Mg + A3)A\3) kK3
+ (A2 = A3)2(302 — (Ao — A3)2 — 2X\ (A + A3)) R2K?

— (A1 = A3)(4A3 + 6A3 — A2(3Xg + 2X3) + A1 (273 — 8A2 + Tho)3)
—3A2X3)R2E2 — (A1 — A2)((2A1 — 3X2)A2 + A1 (Tha — 3A1) A3
+2(A1 — A2)?(2A1 + 3X2) ) R2k2 — {2X1 — 3(A3 — A2)2 — 33 (Mg + \3)

— AT(A2 = 3X3)(BA2 — A3) + TA1 (A2 — A3)? (A2 + A3) }RY,

Wis = 2(As — A3)(TA3 — 2003 — (3A1 + A2)A2 — M dods) K3 ks
— 2001 — Ag)(2A2X5 + (3Ma — TA)AZ 4+ A1 ( Ay + Ag)Ag) kK3
— {(BA2 4+ 5X2 — 16X \5) A2
31+ M) A2+ ADAg + A Ao (A2 + A2 — 8 Ao My kok2
— {1405 — 16(A\1 + A2) A3 + 2(A2 + A3 + 9\ \g) A3
+ A (A2 + 02 — 8\ 0a) + Ao (Mg + Aa) A3} Rk ko,

Wis = —2(he — A3)(A2(TAs — Ag) — M (3A2 + 2)2 + Aohg) ks
— {ATBA2 + A3) + AT (A2 — A3) (52 + 8)3)
— (1622 — A2 — 3AaA5) A3 + A2(BAg + 3A5) A2 e k2ks
— 200 — M) (2X2A5 — A2(TAa — 3A3) + MAa (o -+ Ag))kikd
SN — A(16A3 — A3 — 18X2hg — AoA2)
2202 — 802 4+ Aodg) £ 202(TAZ £ A2 — 8Xoy)} B2k,

Wiy = —2(Ag — A3)2(TAZ + TA2 — 3M\ (A2 + Ag) + 10AA3)kS

+ (A1 = A3)(14A3 — 2(A1 — A2)AZ — A1 (BA1 + 5A2) Aa + 2(201 — BA2) Ao A3 ) ky k2
— (M1 = A)((BA2 — 202 — AN A) A3 + 2(A) — TA2)AS + 5(Ay + 2X) A2k k2
—2((Ag = X3)2) (A2 +7TA3 4+ TA2 — 88X\ (A2 + A3) + 10X A3) R%Ky,

Way = (A = Aa)* (20 + BA)k} — 400 = Xa)*(NF + A + Mg

_ )\3)
(O = AP (31 4 2X0)kE — (A1 — A3)(2M1 + Ag) (g — M) (BAa + Ag) kK2

— (A2(2X2 — 62 + TAoAs) + A2(4A2 + 2X2 — 3)\z)s)
— A A2(3A2 = TAZ + 10A0\3) ) k2k2

— (A1 = M) (A A+ 3X0) (A1 — Ag) (A + 2)3)k2K2

— (A = A3)(A2(2X2 — 3A3) + 2(A2 — A3)2(2X2 + 3As)

— AtAa(3A2 — TA))R2E2 — (A — A3)2(A2 — 3A2 4+ A2+ 2X Mg — 201 g
F 2003) 262 + (A1 — M) {2001 — A2)2(BA1 + 2X2) — (BA1 — 2X0)A2
F(TAL = 3XA2) Ao ds FR2EZ + (Ar — Ao+ A3){3A% — A2(4hg + 3)3)

+ (A2 = A3)2(2X2 4 3X3) — M (A3 + 303 — 8)2)3) } Y,
Wog = —2(A1 — Ag)(AF(TA1 — 3X2) — 2003 — A (A1 + Ao)As) k3 ks
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— 2001 — A)(TA3 = A2(Ag + 3A3) — 2A2)3 — A AoAg)kokd

— (A2(5A2 + BAZ — 16A2)3) + 3A1 (Ao + A3) (A2 + A2)

F Ao(A2 4 A2 — 8AoAg)Ag)k2knks — (14A% — 16X3(\g + A3)

2022 4 A2+ 9oAs) 4+ Aa(A2 + A2 — 8Xohs) A3 + M da(Xe + Ag)Ag) R2koks,

Wy = —2(Ar — Ag)2(TA2 + TAZ — 3\ Ag + 10A s — BAohg) k3
= (A2 = A3)(BAT(A2 + 2X3) + A1 (33 — 227 — 4dods) + 2(Ao — TA3)AD) iy
— O = A0) (1423 — 202(Ag — Ag) + 2M1(2)s — 5A5)As — Aa(3As + 5Ag) Ag ) kak?
—2( A — Ag)2(TAZ 4 A2+ TAZ — 8 Mg + 10A Ag — 8Ahg) R2hs,

Wz = (Ao — A3)2(Bha + 2X3) k1 + (A1 — A3)3(BA1 + 203)k5
—4(A1 = XA+ N2+ A da)ks + (=405 4 3( A1 + A2) NS + 6AINS
—2(A 4+ 22 — 5A ) A2 — TAL (A1 + Ao) a3 KPES
+ (A1 — A2)(2A1 + A2) (A2 — A3) (Ao + 3A3) k% k3
— (A1 = A2) (A1 +222) (A1 — A3) (A + 3A3)k2k2
+ (Aa = A3) (= A3(3hg — 2X3) + 2(3A2 + 2A3) (A2 — A3)?
+ A1 (TAe — 3A3)A3) R2E? + (A1 — A3)(6AF — 8AIA3 + (2A2 + 4A2 — 3XaA3) A3
— A1(Aa = 2X3)(BAa — A3)) R%k2 — (A1 — A2)? (A1 — A2)? — 3)2
+2(A1 + A2)A3) R2E2 — (2X3 — 3(A3 — A2)2 — 3(\1 + o) A3
+7(A1 = X2)2(A1 + A2) Az — (A1 — 3X2) (BN — X\o) A2 R?,
Wy = —2(A1 — X2)2(TA2 + TA2 4+ 10\ Xg — 3( A1 + A2)A3) K3
+ (A2 = A3)(BAZ(2X2 + A3) — 203(Tha — A3) — A1(2A3 — 302 + 4\o)3) ) kiks
— (A1 = A3) (1423 + 2X2(Xg — A3) — 221 00(Bha — 2X3) — Aa(BAg + 3A3) \3)kaks
—2(A1 = X2)2(TAZ 4+ TA3 4+ A2 + 10A Ag — 8( Ay + A2)\3) R?ks,
Wis = 3(A5 = A3)?kT + 3(A] — A5)%h; + 3(A] — A3)%h3
+ (6A5 + 6AIN2 — 3(\; + X2)2A\2)kIk2
+ 3203 — A2(A3 — 2X2) — A3XA2 — 20 A2 \3)kPk2
+ (67 = 3AT (A2 + A3)® + 6A3A3)k3k3
4+ (A2 = A3)2(207 — (M2 — A3)® — Mi(A2 + Ag)) R2AT
— (A1 = A3)2(ANF = 203 + A2 4+ Ai(Ag — 2X3) + Ao A\3) R%K3
— (A1 = A2)%((A1 — X2)2 — 202 + (A1 + A2) \3) R%K3
— 4T = X3 (N2 + A3) + X203 — A1 (A2 — A3)2 (A2 + A3)
+ (A2 — A3)2(A2 4+ A2 + Mo X3) ) RY.
Since A\ A2 A\3 # 0, assume \; = 1 just working with the homothetic metric determined by
€ = Ailei. Now, W |p| vanishes if and only if the structure constants in the Lie algebra (4.1)
satisfy the system of polynomial equations {20;; = 0}. Let Z; C R[ky, k2, k3, R, A2, A3] be the
ideal generated by the polynomials 20;;. We compute a Grobner basis G; of Z; with respect to
the lexicographical order and a detailed analysis of that basis shows that the polynomials

g11 — Rﬁ)\g)\é()\g — 1)3()\3 + 1) and
gro = —ROX3A3(\3 — 1)2(3N\2 + N3 — 2\, — 2)



5.2.2  The semi-direct products R x F(1,1) and R x E(2) 91

belong to G;. Since the zero sets of {20;; = 0} and Z; = (2;;) = (G;) coincide, then necessarily
)\3 = 1.

Next, we compute a Grobner basis G, of the ideal generated by the polynomials G; U {\3 —
1} C Rk, ko, k3, R, A2, A3] with respect to the lexicographical order, obtaining that the poly-
nomial go; = R°A3(\y — 1) belongs to G,. Hence, \; = A\, = A3 = 1 and a straightforward
calculation shows that the manifold is locally symmetric, which finishes the proof. ]

5.2.2 The semi-direct products R x £(1,1) and R x F(2)

Lemma 5.5. Let G be a semi-direct product R x E(1,1) or R x E(2). Then G does not admit
any non-symmetric left-invariant metric with W [p| = 0.

Proof. Take the algebra given in (4.2) and the same simplifications as before. A long but standard
calculation shows that the components W [p|;; of the W [p|-tensor field are determined by

12R4W[p]11 =W, 24R4W[,0]12 = W, 24R4W[P]13 = W3,

24R3W[p]14 = Wy, 12R4W[,0]22 = Way, 24R4W[P]23 = Wos,

24R3W [plag = Way, 12R*Wplss = Was, 12R3*W|plss = Wy,
]

12R*W [plag = Waa,

where the coefficients 2J;; are polynomials on the structure constants given by
Wiy = — (A2 + R?)Z(201 — 305 — 3X3 o + TAAS — 3202
— (A2%(8b* 4+ 4C? — 3D?) — (4b* — 4C? + 3D*)R*)\?
+ (A%(40* — 2C?% — D?*) — (8b* + 2C* + D*)R*)\2
+ (A% + R?) (40 + 3C? — 2D?)M\ 1 Ay — ADC'D(21M; — 9\y)
+ b%(4C? — 5D?%) — 2(C? + D?)(C? + 2D?),
Wiy = 10Ab(A? + R?)(A] — A5 — 3AI\g + 3\ \2)
+ CD(A% + R*) (M + A3 — 8\ )\2)
+ Ab(24b* + 1302 + D)\ — Ab(24b* + C? + 13D?) )\,
+ 2CD(96* + 2(C?* + D?)),
Wiz = —2AD(A? + R%)(TA3 + A2y — 8\ )3)
+ 30C(2A% + 3R?)A? + 9bC(2A? — R*)A3 — 24 A%0C A\ Ny
+ 3AD(8* — C? + 2D*)\; — AD(240* + 5C? + 14D?) )\,
+90C(C? + D?),
Wiy = —2D(A% + R?)(TA3 + X2y — 8M\A3) — 3ABC (A2 — 9A3 + 81 \s)
+3(2D3 + 20D — C?D)\; + D(6b* — 5C? — 14D?) \,,
Wy = (A2 + R?)2(3N] — 25 — TA3Ng + 3N A3 + 3A2)\2)
+ (A%(4b* — C* — 2D?) — (8b* + C? + 2D*)R*)\?
— (A2(8b* — 3C?% + 4D?) — (4b* + 3C? — 4D*)R*)\2
+ (A% + R?)(40* — 2C? + 3D?)M\ Ay — 3ABC'D(3\; — TA2)
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— b*(5C? — 4D?*) — 2(C* + D?)(2C* + D?),
Wz = 2AC (A% + R (TN — 88Xy + M\ A2)
+9bD(2A% — R?)A? + 3bD(2A% + 3R*)A\2 — 24 A%20D A )\
+ AC(24b 4 14C? + 5D*)\; — 3AC(8b* + 2C? — D)\,
+9bD(C? + D?),
Wy = 2C (A% + RH)(TA3 — 8AIN\y + M A2) + 3ADD(9A2 — A3 — 8\ \2)
+ (14C? — 6b*C + 5CD?*)\; — 3C(2(b* + C?) — D*) Ay,
Wiz = —(4A* + A2R? — 3R (M + \3)
+2(A? + R%)(2A2X3 Ny + 2420 3 — 3R2A\2)\2)
— (A2(12b%* + C? — 2D?) — 3(2C? — D*)R*)\?
— (A%(120* — 2C? + D?) 4 3(C?* — 2D*)R*)\2
+ A2(240* — C?* — D*))A\ 1 Xg + 6ADCD (N — \2)
+3(C* + D*)?,
Wy = —A(A% + R?)(TA] + T3 — 4X3 Xy — 4N A3 — 6A2)\2)
— A(120% + 7C?% — 5D*)\? — A(12b* — 5C? + TD?*)\3
+ A(240* — C? — D*)\ i dg — 90C'D(A; — \p),
Wy, = (3A2 —4R?) (A% + RH(M\T+ )N3)
+2(A% + RY)(2R2X3 )My + 2R2A\ A3 — 3A%X2)\2)
+ (A%(160* 4+ 6C? — 3D?) + (4b* — C? + 2D?)R?)\3
+ (A%(160* — 3C? + 6D?) + (4b* + 2C? — D?)R?))\3
— (324202 + (8b* + C? + D?)R*)A\ Mg + 24AbC'D(\; — \2)
+ (b + 3(C* + D?))(C* + D?).
Since A1 Ay # 0, we work with a homothetic basis é; = --e; so that we may assume \; = 1.

)
The W {po]-tensor field vanishes if and only if the structure constants in Equation ((4.2)) satisfy

the system of polynomial equations {20;; = 0}, where 20,; € R[A,b,C, D, R, \2]. We compute
a Grobner basis G; of the ideal 7; = (20,;) with respect to the graded lexicographical order and
a detailed analysis of that basis shows that the polynomial

g1 = D(320* + 5C? + 5D?)(9D* + 166> D* + 128> R* 4 9C* D?)

belongs to G;. Thus, necessarily D = 0. Now, we compute a Grobner basis Gy of the ideal
generated by the polynomials G; U {D} C R[A,b,C, D, R, \y] with respect to the graded lexi-
cographical order obtaining that the polynomials

gy = C%(A? + C?* + R*)? and g = Ab*(N\y — 1)
belong to G,. Thus, C' = 0 and we are led to the cases Ay = 1,0 =0,0r A = 0. If \; = 1 then a

straightforward calculation shows the manifold is locally symmetric. If b = 0 then
Qﬁll = (A2 + R2)2()\2 — 1)3(3>\2 + 2) and
Wy = —(A2+ R?)2(Ny — 1)3(2X\2 + 3).



5.2.3 The semi-direct product R x H?3 93

Since A\ = 1 was discussed previously, we conclude that W [p] does not vanish in this case.
Finally, if A = 0 then we have 2033 = 3R*(\3 — 1)2. Since Ay = 1 was considered previously,
it follows that A\, = —1. This leads to 20;; = —8(b* — R?)R?, which implies b = +R and
a standard calculation shows the manifold is Einstein and locally symmetric. This finishes the
proof. O]

5.2.3 The semi-direct product R x 3

Lemma 5.6. Let G be a semi-direct product Rx H3. Then G admits a non-Einstein left-invariant
metric with W [p| = 0 if and only if it is homothetic to the left-invariant metric determined by

[e1, €] [e1, €4] [e2, €4] : [e3, €4] :
= [ = — (A = — (A = _—
€1,€2 €3, €1,€4 HE, 2, €4 2”627 3,64 2/,L K| €s,

with |1 € (O, \/Li] and where {ey, . .., e} is an orthonormal basis.
Remark 5.7. Let (Gy, (-, -)1) and (G, (-, - )2) be two Lie groups with negative scalar curvature
71 and 7o, respectively. Fori = 1,2, let (-, - ) = —7;(-, - ); so that the scalar curvature of the
normalized metric (-, -)f is 77 = —1. Now, one has that (G, (-, -)1) and (G, (-, -)2) are
homothetic if and only if the normalized metrics (-, -)f are isometric. In this case one has
that [|pj|| = |lp3]| and [|R}[| = || R3[|, or equivalently, 7 *[|p1[* = 7, || p2||* and 7 (| R > =
75 2| R2||?. The failure of any of these relations therefore implies that the left-invariant metrics
(-, -); correspond to different homothetical classes.

Now, a standard calculation shows that left-invariant metrics in this Lemma corresponding

. . . 3(4a*—3a2+1
to different values of the parameter o are never homothetical since 7 = —% and
||R||2 _ 48a8-40a5+43501—10a%+3
- 4ot :

Proof. Take the algebra (4.3) and the same simplifications as in the previous chapters. A straight-
forward calculation shows that the components 1 [p];; of the W [p]-tensor field are determined

by
1234W[p]11 =W, 12R4W[,0]12 = W, 24R4W[P]13 = W3,
12R3W[p]14 =Wy, 1QR4W[;0]22 = Wy, 24R4W[,0]23 = Wos,
12R3W [plag = Way, 6RWplss = Was, SR*W|plss = Wi,

12R4W[p]44 = QU44,

where the coefficients 2J;; are polynomials on the structure constants given by
Wy, = —16a3d — 8a?d® — (5F? — 4H? + 8y*R?)a® — 3H?c* — 12F%d?

