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Chapter 1
Introduction

Topology and Dynamics
The relation between the topology of a space and the kind of dynamics which can be defined
on it is a classical and popular topic of research. Let us briefly discuss this. On the one hand,
for a space X , the dynamics defined on X provide topological information about X . For an
example of this phenomena, consider a gradient vector field on a smooth manifold X with only
one critical point. The vector field provides a homotopy equivalence between the manifold and
a point; a way to deform the manifold to a point. Conversely, consider some dynamics and a
manifold X . There exist topological conditions on X so that dynamics can be realized on X .
For instance, it is not possible to define a gradient vector field with exactly two critical points
on the torus. The one who first noticed the examples we just presented was Morse ([127]), who
related the “potential” or “height” functions (the ones corresponding to gradient vector fields)
on manifolds with the topology (homology in fact) of the manifold. His observations were the
beginning of what is now referred to as Morse theory.

Not only Morse realized about this strong connection between Topology and Dynamics. At
more or less the same time as Morse’s work, Lusternik and Schnirelmann ([114]) were trying
to understand the topology of manifolds through some class of well-behaved functions defined
on them. The results they obtained were more general, in the sense that they are more widely
applicable, but also provide, in general, less information about the topology of manifolds. In
fact, both Morse theory and this Lusternik-Schnirelmann theory may be seen as complementary.
Another theory which relates Dynamics and Topology, and can be seen as complementary to
Morse theory is the so called Conley theory, introduced by Conley ([48]). This theory allows us
to deal with much wilder dynamics on the space under study than Morse theory at the expense
of providing less topological information in return.

Morse theory
Morse theory evolved rapidly due to its connections and applicability in different problems (see
for example [33, 34, 155–158]). In particular, not long after Morse’s first exposition, topologists
became aware that Morse theory did not only provide information about the homology of the
manifold under study, but also its homotopy type. This led to the so called Structure Theorem of
Morse theory:

Theorem (Structure Theorem of Morse theory). LetX be a compact manifold and let f : X → R
be a Morse function. Then, X is homotopy equivalent to a CW-complex with exactly one p-cell
for each critical point of index p.

1



2 1 Introduction

Basically, this result guarantees that Morse functions (equivalently, their associated gradient
dynamics) contain the homotopical information about the manifold. In fact, the homotopical
information is localized or concentrated at the critical points. For a classical exposition of Morse
theory we recommend [32, 35–37, 102, 125].

Let us review our previous discussion with a particular example, which, as to follow the steps
of every classic exposition of Morse theory, it will be a torus. Consider a torus X in R3 as
pictured in Figure 1.0.1 and let f : X → R be the height function given by f(x, y, z) = z.

t3

t2

t1

t0

Figure 1.0.1: Torus in R3 tangent to the plane z = 0.

Observe that this function induces a gradient vector field going "upwards". Our objective is
to relate the dynamics to the topology of the torus, so first observe that there are four critical
points for the map f . A global minimum of f , a global maximum of f , and two saddle points.
Now let us scan the torus using our function f , that is, let us consider a filtration of X induced
by f . We denote Xt = f−1((−∞, t]).

Let us say that the critical values of f are denoted by t0 < t1 < t2 < t3. Observe that if
t < t′ are two real numbers in [ti, ti+1) for i ∈ {0, 1, 2}, then Xt′ deforms to Xt (the deformation
may be performed following the gradient flow in the opposite direction). Hence, it only remains
to understand what happens when we reach a critical value of f . In order to do that, we need to
recall that the index of a critical point p of f is just the dimension of the maximal subspace of the
tangent space TpX on which the Hessian of f is negative definite. Observe that in this example,
when we reach t0 we just add a 0-cell, when we reach both t1 and t2 we adjunction one 1-cell for
each of the critical points. Finally, when we reach t3, we adjunction a 2-cell.

Morse’s original approach to this did not take homotopy into account. He just proved that the
homology does not change while critical points are not reached and that when a critical point is
reached, the change in homology is under control. That way one can consider a filtration on the
manifold. Let us restrict our attention to the torus for simplicity:

Xt−1 = ∅ ↪→ Xt0 ↪→ · · · ↪→ Xtj ↪→ Xtj+1
↪→ · · · ↪→ Xtn = X. (1.1)

Moreover, the filtration can be chosen so that for every j, there is at most one critical point in
Xtj+1

−Xtj . That way, the homology of the pairH∗(Xtj+1
, Xtj) is either trivial or it is controlled.

In fact, Morse proved that if the homology is not trivial, then H∗(Xtj+1
, Xtj) is trivial except for

the dimension equal to the index of the critical point and that in that dimension it is the infinite
abelian group with one generator (see the exposition [141]). As a consequence, he managed to
relate the dynamics and the topology of X by means of the (strong) Morse inequalities:
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Theorem (Morse inequalities). Let X be a manifold and let f : X → R be a Morse function.
We denote by mi the number of critical points of index i and by bi the Betti number of dimension
i. Then,

1. For every i ≥ 0 and domain of coefficients:

mi −mi−1 + · · ·+ (−1)im0 ≥ bi − bi−1 + · · ·+ (−1)ib0.

2. mi ≥ bi for every i.

3. The Euler-Poincaré Characteristic satisfies a Poincaré-Hopf Theorem:

χ(X) =

dim(X)∑
i=0

(−1)ibi =

dim(X)∑
i=0

(−1)imi.

The next thing to do after studying the relation between topology and smooth functions with
isolated non-degenerate critical points (Morse functions), is to allow the critical sets to be sub-
manifolds. For an example of this situation consider the torus X in R3 depicted in Figure 1.0.2
and the function f : X → R given by f(x, y, z) = z. That is the idea which led Bott to develop

Figure 1.0.2: Torus in R3 tangent to the plane z = 0.

what is now called Morse-Bott theory ([32, 134]).
So far, we have mentioned the most classical approach to Morse theory. Nevertheless, the

idea of localizing the homological or homotopical information at the critical points flourished
notably. In fact, that led to at least another two approaches to Morse theory. One of them consists
in constructing a chain complex, the Morse complex, using the flow of the gradient vector field
([134]). The homology of this complex is isomorphic to the homology of the manifold. The
other one consists in using the flow of the gradient vector field to construct a topological loop-
free category C (just a small category satisfying an extra condition) whose geometric realization
recovers the homotopy of the manifold. This approach was initiated in an unpublished preprint
of Cohen, Jones, and Segal, and it is now gaining popularity (see [40]).

Lusternik-Schnirelmann category and related invariants
Lusternik-Schnirelmann theory approaches the study of the relation between the critical sets of
a smooth function f : X → R (not necessarily Morse) defined on a manifold and the topology



4 1 Introduction

of the manifold. In order to study the topology of the manifold, homology is not used. Instead,
Lusternik-Scnirelmann introduced what now is called the Lusternik-Schnirelmann category.

Let X be a topological space. The Lusternik-Schnirelmann category (LS category), denoted
by cat(X), is the minimum number of open sets which cover X and such that each of them
is contractible in X . If there is not a finite covering satisfying this property, we say that the
category is infinite. For example, it is easy to convince ourselves that a sphere has category 2.
In general, it is not difficult to realise that compact manifolds have finite category. However, the
computation of the Lusternik-Schnirelmann category for manifolds is a very hard problem (see
for example [118, 119]).

The LS category is a widely studied homotopic invariant since it appears in many areas of
Mathematics (see for instance [49] for an exposition). However, the LS category is just one of the
many invariants one may define to study topological properties of a space X . More generally, a
categorical invariant of a spaceX is usually defined as the smallest number of open sets that cover
X and that satisfy certain properties, such as being elementary in a certain sense, for instance
acyclic or contractible (see [83, 89] for more examples). More generally, and analogously, a
categorical invariant of an object X (such as a simplicial complex) can be defined as the smallest
number of subobjects needed to cover X and that verify certain properties (see for example
[64,65,117,170]). In vague terms, such an invariant provides a certain measure of the complexity
of an object. For instance, the Lusternik-Schnirelmann category measures, in a particular manner,
how far is a space from being contractible. Notice that categorical does not have here the same
meaning as when speaking of Category Theory.

For a topological space X , there are other related homotopic invariants which are related to
the LS category and have applications in Engineering or Robotics. One of those is the topological
complexity of X , denoted by TC(X), and introduced by Farber in 2003 ([61]). Roughly speak-
ing, TC(X) measures the instabilities of any motion planning algorithm in X (see the survey
[62]).

In recent years, a lot of new invariants related to the category and topological complexity have
appeared (see for instance [131,139,140,150,180]). They have a wide range of applications, from
motion planning and robotics to social choice (see [42]). The interest in studying all of them at
the same time, so we could understand better their relationships, led us to introduce another
invariant which unifies them all, that is the homotopic distance between continuous maps. This
invariant rapidly received attention (see for example [29–31]).

Discrete structures and computation

The emerging fields of Applied and Computational Topology (see [58–60,88,100,146,181,182])
have resulted in a huge popularization of discrete and finite contexts, where algorithms to perform
concrete and complete calculations can be developed. In the following diagram we represent
different settings in the finite context, along with their connections and their relation to classical
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objects such as manifolds.

Small Cat Simplicial sets

Loop-free Cat Regular ∆-Complexes

Posets Simplicial Complexes

Chain Complexes Manifolds

sd

N

sd

N

X

K

X

(1.2)

We proceed with a brief discussion of the diagram.
First of all, (smooth) manifolds can be triangulated to give simplicial complexes in such a

way that some invariants of the manifold can be related to analogous or associated invariants in
the simplicial complex ([81, 82]). We will develop this idea further in the next subsection.

Simplicial complexes and partially ordered sets (posets) are related, as was first observed
by Alexandroff ([3]) and later McCord ([123,124]), by what are now sometimes referred as Mc-
Cord or Alexandroff-McCord functors. Moreover, McCord realized ([123,124]) that this functors
induce weak homotopy equivalences. This relation can be extended to more general cell com-
plexes such as regular ∆−complexes, which, roughly speaking, are just simplicial complexes
whose simplices are not completely determined by their set of vertices. Regular ∆−complexes
play an important role since the nerve of a loop-free category (a small category such that the only
arrows with the same source and target are identities) is a regular ∆−complex.

Posets are examples of loop-free categories. Conversely, every loop-free category can be
subdivided to obtain a poset (as it happens with regular ∆−complexes and simplicial complexes).
This same relation between posets and loop-free categories repeats itself for loop-free categories
and small categories. It is worth mentioning as well that it is possible to associate a simplicial set
to every small category by the well-known nerve functor. For a detailed treatment of the relations
we have mentioned so far, we recommend the works of May ([121, 122]), Tanaka ([171, 172])
and Del Hoyo ([53]).

Finally, every chain complex with a distinguished basis can be seen as a poset. We will
explain this in detail in Chapter 3.

Topology and Dynamics in discrete structures

The recent interest in discrete structures motivated the development of combinatorial analogues
of some techniques and results in the setting of manifolds. To mention some examples:
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• Leinster ([22, 111]) developed the notion of Euler-Poincaré characteristic for categories.
This allowed Tanaka to develop a theory of integration against the Euler-Poincaré char-
acteristic in the setting of finite spaces ([167, 168]), extending the previous theory for the
context of simplicial complexes and manifolds by Ghrist and Baryshnikov ([17, 18, 50]).

• A notion of curvature and several classical results from Riemannian Geometry were also
adapted to finite contexts (see [27, 80, 82, 91, 162, 163, 177, 178]) with applications to life
sciences (see for example [16, 99, 148, 149, 159, 160, 179]).

• The combinatorial Laplacian introduced by Eckmann ([57]) was recovered in the last
twenty years and further studied ([80, 96, 103, 120, 138, 161]).

• Combinatorial Hodge theory has attracted a lot of interest recently (see [2, 80]).

• Barmak and Minian have revitalised the study of finite topological spaces (posets), first
studied by Alexandroff ([3]), McCord ([123,124]), Stong ([164,165]) and May ([122]) by
means of showing the particularities of some constructions of Algebraic Topology in that
context ([6–15]).

• Curry, Ghrist, and Hansen have developed a combinatorial approach to cosheaves and
sheaves on complexes ([51, 92, 93]).

We will now be focusing our attention in the combinatorial analogues of Morse Theory,
dynamics, and Lusternik-Schnirelmann type invariants on the objects considered in Diagram
(1.2).

First, Fernández, Macías, Minuz, and Vilches developed combinatorial analogues of the
Lusternik-Schnirelmann category and topological complexity for simplicial complexes ([64, 65,
68]). Tanaka developed a notion of Lusternik-Schnirelmann category for simplicial complexes
([166]) and a notion of topological complexity for posets ([169]).

When it comes to Morse theory, there have been lots of different proposals of Morse theories
in the discrete context:

• Bestvina and Brady developed a Morse Theory for cell complexes ([23]) in order to solve
a problem in Geometric Group Theory.

• Banchoff developed a Morse theory for polyhedrons taking as the starting point the notion
of curvature ([4, 5]).

• D. Fernández, Macías, Scoville, and Vilches proposed a theory oriented to control the
strong homotopy type of simplicial complexes ([67]).

• X. Fernández developed a theory to take into account n-deformations of cell complexes in
order to study the Andrews-Curtis Conjecture (see [69, 70]).

• Brown developed a Morse theory for simplicial sets and obtained a Structure Theorem in
this context ([38, 39]).
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• Forman developed a purely combinatorial Morse theory for simplicial complexes and reg-
ular CW-complexes ([73–79, 81, 82]). He proved some Structure Theorems for this theory
(see Chapter 4). He also extended this theory to allow more general critical objects (as an
analogue of Morse-Bott theory). Moreover, he proved that the Witten approach to Morse
theory can be carried out in this context. Furthermore, he also showed how to define a
Morse complex in this setting.

• Following Forman’s theory, many researchers tried to extend and to improve his work.
Chari realized that some notions of Forman’s theory could be stated in terms of the face
poset associated to the simplicial complex under study ([43]) and that Freij developed an
equivariant version of the theory ([85]).

• Very recently, Nanda, Tamaki, and Tanaka proved that it is possible to define a category
from a generalization of the flow induced by a Morse function (in the sense of Forman) on
a simplicial complex and that this category records the weak homotopy of the simplicial
complex ([132]). That is, they proved that the classifying space of the “flow category” is
homotopy equivalent to the simplicial complex.

• Kozlov ([105] and Minian ([126]) developed Morse theories for posets. Later, some of
Minian’s results were extended to the infinite case by Kukiela ([107]).

• Kozlov ([104,105]) and Skoldberg ([153]) developed Morse theories for chain complexes.
They are called algebraic Morse theories. Later, Donau developed an equivariant version
of Kozlov’s Morse theory ([54]).

• There have been some attempts by Fernández, Macías, Scoville, and Vilches ([67]), by
Knudson and Johnson ([98]), by Aaronson and Scoville ([1]), and by Tanaka ([170])
to relate combinatorial notions of Lusternik-Schnirelmann category with a combinatorial
Morse theory to obtain a Lusternik-Schnirelmann Theorem.

As we mentioned earlier, strongly related to Morse theory is Conley theory. A combinatorial
analogue of Conley theory in the setting of simplicial complexes and posets was developed by
Lipiński, Kubica, Mrozek and Wanner ([112]). This is the continuation of the work of Mrozek
on a combinatorial Conley theory for a certain family of chain complexes ([128]) and of the work
of Kaczynski, Mrozek and Wanner ([176]) on combinatorial dynamics.

Our work in context: the problems we address in this thesis and its organi-
zation
Our main objective is the study of Morse theory and related homotopical invariants, such as
the homotopic distance, Lusternik-Schnirelmann category and topological complexity, on finite
contexts.

Chapter 2 is the starting point of our study. We both recall some brief preliminaries and state
new definitions which facilitate our posterior work. We have tried to distinguish between the
results already in the literature and original ones. We may highlight some of the latter ones. In the
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first part of the chapter, we prove that the Euler-Poincaré characteristic admits a reinterpretation
for a certain class of posets in terms of the heights of the elements (Theorem 2.15). This theorem
plays an important role not only in its own but also for the latter curvature related results and
Morse inequalities. We also prove a form of Poincaré duality for a family of posets (Theorem
2.79). In particular, the statement holds for finite closed homology manifolds (see Definition
2.76).

Another achievement of the chapter is to formulate and explain Diagram (1.3) (see Subsection
2.2.7), which relates different families of posets and cell complexes.

T0-FTop ∼= Pos

T-wPos CPos D-wPos h-rCW

haPos h-rPos rCW

HaPos SimC

FChMan ChMan

K
X

X

K

X

(1.3)

The second part of the chapter is devoted to the study of curvature. We begin with the
definition of a combinatorial Laplacian and the statement of a combinatorial Hodge theorem for
posets (Theorem 2.84). This is used to develop the relation between homology of posets and
their curvature. In particular, we prove that if the Ricci curvature is positive at every point, then
the homology in dimension one vanishes (Corollary 2.92). Finally, we state a Gauss-Bonnet
theorem (Theorem 2.94).

In Chapter 3 we begin the study of Morse theory on posets. We define the notion of tame
Morse function (Definition 3.13), which is an improvement of the Morse functions, in the sense
that facilitates the derivation of some results.

We also prove a classical theorem of calculus in this context stating that global minimums for
Morse functions are critical points (Theorem 3.34). We then relate combinatorial vector fields or
matchings (dynamics) with Morse functions. First, we show how to obtain gradient matchings
from Morse functions (Theorem 3.42). Then, we prove that it is possible to go the opposite way
and integrate grandient matchings to obtain tame Morse functions (Theorem 3.47).

After that, we prove that Morse theory may be seen as a theory of nice filtrations for a space
(Theorem 3.51). We also show that for this nice theory of filtration of a space, we may restrict
our attention to tame Morse functions instead of just Morse ones (Theorem 3.52).
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Finally, we prove a result about the cancellation of critical points (Theorem 3.53), which is
identical to the case in Discrete Morse theory for cell complexes.

Chapter 4 is devoted to studying the Structure Theorems of Morse theory in this context.
First, we give a negative answer to the following two conjectures:

Conjecture 4.6 Let X be well-behaved poset and let f : X → R be a well-behaved Morse
function on X . Then, X is homotopy equivalent to a poset with exactly one element of height p
for each critical point of index p.

Conjecture 4.8 Let X be well-behaved poset and let f : X → R be a well-behaved Morse
function on X . Then, X is homotopy equivalent to a CW-complex with exactly one one p-cell
for each critical point of index p.

This leads us to looking for weaker Structure Theorems. We prove two invariance results
(Theorems 4.19 and 4.21) and a collapsing theorem (Theorem 4.25). We also prove an adjunction
theorem (Theorem 4.23).

As a consequence of our results, we prove several theorems. First, we improve Forman’s
Structure Theorem by extending it to more general cell complexes (Theorem 4.30). Furthermore,
we prove a strengthening of the Morse inequalities in this context (Theorem 4.37).

In Chapter 5 we study more general dynamics by developing a Morse-Bott theory for posets.
We prove the Structure Theorems in this context (Theorems 5.12 and 5.13). As a consequence,
we obtain several versions of the Morse-Bott inequalities (see for example Theorem 5.23). To
finish the chapter, we introduce a new notion of Lusternik-Schnirelmann category and we prove
a Lusternik-Schnirelmann category for Morse-Bott functions in this context (Theorem 5.33).

Moreover, as a consequence of Remarks 3.18 and 3.31, Theorems 3.42, 3.47 and 3.52, all
Morse theory and Morse-Bott theory we have developed so far, apply to the three contexts: the
algebraic setting on Lefschetz-Kubica-Mrozek complexes, the discrete setting on h-regular CW-
complexes and the poset context.

Chapter 6 addresses the extension of Morse(-Bott) theory to loop-free categories. The pur-
pose of the chapter is to move upwards in Diagram (1.4).

Small Cat Simplicial sets

Loop-free Cat Regular ∆-Complexes

Posets Simplicial Complexes

Chain Complexes Manifolds

sd

N

sd

N

X

K

X

(1.4)
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We prove a Structure Theorem in this setting (Theorem 6.31). As a consequence, we prove
the Strong and Weak Morse-Bott inequalities (Theorems 6.34 and 6.35).

Finally, Chapter 7 is devoted to the study of two notions of homotopic distance between
functors and weak homotopic distance between functors, which are the natural counterpart to the
homotopic distance between maps in the discrete setting. We show that these notions generalize
Tanaka’s definition of Lusternik-Schnirelmann category for small categories ([170]) (see Propo-
sition 7.15). Later we prove that it is possible to define the categorical complexity of a small
category by means of our notion of homotopic distance between functors (Theorem 7.17). Then
we prove several properties. For example, we compare different notions of homotopic distance in
several contexts (Proposition 7.36). Finally, we restrict our attention to the setting of posets and
prove several properties. We mention two of them. One relating different notions of homotopic
distance in the setting of posets (Theorem 7.48). And the second one showing that this notions
approximate their continuous counterparts (Theorem 7.51).



Part I

Combinatorial Algebraic Topology and
Morse Theory on posets





Chapter 2
Posets and cellular structures

In order to develop topological techniques for posets, we need first to endow them with a natural
topology. That is the beginning of this chapter. We both recall some preliminaries from the
literature and introduce novel notions, trying to make clear which ones are original. Moreover,
we prove classical results of Algebraic Topology on manifolds for this context. Furthermore, we
establish relations between different classes of posets (some new and others previously defined
in the literature). We summarize them in Diagram (2.1):

T0-FTop ∼= Pos

T-wPos CPos D-wPos h-rCW

haPos h-rPos rCW

HaPos SimC

FChMan ChMan

K
X

X

K

X

(2.1)

2.1 Topology of Posets

2.1.1 Topologizing Posets
Our first goal is to endow partially ordered sets with topologies. We reproduce a construction
due to Alexandroff ([3]) and we refer the reader to [6, Sections 1.1 and 1.2] for the proofs.

Recall that a topological space (X, τ) is T0 if for any two distinct points x, y ∈ X , there is
either an open subset U containing x but not y, or an open subset V containing y but not x.

Let X be a finite set endowed with a partial order relation, that is, X is a finite poset. Then,
X is a T0 finite topological space with basis the sets {Ux}x∈X where

Ux = {w : w ≤ x}.

13
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We may refer to this basis as the minimal basis of X .
Conversely, let X be a finite T0 topological space. For each x ∈ X , we denote by Ux the

intersection of all the open sets that contain x. There is a partial order on the set X by declaring:
x ≤ y if and only if Ux ⊂ Uy.

Moreover, these correspondences are mutually inverses of each other. Furthermore, letX and
Y be both finite T0 topological spaces and posets (with the associated structures), then a set map
f : X → Y is continuous if and only if it is order preserving, that is, if x ≤ y then f(x) ≤ f(y).

To sum up, in modern language we may state that there is an isomorphism of categories
between the category of finite posets with order preserving maps and the category of finite T0

topological spaces and continuous maps.
Additionally, homotopies can be studied combinatorially. Let X and Y be two finite posets.

Then we can endow the finite set Y X with the point-wise order: f ≤ g if f(x) ≤ g(x) for every
x ∈ X .

Proposition 2.1. Let f, g : X → Y be two order-preserving maps between posets. Then f and g
are homotopic, f ' g if and only if there is a sequence of order-preserving maps

f = f0 ≤ f1 ≥ f2 ≤ · · · ≤ fn = g.

Corollary 2.2. Let X be a finite poset with a maximum or a minimum. Then, X is contractible.

Proof. Suppose that X has a maximum since the other case is analogous. If X has a maximum
x′ ∈ X , then the identity map of X is less than or equal to the constant map at x′.

2.1.2 Homology of posets
Homology for posets is a widely studied topic (see for example: [41, 45, 52, 55, 90, 136]). We
shall consider a special kind of posets called cellular. These are of interest since a “cellular
homology theory” can be defined on them. They were first introduced by Farmer ([63]) and then
recovered by Minian ([126]) and Cianci and Ottina ([45]). Farmer’s definition is more general
while Minian’s one is more adequate for our purposes. That is why we present the latter one.

We need to introduce some terminology.

Definition 2.3. A chain in a poset X is a subset C ⊆ X such that if x, y ∈ C, then either x ≤ y
or y ≤ x.

Definition 2.4. The height of a poset X is the maximum length of the chains in X , where the
chain x0 < x1 < · · · < xn has length n. The height h(x) of an element x ∈ X is the height of
Ux = {w ∈ X : w ≤ x} with the induced order.

Definition 2.5. A poset X is said to be homogeneous of degree n, deg(X) = n, if all maximal
chains in X have length n. A poset is graded if Ux is homogeneous for every x ∈ X . In that
case, the degree of x, denoted by deg(x), is its height. We will denote both the height and degree
of an element by superscripts, for example x(p).
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Let X be a finite poset, x, y ∈ X . If x < y and there is no z ∈ X such that x < z < y, we
write x ≺ y.

For x ∈ X we define Ûx := {w ∈ X : w < x} as well as Fx := {y ∈ X : y ≥ x} and
F̂x := {y ∈ X : y > x}.

LetX be a poset. We denote byH∗(X) the singular homology ofX . Unless stated otherwise,
homology will be considered with coefficients in a principal ideal domain.

Definition 2.6 ([126]). The poset X is cellular if it is graded and for every x ∈ X , Ûx has the
homology of a (p− 1)-sphere, Sp−1, where p is the degree of x.

Remark 2.7. In Definition 2.6, by the homology of a (p−1)-sphere, we mean that Ûx has reduced
trivial homology in dimensions different from p − 1 and has Hp−1(Ux) isomorphic to the free
module with one generator over the coefficient ring.

We recall the construction due to Farmer ([63]) and Minian ([126]) of a “cellular homology
theory” for cellular posets.

Definition 2.8. Given a finite graded poset X , we define X(p) as the subposet of elements of
degree less than or equal to p, i.e.

X(p) = {x ∈ X : deg(x) ≤ p}.
Given the cellular poset X , there is a natural filtration by the degree

X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) = X

which allows to define a cellular chain complex (C∗, d) as follows:

Cp(X) = Hp(X
(p), X(p−1)) =

⊕
deg(x)=p

Hp−1(Ûx),

which is a free abelian group with one generator for each element of X of degree p. The differ-
ential d : Cp(X)→ Cp−1(X) is defined as the composition

Hp(X
(p), X(p−1)) Hp−1(X(p−1)) Hp−1(X(p−1), X(p−2))∂ j

where j is the canonical map induced by the inclusion and ∂ is the conecting homomorphism
coming from the long exact sequence associated to the pair (X(p), X(p−1)). It can be shown
(see [126]) that the differential can be written as

d(x) =
∑
w≺x

ε(x,w)w

where the incidence number ε(x,w) is the degree of the map

∂̃ : Z = Hp−1(Ûx)→ Hp−2(Ûw) = Z
(see [126]).

Theorem 2.9 ([126, Theorem 3.7]). Let X be a cellular poset. Then

H∗(C∗(X)) ∼= H∗(X).

Remark 2.10. A new approach for studying homology of posets has been developed more re-
cently by Cianci and Ottina ([45]). They weakened the hypothesis needed in Theorem 2.9.
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2.1.3 Homologically admissible posets
We present the notion of homologically admissible posets recently introduced by Minian ([126]).
Recall that the Hasse diagram of a poset X is a graph whose vertices are the points of X and
whose edges are the ordered pairs (x, y) such that x ≺ y. We denote byH(X) the Hasse diagram
associated to the poset X .

Definition 2.11. Let X be a poset. An edge (w, x) ∈ H(X) is homologically admissible if
Ûx − {w} is acyclic. A poset is homologically admissible if all its edges are homologically
admissible.

The importance of homologically admissible posets, lies, partially, in the following result.

Lemma 2.12 ([126, Remark 3.9]). If (w, x) is a homologically admissible edge of a cellular
poset X , then the incidence number ε(x,w) is 1 or −1.

Lemma 2.13 ([126]). Let X be a poset. If X is homologically admissible, then it is cellular.

2.1.4 Euler-Poincaré Characteristic
We introduce the Euler-Poincaré characteristic in this setting since we will use it later on. Recall
that for a topological space X , its Euler-Poincaré characteristic is defined as:

χ(X) =
∑
n

(−1)nrankHn(X)

if the sum converges.
We introduce an alternative, and more suited definition for computations. This definition is

also introduced by Bloch ([27]) in a different context in order to prove a Gauss-Bonnet Theorem
in the setting of posets.

Definition 2.14. Let X be a finite graded poset of degree n. Denote by X(=p) the elements of
degree p in X . The graded Euler-Poincaré characteristic of X is defined as the number:

χg(X) =
n∑
p=0

(−1)p#X(=p).

