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Abstract

A semi-Riemannian manifold is endowed with a density function, modifying the Riemannian
volume element and giving rise to a smooth metric measure space. These spaces appear naturally
in many topics in Mathematics, and their study combines ideas from Geometry, Topology and
Analysis.

In this thesis, we tackle the study of geometric equations in smooth metric measure spaces.
The results presented can be broadly divided into two lines. The first one concerns a natural gen-
eralization of Einstein manifolds for Riemannian smooth metric measure spaces called weighted
Einstein manifolds. We classify manifolds with this property which additionally satisfy a har-
monicity condition on a weighted analogue of the Weyl tensor. We also translate a classical
problem of Riemannian geometry to this setting and classify weighted Einstein manifolds admit-
ting another such structure in their conformal class.

The second line concerns the derivation of vacuum weighted Einstein field equations for
Lorentzian smooth metric measure spaces. We present both a variational approach and an alter-
native perspective based on the characterizing properties of the usual Einstein tensor. We classify
solutions under conditions on the density and the geometry of the underlying manifold. Among
others, we study solutions whose density has lightlike gradient, and also general solutions which
have harmonic curvature. Special families of Kundt spacetimes such as Brinkmann waves and
pp-waves play a distinguished role as solutions with specific features.

IX





Resumo en galego

Un problema central en xeometría semi-riemanniana é a resolución de ecuacións xeométricas en
variedades. Estas ecuacións adoitan estar compostas por unha combinación de operadores dife-
renciais e tensores relacionados coa curvatura do espazo semi-riemanniano subxacente. Algúns
exemplos clásicos relevantes e moi relacionados coa temática desta tese son as ecuacións que
definen as variedades de Einstein, de grande importancia en relatividade xeral, a ecuación con-
forme Einstein estudada por primeira vez por Brinkmann [11], ou as distintas xeneralizacións da
ecuación de Obata [84,96,120]. En coordenadas locais, toman a forma dun sistema de ecuacións
diferenciais en derivadas parciais (EDPs) involucrando as compoñentes da métrica e, a miúdo,
outras funcións cun certo significado xeométrico.

O estudo deste tipo de ecuacións xeométricas segue unha dobre vertente. Por unha banda,
para unha variedade dada, búscase determinar a existencia dunha solución de certa ecuación
xeométrica, así como as características da mesma. A cotío isto involucra achar unha métrica e
outras funcións relacionadas coa ecuación. Por outra banda, cabe preguntarse ata que punto a
existencia de solucións para unha certa ecuación xeométrica restrinxe a xeometría da variedade
subxacente. Habitualmente, o obxectivo final é unha combinación de ambas, é dicir, dada unha
ecuación xeométrica nunha variedade semi-riemanniana arbitraria, pretendemos entender tanto
as xeometrías que admiten solucións como as formas destas solucións. Non obstante, a miúdo
estas ecuacións alcanzan un nivel de complexidade que imposibilita a súa resolución en toda
a súa xeneralidade. Faise necesaria, por tanto, a imposición de certas hipóteses con significado
xeométrico que reduzan o problema a outro máis manexable (algún tipo de simetría, restricións
na curvatura...).

Esta tese céntrase no estudo dunha serie de ecuacións xeométricas nun contexto moi re-
levante matematicamente, pero menos coñecido que o formalismo semi-riemanniano usual: as
variedades con densidade. A continuación, presentamos estes obxectos, explicamos algúns dos
seus aspectos chave, e resumimos algúns dos resultados principais.

Variedades con densidade
O Capítulo 1 desta tese está centrado na presentación de nocións básicas de xeometría semi-
riemanniana e, máis concretamente, de variedades con densidade. De xeito xeral, unha variedade
con densidade ou smooth metric measure space (que abreviamos como SMMS) é unha variedade
semi-riemanniana (M, g) de dimensión n ≥ 3 dotada dunha medida diferenciable que é distin-
ta, en xeral, da medida riemanniana usual. Esta noción formalízase introducindo unha función
diferenciable f ∈ C∞(M) chamada función de densidade ou simplemente densidade, a cal pro-

XI
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porciona o elemento de volume ponderado e−fdvolg, onde dvolg é o elemento de volume rieman-
niano. Por tanto, a maneira máis sinxela de definir un SMMS é como a tripla (Mn, g, f). O caso
no que f é constante denomínase trivial, dado que o estudo de SMMSs triviais redúcese ao caso
semi-riemanniano usual. Por tanto, como norma xeral, nesta tese consideraremos SMMSs non
triviais. Nocións relacionadas coas variedades con densidade aparecen de xeito natural en nume-
rosos problemas matemáticos, dende a resolución da conxectura de Poincaré [100] á construción
de variedades Einstein con estrutura de produto deformado [77], pasando polas desigualdades
de Gagliardo-Nirenberg-Sobolev (GNS) [36, 38], o problema isoperimétrico [75, 108] ou teorías
modificadas da gravidade [109, 117], entre outros. Nos últimos anos, especialmente en base aos
traballos de Case [34–41], estableceuse unha definición máis xeral de SMMS en signatura rie-
manniana. No formalismo de Case, un SMMS é unha quíntupla (Mn, g, f,m, µ), onde (M, g)
é unha variedade riemanniana e f ∈ C∞(M) é a densidade, estando os parámetros m ∈ R+ e
µ ∈ R relacionados co produto deformado formal

Mn ×
e−

f
m
Fm(µ) =

(
Mn × Fm, g ⊕ e−

2f
m q(µ)

)
, (0.1)

onde F (µ) = (F, q(µ)) é un espazo forma m-dimensional de curvatura seccional constante µ.
Para poder estudar ecuacións xeométricas neste contexto ponderado, necesitamos un xeito de
identificar dous SMMSs. Así, dicimos que (Mn

1 , g1, f1,m1, µ1) e (Mn
2 , g2, f2,m2, µ2) son iso-

métricos se existe unha isometría ψ : (M1, g1) → (M2, g2) (no sentido riemanniano) tal que
f1 = f2 ◦ ψ, m1 = m2 e µ1 = µ2. Os obxectos xeométricos a estudar neste formalismo son os
invariantes ponderados, funcións no espazo Met(M)×C∞(M) de estruturas métrica-densidade
nunha certa variedadeM que son invariantes respecto da acción natural do grupo de difeomorfis-
mos Diff(M) (nótese que adicionalmente poden depender dos parámetros m e µ). Así, pódense
definir escalares, funcionais ou tensores ponderados, entre outros obxectos. Moitos destes son
restricións de invariantes riemannianos do produto deformado formal (0.1) á base deste. En efec-
to, o elemento de volume ponderado é a restrición do elemento de volume do produto deformado
a M . De forma similar, pódense construír análogos ponderados para os tensores de Ricci, Weyl
etc. a partir dos tensores relacionados coa curvatura do produto deformado.

Obxecto Usual Ponderado

Curvatura R R

Tensor de Ricci ρ ρmf = ρ+Hesf − 1
mdf ⊗ df

Curvatura escalar τ
τmf = τ + 2∆f − m+1

m ∥∇f∥2

+m(m− 1)µ e2f/m

Tensor de Schouten
P = 1

n−2 (ρ− Jg)

J = τ
2(n−1)

Pm
f = 1

m+n−2(ρ
m
f − Jm

f g)

Jm
f = 1

2(m+n−1)τ
m
f

Tensor de Weyl W = R− P ⃝∧ g Wm
f = R− Pm

f ⃝∧ g

Táboa 1: Comparativa entre tensores relacionados coa curvatura usuais e os seus análogos pon-
derados. O símbolo ⃝∧ denota o produto de Kulkarni-Nomizu.
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Estes tensores, baseados nos introducidos por Case en [34,41], formarán os piares básicos do
noso estudo. Así, τmf é a curvatura escalar do produto deformado formal (0.1), ρmf é a restrición
do tensor de Ricci do produto deformado a vectores tanxentes á base etc. De entre todos estes
tensores ponderados, o máis estudado é precisamente o tensor de Ricci de Bakry-Émery ρmf .
Este tensor xa aparecera en relación a procesos de difusión [1], pero tamén dá lugar ás estruturas
coñecidas como solitóns de Ricci gradientes (ρ∞f = ρ + Hesf = λg para algún λ ∈ R) e
variedades quasi-Einstein (QE, ρmf = λg). As primeiras están relacionadas co fluxo de Ricci [69]
e a proba da conxectura de Poincaré por parte de Perelman [100]; mentres que os segundos
aparecen na construción de produtos warped Einstein [77], que teñen interese, por exemplo,
en relatividade xeral [80]. Por estas razóns, ámbalas estruturas foron intensamente estudadas
nos últimos vinte anos, baixo distintas hipóteses sobre o tipo de variedade subxacente, tanto en
signatura riemanniana coma noutras (especialmente lorentziana e neutra). Algúns dos numerosos
traballos nesta liña son [12,15,31,32,59,93] para resultados sobre solitóns e [13,14,19,43,45,71]
para variedades QE. Así, as expresións dos solitóns de Ricci gradientes e variedades QE son
exemplos de dúas ecuacións xeométricas de grande interese en variedades con densidade. Nesta
tese non consideramos o caso formal m = ∞, centrándonos só no caso m ∈ R+, polo que non
aparecen os solitóns. Non obstante, as variedades QE si xogan un papel importante en certos
resultados de clasificación.