— 12FH(ac + cd) — (4(3F* + H?) — 27*R?)ad

— (F? + H? + 72R?)(4F? — 3(H? + 72 R?)),
Wiy = —20acd + 20acd? + 3F H(4a® — ¢® + 4d*) + (2F? + 14H? — v*R?)ac

+5FHad — (2(TF* 4+ H?) — v*R*)cd + TFH(F? + H? + v*R?),
W3 = 24Ha® + 12F (a*c — 2¢d?) + 4H (5a*d + 3ac® — 3c*d + 3ad*) — 4Facd
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+ H(13F? + 10(H? + v*R?))a + F(4(F?* + H*) + v*R?)c
+ 3H(2F? + 3(H? + v*R?))d,
Wiy = —3vF(a® — 4d?) + v(12Hac + 14Fad — 3Hcd) + TyF(F? + H? + 42 R?),
Woy = —16ad® — 8a*d* — 12H?a® — 3F?*c* + (4F? — 5H? — 8v*R?)d?
+12FH(ac + cd) — (4(F? + 3H?) — 2v*R?)ad
+ (F? + H? + v*R*)(3F?* — 4H? + 37 R?),
Wos = 24Fd® + 12H (2a%c — cd?) + 4F (3a*d — 3ac?® + 3c*d + 5ad?) + 4Hacd
+3F(3F? + 2H? + 3v*R*)a — H(4(F? + H?) + v*R*)c
+ F(10F? + 13H? 4+ 10v*R?)d,
Wy, = —3vH (4a® — d?) — y(3Fac + 14Had — 12Fcd) — TyH(F? + H? + v*R?),
Wiz = 4a’d + dad® — 6a*c* — 6c2d* + 12ac*d + 2(F? — 2H? + v*R?)a?
—2(2F%* — H?> —4*R*)d*> — 9F H(ac — cd) + (F? + H* — 2v*R?)ad
_ (F2 + H2 +’Y2R2)2,
Wiy = 4vy(a*c + cd?) — 8yacd — yFH(a — d) —v(F? + H?)c,
Wy, = 8ad + 8ad® + 12a*c* + 16a*d? + 12¢*d* — 24ac*d + (F? + 16 H? + 47 R?)a?
+3(F?+ H?)* + (16F?% + H? + 4y*R?)d* + 18F H (ac — cd) + 14(F? + H?)ad
+ (F? + H*> + v*R*)(3(F? + H?) — 49 R?).
Note that since v # 0, one may work with a homothetic basis é; = %ei so that we may
assume v = 1. Now, IW|p| vanishes if and only if the structure constants in the Lie algebra (4.3)
satisfy the system of polynomial equations {20,; = 0}. Let Z C Ra, ¢, d, F, H, R] be the ideal

generated by the polynomials 20;;. We compute a Grobner basis G of Z with respect to the
graded lexicographical order and we get that the polynomials

g = H*(F?+ H* + R?)(d* + F* + H* + R?),
gr = [?R*(F? + R*)(4d* + F? + R?)

— H?R?(2F* + F*(TH?> + 6R*) + 4(H* + R*)(d* + H* + R*))  and
gz =4c(a—d)? — FH(a —d) — (F? + H?)c,

belong to G. From g; we get H = 0 and hence g5 leads to F' = 0. Now, g3 implies that either
d=aorc=0.If d = athen 2W;; = —3(8a* + 2a*R? — R"), from where we obtain a = +%
and a standard calculation shows the manifold is Einstein and locally symmetric. Now, if ¢ = 0
then {20;; = 0} reduces to

W, = 3R — 2a(4ad(2a + d) + (4a — d)R?),
Woy = —(4d(a + 2d) — 3R?*)(2ad + R?),
Was = (2(a® + d?) — R?*)(2ad + R?),

Wy = 4((a + d)? — R?)(2ad + R?).
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21, implies that ¢ must be non-null. Moreover, since d = a was discussed previously, the
. . 2 . . .
expressions of 233 and Wy, easily leads to d = —Z=. Thus, we get a non-Einstein manifold
with Wpg] = 0 and setting ;1 = % # 0 the left-invariant metric is given by

—€ €3, = | — — €3.
QM 2 3, C4 2M 2 3

Note that the replacement ¢4 — —e, defines an isometry which interchanges 1 and — . Hence,
one may assume p > 0 without loss of generality. Moreover, (e, €2, €3, e4) — (€2, €1, —€3, —€4)
defines an isometry interchanging ;1 and i which shows that one may restrict the parameter to

[617 62] = €3, [617 64] = —pHe€q, [627 64] =

1 . .
JIAS (0, —2} , finishing the proof. O]

5.2.4 The semi-direct product R x R3

Lemma 5.8. Let G be a semi-direct product R x R3. Then G does not admit any non-symmetric
left-invariant metric with W [p] = 0.

Proof. Take the algebra (4.4). A long but straightforward calculation shows that the components
W pli; of the W |p]-tensor field are determined by

3R4W[ﬂ]11 = Wiy, 3R4W[P]12 = W, 3R4W[,0]13 = W,
3R*W(play = Wy, 3RW(plas = Was, 3R'W|p|ss = Wi,
3R4W[p]44 = W,

where the coefficients 2J;; are polynomials on the structure constants given by
Wiy =a' — (f+p)a® + (2 +p* = fp)a® — (f —p)*(f* + 30> +p* + fp),
Wiy = —2a3b + (3f + p)a*b + (p* — 3f?)ab + 3h(f — p)ac
+ f(f —=p)2f +p)b— 3hp(f —p)e,
Wiz = —2ac + (f + 3p)a*c + 3h(f — p)ab+ (f* — 3p?)ac
+3fh(p = f)o—p(f = p)(f + 2p)c,
Wy = —a* — 3a>c® + pa® + 6pac® + f2a® — 3p>c?
— (P =P+ fPp)a+ (f —p)(f° +0° + fp?),
Wos = 3a*bc — 3(f + p)abc + h(f — p)a® + 3fpbe
+h(f* —p*a—h(f —p)(2f* +2p° - fp),
Was = —a* — 3a?b* + fa3 + 6fab® + p?a® — 3f2V?
+ (P =p’ = fr?)a—(f =p)(fP+ P’ + f?p),
Wy = a* + 3a®b* + 3a*c® — 6 fab® — 6pac® — (2f% + 2p* — fp)a® + 3f2V? + 3p*c?
+ fo(f +p)a+ (f = p)*((f +p)* +3h%).

W p] vanishes if and only if the structure constants satisfy the system of polynomial equations
{20,; = 0}, where 20,; € Rla,b,c, f, h,p]. We compute a Grobner basis G of the ideal Z =
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(20,;) with respect to the lexicographical order and a detailed analysis of that basis shows that
the polynomials

g =h'(f—pP(c*+h*+p?)  and

g2 = —fp(f —p)*Bh* = fop — fp* = f7p?)
belong to G. Hence, we are led to the casesp = f,h=p=0,orh = f = 0.

If p= f then Wy = a*(a — f)? and Wyy = (a — f)*(a® + 3(b* + ¢*) + 2af). Thus, either

f =aora=>0b=c=0. In the first case the manifold is Einstein and in both cases the manifold
is locally symmetric. If p # fand h = p = 0 then Ws3 = —(a — f)*(a® + 30> + f% + af)
implies f = a and, in that case, 2y, = —3a?c®>. Hence, f = a and ¢ = 0, which implies
that the manifold is locally symmetric. Finally, if 0 # p # fand h = f = 0 then Wy, =
—(a—p)?(a® + 3¢ + p* + ap) implies p = a and, in that case, W33 = —3a?b?. Thus, p = a and
b = 0, from where it follows that the manifold is locally symmetric, finishing the proof. L

5.2.5 Geometric properties
The family of metrics given in Theorem 5.2, which is homothetic to R x H? with Lie algebra

1

€1, € e €1, € —pe €9, € —e€ €3, € — —uj]e
1, €2 3 1,¢4 1, 2,4 9 25 3, €4 9 3

2
value of . For example, it was shown by Lauret [52] that an algebraic Ricci soliton is a Ricci

soliton, and the converse was proved by Jablonski [44] for the homogeneous setting. Recall
that a left-invariant metric on a Lie group is a algebraic Ricci soliton if ® = @, — Ald is a
derivation. Then, a standard computation shows that the left invariant metric of Theorem 5.2 is
a Ricci soliton if and only if A = —% and p = % In this case, the geometric structure is Kihler
and it corresponds to the nonsymmetric homogeneous Kihler Ricci soliton [10].

with € <0, L] satisfies some different interesting geometric properties depending on the

Critical metrics

The generalized Einstein condition appears naturally in the study of critical metrics. Taking the
functional F;, one can check that a metric g is critical for this functional if and only if

144t

2
Ap — (14 26)V?r + ATg+2 (t + §) Tpo — 2p0 + 2Wp] = 0.

One the one hand, one has the following.

Theorem 5.9. Let (M, g) be an homogeneous four dimensional generalized Einstein Riemannian
manifold. Then, (M, g) is Fy-critical if and only if t = —3% and (M, g) is homothetic to the Lie
group R x H?3 with left-invariant metric determined by the Lie algebra

1 1

e1,e2] = €5, er,eq] = SRS [ea, 4] = €2, [e3, 4] = 368

where {e1, ..., e4} is an orthonormal basis.
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Proof. Recall that we defined as F (0, 2)-tensor field given by the left-hand side of the equation
above. Then, the left-invariant metric given in Theorem 5.2 is critical if and only if F = 0. One
can see that the component

349t —2(4 4 21t)p? 4 3(1 + 23t)u* — 24tu® — 16(1 + 3t) 8
8 ’

Fi1. =
which is vanishing if
B —16p® + 3u* — 8u? + 3
A8 + 2445 — 69t + 42u2 — 9°
Using this value of ¢, one gets that

—8ub + 6pt +3u* — 1
4p* +5u — 3

F44 =

)

1
and this only has real solutions if 4 = £1 or ;1 = 2, and since y € (0, \/%], p=35 necessarily.

With this setting, ¢ = —% and the metric is critical for F_ 1,80 the result follows. ]

Remark 5.10. This case corresponds again to the Kihler structure.

Remark 5.11. If we study the functional S, this metric cannot be critical for it as the family
. ) . 3(4pt—3pu2+1

given in Theorem 5.2 has always strictly negative scalar curvature 7 = —% and four-
dimensional homogeneous manifolds are S-critical if and only if they are Einstein or have van-

ishing scalar curvature.

Symplectic structures

Let {e!,...,e*} be the dual basis of 1-forms of the basis in Theorem 5.2 and let

Ef=c'ne? e Net, Ef =e'AeP+e*ne?, Ef =e'net+e? Aé?,

be the associated self-dual and anti-self-dual 2-forms. These are defined by the self and anti-self-
dual Weyl operators, which have three different eigenvalues in our metric (in fact, they are the
opposite of each other, i.e., W = —WW")

Now we want to compute the exterior derivatives dE;". For this, we recall that de’ =
Siiejaie’t A el, with a;; € R. Moreover, dw(X,Y) = X(w(Y)) — Y (w(X)) — w[X,Y],
with w € A'(M) a one-form. Thus, as we know the Lie brackets of the metric, we obtain that

1 1
de' = pe! Net,  de? = 2—64 Ae*, ded = (,u — 2—) eSnet —el Ne?, det =0.
1 1

Using that the exterior derivative satisfies that d(w A 1) = dw A1 — w A dn, for w,n € Al, then
we finally obtain that
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dEf = ﬁ—u$1>e4/\el/\62,
dEF = (£ —2u) e* Ael A€,

dEy = j:%:F[L>€4/\€2/\63.

1 1 1
Qf: — —puTFl)et, Oy=(=——2u)e, Q?jf: +—Fpu) et
21 21 7

and thus,
dEf = 05 NEY, dEf =0, \NEy, dE; =07 NE5,

Now take

Therefore, all {E:*} define locally conformally symplectic structures on M. In addition, one
can easily check that a two-form (2 is closed, i.e., d{2 = 0, if and only if 2 = EQjE with y = %
and Q@ = E{ with p = 3(v/3 — 1). This follows since the £ are closed if only if 65" = 0
and dE are linearly independent. The rest of the values for ;1 where 6,4 = 0 are out of the
range of y, so whenever we take an homothety to be into the correspondent interval, we finish
in the same two values given. Notice that the first value give us back the Kéhler case. The
case where dE = 0 has Ricci operator @, = diag[v3 — 2, —v/3 — 3, -3 3] and W* =
diag[T4, £1(1+ v/3),£1(1 - v3)].



Chapter 6
Fixed points and steady solitons for the
two-loop renormalization group flow

In this chapter, we classify fixed points and steady solitons for the renormalization group flow.
The results of this chapter are shown in [30].

6.1 Introduction

The problem of constructing a metric with a distinguish property is a main topic in differential
geometry. In this direction, Hamilton [42] and Friedan [26] introduced Ricci flow. Let g; be a
one-parameter family of metrics into a manifold Riemannian manifold )/, then we say that g, is
a solution to the Ricci flow if it satisfies the equation

0
agt = _2pgt7

On the other hand, we also have the so called Ricci solitons, also introduced by Hamilton
[43]. A Riemannian manifold (), g) is a Ricci soliton if there exists a smooth vector field X
such that the equation

1
§£Xg +p = Ag,

is satisfied, where (Lxg)(Y, Z) = g(Vy X, Z) + g(Y, V2 X) represents the Lie derivative of
the metric in the direction of X and A € R. Moreover, if A < 0, A = 0 or A > 0, then we say
that (M, g) is a expanding, steady or shrinking Ricci soliton, respectively.

Remark 6.1. If there exist a real smooth function such that X = V f, then we say that (M, g) is
a gradient Ricci soliton.

Remark 6.2. Notice that if X = 0, the we obtain the Einstein condition. Thus, a Ricci soliton is
a generalization of Einstein manifolds.

Given a one-parameter family of diffeomorphisms on M, call it ¢/;, with ¢y = Id, a solution
of the form g, = o(t)Y;g, where o(t) is a real-valued function, is said to be a self-similar
solution. Now we have that any self-similar solution to the Ricci flow is a Ricci soliton just
considering the one-parameter family 1/, as the generator of the vector field [19].

99



100 6 Fixed points and steady solitons for the two-loop renormalization group flow

Example 6.3.

1. The cigar soliton. In dimension two, Hamilton discovered in [43] the first complete non-
compact steady soliton with metric

B dx? + dy?
I 152+
2. Algebraic Ricci solitons. Lauret showed in [52] that any left-invariant metric such that

Q, — B1d, with B € R, is a derivation of the corresponding Lie Algebra gives an Ricci
soliton metric.

Over the years, this topic has taken a lot of attention from many points of view. Recently,
in the field of physics, a second-order approximation of the Ricci flow seemed to take attention.
This was called the two-loop renormalization flow.

6.1.1 Two-loop renormalization group flow

The two-loop renormalization flow (or RG2 flow) appears as a perturbation of the Ricci flow and
it is given by

0
5,9t = RG(g], (6.1)
t
where RG[g] = —2p — %R and « is a positive coupling constant.

On the one hand, one aim of this chapter is studying genuine fixed points of (6.1), i.e, metrics
satisfying p + %R =0.

In dimension two the condition reduces to constant negative curvature. In dimension three,
they were studied by Gimre, Guenther and Isenberg in [33], where they showed solutions with
Ricci curvatures @, = —2diag[+, , 0] or Q, = —2diag[2, o, 1]. Einstein metrics are genuine
fixed points of this flow in dimension four since if the Ricci tensor is a multiple of the metric, the
R tensor is as well. Therefore, we focus on the non-Einstein cases. Moreover, tracing RG|g| for
fixed points, one may see that 7 + || R||* = 0 and hence o« = —47|| R|| 2.

This flow has been applied in the study of black holes metrics, analysing how they evolved
along it and also for the study of entropy, which has been stated as monotonic along this same
flow. The reason to use this flow in such cases is that the singularities appearing in the study
of other flows disappear in RG2, being this a better approximation to higher curvature effects
[50,51].

In the homogeneous setting, we obtain the following.

Theorem 6.4. A simply connected four-dimensional homogeneous manifold is a genuine fixed
point of the RG2 flow if and only if it is Einstein, a product R x N3(c), a product R* x N*(c) or
homothetic to the Lie group SU(2) x R with left-invariant metric

[e1, ea] = es, [e2, €3] = €1, [e3, €1] = %62’

where {e1, ..., e4} is an orthonormal basis of su(2) x R.
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The above result is in sharp contrast with the geometry of the Ricci flow, since genuine fixed
points of the Ricci flow are Ricci-flat manifolds.

On the other hand, we also focus on the study of what we call RG2 solitons. All the termi-
nology for Ricci solitons follows for this changing the Ricci tensor for the tensor field p + %R.
Thus, we say that (M, g) is a a expanding, steady or shrinking RG?2 soliton if there exist a smooth
vector field X such that

1
§L’Xg + RGlg] = Ag.

Moreover, any self-similar solution to the RG2 flow is a RG2 soliton. Since the two terms
comprising RG[g] behave differently under homotheties (p[rg] = plg] and R[kg] = 2R[g)),
one has that the converse holds only for steady solitons, in which case ), is the one-parameter
group of diffeomorphisms associated to the vector field X determined by the soliton equation
Lxg+ RG[g] = 0and g(t) = 1 g is a self-similar solution [64].

Remark 6.5. The condition Wp| has its own importance in this setting. It follows from (5.1) that
a four-dimensional generalized Einstein metric with 7 # 0 satisfies

3. 1 3
p- 2= (- 21RI) 0
T 4 T
so this provides a self-similar solution of the RG2 flow with o = —%. Thus, this condition has

application in physics. Thus, the family of metrics given in Theorem 5.2 gives a self-similar

. . 8142
solution for the RG2 flow for the coupling constant o = —% = 4u4*—§u2+1'

Let G be a Lie group with left-invariant metric (-, -) and let (g, (-, -)) denote the corre-
sponding Lie algebra. An RG2 algebraic soliton is a derivation of the Lie algebra g given by
D = Qralg — B1d, where Qrgg is the (1, 1)-tensor field metrically equivalent to RG[g] and
B € R. RG2 algebraic solitons give rise to RG2 solitons.

Let (-, -)* = k(-, -) be a homothetic deformation of a left-invariant metric (-, -) on g.

Then
Ko

! 1 1 «
@+ Q=10+ 150 = (@ + 50)
and thus ® = Q, + §Qp is a derivation of the Lie algebra (g, (-, -)) with coupling constant o if
and only if ©* = Q} + “* Q% is a derivation of the Lie algebra (g, (-, - )*) with constant ra. To
study four-dimensional RG2 algebraic steady solitons, we work up to homothety in what follows
in order to simplify the examples obtained.