Observe that as a consequence of Minian’s result (Theorem 2.9), the standard homological
argument (see for example [95, p. 146-147]) proves:

Theorem 2.15. Let X be a finite cellular poset. Then,

χg(X) = χ(X). (2.2)

We provide an elementary combinatorial proof. We will show this by induction both on the
degree of the poset and the number of elements in each degree. We assume that all spaces are
connected for simplicity. If not, we would consider each path-component independently. We
start with an immediate lemma.
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Lemma 2.16. Assume thatX is a finite cellular poset such that deg(X) = 0, then Equation (2.2)
holds for X .

Lemma 2.17. Assume thatX is a finite cellular poset such that deg(X) = p+1, X(=p+1) = {x}
and Equation (2.2) holds for X(p), then Equation (2.2) holds for X(p+1).

Proof. First, consider the open subsets: U = X(p) and V = Ux and apply the Inclusion-
Exclusion Principle for the Euler-Poincaré characteristic:

χ(X) = χ(U ∪ V ) = χ(U) + χ(V )− χ(U ∩ V )

= χg(U) + χ(Ux)− χ(Ûx)

Second, notice that χg(X) = χg(U) + (−1)deg(x). There are two cases to consider depending on
the parity of deg(x). In both of them

(−1)deg(x) = χ(Ux)− χ(Ûx) = 1− χ(Sdeg(x)−1).

We state a useful observation as a lemma:

Lemma 2.18. The graded Euler-Poincaré characteristic satisfies the Inclusion-Exclusion Prin-
ciple for open sets, that is: if U and V are open sets in X , then χg(U ∪ V ) = χg(U) + χg(V )−
χg(U ∩ V ).

Lemma 2.19. Assume that X is a finite cellular poset such that deg(X) = k, #X(=p) ≥ 2 and
Equation (2.2) holds for X(p) − {x} where deg(x) = p. Then Equation (2.2) holds for X(p).

Proof. Let us denote by {x1, . . . , xn = x} the elements of degree k of X . Consider the open
subsets:

U = X(p−1) ∪ (∪n−1
i=1 Uxi) = X(p) − {x} and V = Uxn .

Applying the Inclusion-Exclusion Principle for the Euler-Poincaré characteristic we obtain:

χ(X) = χ(U ∪ V ) = χ(U) + χ(V )− χ(U ∩ V )

= χ(∪n−1
i=1 Uxi) + χ(Ux)− χ(∪n−1

i=1 Uxi ∩ Ux)
= χ(∪n−1

i=1 Uxi) + χ(Ux)− χ(∪n−1
i=1 Ûxi ∩ Ûx)

= χg(∪n−1
i=1 Uxi) + χg(Ux)− χg(∪n−1

i=1 Ûxi ∩ Ûx) (Lemma 2.17)
= χg(U ∪ V ) (Lemma 2.18)

Combining the previous lemmas we obtain the desired result.

Remark 2.20. The good behavior of the Euler-Poincaré characteristic in the setting of finite posets
suggests the study of the Lefschetz number. This was initiated by Bilski in [24].



18 2 Posets and cellular structures

2.1.5 (Weakly) Homotopically Admissible Posets
We recall the notion of homotopically admissible posets which were also introduced by Minian
([126]). They are a homotopical analogue to the homologically admissible posets.

Definition 2.21. Let X be a poset. An edge (w, x) ∈ H(X) is weakly homotopically admis-
sible if Ûx − {w} is weakly contractible (i.e. has trivial homotopy groups). A poset is weakly
homotopically admissible if all its edges are weakly homotopically admissible.

We introduce an original weaker notion which has the advantage of being completely deter-
mined with a computer (see [6, Section 2.4]).

Definition 2.22. Let X be a poset. An edge (w, x) ∈ H(X) is 1-weakly homotopically admis-
sible if Ûx − {w} is simply connected. A poset is 1-weakly homotopically admissible if all its
edges are 1-weakly homotopically admissible.

Remark 2.23. Observe that by Hurewicz theorem (see [95, Theorem 4.32]), a homologically
admissible and 1-weakly homotopically admissible space is weakly homotopically admissible.

We also introduce a stronger notion than weakly homotopically admissible:

Definition 2.24. Let X be a poset. An edge (w, x) ∈ H(X) is homotopically admissible if
Ûx − {w} is contractible. A poset is homotopically admissible if all its edges are homotopically
admissible.

2.1.6 Two-wide and down-wide posets
We define two classes of posets which will play a key role in the later development of Morse
theory. Moreover, we relate them to homologically admissible posets.

The first notion, the one of two-wide posets, was already present, to some extent, despite
being less general, in the work of Björner, Las Vergnas, Sturmfels, White and Ziegler (see [25,
Corollary 4.7.12]). Later, and independently, it was also used by Bloch ([28]). We developed it
independently.

Definition 2.25. A poset X is two-wide if for any x, z, y ∈ X such that x ≺ z ≺ y, there is some
z′ ∈ X such that z′ 6= z and x ≺ z′ ≺ y.

Remark 2.26. Let X be a finite poset. If X is two-wide, then for any pair of elements x, y ∈ X
such that x < y and x ⊀ y, we have #{z : x ≤ z ≤ y} ≥ 4.

We now introduce the notion of down-poset, which is another property that the family of
posets we are interested in satisfies.

Definition 2.27. Given a poset X and x ∈ X , we define the down-incidence number of x as the
cardinality of the set ∂x = {y ∈ X : y ≺ x}. The poset X is down-wide if #∂x 6= 1 for every x
in X .
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We relate the properties of being homologically admissible with those of being two-wide and
down-wide. We will prove that homologically admissible posets are down-wide and two-wide.
In order to do so, we will use cellular homology with coefficients in the field with two elements,
which we denote by Z2. Observe that for Z2 coefficients the differential d : Cp(X) → Cp−1(X)
simplifies to the formula: d(x) =

∑
w≺xw.

Proposition 2.28. Let X be a poset. If X is homologically admissible, then it is down-wide.

Proof. For any x(1) and w ≺ x, since Ûx − {w} is acyclic, then Ûx − {w} is not empty, so there
exists w′ 6= w such that w′ ≺ x. For any x(p) with p > 1, suppose that there is a unique w ∈ X
such that w ≺ x. Using cellular homology Z2 coefficients:

d2(x) = d(w) =
∑
q≺w

q 6= 0

which is a contradiction.

Proposition 2.29. Let X be a poset. If X is homologically admissible, then it is two-wide.

Proof. Suppose there are elements x ≺ z ≺ y. We have to show that there is some z′ 6= z such
that x ≺ z′ ≺ y. Using cellular homology with Z2 coefficients:

dy = z +
∑

z̃ 6=z, z̃≺y

z̃

and:
dz = x+

∑
x̃ 6=x, x̃≺z

x̃.

Since d2 = 0:
0 = d2y = dz +

∑
z̃ 6=z, z̃≺y

dz̃ = x+
∑

x̃ 6=x, x̃≺z

x̃+
∑

z̃ 6=z, z̃≺y

dz̃.

Since this equation holds, there must be some z′ 6= z such that

dz′ = x+
∑

x̃ 6=x, x̃≺z′
x̃,

that is, there is some z′ 6= z such that x ≺ z′ ≺ y.

2.1.7 Local to global isomorphism theorems
Let X and Y be topological spaces and let f : X → Y be a continuous map. It induces maps in
homology and between homotopy groups. Now we recall some results which provide sufficient
conditions on the local behavior of the induced maps to obtain conclusions about their global
properties. This kind of results have been widely studied in the literature (see for example [7,20,
21, 26, 44, 143, 154, 174]). We begin with a definition taken from [6] to set the notion of "local"
we will use.
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Definition 2.30. Let X be a set, and suppose B is a collection of subsets of X . Then B is a
basis-like covering of X if it satisfies the following two conditions:

1.
⋃
B∈B B = X .

2. If B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists an element B3 ∈ B such that x ∈ B3 ⊆
B1 ∩B2.

Theorem 2.31 (McCord, [124, Theorem 6]). Let f : X → Y be a continuous map between
topological spaces. Suppose there is a basis like open cover U of Y such that for every U ∈ U ,
the restriction

f|f−1(U) : f−1(U)→ U

is a weak homotopy equivalence. Then f : X → Y is a weak homotopy equivalence.

Since for finite topological spaces the open sets of the minimal basis are contractible (Corol-
lary 2.2), we obtain the following consequence in the context of finite posets:

Theorem 2.32 (McCord-Quillen). Let f : X → Y be a continuous map between posets. If
for each y ∈ Y , f−1(Uy) is weakly contractible (i.e., it has trivial homotopy groups), then
f : X → Y is a weak homotopy equivalence.

Remark 2.33. In Proposition 2.32, the consequence holds as well with the hypothesis: for each
y ∈ Y , f−1(Fy) is weakly contractible.

There is a homological version of this result, which we now state:

Theorem 2.34 (Homological McCord-Quillen, [15, Theorem 2.1]). Let f : X → Y be a con-
tinuous map between posets. If for each y ∈ Y , f−1(Uy) is acyclic, then f : X → Y induces
isomorphisms in homology.

Remark 2.35. In Theorem 2.34, the consequence holds as well with the hypothesis: for each
y ∈ Y , f−1(Fy) is acyclic.

2.1.8 Combinatorial homotopy and homology on posets
The strong connection between posets and T0 spaces suggests that the combinatorics of the poset
should control, to some extent, its topology. Now we address the study of the homotopy of T0

spaces. In order to do so, we introduce some new terminology. We follow the works of Stong
([164]), Barmak and Minian ([10], [6]) and Osaki ([137]). The idea is to detect, for an arbitrary
poset X , a special class of points which can be removed without changing the strong, simple,
weak homotopy type or homology of X .

Definition 2.36. A point x in a finite poset X is a down strong homotopic removable point if the
set Ûx = Ux−{x} has a maximum. Dually, x ∈ X is an up strong homotopic removable point if
the set F̂ = Fx − {x} has a minimum. In any of these cases we say that x is a strong homotopic
removable point of X .
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Remark 2.37. Other authors ([6, 122, 164]) refer to strong homotopic removable points as beat
points or linear and colinear points.

Proposition 2.38 ( [6, Proposition 1.3.4]). Let X be a finite poset and let x ∈ X be a strong
homotopic removable point. Then, X − {x} is a strong deformation retract of X .

Definition 2.39. A point x in a finite poset X is a down simple homotopic removable point if
Ûx = Ux − {x} is contractible. Dually, x ∈ X is an up simple homotopic removable point
if F̂ = Fx − {x} is contractible. In any of these cases we say that x is a simple homotopic
removable point of X .

Definition 2.40. A point x in a finite poset X is a γ-point if Ĉx = (Ux ∪Fx)−{x} is homotopi-
cally trivial.

We introduce now two original notions of removable points:

Definition 2.41. A point x in a finite poset X is a down weak homotopic removable point if
Ûx = Ux − {x} is weakly contractible (i.e., it has trivial homotopy groups). Dually, x ∈ X is
an up weak homotopic removable point if F̂ = Fx − {x} is weakly contractible. In any of these
cases we say that x is a weak homotopic removable point of X .

Proposition 2.42. Let X be a finite poset and let x ∈ X be a weak homotopic removable point.
Then, i : X − {x} ↪→ X is a weak homotopy equivalence.

Proof. Apply Proposition 2.32.

Definition 2.43. A point x in a finite poset X is a down homological removable point if Ûx =
Ux − {x} is acyclic. Dually, x ∈ X is an up homological removable point if F̂ = Fx − {x} is
acyclic. In any of these cases we say that x is a homological removable point of X .

Proposition 2.44. Let X be a finite poset and let x ∈ X be a homological removable point.
Then, i : X − {x} ↪→ X induces an isomorphism in homology.

Proof. Apply Theorem 2.34.

We introduce some notation.

Definition 2.45. Let X be a finite poset and x ∈ X a strong homotopic removable point. We say

that there is an elementary strong collapse fromX toX−{x} and we denote it byX
eS

↘ X−{x}.
Conversely, we say that there is an elementary strong expansion from X − {x} to X and we

denote it by X − {x}
eS

↗ X . If there is a sequence of posets X0, . . . , Xn such that for each i,

Xi

eS

↘ Xi+1, then we say that X0 strongly collapses to Xn and we write X0

S

↘ Xn. Conversely,

we say that Xn strongly expands to X0, denoted X0

S

↗ Xn. We say that X0 and Xn are strongly

homotopy equivalent if there is a sequence of posetsX0, . . . , Xn such that for each i, Xi

eS

↘ Xi+1

or Xi

eS

↗ Xi+1.
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We define the elementary simple (respectively weak homotopic, γ and homological) col-
lapses in the case that x is a simple homotopic removable point (respectively a weak homotopic
removable point, a γ-point and a homological removable point) as expected, and we denote them

by X
es

↘ X − {x}, X
ew

↘ X − {x}, X
eγ

↘ X − {x} and X
eh

↘ X − {x}, respectively. We denote
the associated elementary expansions, collapses and expansions as expected.

Proposition 2.46. Let X be a finite poset and x ∈ X .

(1) If x ∈ X a strong homotopic removable point, then it is a simple homotopic removable
point.

(2) If x ∈ X a simple homotopic removable point, then it is a weak homotopic removable
point.

(3) If x ∈ X a weak homotopic removable point, then it is a homological removable point and
a γ-point.

Proof. First, (1) follows from Corollary 2.2. Second, (2) is a consequence of the homotopy
invariance of homotopy groups. Third, (3) follows from Hurewicz Theorem (see for example [95,
Theorem 4.37]) and from [6, Proposition 6.2.12].

2.2 Cellular structures and their relation to posets
The reader may see [6, 10, 72, 87, 95, 105, 122] for a detailed exposition and examples of the non
original notions we present.

2.2.1 Abstract Simplicial Complexes
Definition 2.47. A finite abstract simplicial complex K consists of a pair of sets:

1. a finite set of objects, V (K), called vertices,

2. a (finite) set, S(K), of (finite) non-empty subsets of V (K), called simplices,

satisfying the following conditions:

1. if τ ⊂ V (K) is a simplex and σ ⊂ τ , σ 6= ∅, then σ is also a simplex;

2. for every vertex v ∈ V (K), the singleton {v} is a simplex.

From now on, by abstract simplicial complex we mean finite abstract simplicial complex.

Remark 2.48. A subset of the vertices σ ⊂ V (K) is a simplex if and only if all its subsets are
elements of S(K).

Example 2.49. Consider the abstract simplicial complex K = (V (K), S(K)) where V (K) =
{a, b, c} and S(K) = {{a}, {b}, {c}, {a, b}, {b, c}}.
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From now on we may omit the vertex set of the simplicial complexes and just write the set of
simplices.

Example 2.50 ( [105, Definition 9.1]). Consider a finite graph G = (V,E) where we allow
cycles. We can associate an abstract simplicial complex K = (V (K), S(K)) to G as follows:

1. The vertices of K are the vertices of G.

2. The n-simplices for n ≥ 1 are (n + 1)-tuples (v0, . . . , vn), of vertices such that for each
0 ≤ i < j ≤ n, there is an edge in G between vi and vj .

Given a simplicial complex K and two of its simplices: τ and σ, if σ ⊂ τ , then σ is said to
be a face of τ . If σ ∈ S(K) has p+ 1 elements it is said to be a p-simplex. The set of p-simplices
of K is denoted by K(=p). The dimension of K is the largest p such that K(=p) is non-empty.

Definition 2.51. Given two simplicial complexes K and L, we say that K is a subcomplex of L
if:

1. V (K) ⊂ V (L)

2. S(K) ⊂ S(L).

We say that K is a full subcomplex if K is a subcomplex and whenever all the vertices of a
simplex in L are in V (K), then the simplex is in K.

Definition 2.52. Given two simplicial complexes K and L, a simplicial map between them is a
map f : V (K)→ V (L) such that whenever σ ⊆ V (K) belongs to S(K), f(σ) belongs to S(L).

2.2.2 Abstract Ordered Simplicial Complexes
Definition 2.53. An ordering of an abstract simplicial complexK is a partial order on the vertices
of K, V (K), which restricts to a total order on each simplex, that is, on each element of S(K).
An ordered simplicial complex is an abstract simplicial complex with an ordering. Ordered
simplicial complexes will be denoted the same way as abstract simplicial complexes.

Definition 2.54. Let K and L be ordered simplicial complexes. An ordered simplicial map
f : K → L is a simplicial map f : K → L such that f : V (K)→ V (L) is an ordering preserving
map between the posets of vertices.

Remark 2.55. The definition of an ordered abstract simplicial complex suggests a relation be-
tween posets and simplicial complexes. We will study this later on.

Example 2.56. Coming back to Example 2.50, we can now keep track of the directions in the
graph by using ordered simplicial complexes. In this way, we do not loose information. Consider
a finite directed graph G = (V,E) where we allow cycles but we do not allow that given any
pair of elements x, y, we have both edges (x, y) and (y, x). We can associate an ordered abstract
simplicial complex K = (V (K), S(K)) to G as follows:
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1. The vertices of K are the vertices of G.

2. The n-simplices for n ≥ 1 are (n + 1)-tuples (v0, . . . , vn), of vertices such that for each
0 ≤ i < j ≤ n, there is an edge in G directed from vi to vj .

This procedure has been used in order to study Neuroscience by means of Topology (see for
instance [146]).

2.2.3 Geometric Simplicial Complexes
Definition 2.57. Given n+1 points v0, . . . , vn in general position inRm. We define the geometric
n-simplex σ generated by v0, v1, . . . , vn to be the set:

σ = [v0, . . . , vn] = {t0v0 + · · ·+ tnvn ∈ Rm :
∑
i

ti = 1 and ti ≥ 0 ∀i}.

If the n + 1 points v0, . . . , vn are the endpoints of the standard unit basis of Rn+1, then the
resulting simplex is called the standard geometric n-simplex.

Let σ be a geometric n-simplex generated by v0, v1, . . . , vn. A face of σ is a geometric
k-simplex generated by a subset of cardinality k + 1 of {v0, v1, . . . , vn}.

Definition 2.58. A geometric finite simplicial complex is a finite collection K of geometric
simplices in an Euclidean space Rn, satisfying:

1. If σ ∈ K, then all the faces of σ are in K.

2. σ, β ∈ K ⇒ σ ∩ β ∈ K. This means that the intersection of each pair of simplices in K is
the empty set or a common face to both simplices.

If we endow K with the subspace topology inherited from Rn, then we obtain a topological
space which we denote by |K|. Any topological space that is homeomorphic to |K| is called the
geometric realization of K.

Let K and L be two geometric simplicial complexes. A simplicial map f : K → L is a
set map between the set of vertices of K and the set of vertices of L which takes simplices to
simplices. This map f : K → L induces a continuous map between the geometric realizations
|f | : |K| → |L| as follows:

f(
∑

vi∈V (K)

ti · vi) =
∑

vi∈V (K)

ti · f(vi).

Observe that for any abstract simplicial complex K, we can associate a geometric simplicial
complex in RV (K) which is the union of standard simplices in RV (K) for all σ ∈ K. In this way,
we can associate a topological space to any finite abstract simplicial complex. Conversely, for any
geometric simplicial complex, we can define an abstract simplicial complex by just considering
the collection of simplices and vertices. As a consequence of this observation, we may abuse of
notation and refer to topological properties of a simplicial complex when what we really mean
are the topological properties of its geometric realization.
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2.2.4 Remarkable classes of CW-complexes
We begin with some notation. We denote the unitary closed n-disk by Dn and its boundary, the
n − 1-sphere, by Sn−1. Recall that a finite CW-complex is a topological space X constructed
inductively by gluing cells. That is, we begin with a finite discrete set of points, X(0). Then, for
each n ≥ 1, X(n) is constructed from X(n−1) as follows. Let

{ϕα : Sn−1
α → X(n−1)}α

be a finite family of continuous maps, which we call attaching or gluing maps. Then X(n) is
the quotient space of the disjoint union X(n−1) tα Dnα under the identifications x ∼ ϕα(s) for
s ∈ ∂Dnα = Sn−1

α . We stop this process at a finite N which we call the dimension of the CW-
complex and X = XN . There are maps φα : Dnα → X defined as the composition

Dnα ↪→ X(n) ∪α Dnα → Xn ↪→ X

which we refer to as characteristic maps. The image of the characteristic maps φα are the closed
cells ēnα of the CW-complex.

A subcomplex of a CW-complex X is a closed subspace A ⊂ X that is a union of closed
cells of X . For each n, X(n) is a subcomplex of X and is called the n-skeleton.

Let X and Y be two finite CW-complexes, a continuous map f : X → Y is cellular if
f(X(n)) ⊆ Y (n) for every n ∈ N.

We present two remarkable classes of CW-complexes which will play an important role in
this work. Both notions are related to the flexibility we allow for the attaching maps. We begin
with the classical notion of regular CW-complex.

Definition 2.59. A CW-complex X is regular if the attaching maps are homeomorphisms onto
their images.

Example 2.60. The geometric realization of simplicial complexes are examples of regular CW-
complexes.

Recently, Barmak and Minian ([10]) introduced the more flexible class of h-regular CW-
complex.

Definition 2.61. A CW-complexX is h-regular if the attaching maps are homotopy equivalences
onto their images.

2.2.5 Alexandroff-McCord functors and weak homotopy equivalences
We begin by quoting a result from Barmak’s thesis:

Theorem 2.62 ([6, Corollary 2.3.4]). LetX be a connected and non contractible T1-space. Then
X does not have the same homotopy type as any finite space.
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Due to Theorem 4.10, given a T1-space, such as a manifold, we no longer can expect to
carry all its homotopical information in an associated finite space (poset), at least by means
of a homotopy equivalence. Therefore, this motivates us to try to keep as much topological
information as possible by a weaker notion than homotopy equivalence.

We begin by recalling a construction due to Alexandroff ([3]).

Definition 2.63. Let X be a finite poset. We define the (ordered) simplicial complex K(X),
called the order complex of X , as the simplicial complex whose simplices are the nonempty
chains of X . Furthermore, given a continuous map f : X → Y between finite posets, we define
a simplicial map K(f) : K(X)→ K(Y ) given by K(f)(x) = f(x).

Definition 2.64. Let K be a finite h-regular CW-complex. We define the finite poset X (K),
called the face poset of K, as the poset of of cells of K ordered by inclusion. Given a cellular
map φ : K → L we define a continuous map X (φ) : X (K) → X (L) given by X (φ)(σ) = φ(σ)
for each simplex σ of K.

Recall that given a finite poset X , a point x in the geometric realization of K(X), |K(X)|,
is a convex combination x = t1x1 + t2x2 + · · · + tnxn where

∑
ti = 1, ti > 0 for all i and

x1 < x2 < . . . < xn is a chain in X . We define the support of x as supp(x) = {x1, . . . , xn}.

Definition 2.65. Let X be a finite poset. We define the K-McCord map µX : |K(X)| → X by
µX(x) = min(supp(x)).

Let K be a finite simplicial complex. We denote its barycentric subdivision sd(K) as
the simplicial complex KX (K). For a simplicial map φ : K → L we define a simplicial
map sd(φ) = KX (φ). Denote by sK : |sd(K)| → |K| the linear homeomorphism defined by
sK(σ) = b(σ) where b(σ) denotes the barycenter of σ. Analogously, for a finite poset X , we
define its first barycentric subdivision sd(X), as XK(X).

Definition 2.66. Let K be a finite simplicial complex, we define the X -McCord map µK =
µX (X)s−1

K : |K| → X (K).

Combining [6, Theorem 1.4.6, Remark 1.4.7, Corollary 1.4.8, Corollary 1.4.9, Theorem
1.4.12, Proposition 1.4.13, Corollary 1.4.15] we have:

Theorem 2.67. (1) The K-McCord map µX is a weak homotopy equivalence for every finite
poset X .

(2) If f : X → Y is a continuous map between finite posets, the following diagram commutes:

|K(X)| |K(Y )|

X Y.

µX

|K(f)|

µY

f

(3) Let f : X → Y be a map between finite T0-spaces. Then f is a weak homotopy equivalence
if and only if |K(f)| : |K(X)| → |K(Y )| is a homotopy equivalence.
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(4) The X -McCord map µK is a weak homotopy equivalence for every finite simplicial com-
plex K.

(5) Let φ : K → L be a simplicial map between finite simplicial complexes. Then the following
diagram commutes up to homotopy:

|K| |L|

X (K) X (L).

µK

|φ|

µL

X (φ)

(6) Let φ : K → L be a simplicial map between finite simplicial complexes. Then |φ| is a ho-
motopy equivalence if and only if X (φ) : X (K)→ X (L) is a weak homotopy equivalence.

Part (4) of Theorem 2.67 was generalized to the context of h-regular CW-complexes by Bar-
mak and Minian (see [10, Theorem 4.7]):

Theorem 2.68. Let K be a finite h-regular CW-complex. Then, there exists a map fK : K →
X (K) (see [10, Theorem 4.7] for the definition) which is a weak homotopy equivalence.

Remark 2.69. Since weak homotopy equivalences induce isomorphisms in homology and co-
homology ([95, Proposition 4.21]), Theorem 2.67 provides an alternative approach to define
homology for posets. That is, one may define the homology of a poset X as the homology of
the associated simplicial complex K(X). This is called poset homology and is dealt with, for
example, in [175].

2.2.6 Finite models and manifolds
Definition 2.70. We say that the poset X is a finite model for the topological space Y if the
geometric realization |K(X)| of the simplicial complex K(X) is homotopy equivalent to Y .

Barmak and Minian introduced in [10] a class of posets which model the h-regular CW-
complexes.

Definition 2.71. A finite poset X is called an h-regular poset if for every x ∈ X , the set Ûx is a
finite model of Sn−1, where n is the height of x.

As a consequence of the definition of h-regular posets and cellular posets, it follows that:

Proposition 2.72. Let X be a cellular or an h-regular finite poset. Then, X does not have
down homological removable points or down weak homotopical removable points, respectively.
Moreover, cellular and a h-regular finite posets are down-wide.

Proof. First, by definition of cellular and h-regular finite posets, for x ∈ X , Ûx is not acyclic
or weak homotopically trivial, respectively. As a consequence, if x ∈ X is of height greater
than or equal to one, then Ûx is not contractible, so it can not have a maximum, that is, x is
down-wide.
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For a given poset X , the dual poset Xop has the same elements as X but the arrows are
reversed, that is, x ≤ y in X if and only if y ≤ x in Xop. Due to the correspondence between
posets and finite spaces, this also defines the notion of dual space.

Observe that K(X) is the same simplicial complex as K(Xop). Since weak homotopy equiv-
alences induce isomorphisms in homology and cohomology ([95, Proposition 4.21]), there is a
strong relation between the (co)homology of the space X , that of the geometric realization of its
order complex |K(X)|, and that of its dual space Xop:

Proposition 2.73. Let X be a finite poset. Then X , K(X) = K(Xop) and Xop have isomorphic
homology and isomorphic cohomology with Z2 coefficients.

Definition 2.74. The poset X is homologically bi-admissible if both X and Xop are homologi-
cally admissible.

Let K be a finite simplicial complex and σ a simplex of K. The link of σ is the subcomplex
of K whose simplices are

{β ∈ K : β ∩ σ = ∅ and β ∪ σ ∈ K}.

Definition 2.75. A finite simplicial complex K is a closed homology manifold of dimension n
if the link of every simplex has the homology of the sphere Sn−k−1, where k is the dimension of
the simplex.

Definition 2.76 ([126]). A poset X is a finite closed homology manifold of dimension n if its
order complex K(X) is a closed homology manifold of dimension n.

For a detailed treatment of finite (closed homology) manifolds see [126,133]. The following
result provides examples of homologically bi-admissible posets.

Proposition 2.77. (1) Let X be a finite closed homology manifold of dimension n, then it is
homologically bi-admissible.

(2) Let K be a closed homology manifold of dimension n, then its face poset X (K) is homo-
logically bi-admissible.

Proof. First of all, if X is a finite closed homology manifold, then it is homologically admissible
(see [126]). Moreover, since K(X) = K(Xop), by the definition of finite closed homology
manifold, Xop is homologically admissible too.

Second, K is a closed homology manifold of dimension n if and only if

Hk(|K|, |K| \ {x};Z2) =

{
Z2 if k = n

0 else

for every x ∈ |K| (see [130]). Therefore, if K is a closed homology manifold of dimension
n, then KX (K) is a closed homology manifold, so X (K) is homologically bi-admissible by
(1).
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Remark 2.78. Observe that, in particular, the face posets of combinatorial manifolds (see [130]
for the definition) are homologically bi-admissible.