O tensor de Ricci de Bakry-Émery tamén aparece en signatura riemanniana, relacionado coa
ecuación dun fluído estático perfecto [79], e en signatura lorentziana, en relación a teoremas de
descomposición e singularidades [42, 118] e teorías escalar-tensor da gravidade [117]. Outros
invariantes ponderados relevantes, aínda que non entran dentro do ámbito desta tese, son as
constantes de Yamabe ponderadas [36, 38], relacionadas coas desigualdades GNS de Del Pino-
Dolbeaut [53], e as σk-curvaturas ponderadas [34, 35].

Variedades Einstein ponderadas
Nunha variedade semi-riemanniana, a condición de ser Einstein pode enunciarse de maneira
equivalente en termos do tensor de Ricci ρ ou do tensor de Schouten P . En efecto, ρ = λg
para algún λ ∈ R implica que P tamén é un múltiplo da métrica, e viceversa. Porén, no caso
ponderado isto non é así. En efecto, ρmf = λg proporciona a noción de variedade quasi-Einstein
xa comentada, mentres que Pm

f = λg dá lugar ás variedades Einstein ponderadas (ou WE, do
inglés weighted Einstein). Este concepto, de feito, é máis xeral ca o das variedades QE, xa que
para toda variedade WE (Mn, g, f,m, µ) existe unha constante κ (chamada escala) tal que o
escalar de Schouten ponderado Jm

f satisfai

Jm
f = (m+ n)λ−mκe

f
m .

Nótese que, se κ = 0 ou o SMMS é trivial, entón a variedade é QE. Ademais, no caso non trivial,
se (Mn, g, f,m) é QE, existe un µ ∈ R tal que (Mn, g, f,m, µ) é WE con escala cero [34].

As variedades Einstein ponderadas non son só unha xeneralización das variedades quasi-
Einstein, xa que para µ = 0 aparecen de forma similar ás variedades Einstein usuais como puntos
críticos do funcional curvatura escalar ponderada total [36], o cal está relacionado coa resolución
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do problema de Yamabe ponderado. Por estas razóns, son a estrutura tipo Einstein máis natural
a estudar nas variedades con densidade, e son estruturas puramente ponderadas, no sentido de
que non se herdan directamente de invariantes riemannianos do produto deformado formal (0.1).
Ademais, a súa maior xeneralidade fai que non estean tan entendidas coma as variedades QE,
pero presentan suficiente rixidez como para obter resultados de clasificación baixo hipóteses de
curvatura razoables. Finalmente, unha propiedade esencial que probamos na Sección 1.6 é que
as variedades WE son (real) analíticas en coordenadas harmónicas, o que nos permite determinar
propiedades xeométricas a partir de valores nun conxunto aberto.

As variedades Einstein ponderadas máis simples constrúense sobre os tres espazos forma: a
esfera Sn, o espazo hiperbólico Hn e o espazo euclidiano En. En efecto, definindo funcións de
densidade e valores do parámetro µ axeitados nestas variedades, podemos construír exemplos de
variedades Einstein ponderadas (con Pm

f = λg), completas e de curvatura seccional constante 2λ
(escollendo a métrica correspondente sobre os espazos forma), que realizan calquera valor de m
e λ (ver [34, 40] para algúns primeiros exemplos, e a Sección 1.5 para a construción completa).
Dadas as súas propiedades, estes espazos son chave nos resultados de clasificación de variedades
Einstein ponderadas completas nesta tese. Porén, non toda variedade WE é Einstein, de feito
existen estruturas máis complexas que aparecen nos nosos resultados.

Na seguinte táboa preséntanse de maneira esquemática os espazos forma ponderados, onde
c.s.c é unha abreviatura de curvatura seccional constante. A métrica dos espazos forma pódese
escribir utilizando a súa descomposición como produtos warped I ×φ Sn−1, sendo I un intervalo
aberto e t unha coordenada que o parametriza por lonxitude de arco.

Variedade subxacente Parámetros do SMMS

λ > 0 n-esfera de c.s.c 2λ
fm(t) = −m log

(
A+B cos

(
t
√
2λ
))

µ = 2λ(B2 −A2) (ou m = 1), κ = 2λA

λ < 0 n-espazo hiperbólico de c.s.c 2λ
fm(t) = −m log

(
A+B cosh

(
t
√
−2λ

))
µ = 2λ(B2 −A2) (ou m = 1), κ = 2λA

λ = 0 n-espazo euclidiano
fm(t) = −m log

(
A+Bt2

)
µ = −4AB (ou m = 1), κ = 2B

Táboa 2: Espazos forma ponderados contruídos prescribindo funcións de densidade e parámetros
axeitados aos espazos forma usuais. Chamamos a estes SMMSs n-esferam-ponderada, n-espazo
euclidiano m-ponderado e n-espazo euclidiano m-ponderado, respectivamente. As constantes A
e B deben tomarse de xeito que fm estea ben definida en toda a variedade subxacente.

Parte I. A xeometría das variedades Einstein ponderadas
Nos Capítulos 2 e 3, os cales forman a Parte I desta tese, buscamos aumentar o coñecemento
sobre as variedades Einstein ponderadas en signatura riemanniana mediante resultados de clasi-
ficación (salvo isometría de SMMSs). Dada a complexidade da ecuación xeométrica Pm

f = λg,
centrámonos en dous problemas máis concretos que explicamos a continuación.

Variedades WE baixo condicións de harmonicidade. Unha restrición habitual na análise de es-
truturas como as variedades quasi-Einstein é a da harmonicidade do tensor de Weyl, divW = 0,
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onde div denota a diverxencia. Esta condición aparece naturalmente en discusións sobre varie-
dades conformemente Einstein, é dicir, variedades (M, g) que admiten localmente un cambio
conforme ĝ = e−2σg tal que a variedade resultante é Einstein (ver [83]). A tradución natural
desta condición ao contexto dos SMMSs é a anulación da diverxencia ponderada do tensor de
Weyl ponderado:

0 = divf W
m
f = divWm

f − ι∇fW
m
f = divWm

f −Wm
f (∇f,−,−,−).

Así, no Capítulo 2 analizamos variedades WE baixo esta condición de harmonicidade ponderada.
Nótese que unha variedade WE con Pm

f = λg e Wm
f = 0 ten curvatura seccional constante 2λ,

pero este non é o caso para a condición divf W
m
f = 0, que é máis débil. De feito, esta condición

non implica o carácter Einstein da variedade subxacente.

Exemplo 2.4. Sexa un SMMS da forma (I ×φ N, g, f,
1
2
, 0), onde I ×φ N é un produto defor-

mado dun intervalo aberto I ⊂ R+ e unha variedade Ricci-chá N . Prescribindo as funcións de
deformación e densidade

φ(t) = A(Bt)
1

n−1 , f(t) = − log(Bt),

onde t é a coordenada natural de R+ e A,B ∈ R+, séguese que esta variedade non é Einstein.
En efecto, a curvatura escalar da variedade subxacente, τ = (n−2)

(n−1)t2
, non é constante. Porén, o

SMMS si ten tensor de Weyl harmónico ponderado.

Este exemplo non Einstein acaba sendo crucial no resultado de clasificación local principal
deste capítulo. Para obtelo, utilizamos o feito de que as hipersuperficies de nivel da densidade
f arredor de puntos regulares resultan ser esféricas, o que permite a descomposición local de
(M, g) como produto deformado [104]. Grazas a isto, as EDPs na ecuación Pm

f = λg redúcense
a un sistema sobredeterminado de EDOs, o que permite a súa resolución completa.

Teorema 2.14. Sexa (Mn, g, f,m, µ) un SMMS tal que Pm
f = λg e divf W

m
f = 0. Entón, para

cada punto regular p de f , existe unha isometría riemanniana entre unha veciñanza U de p e un
produto deformado I ×φ N , onde I ⊂ R é un intervalo aberto, N é unha variedade Einstein
(n− 1)-dimensional, e ∇f é tanxente a I . Ademais, satisfaise unha das seguintes condicións:

1. I ×φ N é Einstein con ρ = 2(n− 1)λg.

2. (U , g
∣∣
U
, f
∣∣
U
,m, µ) é isométrico a (I ×φ N, g, f,

1
2
, 0), con este último dado polo Exem-

plo 2.4.