Let H be a Lie group with a left-invariant metric determined by an inner product (b, (-, - )p)
and let G = R x H be the product Lie group with product left-invariant metric (-, - ), =
dt @ dt @ (-, -)y. Since Qrarg), = 0 © Qrayg),» one has thatif (b, (-, -)y) is an RG2 algebraic
steady soliton then (g, (-, -),4) is a soliton as well. Conversely, assume that a complete and
simply connected Lie group GG with left-invariant metric is an RG2 algebraic steady soliton.
Furthermore, assume that there exists a parallel left-invariant vector field on G. Then G breaks
a one-dimensional factor so that it splits isometrically as G = R x N, where N is a complete
and simply connected three-dimensional homogeneous manifold. Hence N is either symmetric
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(in which case G is also a symmetric space) or NV is isometric to a Lie group H. Respectively,
the tensor field RG also splits as RGy; = 0 & RGy and so does the corresponding (1, 1)-tensor
field. Hence, if G is an RG2 algebraic steady soliton then so is H just considering the derivation
determined by Q) rgyy), -

During this chapter, we analyse RG2 algebraic steady solitons on four-dimensional irre-
ducible Lie groups, since otherwise it reduces to the three-dimensional case, which is studied
in the next section. The main result is stated as follows.

Theorem 6.6. A simply connected non-Einstein four-dimensional irreducible Lie group G is an
RG2 algebraic steady soliton if and only if it is homothetic to one of the Lie groups determined

by the following Lie algebras, where {e1, ..., e4} is an orthonormal basis:
1. R x ¢(1,1), for a coupling constant o = HQLH, given by
le1,e3] = ea,  [ea,e3] = €1, e, eq] = Ker, ez, eq] = Key,

where k > 0, Kk # 1.

2. R x b3, for a coupling constant o = 2, given by

le1, e2] = e3, le1, e4] = N%Web

_ kV3 _ (k+1)V3
[62a64] = 2\/m627 [63764] = 2m637

where k € [—1,1).

32k2

3. R x b3, for a coupling constant o = o1 given by
le1,ea] = es3, [e1,eq] = ker, [ea,e4] = —ﬁ@g, les, eq] = (li — ﬁ) €3,
where k € (0, %} K # %\/2 — V3.
4. R x t3, for a coupling constant o = %, given by

le1,e4) = €1, [ea, 4] = Kea, es, eq] = des,
where (k,8) € {(z,y) € R*%z € (0,1],0 #y < z}\{(1,1)}.

5. R x t3, for a coupling constant oo = given by

2
K2+p2’
[61764] = ey, [62, 64] = Kkey + hes, [63764] = —hey + pes,

where the parameters p and h are given by p = % (1 + /1 —4k(k — 1)) and
1
h = (%) * forany k € (0,1).

The above result is in sharp in contrast with the Ricci flow case where steady homogeneous
Ricci solitons are Ricci-flat. Moreover, the Lie groups corresponding to cases (2) and (4) are
expanding algebraic Ricci solitons, whereas Lie groups of cases (1), (3) and (5) are not Ricci
solitons. It follows from sections 6.2.1-6.2.4 that all metrics in Theorem 6.6 represent different
homothetical classes. Thus, these results shows some differences between both flows.

In brief, the main target of this chapter is proving Theorems 6.4 and 6.6.
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6.1.2 Three-dimensional RG2 algebraic steady solitons

Three-dimensional RG2 algebraic steady solitons have been classified by Wears in the unimod-
ular case [64] (see also [36]). This can be easily summarized as follows:

Lemma 6.7 ( [64]). Let G be a three-dimensional unimodular Lie group. Then G is a non-
symmetric RG2 algebraic steady soliton if and only if it is homothetic to one of the following Lie
groups:

1. The Lie group E(1,1) with a left-invariant metric given by:

(a) the Lie algebra structure (A1, Ao, \3) = (1, —1,0), where o = 2, or

(b) the Lie algebra structure (A1, Ao, \3) = (3, —1,0), where o = %.

2. The Heisenberg group H? with a left-invariant metric given by the eigenvalues
(A1, A2, A3) = (0,0,1), where a = &

§.

3. The special unitary group SU(2) with a left-invariant metric determined by

(A1, A2, A) = (1,3, 1), where a = —3.

Remark 6.8. Metrics corresponding to case (1.a) are algebraic Ricci solitons for A = —2 (i.e.,
(Q+21d is a derivation), while metrics corresponding to case (1.b) are not. Moreover, the Heisen-
berg Lie group is an algebraic Ricci soliton for A = —% while the special unitary group does not
admit any non-Einstein Ricci soliton.

In addition to the previous RG2 algebraic steady solitons, there are some non-unimodular
ones, which can be described as follows:

Lemma 6.9. Let G be a three-dimensional non-unimodular Lie group. Then G is a non-symmetric
RG?2 algebraic steady soliton if and only if it is homothetic to a left-invariant metric determined
by the Lie algebra g = span{ey, es, e3} given by

e, €] = (E+ 1ea + (E+ 1)nes,  [er,e3] = (€ — 1)nea — (£ — 1)es,
where {e1, es, €3} is an orthonormal basis and one of the following holds:

1. n=0,& > 0and £ # 1, for a coupling constant o = (ngé—)gll.

_ n : _ 1 n
2 n>0and{=1=% n2+1,f0ra coupling constant o = 3 (1 F \/m)

Proof. Following Milnor [56], any non-symmetric left-invariant metric on a non-unimodular Lie
group is determined by Lie brackets

[er, ea] = (§+ 1)ea + (§+ L)mes,  [er, e3] = (§ — 1)nea — (£ — 1)es,



104 6 Fixed points and steady solitons for the two-loop renormalization group flow

where {ey, s, €3} is an orthonormal basis and n > 0, § > (, excluding the case n = 0, £ = 1.
A straightforward calculation shows that ® = @ + $(Q) is a derivation of the Lie algebra if and
only if the following polynomials vanish identically:

Dotz = (4 D)(a(® + 1% +2(* + 1) (a(2n* + 3) — 1)& + o — 2),
Da13 = (1 = &) (a(n® +1)%6* +2(7° + 1) (a(2n* + 3) = 1) + a — 2),
Do13 = (€ + D(an® + )& + 2a(n* + DE+a = 2)((* + 1)(E+2)E + 1),
D312 = 0§ — D(a® + )& = 2a(n* + D+ a = 2)((* +1)(§ —2)6+1).

Computing a Grobner basis G of the ideal generated by the polynomials ©,;, € R[{, 1), o] above
with respect to the lexicographical order, one gets that the polynomials g; = n(a—2)(£% —4(a—
1)?) and g = n(n* + 1)(4da(a — 1)(n* + 1) + 1)€ belong to the basis. Hence g; leads to the
following cases: o = 2,7 = 0 and €2 = 4(a — 1)%

Setting @ = 2, since £ > 0 one easily gets that ® = Q) + %Q is never a derivation of
the Lie algebra. Assuming = 0 one has that ® = @ + %Q is a derivation if and only if
((£246)&% + 1)a — 2(€% + 1) = 0, which corresponds to Assertion (1).

Assume now that £2 = 4(a — 1)? and n > 0. In this case, the polynomial g, leads to
4a(a — 1)(n* + 1) + 1 = 0 and a straightforward calculation shows that these two conditions
sufﬁce for® =Q + %Q being a derivation. The first equation implies that o = 1 + 5§, where

= 1. Then the second equation above becomes &(n? + 1)(55 +2)+1=0.Ifc =1 then
f =—-14 \/_ andthus { < 0. Ife = —1,then{ =1+ \/_+ and Assertion (2) follows. [

Remark 6.10. Left-invariant metrics given in Lemma 6.9 define different homothetical classes.
First, note that RG2 algebraic steady solitons corresponding to Assertion (1) are also algebraic
Ricci solitons for a derivation Q+2(£2+1) Id, while RG2 algebraic steady solitons corresponding
to Assertion (2) are not Ricci solitons (see, for example, [2]).

Let (G1, (-, -)1) and (G, (-, - )2) be two Lie groups with negative scalar curvature 7, and 7,
respectively. Fori = 1,2, let (-, - )¥ = —7;(-, - ); so that the scalar curvature of the normalized
metric (-, - ) is 7" = —1. Now, one has that (G4, (-, - )1) and (G, (-, - )2) are homothetic if
and only if the normalized metrics ( -, - )! are isometric. In this case one has that ||p}|| = || 5]
and | Ri|| = [|R3], or equivalently, 7, *|p1[|* = 75 *[|pa||* and 7, *|| Ry [|* = 77| Ro]*. The
failure of any of these relations therefore implies that the left-invariant metrics ( -, - ); correspond
to different homothetical classes.

Now, a standard calculation shows that left-invariant metrics in Assertion (1) correspond-
ing to different values of the parameter £ are never homothetical since 7 = —2(£2 + 3) and
|R||*> = 4(3¢* + 10£2 + 3). The same result holds for metrics in Assertion (2), where 7 =

—4 (772 Y2/t 1) and || R||? = 16(5n% + 4) (2772 Y142/ T 1).

6.2 Four-dimensional RG2 algebraic steady solitons

We work with the same procedure as in the previous chapter. We compute a system of polynomi-
als that have to be satisfied to fulfil the condition wanted and then we use Grobner basis to solve
it.
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6.2.1 The direct products SL(2,R) x Rand SU(2) x R

Lemma 6.11. Let G be a product SL(2,R) x R or SU(2) x R. Then G admits a non-symmetric
RG2 algebraic steady soliton if and only if it is homothetic to the Lie group SU(2) x R deter-
mined by

4

[61,62] = €3, [62763] = €1, [63761] = 362,

for a coupling constant o = —%, where {e1, ..., e4} is an orthonormal basis. Moreover, it is a

fixed point for the RG2 renormalization group.

Proof. Take the algebra given in (4.1). Since A\;A\2A3 # 0, assume A\; = 1 just working with
the homothetic metric determined by é; = /\ilei. Let® = Q + $Qp. Then D is a derivation
of the Lie algebra if and only if all terms ©,;, = (Dle;, ¢;] — [Des, 5] — [e:, Dejl, ex) vanish.
The components D, ;;, can be obtained directly from the expressions of the Ricci tensor and the
R-tensor and can be written as

16R" D511 = Poru,
16R*" D311 = P,
16R*D 411 = P,
16 R*D 391 = P,
16R°D 491 = Paou,
16R°D 431 = Pas,

16R*D 215 = Poro,
16R*" D315 = P,
16R*D 415 = Puaro,
16 R*D 390 = Pioo,
16R° D490 = Puoo,
16R° D430 = Puso,

16R*D 213 = P,
16 R'" D313 = Pas,
16 R*D 415 = P,
16R"D 303 = P,
16R°D 425 = Puaos,
16 R°D 433 = Puss,

16R*D 514 = Pora,
16 R*D 314 = P,
16R*D 414 = Puaia,
16 R*D 394 = Pioa,
16 R*D 494 = Puoa,
16 R D434 = Pusa,

where 33, are polynomials associated to the coefficients ®;;;, which are given by

q3211 = —kll{'g)\g(—R2(8 + 50&)\% + (16 — 30())\3 + 40&)\% — 50&)\% — 20[)\%(4 + 3)\3)
+ A2(—=8 4 s (8 + A3)) + Aa(—16 + (3 — 4X5 + 5A2)))
+ a(k3(=5X3 + Xa(=3+ A3) + A3 — 4\33 + 203(4 + \3))
+ k2 (=55 4+ 2X2(1 — 2X3) A3 + A3(—=3 4+ 4A3) + A3 (4 + 6)3)
— A1+ 403+ XN2) + E5(A2(5 4+ A3 — 202) + \3(3 — 4N +5)3)
= X2(5+2X5 + M),

Porz = —koksAz(RE(—=8(=1 4+ A3+ 2Xa(—1+ X3)) + a(—1+ A3) (5 + 33
— A3 — 4NN + Ao (=84 5X3))) + a(k3(—1+ X2)(B+ A3(=3+ A3)
—2X3+ A2(—=3+273)) — k3(—1+ X3) (=5 + A3 + A3(1 + 3\3)

— Ao (=14 A3)) + EF(=A3(2 + A3) £ A3(=5 4+ 3A3) + A3(5 — 4)A3)

+ A A3(1 — 203 + 5A2)))),

Poiz = Az(ka(—1 + X3)2 (=2 2(1 + A3) + (1 +3A3)?) + RY(1 + A3
+ 2X0(=14+ A3) +2X3 — 3A3) (8 + a1 + A3 + 2Xa(—1 + A3) + 2)3
—3)3)) + a(2k5(—1 + X2)%(3 4+ 2X2 + 3)3)
FEY O = A3)2(A2 + Aa(=2 + 6A3) + A3(—2 + 9A3))
+ E2E2 (=1 4 M) (A2 4 TA3 — BAa (=2 4 As)As — As(1 + 12)3)))



106 6 Fixed points and steady solitons for the two-loop renormalization group flow

+ R2(K2a(—1+ X2)%(T+ 2Xa + TA3 — 5A3)

+2k2 (A2 — A3)(aAd + aX2(=3 4 5A3) + Ao(4 +  — dad; + 3aAd)
— A3(—12 + . — Tadz + 9aA?))) + k2 (2R%(—1 + A3)(—4(1 + 3A3)
+a(=14+X3)(A3 + (14 3X3)% — A(3+T7X3)))

+a(k3 (=14 X)) (=T 4+ A2A3 + 5A2 + Ao(—1 — 103 + 12)2))
+E2(OA3 4 203(=2 4+ 33 + A2) 4+ 2)3(1 — TAs + 9)2)

+ A (14 623 — 4A3 — 149))))),

Pora = kaA3(R2(—1+ X2)?(—8 + (5 + 5A3 — 6Ma(—1 + A3) — 6A3 + \3))
+ k(=14 A2)%(5+ 52 — 2Xo(—3 + A3) — 2)3)
+ B3 (=14 A3) (=5 + As + Aa(—2+ As)As + A3(3 +2M3))
+EF(5A3 — 6A3X3 + A3(2+ Aa) + Aa(As — 3A3) + A5(=3 42X + A3)))),

PBarr = krkoda(a(k3(=A3(=5 + A3) +5(=1+ A3) A3 + A3+ )\2)
—2X3(24+ A3+ A2)) + K2(AN3 + N2+ 403 — 5L — X33+ 4N+ )\3)
+ 2X03(1 — 203 + 3A3)) + k3 (—3X3 + 8A3 — BA + Aa(1 4+ A3
—4X2+2)3))) + R%2(—8 + 5aA3 + (16 — 3a) A3 + 82 + 8aAi — baAs
—aX3(4 45X+ A3) + Aa(—16 + a3 +4X3 — 8\3 +6A3)))),

Parz = —Aa(kja (=1 + X)?(1 +9X3 — 2X5(—=3 + A3) — 2A3) + RY(3A\2 — (=1 + )3)?
—2X0(1 4+ X3)) (=8 + (322 — (=14 A3)2 — 2Xa(1 + A3)))
+ a(2k3 (=14 A3)2(3 4 2X3 + 3A3) + kT (A2 — X3)2(9A3 + (=2 + A3)As
+ Ao (=24 6A3)) + k2E3(—1 + X3)(—A3(12 + 5A3) + A3(1 + 7)3)
+ do(—1 4 10A3))) + k2(2R2(—1 4 Ao)(—4(1 + 3)2)
+ a(=1+ X)) (1 +9X3 + Xa(6 — TA3) — 3A3 + A3))
+ @(k%(—l + )\3)(—7 — A3+ )\2(—10 + )\3) A3+ )\%(5 + 12/\3))
+ E2(18M3 + 2X\2(—1 + X3)2 — 14A3(1 + A3) + 62023(1 + A3)
+ A3(1 —4X3 +A2)))) + R2E(k3a(—1+ X3)%(7 — 5A3 + 2X\3 + TA2)
+ 2k (Ao — A3) (903 — aX3(7 +3X3) + Ao (=12 + a + dads — 5a)?)
— A3(4+ a1 =35+ A2))))),

Pz = kokz Ao (R*(=8(—=1+2(=1+ X)A3 + A3) + a (=14 X9)(5 — 8A3 + HA3\3
+ 303 — A (1 +422))) + a(k2(—=1+ X3)(5 — 3X3 — 3)2
+ A (=24 223 + A2)) + E2(—1+ Xo) (5 — 4h3 + 433 — N2
—A(1+3X2)) + E2(=5(—=1 4+ A3)A2 + A3 (=1 +5X3) — 2A3(1 + X3
+2X2) + Xa( A3+ 30D)))),

Paig = —kada(R2(—1+ X3)%(=8 + a(5 + A2+ 6X3 + 5A2 — 6X(1 + A3)))
+ a(k2(=1+ A2)(—=5 + A — 2XaA3 + A2A3 + 302 + 20,02)
+ k2(=1+ X3)%(5 + 63 + 5A2 — 2Xo(1 + A3))
+E2(O5 + A3(2 =303+ A2) + A3(=3+5A3) + Aa(A3 + 202 — 6)3)))),

Parr = —krkaks(Aa — A3)((k2(A2(3 = 4A3) + As + A3(5 + 4X3) — A2(4 + 5A3))



6.2.1

The direct products SL(2,R) x R and SU(2) x R

107

+ EF(A3(=3 4+ 4X3) + A3(4 +5X3) — A3(3+4X3 +2)3)
+ XoAg(—2 — 43 + 5A2)) 4+ k2(A3(3 — 4X5 + 5A2) + Ao(1 — 4
—5A2+4A3))) + R*(—8 + (=16 4 3a) A3 — 4N} + HaA

+ 53 (14 A3) — 2aA3(2 4+ 4A3 + A3) + A2 (—8(2+ A3) + a(3—8A3 +5)3)))),

(,B412 = kg(k%&)\g(l —+ 2)\2 — 3)\%)2 + R4(—1 -+ )\2))\2(—8<1 —+ 3)\2 — 2)\3)

+ (=14 9N + 23 — 5A2 4+ 423 — A2(3 + 10)A3) + Ao(—5 + 8A3 — 3)2)))

+ (kA9 N5 4+ A3 + 403 — 2X3(1 + 5X3) + A2(\3 — 3)02))

— E2R2(OA3(2 + A3) + A3(—12 + 11)3) + AA2(—=2 + 5z — 10A2)
+ )\%(—1 + 53 + )\g)) + k’%(—l + )\3)(—(—5 + )\3))\3

+ Ao (=6 — 4X3 — 3N2 +9)3))) + K3 (R*(—1 + M) A2(—8(1 + 3\2)
(=14 M) (2+ 1802 — 23 + A2 — 2X5(—6 + 5)3)))

+ a(kfA2(18 A3 + As(1 4+ A3) + 4XaAs(1 4+ A3) — 2A3(7 + 5X3)
+A2(2 = TA3+ A2)) + k3(A3(7 — 12X3) A3 + A3(—5 + 2)3)

+ Ao (7 4 63 — 6)2) + A\3(—5 — 12X3 + 18)2))))

+ R2(K2Xo(18aM) — 2aM3(7 4+ 10Xs) + As(8 4 a(4 — 3A3)\3)

+ A3(—24 + (24 19A3 — 6A3)) + 2XA3(8 + a(—=3 — A3 + 4)3)))
FR2(8(1 + A2 — 3A3)) A3 4+ (=1 + A3)(BA3 — (=5 + A3)As
—A2(=3+ A3)Ag + Xo(=7 — TAs — TAZ+10X3))))),

(,B413 = —kg(kél()é(—l -+ )\2)()\2(5 — 4)\3) — 6)\3 + 9)\3)\3 — )\%(1 + 3)\3))

+ E2(R2(100M3\s + ads(7 — 5A2) — ar3(1 4 173 + \2)

+ A2(—24X3 + (6 + 403)) + Ao (8 + 1673 + a(—5 — 3A2 + 5A3)))
+ (k2(2X2 A3 + M(—=1+ 10X3) — AoA2(5 4 11A3) + A2(1 4 12)3)
— A3(245X3 4+ A3)) + k3 (TA3 — DA + Ao(—5 + 63 + TAZ — 12)3)
+203(1 — 3X3 — 673 + 9)3)))) + As(ksa(1 + 23 — 3)3)?