As a consequence, the theory developed for homologically bi-admissible posets can be ap-
plied to study the topology of triangulable homology or combinatorial manifolds by means of
their triangulations. In particular, we can prove a version of Poincaré Duality for Z2 coefficients.

In order to do so, we make the following observation. For a homologically admissible poset,
cellular cohomology with coefficients in a field can be defined in the same way as cellular homol-
ogy and it also holds that it is isomorphic to singular cohomology. In particular, using coefficients
in Z2, the differential δp+1 : Cp(X)→ Cp+1(X) simplifies to the formula: δ(x) =

∑
y�x y.

Theorem 2.79 (Z2-Poincaré Duality). Let X be a finite homologically bi-admissible poset of
degree n. Then Hk(X;Z2) ∼= Hn−k(X;Z2) for every k ≤ n. In particular, this holds if X is a
finite closed homology manifold of degree n.

Proof. Observe that for each k, there is an isomorphism between Ck(X) and Cn−k(Xop) and the
differentials dk and δn−k+1 coincide.

Remark 2.80. Basak proved in [19], by different methods, a Poincaré Duality result with integer
coefficients for a particular class of posets.

2.2.7 Summary of the relations
We summarize the relations between cellular complexes and posets in Diagram (2.3). In order to
do so, we introduce the following notation:

• Pos denotes the category of finite posets and order-preserving maps.

• T-wPos denotes the full subcategory of Pos whose objects are two-wide posets.

• CPos denotes the full subcategory of Pos whose objects are cellular posets.

• D-wPos denotes the full subcategory of Pos whose objects are down-wide posets.

• haPos denotes the full subcategory of Pos whose objects are homologically admissible
posets.

• h-rPos denotes the full subcategory of Pos whose objects are h-regular posets.

• HaPos denotes the full subcategory of Pos whose objects are homotopically admissible
posets.

• FChManPos denotes the full subcategory of Pos whose objects are finite closed homology
manifolds.

• h-rCW denotes the category of h-regular CW-complexes and cellular maps between them.

• rCW denotes the full subcategory of h-RCW whose objects are regular CW-complexes.
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• SimC denotes the full subcategory of h-RCW whose objects are simplicial complexes.

We refer the reader to [126] for the proofs which we omitted in this presentation.

T0-FTop ∼= Pos

T-wPos CPos D-wPos h-rCW

haPos h-rPos rCW

HaPos SimC

FChMan ChMan

K
X

X

K

X

(2.3)

2.2.8 Examples
In this subsection we present some examples which clarify the theory developed earlier.

Example 2.81. The finite model of RP 2 depicted in Figure 5.1.1 (see [6, Example 7.1.1], [94,
Proposition 4.1] and [46, p. 138]) is homologically admissible.

Figure 2.2.1: Example of homologically admissible poset.

Example 2.82. Consider the following example (Figure 2.2.2), an h-regular model of S3, taken
from [126, Fig.2], which is not a graded poset, therefore it is not cellular.

Example 2.83. We will construct a cellular poset which is not h-regular. LetK be a triangulation
of the Poincaré homology 3-sphere (see for example [101]). Construct the non-Hausdorff cone
of X (K), i.e. we add a new point x′ such that x′ ≥ x for every x ∈ X (K). The non-Hausdorff
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Figure 2.2.2: Example of h-regular space which is not cellular.

cone ofX (K),C(X (K)) is cellular since it is graded and Ûx has the homology of a (deg(x)−1)-
sphere for every x in C(X (K)). However, C(X (K)) is not h-regular since Ûx′ has not the same
weak homotopy type as a sphere cause it has the weak homotopy type of the Poincaré homology
3-sphere.

2.3 Curvature
This section is devoted to studying some classical results in Differential and Algebraic topology
in the setting of posets. In particular, we will state a Hodge decomposition Theorem, some results
relating (co)homology and curvature, and a Gauss-Bonnet Theorem.

2.3.1 Hodge decomposition Theorem
This subsection is a generalization of some techniques introduced by Forman ([80]) in the context
of complexes to the context of cellular posets, so the presentation will be brief.

First, we state a Combinatorial Hodge Theorem for cellular posets generalizing Forman’s
result [80, Theorem 2.1]. To do so we will consider coefficients in R. Given a cellular poset X ,
we endow each Cp(X,R) with an inner product

〈•, •〉p : Cp(X,R)× Cp(X,R)→ Cp(X,R)

such that the elements of degree p of X are orthogonal. Observe that this amounts to choosing a
positive weight ωx for each p-element x and defining 〈x, x〉 = ωx. Denote by

δ(p+1) : Cp(X)→ Cp+1(X)

the adjoint of the cellular boundary operator, i.e.

〈d(p+1)c(p+1), c
′
(p)〉p = 〈c(p+1), δ(p+1)c

′
(p)〉p+1

for c(p+1) ∈ Cp+1 and c′(p) ∈ Cp. We define the combinatorial Laplacian

�p : Cp(X)→ Cp(X)

given by
�p = d ◦ δ + δ ◦ d. (2.4)

The same argument given in [80, Theorem 2.1] proves:
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Theorem 2.84 (Combinatorial Hodge Theorem). Let X be a cellular poset, then:

• ker�p = ker dp ∩ ker δp+1.

• ker�p
∼= Hp(X,R).

As it happens in [80], a more explicit formula for �p can be given as follows. In order
to simplify the presentation we will assume that all weights ωx are equal to one, but the same
arguments work in the general case. Recall that the incidence number ε(x,w) is zero if w ⊀ x.
The same argument of [80, p. 338] shows:

�px =
∑

deg(x′)=p

[ ∑
deg(y)=p+1

ε(y, x)ε(y, x′)

+
∑

deg(w)=p−1

ε(x,w)ε(x′, w)

]
.

(2.5)

Moreover, by construction, �p is a self-adjoint operator with respect to the inner product
〈•, •〉p. Therefore, we can construct the symmetric matrix, S, associated to �p. Denote by sij
the i, j-element of the matrix, that is sij = 〈�pxi, xj〉, which by using Equation (2.5) becomes:

sij = sji

=
∑

deg(y)=p+1

ε(y, xi)ε(y, xj) +
∑

deg(w)=p−1

ε(xi, w)ε(xj, w).

2.3.2 Curvature and (co)homology
Now we will define a notion of combinatorial curvature in the context of cellular posets and we
will see that, as it happens in the smooth and simplicial settings, (co)homology imposes some
constraints on curvature. For a discussion on the intuition behind this combinatorial curvatures
in the context of complexes the reader is referred to [80]. First, we define the p-th curvature
operator Fp : Cp(X)→ Cp(X) given, in matrix form, as the following diagonal matrix:

Fp(xi, xj) =

{
0, xi 6= xj,

sij −
∑

k 6=i |sik|, xi = xj.

Definition 2.85. For any p-chain c ∈ Cp(X), define the p-th curvature of c by

Fp(c) = 〈Fp(c), c〉.

In the case of an element x ∈ X such that deg(x) = p, we define the p-th curvature at x as
Fp(x) = 〈Fp(x), x〉.

As it happens in [80, Theorem 2.2], we can find an explicit expression for Fp(x) by straight-
forward computations:



2.3.2 Curvature and (co)homology 33

Theorem 2.86. Let X be a cellular poset. For any p-element x ∈ X , the p-th curvature function
applied to x, Fp(x), is given by

Fp(x) =
∑

deg(y)=p+1

(ε(y, x))2 +
∑

deg(w)=p−1

(ε(x,w))2

−
∑

x′(p) 6=x

∣∣ ∑
deg(y)=p+1

ε(y, x)ε(y, x′) +
∑

deg(w)=p−1

ε(x,w)ε(x′, w)
∣∣.

It simplifies as follows for homologically admissible posets:

Corollary 2.87. Let X be a a finite homologically admissible poset X and let x(p) ∈ X , then the
p-th curvature satisfies:

Fp(x) =#{y(p+1) ∈ X : y � x}+ #{w(p−1) ∈ X : w ≺ x}

−
∑

x′(p) 6=x

∣∣ ∑
deg(y)=p+1

ε(y, x)ε(y, x′) +
∑

deg(w)=p−1

ε(x,w)ε(x′, w)
∣∣.

Proof. Recall from Lemma 2.12 that the incidence numbers of homologically admissible posets
are +1 or −1, so the equation for the pth curvature follows.

The operator Fp is said to be≥ 0 (respectively> 0) if Fp(x) ≥ 0 (respectively> 0) for every
element x(p) ∈ X .

Definition 2.88. For any x(1) ∈ X , we define the Ricci curvature of x by Ric(x) = F1(x).

Definition 2.89. Given a finite cellular poset X and two elements x(p), x′(p) ∈ X , we say that x
and x′ are metric neighbors if 〈�px, x

′〉 6= 0.

We consider the equivalence relation generated by the metric neighbor relation, i.e: x(p) ∼
x′(p) if there are elements of degree p, x(p) = x

(p)
1 , . . . , x

(p)
k = x′(p), such that for each i =

1, . . . , k − 1, x(p)
i and x(p)

i+1 are metric neighbors. We denote by N (p) the number of equivalence
classes of elements of degree p. By repeating the arguments of [80] it holds:

Theorem 2.90. Let X a finite cellular poset. If Fp ≥ 0, then

dimHp(X,R) ≤ N (p).

Consider the equivalence relation generated by the metric neighbor relation. We say that an
equivalence class Λ of elements of degree p is positive if there is an x(p) ∈ Λ with Fp(x) > 0.
Otherwise, we say that Λ is flat. We denote by N 0(p) the number of flat equivalence classes of
elements of degree p. The same argument provided in [80] shows:

Theorem 2.91. Let X be a finite cellular poset. If Fp ≥ 0, then

dimHp(X,R) ≤ N 0(p).

Corollary 2.92. Let X be a finite cellular poset. If Fp > 0, then

Hp(X,R) = 0.

In particular, if Ric(x) > 0 for every element x ∈ X of degree 1, then

H1(X,R) = 0.
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2.3.3 Gauss-Bonnet Theorem
In this subsection, we present a Gauss-Bonnet theorem in the setting of posets. We recall the
discrete curvature functions on graded posets introduced by Bloch ([27]). The introduction of
this new functions was motivated by the failure of Gauss-Bonnet Theorem with the curvature
functions developed by Forman. Given a graded poset X and x(p) ∈ X , let

Ai(x) = #{y ∈ X : x ≺ y}, Bi(x) = #{w ∈ X : w ≺ x},

Ui(x) =
∑
y�x

Bi+1(y), and Di(x) =
∑
w≺x

Bi−1(w).

Definition 2.93. Let X be a graded poset of degree 2. For each i ∈ {0, 1, 2}, let Ri : X
(i) −

X(i−1) → R be defined by:

R0(x) = 1 +
3

2
A0(x)− (A0(x))2,

R1(x) = 1 + 6A1(x) +
3

2
B1(x)− U1(x)−D1(x),

R2(x) = 1 + 6B2(x)− (B2(x))2.

It is shown in [27] that for certain posets, including the face posets of all 2-dimensional
simplicial complexes, R1 equals the combinatorial Ricci curvature introduced in Definition 2.88.

As a consequence of Theorem 2.15 and [27, Theorem 2.4] it follows that cellular posets of
degree two satisfy a Gauss-Bonnet Theorem.

Theorem 2.94 (Gauss-Bonnet). Let X be a finite cellular poset of degree 2. Then∑
deg(x)=0

R0(x)−
∑

deg(x)=1

R1(x) +
∑

deg(x)=2

R2(x) = χ(X).

Proof. It was proved in [27, Theorem 2.4] that the result is true for the graded Euler characteristic
χg(X) on finite graded posets. From the coincidence of graded Euler characteristic and Euler
characteristic for cellular posets (Theorem 2.15) the theorem follows.

In the smooth category, as a consequence of the Gauss-Bonnet Theorem, it is also true that if
the Gaussian curvature of a smooth surface is everywhere positive, then the Euler characteristic
of the surface is positive. In our setting we can prove the following. We define the average of the
R1 curvature function following Bloch ([27]):

R̄1 =
1

#(X(1) −X(0))

∑
deg(x)=1

R1(x).
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Observe that if R1 is everywhere positive, then R̄1 is positive. We also recall from [27]:

Ā1 =
1

#(X(1) −X(0))

∑
deg(x)=1

A1(x)

and
B̄1 =

1

#(X(1) −X(0))

∑
deg(x)=1

B1(x).

Due to [27, Remark 2.6], a particular case of [27, Theorem 2.7] can be stated as:

Proposition 2.95. [27] Let X be a finite graded poset of degree 2. If B̄1 = 2, Ā1 ≥ 2 and
R̄1 > 0, then χg(X) > 0.

As a consequence we can prove:

Corollary 2.96. Let X be a finite cellular poset of degree 2. If R̄1 > 0 and the degree one
elements are not up strong homotopic removable points, then χ(X) > 0.

Proof. First, observe that if degree one elements are not up strong homotopic removable points,
then Ā1 ≥ 2. Second, since X is cellular, Ûx has the homology of S0 for every element x of
degree 1, so B̄1 = 2. Therefore, by Proposition 2.95, χg(X) > 0. Now the result follows from
the equality of graded Euler characteristic and Euler characteristic for cellular posets (Theorem
2.15).





Chapter 3
Morse functions and matchings on posets

Our approach to Morse theory consists in constructing appropriate filtrations for the objects under
study, so we can later extract global information about the object by means of integrating local
information in some critical steps of the filtration. Informally, by an appropriate filtration we
mean one that allows us to keep track of the changes of some invariant we are interested in as we
go up in the sequence of subobjects.

One straightforward way to produce a filtration of a finite poset X is to define an order
preserving map f : X → R and then consider, for each t ∈ R, the down-set subposet:

Xf
t =

⋃
f(x)≤t

Ux.

Since the poset is finite, the image of f , {t0, t1, . . . , tn}, is a finite subset of R and we have a
filtration with a finite sequence of subposets:

Xt−1 = ∅ ↪→ Xt0 ↪→ · · · ↪→ Xti ↪→ Xti+1
↪→ · · · ↪→ Xtn = X. (3.1)

This would be an analogous situation to the one in smooth Morse theory for compact man-
ifolds. However, as it happens in the smooth setting, this approach does not guarantee that we
obtain control on the resulting filtration. That is why we need to impose some extra condition on
the map f : X → R.

In order to come up with a suitable condition, let us think about what we would like to have
and then work backwards. We are interested in studying some global invariant in X by means
of studying it locally. As it happens in smooth Morse theory, we would like to have two kinds
of values for the map f , the regular values and the critical ones. First, if ti+1 was to be regular,
then Xti ↪→ Xti+1

should not produce any change in the invariant under consideration. For
example, for classical Morse theory, Xti ↪→ Xti+1

would be a homotopy equivalence. Second, if
ti+1 was to be critical, then we should be able to understand and keep track of the change of the
invariant when passing from Xti to Xti+1

. The idea to achieve this goal in smooth Morse theory
is to consider maps which come from some suitable dynamics in the manifold. Those maps are
precisely the ones inducing a gradient vector field. So, we will follow the same strategy in this
context.

In order to do so, we will adapt the notion of combinatorial vector field introduced by Forman
([74]) from the setting of simplicial complexes to the context of posets. The advantage of this
approach is that the points in Xti+1

− Xti satisfy certain conditions which allow us to control
passing from Xti to Xti+1

. In the next chapters, this condition will be seen to be strongly related
to the notion of homological and homotopical admissibility.

37
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In this chapter we introduce the notions of vector field, matching, Morse function and tame
Morse function and study the relations between them and some properties. Moreover, we show
how these notions in the context of posets unify previous Morse theories on chain complexes
(Algebraic Morse theory) and on cell complexes (Forman’s Morse theory).

Some of the results in this chapter appeared in our preprint [66].

3.1 The definition of tame Morse function

The first goal of this chapter is to introduce the novel notion of tame Morse function (Definition
3.13). In order to do so, we begin by introducing the combinatorial analogues of the gradient
vector fields in the smooth setting.

First, we state the definition of combinatorial vector field in a poset. It is a generalization of
the notion of combinatorial vector field introduced by Forman ([74]) in the context of simplicial
complexes.

Definition 3.1. Let X be a finite poset. A combinatorial vector field on X is a map

V : X → X ∪ {0}

such that:

1. If V (x) 6= 0, then x ≺ V (x).

2. If V (x) = y 6= 0, then V (y) = 0.

3. For all x ∈ X , #{V −1(x)} ≤ 1.

Remark 3.2. Forman claims in his work that the notion of combinatorial vector field is related
to previous work of Duval ([56]). We very recently discovered that it is also related, although
it seems Forman was not aware of it, to the work initiated by Brown on collapsing schemes ten
years earlier ([38, 39, 47]) as Tochi points out in his dissertation ([173]).

To facilitate the technical work and to provide a combinatorial intuition for the concept of
vector field, we introduce the definition of a matching in a poset. The definition of matching for
Morse theoretic purposes was first introduced by Chari ([43]) and further developed by Minian
([126]).

Definition 3.3. Let X be a finite poset. A matchingM on X is a subsetM⊆ X ×X such that

• (x, y) ∈M implies x ≺ y;

• each x ∈ X belongs to at most one element inM.

The next result guarantees that the notions of combinatorial vector fields and matchings on
posets are equivalent.
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Lemma 3.4. LetX be a poset. There is a bijective correspondence between combinatorial vector
fields and matchings on posets.

Proof. Let V : X → X ∪ {0} be a combinatorial vector field. We define a matchingM on X
as follows. A pair (x, y) ∈ X × X is in the matching if and only if V (x) = y. Conversely,
for a matchingM on X , we define a combinatorial vector field V : X → X ∪ {0} as follows:
V (x) = y if and only if (x, y) ∈M.

Therefore, from now on we will use matchings and vector fields interchangeably depending
on the context and for convenience. Any definition or result for one notion applies to the other.

We make an observation in the form of a result:

Proposition 3.5. There is a bijective correspondence between matchings in X and in Xop given
as follows: to a matchingM in X , we associate a matchingMop in Xop as follows, (x, y) ∈M
iff (y, x) ∈Mop.

We introduce the notion of criticality in matchings. Let H(X) be the Hasse diagram of a
poset X . IfM is a matching in X , writeHM(X) for the directed graph obtained fromH(X) by
reversing the orientations of the edges which are not inM.

Definition 3.6. LetX be a poset and letM be a matching onX . Any point ofH(X) not incident
with an edge ofM is called critical. The set of all critical points ofM is denoted by crit(M).
The points which are not critical are called regular. The index of a critical point is its height.

The following example shows how to visualize matchings on posets.

Example 3.7. In Figure 3.1.1 we exhibit a matchingM on a posetX . The crosses represent crit-
ical points, the dashed edges with the circles represent a periodic orbit, and the arrows represent
the matched elements.

Figure 3.1.1: A homologically admissible poset X with a matchingM.

Definition 3.8. Let X be a finite poset and letM be a matching on X . The matchingM is a
Morse or gradient matching ifHM(X) is acyclic as a directed graph.

Example 3.9. In Figure 3.1.2 we depict a Morse matchingM on a poset X . The crosses repre-
sent critical points and the arrows represent the matched elements.
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Figure 3.1.2: A homologically admissible poset X with a Morse matchingM.

We introduce some terminology which will be used later. Given a matchingM on a poset
X , we will decompose X as the disjoint union of three subsets:

X = crit(M) t s(M) t t(M).

For each edge (x, y) ∈ M, we say that x is the source of the edge and y is the target. We define
the source of the matching s(M) as the set whose elements are the sources of the edges in the
matching. Analogously, we define the target of the matching t(M) as the set whose elements
are the targets of the edges in the matching. For convenience, we define the source and target
maps (only defined for elements in the matchingM) as follows: given (x, y) ∈ M, s(y) = x
and t(x) = y.

Definition 3.10. Let X be a finite poset and letM be a matching on X . A generalizedM-path
from x to z is a sequence of one of the following two forms:

1. γ : x = x0 ≺ y0 � x1 ≺ y1 � · · · ≺ yr−1 = z

2. γ : x = x0 ≺ y0 � x1 ≺ y1 � · · · ≺ yr−1 � xr = z

such that for each i ∈ {0, . . . , r − 1}:

1. (xi, yi) ∈M,

2. xi 6= xi+1.

In case X is a graded poset, aM-path of index p from x(p) to x̃(p) is a sequence:

γ : x = x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r = x̃

such that for each i ∈ {0, . . . , r − 1}, it satisfies the same conditions as before.

Using the ideas of Minian ([126, Lemma 3.12]), which are based in the ideas of Forman ([74,
Theorem 2.4]), we can prove the following improved integration result for Morse matchings:

Theorem 3.11. Let X be a finite graded poset and letM be a a Morse matching on X . Then,
there is a set function f : X → R satisfying:

(OP) It is order preserving, that is, if x ≤ y, then f(x) ≤ f(y).

(M1) #{y ∈ X : x ≺ y and f(x) ≥ f(y)} ≤ 1.
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(M2) #{w ∈ X : w ≺ x and f(w) ≥ f(x)} ≤ 1.

(E) There do not exist w, x, y ∈ X , w ≺ x ≺ y such that f(w) ≥ f(x) ≥ f(y).

(SI) It is self-indexing, that is, for every critical element x(p), f(x) = p.

(F) If (x, y) ∈M, then f(x) = f(y).

Proof. First, we define an auxiliary map l : X → N given by:

l(x) = max{r : ∃M-path

γ : x = x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r }.

Second, we define L = maxx∈X l(x). Now, we define the function f : X → R inductively
on the degree of the poset. Given x(p) ∈ X , we define f(x) as follows:

1. If x(p) is a critical point ofM, then f(x) = p.

2. If x ∈ s(M), then

f(x) = p+
l(x)

2L
.

Note that this guarantees that

p < f(x) ≤ p+
1

2
.

3. If x ∈ t(M), then there exists w(p−1) such that t(w) = x and f(w) was defined in (2). We
set f(x) = f(w) and it follows that

p− 1 < f(x) ≤ p− 1

2
.

By construction, the function f : X → R is order preserving (satisfies (OP)), it satisfies (E), it
is self-indexing (it satisfies (SI)) and it satisfies (F). It remains to check that f satisfies (M1) and
(M2). We split the verification in cases:

First, suppose x(p) is critical. Then, by construction of f , for any w(p−1), it follows f(w) ≤
p− 1 + 1

2
< p, and for any y(p+1), it holds f(y) > p. Second, assume that x(p) is not critical and

y(p+1) > x.

1. If t(x) = y, then f(y) = f(x), so

f(x) ≥ f(y).

2. If t(x) 6= y, we consider several cases again:

(a) If y is a critical point, then

f(y) = p+ 1 > p+ 1/2 ≥ f(x).
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(b) If y ∈ s(M), then
f(y) > p+ 1 > p+ 1/2 ≥ f(x).

(c) If y ∈ t(M). Then there exists an unique x̃(p) 6= x such that t(x̃) = y. Since x is not
critical, there are two cases:

i. If x ∈ t(M), then

f(y) = f(x̃) ≥ p > p− 1/2 ≥ f(x).

ii. If x ∈ s(M) and γ : x ≺ · · · is anyM-path beginning at x, then

γ̃ : x̃ ≺ y � x ≺ · · ·

is aM-path beginning at x̃. Therefore

l(x̃) ≥ l(x) + 1,

hence
f(y) = f(x̃) > f(x).

Third, assume that x(p) is not critical and w(p−1) < x. This case is analogous to the second
one.

Theorem 3.11 motivates the notion of tame Morse function (Definition 3.13). Moreover, we
will add an extra condition (that we will refer as (CI)) to guarantee that when we construct the
filtration of the space under study (see Equation (3.1)), it holds that #(Xti+1

−Xti) ≤ 2.
First, we recall some notation.

Definition 3.12. Let X be a finite space and let x ∈ X . The set {z ∈ X : z ≺ x or z � x} is
referred as the set of adjacent elements to x.

Let Cm denote the poset whose elements are {0, 1, . . . ,m−1,m} and with the order i ≤ i+1
for i ∈ {0, . . . ,m− 1}.

Definition 3.13. Let X be a finite poset. A tame Morse function is a map f : X → Cm for some
m ∈ N satisfying the following conditions:

(OP) It is order preserving, that is, if x ≤ y, then f(x) ≤ f(y).

(M1) #{y ∈ X : x ≺ y and f(x) ≥ f(y)} ≤ 1.

(M2) #{w ∈ X : w ≺ x and f(w) ≥ f(x)} ≤ 1.

(E) There do not exist w, x, y ∈ X , w ≺ x ≺ y such that f(w) ≥ f(x) ≥ f(y).

(CI) For each x ∈ X , if there is an element z ∈ X such that f(x) = f(z), then z is an adjacent
element to x.
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We introduce another definition before we pause to explain the notion of tame Morse func-
tion.

Definition 3.14. Let X be a finite poset and let f : X → Cm be a tame Morse function. A point
x ∈ X is said to be critical if

#{y ∈ X : x ≺ y and f(x) ≥ f(y)} = 0

and
#{w ∈ X : w ≺ x and f(w) ≥ f(x)} = 0.

The set of critical points is denoted by critf . The images of the critical points are called critical
values. The points (respectively values) which are not critical are said to be regular points
(respectively regular values). The index of a critical point is its height.

Remark 3.15. Observe that Condition (F) from Theorem 3.11 was redundant for the definition.

Remark 3.16. Condition (E) is called the Exclusion condition and imposes a bond between con-
ditions (M1) and (M2).

Remark 3.17. Condition (CI) encapsulates two ideas and consequences:

(1) The restriction of the function f : X → Cm to its set of critical points

f|critf : critf → Cm

is injective.

(2) Combining Conditions (M1), (M2), (E) and (CI) we have the following. For every t ∈ Cm,
its preimage f−1(t) consists of at most two points, that is, #f−1(t) ≤ 2. If x ∈ X is
critical, then #f−1(f(x)) = 1. If x ∈ X is not critical, then #f−1(f(x)) = 2.

Remark 3.18. Remark 3.17 guarantees that a poset map with small fibers (see [105, Definition
11.3]) in the sense of Kozlov is a tame Morse function.

The following lemma relates our notion of tameness to Nishinou’s one (see [135]) for face
posets of cell complexes. In particular, it guarantees that if X is the face poset of an affine
complex (see [135]), then our tame Morse functions are also tame according to his notion.

Lemma 3.19. Let X be a finite poset and let f : X → Cm be a tame Morse function. If w < x
and w ⊀ x, then f(w) < f(x).

Proof. It follows from combining Conditions (OP), (M1), (M2) and (E) in our definition of tame
Morse function (Definition 3.13).

We recall the definition of Morse functions for finite posets introduced by Minian ([126]). It
is a generalization of Forman’s theory ([75, 77]) to the context of posets:
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Definition 3.20. Let X be a finite poset. A Morse function on X is a set-theoretic function
f : X → R such that, for every x ∈ X , we have

#{y ∈ X : x ≺ y and f(x) ≥ f(y)} ≤ 1

and
#{w ∈ X : w ≺ x and f(w) ≥ f(x)} ≤ 1.

The notion of criticality for Morse functions is the same as the one for tame Morse functions
(see Definition 3.14).

Remark 3.21. Tame Morse functions are Morse functions by identifying the chain Cm with a
finite subset of R.

Several observations are in order. First, a Morse function does not have to be order-preserving
(so they are not necessarily continuous with the poset topologies), so it is not an arrow in the cat-
egory of posets and order-preserving maps between them. Minian’s definition of Morse function
may look, at first sight, more general than the notion of tame Morse function. We will compare
them later on.

We finish this section by presenting two remarkable contexts where our definitions of Morse
function and matching applies.

3.1.1 Forman’s Discrete Morse theory
We begin with Forman’s definition of Morse function, the basis of his discretization of Morse
theory. We follow [1, 73, 75, 77, 82, 102]. We refer the reader interested in more examples or a
detailed treatment of the subject to such references.

Definition 3.22. Let K a finite regular CW-complex and denote by K(=p) the set of p-cells of
K. A discrete Morse function on X is a map f :

⋃
pK

(=p) → R satisfying the following two
conditions for all σ ∈ K(=p):

1. #{τ (p+1) > σ : f(τ) ≤ f(σ)} ≤ 1

2. #{τ (p−1) < σ : f(τ) ≥ f(σ)} ≤ 1.