O caso Einstein está menos restrinxido ca o non Einstein, e analizámolo en profundidade na
Sección 2.2. Ademais, impoñendo a condición de completude, e utilizando o carácter analítico
das variedades WE e a relación da ecuación Pm

f = λg coa ecuación de Obata xeneralizada
(ver [120]), probamos un resultado de clasificación global máis estrito para SMMSs completos,
que non realizan o Exemplo 2.4 anterior.

Teorema 2.23. Sexa (Mn, g, f,m, µ) un SMMS completo tal que Pm
f = λg (con escala κ) e

divf W
m
f = 0. Entón, (Mn, g, f,m, µ) é isométrico a un dos seguintes espazos:
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1. Un espazo forma ponderado.

2. Un produto deformado Einstein R ×φ N , onde N é unha variedade Ricci-chá completa.
Neste caso, existe unha coordenada t que parametriza R por lonxitude de arco, e tal que
as funcións de deformación e densidade toman as formas

φ(t) = Aet
√
−2λ , f(t) = −m log

(
κ
2λ

+Bet
√
−2λ
)

,

para algúns B ≥ 0 e κ ≤ 0. Ademais, m = 1 ou µ = −κ2

2λ
≥ 0.

Por tanto, temos os exemplos completos esperados dados polos espazos forma ponderados,
pero tamén espazos que non teñen curvatura seccional constante e non son necesariamente sim-
plemente conexos, construídos a partir do Teorema 2.23 (2).

Variedades WE na mesma clase conforme. No contexto ponderado, ideas e conceptos de xeo-
metría conforme entran de maneira natural en discusións sobre variedades QE [37,39–41] e pro-
blemas analíticos relacionados coas desigualdades de Gagliardo-Nirenberg-Sobolev [34–36,38].
Para definir unha transformación conforme dun SMMS, hai que ter en conta o cambio da den-
sidade e, de forma similar á construción dos invariantes ponderados relacionados coa curvatura,
podemos definir nocións conformes a partir do produto deformado formal Mn ×e−f/m Fm(µ)
dado en (0.1).

Dicimos que dous SMMSs (M, g, f,m, µ) e (M, ĝ, f̂ ,m, µ) son conformemente equivalentes
se existe unha función diferenciable ϕ ∈ C∞(M) tal que ĝ = e−2ϕ/mg e f̂ = f + ϕ. Isto
significa que os correspondentes produtos deformados formais son conformemente equivalentes
no sentido riemanniano.

A determinación das variedades conformemente Einstein é un problema clásico en xeometría
semi-riemanniana (ver [83] para unha explicación detallada). Un problema relacionado, tamén
clásico, pero máis manexable, é o da clasificación de variedades Einstein que admiten outra es-
trutura Einstein na súa clase conforme. Os primeiros resultados neste sentido déronse en [10]
(ver tamén [82, 122]). Ademais, a non unicidade de variedades Einstein ponderadas nunha mes-
ma clase conforme de SMMSs foi considerada por Case en [34, 36] en relación ao problema de
Yamabe ponderado e á busca de desigualdades GNS de orde superior. Porén, os seus traballos só
proporcionan resultados parciais. Así, no Capítulo 3, resolvemos completamente esta cuestión,
dando unha clasificación dos SMMSs que admiten varias estruturas WE na mesma clase confor-
me (descartando homotecias, é dicir, transformacións conformes con factor conforme u = eϕ/m

constante).
Primeiro, damos un resultado de rixidez local, para o que utilizamos unha descomposición

en forma de produto deformado similar á do apartado anterior, coa diferenza de que neste caso
utilizamos hipersuperficies de nivel do factor conforme e non da densidade.

Teorema 3.4. Sexa (Mn, g, f,m, µ) un SMMS Einstein ponderado con Pm
f = λg, tal que existe

un SMMS conformemente equivalente (Mn, ĝ, f̂ ,m, µ) que é Einstein ponderado con P̂m
f̂

= λ̂ĝ.
Entón, nunha veciñanza de cada punto regular do factor conforme u, (M, g) descompón coma
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un produto deformado I ×φN , onde I ⊂ R é un intervalo aberto e ∇u é tanxente a I . Ademais,
satisfaise unha das seguintes condicións:

1. (M, g) e (M, ĝ) son Einstein con ρ = 2(n − 1)λg e ρ̂ = 2(n − 1)λ̂g, e a densidade ten a
forma f = −m log(φvN + α), onde vN é unha función definida en N e α é unha función
definida en I .

Ademais, a fibra (N, gN) é Einstein e existen constantes ξ, ν determinadas por v e u tales
que HesNvN = (ξ − (ν2 − 4λλ̂)vN)g

N .

2. (Mn, g, f,m) e (Mn, ĝ, f̂ ,m) son quasi-Einstein con ρmf = 2(m + n − 1)λg e ρ̂m
f̂

=

2(m+ n− 1)λ̂ĝ, e a densidade f descompón como f = −m log(φ) + fN onde fN é unha
función en N .

Ademais, a fibra (N, gN , fN ,m) tamén é quasi-Einstein.

De novo, a condición de completude resulta nunha clasificación máis estrita, pero con certa
flexibilidade.

Teorema 3.10. Sexa (Mn, g, f,m, µ) un SMMS completo tal que Pm
f = λg, con escala κ, e tal

que existe un SMMS Einstein ponderado conformemente equivalente a el. Entón, (M, g, f,m, µ)
é isométrico a un dos seguintes SMMSs:

1. Un espazo forma ponderado.

2. Un produto deformado R ×φ N , con N completa, e tal que φ(t) = Aet
√
−2λ, onde t

parametriza R por lonxitude de arco. Ademais, λ < 0 e satisfaise unha das seguintes
condicións:

(a) (M, g) é Einstein e (N, gN) é Ricci-chá. A función de densidade toma a forma

f(t) = −m log
( κ
2λ

+Bet
√
−2λ
)
,

para algúns B ≥ 0 e κ ≤ 0. Ademais, m = 1 ou µ = −κ2

2λ
≥ 0.

(b) (M, g, f,m) é quasi-Einstein e f descompón como f = −m logφ + fN . Ademais,
(N, gN , fN ,m) é quasi-Einstein con (ρmfN )

N = 0.

Nótese que nos apartados (1) e (2.a) do Teorema 3.10 aparecen exactamente as variedades
WE completas con divf W

m
f = 0 do Teorema 2.23, as cales son Einstein e están relacionadas

coa versión clásica (non ponderada) deste problema (ver [82]). Non obstante, tamén aparecen as
construcións do Teorema 3.10 (2.b), que son QE pero non Einstein.

Como consecuencia do Teorema 3.10, mostramos que no caso compacto o SMMS é nece-
sariamente unha esfera ponderada (Corolario 3.12), xeneralizando un resultado parcial dado por
Case en [36]. Para finalizar esta primeira parte da tese, na Sección 3.3 realizamos unha pequena
discusión sobre a relación entre as variedades WE e a condición de ser Bach-chá (no sentido
ponderado), centrándonos en como os SMMSs estudados nos Capítulos 2 e 3 aparecen de forma
natural ao considerar esta condición.
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Parte II. Ecuacións de campo de Einstein ponderadas en variedades Lorent-
zianas
Os Capítulos 4–7 constitúen a Parte II desta tese, e abandonan o contexto riemanniano para cen-
trarse na signatura lorentziana, de grande interese por ser a base de moitas teorías métricas da
gravidade. A máis coñecida, e precursora de numerosas teorías máis modernas, é a relatividade
xeral, onde as ecuacións que codifican a relación entre materia e xeometría veñen dadas polo
tensor de Einstein (con constante cosmolóxica) G = ρ− τ

2
g+Λg. As correspondentes ecuacións

de Einstein de baleiro obtéñense mediante a condición G = 0 (ver [114] para unha recompila-
ción detallada de solucións exactas das ecuacións de campo en relatividade xeral). Nocións de
variedades con densidade, sobre todo relacionadas co tensor de Ricci de Bakry-Émery, aparecen
en teorías modificadas da gravidade coma as teorías escalar-tensor [109, 117].