+ kta(=3XA3A3 + A3 (1 + 4X3) + A3 (=24 9X3) + Xa(A] — 10A3))

+ kI R*(aX3(—3 4 8\3) — 2aA3(—2 4 A3 + 3A3) + 203(—12 + o — Ta)s
+9a)3) + X2 (8 + (16 — 6a) A3 + 192 — 20a)}))

+ R =1+ 23)(8(—=1 4 25 — 3X3) + a(4A3 + (=1 4+ A3)(1 + 3X3)?
— A2(5 4+ 3X3) + Aa(2 4 8X5 — 10A2))) + E2(A2a(A2(1 + 4X3 + A2)
+2X2(1 = TAs + 9A2) + Ao(1 4 4X5 — TAZ — 10A3))

+ R?(—1+ X3)(—8(1 + 3X3) + a(—1+ A3) (A3 + 2(1 + 3)\3)?

— 20(145X3)))))),

(43414 = —kzkg(/\g — /\3)((1(]{7%(—1 + )\2)(5 — 2)\3 + 4)\%)\3 + )\2(—1 + 3)\3))

+E2(=1+X3)(5— A3+ Aa(=2 4+ 3X3 +4)3)) + k2 (=N3(2+ A3)
+ A5 (=1 +5X3) — 2X23(1 — A3 + A3) + Aa A3(—6 + 2X3 + 5A2)))
+ R2(8 — 8\ A3 + (=5 + 6A3 + HAIN3 — A2 — A3(1 + 2\3 + 2)3)
+ X (6 — 93 — 22 +5)A3)))),

Pazr = —24R* + 9R4a + 16R* N, — 12R% ), + 8R*AZ — 5E2R2aA2 — 2R4aN2
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+ 4R*a Ny + 6ktal; + TEIR*a\; + Ria)]

+ kia(—=1 4 X)%(9 4+ A3 — 2Xo(=3 + A3) — 2X3) + 16 R \3 — 12RYa);

— 16R* Mo)3 + 10kF R2aXo)s + 20R*ado N3 — 4R*aN3\; — 8kiaA3)s

— 12k2 R?aX3)\3 — 4R'aA3)\; + 8R'A\3 — 5kIR*a)\3 — 2R'a\3

— ARYad A2 + 4kfariN2 + 10kIR2aN)2 + 6 RY\aNIN2 + 4R}

— 8kiada A3 — 12kIR2 Mo \] — AR ado\S + 6kfa)] + ThIR?*a); + RYa);
+ ESa(—=1+ X3)%(=2X2(1 + X3) + (B3 + A3)?) + k3 (ETa(TAS — 6A3);

+ A2(12 4+ A3) — Ao A3 (7 + 11A3) — A3(5 — 10A3 + \2))

+2R* (=14 M) (43 + A2) + (=14 X2)(94 62 + A3 — T3

— 33Xz + A2)) + Kk2(2R*(—1 4 X3)(4(3 4+ A3) + a(—1 4+ A3) (A2 + (3 + A3)?
— X7+ 3X3))) + a(kF (A3 + A A3 (=7 + 10X3 — 6A3)

— A2(=12+ 11034+ A2) + N2(=5 + 7A2)) + k3(A3A3 + A2(2 + 623 — 4)2)
+2(9 — TAz + A2) + Xa(—14 — 4X3 + 602 + )\3)))),

Pazo = krka(—a(E2(A3(1 — 3A3) + A2X3 4+ (2 — 5A3) A3 + 4M A2 (—1 +2)3))
+ E2(=1+X3) (A2 — BA3 + A3(3+ A3) + 4o (=1 + A2)) — k2(A3(1 + 2A3)
+ A5 (=3 +5X3) + A3(4 —5)A2) — A (5 — 203 + \2)))
+ R?(A3(8 — 4a(—14 A3)) + 3aX3(—1 + A3)
+ A2 (=8 4+ a — 6ads + 5aA?) — Aa(—1+ X3)(16 + a(—5+ 8)A3)))),

Pazg = kiks(k3a(Ag(—5 + 4Xg — 302) — A2(—=2 + As + 5A2) 4+ Xo(1 + 2hs + 5A))
Fa(R2(—1+ A)(5A3 + (4 — 3A3)As — AaA2 — A2(1 + 4Ag))
+ EF(5A3 + 4X303 — A3 + M2 (—1 4+ 303) — 2A3(1 + 4)3)))
+ R2(5008 — 2003(3 + 4)3) + A3 (—8 4 a + 8as) + A3(8(2 + \3)
(=54 43 — 3X2)) + AoAs(—16 + a5 — 4X3 + 3A2)))),

Raos = k1 (—8R2(Ay — A3)? + a(k2(—=1+ Xo)(=A3 4+ 5A3 + A2(2 — 3A3) A3
(1 200)) — R2(—1 4+ Ag) (Mo — 200hs + A2 — 5A3 + A2(2 + 3)s))
(Mg — Ag)2(R2(1+ 572 + 6Xa(—1 + A3) — 6A3 + 52)
+ EF(5A3 + Aa(=2 + 5A3) + Aa(—2 + 6X3))))),

Paor = —k3(—24R* + IR + 16R* Ny — 12R* )y + 8R*N\3 — 52 R2a)\3
— 2R*aA3 + 4R*aA3 + 6kial; + TEIR?a)N] + Ria);
+ k(=3 4 2Xg + A2)%2 + 16 R*\3 — 10R*a)s + 16kIR? Ao )\3 — 16 R\ )3
+ 5k2 R2ado A3 + 18 R*ado s + S8E2R2A2\3 — 3kZR2aA3)\3 — 6R*aN2);
— 2k3ad3Ns — 2RYaNINs — BhlaAiNg — SEZR2aMINg — 24k2R2\}
— 3RYaN: + 4K2R2 a2 — 2RYado A2 — kTadiN2 + 5RYaNIN2 + 6kiariN?
+ 6k R2aX3N2 — kI R2aA3 + 4RYa)3 — 12kiaa 3 — 1Tk R2a\ )3
— 4R*M NS — kTad2N3 — K2R2aM3N3 + 9kia); + 10k2 R2a )}
+ k3o (=14 A3) (=9 4+ A3 + 4N + Xa(2 + A3 + A3)) + k3 (Afa(A3(T — 5A3)
+ 18A2 — 12X003(1 4+ A3) + 2A303(3 + A3) + A3(—=5 + TAz — 6A32))
+ R2(—=1 4+ X)(8(3 4+ A2) + a(—1+ X) (18 + 2A2 — 2o (—6 + )\3)
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— 1023+ A3))) + k3 (R*(8(—3 4 (24 A2)A3)

+ =1+ X3)(A2(=2 + 4X3) + Aa(14 — 5A3 — 3X2) + 2(—=9 + X3 +4)2)))
+ a(k2(18 — 10A3 + A3A3 + A2 + A2(2 + 403 + A2) + Aao(—14 — TA3 + 4)3))
+ kF(AS + A3(=1+ 10X3) + A3(12 — 5A3 + 203 — 2)3)

— AA3(11 4 573 4+ A3))))),

Puazo = —kikoks(—1 + X3)(a(k2(=D5Aa(—1 4+ A3) + 43 — 4X3(1 + A3)
+ A3(34 A3)) + kT (BA2(—1 4+ A3)A3 + 4A3 — 4AA3A3(1 + )3)
+ A1+ 3X3)) — k2(—4a(—1 + X3)2(1 + X3) + As(—5 + 223 — 5A3)
+ A2(3 + 2X3 + 3A2))) + R2(BaX3(1 + A3) — 4X3(2 + a + a)?)
+ Xa(1+ A3)(—16 + (5 — 13X3 + 5A3)) + A3(—8 + a(5 — 2X3 + 5A2)))),

Paoz = k1 (kja(—1+ Xa) (=93 + 3Xad3 + A2(1 +4X3) + A3 (=5 + 6A3))
— E3a(=1+ A3)As(A3(4 + A3 — 9A2) + Aa(1 + Az + 2A2))
+ (A2 = M) As(Fra(dg — X3) (A2 + 3X3)2 + k2R2(2003 + 2a03(—1 + 5)3)
+ X2 (8 + a — 8adz + 6aA2) — \3(—24 + a — 10aA3 + 18a\2))
+ RY8(—2 4 Aa 4+ 3A3) + a(—4 4+ A3 + 3A3 + 10A3 — 93 + \3(—2 + 5)3)
+ X2(5 — 8A3+3)2)))) + k3 (K2a(18A3 — 12X03(1 + A3) + A3(2 + 6)3)
+ A5(=5 + TA3) + A2A3(—6 + TA3 — 5A2))
+ R*(6aX — (24 + (=10 + A3)) A3 + aX3(—5 + TA3) — A3 (-8 + «
+ 3aA} + 5aA3) 4+ AaoAs(16 + a(—17 + 43+ 5A3))))
+ E2(k2a(— (=10 4+ A3) A3 + A3 A2 — Ao (14 5z + 11IA3) + M\2(—2 + 23
—5A2 +1203)) + As(E2a (A3 + Aos(4 — Ths — 14)2)
+ A3(1 4 4X3 4+ 2A3) + A3(1 — 105 + 18)3)) + R*(2a03(2 — 3A3 + A3)
+2X5(8 — 1205 + (4 — 3Xg — 1002 4+ 9A3)) + Ao (8 — a(3 + 23
— 1923 + 140)))),

Paoa = kks(—1+ A3) (k3a(A3(—=5 + 273 — 5A3) + 223(1 + 3X3 + \3)
+ X1 =203 — 223 + AD) + a(k2(—1 + X)) (5A3 44X + 3Xo\s
— A2(1 4+ 2X3)) + Kk2(BA + A2 — 4X3 + X2X3(5 + A3) — 2A3(1 + 3)3)))
+ R2(5aM5 — 603 (1 + Az) + 2009 3(1 + A3)
+ A3(8 4+ (=5 4223 — 5A3)) + A3(—=8 + a(1 + 9X3 + A2)))),

Puazi = ka(—24R* + IR + 16 R* Ny — 10R )y — 24kIR?*)\3 — 3R a\3
— kIR2a)3 + 4RYaA3 + 9kiaA] + 10k2 R%a\] + 16 R \3 — 12Ra);
+ 16k? R2 Aoz — 16 R* Ao \3 + BEIR? a3 + 18 RYad N3 + 4kIR?aA3);
— 2RYA2Ng — 12k a3 s — 1TE2R20A3\s — ARYaA3 )\ + 8RIN2
— 5E2R%aA2 — 2RYaNE 4 8k2R* A A2 — 3K2R20M A2 — 6RY M N2
— kfad3AZ + 5RYaNN: — k{ad3N3 — K2 R2aM3N3 + 4RYaN3 — 2kTad\3
— 2RYaM A} + 6KTaNINS + 6kTR2aA3NS + 6kia)] + TEZ R?a)\] + R'a);
— bkiada] — BETR2adgA; + kya(—3 4 2X3 + A3)?
+ Esa(—14 X2) (=9 4+ 223 + Xa(1 4+ A3) + A3(4 + X3))
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— E2(K2a(MN5(=10 4+ X3) — 2XA2X2 — A2(12 + X3) + Ao As(11 + 5)A3)

+ A3(145X3 + 2A3)) + R?(—8(=3+ Xa(2 + A3))

+a(=1+ ) (A3(=8 4+ 3A3) + Aa(—2 + 5A3 — 4A2) + 2(9 — TA3 + A\2))))

+ k3(RE2 (=14 X3)(8(3+ A3) + a(—14+ X3) (A3 +2(3+ X3)* —2X2(5 + A3)))
+ a(k2(A2(=5 4 TA2) + A3 (—12 4 TAs + 62 — 5A3)

+2X3(9 — 63 — 3N3+ AD)) + k3(2(9 — TA3 + A3) + A3(1+4X3 + A3)

+ A2(=10 — TA + 402+ A3))))),

Puzz = —k1(kda(—1 4+ X3) (A2 — 53 + Ao(—9 + 3X3 +4X2 +6)3))
— E2(a(k2(N2(12 — TAs) A3 + A3 (=2 4 5A3) + AA2(6 — 6X5 — TA2)
+ A3 (=18 + 1203 + 5A2)) + k2(AS(11 — 12X3) A3 + A3(1 + 2)3)
+ Xa(—10 4+ 53 — 2X2) + A3 (1 + 522 — A3))) 4+ R2(5add(—1 + A3) s
+ aA3(1 —4X3 + 3A3) + A3(—=8 + a — 6ads + HaA3) + Xa(24 — 16X
+a(=10+ 17A3 — TA)))) + Xa(kia(dhy + 9N + A2(=3 + X3) + A3
—2XA3(5 4 A3)) 4+ (A2 — Ag) (ki Ag — A3)(3Ag + Ag)?
+ kfR*(18aNy — 2aA3(5 + 3)A3) 4+ Xo(—24 + o + 8ads — 10a\3)
—A3(8 + o — 2a)3 + 2aA2)) + RY(—8(=2+ 3Xg + A3) + (4 + 9\3 — 53
+ 222 — A3 — A2(10 + 3X3) + Ao(—3 4+ 83 — 5)2))))
+ k2(K2a (183 4+ 4AA3(1 + A3) + A3(1+ A3) — 2A3(5 + TA3)
+A3(1 = TAg + 202)) + R2(18aN; — 2aA3(10 + 7As)
+ A3(8 + a(—3 4 4X3)) + A3(—24 + a(—6 + 19A3 + 2)3))
— 2(=8+ a(—4+ A3+ 3A))))),

‘B433 = kﬁlk‘zk‘g(—l + )\2)((1([@%()\% + )\2)\%(—4 + 3)\3) - )\%)\3(5 + 4)\3)
+ )\3(4 +5A3)) + k:%((él —3X3) A3 + )\3(5 +4X3) + Ao (b —4A3 — 2)@)
— )\3(2 +4X3 + 3A§)) + k%()\g(5 — 43 + 3)@)
+ Xa(4 — 5A3 — 4X2 4+ A3))) + R2(Bar3(1 + A3) — 2aM3(1 + 423 + 2)3)
+ A3(—=8(2+ A3) + a(b — 43 + 3A§)) + Ao(—8(1 4 2A3) + (5 — 83 + SAg)))),

Puass = krka(—1 + X)) (a(F2(4X3 + (2 — 5A)A3 — A2Ag(1 + \3)
F AA2(=5 + 6A3)) 4 k2(—1 + Ag)(A2 = BA3 + My(—4 — 323 + 222))
— E3(O3(=5+ A3) + As(1+2X3) +203(1 — A3+ A3)
+ Xa(—=5 = 2X3 + 6)2))) + R%(5aA3 — a)3(2 + 2X3 + \3)
— N2 (=8 4+ ar — 6adg + 5aAZ) 4+ Aao(—8 + (5 — 203 — 9A2 + 6X2)))),

The expressions of the Ricci tensor and the R-tensor imply that ® = @ + %Q is a derivation
of the Lie algebra if and only if the system of polynomial equations {3;;, = 0} holds true.
We consider separately the cases corresponding to different possibilities (up to rotation) in the
constants ki, ke and k5 as follows.
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ferkoks # 0

Since all the £;’s and \;’s are different from zero, we simplify (when possible) the polynomials
{Bij} C Rlky, k2, ks, R, a, A2, A3]. Constructing a Grobner basis Gy of the ideal generated
by {*B;;x} with respect to the graded reverse lexicographical order we get that the polynomials
g1 = (A3 — 1)R* and g5 = (A — 1)R* belong to G;. Thus \; = Ay = A3 = 1 and hence the
manifold is symmetric.

k?l =0and ka’g 7é 0

Proceeding as in the previous case, compute a Grobner basis G, of the ideal generated by the
polynomials {3z} C R[ko, ks, R, a, Ao, A3] with respect to the lexicographical order. Since
the polynomials go; = (A3 — 1)2R* and goy = (A2 + A3 — 2)R* belong to G, one has that
A3 = A = 1, which corresponds to the previous situation.

lﬁ:kzzo

Simplifying the polynomials {3;;,} when possible as in the previous cases and computing a
Grobner basis Gs of the ideal generated by {*B;;x} C Rlks, R, a, A2, A3] with respect to the
graded reverse lexicographical order, one gets that the polynomial g3; = k3(A\y — 1)2R? belongs
to Gs. Hence, either k3 = 0 or Ay = 1 and, in both cases, e, determines a parallel left-invariant
vector field. Now, a direct calculation shows that, in this case, any non-symmetric RG2 algebraic
steady soliton is determined by Lemma 6.7-(3), obtaining the case given in Lemma 6.11. Finally,
the tensor field RG[g| vanishes, which finishes the proof. O

6.2.2 The semi-direct products Re, x F(1,1) and Rey x F(2)

Recall that any Einstein metric is a genuine fixed point of the RG2 flow. Moreover, the product
manifold R x F(1,1) is an RG2 algebraic steady soliton just considering the RG2 algebraic
steady solitons in Lemma 6.7-(1). Henceforth we focus on the irreducible non-Einstein case.