Remark 3.23. Due to the regularity of the attaching maps in the finite CW-complex it holds (see
for example [102, Lemma 6.11] or [151, Lemma 2.24]) that a map

f :
⋃
p

K(=p) → R

is a discrete Morse function if and only if the following condition holds for all σ ∈ K(=p):

#{τ (p+1) > σ : f(τ) ≤ f(σ)}+ #{τ (p−1) < σ : f(τ) ≥ f(σ)} ≤ 1.

Remark 3.24. For the sake of simplicity and following the notational convenience in the litera-
ture, we will refer to Morse functions on K as f : K → R without mentioning

⋃
pK

(=p).
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In what follows K will denote a finite regular CW-complex.

Definition 3.25. Let f : K → R be a discrete Morse function on K. A cell σp is said to be a
critical cell of index p if the following condition holds:

#{τ (p+1) > σ : f(τ) ≤ f(σ)}+ #{τ (p−1) < σ : f(τ) ≥ f(σ)} ≤ 0.

Remark 3.26. Given any finite regular CW-complex K, discrete Morse functions always exist on
K. Consider for example f : K → R given by f(σ) = dim σ.

The first main result of discrete Morse theory is that discrete Morse functions encode all
homotopical information of the space where they are defined (see for example [75, 77]):

Theorem 3.27 (Structure theorem of discrete Morse theory). Let K be a finite regular CW-
complex and let f : K → R be a discrete Morse function. Then, K is homotopy equivalent to a
CW-complex with exactly one p-cell for each critical cell of index p.

Let K be a regular CW-complex and f : K → R a discrete Morse function. Then there is an
associated Morse function X (f) : X (K)→ R given by X (f)(σ) = f(σ). We will see later that
X (f) : X (K)→ R encodes all the homotopical information of f : K → R.

3.1.2 Morse theory on Lefschetz Complexes
We introduce the notion of Lefschetz complex following [106, 110, 128, 129]. Let us denote by
R a commutative ring with unity.

Definition 3.28. A Lefschetz complex (X, κ) is a finite set with gradation X = (Xp)p∈N en-
dowed with a map κ : X × X → R such that κ(x,w) 6= 0 implies x ∈ Xp, w ∈ Xp−1 and for
any x,w ∈ X it holds that ∑

y∈X

κ(y, x)κ(x,w) = 0. (3.2)

The elements of X are referred to as cells and κ(x,w) as the incidence coefficient of x,w. If
x ∈ Xp, we say that x has dimension p.

Let (X, κ) be a Lefschetz complex. Denote byCκ(X) the graded free module overR spanned
by X . We define a boundary homomorphism dκ : Cκ(X)→ Cκ(X) on generators x ∈ X by

dκ(x) =
∑
w∈X

κ(x,w)w.

By Equation (3.2), it can be proved ([106]) that dκ ◦ dκ = 0. Hence, (Cκ(X), dκ) is a chain
complex. Its homology is called Lefschetz homology and it is denoted by Hκ(X).

Let (X, κ) be a Lefschetz complex. It can be given a partial order structure as follows. For
x,w ∈ X , we declare w ≺ x if κ(x,w) 6= 0. We define a partial order ≤ on X as the transitive
closure of ≺.

A Morse theory for Lefschetz complexes was developed, under the name of Algebraic Morse
theory, among others, by Kozlov ([104, 105]) and later Donau ([54]). It is build upon the idea
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of a gradient matching for a chain complex. A gradient matchingM for a Lefschetz complex
(X, κ) is just a gradient matching on its associated poset.

A Lefschetz complex (X, κ) is augmentable if the linear map ε : Cκ(X)0 → R defined on
the basis elements x ∈ X0 by ε(x) = 1 satisfies ε ◦ dκ1 = 0.

The following result by Kubica and Mrozek ([106, Theorem 3.2]) guarantees that under some
hypothesis, Lefschetz homology is isomorphic to singular homology.

Theorem 3.29. Let (X, κ) be an augmentable Lefschetz complex such that for every x ∈ X , Ux
is acyclic. Then the Lefschetz homology of (X, κ) is isomorphic to the singular homology of the
T0 finite space associated to the poset structure on (X, κ).

Definition 3.30. A Lefschetz complex (X, κ) in the hypothesis of Theorem 3.29 will be called a
Lefschetz-Kubica-Mrozek complex.

We will say that a Lefschetz-Kubica-Mrozek complex (X, κ) is homologically admissible
if the associated poset is so. Conversely, observe that for a homologically admissible poset,
its cellular chain complex (C(X), d) is a homologically admissible Lefschetz-Kubica-Mrozek
complex.

Remark 3.31. As a consequence of the discussion above, we can both do Morse theory and
study homological properties of Lefschetz complexes by means of doing Morse theory on the
associated posets. Moreover, all the Morse theory developed for homologically admissible posets
applies directly to homologically admissible Lefschetz-Kubica-Mrozek complexes.

3.2 Properties of Morse functions and matchings
Our next goal is to study properties of Morse functions, tame Morse functions and Morse match-
ings, and the relation between them. To do so, we will restrict our attention to certain classes of
posets.

First, we begin with an observation to settle a property that the posets we work with should
satisfy in order to guarantee that Morse functions on them behave as we expect. Recall that in
smooth Morse theory there is a “Minimum Theorem”, which asserts that for a smooth Morse
function f : M → R defined on the manifold M , the point where the global minimum of f is
attached is a critical point.

In order to provide a sufficient condition on posets to guarantee this result to hold, we recall
the notions of local minimum and global minimum for a function.

Definition 3.32. Let X be a finite poset and let f : X → R be a continuous (i.e order preserving)
function. We say that an element x ∈ X is a local minimum for f if for every adjacent element
to x, z, f(z) > f(x). We say that x ∈ X is a global minimum for f if for every element z ∈ X ,
z 6= x, f(z) > f(x).

Remark 3.33. Observe that for a finite poset X and a Morse function f : X → R, a global
minimum for f is a local minimum for f .
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Theorem 3.34 (Minimum Theorem). Let X be a finite down-wide poset and let f : X → R be a
Morse function on X .

(1) If an element x ∈ X is a local minimum for f , then it is a minimal element of X , that is,
its height h(x) = 0.

(2) Furthermore, if x is a global minimum for f , then it is critical.

Proof. We will prove (1) by contraposition. Let x ∈ X be a non-minimal element (of height
h(x) ≥ 1). We will see that it is not a local minimum for f . Since the the down-degree of
every element of height different from zero is equal or greater than two, then there exist elements
w,w′ ∈ X , w 6= w′, adjacent to x, such that w,w′ ≺ x. By the definition of Morse function,
f(w) < f(x) or f(w′) < f(x). Hence, x is not a local minimum for f .

It remains to prove (2), that is, if x is a global minimum, then it is critical. We will do it again
by contraposition. By (1), h(x) = 0. Suppose that x is not critical, so there exists y � x (so
h(y) ≥ 1), such that f(y) ≤ f(x). Since the down-degree of y is grater than or equal to two,
then by the definition of Morse function there exists x′ ≺ y such that f(x′) < f(y) ≤ f(x),
which contradicts that x is a global minimum.

We define the notion of local maximum and global maximum for a Morse function analo-
gously.

Corollary 3.35. Let X be a finite homologically bi-admissible poset and let f : X → R be a
Morse function on X .

(1) If an element x ∈ X is a local maximum for f , then it is a maximal element of X .

(2) Furthermore, if x is a global maximum for f , then it is critical.

Proof. Consider the poset Xop and the Morse function f op : Xop → R given by f op(x) =
−f(x). Now the result follows from Theorem 3.34.

The next result is a consequence of the fact that the image of a Morse function f : X → R is
a finite subset of R. So we can perturb the function at the critical points to assure that we obtain
a new function f ′ : X → R such that f ′|critf ′ : critf ′ → R is injective.

Lemma 3.36. Let X be a finite poset and let f : X → R be a Morse function on X . Then there
exists a Morse function f ′ : X → R such that:

(1) The restriction f ′|critf ′ : critf ′ → R is injective.

(2) The functions share the critical points and agree outside the critical points. That is: For
x ∈ X , x ∈ critf if and only if x ∈ critf ′. And for x ∈ X − critf , f|X−critf (x) =
f ′|X−critf ′(x).

We continue by stating a result that plays the role of two important theorems developed by
Forman in the simplicial setting ([75, Theorems 1.2 and 1.3]). In fact, the proof of the following
Key Lemma is immediate in this context.
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Lemma 3.37 (Key Lemma). Suppose thatX is a finite two-wide poset and there are two elements
w < y such that w ⊀ y. Then, there are elements x 6= x̃ such that w ≺ x < y and w ≺ x̃ < y.

Remark 3.38. Observe that Lemma 3.37 does not hold in general for finite posets. As an example,
consider the poset of Figure 3.2.1 taking the points labelled as w and y.

w

y

Figure 3.2.1: Lemma 3.37 may not hold for posets which are not two-wide.

Definition 3.39. Given a poset X , a Morse function f : X → R is said to satisfy the Exclusion
condition if for every regular point x ∈ X , exactly one of the following conditions holds:

(1) There exists exactly one y ∈ X , x ≺ y, such that f(x) ≥ f(y).

(1) There exists exactly one w ∈ X , w ≺ x, such that f(w) ≥ f(x).

That is, a Morse function f : X → R satisfies the Exclusion condition if it satisfies condition (E)
of the definition of tame Morse function (Definition 3.13).

The following result plays the role, in the context of finite spaces, of the Exclusion Lemma
([75, Lemma 2.5]).

Lemma 3.40 (Exclusion Lemma). Let X be a finite two-wide poset and f : X → R a Morse
function on X . Then f : X → R satisfies the Exclusion condition.

Proof. Let x be a regular point. Since x is not critical, then at least one of the conditions in
Definition 3.39 holds. We will see that these conditions are mutually exclusive. By way of
contradiction, suppose that both conditions hold and take x ≺ y and w ≺ x as in Conditions (1)
and (2) respectively. Then w ≺ x ≺ y. Since X is two-wide, by the Key Lemma (Lemma 3.37)
there exists x′ 6= x such that w ≺ x′ ≺ y. By the definition of Morse function applied to w with
w ≺ x′, we get f(w) < f(x′) since we already have f(w) ≥ f(x) and w ≺ x. Similarly with y
and x′ ≺ y, we obtain f(x′) < f(y) ≤ f(x).

As a consequence we obtain the following chain of inequalities:

f(x) ≤ f(w) < f(x′) < f(y) ≤ f(x).

So f(x) < f(x), which is a contradiction.

It is interesting to point out that the Exclusion Lemma does not necessarily hold in general
for posets which are not two-wide, as the following example shows.
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Example 3.41. Lemma 3.40 may not hold for arbitrary posets. Consider the down-wide model
of S3 depicted in Figure 3.2.1 with the Morse function f represented by the labelling of the
points.

As a consequence of our Exclusion Lemma for Morse functions on two-wide posets (Lemma
3.40), we obtain a converse result to Theorem 3.11.

Theorem 3.42. Let X be a finite poset and let f : X → R be a Morse function satisfying the
Exclusion condition. Then, there exists an associated Morse matchingMf satisfying that: for
(x, y) ∈ X × X such that x ≺ y, (x, y) ∈ Mf if and only if f(x) ≥ f(y). As a consequence,
crit(f) = crit(Mf ).

In particular, given a finite two-wide poset X and a Morse function f : X → R, there exists
an associated Morse matching Mf with crit(f) = crit(Mf ) and (x, y) ∈ Mf if and only if
f(x) ≥ f(y) and x ≺ y.

Proof. Define the matching Mf as follows. Let (x, y) ∈ X × X such that x ≺ y. Then
(x, y) ∈ Mf if and only if f(x) ≥ f(y) (so crit(f) = crit(Mf )). It remains to check that the
matchingMf is a Morse matching on X , that is: HMf

(X) is acyclic as a directed graph. First,
observe that the paths in HMf

(X) are just generalized Mf -paths. Now, observe that for any
generalizedMf -path of any of the forms:

1. γ : x = x0 ≺ y0 � x1 ≺ y1 � · · · ≺ yr−1 = z

2. γ : x = x0 ≺ y0 � x1 ≺ y1 � · · · ≺ yr−1 � xr = z

it holds, respectively:

1. f(x) = f(x0) ≥ f(y0) > f(x1) ≥ f(y1) > · · · ≥ f(yr−1) = f(z)

2. f(x) = f(x0) ≥ f(y0) > f(x1) ≥ f(y1) > · · · ≥ f(yr−1) > f(xr) = f(z)

So, there can not exist loops andMf is a Morse matching on X .

Corollary 3.43. LetX be a finite graded poset and let f : X → R be a Morse function satisfying
the Exclusion condition. Then, there exists an order preserving and self-indexing Morse function
f ′ : X → R satisfying the Exclusion condition with crit(f ′) = crit(f).

Proof. First apply Theorem 3.42 to f : X → R to obtain a Morse matchingMf with the same
critical set. Then apply Theorem 3.11 toMf .

Remark 3.44. As a consequence of the previous discussion, we can establish a correspondence
between Morse matchings and order preserving Morse functions satisfying the Exclusion condi-
tion on graded posets. However, the correspondence is not bijective since given a Morse function
f : X → R, a function f ′ : X → R given by f ′(x) = 2f(x) is again Morse and both functions
share the same associated matching.
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3.2.1 Dynamically equivalent Morse functions
Our next goal is to provide a way to reduce the proof of certain results to verifying them for
a class of reasonably well-behaved Morse functions, which will be in our case the tame Morse
functions.

Definition 3.45. Let X be a finite poset. Let f, g : X → R be two Morse functions satisfying the
Exclusion condition and letMf andMg be their associated Morse matchings by Theorem 3.42.
The functions f and g are dynamically equivalent if their associated Morse matchings coincide.

Remark 3.46. Observe that for a Morse function f : X → R satisfying the Exclusion condition,
by applying first Corollary 3.43 and then Lemma 3.36 we obtain a Morse function f ′ : X → R
satisfying all the conditions of tame Morse function other than Condition (CI). Moreover, the
functions f and f ′ are dynamically equivalent.

The purpose of what follows is to improve the idea of Remark 3.46 in order to be able to
find, for a Morse function f : X → R satisfying the Exclusion condition, a tame Morse function
f ′ : X → R which is dynamically equivalent to f .

We begin with an alternative approach to integrating matchings. In order to do that, we will
incorporate in the proof a heuristic which appears in the works of Kozlov ([105, Theorem 11.2]).

Theorem 3.47. Let X be a finite poset and letM be a a Morse matching on X . Then, there is a
set function f : X → Cm for some m ∈ N satisfying the following conditions:

(OP) It is order preserving, that is, if x ≤ y, then f(x) ≤ f(y).

(M1) #{y ∈ X : x ≺ y and f(x) ≥ f(y)} ≤ 1.

(M2) #{w ∈ X : w ≺ x and f(w) ≥ f(x)} ≤ 1.

(E) There do not exist w, x, y ∈ X , w ≺ x ≺ y such that f(w) ≥ f(x) ≥ f(y).

(CI) For each x ∈ X , if there is an element z ∈ X such that f(x) = f(z), then z is an element
adjacent to x.

That is, f : X → Cm is a tame Morse function.

Proof. The idea of the proof is the following. First, we will construct a filtration of X by a finite
sequence of subposets:

X−1 = ∅ ↪→ X0 ↪→ · · · ↪→ Xi ↪→ Xi+1 ↪→ · · · ↪→ Xm = X. (3.3)

satisfying that for every i ∈ {0, . . . ,m},Xi−Xi−1 is either a critical element or a pair of matched
elements. Then, we will define the map f : X → Cm as follows. For every i ∈ {0, . . . ,m} and
x ∈ Xi −Xi−1, f(x) = i. It is clear that the map f satisfies the desired conditions.

Now we show that we can build a filtration as in Equation (3.3). We define X−1 as the
empty set. Now we apply the following iterative process. For Xi−1 6= X , a down-set subposet
of X , we denote by Mi the set of minimal elements of X in X − Xi−1. If there is a critical
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element c ∈ Mi, then we define Xi = Xi−1 ∪ {c}. If there are no critical elements in Mi,
then we proceed as follows. Among all the edges e ∈ M such that s(e) ∈ Mi, we pick one
satisfying that (Ût(e) − s(e)) ⊂ Xi−1. Then, we define Xi as the down-set with the elements
Xi−1 ∪ {s(e), t(e)}. Observe that if Xi−1 6= X is a down-set subposet of X and there are no
critical elements in Mi, then among the e ∈ M such that s(e) ∈ Mi, there must be at least one
satisfying (Ût(e)− s(e)) ⊂ Xi−1 since if this was not the case, thenM would not be acyclic.

Now, combining Theorems 3.42 and 3.47 we obtain the following result:

Corollary 3.48. Let X be a finite poset and let f : X → R be a Morse function satisfying
the Exclusion condition. Then, there exists a tame Morse function f ′ : X → R dynamically
equivalent to f .

Remark 3.49. The same arguments of Remark 3.44 taking now into account Theorem 3.47 prove
that there is a correspondence between Morse matchings and tame Morse functions on arbitrary
posets.

Furthermore, we can summarize a consequence of the previous discussion as follows:

Corollary 3.50. Let X be a finite poset and let f : X → Cm be a tame Morse function. Then
there is an induced filtration by down-sets:

X−1 = ∅ ↪→ X0 ↪→ · · · ↪→ Xi ↪→ Xi+1 ↪→ · · · ↪→ Xm = X (3.4)

where Xi = f−1(Ui) for i ∈ Cm. Moreover, this filtration satisfies that for every i ∈ {0, . . . ,m},
Xi+1 −Xi is either a critical element or a pair of matched elements.

In fact, Corollary 3.50 has a converse result. As a consequence, Morse theory may be seen
as a theory of nice filtrations for a space. We formalize this idea as follows:

Theorem 3.51. Let X be a finite poset. Then:

(A) If f : X → Cm is a tame Morse function, then there is an induced filtration by down-sets
as in Equation (3.4) satisfying that Xi = f−1(Ui) and that for every i ∈ {0, . . . ,m},
Xi −Xi−1 is either a critical element or a pair of matched elements.

(B) Conversely, if there is a filtration by down-sets as in Equation (3.4) satisfying that for every
i ∈ {0, . . . ,m}, either Xi−Xi−1 = {xi} or Xi+1−Xi = {xi, yi} with xi ≺ yi, then there
is a function f : X → Cm defined as follows. For every i ∈ {0, . . . ,m} and x ∈ Xi−Xi−1,
f(x) = i. Moreover, this function is tame Morse.

We introduce the following notation: given a finite posetX and a Morse function f : X → R,
for each a ∈ R we denote

Xf
a =

⋃
f(x)≤a

Ux.
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Observe that for each a ∈ R, the subposet Xf
a is an open subset of X . When the Morse function

f is clear from the context, we simply write Xa for Xf
a . Let us say f(X) = {aj}nj=0 where the

{aj}nj=0 are increasingly ordered, then there is a filtration of X induced by f :

Xa−1 = ∅ ↪→ Xa0 ↪→ · · · ↪→ Xaj ↪→ Xaj+1
↪→ · · · ↪→ Xan = X (3.5)

Since we are interested in constructing right filtrations, we now improve Corollary 3.48 to
not only replace Morse functions with dynamically equivalent tame ones, but also such that the
induced filtrations by the two maps are compatible in the sense that we will describe below.

Theorem 3.52. Let X be a finite poset and let f : X → R be a Morse function satisfying the Ex-
clusion condition. Then, there exists a tame Morse function f ′ : X → R dynamically equivalent
to f . Moreover, for each Xf

aj
in Equation (3.5) there is an i ∈ N such that Xf ′

i is homeomorphic
to Xf

aj
and the homeomorphism is compatible with the filtration. That is, we have a commutative

diagram where the vertical arrows are homeomorphisms:

Xf
a0

· · · Xf
aj

· · · Xf
an = X

Xf ′

0 · · · Xf ′

i · · · Xf ′
m = X.

(3.6)

Proof. First, by Theorem 3.42 there exists an associated Morse matchingMf satisfying that: for
(x, y) ∈ X ×X such that x ≺ y, (x, y) ∈Mf if and only if f(x) ≥ f(y). Now we will work as
in Theorem 3.47 but taking into account that we do not only have a matching but also a function
f .

Now we show that we can build a filtration as in Equation (3.3). We define X−1 as the empty
set. Now we apply the following iterative process. For Xi−1 6= X , a down-set subposet of X , we
denote by Mi the set of minimal elements of X in X −Xi−1. Consider

t = min{f(c) : c critical and c ∈Mi}.

If there is a unique c where f attains the minimum t, then define Xi = Xi−1 ∪ {c}. If that is not
the case and there are {c1, . . . , ck} ⊂Mi critical and such that f(cl) = t, then we order them and
define for each l ∈ {1 . . . , k}, Xi+l−1 = Xi+l−2 ∪ {cl}.

Assume there are no critical elements in Mi. Consider the set of edges:

E = {e ∈M : s(e) ∈Mi and (Ût(e) − s(e)) ⊂ Xi}.

Consider t = min{f(s(e)) : e ∈ E}. If there is a unique e where f attains the minimum t,
then define Xi as the down-set with the elements Xi−1 ∪ {s(e), t(e)}. Otherwise, there are
{e1, . . . , ek} ⊂ E such that f(s(el)) = t, then we order them and define for each l ∈ {1 . . . , k},
Xi+l−1 as the down-set with the elements Xi+l−2 ∪ {s(el), t(el)}.

Observe that if Xi 6= X is a down-set subposet of X and there are no critical elements in
Mi, then among the e ∈ M such that s(e) ∈ Mi, there must be at least one satisfying that
(Ût(e) − s(e)) ⊂ Xi−1 since if this was not the case, thenM would not be acyclic.

Finally, we define the map f : X → Cm as follows. For every i ∈ {0, . . . ,m} and x ∈
Xi −Xi−1, f(x) = i. It is clear that the map f satisfies the desired conditions.
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3.2.2 Cancelling critical points
Recall that Morse functions and matchings measure in a certain sense the evolution of invariants
across a filtration of a chosen space X . Moreover, passing through regular values keep the
invariants unchanged. So, it may be desirable to construct Morse functions and matchings with
as few critical values as possible. In order to obtain such functions we present an approach
consisting in canceling pairs of critical elements. This approach extends to the context of posets
known results on smooth manifolds and simplicial complexes.

We present a result, which can be seen as the generalization of [75, Theorem 11.1] to our
context.

Theorem 3.53 (Cancelling critical points). Given a Morse matchingM on a finite graded poset
X , assume that z(p+1) and x(p) are critical points such that there is a uniqueM-path

γ : z � y = x0 ≺ z0 � x1 ≺ z1 � · · · ≺ zr � xr = x

with y(p) ≺ z(p+1) (there is no otherM-path from any p-face of z(p+1) to x(p)). Then there is a
matchingM′ such that:

• The set of critical points ofM′ is

crit(M′) = crit(M)− {x, z}.

• Moreover,M′ =M except along the uniqueM-path from ∂z to x.

Proof. We defineM′ as follows:

1. tM′(w) = tM(w) if w /∈ {y, z0, x1, z1, . . . zr, x} (M′ = M except along the unique
gradient path from ∂z to x)

2. tM′(xi) = zi−1, i = 1, . . . , r (we reverse the gradient path from x to z0 so x is no longer
critical)

3. tM′(y) = z (we reverse the arrow from y to z so z is no longer critical).

It remains to check that there are no closedM′-paths. We argue by contradiction. Suppose there
was a closedM′-path δ.

Claim. Under the above hypothesis, δ would contain at least one p-element from γ and one
p-element not in γ.

Proof of the Claim. The elements coming from γ can not give a closed M′-path on their own
since we have just reversed their arrows. The elements of X which are not in γ can not give
a closedM′-path since in that case we would also have a closedM-path andM is a gradient
vector field. Therefore in δ we must have at least one p-element in each of their sets.
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Hence, δ would contain a sequence of the form:

xi ≺ w0 � s1 ≺ w1 � · · · ≺ ws � xj

where s ≥ 0, wl 6= xk, wl 6= zk, sl 6= xk, sl 6= zk, for all l and k. Since tM′(wl) = tM(wl) and
tM′(sl) = tM(sl) for all l, we have aM-path:

w0 � s1 ≺ w1 � · · · ≺ ws � xj.

Let us consider two cases:

1. If i 6= 0, then s1 6= xi−1, xi and s1 ≺ tM′(xi) = zi−1. Therefore, we can define a second
gradientM-path γ′ 6= γ from ∂z to x:

γ′ : y =x0 ≺ z0 � x1 ≺ · · · � xi−1 ≺ zi−1 � s1 ≺ w1 � · · ·
� xj ≺ zj � · · · � xr = x.

Which is a contradiction.

2. If i = 0, then y = x0 6= s1 ≺ tM′(y) = z. Therefore, we can define the followingM-path:

γ′ : z � s1 ≺ w1 � · · · ≺ ws � xj ≺ zj � · · · � xr = x

which is different from γ and also goes from ∂z to x. Then we have a contradiction.

This result raises the question of what is the minimum number of critical points of a Morse
function for a given space X . That is equivalent to studying the relations between dynamics
and topology on X . We will see later than Morse inequalities provide a partial answer to this
question.



Chapter 4
Structure Theorems for Morse Theory on

posets and their consequences

We have studied in the previous chapter the notions of matchings (or vector fields) and Morse
functions. Furthermore, we have addressed the relations between them. At this stage, we already
know how to construct, for a finite well-behaved poset X , a filtration induced by a (tame) Morse
function

Xa−1 = ∅ ↪→ Xa0 ↪→ · · · ↪→ Xaj ↪→ Xaj+1
↪→ · · · ↪→ Xan = X (4.1)

which satisfies that for every i ∈ {0, . . . ,m}, Xi+1 −Xi is either a critical element or a pair of
matched elements. In this chapter we address the study of such filtrations so we can control the
evolution of certain topological invariants as we advance on the filtration, that is, the filtrations
have a good-topological behavior. We are interested in finding properties about the dynamics
that we define on X , that is, properties about the Morse functions or matchings, which result in
a good-topological behavior of the filtration.

The organization of the chapter is the following. First, we will study the existence and form
of some Structure Theorems for Morse theory for posets. Afterwards, we will obtain some
consequences of the preceding results.

Some of the results of this chapter were introduced in our work [66]. However, in that paper
we did not use the approach involving tame Morse functions.

4.1 Structure Theorems for Morse Theory on posets
In this section we study the existence and form of some Structure Theorems for Morse theory in
this context.

4.1.1 Adding new connected components is critical
We begin with our study of the interplay between dynamics and topology on finite posets. We
denote by b0(X) the number of connected components of X . The following result guarantees
that for a tame Morse function f : X → Cm, new connected components of Xi (as i ∈ Cm
increases) arise as critical minimal elements.

Proposition 4.1. Let X be a path-connected finite down-wide poset and let f : X → Cm be a
tame Morse function.

1. If b0(Xi) < b0(Xi+1), then i ∈ Cm is critical.

55
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2. Furthermore, b0(Xi+1) = b0(Xi) + 1 and the critical value i+ 1 corresponds to a minimal
element of X .

Proof. We prove the first part by showing the contrapositive. Assume i + 1 ∈ Cm is regular.
Then, Xi+1 − Xi = {x, y} with x ≺ y. Since X is down-wide, there exists x′ ≺ y, x′ 6= x.
By the definition of Morse function, f(x′) < f(y) and x′ ∈ Xi, so b0(Xi) = b0(Xi+1). For the
second part, first observe that if i + 1 ∈ Cm is critical, then f−1(i + 1) is just one element x, so
b0(Xi+1) ≤ b0(Xi) + 1. Finally, it remains to check that x is minimal. If that were not the case,
then there would exist a w ∈ Xi such that w ≺ x and f(w) < f(x), so b0(Xi+1) = b0(Xi).

As a consequence of Theorem 3.52 we obtain:

Corollary 4.2. Let X be a path-connected finite down-wide poset and let f : X → R be a Morse
function satisfying the Exclusion condition. Let a, b ∈ R, a < b.

1. If b0(Xa) < b0(Xb), then there exists a critical value c ∈ (a, b].

2. Furthermore, one of those critical values c ∈ (a, b] corresponds to a minimal element of
X .

Example 4.3. Consider the Morse function represented in Figure 4.1.1. The value 3 must cor-
respond to a critical point since we are adding a new path-component (b0(X3) = b0(X2) + 1).
Moreover, the point corresponding to the value 3 is of zero height.

3 2 0

7

6 5 1

Figure 4.1.1: Regular values and path-components in general posets.