Así, o propósito do Capítulo 4 é obter unhas ecuacións de campo axeitadas para variedades
con densidade, de maneira que codifiquen información tanto sobre a xeometría da variedade
subxacente como sobre a densidade. Para acadar este obxectivo, utilizamos unha estratexia dobre.
Por unha banda, tomando m = 1 (de forma que µ non desempeña un papel na definición dos
tensores ponderados) e h = e−f , para un SMMS lorentziano (M, g, h), establecemos o problema
variacional consistente en atopar os puntos críticos do funcional de Einstein-Hilbert ponderado

S : (g, h) 7→ S(g,h) =

∫
M

τh dvolg,

para variacións da estrutura métrica-medida da forma

g[t] = g + tḡ, h[t] = h+ th̄, dVh[t] = h[t]dvolg[t],

suxeitas á restrición d
dt

∣∣
t=0

dVh[t] = 0 (as variacións deixan o elemento de volume ponderado
invariante). O cálculo desta variación acaba por reducirse ao do adxunto formal da linearización
da curvatura escalar, o cal aparece recorrentemente na literatura [3,5,8,62,63,87]. Así, os puntos
críticos están caracterizados pola ecuación

Gh = hρ− Hesh+∆hg = 0,

onde Gh, ao que chamamos tensor de Einstein ponderado, vén dado polo citado adxunto for-
mal. As ecuacións determinadas pola igualdade Gh = 0, por tanto, son as ecuacións de Einstein
ponderadas de baleiro (a partir de aquí, simplemente ecuacións de campo) sen constante cosmo-
lóxica. Estas ecuacións xa apareceran en signatura riemanniana, onde as solucións se coñecen
como espazos estáticos de baleiro debido á súa relación (mediante unha redución dimensional)
coa ecuación dun fluído estático perfecto nun espazo-tempo lorentziano [80]. A versión rieman-
niana desta ecuación espertou grande interese, cos traballos fundacionais [79, 84] e outros máis
modernos como [78, 105, 112]. Porén, as solucións lorentzianas non foron exploradas, o que
motiva as aportacións da tese neste sentido.

Unha segunda estratexia para obter as ecuacións de campo consiste en considerar as catro
propiedades que caracterizan o tensor de Einstein [89]: simetría, diverxencia cero, dependencia
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da métrica e as súas dúas primeiras derivadas, e linearidade nas segundas derivadas da métrica.
Así, a partir do tensor de Ricci de Bakry-Émery ρ1f = ρ− h−1Hesh, construímos

Gh = hρ− Hesh +(∆h+ Λ)g, onde Λ ∈ R,

como un tensor simétrico, dependente da métrica, a densidade e as súas dúas primeiras derivadas,
linear nas segundas derivadas da métrica e a densidade e de diverxencia nula cando a variedade
ten curvatura escalar constante. A igualdade Gh = 0 proporciona as ecuacións de campo con
constante cosmolóxica. Nótese que, seGh = 0, entón a curvatura escalar da variedade é constante
(ver Lema 4.5), polo que as solucións ponderadas comparten esta propiedade coas variedades
Einstein usuais.

Unha vez establecidas as ecuacións de campo, o resto da tese céntrase na análise das súas so-
lucións mediante resultados de clasificación locais (salvo isometría de SMMSs) baixo hipóteses
xeométricas naturais. No Capítulo 5, estudamos solucións isotrópicas, isto é, SMMSs (M, g, h)
tales que Gh = 0 e g(∇h,∇h) = 0. Estas condicións levan a que a variedade subxacente pre-
sente unha distribución nula distinguida, e acaban forzando nela unha estrutura de espazo-tempo
de Kundt ou algunha das súas subfamilias (ondas de Brinkmann, pr-waves...). Os espazo-tempos
de Kundt son variedades lorentzianas de grande importancia en matemáticas (entre outros moti-
vos, pola estrutura da súa holonomía [86]) e física (por exemplo, porque modelizan certos tipos
de ondas gravitacionais [57, 95, 101, 114]). Así, a literatura sobre o tema é moi extensa, sen-
do [7, 9, 46, 48–50, 103] só algúns exemplos adicionais.

Na Sección 5.1, unha análise das ecuacións de campo mostra que toda solución isotrópica
satisfai ∆h = Λ = 0. Os principais resultados acadados no estudo da ecuación hρ = Hesh
resultante recóllense no seguinte teorema, que constitúe o principal resultado do Capítulo 5.

Teorema 5.4. Sexa (Mn, g, h) unha solución isotrópica das ecuacións de campo de Einstein
ponderadas. Entón, satisfaise unha das seguintes posibilidades:

1. (M, g) é unha onda de Brinkmann Ricci-chá e Hesh = 0.

2. O operador de Ricci é nilpotente en 2 pasos e (M, g) é unha onda de Brinkmann.

3. O operador de Ricci é nilpotente en 3 pasos e (M, g) é un espazo-tempo de Kundt.

Ademais deste resultado en dimensión arbitraria, na Sección 5.2 proporcionamos unha clasi-
ficación local completa de solucións isotrópicas tridimensionais. Nótese que, polo Teorema 5.4,
todos os autovalores do operador de Ricci, Ric, dunha solución isotrópica anúlanse. Non obs-
tante, isto non implica que a solución sexa Ricci-chá. En efecto, en signatura riemanniana, o
operador de Ricci diagonaliza en calquera punto nunha base ortonormal axeitada (isto é con-
secuencia do seu carácter autoadxunto). Polo contrario, en signatura lorentziana os operadores
autoadxuntos poden presentar distintas formas normais de Jordan, incluíndo unha con autovalo-
res complexos non reais.

No Capítulo 6, estas formas de Jordan desempeñan un papel esencial. Nel estudamos so-
lucións xerais (M, g, h) das ecuacións de campo sen constante cosmolóxica baixo condicións
no tensor de Weyl usual, W . Debido a que as características das solucións varían notablemente
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dependendo do carácter causal de ∇h, traballamos localmente e supoñemos que este carácter
non cambia na variedade. Así, temos solucións isotrópicas (g(∇h,∇h) = 0) e non isotrópicas
(g(∇h,∇h) ̸= 0).

Primeiro, na Sección 6.1, proporcionamos unha clasificación de solucións localmente confor-
memente chás (W = 0) no Teorema 6.3. Neste caso, para solucións non-isotrópicas Ric diago-
naliza e estas solucións son similares ás súas análogas riemannianas [79]. Por tanto, aumentamos
a flexibilidade considerando a condición divW = 0 (que resulta ser equivalente a divR = 0, é
dicir, a curvatura é harmónica) para solucións de dimensión catro. Esta situación foi considerada
en signatura riemanniana en [78]. No noso contexto aparecen distintas formas de Jordan para
o operador de Ricci con xeometrías moi diferentes, polo que para poder analizalas impoñemos
que a forma de Jordan sexa constante en M . Nas Seccións 6.2–6.4 estudamos cada unha das
posibles formas, dando resultados de clasificación para solucións isotrópicas e non isotrópicas.
Este estudo culmina coa seguinte clasificación local.

Teorema 6.36. Sexa (M, g, h) unha solución de dimensión n = 4 das ecuacións de campo de
Einstein ponderadas (sen constante cosmolóxica) tal que (M, g) ten curvatura harmónica e non é
localmente conformemente chá. Asumamos ademais que a forma normal de Jordan do operador
de Ricci, Ric, é constante en M . Entón, os autovalores de Ric son reais e satisfaise unha das
seguintes condicións:

1. Ric diagonaliza en (M, g) e g(∇h,∇h) ̸= 0. Ademais, existe un conxunto aberto e denso
MRic de M onde (M, g) é localmente isométrica a:

(a) Un produto directo I2 × M̃ , onde M̃ = I1 ×ξ N é unha solución tridimensional
construída sobre un produto deformado con τ̃ = 0 e N unha superficie de curvatura
de Gauss constante.

(b) Un produto directo N1 ×N2 de dúas superficies de curvatura de Gauss constante κ
2

e κ, respectivamente.

2. (M, g) é un espazo-tempo de Kundt e, dependendo do carácter causal de ∇h, dáse unha
das seguintes opcións:

(a) Se g(∇h,∇h) = 0, entón Ric é nilpotente e ∇h determina a distribución nula pa-
ralela distinguida. Ademais, se Ric é identicamente nulo ou nilpotente en 2 pasos, a
variedade subxacente é unha pp-wave.

(b) Se g(∇h,∇h) ̸= 0, entón ∇h é espacial e o campo de vectores nulo distinguido é
ortogonal a ∇h.

As solucións diagonalizables teñen propiedades similares ás que aparecen en [78], pero as
non diagonalizables destacan o carácter lorentziano da variedade subxacente ao estar realizadas
en espazo-tempos de Kundt. Isto está garantido para solucións isotrópicas polo Teorema 5.4,
pero tamén resultan ser chave no caso non-isotrópico, como se aprecia en Teorema 6.36 (2.b).
Ademais, non existen solucións con autovalores do operador de Ricci non reais, pero este feito,
lonxe de ser evidente, requiriu para a súa proba de ferramentas alxébricas coma o cálculo de
bases de Gröbner (mediante o uso de software específico).