Lemma 6.12. Let G be a semi-direct product R x E(1,1) or R x E(2). Then G admits a non-
Einstein irreducible RG2 algebraic steady soliton if and only if it is homothetic to the Lie group
R x E(1,1) determined by

[61,63] = €2, [62763] = €1, [61764] = kéq, [62764] = Keég,

where k > 0, k # 1 and for a coupling constant o = ﬁ%ﬂ Here {e1, ey, €3, €4} is an orthonor-

mal basis. Moreover, these metrics are never algebraic Ricci solitons.

Proof. Take the algebra given in (4.2). Since \; Ao # 0, we work with a homothetic basis
€ = /\—llei so that we may assume \; = 1. The expressions of the Ricci tensor and the R-tensor
imply that ® = Q+ Q) is a derivation of the Lie algebra if and only if the system of polynomial
equations
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16R*D211 = Pou,
16R*D 311 = P,
16R° D411 = P,
16 R*"D 391 = P,
16 R*D 491 = P,
16 R*D 431 = Pz,

16R*D 215 = Poro,
16R*D 315 = P,
16R° D412 = Puaro,
16 R*"D 39 = Poo,
16R*D 499 = Puoo,
16R°D 430 = Puso,

D13 = 0,

16R* D313 = Paus,
16R°D 415 = Puaus,
16 R*"D 395 = Pos,
16 R°D 493 = Paos,
16 R°D 433 = Puss,

Doy =0,

16R*D 314 = P,
16R*" D414 = Paa,
16 R*D 354 = Pou,
16 R*D 494 = Puoa,
16 R*D 4314 = Pusa,

holds true, where B, € R[A,b, A2, C, D, R, a] are the polynomials associated to the coeffi-
cients ©;;, which are given by

Paoir = b(C3a(—9 + 2X) + AbDa(—15 + 18Xg + A2) + C(a(20*(—T + Ag)
— D?*(6 + \g) + A%2(—=9 + 8\ + A2)) + R%(32 + a(—9 + 8y + A2)))),

Paiz = b(A2Dada(1 + 8y — 9A3) + AbCa(—1 — 18Xy + 15)3)
+ D(2D?%a + 2b%a(1 — TAg) + 32R*X\y — 9D%*a )y + R%a); + 8R?*a\}
— 9R%a N — C?*(a + 6a)y))),

Par = A2CDadg(—3 + 4hg — 5A2) + A3ba(—3 + 2); + A2)2
+ CD(R?(8 + (16 — 3a) Ay + 4ari — 5ar3) — a(C? Ay + 2b%(—5 + 3\2)
+ D?(=3 4 4)s))) + Ab(R* (=3 + 22 + A3)(8 + a(—3 + 2X2 + A3))
—a(2D?(1+ 2Xg) + C*(=9 + 4)Xg — 5A3) + 4b* (=7 + 6)2 + A2))),
Paio = —C2D%a + 2D« + 24D?R? Ny — 8R* )y — 6C*a); — 12C?D%a),
— 9Dy — TC?R2a)y — 2D*R%a)y — R'a)y — 16R*N2 + 14D? R%*a )3
— 4R'a)3 + 24R*\5 + 5C?R%a)\; — 18D*R*a A3 + 2R'a\3 + 12RYa)]
— OR*aN] — A%y (142X, — 302)2 + AbCDa(—1 — 18\, + 35)2)
—20%a(2(3C% + R*(—1+ X)) Aa + D?*(—1 4+ 5)9))
— A2X(2R2(—1 — 29 + 3A2) (=4 + a(—1 — 2)\5 + 3)2))
+ a(C2(7 — 5X3) 4 4b*(—1 — 6)g 4 TAZ) + 2D%(1 — TAy + 922))),
Pz = A (A°Ca(b — 6Xg + A3) + A20Da(7 — 10Xz + 3)3)
+ AC(a(b*(12 — 8X2) + C2(5 — 2X9) + D*(2 + A\2))
+ R*(—=8 4 a(5 — 6Xa + A3))) + 2bD(2(30* + C?* + D*)«
+ R2(—12+ a(—1 — Mgy + 2A3)))),

q3314 = /\2(0304(5 - 2)\2) — AbDOé(—g + 8)\2 -+ )\%) + C(Oé(—2b2(—1 + )\2)
+ D2+ X)) + A%(5 — 6X2 4+ A3)) + R*(—=8 + a(5 — 6X2 + A3)))),

Py = —Aa(=3 + 20 + A3)? + A3CDaXy(3 — 4)y + 5A3)
+ ACD(R?(—8 + (=16 + 3a) Ay — 4aX2 + 5a)3) + a(34b%(—1 + o)
+ 2\ + D2(—=3 4 4X)))
— A?D(R?(=3 + 20 + A2 (8 + a(—=3 4+ 2X5 + \3))
+ a(8*(5 — 6Ag + A3) + 2C%(9 — 5Ag + 203) + D?*(—1 — 8)\y + 5A3)))
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— b(16b*a + 9C* o + 4b*(3(2C* + D*)av + R*(—8 + a(—1 + X2)?))
+ D*(5D%a + R*(—8 + o — 4a)g + Ha)3))
— C?(=14D%x + R*(32 + a(—=9 + 69 + A\2)))),

Pz = —1203C Da + 16Ab*ady — bCD(AR*(—6 + a(—1 + \y)?)
+ a(4(C? 4+ D?) + A%(3 — 262 + 39)3))) + A(6C* )y + D*a(—2 + 9\y)
+ C?a(D?*(1 4+ 12)9) — (A% + R*)Xo(—T7 + 5A3))
+2D?* Ny (A%a(1 — Tha + 903) + R*(—12+ a — Tady + 9a\3))
+ (A% + RH) Ao (—1 — 2Xg + 322 (A%a(—1 — 2)y + 3\2)
+ R*(—=8 4 a(—1—2X2 + 3)3)))) + 2A0*(D?*a(—4 + 11)9)
+ A (8R2(=2 + a(—1+ X9)?) + a(7C? + 4A%(1 — 6)2 + 5A2)))),

Buaiz = 126*°Ca + 8AV D1 — 3Xs) — A2C Ao (a(C2(5 — 2Xo) + D2+ )
+ A%2(5— 6y + A3)) + R*(—8 + (b — 6X2 + \2)))
+ V*C(—2R*(12 4 (=24 X2 + A\})) + a(4(C* + D?)
+ A2(3 — 22Xy + 15)2))) + AbD(D%a(2 — 9\;) — C%(a + 6a)\,)
+ Xo(—8A%a(—1+4 Ag)? + R*(32 + a + 8ay — 9a)3))),
Puarg = —A3CaN (5 — 6X + A2) — 2420 Dady(5 — Thy + 2)2)
—bD(=2D%a + 2b%a(—1 + ) — 8R?\y + 5D?a\; + R%2a)y — 6R*a\
+5R%2aNS + C?*(a + 2a)y)) — AC(D*a(1 + 10Xy — 11)2)
+ X (a(C?(5 = 2X3) + D?(2+ X2)) + R* (=8 + (5 — 6Xa + A2)))),

Paor = —24R* + 1202 D% 4+ 6D* v + 4> R*a — 5D*R%a + 9R*a
+ C*(9 — 2X9) + 16R* )\, — 8b2R%a)y — 12R* )y 4+ 8R*A2 4 4b? R\’
+ TD?R2a)3 — 2R*aN] + 4R*a\} + Ria); + A*a(—3 + 2y + A\3)?
— AbC'Da(—35 4+ 18Xy + A2) + C?*(a(—2b*(—5 + X2) + D*(12 + \9))
+2R*(—12 4 a(9 — Thg + A\2)))
+ A2(2R2(—3 42Xy + A2)(4 4+ (=3 + 2X5 + A2))
+ a(202(9 — TAy 4+ A2) — 4b2(—7 + 6Xy + A2) + D2(—=5 4 7A2))),

Paaz = A3ba(1 + 2Xy — 3A3)%2 + A2C'Da(5 — 4 + 3)3)
+ OD(a(D? 4 02(6 — 10A5) + C2(4 — 3Xy)) + R2(—=8(2 + \2)
+ a5 — 4X 4 3X2)))
+ Ab(R?(—1 — 2Xy + 323 (=8 + a(—1 — 2X\y + 3A2))
+ (=202 X9(2 + Ag) + 4b* (=1 — 69 + TA3) + D?(5 — 4)9 + 9)3))),

Paog = —1203Car + 4AP Da(—2 + 3Xa) + bC(2R* (12 + (=2 + Ay + A2))

— a(4(C?* + D?*) 4+ A%(3 — 10A2 + 7)3))) + AD(D?*a(—2 4 5)2)

+ C* (a4 20he) + A2 (A%a(1 — 6A2 + 5A3) + R*(—8 + ar — 6ahs + HaA3))),

+ D(C? = 2D? + 202(—=1 + Ag) + 202Xy + 5D? Xy + R*\y — 6R2)\3 + 5R2)\3)),
Paor = —4bCD((30> + C? + D?)a + R*(—6 + a(—1+ X9)?))
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— Aa(=3+ 2y + AD)? — A2C Dr(39 — 2675 + 3)2)
— A32R*(=3 42X+ A2)(4 + a(=3 42Xy + \3))
+ a(2C%(9 — Thg + A2) + 8b%(5 — 6Xg + A\2) + D*(—5 + 7)3)))
— A(=24R" + 16b*a + 6D — 5D?* R?*a + 9R*a
+ 20%(a(TD? + C?(11 — 4)9)) + 8R*(—2 + a(—1 + X2)?))
+ C4a(9 — 2Xg) + 16R* N, — 12R*a)y + 8R*A2 + TD2R20\2 — 2R*a N2
+ 4R\ + Rla)] + C*H(D?*a(12 4+ Xg) + 2R*(—12 + a(9 — Tha + A2)))),
Puaso = —Abar(1 + 20y — 3A2)2 — A3CDa(5 — 4Xg + 3)2)
+ ACD(a(—D? 4 34b*(—1 4+ X2) + C*(—4 + 3X2)) + R*(8(2 + A2)
+ (=5 + 1A — 322)))
— A?D(R*(—1 — 2Xa + 3A2) (=8 + a(—1 — 2)\y + 3\3))
+ a(—=C?(=5 4 8y + A2) + 8b*(1 — 6y + 5A2) + 2D?(2 — 5Ay + 9)2)))
— b(16b*a + 5C*a + 4b*(3(C? + 2D?)a + R*(—8 + a(—1 + \2)?))
+ C?(14D%a + R?(—8 + a5 — 4y + )\2)))
+ D*(9D%*a + R*(—32 + a(—1 — 6Aa + 9A2)))),
Puaoz = 8A3BCa(—1 + Ng)? — A*DaXy(1 — 6y + 5A3) — A2D(—2D?a — 8R?\,
+ 5Dy + R%a)y — 6R?a)3 + bR2*a)\; + C*(a + 2a\y)
+ b2a(—15 4 22Xy — 3)2)) + AbC(a(C?(9 — 2)g) — 8b*(—3 + o)
+ D?(6 + A\2)) — R%(32 + a(—=9 + 8y + \2)))
+ 262 D(2(30* + C? 4+ D*)ar + R*(—12 4+ a(—1 — Ay + 2)3))),
Puog = —203Ca(—1+ \y) — AP Da(—11 + 10X; 4 A2)
+ bC(R*(—8 4+ (5 — 6Aa + A3)) + (C?(5 — 2X2) + D*(2 + \o)
+2A%(2 = Tha +5)A2))) — AD(D?*a(—2 + 5)3) + C%*(a + 2a\;)
+ A (A20(1 — 6Xg + 5A2) + R2(—8 + o — 6y + 5ard))),
Pazi = A Ca(—9+ 10Ay + 3A\3 — 403) + A%bDa(—3 — Ay + 373 + \})
+ AbD(—a(5(D? + C*(8 = TA)) + 4b2(1 + As))
+ R2(14+ M) (8 + a(—=3 42X + A2))) — A2C (a(D?*Aa(—1 + 10)\)
+ C?(18 — 10A; + A2) + 0%(39 — 50X, + 15)2)) + 2R (—12 + 8,
+ (9 — 10Ay — 3M\2 +4)3))) — C(—24D?R? — 24R* + 12b%a + 9C*a
+ 9D + IR + 16 RNy — D?R%2a )y — 10R*a)\, + 10D? R2a\3
— 3R*a\3 + 4R*a\3 + C*(18D%*a + R*(—24 + a(18 — 10Xy + )\2)))
+26%(10(C2 + D?)ov + R2(—12 + a7 — 10A5 + 3A2)))),
Puaso = A*Dada(—4 + 3hg 4+ 1002 — 9A3) + A3bCa(—1 — 3h + A2 + 3)3)
— A2D(D*a — C?a(—10 4+ \g) + 16R*\y — 10D?*a\g + 8R?a)y — 24R?)\3
+ 18D%aN} — 6R?aN: — 20R%a)3 + 18 R%a\] + b?a(15 — 503 + 39)3))
+ ADC(R*(1 + A2)(—8 + a(—1 — 2Xg + 3A3)) + a(4b*(1 + Ng)
+5(C?X\y + D*(=7+8)2)))) — D(—24D*R? + 12b%a + 9C*a + 9D«
+ D?R%a + C%(18D% — R*(24 4+ a(—10+ \y))) 4+ 16R*\y — 10D2R2a),
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+ 4Rl — 24R\2 + 18D?*R%a )3 — 3R*aA2 — 10RYa); + IR a\]

+ 26%(10(C? + D?)a + R*(—12 4+ a(3 — 10Xs + 7A2)))),
Puzz = 1203(C% + D)o — 20A0?C Da(—1 + \y)

— ACD(—1+ X)(a(4(C?* 4+ D?) + A%(5 — 22 + 5)3))

+ R%2(=8 + (b — 2Xy + 5A2)))

+ 0(4C*a + D?*(a(4D?* + A%(7 — 10X\, + 3A3))

+ R?(—24 4+ a(—2 — 2)s + 4)2)))

+ C?(—2R*(12 4 a2+ Xy + A3)) + a(8D? + A%(3 — 10X, + 7)3)))),
Paza = —(—1+ X2)(4C3Da + AbD?* (9 + \g) — AbC?a(1 + 9\7)

+ CD(a(4(b* + D?) + A%(5 — 22 + 5X3)) + R*(—=8 4+ a(5 — 2X2 + 5A3)))),

Thus, we look for solutions of the system {§3,; = 0}. For that, we compute a Grébner basis

G of the ideal Z = (3,,;) with respect to the graded reverse lexicographical order and a detailed
analysis of that basis shows that the polynomials

g, = D3(4b* + 25R?) R4, g, = C(D? + C*)\o) R4,
gs = b{3CDR? + Ab((a + 2)D? + 4(\y — 1)R?)} R?

belong to G. Thus C' = D = 0 and 4Ab*(\, — 1)R* = 0, so we have three different possibilities
corresponding to b = 0, A = 0 or A\, = 1. We consider the three situations separately.
b=0

Constructing a Grobner basis G; of the ideal G U {b} C R[A, b, A9, R, ] with respect to the
lexicographical order, one gets that the polynomial

g =M — Do+ 1) (A +3)(3Ag + 1)y (A® + R*)R?

belongs to G;. This shows that A\, must take one of the different values Ay = 1, Ay = —1,
Ay = =3 o0r \y = —%. If Ay = 1 then the metric is Einstein. We analyse the other three cases
separately.

Ay = —1. Considering the coefficient R*®35, = (A%a + (o — 2)R?)(A% + R?), one has that

a= % and a straightforward calculation shows that, in this case, ® is a derivation of the Lie
algebra. Moreover, setting v = —% one has the Lie algebra structure

le1,e3] = €2, [ea,e3] = €1, ler,eq] =vea, [eq, 4] = ver,

with a = ﬁ A standard calculation shows that v = e4 — ~ye3 determines a parallel left-

invariant vector field on G. Therefore, GG is a reducible RG2 algebraic steady soliton and one
easily checks that it is obtained as a product extension of Lemma 6.7—(1.a).

A\ = —3. Since R'D3, = 48(4A% + (4a — 1)R?)(A? + R?), we have a = ﬁ

straightforward calculation shows that, in this case, ® = @ + %Q is a derivation of the Lie

algebra. In this situation, setting Kk = —% one has

and a

le1,e3] = 3ea, ez ezl =e1, [e1,eq] = 3rea, [eg, 4] = ke,
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with o = 4(,#—1“). Now, a direct calculation shows that ker = span{e, —re3} and v = e, — ke
is a parallel left-invariant vector field on G. Therefore, GG is a reducible RG2 algebraic steady
soliton which is obtained as a product extension of Lemma 6.7—(1.b).