Proposition 4.2 may not hold for arbitrary posets, as the following example shows.

Example 4.4. Consider the Morse function represented in Figure 4.1.2. The value 4 is regular.
However, b0(X4) 6= b0(X3) while there are no critical values in (3, 4].

5

4

6 9 8

7

3

Figure 4.1.2: Regular values and path-components in general posets.
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4.1.2 Failure of the expected Structure Theorems
Both in smooth and discrete Morse Theory, manifolds and cell complexes can be recovered
up to homotopy equivalence from Morse functions defined on them by means of the so called
Structure Theorems of Morse Theory. This results can be stated as follows (see for example [125]
and [77]).

Theorem 4.5 (Classical and discrete Structure Theorems). • Let X be a compact manifold
and let f : X → R be a Morse function. Then, X is homotopy equivalent to a CW-complex
with exactly one p-cell for each critical point of index p.

• Let X be a regular finite CW-complex and let f : X → R be a discrete Morse function.
Then, X is homotopy equivalent to a CW-complex with exactly one p-cell for each critical
cell of index p.

One may wonder whether it is possible to prove an analogous result to Theorem 4.5 in the
setting of posets, that is:

Conjecture 4.6. Let X be a well-behaved poset and let f : X → R be a well-behaved Morse
function on X . Then, X is homotopy equivalent to a poset with exactly one element of height p
for each critical point of index p.

The next example shows that Conjecture 4.6 fails.

Example 4.7. Consider the face poset of the simplicial complex depicted in Figure 4.1.3. It does
not have the homotopy type of a point since its face poset does not have any strong homotopic
removable point and a poset is contractible if and only if it can be contracted by removing strong
homotopic removable points (see [6, Example 5.1.12] for a more detailed exposition). However,

Figure 4.1.3: The Triangle.

there is a Morse function with only one critical point, namely, the Morse function associated to
the matching drawn in the figure.

Example 4.7 shows that this Morse theory on posets sees at most the simple homotopy type
of the posets but does not recover by any means their (strong) homotopy type.

So, this phenomena leads us to a second conjecture.

Conjecture 4.8. Let X be well-behaved poset and let f : X → R be a well-behaved Morse
function on X . Then, X is homotopy equivalent to a CW-complex with exactly one one p-cell for
each critical point of index p.
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We will see that Conjecture 4.8 fails as well. In order to do so, we recall a result by Barmak.

Definition 4.9. A topological space (X, τ) is: T1 if for any two distinct points x, y ∈ X , there
exist open subsets U and V of X such that: x ∈ U , y ∈ V , x /∈ V and y /∈ U .

Theorem 4.10 ( [6, Theorem 2.3.2, Corollary 2.3.4]). 1. Let X be a finite space and let Y be
a T1-space homotopy equivalent to X . Then X is a disjoint union of contractible spaces.

2. Let X be a connected and non contractible T1-space. Then X does not have the same
homotopy type as any finite space.

As a consequence of Theorem 4.10, and the fact that CW -complexes are T1 (see [95]), then
Conjecture 4.8 fails.

However, a weaker result can be proved. Minian proved that the order complex of X is
homotopy equivalent to a CW-complex with exactly one one p-cell for each critical point of
index p (see [126]). Nevertheless, we are interested in studying Morse theory intrinsically in the
setting of finite posets and to obtain properties about the posets themselves and not just about
their associated order complexes.

4.1.3 Structure Theorems for Morse Theory on posets
This subsection is devoted to proving the substitutes of the Structure Theorems for Morse Theory
in this context, that is: several invariance and collapsing results and an adjunction theorem. Both
the invariance and collapsing theorems guarantee that in the absence of critical values, a certain
invariant remains unchanged provided the matching satisfies a reasonable property. The adjunc-
tion theorem provides a way to control the change in homotopy type (even homeomorphism)
when we reach a critical value.

We begin with a definition extending the ideas of Minian’s work ([126]).

Definition 4.11. Let X be a finite poset andM a matching on X . The matchingM is homo-
logically admissible if each element of the matching is homologically admissible. The notions
of 1-weakly homotopically admissible, weakly homotopically admissible and homotopically ad-
missible matching are defined analogously.

Definition 4.12. Let X be a finite poset. A Morse function f : X → R satisfying the Exclusion
condition is homologically admissible, respectively 1-weakly homotopically admissible, weakly
homotopically admissible and homotopically admissible if its associated matchingMf is so.

Inspired by the notions of h-regular and cellular posets introduced in [126], we present the
following definition.

Definition 4.13. LetX be a finite poset andM a matching onX . The matchingM is homology-
regular if for every x(p) ∈ crit(M), the subspace Ûx is graded and has the homology of a
sphere Sp−1 where p is the height of x. The matching M is homotopy-regular if for every
x(p) ∈ crit(M), the subspace Ûx is a finite model of Sp−1 where p is the height of x.
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Definition 4.14. Let X be a finite poset. A Morse function f : X → R satisfying the Exclusion
condition is homology-regular or homotopy-regular if its associated matchingMf satisfies that
property.

Proposition 4.15. Let X be a finite path-connected down-wide poset and let f : X → Cm be a
homologically admissible tame Morse function. If i + 1 is a regular value, then i : Xi ↪→ Xi+1

induces an isomorphism in all homology modules.

Proof. Assume that f−1(i) = {x, y} with x ≺ y. Then x is a strong homotopic removable
point in Xi+1, so i : Xi+1 − {w} ↪→ Xb is a homotopy equivalence, so it is enough to prove
that i : Xa = Xb − {w, v} ↪→ Xb − {w} induces an isomorhism in homology. By applying the
long exact sequence of homology to the pair (Xb − {w}, Xa) it follows that i : Xa ↪→ Xb − {x}
induces an isomorphism in all homology groups if and only if H∗(Xi+1 − {x}, Xi) ∼= 0. As a
consequence of the Excision Theorem (see [95, Theorem 2.20]), given two open sets A and B
which cover Xi+1 − {x}, then there is an isomorphism H∗(B,A ∩ B) ∼= H∗(Xi+1 − {x}, A).
Considering A = Xi and B = Uy, it follows that

H∗(Uy, Ûy − {x}) ∼= H∗(Xi+1 − {x}, Xi).

Since x ≺ y is an element in the matching and the matching is homologically admissible, then
Ûy−{x} is acyclic. By applying the long exact sequence of homology to the pair (Uy, Ûy−{x})
and using the fact that Uy is contractible, it follows that H∗(Uy, Ûy − {x}) ∼= H∗(Ûy − {x}),
so H∗(Uy, Ûy − {x}) ∼= 0 if and only if the element of the matching w ≺ v is homologically
admissible.

Remark 4.16. Observe that in the above proof Ûy − {x} is always non-empty because X is a
down-wide poset.

Remark 4.17. Alternatively, Proposition 4.15 can be proved by applying McCord-Quillen Ho-
mological Theorem (Theorem 2.34).

Proposition 4.15 can be proved as well without making use of tame Morse functions. How-
ever, that approach relies much more on combinatorial arguments. That was what we did in [66].
We introduce here the first part of the argument for comparison and illustration of the advantages
of using tame Morse functions. The second part would amount to invoking McCord-Quillen
Homological Theorem (Theorem 2.34).

Proposition 4.18. LetX be a finite path-connected down-wide and two-wide poset. Let f : X →
R be a Morse function. Suppose that (a, b] for a < b contains no critical values of f and contains
at most one regular value c. Then, either Xb = Xa or Xb −Xa = {vi, wi}ri=1, where:

1. f(vi) = c for all i.

2. wi ≺ vi with f(vi) ≤ f(wi) for all i.

3. {vi, wi} ∩ {vj, wj} = ∅ for all i 6= j.
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4. For all i, wi is an up strong homotopic removable point of Xb.

Proof. Let V = {v ∈ X : f(v) = c}. Since c is a regular value, for each v ∈ V there exists:

1. a unique w ∈ X such that w ≺ v and f(v) ≤ f(w),

2. or else, a unique w ∈ X such that v ≺ w and f(w) < f(v) (in case v ≺ w and f(w) =
f(v) we rename v and w to be in the first case).

Observe that by the Exclusion Lemma (Lemma 3.40) exactly one of these two possibilities can
hold. During all the proof, we will refer to an arbitrary vi as v and to its correspondent wi as w.

Suppose that we are in the second case, then f(w) ≤ a since f(v) is the unique regular value
in (a, b] and f(w) < f(v) ≤ b. Therefore,Xb = Xa. So, let us assume now that we are in the first
situation. We have to check that w /∈ Xa, that is, there is no u ∈ X , w < u such that f(u) ≤ a.
Suppose that there exists such an u ∈ X and we will reach a contradiction. First, observe that
w ⊀ u because of the definition of Morse function (f(u) ≤ f(w) and f(v) ≤ f(w) can not
hold simultaneously). So there exists v′ such that w ≺ v′ < u. Since X is two-wide, there
exists v′′ 6= v′ such that w ≺ v′′ < u. By the definition of Morse function, since f(v) ≤ f(w),
it follows that f(v′) > f(w) and f(v′′) > f(w). Now, by repeating this argument (taking v′

instead of w in the first iteration) a finite number of times, we arrive to a contradiction with the
definition of Morse function. Therefore, we have proved (1) and (2).

Condition (3) follows as a straightforward consequence of the definition of Morse function.
It remains to check assertion (4). That is, we have to see that w is an up strong homotopic
removable point in Xb. So, suppose on the contrary that there exists u 6= v, such that w ≺ u and
u ∈ Xb. Then f(w) < f(u) by the definition of Morse function (w ≺ u and f(w) > f(v)) and
therefore f(u) > a. By the claim u ∈ Xa, then there exists z > u such that f(z) ≤ a, but we
get w ≺ u < z and so w ∈ Xa, which is a contradiction. Then w is an up strong homotopic
removable point.

We can now state the first invariance theorem. It is a homological invariance theorem, which
asserts that in the absence of critical values, the homology remains unchanged provided the
matching is homologically admissible. This result, combined with the adjunction theorem, is
enough to prove the Morse inequalities.

Theorem 4.19 (Invariance theorem for homology). Let X be a finite path-connected down-wide
and two-wide poset and let f : X → R be a Morse function. Suppose that (a, b] for a < b
contains no critical values of f . If f is homologically admissible, then the inclusion i : Xa ↪→ Xb

induces an isomorphism in homology.

Proof. It follows by combining Theorem 3.52 and Proposition 4.15.

Our next goal is to state an invariance theorem for weak homotopy, where again it is necessary
to use the topology of the posets rather than their combinatorial properties. We need to add the
extra hypothesis that the Morse matching associated to the function f is 1-admissible.
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Proposition 4.20. Let X be a finite path-connected down-wide poset amd let f : X → Cm be a
homologically admissible and 1-admissible tame Morse function. If i+ 1 is a regular value, then
i : Xi ↪→ Xi+1 is a weak homotopy equivalence.

Proof. We will apply McCord-Quillen Theorem (Theorem 2.32) to the base {Ux : x ∈ Xb −
{w}}. There are two cases to consider:

1. If x 6= v, then i−1(Ux) has a maximum and therefore is contractible, so i|i−1(Ux) : i−1(Ux)→
Ux is a weak homotopy equivalence.

2. If x = v, then i|i−1(Ux) : i−1(Ux) → Ux is the map i : Ûv − {w} ↪→ Uv. The subspace
Uv is contractible so it is homotopically trivial. Therefore i : Ûv − {w} ↪→ Uv is a weak
homotopy equivalence if and only if Ûv − {w} is homotopically trivial. Now, since Ûv −
{w} is simply connected and acyclic, by Hurewicz Theorem it is homotopically trivial.

As a consequence of Proposition 4.20 we obtain a second invariance theorem which guar-
antees that, in the absence of critical values, the weak homotopy type remains unchanged, pro-
vided that the matching is 1-admissible and homologically admissible. This result is analogous
to [75, Theorem 3.3] in discrete Morse theory and plays the role of [125, Theorem 3.1] in smooth
Morse Theory. Note that this result highlights the need of using the topology of posets and not
just their combinatorial properties.

Theorem 4.21 (Invariance theorem for weak homotopy). LetX be a finite path-connected down-
wide and two-wide poset and let f : X → R be a Morse function. Suppose that (a, b] for a < b
contains no critical values of f . If f is homologically admissible and 1-admissible, then the
inclusion i : Xa ↪→ Xb is a weak homotopy equivalence.

Remark 4.22. Theorem 4.21 does not necessarily hold for arbitrary posets, as Example 4.4 shows.

The following result explains what happens with the homotopy type when we reach critical
values. It plays the role of [125, Theorem 3.2] in the case of smooth Morse theory, and [75,
Theorem 3.4] in discrete Morse theory. The advantage of introducing tame Morse functions is
that this result becomes trivial. In [66] we proved it without using tame Morse functions.

Theorem 4.23 (Adjunction theorem). Let X be a path-connected finite poset and let f : X → R
be a tame Morse function. Suppose that f−1({i+ 1}) = {x} is a critical element. Then Xi+1 =
Xi ∪ {x}, that is, Xi+1 is obtained from the poset Xi by adding a new element x.

As a consequence of Theorem 3.52, we obtain the general result for Morse functions.

Theorem 4.24. Let X be a path-connected finite two-wide poset and let f : X → R a Morse
function. Suppose that there are no regular values in (a, b] and that there is only one critical
value c ∈ (a, b]. That is, Im f ∩ (a, b] = {c} is a critical value. Suppose that f−1({c}) =
{s(ei), t(ei)}i∪{xj}j where {ei}i are the edges of the matched elements by f (the edges ofMf )
and the {xj}j are critical elements. Then Xb = Xa ∪ {s(ei), t(ei)}i ∪ {xj}j .
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We end up the section with a result we discovered recently and which is stronger than the
invariance theorems due to Propositions 2.44 and 2.42. It is a collapsing theorem which claims
that in the absence of critical values and under suitable hypothesis on the dynamics defined on
the poset, there is not only an invariance in some topological invariant, but we can also realize
that invariance through elementary collapses.

Theorem 4.25 (Collapsing theorem). Let X be a finite path-connected down-wide poset, let
f : X → Cm be a tame Morse function and let i+ 1 be a regular value.

(1) If f : X → Cm is homologically admissible (see Definition 4.12), then Xi+1

h

↘ Xi.

(2) If f : X → Cm is 1-weakly homotopically admissible and homologically admissible, then

Xi+1

w

↘ Xi and in consequence Xi+1

γ

↘ Xi.

(3) If f : X → Cm is homotopically admissible, then Xi+1

s

↘ Xi.

Proof. Assume that f−1(i) = {x, y} with x ≺ y. Then x is a strong homotopic removable point
in Xi+1. Now the result follows from Proposition 2.46.

As a consequence of Theorem 3.52, we obtain the general result for Morse functions.

Corollary 4.26. Let X be a finite path-connected down-wide and two-wide poset, let f : X →
Cm be a Morse function and let i+ 1 be a regular value.

(1) If f : X → Cm is homologically admissible, then Xi+1

h

↘ Xi.

(2) If f : X → Cm is 1-weakly homotopically admissible and homologically admissible, then

Xi+1

w

↘ Xi and in consequence Xi+1

γ

↘ Xi.

(3) If f : X → Cm is homotopically admissible, then Xi+1

s

↘ Xi.

4.1.4 An example
In this subsection we work out an example to illustrate the previous results.

Example 4.27. Let us denote by X the finite model of RP 2 depicted in Figure 4.1.4 (see [6,
Example 7.1.1], [94, Proposition 4.1] and [46, p. 138]). It can be checked that it is two-wide,
down-wide and homologically admissible. Consider the function f : X → R given by the values
depicted at the right side of the elements of X . It is clear that f is a Morse function. We will
denote the level subposets by Xt.

We begin the analysis of the level subposets. First, as Proposition 4.2 claims, the minimum
value of f , corresponding to the element w1, is a critical value (we are adding a path-connected
component) (see Figure 4.1.5):
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Figure 4.1.4: Morse function on a finite model of RP 2.
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Figure 4.1.6: Level subposets X1, X3 and X5.
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Figure 4.1.7: Level subposets X6 and X8.

As we reach the value t = 1, the inclusion i : X0 → X1 induces an isomorphism in homology.
Observe thatX1 is contractible by removing strong homotopic removable points (see Figure 4.1.6
(a)).

The situation does not change when we reach the value t = 3 since X3 is still contractible by
removing strong homotopic removable points (see Figure 4.1.6 (b)).

The value t = 5 is critical and the map i : X3 → X5 no longer induces an isomorphism in
homology. Observe that X5 has the homotopy type, by removing strong homotopic removable
points, of a finite model of the circle S1 (see Figure 4.1.6 (c)).

The value t = 6 is regular and it can be checked that the map i : X5 → X6 induces an
isomorphism in homology (see Figure 4.1.7 (a)).

The situation does not change when we reach the value t = 8 (see Figure 4.1.7 (b)) nor the
value t = 10 (see Figure 4.1.8).
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Figure 4.1.8: Level subposet X10.

Finally, we reach the value t = 12, which is critical. The map i : X9 → X12 = X induces an
isomorphism in homology although t = 12 is a critical value.

4.2 Consequences of the Structure Theorems
We now pay attention to the consequences of the theory developed in the previous section.

4.2.1 Improving Forman’s Theory
Forman’s discrete Morse theory depends on a collapsing theorem for Morse functions ([75,
Corollary 3.5]). However, this result has two drawbacks:

1. First, it involves the use of simple homotopy types.

2. Second, it only applies to discrete Morse functions on regular CW-complexes. Later, it
has been extended (see for example [102] to h-regular CW-complexes but forcing that
non-regular cells have to be critical for the discrete Morse functions.

We provide an alternative proof without that requirements by using our invariance theorems.
First, we need to provide a generalization of the notion of discrete Morse function in the sense
of Forman (see Definition 3.22) to the setting of h-regular CW-complexes and introduce some
notation.

Definition 4.28. Let K a finite h-regular CW-complex and denote by K(=p) the set of p-cells of
K. A discrete Morse function on X is a map f :

⋃
pK

(=p) → R satisfying the following two
conditions for all σ ∈ K(=p):

1. #{τ (p+1) > σ : f(τ) ≤ f(σ)} ≤ 1

2. #{τ (p−1) < σ : f(τ) ≥ f(σ)} ≤ 1.

LetK be a finite h-regular CW-complex and f : K → R a discrete Morse function. Then, Ka

denotes the level subcomplex corresponding to the value a, that is, the subcomplex of K defined
as follows:
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Ka =
⋃

f(τ)<a

⋃
σ≤τ

σ.

Observe that for a h-regular CW-complex K endowed with a Morse function f : K → R,
there is an induced Morse function on its face poset X (f) : X (K) = X → R. Moreover, the
face poset functor satisfies X (Ka) = X (K)a.

Theorem 4.29 (Improvement of Forman’s collapsing result). Let K be a finite h-regular CW-
complex and let f : K → R be a discrete Morse function such that X (K) is two-wide and
X (f) : X (K) → R is homologically admissible and 1-weakly homotopically admissible. If
(a, b] for a < b contains no critical values of f , then Kb is homotopy equivalent to Ka.

Proof. Observe that X (f) : X (K) → R verifies the hypothesis of the Invariance theorem for
weak homotopy (Theorem 4.21). Now the result follows from Theorem 2.67 (6).

Corollary 4.30. Let X be a a finite h-regular CW-complex and f : K → R a discrete Morse
function such that X (K) is two-wide and X (f) : X (K) → R is homologically admissible and
1-weakly homotopically admissible. Then, X is homotopy equivalent to a CW-complex with
exactly one p-cell for each critical cell of index p.

4.2.2 Morse-Pitcher Inequalities
Another consequence of our Structure Theorems of Morse Theory for finite spaces is that we can
reproduce the standard argument (presented for example by Milnor or Pitcher [125,141]) to prove
the Morse inequalities in this new context of posets. We consider coefficients in a principal ideal
domain. We state some auxiliary algebraic results from [125, 141] in order to prove the Morse
inequalities.

Let
X−1 = ∅ ↪→ X0 ↪→ · · · ↪→ Xj ↪→ Xj+1 ↪→ · · · ↪→ Xm = X (4.2)

be a filtration of a poset X induced by a Morse function f : X → R (as in Corollary 3.50).
We begin with the definition of sub-additive function:

Definition 4.31. Let S be a map which assigns an integer to each pair of subposets of the Filtra-
tion (4.2). The map S is sub-additive if for every triad Xi ⊆ Xj ⊆ Xk, it holds that:

S(Xk, Xi) ≤ S(Xk, Xj) + S(Xj, Xi).

Proposition 4.32. Let Xi ⊆ Xj elements of the Filtration (4.2) and k a natural number.

1. Let S be a sub-additive map. Then

S(Xm, X−1) ≤
m∑
j=0

S(Xj, Xj−1).
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2. Let be k ≤ m. The map Sk given by

Sk(Xj, Xi) = rankHk(Xj, Xi)− rankHk−1(Xj, Xi)

+ rankHk−2(Xj, Xi)− · · · ± rankH0(Xj, Xi)

is sub-additive.

Definition 4.33. Let f : X → R be a Morse function. We denote by mi the number of critical
points of index i and by bi the Betti number of dimension i.

Now, Strong Morse inequalities follow from applying Proposition 4.32 to the Filtration (4.2)
(see [125] for a detailed proof).

Corollary 4.34 (Strong Morse inequalities). Let X be a down-wide and two wide poset and let
f : X → R be a Morse function. Suppose that f is homologically admissible and homology-
regular. Then, for every i ≥ 0 and any domain of coefficients:

mi −mi−1 + · · ·+ (−1)im0 ≥ bi − bi−1 + · · ·+ (−1)ib0.

Corollary 4.35 (Weak Morse inequalities). Let X be a down-wide and two wide poset and let
f : X → R be a Morse function. Suppose that f is homologically admissible and homology-
regular. Then:

1. mi ≥ bi for every i.

2. The Euler-Poincaré Characteristic satisfies a Poincaré-Hopf Theorem:

χ(X) =

deg(X)∑
i=0

(−1)ibi =

deg(X)∑
i=0

(−1)imi.

Our next goal is to strengthen the Morse inequalities in the spirit of Pitcher’s approach for
smooth Morse theory ([141]). In order to proceed, we introduce some notation and an auxiliary
result from homological algebra.

Let us denote by {c0, . . . , ck, . . . , cn} the image of the Morse function f : X → R. Then,
there exist real numbers {ak}k satisfying:

c0 < a0 < c1 < a1 · · · < ck < ak < · · · cn < an.

To simplify our notation, we will denote Xai by Xi.
We denote the coefficient ring, which is assumed to be a principal ideal domain, by R. As

a consequence of the Structure Theorem for finitely generated modules over a principal ideal
domain, it follows that:

Hi(X) ∼= Rbi ⊕ R

(r1)
⊕ · · · ⊕ R

(rηi)
.
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For the case of relative homology, we use the notation:

Hi(Xk, Xk−1) ∼= Rbki ⊕ R

(r1)
⊕ · · · ⊕ R

(rηki )
.

Set Mk
i = bki + ηki + ηk−1

i and
Mi =

∑
k=0

Mk
i . (4.3)

Proposition 4.36 ([141, Theorem 14.1]). Let (C∗(X), ∂) be a free chain complex with singular
homology modules Hi(X), i = 0, 1, . . .. Then there exists a free chain complex (L, ∂L) such
that:

1. For every i ≥ 0, the module Li has rank Mi.

2. There exists a monomorphism i : L ↪→ C which is a chain map an induces isomorphims in
homology.

Theorem 4.37 (Strengthening of Morse inequalities). Let X be a down-wide and two wide poset
and let f : X → R be an order preserving Morse function whose associated Morse matching is
homologically admissible and homology-regular. Then it holds that:

1. For every i ≥ 0:
mi ≥ bi + ηi + ηi−1.

2. For every i ≥ 0:

mi −mi−1 + · · ·+ (−1)im0 ≥ bi − bi−1 + · · ·+ (−1)ib0 + ηi.

Moreover the equality is attained when i is the height of X.

Proof. First, apply Theorem 4.36 to the singular chain complex of X . Now, observe that:

rankLi = rankHi(X) + rank Im ∂Li+1 + rank Im ∂Li .

The first set of inequalities follows from observing that rank Im ∂Li ≥ ηi−1. The second set of
inequalities follows from taking alternating sums in i.

Observe that if deg(X) = n, then µn = 0 since Hn(X) is a submodule of the free module
Cn(X). Moreover, µ0 = 0 and µ−1 is defined as 0.

Example 4.38. Consider the poset of Example 4.27. It is a finite model of the projective plane,
so its integer homology is trivial except for H0(RP 2) ∼= Z and H1(RP 2) ∼= Z2. According to
Morse inequalities, there is no constrain for a Morse function on the number of critical points in
the sense that they would provide the same information than for a one point poset. However, the
strengthening of Morse inequalities provide a much better bound: any Morse function must have
at least three critical points. This bound is in fact attached by the function provided in Example
4.27.





Chapter 5
Non-gradient dynamics. Morse-Bott Theory

In classical Morse theory, one of the goals after successfully developing Morse theory, was
extending Morse theory to more general dynamics, not just gradient vector fields. That was
achieved by Bott and it is today commonly known as Morse-Bott theory (see [32, 35–37, 134]).
When it comes to discrete Morse theory, Forman managed to extend his theory to Morse-Bott
theory and related it to Conley theory (see [74]). In this chapter we pursuit that same goal in the
context of posets.

The contents of the chapter are the following. First, we relate arbitrary matchings to a notion
of Morse-Bott functions for posets. After that we prove some Structure Theorems which gen-
eralize the previous Structure Theorems of last chapter. In order to do so, we only focus on the
homological approach to Morse-Bott theory since it is the one needed for proving the Morse-
Bott inequalities, which are the next topic of the chapter. Moreover, for practical reasons, we
work on homologically admissible posets unless stated otherwise. Then, we introduce a notion
of Lusternik-Schnirelmann category and we prove a Lusternik-Schnirelmann theorem. We finish
the chapter with a fully computed example which illustrates the main ideas we presented.

Most of the results of this chapter were introduced in our work [71].

5.1 Morse-Bott functions and Morse-Smale matchings
The purpose of this section is to introduce the notion of Morse-Bott function, Morse-Smale
matching and to prove an integration result for matchings which relates them to Morse-Bott
functions.

We recall the notion of M-path from Definition 3.10. Let X be a finite graded poset. A
M-path of index p from x(p) to x̃(p) is a sequence:

γ : x = x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r = x̃

such that for each i ∈ {0, . . . , r − 1}:

1. (xi, yi) ∈M,

2. xi 6= xi+1.

Definition 5.1. Let X be a finite graded poset. AM-cycle γ in HM(X) is a closedM-path in
HM(X).

Recall that the matchingM is a Morse matching ifHM(X) is acyclic.

69
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5.1.1 Critical subposets
In this subsection we develop the notion of critical subposet (chain recurrent set) by means
of matchings generalizing the analogous notion introduced by Forman ([74]) in the context of
discrete Morse theory.

Definition 5.2. LetM be a matching on X . We say that x(p) ∈ X is an element of the chain
recurrent setR if one of the following conditions holds:

• x is a critical point ofM.

• There is anM-cycle γ inHM(X) such that x ∈ γ.

The chain recurrent set decomposes into disjoint subsets Λi by means of the equivalence
relation defined as follows:

1. If x is a critical point, then it is only related to itself.

2. Given x, y ∈ R, x 6= y, x ∼ y if there is anM-cycle γ such that x, y ∈ γ.

Let Λ1, . . . ,Λk be the equivalence classes of R. The Λi’s are called basic sets. Each Λi

consists of either a single critical point ofM or a union ofM-cycles.

Example 5.3. Consider the finite model of RP 2 depicted in Figure 5.1.1. There is a critical point
which is also a basic set, depicted with a cross. Moreover, the dashed and dotted arrows represent
another two basic sets, each consisting of one cycle.

Figure 5.1.1: A finite model of RP 2.

5.1.2 Integration of matchings
When working in the differentiable category, Morse theory generalizes naturally to Morse-Bott
Theory. The purpose of this subsection is to generalize the integration result for matchings
(Theorem 3.11) to the context of Morse-Bott functions and arbitrary matchings.

Recall that for each edge (x, y) ∈ M, we say that x is the source of the edge and y is the
target. Moreover, we have also defined the source and target maps (only defined for elements in
the matchingM) as follows: given (x, y) ∈M, s(y) = x and t(x) = y.