Resumo en galego XXI

Para finalizar a discusión da tese, no Capítulo 7 damos algúns exemplos notables de solucións
das ecuacións de campo de Einstein ponderadas. Dado que o Teorema 6.36 mostra a importancia
das solucións realizadas en espazo-tempos de Kundt, pero a súa métrica é demasiado complicada
como para ser analizada en toda a súa xeneralidade, restrinximos o problema analizando ondas
de radiación pura (ou pr-waves, do inglés pure radiation waves [86]). Esta é unha familia de
espazo-tempos de Kundt con relevancia física, e a métrica dunha pr-wave en dimensión catro
pódese escribir en coordenadas locais (u, v, x, y) como

g = 2dudv + F (u, v, x, y)dv2 + dx2 + dy2.

Primeiro, proporcionamos unha clasificación local completa deste tipo de solucións.

Teorema 7.2. Sexa (M, g, h) unha solución de dimensión n = 4 non chá das ecuacións de campo
de Einstein ponderadas, realizada nunha pr-wave. Entón, ∇h é nulo ou espacial, e ademais:

1. Se ∇h é nulo, entón (M, g) é unha pp-wave. A función que determina a métrica nas coor-
denadas (u, v, x, y) satisfai ∂uF = 0 e ∂2xF +∂2yF = γ(v) e a densidade h = h(v) satisfai
a EDO 2h′′ + hγ = 0.

2. Se ∇h é espacial, entón Ric é nilpotente e, adicionalmente:

(a) Se Ric é nilpotente en 2 pasos, entón (M, g) é unha pp-wave. Ademais, nas coorde-
nadas (u, v, x, y) temos ∂uF = 0 e h(v, x, y) = h0(v) + (x + Ay)hx, con A ∈ R e
hx ̸= 0, satisfacendo

0 = −2Gh
vv = 2h′′0 + hx(∂xF + A∂yF ) + h(∂2xF + ∂2yF ).

(b) Se Ric é nilpotente en 3 pasos, entón existen coordenadas (u, v, x, y) tales que a
densidade ten a forma h(v, x, y) = h0(v) + (x + Ay)hx(v), con A ∈ R e h′x ̸= 0, e
a función que determina a métrica é da forma

F (u, v, x, y) = F0(v, x, y) + u

(
2h′x(v) log(h(v, x, y))

hx(v)
+ α(v)

)
con

0 = −2hxG
h
vv

= 2h′x(h
′
0 + (x+ Ay)h′x) log(h0 + (x+ Ay)hx)

+h2x(∂xF0 + A∂yF0 + (x+ Ay)(∂2xF0 + ∂2yF0))

+hx(α(h
′
0 + (x+ Ay)h′x) + 2h′′0 + 2(x+ Ay)h′′x)

+hxh0(∂
2
xF0 + ∂2yF0).

Como consecuencia deste teorema, e enlazando co estudo realizado no Capítulo 6, obtéñense
resultados máis estritos impoñendo que a curvatura sexa harmónica (Corolario 7.5), mostrando
que toda solución non isotrópica é unha onda plana. O capítulo remata cunha pequena discusión
de solucións xeodesicamente completas realizadas en ondas planas en R4.





Introduction

The study of differential equations is ubiquitous in Mathematics. In a considerable number of
cases, these equations are closely related to Differential Geometry, because they codify relevant
geometric properties and conditions. Many equations of great physical significance are studied
within the general framework of smooth manifolds as well. These geometric equations usually
involve a combination of differential operators and tensors related to the curvature of the under-
lying semi-Riemannian manifold. Some classical examples which are intimately related to the
topics in this thesis are the equations that define Einstein manifolds, which are key in General
Relativity, the conformal Einstein equation introduced by Brinkmann [11], or the different gener-
alizations of the Obata equation [84, 96, 120]. In local coordinates, geometric equations take the
form of a (generically overdetermined) system of partial differential equations (PDEs) involving
the components of the metric and, often, additional functions of geometric significance.

The study of these kinds of geometric equations follows a two-pronged approach. On the
one hand, on a given manifold, we seek to determine the existence of solutions of a certain
equation, as well as their characteristics. Frequently, this involves finding a suitable metric, as
well as other functions related to the geometric equation itself. On the other hand, we might
wonder to what extent the existence of solutions of a certain geometric equation restricts the
admissible geometries of the underlying manifold. Usually, the final goal is a combination of the
two, meaning that given a geometric equation on a generic semi-Riemannian manifold, we aim
to understand both the geometries admitting solutions and the form of the solutions themselves.
Nevertheless, these equations often reach a level of complexity that makes them impossible to
solve in full generality. Thus, it becomes necessary to impose suitable geometric conditions that
reduce the problem to a manageable state (some sort of symmetry, curvature restrictions...).

This thesis focuses on the study of a series of geometric equations in a highly mathemati-
cally relevant context which is, however, less well-known than the standard semi-Riemannian
formalism: smooth metric measure spaces (also known as manifolds with density).

Thus, this dissertation starts with an preliminary chapter (Chapter 1) devoted to the intro-
duction of the necessary notions of semi-Riemannian and weighted geometry in smooth metric
measure spaces. Broadly speaking, a smooth metric measure space (SMMSs for short) is a semi-
Riemannian manifold (M, g) (we only consider manifolds of dimension n ≥ 3) endowed with
a smooth measure which is, in general, different from its Riemannian measure. This can be
formalized via the inclusion of a smooth density function f ∈ C∞(M) which gives rise to the
weighted volume element e−fdvolg, where dvolg is the standard Riemannian volume element.
Whenever f is constant, the SMMS is said to be trivial and its analysis boils down to standard
semi-Riemannian techniques. Thus, as a general rule, we will consider non-trivial SMMSs.

XXIII
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Notions of manifolds with density appear naturally in many mathematical and physical prob-
lems, such as the resolution of the Poincaré conjecture by Perelman [100], the construction of
Einstein warped products [77], analytic topics related to Gagliardo-Nirenberg-Sobolev (GNS)
inequalities [36, 38], the isoperimetric problem [75, 108] and modified theories of gravity [109,
117], among many others.

Although the simplest way to define a SMMS is as the triple (M, g, f), in the past fifteen
years, mostly thanks to works by Case [34–41], a more general definition has been introduced,
specially for certain problems in Riemannian signature. Within this formalism, a SMMS is
a 5-tuple (Mn, g, f,m, µ), where m ∈ R+ and µ ∈ R are parameters of geometric signifi-
cance. The objects of study in this setting are weighted invariants, i.e., functions in the space
Met(M) × C∞(M) of metric-measure structures on M which are invariant under the action
of the diffeomorphism group Diff(M) (note that they can also depend on m and µ). We now
present some weighted invariants of particular interest to this work. The most well-known one is
the Bakry-Émery Ricci tensor

ρmf = ρ+Hesf −
1

m
df ⊗ df,

where ρ is the Ricci tensor and Hesf is the Hessian of f . We will also use the weighted scalar
curvature

τmf = τ + 2∆f − m+ 1

m
∥∇f∥2 +m(m− 1)µ e

2
m
f ,

where τ is the standard scalar curvature of (M, g). The weighted Schouten tensor and its associ-
ated scalar then take the form

Pm
f =

1

m+ n− 2
(ρmf − Jm

f g), Jm
f =

1

2(m+ n− 1)
τmf ,

and finally, the weighted Weyl tensor is given by

Wm
f = R− Pm

f ⃝∧ g,

where ⃝∧ represents the Kulkarni-Nomizu product.
The use of the tensor ρmf introduced in [1] is widespread in Mathematics and the literature

related to it is extensive. For example, it is relevant in the study of the Ricci flow [100], the
construction of warped product Einstein manifolds [71, 77], and it gives rise to gradient Ricci
solitons (i.e., solutions to the equation ρ∞f = ρ+Hesf = λg for some λ ∈ R) and quasi-Einstein
(QE) manifolds (solutions to ρmf = λg), which are two structures of interest, with the latter being
highly related to this work (see [12,15,31,43,45] for some results on gradient Ricci solitons and
QE manifolds). Much less is known, however, about the influence of Pm

f andWm
f = R−Pm

f ⃝∧ g
on SMMSs.

In order to study such weighted geometric equations, we need a way to identify SMMSs. To
this end, we say that two SMMSs

(Mn
1 , g1, f1,m1, µ1) and (Mn

2 , g2, f2,m2, µ2)
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are isometric if there exists a Riemannian isometryψ : (M1, g1) → (M2, g2) such that f1 = f2◦ψ,
and the parameters satisfy m1 = m2 and µ1 = µ2.