Ao = —%. The coefficient 81R'®3 = 16(4A% + (4a — 9)R?)(A? 4+ R?) implies that v =

4(132—}?;22) and a straightforward calculation shows that, in this case, ® = ) + %Q is a derivation
of the Lie algebra. Setting x = —% we are in the previous case just considering the homothety

determined by (ey, €2, €3, e4) — 3(ez, €1, €3, €4).

A=0andb # 0

Compute a Grobner basis G, of the ideal G U { A} with respect to the lexicographical order in
R[R, A, b, o, \a]. We get that the polynomial go; = (A — 1)(Aa + 1)2X2a?b" belongs to G,
and thus (Ay — 1)(Ay + 1) = 0. If Ay = 1 then the manifold is symmetric and isometric to a
product R x N(c), where N(c) is a space of constant negative curvature. On the other hand, if
Ay = —1, then the coefficient R*®3;5 = (o —2) R? + b?cv and thus o = IﬂiiR?' A straightforward

calculation shows that ® = @ + %Q defines an RG2 algebraic steady soliton where, setting
Kk = —% # 0, the left-invariant metric is determined by

le1,e3] = €2, [ea,e3] = €1, ler,eq] = ke, [eq, e4] = Keo,
with a = 522+1' Note that the replacement e, — —e, defines an isometry which interchanges
and —x. Hence, one may assume ~ > 0 without loss of generality. Also, observe that the Ricci
operator has eigenvalues () = —2diag[x?, k2, 1, k%] and thus the metric is Einstein if and only
if k2 = 1. Moreover, a direct calculation shows that these metrics are irreducible. Furthermore,
the metric is a Ricci soliton if and only ) + 2 1d is a derivation, which may occur if and only if
k(K% — 1) = 0. Hence, it is a Ricci soliton if and only if it is Einstein. We conclude that these
metrics correspond to the ones given in Lemma 6.12.

Ao =1land bA # 0

In this case the manifold is symmetric and isometric to a product R x N(c), where N(c) is a
space of constant negative curvature, which finishes the proof. O]

Remark 6.13. Left-invariant metrics determined by Lemma 6.12 define different homothetical
classes for any x > 0, s # 1. This is obtained proceeding as in Remark 6.10 since 7 = —(6x2+2)
and || R||? = 4(3k* + 2Kk2 + 3).

6.2.3 The semi-direct product Re, x H?

In addition to Einstein metrics and symmetric products, R x H? is an RG2 algebraic steady
soliton just considering the RG2 algebraic steady solitons in Lemma 6.7-(2). Henceforth we
focus on the irreducible non-Einstein case.
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Lemma 6.14. Let G be a semi-direct product R x H®. Then G admits an irreducible non-
Einstein RG?2 algebraic steady soliton if and only if it is homothetic to one of the following,
where {e1, ..., es} is an orthonormal basis:

1. The left-invariant metric determined by

le1, 2] = es, le1,eq] = ﬁeh
V3
[627 64] 2\/:2\{—,{+62’ [637 64] - 2%637
where r € [—1,1) and for a coupling constant o = 2.

2. The left-invariant metric determined by
[617 62] = €3, [elv 64] = K€, [627 64] = _i627 [637 64] = (H - ﬁ) €3,

where k € ( , 2} K 7£ 12— 4/3, and for a coupling constant o = 1633?“

Moreover, metrics in case (1) are algebraic Ricci solitons whereas left-invariant metrics (2) are
not Ricci solitons.

Remark 6.15. Left-invariant metrics in Lemma 6.14 corresponding to different values of the
parameter x determine different homothetical classes. The scalar curvature and the norm of

the Ricci tensor of left-invariant metrics in Assertion (1) are given by 7 = —5R248R S g

K24+K+1
Ipl> = —27, while for metrics in Assertion (2) one has 7 = —48"‘4;5% and ||p||* =

2
768“8’512“661324“4’32“2*3. Now, proceeding as in Remark 6.10, a standard calculation shows that
left-invariant metrics in Assertion (1) corresponding to different values of  are never homothetic
and the same holds true for left-invariant metrics in Assertion (2).

Proof. Take the algebra given in (4.3). Note that since v # 0, one may work with a homothetic
basis ¢; = %ei so that we may assume v = 1. It follows from the expressions obtained for the

Ricci tensor and for the R-tensor that ® = Q + TQr is a derivation of the Lie algebra if and
only if the terms

16R*Do11 = Por1, 16R*Da10 = Porz, 16R' D13 = Porg, 16R*Dars = Pouu,
16R'"D311 = Pair, 16R D310 = Psio, 16R" D313 = Parg, Daa =0,
16R*D 411 = Par1, 16RDa1o = Puaio, 16R*Dy3 = Pars, 16RDs14 = Puaua,
16R* D391 = Paor, 16R D300 = Paoo, 16R* D303 = Paog, Dioa = 0,
16R* D491 = Puao1, 16R Do = Pugo, 16R* Doy = Puog, 16RDs04 = Puou,
16R° D431 = Puas1, 16R°Dyz0 = Puzo, 16R° Dy = Pugs, 16R D34 = Pusa,

are vanishing, where 3, € R[a, ¢, d, H, F, R, o] are the polynomials associated to the coef-
ficients ®;;;, given by
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Porr = 2¢%(2a + d)Ha + cF(4(a® + 4ad + 6d* + F? + H?)a + R*(—16 + 5a))
+ H(—4a*a — 16a*da — d(4R?(—6 + «) + (12d* + 3F? + 4H?)a)
+ a((—30d* + H*)a + R?(8 + a))),
Porz = —12a3Fa — 43 Fa — ded* Ha — 60 (5dF + 4cH)a + dF((4¢® + F?)a
+ R?*(8+ «)) — cH(4(F* + H?)a + R*(—16 + 5a)) — a(4F?a + 16cdHa
+ F(4R*(—6 + ) + (—2¢® + 16d* + 3H?)a)),
Poiz = —24R* + 160> — 32a3da — 32ac’da — 32> d*a + 162 d* o — 32ad®«
+9F%a + 34c(a — d)FHa + 9H a + 40> R?a + 28ad R« + 4d* R*«v
+ 9R*a + 2H?*((14a® + 12ad + 5d?)a + 3R?*(—4 + 3a))
+ 2F?((5a® + 12ad + 14d* + 9H?)a + 3R*(—4 + 3a)),

Pors = —(4a*c+ dFH — a(8cd + FH) + c(4d* — F? — H?))«,
Paiw = —a(4a’*c+ dFH — a(8cd + FH) + c¢(4d* — F* — H?))a,
Pz = c(da’c+ dFH — a(8c¢d + FH) + c(4d* — F? — H?))a,

Paiz = —8cHR? + 14a*Fa + 28d* Fa — 6ed* Ha + 2a*(25dF + 8cH )
+ dF((4c* + 9(F? + H?))a + 3R?*(—8 + 3a)) + a(9F3a + 22cdHa
+ F((—4c* + 60d*> + 9H?)a + R*(—32 + 9a))),

Par = —16a°a — 32a*da + 4 FHa + 4c2d(—8R? + 4d*a + 5F%a)
—4a®(R*(—8 + ) + (8¢® + 12d* + 3F? + 2H?)a)
+ dH*(4R*(—6 + o) + (12d* + 3F? + 4H?*)a)) — cFH(9(4d* + F? + H?)«
+ 2R%*(—12 + 5a)) — 4a*(8d3a + 12cFHa + d(R*(—8 + «)
—2(6¢* — 3F?% + H*)a)) + a(8F?*R? — 8H*R* — 16d*«
—5Fta —4cdFHa — 5F?H?*a — H'a — 5F?R*a — H*R?*a —
4d?(R*(—8 + a) + (6F% — 5H?)a) + 4c*(8R? — (8d* + 2F? + 5H?)a)),
Puarz = 40a’ca — 34AdFHa + 8a®(4ed + 3F H)a + 2¢3(8d* + 3F? + H?)a
+ dFH((4d*> — F*)a — R*(8 + ) + 2a*(8c*a + 15dFHa
+ c(—40R? + 32d%« + 4F%a + 31 H?a)) + c(8d*a + 2d*(4R?*(—2 + «)
+ (9F?% + 10H?)a) + H*(9(F? + H*)a + 2R*(—12 + 5a)))
+ a(9F*Ho + 4cd(—8¢* + 8H? + R*)av + FH(2(c* 4+ 17d* + 4H?)«
+ R2(=32 + 9a))),
Puz = —4AdFa — 16a* Ha — 4a3(5cF + 4dH)a
— H(—8R?+ (20d* + F* + H*)a) + cdF(4R*(—2 + «)
+ (4d* + 5F? + 40H?*)a) — 2a*(12cdFa + 20H3a + H(8R*(—2 + «)
+ (18¢* + 16d% + 11F?)a)) — a(—4c3Fa — 36c*dHa
+ dH((16d* + 35F? 4+ 36 H*)a + 8 R*(—2 + 5a))
+ cF((32d* + 6F? + 41H?*)a + R*(—40 + 6v)))
— H(12d*a + 3(F? + H* + R?)(3(F? + H?*)a + R*(—8 + 3a))
+ d*((39F?% + 20H?) o + 2R*(—12 + 7a))),
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Pas = 2a*Fa — 8c*dFa + dF H?*a + 8a*(2dF + 3cH )«
+ cH(2(3d? 4+ 2(F? + H?))a + R?*(—8 + 5a)) + a(5F3a + 6cdHa
+ F(2(c* + 6d* + 2H?)or + R*(—8 + 5a))),
Pio1 = —c(4a*c+ dFH — a(8cd + FH) + c(4d* — F? — H?))
Pioy = —d(4a’*c + dFH — a(8c¢d + FH) + c¢(4d* — F? — H?))a,
Paoz = 4c?(—a + d)Ha + 2¢F (—4R? + (—3a® + 11ad + 8d?)a)
— H(28a*a + 60a*da + a((50d? + 9(F? + H?))a + 3R*(—8 + 3a))
+d((14d* + 9(F?* + H?))a + R*(—32 + 9a))),
Puo1 = —8a'ca + 4a3FHa + 2c2dFHa — 2¢3(8d* + F* + 3H?)«a
+ dFH((24d* + 8F% + 9H?*)ar + R*(—32 + 9a))
—2a*(8c3a — 17TdF Ha + c(4R*(—2 + ) + (32d* + 10F? 4+ 9H?)a))
— a(32cdF?a + 4ed(—8c¢* + 8d* + R*)a + FH((34c¢* — 30d* + H?)«
+ R%2(8 + ))) — c(40d*a + d*(—80R? + 62F % + 8H? )
+ F2(9(F? + H*)a + 2R*(—12 4 5a))),
Puaoz = —16a*da + 4a3(4c® — 8d* + 3F?*)a — 42 FHa
— 4c*d(—8R? + (8 + 5F* + 2H?)a) + cFH(3(16d* + 3(F? + H?))«
+ 2R*(—12 + 5a)) + a(—32d*a + 4cdF Ha + 4c*(—8R* + 12d%a + 5H?«)
—4d*(R*(—8 + o) — 2(F? — 3H?)a) + F?*(4R*(—6 + o) + (4F? + 3H?*)a))
—4a*(12d*a — 9cFHa + d(R*(—8 + ) + (8¢ — 5F? + 6H?)a))
—d(16d*a + Fta + 4d*(R*(—8 + a) + (2F? + 3H?)«)
+ F2(5H?*a + R*(8 + ) + H?(5H?a + R*(—8 + 5a))),
Paoz = —12a* Fa — 4c3dHa — 4a®(4dF + cH)a
— PF(=8R? + (36d% + F? + H?)a) + cdH((20d2 + ALF? + 6H?)a
+ R?(—40 + 6a)) — F(16d% + 2d2(8R*(—2 + a) + (20F? + 11H?)a)
+3(F?+ H*+ R*)(3(F* + H?)a + R*(—8 + 3a)))
—a(16d*Fa — 24cd* Ha + cH(4R*(—2 + a) + (—4c¢* + 40F? + 5H?)a)
+ dF((—36¢* + 36 F? 4+ 35H?)a + 8R*(—2 + 5a))) — a*(20Fa — 32cdHa
4 F((20¢2 + 32 + 39H?)a + 2R*(—12 + Ta))),
Puos = 2¢2(da — d)Ha + cF(2(3a% + 3ad + 2(6d% + F? + H?))a
+ R*(—8 + 5a)) — H(16ad*a + 2d3a + aF?a + d((12a® + 4F* + 5H?)«
+ R*(—8 4 5v))),
Puz1 = —4ccdFa — 4a®(3cF — 4dH)a
— 4a*(8cdF + 3¢*H — 8d*H)o + *H(8R? + (—4d* + F? + H?)«)
+ d>H(4R*(—6 + ) + (12d*> + 3F? + 4H*)«) — cdF (4R?*(—6 + «)
+ (28d? + 3F? + 4H?*)a) 4+ a(4*Fa — 4c*dHa — cF(4R*(—6 + «)
+ (40d? + 4F? + 3H?*)a) + dH (4R*(—4 + ) + (32d* + 5F? + 4H?)a)),
Puzz = 12a* Fa + 4a3(8dF + TcH)a + a*(4F3a + 40cdHoa + F(4R*(—6 + «)

Qa,
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+ (—4c® + 32d* + 3H*)a)) + c(—4c*dHa

+ cF(8R? 4 (—12d% + F? + H?)a) 4+ dH (4R*(—6 + «)

+ (12d* + 3F? + 4H?)a)) + a(16d* Fa + 32cd* Ha + cH (4R*(—6 + «)
+ (42 + 4F% + 3H?)a) + dF (4R*(—4 + o) + (—4c* + 4F? + 5H?)a)),

Pusz = —16a°a — 48a*da — 4a®(R?(—8 + ) + 2(2¢ + 10d* + 3F? + 5H?)«)
—4a*(20d*a + 9cFHa + d(2R*(—8 + a) + (—4c* + 1TF? + 20H?)«))
—d(16d*a + 9F*a — 36cdF Ha + 4d?(R?*(—8 + )
+2(2¢% + 5F?% + 3H?)a)

+ F2(2(4¢* + 9H*)ao + 3R*(—8 + 3a))) + H*(9H?a + R*(—32 + 9a)))
—a(48d*a + 9F*a + 4d*(2R*(—8 + ) + (—4c* + 20F? + 17TH?)a)
+ H?((8¢* + 9H?)ov + 3R*(—8 + 3a)) + F?(18 H*a + R*(—32 + 9a))),

Basa = (a + d)(4a’c + dFH — a(8cd + FH) + c(4d? — F? — H?))a,

We construct a Grobner basis G of the ideal generated by the polynomials {J3;;;, } with respect
to the lexicographical order and we get that the polynomial g, = d*FHR? is in the basis.
Therefore, we have three possibilities which we analyse separately.

d=0

Constructing a Grébner basis G; of the ideal generated by G U {d} C R|a, ¢, d, H, F, R, o] with
respect to the lexicographical order, one has that the polynomials g,; = aHR* and g5 = aFR*
are in G;. Thus,a =0or ' = H =0, a # 0.

a = 0. We construct another Grébner basis G; of the ideal generated by the previous basis and
the new polynomial, namely, G; U{a} C Ra, ¢,d, H, F, R, o] with respect to the lexicographical
order and the polynomials g}, = cF'R? and g}, = cH R? belong to G}. Hence, either ¢ = 0 or
F = H = 0 and a standard calculation shows that v = —%el + %62 + e4 1s a left-invariant
parallel vector field on GG in any case. Therefore, in this case any RG2 algebraic steady soliton is
reducible and one easily checks that it is obtained as a product extension of Lemma 6.7-(2).

F=H=0anda # 0. Since 4R*D 3, = a®ca, we get ¢ = 0 and thus 4R%D 343 = a®(4a’a +
(v — 8)R?), which shows that @ = %. Now, a straightforward calculation shows that
D =0Q+ %Q is a derivation of the Lie algebra if and only if a = 5*/73}2, with €2 = 1. In this
case, a = 2 and the left-invariant metric is determined by

[617 62] = €3, [617 64] = _8\/75617 [637 64] =—¢

e[S

€3 .

Note that the replacement e, — —e, defines an isometry which interchanges ¢ = —1 with
¢ = 1. Moreover, a direct calculation shows that this metric is never Einstein and that it is
irreducible. Furthermore, a straightforward calculation shows that () + % Id is a derivation of the
Lie algebra and thus an algebraic Ricci soliton. Thus, taking ¢ = —1, the above left-invariant
metric determines an RG2 algebraic steady soliton which corresponds to Assertion (1) with Kk =
0.
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H=0,d+0

Computing a Grobner basis G, of the ideal generated by G U {H} C R[a, ¢, d, H, F, R, o] with
respect to the lexicographical order, one has that the polynomials gy, = dF' R*(12F2 + 7R?) and
g2 = (a — d)c3R* are in G,. Hence, ' = 0 and either a = d or ¢ = 0, a # d.

F =0, a = d. Construct a new Grébner basis G, of the ideal generated by Go U {F,a — d} C
Rla,c,d, H, F, R, o] with respect to the lexicographical order. We get that the polynomial g, =
(a +4)(a — 2)(3c — 8)*R¥ is in G} and hence either « = —4, & = 2 or @ = 5. In the first
case, « = —4, we get R°D 14 = —9a*(4a® + R?) which cannot vanish. If o = 2 then we get
2R® 141 = 9a*(4a® — R?), from where a = +3 R and the metric is Einstein. If « = § then
R*® 411 = 4a®(R? — 6a?) from where a = j:\/iéR. Then D193 = —3, which shows that no RG2
algebraic steady soliton may exist in this setting.