Definition 5.4. LetM be a matching on a finite poset X . A function f : X → R is a Morse-Bott
or Lyapunov function if it is constant on each basic set and it is a Morse function away from the
chain recurrent set. More formally, a function f : X → R is Morse-Bott if it is constant on each
basic set and it is a Morse function in X −

⋃
γ∈M−cycles{x ∈ X : x ∈ γ}.
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We say that the critical values of a Morse-Bott function are the images of the basic sets. The
ideas of Forman’s proof of [74, Theorem 2.4] generalize to the context of graded posets giving:

Theorem 5.5 (Integration of matchings). LetX be a finite graded poset and letM be a matching
in X . Then, there exists a Morse-Bott function f : X → R such that:

1. If x(p) /∈ R and x ≺ y(p+1), then{
f(x) < f(y), if (x, y) /∈M,

f(x) ≥ f(y), if (x, y) ∈M.

2. If x(p) ∈ R and x ≺ y(p+1), then{
f(x) = f(y), if x ∼ y,

f(x) < f(y), if x � y.

Proof. First of all, we extend the equivalence relation ∼ to all of X as follows: if x /∈ R, then
{x} is an equivalence class. Second, we define an auxiliary map d : X → N given by:

d(x) = max{s : ∃M-path

γ : x = x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r = x̃(p)

such that the x′is in γ include elements from exactly
s distinct equivalence classes}.

(5.1)

Third, we define D = maxx∈X d(x). Now, we define the function f : X → R inductively on
the degree of the poset. Given x(p) ∈ X , we define f(x) as follows:

(F1) If x is a critical point ofM, then f(x) = p.

(F2) If x ∈ s(M), then

f(x) = p+
d(x)

2D
.

Note that this guarantees that

p < f(x) ≤ p+
1

2

due to d(x) ≥ 1 in this case.

(F3) If x ∈ t(M), then there exists w(p−1) such that t(w) = x and f(w) was defined in (2). We
set f(x) = f(w) and it follows that

p− 1 ≤ f(x) ≤ p− 1

2
.

It remains to check that f satisfies the desired properties. We split the verification in cases:



72 5 Non-gradient dynamics. Morse-Bott Theory

1. Assume that x(p) /∈ R and x < y(p+1).

(a) If t(x) = y, then f(y) = f(x), so

f(x) ≥ f(y).

(b) If t(x) 6= y, we consider several cases again:

i. If y is a critical point, then

f(y) = p+ 1 > p+ 1/2 ≥ f(x).

ii. If y ∈ s(M), then
f(y) > p+ 1 > p+ 1/2 ≥ f(x).

iii. If y ∈ t(M), then there exists an unique x̃(p) 6= x such that t(x̃) = y. Since
x /∈ R, there are two cases:
A. If x ∈ t(M), then

f(y) = f(x̃) ≥ p > p− 1/2 ≥ f(x).

B. If x ∈ s(M) and γ : x ≺ · · · is anyM-path beginning at x, then

γ̃ : x̃ ≺ y � x ≺ · · ·

is aM-path beginning at x̃. Moreover, since x /∈ R, x is not an element of
any closedM-path. Therefore

d(x̃) ≥ d(x) + 1,

hence
f(y) = f(x̃) > f(x).

2. Assume that x(p) ∈ R and

γ : x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · ·x(p)

r = x
(p)
0

is a non-stationary closedM-path. Then for each i, j, 0 ≤ i, j ≤ r − 1, d(xi) = d(xj),
hence f(xi) = f(xj). Moreover, by the definition of f , f(yi) = f(xi), so f is constant on
each non-stationary closedM-path.

3. Suppose x(p) ∈ R and y(p+1) > x, y � x. We want to prove that f(y) > f(x).

(a) If y is a critical point, then

f(y) ≥ p+ 1 > p+ 1/2 ≥ f(x).

(b) If y ∈ s(M), then
f(y) ≥ p+ 1 ≥ p+ 1/2 ≥ f(x).



5.1.3 Morse-Smale matchings 73

(c) Suppose y ∈ t(M). Since y � x and y 6= t(x), then there exists a unique x̃(p) 6= x(p)

such that t(x̃) = y.

i. if x is a critical point or x ∈ t(M),

f(y) = f(x̃) > p ≥ f(x).

ii. If x ∈ s(M) and γ : x ≺ · · · is anyM-path starting at x, then

γ̃ : x̃ ≺ y � x ≺ · · ·

is aM-path beginning at x̃. Moreover, x̃ is not equivalent to any element of γ,
since, otherwise, x and y would be contained in a non-stationary closed path,
which contradicts y � x. Thus d(x̃) ≥ d(x) + 1, which implies

f(y) = f(x̃) > f(x).

Remark 5.6. Observe that Theorem 5.5 generalizes the analogous integration result for Morse or
gradient matchings (Theorem 3.11).

5.1.3 Morse-Smale matchings

In this subsection we generalize the notion of Morse-Smale vector field from the context of
simplicial complexes ([74]) to the setting of finite posets.

Let X be a homologically admissible poset and let M be a matching on X . A M-cycle
γ is prime if there does not exist a natural number n > 1 and a M-cycle γ̃ such that γ is the
concatenation of γ̃ n times.

An equivalence relation on the set ofM-cycles is defined as follows. TwoM-cycles γ and γ̃
are equivalent if γ̃ is the result of varying the starting point of γ (see [74, p. 631] for an example
in the setting of simplicial complexes). An equivalence class of M-cycles is called a closed
M-orbit. The equivalence class of γ is denoted by [γ]. A closedM-orbit is prime if any of the
representative cycles is prime. The index of a closedM-orbit is defined as the index of any of
the representatives.

A special kind of matching which will play an important role is the following one. In a certain
sense, it controls the complexity of the chain recurrent set.

Definition 5.7. Let X be a homologically admissible poset. A matchingM on X is a Morse-
Smale matching if the chain recurrent set R consists only of critical points and pairwise disjoint
prime closedM-orbits.

5.1.4 An example

We finish the section with an example which illustrates its main ideas.
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Figure 5.1.2: The homologically admissible poset X with a matching.

Example 5.8. Consider the homologically admissible poset depicted in Figure 5.1.2. We we will
denote it by X .

Moreover, in Figure 5.1.2 we also exhibit a matchingM on X . The crosses represent critical
points, the dashed edges with the circles represent a periodic orbit, and the arrows represent the
matched elements. Observe that the matchingM is Morse-Smale since it only has a prime orbit
(therefore disjoint from the others) and three critical points.

We proceed to illustrate how to integrate the matchingM on X following the proof of The-
orem 5.5. First, in Figure 5.1.3 we show the values of the map d : X → N given by Equation
(5.1).

1 3

1

5

11

1 1

2

1

2 2

1

Figure 5.1.3: Values of the map d : X → N.

Observe that d(x) is greater than one only for x ∈ s(M). We compute D = maxx∈X d(x) =
5. Now, we will build a Morse-Bott or Lyapunov function f : X → R. Recall that for x(p) ∈ X ,
we define f(x) following (F1), (F2) and (F3) in p. 71.

We show the values of the Morse-Bott function f : X → R in Figure 5.1.4:
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Figure 5.1.4: Values of the map f : X → R.

5.2 Structure Theorems for Morse-Bott functions
The purpose of this Section is to prove the Structure Theorems of Morse theory for Morse-Bott
functions on posets and obtain some consequences.
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5.2.1 Structure Theorems
In what follows, we extend the equivalence relation defined in the chain recurrent setR to all of
X by saying that a point which is not critical is an equivalence class on its own. We will make
an abuse of notation and we will refer to the set of elements of the equivalence classes by the
equivalence classes.

Definition 5.9. Given a finite poset X , a point x ∈ X and a matchingM on X , we define:

∂[x] = {w ∈ X : w ≺ x̃ for some x̃ ∼ x but w � x̃}.

Example 5.10. Consider the poset depicted in Figure 5.1.1. In Figure 5.2.1 we show ∂[x] for
any x in the dashed cycle of Figure 5.1.1.

Figure 5.2.1: Example of ∂[x].

The lemma below follows from the definition of matching:

Lemma 5.11. Let γ be a cycle of index p and let u(p−1) ∈ X , ṽ(p) ∈ X , w(p+1) ∈ X and
r(p+2) ∈ X such that u, ṽ, w, r /∈ γ. Then the following holds:

t(u) /∈ γ, t(ṽ) /∈ γ, s(w) /∈ γ and s(r) /∈ γ.

We introduce the following definition: given a finite poset X and a Morse-Bott function
f : X → R, for each a ∈ R we write

Xa =
⋃

f(x)≤a

Ux.

Our next result is a homological collapsing theorem for Morse-Bott functions. As a conse-
quence of Lemma 5.11, the elements of a cycle can not be connected by arrows with elements
which are not in the cycle. Therefore, the result below follows from Theorem 4.19.

Theorem 5.12. Let X be a finite homologically admissible poset and let f : X → R be a Morse-
Bott function. If (a, b] contains no critical values, then i : Xa ↪→ Xb induces an isomorphism in
homology.

In this generalized context, we also have a result which explains what happens when a critical
value is reached.

Theorem 5.13. Let X be a finite homologically admissible poset and let f : X → R be a Morse-
Bott function. If f(x) ∈ (a, b] is a critical value which corresponds to a unique basic set and
there are no other values of f in (a, b], then Xb = Xa ∪ [x].
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Proof. There are two cases to consider. First, assume that [x] is a critical point, then the results
reduces to Theorem 4.23. So, assume [x] is a cycle of index p. Let f̃ : X/ ∼→ R denote the
function induced by f on the set of equivalence classes. We may assume that f̃ is injective, that
f̃([x]) > a and that the only critical subposet in f−1((a, b]) is [x].

Since [x] is a cycle and f(x) is a critical value, then given y(p+1) � x̃ and y /∈ [x] with
x̃ ∈ [x], we have f(y) > f(x̃). Hence, f(y) > b and Lemma 5.11 guarantees that f(z) > b for
every z > x̃, z /∈ [x]. Therefore, [x] ∩Xa = ∅. Given any:

• w(p−1) ≺ x̃(p), x̃ ∈ [x] and w /∈ [x] or

• w(p) ≺ x̃(p+1), x̃ ∈ [x] and w /∈ [x],

due to the criticality of [x], it holds that f(w) < f(x̃). Therefore f(w) ≤ a and w ∈ Xa. Hence
∂[x] ⊂ Xa. That is, Xb = Xa ∪ [x].

Remark 5.14. The hypothesis referring to f(x) ∈ (a, b] corresponding to a unique basic set can
always be reached by perturbing the Morse-Bott function, so it is not restrictive.

5.2.2 Morse-Bott inequalities

In this subsection we generalize Morse-Bott inequalities from the context of cell complexes
([74, Theorem 3.1]) to the setting of posets. This result can be seen as a combinatorial analogue
of a theorem due to Conley ([84, Theorem 1.2] [48]). Again, we assume that our coefficients
are any principal ideal domain R. From now on the poset X is assumed to be homologically
admissible.

Given a subposet Y ⊂ X we denote by Ȳ the subposet ∪x∈YUx and by Ẏ = Ȳ − Y .

Definition 5.15. For each k ≥ 0, we define

mk =
∑

basic sets Λi

rankHk(Λ̄i, Λ̇i).

Observe that in the particular case we have a Morse matching, the basic sets are just critical
points and mk is the number of critical points of index k.

Lemma 5.16. If the index of the basic set Λi is p, then Hk(Λ̄i, Λ̇i) = 0 unless k = p, p + 1.
Moreover, if Λi is just a critical point x(p), then Hk(Λ̄i, Λ̇i) = 0 for k 6= p and the ring of
coefficients, R, for k = p.

Proof. For convenience, during the proof we will denote Λi = Λ. Since all the posets involved
are cellular we can use cellular homology. Consider the Homology Long Exact Sequence for the
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pair (Λ̄, Λ̇):

· · · Hp(Λ̄) Hp(Λ̄, Λ̇) Hp−1(Λ̇)

Hp−1(Λ̄) Hp−1(Λ̄, Λ̇) Hp−2(Λ̇)

Hp−2(Λ̄) Hp−2(Λ̄, Λ̇) Hp−3(Λ̇) · · ·

j ∂

∼=

First of all, the homomorphism Hk(Λ̇) → Hk(Λ̄) is an isomorphism for k ≤ p − 2, so
Hk(Λ̄, Λ̇) = 0 for k ≤ p− 2. Second, we have that:

Hp−1(Λ̄, Λ̇) = Ker∂ = Imj ∼=
Hp−1(Λ̄)

Kerj
∼=
Hp−1(Λ̄)

Imi
.

Third, the homomorphism Hp−1(Λ̇) → Hp−1(Λ̄) induced by the inclusion is surjective by the
construction of cellular homology. Therefore Hp−1(Λ̄, Λ̇) = 0. Fourth, if Λ is just a critical point
x(p), then

Hk(Λ̄, Λ̇) = Hk(Ux, Ûx)

and by cellularity of X and the Homology Long Exact Sequence for the pair (Ux, Ûx) the result
follows.

We denote by bk the Betti number in degree k with coefficients in R. Following the the ideas
involved in the proof of [74, Theorem 3.1] and using our previous Theorems 5.12 and 5.13 we
obtain the Strong Morse-Bott inequalities:

Theorem 5.17 (Strong Morse-Bott inequalities). LetX be a homologically admissible poset and
letM be a matching on X . Then, for every k ≥ 0:

mk −mk−1 + · · ·+ (−1)km0 ≥ bk − bk−1 + · · ·+ (−1)kb0.

Proof. First of all, by Theorem 5.5 we can integrate the matching M to obtain a Morse-Bott
function f : X → R. Second, we can perturb the function f : X → R as it is done in [74, p. 643]
so it remains Morse-Bott and the following condition is satisfied: for any c ∈ R, if f−1(c) 6= ∅,
then either:

1. f−1(c) = {x, y} such that {x, y} are not in any basic set and t(x) = y
or

2. f−1(c) = Λ for some basic set Λ.
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For each c ∈ R we define:

mk(c) =
∑

basic sets Λi with f(Λi)≤c

rankHk(Λ̄i, Λ̇i)

and
bk(c) = rankHk(Xc).

It is enough to check that for any c ∈ R the sets {mk(c), bk(c)} satisfy the inequalities since
considering c big enough we have Xc = X and the result follows. We prove that the sets
{mk(c), bk(c)} satisfy the inequalities by induction. First, consider c small enough so Xc = ∅,
then the result follows trivially since mk(c) = bk(c) = 0. Now let c increase. We have to study
what happens when c reaches each of the finitely many values of f . Suppose that c ∈ (a, b) is the
only element of the image of f in the interval [a, b], so that mk(c) = mk(b) and bk(c) = bk(b),
and that the inequalities follow for the sets {mk(a), bk(a)}. If f−1(c) 6= ∅, then there are two
cases to consider:

1. Suppose f−1(c) = {x, y} such that {x, y} are not in any basic set and t(x) = y. Then by
definition of the mk(c) it follows that mk(a) = mk(b) since there are not new basic sets
whose images by f are in the interval (a, b). By Theorem 5.12, the inclusion i : Xa ↪→ Xb

induces an isomorphism in homology so bk(a) = bk(b). Therefore the inequalities hold for
the sets {mk(b), bk(b)}.

2. Suppose f−1(c) = Λi for some basic set Λi. Observe that Xc is covered by the open
subsets Xb and Λi, so by Excision Theorem it follows that the inclusion

(Λ̄i, Λ̇i) = (Λ̄i, Xb ∩ Λ̄i) ↪→ (Xc, Xb)

induces isomorphisms in homology Hk(Λ̄i, Λ̇i) ∼= Hk(Xc, Xb). Now, observe that

mk(c)−mk(b) = rankHk(Λ̄i, Λ̇i),

so,
mk(c)−mk(b) = rankHk(Xc, Xb).

Finally, the result follows as in the Morse case by applying Proposition 4.32.

Corollary 5.18 (Weak Morse-Bott inequalities). Let X be a homologically admissible poset and
letM be a matching on X . Then:

1. For every k ≥ 0, mk ≥ bk;

2. The Euler-Poincaré Characteristic satisfies a Poincaré-Hopf Theorem:

χ(X) =

deg(X)∑
k=0

(−1)kbk =

deg(X)∑
k=0

(−1)kmk.
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5.2.3 Morse-Smale matchings
Our next aim is both to extend the results of Forman about Morse-Smale matchings from the
setting of complexes ([75, Section 7]) to the setting of posets and to improve some of the results
even in the case of simplicial or regular CW-complexes.

Let X be a homologically admissible poset and let M be a Morse-Smale matching on X .
We denote by ck the number of critical points of index k and by Ak the number of prime closed
M-orbits of index k .

Recall that the coefficient ring R is a principal ideal domain. Hence, the Structure Theorem
for finitely generated modules over a principal ideal domain guarantees that:

Hk(X) ∼= Rbk ⊕ R

(r1)
⊕ · · · ⊕ R

(rηk)
. (5.2)

Making use of our Pitcher strengthening of Morse inequalities for gradient matchings we
obtain the following improvement of [75, Theorem 7.1], taking torsion into account, measured
by ηk.

Theorem 5.19. Let X be a homologically admissible poset and letM be a Morse-Smale match-
ing on X . Let the coefficient ring R be a principal ideal domain. Then, for every k ≥ 0:

Ak +
k∑
i=0

(−1)ick−i ≥ ηk +
k∑
i=0

(−1)ibk−i.

Proof. We begin with a matching M0 = M and we iterate the following procedure. Given a
closedMi-orbit {[γ]i}i:

γi : x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r ,

we define a new matching Mi+1 = Mi − (x0, y0). We iterate this process until there are no
closed orbits left. We call the obtained matchingM∗. Observe thatM∗ is acyclic or Morse and

m∗p = cp + Ap + Ap−1,

where m∗p denotes the number of critical points of index p of the matchingM∗. By our strength-
ening of Morse inequalities (Theorem 4.37), it holds that:

k∑
i=0

(−1)imk−i ≥ ηk +
k∑
i=0

(−1)ibk−i,

which implies the result we want to prove.

Definition 5.20. LetX be a homologically admissible poset and letM be a Morse-Smale match-
ing on X . Endow each element of X with an orientation. Let γ be anM-path

γ : x
(p)
0 ≺ y

(p+1)
0 � x

(p)
1 ≺ y

(p+1)
1 � · · · ≺ y

(p+1)
r−1 � x(p)

r .
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We define the multiplicity of γ by

r−1∏
i=0

−〈d(p+1)yi, xi〉p〈d(p+1)yi, xi+1〉p

where d is the cellular boundary operator and 〈• , • 〉p is the inner product on Cp(X) such that the
elements of degree p of X are mutually orthogonal.

Remark 5.21. Observe that the multiplicity of a path is always 1 or −1 due to Lemma 2.12.

The generalization of [74, Lemma 4.6] to our context is straightforward. As a consequence,
[74, Theorem 7.3] is generalised to our setting with the same proof, which we omit due to its
length and that it would be a mere reproduction of a presentation which we would not be able to
improve:

Theorem 5.22. Let X be a homologically admissible poset and letM be a Morse-Smale match-
ing on X . Let the coefficient ring R be a principal ideal domain. Let λi denote a basic set
consisting of a single closed orbit [γ] of index p. Then:

Hk(Λ̄i, Λ̇i) ∼= 0 for k 6= p, p+ 1.

Hp(Λ̄i, Λ̇i) ∼=

{
R if m(γ) = 1
R
2R

if m(γ) = −1

Hp+1(Λ̄i, Λ̇i) ∼=

{
R if m(γ) = 1

0 if m(γ) = −1

Therefore, combining the Strong Morse-Bott inequalities (Theorem 6.34) with Theorem 5.22
and taking into account that fields have no torsion, we obtain a generalization of [74, Corollary
7.4] to our setting:

Theorem 5.23. Let X be a homologically admissible poset and letM be a Morse-Smale match-
ing on X . Let the coefficients ring be the field R. Denote by A′p the number of closedM-orbits
of index p and multiplicity 1. Then, for every k ≥ 0:

A′k +
k∑
i=0

(−1)ick−i ≥
k∑
i=0

(−1)ibk−i(R).

Remark 5.24. While [74, Corollary 7.4] refined [74, Theorem 7.2], Theorem 5.23 does not refine
our improved Theorem 5.19. They are complementary results.

5.3 Homological Lusternik-Schnirelmann Theorem
The purpose of this section is to prove a Lusternik-Schnirelmann Theorem for general matchings
and a suitable definition of homological category.
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5.3.1 Homological chain category
Let (C∗, ∂) denote a free chain complex of abelian groups. It is bounded if only finitely many of
the Cp are non zero. Moreover, if each term Cp is finitely generated, then we define the rank of
C∗ as rank (C∗) =

∑
p rank (Cp).

Definition 5.25. Let (C∗, ∂) be a free chain complex of abelian groups. We define its homologi-
cal chain category

hccat(C∗) = inf

{
rank (B∗) : B∗ is a bounded complex and there is a mo-
nomorphism i : B∗ ↪→ C∗ which is a quasi-isomorphism

}
.

Let X be a topological space. We denote by S∗(X) its singular chain complex. For all the
definitions that follow we consider coefficients in Z.

Definition 5.26. Let X be a topological space. We define its homological chain category as
hccat(X) = hccat(S∗(X)).

We introduce a homological lower bound for hccat(X) analogous to the Pitcher strengthen-
ing of Morse inequalities (Theorem 4.37). Recall from Equation (5.2) the definition of ηk.

Proposition 5.27. Let X be a topological space with finitely generated homology. Then∑
k

bk + 2
∑
k

ηk ≤ hccat(X).

Proof. Let us denote by (B∗, ∂) a bounded chain complex whose homology is isomorphic to
H∗(X). By some arguments from linear algebra (see, for example [142, Theorem 4.11]), we
have bk+ηk+ηk−1 ≤ rank (Bk). Now the result follows by a sum indexed by the dimension.

Corollary 5.28. Let X be a homologically admissible poset or a CW-complex with finitely gen-
erated homology. Then

χ(X) ≤ hccat(X).

In fact, the bound given by Proposition 5.27 is the best possible as a consequence of the
following result due to Pitcher ([141, Lemma 13.2]).

Proposition 5.29. Let (C∗, ∂) be a free chain complex with singular homology modulesHk(X) ∼=
Rbk ⊕ R

(r1)
⊕ · · · ⊕ R

(rηk )
, k = 0, 1, . . .. Then there exists a free chain complex (L, ∂L) such that:

1. For every k ≥ 0, the group Lk has rank bk + ηk + ηk−1.

2. There exists a monomorphism i : L ↪→ C which is a chain map.

3. The monomorphism i : L ↪→ C is a quasi-isomorphism.



82 5 Non-gradient dynamics. Morse-Bott Theory

Corollary 5.30. Let X be a topological space with finitely generated homology. Then

hccat(X) =
∑
k

bk + 2
∑
k

ηk.

Moreover, observe that a topological X is acyclic if and only if hccat(X) = 1.
As a consequence of [49, Example 1.33] we have the following result relating the homologi-

cal chain category to the Lusternik-Schnirelmann category:

Proposition 5.31. Let K be a simply connected CW-complex with finitely generated homology
groups such that there exists n ∈ N satisfying Hn(K) 6= 0 and Hp(K) = 0 for p > n. Then

cat(K) ≤ hccat(K).

The result does not necessarily hold if we remove the simply connectedness hypothesis, as
the following example shows:

Example 5.32. Consider the Poincaré homology 3-sphere, which we denote by M . Observe that
hccat(M) = hccat(S3) = 2. However, cat(M) ≥ 3 ([83]).

5.3.2 Homological Lusternik-Schnirelmann Theorem
In this subsection we state and prove a Lusternik-Schnirelmann Theorem for the homological
chain category and general matchings on posets.

Theorem 5.33. Let X be a homologically admissible poset and letM be a Morse-Smale match-
ing on X . Then

hccat(X) ≤
∑

basic sets Λi

hccat(Λi).

In particular, ifM is a Morse matching on X , then hccat(X) is a lower bound for the number
of critical elements ofM.

Proof. We will define another Morse matching M∗ by perturbing M. The idea is to replace
each prime closed orbit by two critical points. This will be achieved by removing exactly one of
the edges of the matching in each closed orbit. By repeating the technique used in the proof of
Theorem 5.19, we obtain a Morse matchingM∗ satisfying

m∗p = cp + Ap + Ap−1,

where m∗p denotes the number of critical points of index p of the matchingM∗ (see p. 79 for the
definition of Ap).

Recall that C∗(X) denotes the cellular chain complex of X . We define a map V : Cp(X) →
Cp+1(X) as follows:

V (x) =

{
−ε(y, x)y, if there exists y ∈ X with (x, y) ∈M∗,

0, otherwise.
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Following the ideas of Minian ([126]), define the discrete flow operator φ : Cp(X)→ Cp(X)
as

φ = id + dV + V d.

The φ-invariant chains
Cφ
p (X) = {c ∈ Cp(X) : φ(c) = c}

form a well-defined subcomplex of (C∗(X), d) ([126]). Moreover, the inclusion of (Cφ
∗ (X), d)

into (C∗(X), d) induces isomorphisms in homology and Cφ
p (X) is isomorphic to the free abelian

group spanned by the critical p-elements of X ([126]). As a consequence:

hccat(C∗(X)) ≤
∑
p

m∗p =
∑
p

cp + Ap + Ap−1. (5.3)

There are two kinds of basic sets forM: critical points and disjoint closedM-orbits. Observe
that if Λi is a critical point, then hccat(Λi) = 1 while if Λi is a closed orbit, then hccat(Λi) = 2.
So, from Equation (5.3), it follows that:

hccat(C∗(X)) ≤
∑

basic sets Λi

hccat(Λi).

Finally, observe that hccat(X) = hccat(C∗(X)) due to the isomorphism between cellular ho-
mology and singular homology for cellular posets (Theorem 2.9).

Remark 5.34. In the proof of Theorem 5.33, Equation (5.3) could also be derived as a conse-
quence of combining our Pitcher strengthening of Morse-inequalities (Theorem 4.37) applied to
the matchingM∗ with Corollary 5.30.

As a consequence, we obtain the following corollary:

Corollary 5.35. Let X be a homologically admissible poset and let f : X → R be a Morse
function. Then hccat(X) is a lower bound for the number of critical points of f .

Remark 5.36. Let K be a simplicial complex or, more generally, a regular CW-complex K.
Recall that its face poset ∆(K) is a homologically admissible poset. Moreover, the chain com-
plex C•(∆(K), d) where d is the cellular boundary operator coincides with the chain complex
C•(K, ∂) where ∂ is the cellular -or simplicial in caseK is a simplicial complex- boundary opera-
tor. Therefore hccat(∆(K)) = hccat(K). Hence, we have in particular a simplicial homological
Lusternik-Schnirel- mann Theorem.

5.4 A worked out example
In this section, we work out a full example to illustrate the main ideas in Sections 5.2 and 5.3.
We recover the poset, the Morse-Smale matching and the Morse-Bott function from Example
5.8.

We insert again Figure 5.1.2 with the matching and Figure 5.1.4 depicting the values of the
Morse-Bott function.

Recall that the crosses represent critical points, the dashed edges with the circles represent a
periodic orbit, and the arrows represent the matched elements.
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Figure 5.4.1: The homologically admissible poset X with a matching.
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Figure 5.4.2: Values of the map f : X → R.

5.4.1 Structure Theorems
Recall that given the poset X and the Morse-Bott function f : X → R, for each t ∈ R we have
the level subposet

Xt =
⋃

f(x)≤t

Ux.

We will illustrate the Structure Theorems in this context, (Theorems 5.12 and 5.13), which
describe the changes in the level subposets Xt as t ∈ R increases. We begin the analysis of the
level subposets.

First, the minimum value of f is attached at a critical element (see Figure 5.4.3 (a)):
As we reach the value t = 3/10, the inclusion i : X0 → X3/10 induces an isomorphism in

homology. Observe that X3/10 is acyclic (see Figure 5.4.3 (b)).

0 0
3

10

3

10

(a) (b)

Figure 5.4.3: Level subposets X0 and X3/10.

Next, we reach the value t = 1/2 (see Figure 5.4.4 (a)). The inclusion i : X3/10 → X1/2

induces an isomorphism in homology and X1/2 is still acyclic.
As we reach the value t = 1 (see Figure 5.4.4 (b)), which is critical, the inclusion i : X1/2 →

X1 no longer induces and isomorphism in homology. The level subposet X1 has the same ho-
mology as S1.