A natural question in this context is how to formulate a notion of “Einstein manifold in the
weighted sense”. In the unweighted setting, the Einstein condition can be stated equivalently
using the Ricci tensor (ρ = λg for some λ ∈ R) or the usual Schouten tensor (P = λg for
some λ ∈ R). However, these conditions are not equivalent in the weighted setting. Indeed,
ρmf = λg gives rise to QE manifolds, while Pm

f = λg gives rise to weighted Einstein (WE)
manifolds. This notion turns out to be more general than that of QE manifolds, since for any
SMMS (Mn, g, f,m, µ) satisfying Pm

f = λg, there exist a constant κ (called the scale) such that
the weighted Schouten scalar is given by Jm

f = (m+ n)λ−mκef/m. Notice that if κ = 0 or the
SMMS is trivial, then we have a QE manifold. Moreover, in the non-trivial case, if (Mn, g, f,m)
is QE, then there exists a value of µ ∈ R such that (Mn, g, f,m, µ) is WE with vanishing
scale [34].

The fact that WE manifolds generalize QE manifolds makes them a prime candidate for be-
ing the weighted analogues of Einstein manifolds. Moreover, for µ = 0, they also arise as critical
points of a suitable total weighted scalar curvature functional [36] related to the weighted Yam-
abe problem, similarly to how Einstein manifolds arise from variations of the Einstein-Hilbert
functional. This fact further motivates the interest of studying weighted Einstein structures on
SMMSs.

The simplest examples of WE manifolds are built on the three model spaces: the sphere
Sn, the hyperbolic space Hn and the Euclidean space En, through the prescription of suitable
density functions and values of the parameter µ. Indeed, by choosing the appropriate metric on
these space forms, we construct complete WE manifolds with Pm

f = λg and constant sectional
curvature 2λ, for any value of m and λ. First examples of such structures were introduced by
Case (see [34,40]). In Section 1.6, we present a comprehensive list of families of WE manifolds
realized on space forms for all values of µ that generalize those already existing in literature.
We call these the weighted space forms, and they play a key role in several of our classification
results. Nevertheless, not every WE manifold is Einstein, and more complex structures also
appear.

In Part I of this thesis, which is comprised of Chapters 2 and 3, we aim to further our un-
derstanding of weighted Einstein manifolds in Riemannian signature via classification results up
to isometry of SMMSs. Given the complexity of the WE equation Pm

f = λg, we focus on two
specific problems which we present below. A key trait of WE manifolds which we will make ex-
tensive use of throughout Part I is their real analyticity in harmonic coordinates, which we prove
in Section 1.6. This property allows us to determine global geometric properties from values of
tensors in a given open set.

In the analysis of Einstein-type structures such as quasi-Einstein manifolds, a condition that
often appears in literature is the harmonicity of the standard Weyl tensor, divW = 0, where
div denotes the usual divergence (see [19, 44]). This condition arises naturally in discussions
on conformally Einstein manifolds, i.e., manifolds (M, g) admitting local conformal transforma-
tions ĝ = e−2σg such that the resulting manifold is Einstein (see, for example, [83]). The natural
translation of divW = 0 to the weighted setting is the vanishing of the weighted divergence of
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the weighted Weyl tensor:

0 = divf W
m
f = divWm

f − ι∇fW
m
f = divWm

f −Wm
f (∇f,−,−,−).

Thus, in Chapter 2, we analyze weighted Einstein manifolds under this weighted harmonicity
condition. Notice that a WE manifold with Pm

f = λg and Wm
f = 0 has constant sectional

curvature 2λ, but this is not the case for the weaker condition divf W
m
f = 0. In fact, this

condition does not imply the Einstein character of the underlying manifold, although the non-
Einstein case is heavily restricted (see Example 2.4).

In order to obtain the main local classification result in Chapter 2, we use the fact that the
level hypersurfaces of the density function f turn out to be spherical, which allows for a local
decomposition of the manifold as a warped product around regular points of f [104]. Due to this
fact, the PDEs corresponding to the equation Pm

f = λg are reduced to an overdetermined system
of ODEs, which we then solve.

Theorem 2.14. Let (Mn, g, f,m, µ) be a SMMS such that Pm
f = λg and divf W

m
f = 0. Then,

for each regular point p of f , there exists a Riemannian isometry between a neighborhood U of
p and a warped product I ×φ N , where I ⊂ R is an open interval, N is an (n− 1)-dimensional
Einstein manifold, and ∇f is tangent to I . Moreover, one of the following conditions holds:

1. I ×φ N is Einstein with ρ = 2(n− 1)λg.

2. (U , g
∣∣
U
, f
∣∣
U
,m, µ) is isometric to (I ×φ N, g, f,

1
2
, 0) as given in Example 2.4.

The Einstein case is less restricted than its non-Einstein counterpart, and we analyze it thor-
oughly in Section 2.2. Moreover, by imposing completeness of the underlying manifold and tak-
ing advantage of the analyticity of WE manifolds and the relationship between the WE equation
Pm
f = λg and the generalized Obata equation (see [120]), we prove a stronger global classifica-

tion result for complete SMMSs, where it is shown that the non-Einstein case is not admissible.

Theorem 2.23. Let (Mn, g, f,m, µ) be a complete SMMS such that Pm
f = λg (with scale κ) and

divf W
m
f = 0. Then, (Mn, g, f,m, µ) is isometric to one of the following spaces:

1. A weighted space form as described in Examples 1.12, 1.13 and 1.14.

2. An Einstein warped product R ×φ N , where N is a Ricci-flat complete manifold. In this
case, there is a coordinate t parameterizing R by arc length such that the warping and
density functions take the forms

φ(t) = Aet
√
−2λ , f(t) = −m log

(
κ
2λ

+Bet
√
−2λ
)

,

for some B ≥ 0 and κ ≤ 0. Moreover, m = 1 or µ = −κ2

2λ
≥ 0.

We see how the weighted space forms (which have Wm
f = 0) appear, but by choosing ap-

propriate Ricci-flat fibers N in Theorem 2.23 (2), we also get spaces which do not have constant
sectional curvature or which are not simply connected.



Introduction XXVII

The second problem regarding Riemannian SMMSs that we tackle comes from the fact that
ideas of conformal geometry turn up naturally in discussions of SMMSs. Two examples of this
are QE manifolds [37, 39–41] and analytic problems related to Gagliardo-Nirenberg-Sobolev
inequalities [34–36, 38]. Hence, weighted conformal geometry deserves further attention, and
in Chapter 3 we turn towards the weighted version of a classical problem: The classification
of Einstein manifolds admitting more than one Einstein representative in their conformal class
(see [10, 82, 122]).

In our weighted context, we say that two SMMSs (M, g, f,m, µ) and (M, ĝ, f̂ ,m, µ) are
conformally equivalent if there exists a smooth function ϕ ∈ C∞(M) such that ĝ = e−2ϕ/mg

and f̂ = f +ϕ (i.e., the corresponding formal warped products are conformally equivalent in the
Riemannian sense).

Thus, in Chapter 3 we look for WE manifolds admitting another WE representative in their
weighted conformal class (excluding homotheties, i.e., rescalings of the metric by a constant
factor). Some results in this regard were given by Case [34,36] in relation to the Yamabe problem
and the search for sharp higher order GNS inequalities. However, these were only partial results,
and in this thesis we complete the classification in full generality. Firstly, we give a local rigidity
result by leveraging a warped product decomposition similar to the one in Chapter 2, with the
caveat that now the fibers correspond to level hypersurfaces of the conformal factor u = eϕ/m

instead of the density.

Theorem 3.4. Let (Mn, g, f,m, µ) be a weighted Einstein SMMS, with Pm
f = λg, such that there

exists a conformally equivalent SMMS (Mn, ĝ, f̂ ,m, µ) which is weighted Einstein with P̂m
f̂

=

λ̂ĝ. Then, on a neighborhood of each regular point of the conformal factor u, M decomposes as
a warped product I×φN , where I ⊂ R is an open interval and ∇u is tangent to I . Furthermore,
one of the following holds:

1. (M, g) and (M, ĝ) are Einstein with ρ = 2(n− 1)λg and ρ̂ = 2(n− 1)λ̂g, and the density
takes the form f = −m log(φvN +α), where vN is a function on N and α is a function on
I .

Moreover, the fiber (N, gN) is Einstein and there exist constants ξ, ν determined by v and
u such that HesNvN = (ξ − (ν2 − 4λλ̂)vN)g

N .

2. (Mn, g, f,m) and (Mn, ĝ, f̂ ,m) are quasi-Einstein with ρmf = 2(m+ n− 1)λg and ρ̂m
f̂
=

2(m+ n− 1)λ̂ĝ, and the density f splits as f = −m log(φ) + fN where fN is a function
on N .

Moreover, the fiber (N, gN , fN ,m) is quasi-Einstein too.