F =0, c=0and a # d. First we determine « using the component D4,. In particular,

4R Dy = d(a® + d* + ad)(4(a® + d* + ad)a + R*(a — 8)),

which implies that o = W%. A straightforward calculation shows that ® = () + %Q
is a derivation of the Lie algebra if and only if (4ad + R?)(4(a? + d* + ad) — 3R?) = 0 and thus
R = \/lg\/a?—i-dQ—l—adora: —f—;.
In the first case, B = %\/ a? + d? + ad, the left-invariant metric determined by the Lie
algebra structure
[e1, €2] = es, [e1, e4] = —N#ﬁeb
a+d)V/3
leg, e4] = _2\/#%627 les, e4] = —z\fﬁwes
is an RG2 algebraic steady soliton with o = 2. Recall that d # 0 and note that the replacement
e4 — —ey defines an isometry between (a,d) and (—a, —d). Hence, assuming d > 0, setting
x = % and applying the homothety determined by (ey, €2, €3, e4) +— (€2, €1, —€3, —e4) We obtain
[e1, e2] = e3, [e1, e4] = 2\/%61,
K k+1 \/5
leg, e4] = 2\/%62’ €3, e4] = QE/%THG:;-

Since a # d, we have k # 1. Moreover, the metrics corresponding to the parameters x and
% are isometric. Indeed, (eq,es,€e3,e4) — (e2,e1,—€3,e4) if K > 0 and (e, ey, €3,64)
(e9,e1,—e3,—ey) if K < 0 determine the corresponding isometries. Hence, we may assume
k € [—1,1). Furthermore, a direct calculation shows that these metrics are never Einstein and
that they are irreducible. Finally, a straightforward calculation shows that () + % Id is a deriva-
tion of the Lie algebra and thus these metrics are algebraic Ricci solitons. We conclude that these
metrics correspond to Assertion (1).

In the second case above, assuming a =

left-invariant metric determined by

R2
T 4d

_ R 322
we set k = 5. Thus, a = o TT and the

[617 62] = €3, [617 64] = Kkex, [627 64] = _ﬁe% [637 64] = (H - ﬁ) €3
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is an RG2 algebraic steady soliton. Note that x # 0. Moreover, replacing e, — —e4 we may
assume k > 0, and (eq, €9, €3,e4) — (€2, —eq, €3, —e4) defines an isometry interchanging x and
4—1,{ which shows that, without loss of generality, one may restrict the parameter to x € (O, %}
A direct calculation shows that these metrics are never Einstein and that they are irreducible.
Finally, the metrics above are algebraic Ricci solitons if and only if 16x* —16x2+1 = 0 (i.e., Kk =

%\/ 2 — +/3), in which case Q + % Id is a derivation. A straightforward calculation shows that,
taking the homothetical case Kk = —% V2 — /3, it corresponds to the special case of Assertion (1)
for the value k = —(2 + \/3)_1. Therefore, these metrics correspond to Assertion (2).

F=0,dH #0

Construct a Grobner basis G3 of the ideal generated by G U {F'} C Rla,c,d, H, F, R, o] with
respect to the lexicographical order. Since the polynomial gz, = dH (12H?* + 7TR?*)R* belongs
to Gs it follows that no RG2 algebraic steady solitons may exist in this setting, finishing the
proof. L

6.2.4 The semi-direct product Re, x R?

In addition to Einstein metrics and symmetric products, R x R? is an RG2 algebraic steady soliton
just considering the RG2 algebraic steady solitons in Lemma 6.9. Henceforth we focus on the
irreducible non-Einstein case.

Lemma 6.16. Let G be a semi-direct product R x R3. Then G admits an irreducible non-
Einstein RG2 algebraic steady soliton if and only if it is homothetic to one of the following,
where {e1, ..., e4} is an orthonormal basis:

1. The left-invariant metric determined by

. 24,2
[61764] = €1, [62764] - f627 [637 64] = peés, Wlﬂ/l o = %7

where (f.p) € {(z,y) € R*%z € (0,1],0 #y <2 }\{(1,1)}.

2. The left-invariant metric determined by

[61,64] = €1, [62764] = fey + hes, [63764] = —hey + pes,

where the parameters p and h are given by p = % (1 +/1—4f(f — 1)) and

h— <f2(2p2+1)+:02*1 e and f € (0, 1),

1
=) ) 2, with coupling constant o =

Furthermore, Lie groups in case (1) are algebraic Ricci solitons whereas left-invariant metrics
(2) are never Ricci solitons.
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Remark 6.17. Left-invariant metrics in Lemma 6.16 define distinct homothetic classes for dif-
ferent values of the parameters in each assertion. For left-invariant metrics in Assertion (1) we
have
T o= 2+t fp+ftp+l),

ol = —(f*+p*+ D,

IRI* = 4(f*+p*+ Pr*+ P +p* + 1),
Proceeding as in Remark 6.10, a straightforward calculation shows that any left-invariant metric
in Assertion (1) with p # —f — 1 is never homothetic to any other metric in Assertion (1). For

p = —f — 1 we cannot use the same argument since 77 2||p||> = 1 and 772||R||?> = 3. In this
case, for p = —f — 1, we use the self-dual and the anti-self-dual Weyl curvature operators, given
by

WH=w~"=3idiag[—(f+4)f -1, -(f—-2)f+2,2(f+1)f —1].

Now, a straightforward calculation shows that two different left-invariant metrics in Assertion (1)
with p = — f — 1 are never homothetic since, after rescaling to have scalar curvature —1, the set
of eigenvalues of the above operators never coincides.

For Assertion (2), we get that two different left-invariant metrics are never homothetic pro-
ceeding as in Remark 6.10 and using that

T = =5f—4—(f+2)\/1-4f(f-1),
Ipl? = —2f*+4f2+17f+ 2+ 2> +6f+ 5)/1—-4f(f - 1).

Proof. Take the Lie algebra given in (4.4). We consider the diagonal matrix diag[a, f, p] in the
decomposition of elements of der (+3) and we analyse by separate the cases of null and non-null
determinant.

afp=20

In this case at least one of a, f and p must be zero. Thus, without loss of generality, we may
assume a = (. Moreover, one may work with a homothetic basis ¢, = Re; so that we may
assume R = 1. A key observation in this case is that if b = ¢ = 0 then e; determines a parallel
left-invariant vector field. Hence, if b = ¢ = 0 and G admits an RG2 algebraic steady soliton then
G splits as a product R x H, where H corresponds to the non-unimodular Lie group determined
by the Lie algebra h = span{es, e3, e4} with

lea, e4] = —fea — hes, [es, es] = hey — pes,

and the RG2 algebraic steady solitons are determined by Lemma 6.9.

Otherwise, the expressions obtained for the Ricci tensor and for the R-tensor imply that
D = Q + Q0 is a derivation of the Lie algebra if and only if the system of polynomial equa-
tions {D;;;, = 0} holds true, where ©,;; € R[f,b,c, h,p, a] are the polynomials given by the
components ©;;;, where the only non-zero ones are given by

Dun = a® + 2ab? + 2ac® — 26° f + af? — 2°p + ap? — 1(a® + 4a3(b* + 2)
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— 6a*(V*f + 2p) + a(f(40* f + f3 — 4bch + 2fh?) + 4h(bc — fh)p
+2(2¢% + W?)p? 4+ p*) = 200° 3 + Pp® + beh(— 2 + p?)))a,
Do = %(2(3a2b +ch(f —2p) + b(f2 — fp+ pQ) +a(ch +b(=2f +p)))
— (3a'b + 263 f2 + a3 (=20 f + ch) + ch(f? — 2f?p + 2fp* — 2p?)
+b(ft+2f2h? — f(® + 3h¥)p + (3¢ — f2 + h?)p* + p*)
+a(—4b3f + cf?h + b(=2f3 — fh%® + A(f — 5p) + h?p))
+a?(26® — cfh + b(2(c* + f2) + p?)))a),
D13 = %(2(3a20 +acf + cf? —abh + 2bfh — (2ac + cf + bh)p + cp?)
— (Ba'c+ ?cf(3f — p) — a®(bh + 2cp) + bh(2f2 — 2f?p + 2fp* — p?)
+c(f* = 3fh%p + 2( + hH)p* + p* + f2(h — p)(h + p)) + a*(26%c + bhp
+c(2¢% + f2 4+ 2p%)) — a(bPe(5f — p) + bhp* + c(—fh? + 4cp + hPp + 2p?))) ),
Do = 5(—=26(3f* + fp+p?) + 2a(ch + b(2f + p)) + a*ba + 2b° 2«
—a®(2bf + ch)a — a(f(40® — cfh + b(c* + 2f? — h?))
+ (3¢ + h?)p + 2chp®)a + b(3f* + 2f2h? + f(c* — 5h%)p
+ (2 + f2+302)p* + pYa + ch(2f — 4p — f3a + 2pPa)
+ a?(—=2b + (20® 4+ 2b(c* + f?) — ch(f — 2p) — bp*)av)),
Dygo = —2ab* + 20 f + f2 +2fh* — 2h%*p + fp* + a*V’a — %a‘lfa
+af(3b2f — 2bch + 2c%p)a — 1(f3(4b* + f2 4+ 4h*) — 2fh(2bc + 3fh)p
+ 2(2f + bch + 2fh*)p? — 212p3 + fph)a + a®(f — (20 + ) fa + beha),

Dz = 5(2(a*h + a(=2bc + h(f — p)) + be(f +p) + h(3f* = 2fp + p?))
— (=2a®bc + a*h + B2 fh(2f + p) + be(f2 — f2p + fp? +p?)
+h(3f1+ 2120 — f( +2f2 + 4h%)p + 2(P + f2 + 1?)p® = 2fp* + p?)
—a(—=c*h(f — 3p) + 2bcp® + L*h(5f + p))
+ a?(3b%h + 2bep + h(c? + f? — p?)))a),
Dyz1 = %(—2(@20 + bh(=2f +p) + c(f* + fp+ 3p*) + a(bh — c(f + 2p)))
+ (atc+ 2 cf(f +p) + a’(bh — 2cp) + bh(=2f° +p*) + c(f* = 5fh%p
+2(c® + 1*)p® + 3p + f2(3h* + p?)) + a®(2b%c + bh(—2f + p)
+c(2¢2 — f2+2p?)) — a(b?c(3f + p) + bh(—2f% + p?)
+ c(fh% + 4c*p — h%p + 2p*))) ),
Duzo = 3(—2h(f* — 2fp + 3p?) + 2a®bcar + a*ha + V2 fh(2f — p)o
+R(fE 2R + f(® = 2f* = 4h*)p + 2(¢* + f* + B?)p?
—2fp® +3p)a +be2(f +p) — (f° + f’p — fr* +p°)a)
—a(2h(—f +p) + V*1(3f — p)a + Ah(f + 5p)a
— 2bc(=2 4+ f2a)) + a*(—2bcfa + h(=2 + (b* + 3¢* — f2 + p?)a))),
Dysz = —2ac® — 2fh% + a’p + 2¢%p + f2p + 2h%p + p° — %(—2(@302 — a’bch
+ f2h(be + fh)) + (a* + 2a2(b* + 2¢%) — dab(bf + ch)
+ f(20°f + f? + dbch + Afh?))p — 6(ac + fh*)p* + A(c® + h*)p® + p°)a,
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We start with a Grobner basis G; of the ideal generated by the polynomials {3, } with
respect to the lexicographical order and we get that the polynomial g;; = p?(p*a — 2)c? belongs
to G;. Therefore, we have three possibilities which we analyse separately.

p = 0. Constructing a Grobner basis G; of the ideal generated by G; U {p},which is an ideal in
R[f,b, ¢, h, p, al, with respect to the lexicographical order, one has that the polynomials g}, =
fh(b*> + h?) and g}, = bf(b? + h?) belong to G. If f = 0 then the metric is Einstein. If f # 0,
then b = h = 0 and we get 90 = —% 3(f2a — 2). Thus, a = % and this case is symmetric,

and thus reducible since it is not Einstein.

a= z%’ p # 0. We construct a Grobner basis G of the ideal generated by G, U {p*a — 2} C

Rle, b, h, p, o, f] with respect to the graded reverse lexicographical order and the polynomials
gl = cf(b*+ %) and gy, = c(b*f + ¢*p — fh? + h*p) belong to G;. Hence, necessarily ¢ = 0.
Moreover, the polynomials gfs = bf%(b? + ¢*) and g, = b(f — p)(f* — 2h* + fp) also belong
to G/. Thus, b = 0 and G is reducible or otherwise f = h = 0 and the manifold is symmetric.

c=0,p#0,a # z%' Constructing a Grobner basis G” of the ideal generated by G; U {c¢} C

"

R[f,b, ¢, h,p, a] with respect to the lexicographical order, one has that the polynomial g} =
b*p? (p*a — 2) belongs to G”. Thus, necessarily b = 0 and G is reducible.

afp#0
R

Without loss of generality, one may work with a homothetic basis ¢; = <*e; so that we may
assume R = a = 1. A key observation in this case is that the cases b = ¢ = 0, ¢c = h = 0
and b = h = 0 are homothetic. Indeed, considering (e1, €2, e3,€4) = (3, €2, €1,¢4) the case
¢ = h = 0 reduces to b = ¢ = 0. Analogously, considering (e, ez, €3, €4) = %(62, €1, e3,¢e4) the
case b =h = 0Oreducesto b = c = 0.

Using the expressions obtained for the Ricci tensor and for the R-tensor it follows that
D=0+ %Q is a derivation of the Lie algebra if and only if the system of polynomial equations
{%B.;x = 0} holds true, where ‘B, € R[b, ¢, f, h, p, a] are the polynomials given by the compo-
nents ©;;;, (which we omit for the sake of brevity). Now we construct a Grobner basis G, of the
ideal generated by the polynomials {*3;;;} with respect to the lexicographical order and we get
that the polynomial go; = ch(a — 2)*(3a — 2)(a? — 2 + 4) belongs to G,. Therefore, we have
four possibilities which we analyse separately.

¢ = 0. Constructing a Grobner basis G/, of the ideal generated by {*B;;x }U{c} C R[h,b,c,p, «, f]
with respect to the lexicographical order, one has that the polynomials g}, = bfh(f — 1) and
gho = bh(a — 2) belong to G;,. Hence, we are led to the cases b =0, h =0and f =1, « = 2.

b= 0. In this case, we construct a Grobner basis 5; of the ideal generated by G, U {b} C
R[h, b, ¢, p, o, f] with respect to the graded reverse lexicographical order. We get that the poly-

nomial gy, = h(f — p)*(f* + p* — f — p) belongs to G).

If b = 0 then we get 2D 411 = —(f* +p* + 1)a+2(f? + p* + 1). Therefore, o = %
and the left-invariant metric given by

[61’ 64] = —é1, [627 64] = _f627 [637 64] = —pes
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is an RG2 algebraic steady soliton. The metric is Einstein if and only if f = p = 1. Since the
isometry (eq, ez, e3,e4) — (e1, €3, €a, €4) transforms (f, p) into (p, f), we may assume that p <
f. Moreover, (eq, ez, e3,€4) — %(62, e1, €3, e4) defines an homothety between ( f, p) and (%, ?)
Therefore, we may assume without loss of generality that (f,p) belongs to the set {(z,y) €
R%z € (0,1],0 # y < z}\{(1,1)}. Furthermore, a direct calculation shows that these metrics
are irreducible and a straightforward calculation shows that @ + (f? + p* + 1)Id is a derivation
of the Lie algebra and thus an algebraic Ricci soliton. Finally, the isometry e, — —e4 shows that

these metrics correspond to Assertion (1).

Ifp= fand h # 0 then we get 20,1, = —(2f*+1)a+2(2f%+1). Therefore, a = 2(22;2311)
and the left-invariant metric given by

[61764] = —éu, [62, 64] = —fey — hes, [63,64] = hes — fes

is an RG2 algebraic steady soliton. The metric is Einstein if and only if f = 1. Moreover, a
straightforward calculation shows that Q + (22 + 1)Id is a derivation of the Lie algebra and thus
an algebraic Ricci soliton. A direct calculation shows that the curvature tensor of type (1, 3) does
not depend on A and hence it follows from the work of Kulkarni [48] that this case is homothetic
(although not a homothetically isomorphic) to the case in Assertion (1) when p = f.