The next value is t = 1 + 1/5 (see Figure 5.4.5). Despite corresponding to a basic set, the
homology does not change.
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Figure 5.4.4: Level subposets X1/2 and X1.

0
3

10

3

10

1

2

1

2
1

1 +
1

5

1 +
1

5

1 +
1

5

1 +
1

5 1 +
1

5

1 +
1

5

Figure 5.4.5: Level subposet X1+1/5.

Finally, we reach the value t = 2 (see Figure 5.1.4), which is critical and produces a change in
the homology since X2 = X has homology: H0(X;Z) ∼= Z, H1(X;Z) ∼= Z2 and Hk(X;Z) ∼= 0
for k ≥ 2.

5.4.2 Homological inequalities
In this last subsection, we provided the explicit computations which are necessary to check the
homological inequalities (Theorems 6.34, 5.19 and 5.33). First of all, hccat(X) = 3. We
provide the remaining information in tables (Tables 5.1, 5.2 and 5.3) assuming we work with
integer coefficients. We introduce some notation regarding the basic sets: Λ0 denotes the critical
point of degree zero, Λ1 denotes the critical point of degree one, Λ2 denotes the orbit and Λ3

denotes the critical point of degree two.

Hk(Λ̄i, Λ̇i) 0 1 2 k ≥ 3
Λ0 Z 0 0 0
Λ1 0 Z 0 0
Λ2 0 Z Z 0
Λ3 0 0 Z 0

Table 5.1: Computation of Hk(Λ̄i, Λ̇i).



Hk(Λi) 0 1 2 k ≥ 3
Λ0 Z 0 0 0
Λ1 Z 0 0 0
Λ2 Z Z 0 0
Λ3 Z 0 0 0

Table 5.2: Computation of Hk(Λi).

0 1 2 3 i ≥ 4
βi 1 0 0 0 0
ηi 0 1 0 0 0
ci 1 1 1 0 0
Ai 0 1 0 0 0
mi 1 3 1 0 0

hccat(Λi) 1 1 1 2 1

Table 5.3: Computation of several homological and combinatorial invariants.
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Chapter 6

Morse theory on loop-free categories

The purpose of this chapter is to move upwards in the diagram that we first presented in the
Introduction:

Small Cat Simplicial sets

Loop-free Cat Regular ∆-Complexes

Posets Simplicial Complexes

Chain. Complexes Manifolds

sd

N

sd

N

X

K

X

and to generalize Morse theory to the context of loop-free categories. This is motivated by the
fact that recently some constructions in Combinatorial Algebraic Topology have been carried out
in the setting of loop-free categories (see [105, 171, 172]).

The chapter is organized as follows. First, we briefly recall some notions in the context of
small categories which we use both in this chapter and the next one. We also introduce some
original ideas such as cellular categories. Then we develop from scratch a Morse theory on this
setting in order to prove the Morse inequalities. We have tried to keep the presentation as simple
and brief as possible.

Some of the results of this chapter, in particular the Morse theory for loop-free categories
was introduced in our work ( [113]) as an attempt to solve an open question by John ([97]).

6.1 Topology of small categories

In this section we recall some notions related to homotopy, weak homotopy and homology on
the setting of small categories. For more details on some classical definitions and constructions
we refer the reader to [108, 109, 121, 126, 143, 152].

89
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6.1.1 Homotopies between functors
Recall that a category is said to be small if its arrows form a set. Given a small category C, we
denote by Ob(C) its set of objects, by Arr(C) its set of arrows and by C(c, c′) the set of arrows
between the objects c and c′. Moreover, we define two maps t, s : Arr(C) → Ob(C) which send
an arrow to its target (codomain) and source (domain), respectively.

All categories will be assumed to be small and all functors will be assumed to be covariant
unless stated otherwise. We begin by introducing the notion of homotopy between functors
[108, 109].

Definition 6.1. The interval category Im of length m ≥ 0 consists of m+ 1 objects with zigzag
arrows of the form

0→ 1← 2→ · · · → (←)m.

Alternatively, the interval category Im can be defined in the following way: the objects of Im
are the non-negative integers 0, 1, . . . ,m and the arrows, other than the identities, are defined as
follows. Given two distinct objects r and s in Im, there is exactly one arrow from r to s if r is
even and s = r − 1 or s = r + 1, and no arrows otherwise.

Given two small categories C and D we denote its product by C × D. Recall that the objects
of C × D are pairs of objects in C and objects in D, and its arrows are pairs of arrows in C and
arrows in D.

Definition 6.2. Let F,G : C → D be two functors between small categories. We say that F and
G are homotopic if there exists a functor H : C × Im → D, called a homotopy (of length m),
such that H0 = F and Hm = G, for some m ≥ 0.

Alternatively, the notion of homotopy between functors can be defined as follows. The defi-
nitions are equivalent.

Definition 6.3. Let F,G : C → D be two functors between small categories. We say that F and
G are homotopic, F ' G, if there is a finite sequence of functors F0, . . . , Fm : C → D, with
F0 = F and Fm = G, such that for each i ∈ {0, . . . ,m − 1} there is a natural transformation
between Fi and Fi+1 or between Fi+1 and Fi.

Homotopies can be concatenated ([170]) and therefore, the homotopy relation between func-
tors defined above is an equivalence relation. It also holds that the relation behaves well with
respect to compositions, i.e., if F ' F ′ and G ' G′, then F ◦G ' F ′ ◦G′ whenever F ◦F ′ and
G ◦G′ make sense.

In order to state the next definition we briefly recall the definition of the classifying space
functor B from small categories to topological spaces. Given the small category C, its nerve
NC is a simplicial set (see [86] for a definition) whose m-simplices are composable m-tuples of
arrows in C:

c0
α1−→ · · · αm−−→ cm.

The face maps are obtained by composing or deleting arrows and the degenerate maps are ob-
tained by inserting identities. An m-simplex of NC is called non-degenerate if it includes no
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identity. Given a functor F : C → D between small categories, we define NF : NC → ND as
follows: if c0

α1−→ · · · αm−−→ cm is a m-simplex in NC, then

NF (c0
α1−→ · · · αm−−→ cm) = F (c0)

F (α1)−−−→ · · · F (αm)−−−−→ F (cm).

The classifying space BC is then the geometric realization |NC| of the simplicial set NC. More-
over, BC is a CW-complex with one m-cell for each non-degenerate m-simplex of NC. This
construction is functorial (see [121, 143]), because given a map φ : K → L between simplicial
sets, its geometric realization is a continuous map between topological spaces |φ| : |K| → |L|.
The classifying space functor is defined as the composition of the nerve functor with the geomet-
ric realization functor.

Definition 6.4. Let F,G : C → D be two functors between small categories. We say that F and
G are weak homotopic, denoted F 'w G if the maps BF,BG : BC → BD are homotopic.

Definition 6.5. A functor F : C → D is said to be a homotopy equivalence (respectively a
weak homotopy equivalence) if there exists another functor G : D → C such that G ◦ F ' 1C
(respectively G ◦ F 'w 1C) and F ◦ G ' 1D (respectively F ◦ G 'w 1D). Under these
circumstances we say that the categories C and D are homotopy equivalent (respectively weak
homotopy equivalent).

Recall that the classifying space functor preserves homotopies. That is, if two functors
F,G : C → D are homotopic, then the induced maps BF,BG : BC → BD on the classifying
spaces are also homotopic. Therefore, homotopy equivalence between categories implies weak
homotopy equivalence. However, the converse does not hold as the following example given by
Minian ([126]) shows.

Example 6.6. Consider a categoryN whose objects are the non-negative integers and the arrows,
other than the identities, are defined as follows. If r and s are two distinct objects in N , there is
exactly one arrow from r to s if r is even and s = r − 1 or s = r + 1 and no arrows otherwise.
Assume there is a functor F : N → N such that F ' 1N . We claim that there exists a non-
negative integer n0 such that F (n) = n, for all n ≥ n0, in particular F is not constant and the
category N is not contractible.

Let us prove the claim. First, note that if there exists a natural transformation G ⇒ 1N or
1N ⇒ G, then G fixes the odd numbers, that is, G(n) = n for n odd. As a consequence, it
follows that G(m) = m for every m > 0. By repeating a similar argument it can be deduced that
if there exists a natural transformation G′ ⇒ G or G ⇒ G′, then G′ fixes all natural numbers
larger than 1. Repeating this argument it follows that if F ' 1N , then there exists a non negative
integer n0 such that F (n) = n for all n ≥ n0 as we claimed.

However, the category N is weak contractible since BN is homotopy equivalent to [0,+∞)
and the map BN → B(0) is a homotopy equivalence of topological spaces.

Example 6.7. When the small categories C and D are partially ordered sets seen as finite topo-
logical spaces [6] (see Section 7.4) and F,G : C → D are order preserving maps, then the notion
of homotopy between functors is equivalent to the usual notion of homotopy in the context of
topological spaces (see [145] or Proposition 2.1).
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We recall a notion of “connectedness” for categories (see [144]):

Definition 6.8. A small category C is said to be connected if for any pair of objects c, c′ there is
a finite sequence of zigzag arrows joining them:

c = c0 → c1 ← c2 → · · · → (←)cm = c′.

Equivalently, a small category C is said to be connected if for any pair of objects c, c′ there is
a functor F from some interval category Im to C such that F (0) = c and F (m) = c′.

Definition 6.9. Given two small categories C and D, a functor d0 : C → D is a constant functor
onto the object d0 ofD if d0 : C → D takes every object of C to d0 and every arrow to the identity
arrow of d0.

Remark 6.10. Observe that a small category C is connected if and only if any pair of constant
functors c0, c1 : C → C onto objects c0 and c1 are homotopic.

From now on all categories are assumed to be connected.

Remark 6.11. When particularized to the context of posets, Definition 6.8 corresponds to the no-
tion of order-connectedness, which is equivalent to topological connectedness for the associated
finite spaces (see [6]).

Definition 6.12. A small category C is said to be contractible if the identity functor is homotopic
to a constant functor onto an object.

We state a useful result.

Proposition 6.13. Suppose the functor F : C → D between small categories has a left or right
adjoint G : D → C. Then F : C → D is a homotopy equivalence. In particular, when C has an
initial or terminal object, C is contractible.

Proof. If G is a right adjoint to F , then there are two natural transformations 1C ⇒ G ◦ F and
F ◦G⇒ 1D (see [147, Section 4.2]). Therefore F is a homotopy equivalence.

6.1.2 Homological Quillen’s Theorem A
In this subsection we state a homological version of Quillen Theorem A for small categories. For
a detailed presentation the reader is referred to [105, 121, 143, 152, 172, 173].

We recall the notions of left and right homotopy fibers due to Quillen.

Definition 6.14. Let C and D be small categories, let F : C → D be a functor and let d be an
object of D. The left homotopy fiber F/d of F is the small category whose objects are:

Ob(F/d) = {(c, g) ∈ Ob(C)×D(F (c), d)}

and whose arrows are:

F/d((c, g), (c′, g′)) = {f ∈ C(c, c′) : g′ ◦ F (f) = g}.
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Dually, the right homotopy fiber d/F of F is the small category whose objects are:

Ob(d/F ) = {(c, g) ∈ Ob(C)×D(d, F (c))}

and whose arrows are:

d/F ((c, g), (c′, g′)) = {f ∈ C(c, c′) : F (f) ◦ g = g′}.

We define the homology (with coefficients in a principal ideal domain) of small categories as
the homology of the associated objects by the nerve functor. We now state a homological version
of Quillen Theorem A. For the proof we refer the reader to [173]:

Theorem 6.15 (Homological Theorem A). Let C and D be small categories and let F : C → D
be a functor. If all the left homotopy fibers or all the right homotopy fibers are homologically
trivial, then F induces an isomorphism H∗(F ) : H∗(C)→ H∗(D) in homology.

6.1.3 Homology of loop-free categories

We begin by recalling the concept of loop-free category (see [105]).

Definition 6.16. A small category C is loop-free or acyclic if it satisfies the following two con-
ditions:

1. Only the identity arrows have inverses.

2. Any arrow from an object to itself is an identity.

From now on, we will assume that all loop-free categories are finite, that is, their set of arrows
are finite.

We recall a construction for loop-free categories which simplifies the computation of ho-
mology. We refer the reader to [171], [105] and [95, Appendix] for the notion of regular ∆-
complexes or regular trisps. They are just a class of regular CW-complexes where the cells are
simplices. The difference between regular ∆-complexes and simplicial complexes is that in a
regular ∆-complexes two simplices can be generated by the exact same vertices while this is not
possible for a simplicial complex.

Definition 6.17 ( [105, 172]). Let C be an loop-free category. Its order complex K(C) is a ∆-
complex (or regular trisp) whose m-simplices are the composable m-tuples of arrows in C not
including identities. For an object c, the face map dc is given by composing arrows at c or by
deleting the arrows starting or ending at c.

Observe that for a loop-free category C, it is equivalent to compute the homology asH ◦K(C)
or as H ◦ N (C).
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6.1.4 Cellular categories

We begin by introducing a grading for our loop-free categories. In order to do so, we will add
an extra assumption (to make our work easier) to the notion of graded loop-free category which
appears in [105]. Then, we will introduce the notion of cellular categories. It can be seen as an
extension of the concepts of cellular posets defined in [63] and [126].

Definition 6.18. Let C be a loop-free category and c ∈ Ob(C). We say that c is a minimal object
of C (or that c is minimal, for short) if c is not the target of any non identity arrow of C, that is,
t−1(c) = {idc}. Dually, we say that c is a maximal object of C (or that c is maximal, for short) if
c is not the source of any non identity arrow of C, that is, s−1(c) = {idc}.

Definition 6.19. We call an arrow indecomposable if it can not be represented as a composition of
two non identity arrows. A loop-free category C is called graded if there is a map r : Ob(C)→ Z
such that:

1. Whenever m : c→ c′ is a non identity indecomposable arrow, we have r(c′) = r(c) + 1.

2. Moreover, if c is a minimal object of C, then r(c) = 0.

For an object c, r(c) will be referred as its degree. Moreover, we will write c(r(c)).

Moreover, for a graded category C, Ck denotes the full subcategory of C whose objects are
the objects of C of degree less than or equal to k.

We introduce some definitions that will be necessary later.

Definition 6.20. Let C be a loop-free category and let c be an object of C. Let C − {c} denote
the full subcategory of C with Ob(C − {c}) = Ob(C)− {c}.

Definition 6.21. Let C be a loop-free category and let c be an object of C. Then Uc is the full
subcategory of C whose objects are s(t−1(c)). Moreover, we define Ûc = Uc − {c}.

Definition 6.22. Let C be a graded loop-free category. It is said to be cellular if for each c ∈
Ob(C), Ûc has the homology of a wedge of nc (r(c)− 1)-spheres for some nc ≥ 1.

Example 6.23. We provide an example of a cellular category in Figure 6.1.1. We do not include
the identity arrows in the picture.

6.2 Morse theory on loop-free categories

This section is devoted to extending Morse theory to loop-free categories. By doing that, we
answer a question by T. John ([97]).
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Figure 6.1.1: Example of a cellular category.

6.2.1 Vector fields
We begin with the definition of vector field for loop-free categories. Given an arrow f ∈ Arr(C),
we denote Arr(f) = C(s(f), t(f)).

Definition 6.24. Let C be a graded loop-free category. A vector field V on C is a subset of the
non identity indecomposable arrows of C satisfying the following conditions:

1. If f, g ∈ V , then s(f) 6= t(g).

2. If f ∈ V and #Arr(f) = 1, then s−1(s(f)) ∩ V = {f} and t−1(t(f)) ∩ V = {f}.

3. If f ∈ V and #Arr(f) > 1, then #(V ∩ Arr(f)) ≤ #Arr(f)− 1.

Remark 6.25. Condition (2) encodes the idea that closed orbits can not interact with a gradient
like flow. Condition (3) forces closed orbits in a dynamical sense to be closed in the graph
representation. This intuition will become clear later.

The set {f ∈ V : #Arr(f) = 1} will be referred as the gradient like part of the vector field.

Definition 6.26. Let C be a graded loop-free category and V a vector field on C. The vector field
V is homologically admissible if for every arrow f in the gradient like part of V , the subcategory
Ût(f) − {s(f)} is homologically trivial.

Given a loop-free category C, let us denote by H(C) the directed graph defined as follows.
The elements of H(C) are the objects of C while the edges of H(C) are the indecomposable non
identity arrows of C. If V is a vector field on C, write HV(C) for the directed graph obtained
from H(C) by reversing the orientations of the edges which are not in V . Any node of H(C) not
incident with any edge of V is called critical.

Definition 6.27. Let V be a vector field on a loop-free graded category C and let c(k), c̃(k) ∈
Ob(C) be two objects of C. A V-path, γ, of index k from c(k) to c̃(k) is a sequence:

(c(k) = x
(k)
0 , y

(k+1)
0 , x

(k)
1 , y

(k+1)
1 , . . . , y

(k+1)
r−1 , x(k)

r = c̃(k))

with r ≥ 1 such that for each i = 0, 1, . . . , r − 1:

1. There is a fi ∈ V such that fi : xi → yi,

2. There is a gi ∈ Arr(C)− V such that gi : yi → xi+1.

A V-cycle γ inHV(X) is a closed V-path inHV(X) seen as a directed graph.
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6.2.2 Critical subcategories
The notion of chain recurrent set defined for the setting of posets in Chapter 5 generalizes natu-
rally to this new context as we show below.

Definition 6.28. Let V be a vector field on a graded loop-free category C. We say that c(k) ∈ C
is an object of the chain recurrent setR if one of the following conditions holds:

• c is a critical element of V .

• There is a V-cycle γ inHV(X) such that c ∈ γ.

The chain recurrent set decomposes into disjoint subsets Λi by means of the equivalence
relation defined as follows:

1. If c is a critical element, then it is only related to itself.

2. Given c, c′ ∈ R not critical, c 6= c′, c ∼ c′ if there is a cycle γ such that c, c′ ∈ γ.

Let Λ1, . . . ,Λk be the equivalence classes of R. The Λ′is are called basic sets. Each Λi

consists either of a single critical element of V or a union of cycles, each of which has the same
index. We write Λ

(k)
i and say that Λi has index k if Λi consists of a critical point of index k or a

union of closed paths of index k.

Example 6.29. In Figure 6.2.1 we provide a representation of HV(C) for a vector field V on the
cellular category of Example 6.23. The orange arrow is the gradient like part. The pink object is
a critical element. The other colors (green, blue and red) represent different basic sets.

Figure 6.2.1: Example of a vector field.

6.2.3 Filtration induced by a vector field
Let C be a finite graded loop-free category and V a vector field on C. We show how this vector
field induces a filtration on C:

C0 ↪→ C1 ↪→ · · · ↪→ Ci ↪→ Ci+1 ↪→ · · · ↪→ Cn = C
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(a) C1 (b) C2

(c) C3 (d) C4

Figure 6.2.2: Filtration induced by a vector field.

where each Ci is a full subcategory of C. Basically, we follow the same idea as in Theorem 3.47.
We define C0 as the empty category. Now we apply the following iterative process. For Ci a full
subcategory of C, we denote byMi the set of minimal elements of C in C−Ci. If there is a critical
element c ∈Mi, then we define Ci as the full subcategory with the object c. If there are no critical
elements inM0 and there is a V-cycle γ such that Ob(

⋃
c∈γ Ûc) ⊂ Ob(Ci), then we define Ci+1 as

the full subcategory with the objects in γ. If there are no critical elements nor V-cycles satisfying
the stated conditions in M0, then we proceed as follows. Among all the arrows f in the gradient
part of V such that s(f) ∈Mi, we pick one satisfying that Ob(Ût(f)) ⊂ Ob(Ci). Then we define
Ci+1 as the full subcategory with the objects Ob(Ci) ∪ {s(f), t(f)}.

Example 6.30. We illustrate in Figures 6.2.2a, 6.2.2b, 6.2.2c, 6.2.2d and 6.2.1 the procedure
presented above for the vector field and category of Example 6.29.

6.2.4 A homological invariance theorem
In order to prove the Morse inequalities, we need the following homological invariance theorem:

Theorem 6.31 (Homological invariance theorem). Let C be a finite cellular category and V a
homologically admissible vector field on C. Consider a filtration

C0 ↪→ C1 ↪→ · · · ↪→ Ci ↪→ Ci+1 ↪→ · · · ↪→ Cn = C

as constructed in Subsection 6.2.3. If there is an f in the gradient part of V such that Ci+1 is the
full subcategory with the objects Ob(Ci)∪{s(f), t(f)}, then Ci ↪→ Ci+1 induces an isomorphism
in homology.

Proof. First of all, each right homotopy fiber of the inclusion functor i : Ci+1 − {s(f)} ↪→ Ci+1

has an initial object, so it is homologically trivial since it is contractible by Proposition 6.13.
Therefore, by the Homological Theorem A (Theorem 6.15), i : Ci+1 − {s(f)} ↪→ Ci+1 induces
an isomorphism in homology. Now, consider the inclusion:

i : Ci+1 − {s(f), t(f)} ↪→ Ci+1 − {s(f)}.
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The result would follow if we proved that

H∗(Ci+1 − {s(f)}, Ci+1 − {s(f), t(f)}) ∼= 0.

Apply the Excision theorem to the subcomplexes K(Ut(f)) and K(Ci+1 − {s(f), t(f)}) to obtain
the isomorphism:

H∗(Ut(f), Ût(f) − {s(f)}) ∼= H∗(Ci+1 − {s(f)}, Ci+1 − {s(f), t(f)}).

Observe that Ut(f) has a terminal object t(f), so K(Ut(f)) is homologically trivial. Since the
vector field V is homologically admissible, then Ût(f) − {s(f)} is homologically trivial. By the
homology long exact sequence of the pair (K(Ut(f)),K(Ût(f) − {s(f)})), it follows that

H∗(K(Ut(f)),K(Ût(f) − {s(f)})) ∼= 0

and we obtain the desired result.

6.2.5 The Morse inequalities
We now prove the Morse inequalities in the context of loop-free categories.

Given a subcategory D ↪→ C we denote by D̄ the full subcategory with objects Ob(D̄) =
∪d∈DUd and by Ḋ the full subcategory with objects Ob(Ḋ) = Ob(D̄)−Ob(D).

Definition 6.32. For each k ≥ 0, we define

mk =
∑

basic sets Λi

rankHk(Λ̄i, Λ̇i).

Proposition 6.33. If the index of a basic set Λ is k, then Hi(Λ̄, Λ̇) = 0 unless i = k, k + 1.
Moreover, if Λ is just a critical point x(k), then Hi(Λ̄, Λ̇) = 0 for i 6= k.

Proof. Observe that both Λ̄ and Λ̇ are cellular categories. In fact: Λ̄ = Λ̄k+1 and Λ̇ = Λ̄k−1. By
Excision and a standard argument it follows that

Hi(Λ̄
l, Λ̄l−1) =

⊕
deg(c)=l, c∈Λ̄

Hi−1(Ûc).

In particular, Hi(Λ̄
l, Λ̄l−1) = 0 for i 6= l. Now the result follows from the Long Exact Sequence

for the triple (Λ̄k+1, Λ̄k, Λ̄k−1).

We denote by bk the Betti number of dimension k with coefficients in a principal domain.

Theorem 6.34 (Strong Morse-Bott inequalities). Let C be a finite cellular category and let V be
a homologically admissible vector field on C. Then, for every k ≥ 0:

mk −mk−1 + · · ·+ (−1)km0 ≥ bk − bk−1 + · · ·+ (−1)kb0.
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Proof. Consider a filtration of C as described in Subsection 6.2.3:

C0 ↪→ C1 ↪→ · · · ↪→ Ci ↪→ Ci+1 ↪→ · · · ↪→ Cn = C.

We will check that the inequalities hold for every i, that is (writing mk instead of mk(Ci) and bk
instead of bk(Ci)):

mk −mk−1 + · · ·+ (−1)km0 ≥ bk − bk−1 + · · ·+ (−1)kb0

for every Ci. We argue by induction on i. For C0 it holds trivially. Assume it holds for Ci and let
us show that then it also holds for Ci+1. There are two cases to consider:

1. There is an f in the gradient part of V such that Ci+1 is the full subcategory with the
objects Ob(Ci) ∪ {s(f), t(f)}. Then, by the Homological invariance Theorem (Theorem
6.31), Ci ↪→ Ci+1 induces an isomorphism in homology. Therefore bk(Ci) = bk(Ci+1) for
all k. Moreover, mk(Ci) = mk(Ci+1) by definition.

2. The subcategory Ci+1 is the full subcategory whose objects are the union of the objects
of Ci and the elements of a basic set Λ. Then mk(Ci+1) − mk(Ci) = rankHk(Λ̄, Λ̇). By
excision, it follows that: Hk(Ci+1, Ci) ∼= Hk(Λ̄, Λ̇). Now the result is obtained by the same
arguments as in the case of posets.

Corollary 6.35 (Weak Morse-Bott inequalities). Let C be a finite cellular category and let V be
a homologically admissible vector field on C. Then:

1. For every k ≥ 0, mk ≥ bk;

2. χ(C) =
∑

i=0(−1)kbk =
∑

i=0(−1)kmk.





Chapter 7

Homotopic distance on small categories

This thesis is devoted to the study of Morse theory in finite contexts. Therefore, it is also worth
studying topological invariants which are strongly related to Morse theory as we did with a
notion of Lusternik-Schnirelmann category in Chapter 5. In this chapter we present the notion of
homotopic distance between functors which we introduced in [117]. We expect that this invariant
will prove to be related to Morse theory due to the relation we found between the two notions in
the non-finite setting and which we recall in Section 7.1.

This chapter is organized as follows. First, we briefly present the homotopic distance between
maps and its relation to Morse theory in order to motivate the material from the rest of the chapter.
Second, we introduce the definition of homotopic distance between functors, its first properties,
and some examples. In particular, we show that it generalizes a notion of categorical Lusternik-
Schnirelmann category introduced by Tanaka ([170]). Third, we further study the properties of
the distance. Finally, we focus our work in the settings of posets.

The results of this chapter were published in [117].

7.1 Homotopic distance and Morse theory

In this first section we motivate the results of the rest of the chapter by showing that their con-
tinuous counterparts in the non-finite setting are strongly connected to Morse theory. We recall
the notion of homotopic distance between maps which we introduced in [115] and some results
from our works [115] and [116].

Let f, g : X → Y be two continuous maps.

Definition 7.1. The homotopic distance D(f, g) between f and g is the least integer n ≥ 0 such
that there exists an open covering {U0, . . . , Un} of X with the property that the restrictions of
the maps to each open subset are homotopic, f|Uj ' g|Uj for all j = 0, . . . , n. If there is no such
covering, we define D(f, g) =∞.

Notice that:

1. D(f, g) = D(g, f).

2. D(f, g) = 0 if and only if the maps f, g are homotopic.

3. The homotopic distance only depends on the homotopy class. That is, if f ' f ′ and g ' g′,
then D(f, g) = D(f ′, g′).

101
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The interest of homotopic distance relies in the fact that it generalizes well-known and widely
studied invariants, such as the Lusternik-Schnirelmann category and topological complexity
among many others (see [115] and [116] for a detailed exposition). There is a relative notion
introduced in [116] which we recall now.

Definition 7.2. Let f, g : X → Y be two continuous maps, and let A ⊂ X be a subspace. The
subspace distance between the two maps f, g on A, denoted by DX(A; f, g), is defined as the
distance between the restrictions of f, g to A, that is,

DX(A; f, g) := D(f|A, g|A).

Obviously, when A = X we recover the usual homotopic distance. Moreover, observe that
DX(A; f, g) = D(f ◦ iA, g ◦ iA), where iA : A ⊂ X is the inclusion.

The relation between homotopic distance and Morse theory is explicit in the following result
([116, Theorem 4.5]):

Theorem 7.3. Let Φ: M → R be a Morse-Bott function on a compact smooth manifold M . Let
c1 < . . . < cp be its critical values, and let Σi = Φ−1(ci) ∩ critΦ be the set of critical points in
the level Φ = ci. If f, g : M → Y are two continuous maps, then

D(f, g) + 1 ≤
p∑
i=1

(DM(Σi; f, g) + 1).

This lead us to believe that it is worth studying an adaptation of the homotopic distance to
finite settings and that there should be a relation with some Morse theory in the latter context.

7.2 Homotopic distance between functors
In this section, we introduce the definition of the homotopic distance between functors, some of
its first properties, and some remarkable examples.