Then, we achieve a stronger global rigidity result by imposing, once again, the condition of
completeness of our SMMSs of interest.

Theorem 3.10. Let (Mn, g, f,m, µ) be a complete SMMS such that Pm
f = λg, with scale κ, and

such that there exists a conformally equivalent weighted Einstein SMMS. Then, (M, g, f,m, µ)
is isometric to one of the following SMMSs:
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1. A weighted space form as described in Examples 1.12, 1.13 and 1.14.

2. A warped product R ×φ N , with N complete, and such that φ(t) = Aet
√
−2λ, where t

parameterizes R by arc length. Moreover, λ < 0 and one of the following holds:

(a) (M, g) is Einstein and (N, gN) is Ricci-flat. The density function has the form

f(t) = −m log
( κ
2λ

+Bet
√
−2λ
)
,

for some B ≥ 0 and κ ≤ 0. Moreover, m = 1 or µ = −κ2

2λ
≥ 0.

(b) (M, g, f,m) is quasi-Einstein, f splits as f = −m logφ + fN , and (N, gN , fN ,m)
is also quasi-Einstein with (ρmfN )

N = 0.

Note that the SMMSs in items (1) and (2.a) of Theorem 3.10 are exactly the WE mani-
folds with divf W

m
f = 0 in Theorem 2.23, all of which are Einstein and related to the classical

unweighted version of this problem [82]. Nevertheless, we also get the constructions in Theo-
rem 3.10 (2.b), which are QE but not Einstein.

As a consequence of Theorem 3.10, we show that in the compact case the SMMS is nec-
essarily an m-weighted n-sphere (Corollary 3.12), thus generalizing the partial result given by
Case in [36]. We also build an example of the new structures arising from Theorem 3.10 (2.b).
Finally, we end Part I of the thesis by briefly discussing, in Section 3.3, the relationship be-
tween WE manifolds and weighted Bach-flatness, by focusing on how the SMMSs presented in
Chapters 2 and 3 arise naturally when considering this condition.

Part II of this dissertation, which includes Chapters 4–7, abandons the Riemannian setting
to focus instead on Lorentzian smooth metric measure spaces. Lorentzian manifolds are highly
significant in Physics because they are the basis of many metric theories of gravity, with Gen-
eral Relativity being the foundational one. In this framework, the field equations codifying the
relationship between matter and geometry are given by the Einstein tensor (with cosmological
constant) G = ρ − τ

2
g + Λg. The corresponding vacuum field equations, which correspond to

the usual Einstein condition, are obtained by setting G = 0 (see [114] for a detailed review of
exact solutions of the Einstein field equations in General Relativity). Notions of smooth metric
measure spaces, specially ones concerning the Bakry-Émery Ricci tensor, appear in modified
theories of gravity such as scalar-tensor theories [109, 117].

Thus, the purpose of Chapter 4 is to obtain suitable field equations for SMMSs, so that they
still contain standard semi-Riemannian geometric information, along with information on the
density function. We achieve this goal through two different approaches: On the one hand,
taking m = 1 so that the parameter µ does not play a role, and h = e−f , for a Lorentzian SMMS
(M, g, h) we define the weighted Einstein-Hilbert functional

S : (g, h) 7→ S(g,h) =

∫
M

τh dvolg.

We then look for the critical points of this functional for variations of the metric-measure struc-
ture of the form

g[t] = g + tḡ, h[t] = h+ th̄, dVh[t] = h[t]dvolg[t],
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such that the weighted volume element remains invariant, i.e., d
dt

∣∣
t=0

dVh[t] = 0. The analysis of
this variation amounts to the computation of the formal adjoint of the linearization of the scalar
curvature. This object appears in a recurrent manner in literature [3, 5, 8, 62, 63, 87]. It follows
that critical points are characterized by the equation

Gh = hρ− Hesh+∆hg = 0,

where Gh, which we call the weighted Einstein tensor, is given by the aforementioned formal
adjoint. The equations determined by Gh = 0 are thus called the vacuum weighted Einstein
field equations (henceforth, weighted Einstein field equations or just field equations). These
equations had already been studied in Riemannian signature due to their formal relation (via
dimensional reduction) to the usual field equations of a perfect fluid in a Lorentzian spacetime
[80]. The Riemannian version of this equation has drawn significant interest, with seminal works
like [79, 84] and more modern ones like [78, 105, 112]. Nevertheless, the Lorentzian solutions
explored in this thesis constitute a new contribution which had not been analyzed in literature.

On the other hand, the second approach consists on considering the four properties that char-
acterize the usual Einstein tensor: symmetry, vanishing divergence, dependence on the metric
and its first two derivatives, and linearity on the second derivatives of the metric [89]. Hence,
from the Bakry-Émery Ricci tensor, we build

Gh = hρ− Hesh +(∆h+ Λ)g, where Λ ∈ R,

as a symmetric tensor whose divergence vanishes if the scalar curvature of the underlying mani-
fold is constant. Moreover, Gh depends on the metric g, the density h and their first two deriva-
tives, and it is linear in the second derivatives of both g and h. Then, Gh = 0 gives the field
equations with cosmological constant. Note that, if Gh = 0, then the scalar curvature of the
underlying manifold is constant (see Lemma 4.5), so solutions of the weighted Einstein field
equations share this property with standard Einstein manifolds.

Once the field equations have been established, the focus of the remainder of the thesis shifts
toward the analysis of their solutions via local classification results (up to isometry of SMMSs).
We start in Chapter 5 by studying isotropic solutions, i.e., SMMSs (M, g, h) such that Gh = 0
and g(∇h,∇h) = 0. It turns out that these conditions imply that span∇h is a distinguished
lightlike distribution, forcing the underlying manifold to be a general Kundt spacetime or a more
specific family of such spaces (Brinkmann waves, pr-waves...). Kundt spacetimes are important
in Mathematics, in part due to their holonomy structure (see [86]) and in Physics, among other
reasons, due to their links to gravitational waves (see [57, 95, 101, 114])). Literature on the topic
is thus extensive, with [7, 9, 46, 48–50, 103] being only some additional examples.

In Section 5.1, we show that any isotropic solution of the field equations satisfies Λ = ∆h =
0. Thus, the equations reduce to hρ = Hesh, which we further study in order to prove the main
rigidity result of Chapter 5.

Theorem 5.4. Let (Mn, g, h) be an isotropic solution of the weighted Einstein field equations.
Then, one of the following possibilities holds:

1. (M, g) is a Ricci-flat Brinkmann wave and Hesh = 0.
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2. The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave.

3. The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime.

In addition to this, we also provide a full classification of 3-dimensional isotropic solutions
in Section 5.2, where admissible solutions are described explicitly in local coordinates. No-
tice that, by Theorem 5.4, the Ricci eigenvalues of any isotropic solution vanish, although this
does not mean that it is Ricci-flat. Recall that, in Riemannian signature, as a consequence of its
self-adjoint character, the Ricci operator Ric diagonalizes at every point p ∈ M for an appropri-
ate orthonormal basis of TpM . However, in Lorentzian signature, self-adjoint operators might
present several distinct Jordan normal forms.

These different normal forms play an essential role in Chapter 6, where we study general
solutions (M, g, h) under conditions on the standard Weyl tensor W . Since the features and
analysis of solutions are quite different depending on the causal character of ∇h, we work lo-
cally and assume that it does not change, giving rise to isotropic solutions (∇h lightlike) and
non-isotropic ones (∇h timelike or spacelike). A first result is given in Section 6.1 for locally
conformally flat solutions (Theorem 6.3). In this case, the Ricci operator diagonalizes for non-
isotropic solutions, and these solutions are similar to their Riemannian analogues [79]. In order to
find purely Lorentzian non-isotropic solutions, the bulk of the chapter centers around the weaker
condition of harmonic curvature (divR = 0) on 4-dimensional SMMSs, which was previously
considered for Riemannian manifolds in [78]. Since each possible Jordan normal form for Ric
requires a different approach, and our analysis is local, we assume the constancy of this normal
form and provide, throughout Sections 6.2–6.4, rigidity results for each one. This culminates in
the following main classification result.

Theorem 6.36. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equations
(without cosmological constant) such that (M, g) has harmonic curvature tensor (not locally
conformally flat). Assume that the Jordan normal form of the Ricci operator Ric is constant in
M . Then, the eigenvalues of Ric are real and one of the following is satisfied:

1. Ric diagonalizes on (M, g) and g(∇h,∇h) ̸= 0. Furthermore, there exists an open dense
subset MRic of M where (M, g) is locally isometric to:

(a) A direct product I2 × M̃ , where M̃ = I1 ×ξ N is a warped product 3-dimensional
solution with τ̃ = 0 and N a surface of constant Gauss curvature.