If f24+p>—f—p=0andp # f, h # 0, then we get
2041 = —(f* +p' +2(f — )R’ + Da+2(f* +p* + 1)

2(f%+p%+1)
FAp*42(f—p)2h2+1"

which implies o = Now, a straightforward calculation shows that

Lapt] Dazy = *(f = p)2(f —p)*h* = P20 +1) = p* + 1),

a

1
Since h # 0 and p # f, it follows that h = & (M) ’ , with &2 = 1. On the other hand,

2(f-p)?
since f2+p?>—f—p=0,wegetp = % (1 +e/1—4f(f - 1)), with €2 = 1. For this choice
of h and p we have o = ﬁ and the left-invariant metric given by
le1,e4] = —e1,  [e,ea] = —fea — hes,  [es, eq] = hea — pes (6.2)

is an RG2 algebraic steady soliton. A direct calculation shows that these metrics are never
Einstein. Note that a substitution of e3 +— —eg3 is an isometry which interchanges ¢ = —1
by ¢ = 1. Hence, we take £ = 1 and to ensure that the structure constants are real we take

fe (0, ”2*/5} \{1}ife =1,and f € (1, ”2\/5} if ¢ = —1. Consider now a pair (e, f) so that

¢ = —1 and define a corresponding pair (g =1,5(1 = /1 —4f(f — 1)> It now follows that

(e1,e2,e3,€4) — (€1, —e3, €9, e4) determines an isometry between the two cases above which
shows that one may assume ¢ = 1 without loss of generality. Moreover, one can specialize

f € (0,1). To do this, if f € (1, 13”}, one has that (1 + /T—4f(f — 1)) € (0,1) and
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repeating the same change of basis as above we get that both cases are isometric. Finally, a
straightforward calculation shows that these metrics are irreducible and that they are never an
algebraic Ricci soliton. Thus we conclude that this case corresponds to Assertion (2) after the
replacement e, — —ey.

h =0, b # 0. Since ¢ = h = 0, this case reduces to the case ¢ = b = 0.

f=1,a=2,bh # 0. In this case, we have D3 = bhp*(p — 1). Since bhp # 0, it follows that
p = 1 and the metric is Einstein.

h =0, ¢ # 0. We construct a Grébner basis G of the ideal generated from the previous basis
Go U {h} C R]b, ¢, f, h,p, o] with respect to the lexicographical order and we get that the poly-
nomials g5, = bep(p — 1) and g5, = bef(f — 1) belong to G. If b # 0 then f = p = 1 and the
corresponding metric is Einstein. Otherwise, b = h = 0 which reduces to the case c = b = 0.

a =2, ch # 0. Constructing a Grobner basis G’ of the ideal generated by G, U {av — 2} C
RI[b, ¢, f, h, p, a] with respect to the lexicographical order, one has that the polynomials g =
cp*(p—1)? and gy, = hp(f —p)(f +p — 1) belong to G5'. Hence, it follows that p = f = 1 and
the corresponding metric is Einstein.

o = 2, ch # 0. Constructing a Grobner basis G} of the ideal generated by G» U {3cv — 2} C
R[b, ¢, f, h, p, a] with respect to the lexicographical order, one has that the polynomial g4 = ch?

belongs to G”. Since ch # 0 there is no solution in this case, which finishes the proof.

]

6.3 Fixed points and homothety classes

Along this section we finish the proofs of both main theorems in this chapter.

6.3.1 The proof of Theorem 6.4

First of all, recall that if the symmetric (0, 2)-tensor field RG = —2p — 2R comes from a fixed
point, then « necessarily satisfies 7 + $||R[|*> = 0. Hence the manifold is flat or otherwise
a = —47||R|| 7%

Let (M, g) be a complete and simply connected homogeneous four-dimensional manifold.
Then it is isometric to a symmetric space or to a Lie group with a left-invariant metric. The
analysis of left-invariant metrics on Lie groups was carried out through sections 6.2.1 to 6.2.4.
In each case, all possible derivations of the form ® = () + %Q are given, showing that ® = 0 if
and only if the metric is Einstein or a product R¥ x N*=*(¢) for k = 1,2, unless it corresponds to
the left-invariant metric on SU(2) x R given in Lemma 6.11 and determined by the Lie algebra

[e1, 2] = €3, [ea, €3] = ex, 3, e1] = %627

where {ey, ..., e} is an orthonormal basis of su(2) x R.
On the other hand, if (M, g) is a non-Einstein symmetric space, then it splits as a product
NF(c1) x Ny *(cy), where k = 1,2, and N/(c;) is a space of constant curvature c;. If k = 1, the
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resulting manifold is isometric to R x N3(c) and it satisfies RG[g] = 0. If k = 2, we compute
the tensor field RG|[g] for a product NZ(c;) x NZ(cs), with coupling constant v = An

ngllz () takes the form

IIRH2

explicit calculation shows that the (1, 1)-tensor field Q) —

C1C9 .
-5 3 diaglco — ¢1,¢3 — €1,01 — 2,01 — €3] .
]+ ¢

Hence, assuming ¢; # co, one has that p — 0 gHQ R =0ifand only if ¢;co = 0, which finishes the
proof.

Remark 6.18. Products R* x N(c) are rigid gradient Ricci solitons [61]. On the contrary, the
product Lie group SU(2) x R, it is not a Ricci soliton (see, for instance, [2]) whereas it is an
RG@G?2 steady soliton,.

6.3.2 The proof of Theorem 6.6

The result follows at once from lemmas 6.11, 6.12, 6.14, and 6.16. Moreover, all metrics corre-
sponding to each assertion in Theorem 6.6 represent different homothetical classes as shown in
remarks 6.13, 6.15, and 6.17. Next we show that no metrics corresponding to different assertions
in Theorem 6.6 may be homothetic. First, recall all the algebras obtained

1. R x ¢(1,1), for a coupling constant o = HQLH, given by
[61,63] = €3, [62763] = €1, [61764] = Ke€y, [62764] = Kea,
where k > 0, Kk # 1.

2. R x b3, for a coupling constant o = 2, given by

[617 62] = €3, [617 64] = %617
1)v3
[62764] 2\/%627 [63764] = 257%63’
where k € [—1,1).

3. R x b3, for a coupling constant ov = 6 S +1, given by

[61762] = €3, [61764] = Req, [62564] = _ﬁe% [63’64] = ('Li o i) €3,

where x € (0, 3],k # 3 12 -3

3 . _2(RK2H6241) .
4. R x v, for a coupling constant & = =575, given by
le1,ea] = €1, [ea, e4] = Kea, [es, e4] = des,

where (k,0) € {(z,y) € R%z € (0,1],0 # y < z}\{(1,1)}.
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5. R x t3, for a coupling constant v = given by

2
K2 +p2 ’

[61764] = ey, [62, 64] = Kkey + hes, [63764] = —hey + pes,

where the parameters p and h are given by p = % <1 + /1 —4k(k — 1)) and

12(2p2 2 %
h = (%) , forany x € (0,1).
Cases (1) and (3). In Case (1), in addition to 7 and ||R||* determined in Remark 6.13, one has

pl|? = 12k* + 4. In Case (3), in addition to 7 and ||p||* already computed in Remark 6.15, we
2 16K2(48Kk8—16K*+14K2—1)+3
have || R|]* = e .
Now, a straightforward calculation following Remark 6.10 and using the invariants 7, ||p||?

and || R||? shows that left-invariant metrics corresponding to cases (1) and (3) in Theorem 6.6 are
never homothetic.

Cases (1) and (5). In Case (1), we consider the invariants 7 and || R||? determined in Remark 6.13
and in Case (5) we consider 7 determined in Remark 6.17 and

|R||* = =2 (2(k — 1)r* — k? = 8k — 3) + (2(k + 2)k + 6) /1 — 4(k — 1)k

A straightforward calculation following Remark 6.10 now shows that left-invariant metrics cor-
responding to cases (1) and (5) in Theorem 6.6 are never homothetic.

Cases (3) and (5). We proceed as in Remark 6.10 using the invariants 7 and ||p||* previously
determined and a straightforward calculation shows that left-invariant metrics corresponding to
cases (3) and (5) in Theorem 6.6 are never homothetic.

Secondly, we analyse the cases in Theorem 6.6 which are Ricci solitons, i.e., cases (2) and
(4). We start using the self-dual and the anti-self-dual Weyl curvature operators. In particular,
for a left-invariant metric corresponding to Case (4), we have

W =W~ = § diag[—fua2 — plas, flaz, flas)],
where
pag = =262+ 6%+ (k — 2)0 + K + 1,
paz = K2 +0%2— (26— 1)0 + kK — 2.
For a left-invariant metric corresponding to Case (2), we have

+ : + + ,+ £
W= = 6(ﬁ2+1/-e+1) diag[—pizy — 1133, Ha2: H23),

where
fyy = K2+ 14+ 5(5+3y/3(k% + k+ 1),

oy = K2+ 24+ 1£3/B3(k2+Kk+1).
Hence, if a left-invariant metric corresponding to Case (2) is homothetic to a left-invariant metric
in Case (4), then W' = W™, and comparing term by term, a straightforward calculation shows
that this occurs if and only x = —1 (in that case, the Weyl curvature operator must have an
eigenvalue m {133 with multiplicity two). Therefore, a left-invariant metric in Case (2)
with k # —1 is never homothetic to a left-invariant metric in Case (4). Finally set k = —1 in
Case (2) tohave 7 = —2, ||p||* = 3 and || R||* = 8. Proceeding as in Remark 6.10, one has that no
metric corresponding to Case (4) may be homothetic just using the expressions in Remark 6.17.
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6.4 Locally conformally flat fixed points.

In this section we classify fixed points in the context of locally conformally flat manifolds.

Theorem 6.19. Let (M, g) be a n-dimensional locally conformally flat fixed point for the two-
loop renormalization group flow with coupling constant o. Then

1. If n # 4, then (M, g) is homothetic to a product M{"(c) x M*(—c) withn = 2m or to a
warped product R x ¢ N(c) with non trivial warping function satisfying

a(n—2)((n— 6)n+6) (/% — &) + a((n — 4)(n — 2)n — 4)f " +2(n — 2)°f> = 0.
7_2
2. Ifn =4, then |[R|12 = || = =.
Proof. Let us recall, on the one hand, that a fixed points for the G2 flow is given by a metric
fulfilling p + ¢ R = 0. On the other hand, we have seen in chapter two that the operator related

to R is given

B hopa T (n— Dol - 72
Qi <n—2>2{< Dt T T oD Id}'

Combining these two identities, one can get that a metric of this kind is a fixed point if (), +
$Qx = 0, which is

B Y N (n—Dlpl* =71 _
and then,
an—4) 5, ar+ (-1 -27,  alln=Dlpl* =7 _
2(n—2)Qp+ (n—1)(n— 27 Qp+ 2 =32 =) Id = 0. (6.3)

Now we have two different possibilities depending on the dimension. If n # 4, then, as in chapter
two, we have a quadratic equation on the Ricci operator, so we have two Ricci eigenvalues, called
them A and p, related by

2(ar + (n —1)(n — 2)?)

an—1)n—-2)(n—4)’

where this relation is given by Vietta’s formulae. Thus, we have two eigenvalues, one a multiple
of the other, and as the Schouten tensor is Codazzi and it has also two eigenvalues, one a multiple
of the other, then we have either a warped product R x ; N(c), with f a non trivial real warping
function and N (c¢) an (n — 1)-dimensional Riemannian manifold of constant curvature or a Rie-
mannian product M™(c) x M™(—c), such that n = 2m. In order to determine the function f,
assume that A has multiplicity one. Since 7 = A + (n — 1), then both are related by

A p=—

2 (a(A+ p(n — 1)) + (n— 1)(n — 2)?)

Atn= an—4)(n—2)(n—1) ’
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and using the formulas from 1.16 for the Ricci operator, we get that f must satisfy the differential
equation

a(n—2)((n—6)n+6) (f/2 — C) +a((n—4)(n—2)n—4)ff"+2(n—2)2f*=0

If n = 4, then equation (6.3) becomes

12(ar +12)Q, + a(3]|p|* — 7°) Id = 0.

Since this is a lineal equation, this only can have one solution, and then, the Ricci operator has

only one eigenvalue, so the metric is Einstein as long as the equation is not identically zero. In
2

order to have that, we need that « = —2 and ||p|| = %-. Moreover, recall that o« = —47||R|| 72,

then ||R||?> = %, and hence || R||?> = ||p||>. O

6.5 Ciritical metrics

As in previous chapters, we are studying case by case every example obtained and see when they
fulfil the conditions to be critical for the functionals S and F;.

Notice that all metrics obtained along the chapter are summarized in section 6.3. Since we
are working with homogeneous manifolds, then (), g) is S-critical if and only if it is Einstein or
has vanishing scalar curvature. The symmetric examples from Theorem 6.4 fulfil this if and only
if they are flat: The Lie algebra given in the same Theorem has positive scalar curvature 7 = %,
so it cannot be S-critical. Lie algebras from Theorem 6.6 have strictly non-zero scalar curvature,
so there is none example of S-critical metrics. However, we obtain the following for F;.

Theorem 6.20. Let (M, g) be a four-dimensional fixed point for the two-loop renormalization
flow. Then, it is F;-critical if and only if

1. (M, g) is homothetic to R? x N*(c) and t = —1.
2. (M, g) is homothetic to R x N*(c) and t = —3.

Proof. Recall that we define the tensor F as the (0, 2)-tensor field corresponding to the functional
JF: and that if F = 0, then the metric is JF;-critical.
Take R? x N?(c). The non-zero components of F are given by

F11 = —16F22 = —16F33 = —16F44 = C2<1 + 2t>

Therefore, this is critical if and only if ¢ = 0, which means that the metric is flat, or if t = —%.
Analogously, if we take R x N3(c), where the non-zero components of F are given by
16 16 16
Fig = —Fgy = —F33 = —Fyy = 6¢%(1 + 3t
1= 5P = o = 5 fu c*(1+ 3t),
and then it is critical if and only if c =0 or t = —%.
Regarding the left-invariant metric on SU(2) x R, one has that F; = Fyy = —;—g, so this is

never critical. []
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Theorem 6.21. Let (M, g) be a four-dimensional RG2 algebraic steady soliton. Then, it is F;-
critical if and only if

1. (M, g) is homothetic to R x E(1,1) with Lie algebra

[61,63] = €9, [62763] = €1, [61764] = ke, [62764] = Keéy,
1 2
where k > 0, Kk # 1, and t = —1j3i2.

2. (M, g) is homothetic to R x H? with Lie algebra

[e1, €2] = €3, le1, e4] = ﬁeb
[62764] 2\/:2\{—/%%627 [63764] = 2%637
_ 3(1+r+k?)
where K € [—]_, 1), andt = —m

3. (M, g) is homothetic to R x R> with Lie algebra

[61, 64] = €1, [62764] = Keéa, [63764] = des,

where (x,6) € {(z,y) € R%z € (0,1],0 # y < \{(1, 1)}, and t = — gst it

Proof. We analyse case by case every item from Theorem 6.6, studying when the respective F
tensor vanishes.

Lie algebra from Theorem 6.6 .(1) gives the following F-tensor.

Fi1 =Fa = —§F33 =Fa = —2(k" = 1)(1 + ¢ + £° + 3tr?).

Since k > 0, k # 1 and the second bracket is linear in ¢, these are vanishing if ¢ = — 11:3’22 > and
the first statement of from Theorem 6.21 follows.

Take now Theorem 6.6 .(2). The non-zero components of F are given by

3(k*—=1)(B(K*+ K +1)+2(k(bk + 8) + 5)t)
4(K2+Kk+1)°

(k—1)*(3(k*+ K+ 1)+ 2(k(5k + 8) + 5)t)
4(k2+r+1) '

Fii=—Fn=

)

Fas = —Fua =

l‘&2 K
Since k € [—1, 1), then, this is only vanishing if t = —;E@R;%, and statement (2) follows.

Take now Theorem 6.6 .(3). In this case, we have that

(—768k3 4 2568 — 96K* + 1652 — 3) ¢ — (1 — 16K%)°

Fu=
44 12854 :
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(1-16x%)

and then, since this is linear in ¢, it is vanishing if { = —ew—res e r=rs.

we obtain that the non-zero components left are

For this value,

(4% 4+ 1) (16x* — 168 + 1)

Fuu = 2(16K* + 1) !

Fyy — (4k* +1) (16K5* — 16K* + 1)
8k2(16K%+) ’

F%:_(@¥+1fa@#—1wﬁ+m

8k2 (16K + 1)

24++/3
2

K= ——VZ;‘/E. Recall that x € (0, 3], 5 # V2 — /3, therefore, non of these values are in the
correspondent interval and then F is never vanishing.
We study now Theorem 6.6 .(4). The non-vanishing components of F are given by

Then F can only be vanishing if 16k* — 16k% + 1 = 0, whose solutions are kK = and

Fiu=(6"+0(k—1+(k—1)r—1) (P +r>+2 (> +0r+5+ K> +r+1)+1),
Foo=(6°—0k+0—r(k+1)+1) (8 +r*+2t (> +0r+ 0+ K +r+1)+1),
Fas=—(0+0(k+1)—r(k+1) = 1) (> + K>+ 2t (0*°+ 6+ 6+ K>+ K+ 1) + 1),
Fu=—("-0(k+ 1)+ (k—1)r+1) (®+r*+2t(°+0r+6+r>+r+1) +1).

First brackets in every F;; can only vanish at the same time if x = 6 = 1, which is not a

possible value for (x, §). Hence, the system is fulfilled if and only if the second bracket vanishes,

. C e 1. . _ 82 +k2+1 —
and since it is linear on ¢, this happens when ¢ = T and F = 0.

Finally, take Theorem 6.6 .(5). A straightforward calculation shows that

Fiu =r((—#* + (V1= 4(k — Dr+2))k + /1 — 4(k — 1)K))
+ (25— VT 4(r— D~ 7)) + (6((2((VT— 4~ D — 1))
+r((=26(k + 1) +3y/1 =4k = Dk + 7)) = 2((v/1 = 4(s — Dr +2)))t,
Fus :i(zn((_%(((zx “ 30k + /T = 4(r — D)) +2¢/1— 4(r — D)r — 3))
— 5y/T— 40k — D) + A((s((2((v/T— 40 — D) — 1))
+ w((—2k + K((=26(k + 1) + 3y/1 —4(k — DK +7))))
= 2((v/1=4(k — D)k +2))))t - 3))).

From F;; we obtain that

2%(2&372<\/m+2)1$72 174(/€71)/£71)+\/m+7
2( 1—4(%—1)/%4—/{—2)(2( 1—4(/@—1)H+2)+K/<\/m+5)).

t =
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Analogously, from F,4 we get that

t :Lfiglo(ﬁ((m((Qm((n((6m2 —8k+T7y/1—4(k—1)k —15)) — 13/1 —4(k — 1)k + 38))

— 31 —4(k— 1)k —47) +13y/1 —4(k — 1)k — 3)) = T\/1 — 4(k — 1)r — 1).

where f(r) = 8(k — 1)* (k* + k + 1) (k(k + 2) + 3). Thus, if these two values are different,
then the system cannot vanish. Both values for ¢ are the same if and only if

(k—1) (2%(%(—2(%—1)H+\/m+1>+1)+ 1—4(5—1)&—1)20,

which only has real solutions if K = 0 or k = 1, which are not possible values for  since
k € (0, 1) and the result follows. O
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