7.2.1 Definition of categorical distance
We begin by introducing a suitable notion of covers for categories in order to define a notion of
categorical distance between functors. The idea is to think of covers of the classifying space, in
order to cover the arrows of the category. This notion was introduced by Tanaka ([170]).

Definition 7.4. A collection of subcategories {Uλ}λ∈Λ of a category C is a geometric cover of C
if for every sequence of composable arrows f1, . . . , fn in C, there exists an index λ ∈ Λ such that
every fi belongs to Uλ.

Proposition 7.5 ( [170]). Let {Uλ}λ∈Λ be a collection of subcategories of a category C. This is
a geometric cover if and only if the collection of subcomplexes {BUλ}λ∈Λ covers BC.

Now we introduce our definition of “distance”:
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Definition 7.6. Let F,G : C → D be two functors between small categories. The categorical
homotopic distance cD(F,G) between F and G is the least integer n ≥ 0 such that there exists
a geometric cover {U0, . . . ,Un} of C with the property that F|Uj ' G|Uj , for all j = 0, . . . , n. If
there is no such covering, we define cD(F,G) =∞.

Example 7.7. Any finite group G can be seen as a category with only one object, where the
arrows are the elements ofG. Then it can be checked easily that if G is a non trivial abelian group
and F,G : G → G are two functors, that is, two group homomorphisms, then cD(F,G) = ∞
unless F = G.

It is easy to prove that some properties of the homotopic distance for continuous maps also
hold for the categorical homotopical distance:

Proposition 7.8. The following properties for the categorical homotopic distance hold:

1. cD(F,G) = cD(G,F ).

2. cD(F,G) = 0 if and only if the functors F,G are homotopic.

3. The categorical homotopic distance only depends on the homotopy class, that is, if F ' F ′

and G ' G′ then cD(F,G) = cD(F ′, G′).

4. Given two functors F,G : C → D and a finite geometric covering U0, . . . ,Un of C,

cD(F,G) ≤
n∑
k=0

cD(F|Uk , G|Uk) + n.

5. A small category C is connected if and only if the categorical homotopic distance between
any pair of constant functors is zero.

Definition 7.9. The weak categorical homotopic distance wcD(F,G) between F and G is the
least integer n ≥ 0 such that there exists a geometric covering {U0, . . . ,Un} of C with the
property that BF|BUj ' BG|BUj , for all j = 0, . . . , n. If there is no such covering, we define
wcD(F,G) =∞.

The weak homotopic distance satisfies the analogous statements to Properties 1–4 from
Proposition 7.8. Moreover, both the weak categorical and the categorical distance behave well
with respect to duality:

Proposition 7.10. Given a functor F : C → D we can define F op : Cop → Dop. Moreover,
if there is a natural transformation between F and G, then there is a natural transformation
between Gop and F op. Therefore, cD(F,G) = cD(F op, Gop). Notice that BF = BF op. Hence,
wcD(F,G) = wcD(F op, Gop).
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7.2.2 Examples
Recall that all categories are assumed to be small and connected.

We begin by restating the concept of categorical Lusternik-Schnirelmann category introduced
by Tanaka ([170]) as a particular case of the more general notion of categorical homotopic dis-
tance:

Definition 7.11. Let C be a small category. A subcategory U is categorical in C if the inclu-
sion functor is homotopic to a constant functor onto an object. The (normalized) categorical
Lusternik-Schnirelmann category ccat(C) is the least integer n ≥ 0 such that there exists a geo-
metric cover of C formed by n+ 1 categorical subcategories. If there is no such an integer we set
ccat(C) =∞.

Given a small category C and a subcategory U , observe that the inclusion functor of the
subcategory U in C is just the identity functor 1C of C restricted to U . As a consequence, the
definition of the categorical Lusternik-Schnirelmann category can be reformulated by means
of the following result, which shows that our categorical homotopic distance between functors
generalizes Tanaka’s definition of the categorical Lusternik-Scnirelmannn category [170]:

Proposition 7.12. The LS-category of C is the categorical homotopic distance between the iden-
tity 1C of C and any constant functor, that is cat(C) = cD(1C, ∗).

More generally, we define the categorical Lusternik-Schnirelmann category of a functor:

Definition 7.13. The (weak) categorical Lusternik-Schnirelmann category of the functor F : C →
D is the (weak) categorical distance bewteen F and a constant functor, ccat(F ) = cD(F, ∗).

Example 7.14. Observe that a subcategory U is categorical if and only if the restriction of the
diagonal functor ∆C : C → C × C is homotopic to a constant functor. Hence, the category of the
diagonal functor ∆C : C → C × C equals ccat(X).

Given a base object c0 ∈ C we define the inclusion functors i1, i2 : C → C × C as i1(c) =
(c, c0) and i2(c) = (c0, c).

Proposition 7.15. The categorical LS-category of C equals the categorical homotopic distance
between i1 and i2, that is, ccat(C) = cD(i1, i2).

Proof. First, we show that cD(i1, i2) ≤ ccat(X). Assume that a subcategory U of C is categorical
and let H : U ×Im → C be the homotopy between the inclusion functor and the constant functor
to c0 ∈ C, i.e. H(c, 0) = c and H(c, 1) = c0. We define a homotopy H ′ : U × I2m → C between
(i1)|U and (i2)|U (by concatenation) as

H ′(c, i) =

{(
H(c, i), c0

)
if 0 ≤ i ≤ m,(

c0, H(c, 2m− i)
)

if m ≤ i ≤ 2m.

Note that:
H ′(c, 0) =

(
H(c, 0), c0

)
= (c, c0) = i1(c)
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while
H ′(c, 2m) =

(
c0, H(c, 0)

)
= (c0, c) = i2(c).

Second, we show that ccat(X) ≤ cD(i1, i2). Assume that there is a homotopy H : U × Im →
C × C between (i1)|U and (i2)|U , i.e., H(c, 0) = (c, c0) and H(x, 1) = (c0, c). Let p1 ◦H be the
first component of H . Then p1 ◦ H is a homotopy between the inclusion functor of U and the
constant functor onto c0.

Therefore, our notion of categorical homotopic distance generalizes the categorical Lusternik-
Schnirelmann category introduced by Tanaka [170].

Motivated by the approach adopted in [64] to the Discrete Topological Complexity in the
setting of simplicial complexes, we define the complexity of a category as follows:

Definition 7.16. A subcategory U of C × C is a Farber subcategory if there exists a functor
F : U → C such that ∆ ◦F ' iU where iU is the inclusion functor. The (normalized) categorical
complexity of C, cTC(C), is the least integer n ≥ 0 such that there exists a geometric cover of C
formed by n+ 1 Farber subcategories. If there is no such an integer we set cTC(C) =∞.

Theorem 7.17. The categorical complexity of a small category C is the categorical homotopic
distance between the two projections p1, p2 : C × C → C, that is, cTC(C) = cD(p1, p2).

Proof. We will prove that a subcategory U of C × C is a Farber subcategory if and only if the
projection functors are homotopic in U . First, assume that there exists a functor F : U → C such
that ∆ ◦ F ' iU . Let us denote the homotopy between ∆ ◦ F and iU by H : U × Im → C × C,
where

H0(c1, c2) = (∆ ◦ F )(c1, c2) = (F (c1, c2), F (c1, c2))

and H1(c1, c2) = (c1, c2). We define a homotopy H ′ : U × I2m → C between the projection
functors as follows:

H ′(c1, c2, i) =

{
p1 ◦H(c1, c2,m− i) if 0 ≤ i ≤ m,

p2 ◦H(c1, c2, i−m) if m ≤ i ≤ 2m.

Conversely, assume that the projection functors are homotopic in U through a homotopyH ′ : U×
Im → C where H ′0 = p1 and H ′m = p2 and we will prove that there exists a functor F : U → C
such that ∆ ◦ F ' iU . Define F = p1. Now, the homotopy between ∆ ◦ F and iU is given by
G : U × Im → C × C, where G(c1, c2,m) = (c1, H

′(c1, c2,m)).

7.3 Properties

We prove several elementary properties, beginning with the behaviour of the homotopic distance
under compositions. Several properties of ccat and cTC can be deduced from our general results.
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7.3.1 Compositions
Proposition 7.18. Let be functors F,G : C → D and H : D → E . Then

cD(H ◦ F,H ◦G) ≤ cD(F,G).

Proof. Let cD(F,G) ≤ n and let {U0, . . . ,Un} be a geometric covering of C with Fj = F|Uj
homotopic to Gj = G|Uj . Then

(H ◦ F )j = H ◦ Fj ' H ◦Gj = (H ◦G)j,

so cD(H ◦ F,H ◦G) ≤ n.

Corollary 7.19. Let F : C → D be a functor. Then ccat(F ) ≤ ccat(C).

Proof. Take 1C and a constant functor c0 from C to C. Then cD(F ◦1C, F (c0)) ≤ cD(1C, c0).

Proposition 7.20. Let be functors F,G : C → D and H : E → C. Then

cD(F ◦H,G ◦H) ≤ cD(F,G).

Proof. Let cD(F,G) ≤ n and let {U0, . . . ,Un} be a geometric covering of C withFj ' Gj : Uj →
D. Since C is a small category, for each U = Uj we can define the subcategory H−1(U) where

Ob(H−1(U)) = {e ∈ Ob(E) : H(e) ∈ Ob(U)}

and if e, e′ ∈ Ob(H−1(U)) then

Arr(e, e′) = {α ∈ Arr(E) : H(α) ∈ ArrU(h(e), h(e′))}.

Consider the geometric covering of E whose elements are Vj = H−1(Uj). The restriction
Hj : Vj → C can be written as the composition of H̄j : Vj → Uj , where H̄j(c) = H(c), and
the inclusion Ij of Uj in C. Then we have that

(F ◦H)j = Fj ◦ H̄j ' Gj ◦ H̄j = G ◦ Ij ◦ H̄j = G ◦Hj = (G ◦H)j,

hence cD(F ◦H,G ◦H) ≤ n.

Corollary 7.21. Given a functor F : C → D, then ccat(F ) ≤ ccat(D).

Proof. Take 1D and a constant functor d0 from D to D. Then cD(1D ◦ F, d0 ◦ F ) ≤ cD(1D, y0).

Corollaries 7.19 and 7.21 can be extended to the categorical distance as follows:

Corollary 7.22. Let F,G : C → D be functors. Then

cD(F,G) + 1 ≤ (ccat(F ) + 1)(ccat(G) + 1).
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Proof. Denote by d0 a constant functor from C to D. Assume that ccat(F ) = cD(F, d0) ≤ m,
ccat(G) = cD(G, d0) ≤ n and let {U0, . . . ,Um}, {V0, . . . ,Vn} be the corresponding geometric
coverings of C. The subcategories Wi,j = Ui ∩ Vj (where the intersection means the intersec-
tions of the sets of objects and intersections of the sets of arrows) form a geometric cover of C.
Moreover, F ' d0 ' G on Wi,j , so cD(F,G) ≤ m · n - 1. The result follows.

Corollary 7.23. ccat(C) ≤ cTC(C).

Proof. In Proposition 7.20 consider the inclusion functors i1, i2 : C → C × C, so

cD(∗, 1C) = cD(p1 ◦ i2, p2 ◦ i2) ≤ cD(p1, p2).

7.3.2 Domain and codomain
Proposition 7.24. Assume that F,G : C → D are two functors between small categories. If at
least one of the categories C or D have an initial or terminal object, then cD(F,G) = 0.

Proof. Recall from Proposition 6.13 that a category E that has an initial or terminal object, is
contractible. Since any pair of functors which contractible domain or codomain are homotopic,
it is cD(F,G) = 0.

Remark 7.25. The converse of Proposition 7.24 does not hold. Recall that a poset P , when seen
as a category (see Section 7.4), has a terminal object x if and only if x is the unique maximal ele-
ment of P and a dual statement applies to initial elements. Consider the poset P = {x, y, z, w, t}
with the order:

• x ≤ z, w, t,

• y ≤ z, w, t,

• and z ≤ w, t.

It is contractible and therefore the distance between any pair of functors is zero. However, it has
no terminal nor initial objects.

Theorem 7.26. Let F,G : C → D be two functors. Then

cD(F,G) ≤ ccat(C).

Proof. It is enough to prove that

cD(F,G) = cD(F ◦ 1C, G ◦ 1C) ≤ cD(1C, c0) = ccat(X).

Assume cD(1C, c0) = n, and let {U0, . . . ,Un} be a geometric covering for C such that, for all j,
1|Uj ' (c0)|Uj by a homotopy H : Uj ×Im → C. Let us define the homotopy H ′ : Uj × I2m → D
as follows:

H ′(c, t) =

{
F ◦ H(c, i), if 0 ≤ i ≤ m,

G ◦ H(c, 2m− i), if m ≤ i ≤ 2m.

Hence, cD(F ◦ 1C, G ◦ 1C) ≤ n.
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What follows is the categorical version of a well known result from Farber [61].

Corollary 7.27. cTC(C) ≤ ccat(C × C).

Proof. In Theorem 7.26 take the functors p1, p2 : C × C → C. Then cTC(C) = cD(p1, p2) ≤
ccat(C × C).

7.3.3 Triangle Inequality
The Triangle Inequality does not hold in general in this context as Example 7.29 shows. However,
it holds by adding certain restrictions:

Proposition 7.28. Let F,G,H : C → D be functors between C and D such that ccat(C) ≤ 2.
Then

cD(F,H) ≤ cD(F,G) + cD(G,H).

Proof. First, notice that if two of the three functors are homotopic, then the result holds au-
tomatically, so assume that there is no pair of homotopic functors among F,G and H . Since
cD(F,H) ≤ ccat(C) (Corollary 7.26), the result follows.

However, the Triangle inequality does not hold in general as the following example, commu-
nicated to us by Barmak, shows:

Example 7.29. Let S be the finite space corresponding to the poset depicted in Figure 7.3.1.
Observe that it is a finite model of the circle.

x3 x4

x2x1

Figure 7.3.1: The finite topological space S.

Consider the finite space X = S × S and the continuous maps f, g, h : X → X given by
f = idX , g = idS × c and h = c × c where c : S → S is a constant map. Recall that for any
finite space Y and y ∈ Y , the subspace Uy is contractible. Therefore {S × Ux1 , S × Ux2} is an
open cover of X such that the restrictions of f and g to each of the members of the cover are
homotopic. This proves that D(f, g) ≤ 1. A symmetrical argument shows that D(g, h) ≤ 1.
However D(f, h) = cat(X) ≥ 3 [169, Example 3.5]. Therefore, the maps f, g and h do not
satisfy the triangle inequality.

7.3.4 Invariance
We now prove the homotopy invariance of the homotopic distance.

Corollary 7.30. 1. Let F,G : C → D be functors and let α : D → D′ be a functor with a left
homotopy inverse. Then

cD(α ◦ F, α ◦G) = cD(F,G).
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2. Let F,G : C → D be functors and let β : C ′ → C be a functor with a right homotopy
inverse. Then

cD(F ◦ β,G ◦ β) = cD(F,G).

Proof. We prove 1 since 2 is analogous. By Proposition 7.18,

cD(F,G) ≥ cD(α ◦ F, α ◦G) ≥ cD(β ◦ α ◦ F, β ◦ α ◦G).

But β◦α ' 1D implies β◦α◦F ' F and β◦α◦G ' G, hence cD(β◦α◦F, β◦α◦G) = cD(F,G)
because the distance only depends on the homotopy class.

Proposition 7.31. Assume α : C → C ′ and β : D → D′ are homotopy equivalences between
small categories, connecting the functors F : C → D (resp. G) and F ′ : C ′ → D′ (resp. G′), that
is, the following diagram is commutative:

C D

C ′ D′

F

G
α β

F ′

G′

Then cD(F,G) = cD(F ′, G′).

Proof. We denote the homotopic inverse of β by β′. Then from Corollary 7.30 it follows:

cD(F,G) = cD(F ◦ α,G ◦ α) = cD(β′ ◦ F ◦ α, β′ ◦G ◦ α).

Corollary 7.32. ccat(C) and cTC(C) are homotopy invariant.

Note that Corollary 7.30 generalizes the homotopy invariance of ccat stated by Tanaka in
[170].

7.3.5 Products
We study now the behaviour of the categorical homotopic distance under products.

Theorem 7.33. Given F,G : C → D and F ′, G′ : C ′ → D′, then

cD(F × F ′, G×G′) + 1 ≤
(
cD(F,G) + 1

)
·
(
cD(F ′, G′) + 1

)
.

Proof. Given geometric coverings {U0, . . . ,Um} and {V0, . . . ,Vn} of C and C ′, respectively, such
that F|Ui ' G|Ui and F ′|Vj ' G′|Vj , then it can be checked that {Ui × Vj} is a geometric cover of
C × C ′ such that F × F ′|Ui×Vj ' G×G′|Ui×Vj .

Set F : C → C and F ′ : C ′ → C ′ to be the identity functors and G : C → C and G′ : C ′ → C ′
to be constant functors. Then, we obtain the following corollary:
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Corollary 7.34. It holds that:

ccat(C × C ′) + 1 ≤ (ccat(C) + 1) · (ccat(C ′) + 1).

Hence, Theorem 7.33 generalizes the product inequality proved by Tanaka [170] for the
categorical LS-category.

Corollary 7.35. It holds that:

cTC(C × C ′) + 1 ≤ (cTC(C) + 1) · (cTC(C ′) + 1).

Proof. Set F : C ×C → C and F ′ : C ′×C ′ → C ′ to be the projection functors onto the first factor
andG : C×C → C andG′ : C ′×C ′ → C ′ to be the projection functors onto the second factor.

7.3.6 Relationship between homotopic distances
Ordinary homotopic distance between continuous maps and the two notions of categorical ho-
motopic distance that we have defined so far are related by the following result:

Proposition 7.36. Given two functors F,G : C → D, then

D(BF,BG) ≤ wcD(F,G) ≤ cD(F,G).

Proof. It is well known that given any subcomplex Y of a CW-complex X , there exists an open
neighborhood U of Y in X such that Y is a deformation retract of U (see for example [95]).
Since deformation retracts are homotopy equivalences and the homotopic distance is invariant
under homotopies, by Proposition 7.5 we have

D(BF,BG) ≤ wcD(F,G).

Finally, the fact that the classifying space functor preserves homotopies guarantees the inequality
wcD(F,G) ≤ cD(F,G).

Remark 7.37. The difference between the categorical homotopic distance and the weak categor-
ical homotopic distance can be arbitrarily large, as Example 6.6 illustrates.

7.4 The context of posets
Recall that a finite poset can be seen both as a small category and as a finite topological space.
In this way, order preserving maps between them can be seen both as functors and as continuous
maps. Therefore, given two functors between posets F,G : P → Q, it makes sense to study
both their homotopic distance as continuous maps and their categorical homotopic distance as
functors. We devote this section to the study of homotopic distance between order preserving
maps.

We recall a classic result from Barmak’s book ([6]). In order to state it, we recall the notion of
contiguity. Two simplicial maps ϕ, ψ : K → L are said to be contiguous if for every simplex σ ∈
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K, ϕ(σ)∪ ψ(σ) is a simplex of L. Two simplicial maps ϕ, ψ : K → L lie in the same contiguity
class if there exists a sequence ϕ = ϕ1, . . . , ϕn = ψ such that ϕi and ϕi+1 are contiguous for
every 0 ≤ i < n.

Lemma 7.38. Given two homotopic continuous maps between posets F,G : P → P ′, then the
simplicial maps K(F ) and K(G) are in the same contiguity class. Conversely, let ϕ, φ : K → L
be simplicial maps which lie in the same contiguity class. Then χ(ϕ) ' χ(φ) : χ(K) → χ(L)
(are homotopic).

7.4.1 Homotopy equivalences in posets
Stong ([164]) showed that for any given finite poset P there exists a unique subposet (up to
isomorphism) P ′ ⊂ P , called the core of P , satisfying the following two conditions:

1. P ′ is a deformation retract of P ;

2. no proper subposet of P ′ is a deformation retract of P .

Under these circumstances P ′ is called a minimal poset.
As a consequence of the homotopy invariance of the distance, it follows that in order to

compute the (categorical) homotopic distance between functors F,G : P → Q, where P and
Q are posets, it is enough to study the (categorical) homotopic distance between the associated
functors F ′, G′ : P ′ → Q′ between the cores.

Corollary 7.39. Given two functors F,G : P → Q between two finite posets P,Q, let P ′ (re-
spectively, Q′) be the core of P (resp., of Q). Denote by F ′, G′ : P ′ → Q′ the compositions of F
and G with the equivalences P ' P ′ and Q ' Q′. Then:

cD(F,G) = cD(F ′, G′)

and
D(F,G) = D(F ′, G′).

Therefore, from now on, we can restrict our attention to minimal spaces.

7.4.2 Coverings and bounds
We begin with a lemma which relates the notions of geometric cover and open cover of posets.

Lemma 7.40. If P is a finite poset and {U0, . . . , Um} is an open cover of P , then {U0, . . . , Um}
is also a geometric cover.

Proof. Let x0 ≤ · · · ≤ xn be a sequence of composable arrows in P . Since there is a Uk such
that xn ∈ Uk, by definition of the open sets in P it is Uxn ⊂ Uk, so x0, . . . , xn ∈ Uk.

The following results help us to implement the computation of the (categorical) homotopic
distance when the domain is a finite poset by reducing the number of open covers we have to
test.
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Proposition 7.41. Let P and Q be two finite posets and let F,G : P → Q be two functors. Then,
D(F,G) = m if and only if there exists an open cover {U0, . . . , Um} whose elements are of the
form

Ui = Ux0 ∪ · · · ∪ Uxin ,

where the xk are maximal elements (with respect to the order relation in P ) and such that the
restrictions of F and G to each Ui are homotopic.

Proof. Given xk ∈ P , the basic open subset Uxk is contractible (Proposition 7.24). It is clear
that an open cover {Ui} whose elements are of the form Ui = Ux0 ∪ · · · ∪ Uxim where the xk
are maximal elements is a geometric cover and since the poset P is finite, so is the cover and
D(F,G). Now, we will prove that it is enough to consider such coverings. Given an open cover
{Vi}mi=0 such that F|Vi ' G|Vi we will obtain a cover formed by unions of maximal basic open sets
with at most m + 1 elements. Suppose that Vi = {x1, . . . , xk}. Among the elements of Vi pick
the ones which are maximal elements of P . Suppose these maximal elements are {xi0 , . . . , xil}.
Then define Ui = Uxi0 ∪ · · · ∪ Uxil . Note that Ui ⊂ Vi. It can be checked that the covering {Ui}
constructed by this procedure satisfies that F|Ui ' G|Ui and it is a cover of the required form.

The proof of the following result is similar.

Proposition 7.42. Let P and Q be two finite posets and let F,G : P → Q be two functors. Then,
cD(F,G) = m if and only if there exists an open cover {U0, . . . , Um} whose elements are of the
form

Ui = Ci0 ∪ · · · ∪ Cin ,

where the Cik are maximal chains and such that the restrictions of F and G to each Ui are
homotopic.

As a consequence of the previous two results, we can given an upper bound for the categorical
homotopic distance.

Corollary 7.43. Let P and Q be two finite posets and let F,G : P → Q be two functors. Then
D(F,G) and cD(F,G) are less than or equal to the number of maximal elements of P minus
one. Furthermore, cD(F,G) is less than or equal to the number of minimal elements minus one.

Example 7.44. This example shows that the upper bound of Corollary 7.43 is sharp. Consider
the poset P depicted in Figure 7.4.1 and the functors (order preserving maps) 1P , F : P → P
where F is given by F (x1) = x2, F (x2) = x1, F (x3) = x4 and F (x4) = x3. The functors 1P
and F are not homotopic (see [6, Lemma 2.1.1]), so by Corollary 7.43, D(F,G) = 1.

x3 x4

x2x1

Figure 7.4.1: A finite model of S1.
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7.4.3 Relations with other homotopic distances
In [64, 65, 68], simplicial versions of LS category and topological complexity were given by
replacing the notion of homotopic continuous maps with that of contiguous simplicial maps.

In the same vein, a notion of distance between simplicial maps can be defined.

Definition 7.45. The contiguity distance sD(ϕ, ψ) between two simplicial maps ϕ, ψ : K → L is
the least integer n ≥ 0 such that there exists a covering of K by subcomplexes K0, . . . , Kn such
that the restrictions ϕ|Kj , ψ|Kj : Kj → L are in the same contiguity class, for all j = 0, . . . , n. If
there is no such covering, we define sD(f, g) =∞.

This notion of contiguity distance generalizes those of simplicial LS category scat(K) and
discrete topological complexity sTC(K) defined in [1, 64, 65, 68, 115]:

Example 7.46. Given two simplicial complexes K and L, denote by K
∏
L their categorical

product [105]. The contiguity distance between the projections p1, p2 : K
∏
K → K equals

sTC(K), as follows from [64, Theorem 3.4].

Example 7.47. The simplicial LS category of a simplicial map between simplicial complexes
ϕ : K → L, denoted scat(ϕ) [1], is the contiguity distance sD(ϕ, v0) where v0 : K → L is a
constant simplicial map.

The following result relates the notions we have been working with so far.

Theorem 7.48. Given order preserving maps between finite posets F,G : P → Q, then

D(BF,BG) ≤ wcD(F,G) ≤ sD(K(F ),K(G)) ≤ cD(F,G) ≤ D(F,G).

Proof. From Proposition 7.36 we already have the inequalities:

D(BF,BG) ≤ wcD(F,G) ≤ cD(F,G).

First, we prove that:
cD(F,G) ≤ D(F,G).

Suppose that D(F,G) = n with an open covering {U0, . . . , Un}. Because of Lemma 7.40 the
collection {U0, . . . , Un} is also a geometric covering.

Now we show that:
sD(K(F ),K(G)) ≤ cD(F,G).

Recall that a collection {Uλ}λ∈Λ of subcategories of a category C, is a geometric cover if and only
if the collection of subcomplexes {BUλ}λ∈Λ covers BC (Proposition 7.5). Now, the inequality

sD(K(F ),K(G)) ≤ cD(F,G)

follows from Lemma 7.38. Finally, the inequality

wcD(F,G) ≤ sD(K(F ),K(G))

follows from the fact that if two simplicial maps are in the same contiguity class, then their
geometric realizations are homotopic ([6]).
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As a consequence of Theorem 7.48 we obtain several results relating existing notions for LS
categories:

Corollary 7.49. Given a poset P , we have

cat(|K(P )|) ≤ wccat(P ) ≤ scat(K(P )) ≤ ccat(P ) ≤ cat(P ),

where |K(P )| denotes the geometric realization of the simplicial complex K(P ).

Therefore, Theorem 7.48 generalizes the results of Tanaka ([170]) regarding the categorical
LS-category.

7.4.4 Subdivisions
We recall that given a poset P , its barycentric subdivision can be defined as sd(P ) = (χ◦K)(P )
(see [6]). Moreover, this construction is functorial. We have seen that cD(F,G) ≤ D(F,G)
(Theorem 7.48). By subdividing the domain we can reverse this inequality.

Lemma 7.50. Given two order preserving maps F,G : P → Q between finite posets, we have

D(sd(F ), sd(G)) ≤ cD(F,G).

Proof. Assume that cD(F,G) = n with the geometric cover {Ui}. Note that K(Ui) is a subcom-
plex of K(P ) and therefore sd(Ui) = χ ◦ K(Ui) is an open subset of sd(P ). Moreover, {sd(Ui)}
is a cover of sd(P ). Finally, since F|Ui ' G|Ui , from Lemma 7.38 follows that F|sd(Ui) ' G|sd(Ui).
As a consequence, D(sd(F ), sd(G)) ≤ cD(F,G).

Moreover, the inequality becomes an equality after enough subdivisions:

Proposition 7.51. Given two order preserving maps F,G : P → Q between finite posets, there
exists a natural number k such that the k-iterated barycentric subdivision stabilizes the distances,
that is,

D(sdk(F ), sdk(G)) = cD(sdk(F ), sdk(G)).

Proof. From Theorem 7.48 and Lemma 7.50 it follows that:

cD(sd(F ), sd(G)) ≤ D(sd(F ), sd(G)) ≤ cD(F,G).

Therefore,
lim
k→∞

D(sdk(F ), sdk(G)) = lim
k→∞

cD(sdk(F ), sdk(G)).

Observe that both Lemma 7.50 and Proposition 7.51 generalize the corresponding results in
the context of posets by Tanaka for the categorical LS-category ([170]).

Remark 7.52. Section 7.4 could be generalized both to the context of preordered sets and to
acyclic categories and most results would hold.
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