(b) A direct product N1 × N2 of two surfaces of constant Gauss curvature κ
2

and κ,
respectively.

2. (M, g) is a Kundt spacetime and, depending on the causal character of ∇h, one of the
following applies:

(a) If g(∇h,∇h) = 0, then Ric is nilpotent and ∇h determines the lightlike parallel line
field. Moreover, if Ric vanishes or is 2-step nilpotent, the underlying manifold is a
pp-wave.
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(b) If g(∇h,∇h) ̸= 0, then ∇h is spacelike and the distinguished lightlike vector field is
orthogonal to ∇h.

Diagonalizable solutions present similar features to those of their Riemannian analogues in
[78], but non-diagonalizable ones are realized on Kundt spacetimes (even in the non-isotropic
case), which highlights their purely Lorentzian character. Moreover, we emphasize that there
are no solutions with complex, non-real eigenvalues, which is possible for a general self-adjoint
operator in a Lorentzian space. The nonexistence of solutions of this kind is proved by employing
tools from computational algebra (Gröbner bases).

The contributions of this dissertation end in Chapter 7, where we present some examples
of solutions of geometric interest. Since Kundt spacetimes are key in Theorem 6.36, but their
metric is too complicated to tackle in full generality, we focus on the problem of classifying
all 4-dimensional solutions realized on the physically significant family of pure radiation waves
(pr-waves for short, see [86] for details). This classification includes the explicit description of
solutions in local coordinates and is given in Theorem 7.2. We link this to Theorem 6.36 by
obtaining stronger results for solutions on pr-waves with harmonic curvature (Corollary 7.5).
Non-isotropic solutions in this context turn out to be realized on plane waves, and we end the
chapter by presenting a brief discussion on geodesically complete solutions on plane waves in
R4.





Chapter 1
Preliminaries

This chapter is devoted to the introduction of the basic concepts, notations and conventions that
will be necessary for a complete understanding of this thesis. Some motivational material is also
included, as well as new results that are considered essential knowledge for the development of
subsequent chapters. We will omit the proofs of most known results and direct the reader to
several references for further details. For a more comprehensive introduction to Riemannian and
semi-Riemannian geometry, we refer to the well-known books by O’Neill [97], Kühnel [81] and
Lee [85].

1.1 Semi-Riemannian geometry
Let Mn be a (connected) n-dimensional (smooth) manifold (without boundary), with n ≥ 3.
A metric tensor (or simply a metric) g on Mn is a (smooth) symmetric and non-degenerate
(0,2)-tensor field on M . The pair (Mn, g) (or just (M, g) if the dimension is known) is called
a semi-Riemannian manifold. The signature of a metric g is the pair (n − ν, ν), where n −
ν and ν refer to the number of negative and positive eigenvalues of the associated matrix of
g, respectively. If g has signature (0, n) (i.e., if it is positive definite), the manifold (M, g)
is said to be Riemannian. Similarly, if the signature is (1, n − 1), then (M, g) is said to be
Lorentzian. Equivalently, the signature can be defined as the dimension of the maximal subspace
where the metric is negative definite, so Riemannian and Lorentzian manifolds have signatures
0 and 1 respectively. Thoughout this thesis, we will also use the word spacetime to refer to a
Lorentzian manifold, meaning that we will not take into account the notion of time orientation
that is sometimes imposed in the definition of spacetimes.

Let TpM denote the tangent space to M at p ∈M , TM the tangent bundle of M , and X(M)
the space of (smooth) tangent vector fields to M , this is, the space of smooth sections of TM . A
non-zero vector v ∈ TpM is called timelike if gp(v, v) < 0, lightlike or null if gp(v, v) = 0, and
spacelike if gp(v, v) > 0. Likewise, a vector field X ∈ X(M) is timelike, lightlike or spacelike
if Xp presents these behaviors for all p ∈ M . Note that, for Riemannian manifolds, all non-zero
vectors are spacelike.

For any semi-Riemannian manifold (M, g), the Koszul formula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))

+g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X),

where X, Y, Z ∈ X(M), determines the Levi-Civita connection ∇, which is the unique linear
connection such that

∇XY −∇YX − [X, Y ] = 0 and ∇g = 0

1
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for all X, Y ∈ X(M), where [−,−] denotes the Lie bracket. The first condition means that ∇
is torsion-free, while the second one is often referred to as metric compatibility, since it means
that the metric is parallel. When working with local coordinates (x1, . . . , xn) on M , we denote
the corresponding coordinate vector fields by ∂xi

, for i = 1, . . . , n. Then, the connection is
also characterized by the Christoffel symbols determined by the Koszul formula. The Christoffel
symbols of the first kind are given by the expression

Γijl =
1

2

(
∂glj
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
,

while the Christoffel symbols of the second kind are

Γ k
ij = gklΓijl,

where (gij) is the inverse matrix of (gij), whose entries are gij = g(∂xi
, ∂xj

), and we have used
Einstein notation to signify a sum over the repeated index l. Hence, covariant derivatives of
coordinate vectors are given by ∇∂xi

∂xj
= Γ k

ij ∂xk
.

The connection gives rise to the concept of geodesics, i.e., curves γ : I ⊂ R → M , where I
is an open interval, such that ∇γ′γ′ = 0. Geodesics are relevant in Mathematics and Physics, for
example, due to their local length-minimizing properties and the fact that free-falling particles
move along geodesics in General Relativity. For the purposes of this dissertation, however, we
will not be discussing geodesic curves, but manifolds such that all maximal geodesics (those that
cannot be extended) are defined in R. These manifolds are said to be geodesically complete, and
this notion interacts with the metric in an interesting way. Indeed, for Riemannian manifolds,
due to the Hopf-Rinow Theorem, this is equivalent to completeness as a metric space (with the
distance function given by the metric), but this equivalence fails for indefinite signatures. Thus,
in Part I of this thesis, which focuses on Riemannian manifolds, we will refer to geodesically
complete manifolds merely as complete.

The presence of a metric allows for a process known as the raising (or lowering) of indices,
which transforms a tensor T of type (r, s) into one or type (r + 1, s − 1) or (r − 1, s + 1),
respectively. Indeed, if the components of T are given in the coordinates (x1, . . . , xn) as

T = T i1···ir
j1···js ∂xi1

⊗ · · · ⊗ ∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

then a metrically equivalent (r + 1, s− 1)-tensor is, for example

QT = gj1kT i1···ir
kj2···js ∂xi1

⊗ · · · ⊗ ∂xir
⊗ ∂xj1

⊗ dxj2 ⊗ · · · ⊗ dxjs

= T i1···irj1
j2···js ∂xi1

⊗ · · · ⊗ ∂xir
⊗ ∂xj1

⊗ dxj2 ⊗ · · · ⊗ dxjs

where we have raised the first covariant index. Henceforth, when using index notation, we will
disregard the coordinates and describe a tensor only by its components.

A case of particular relevance for this work is that of symmetric (0, 2)-tensors. If Tij is
one such tensor, then raising either index gives rise to the metrically equivalent (1, 1)-tensor
(QT )

i
j = gikTkj (which can be regarded as an endomorphism QT : X(M) → X(M)). Both

tensors are related by

T (X, Y ) = g(QT (X), Y ), for all X, Y ∈ X(M).
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1.1.1 Differential operators
In this section, we present some useful differential operators associated with a semi-Riemannian
manifold (Mn, g). Let C∞(M) be the space of smooth functions f :M → R.

Gradient: Let f ∈ C∞(M). The gradient of f , denoted by ∇f , is the vector field which satisfies

g(∇f,X) = X(f), for all X ∈ X(M).

Points p ∈ M where ∇f vanishes are called critical, while those where (∇f)p ̸= 0 are regular.
Note that the gradient can be considered as the metrically equivalent tensor to the 1-form df .

Hessian and Laplacian: The Hessian operator of a smooth function f is the (1, 1)-tensor given
by the second covariant derivative of f :

hesf (X) = ∇X∇f.

Its metrically equivalent (0, 2)-tensor, the Hessian tensor of f , is thus defined as

Hesf (X, Y ) = g(hesf (X), Y ) = g(∇X∇f, Y ) = X(Y (f))− (∇XY )(f),

where the right-hand side follows from the compatibility of the Levi-Civita connection with the
metric. Moreover, because the Levi-Civita connection is torsion-free,

X(Y (f))− Y (X(f)) = [X, Y ](f) = (∇XY )(f)− (∇YX)(f).

Hence, X and Y can be reversed in the formulas above. This means that Hesf is symmetric, and
that hesf is self-adjoint, i.e., g(hesf (X), Y ) = g(X, hesf (Y )).

Taking the trace of the Hessian operator yields the Laplacian of the function f :

∆f = tr(X 7→ hesf (X)) = (hesf )
i
i .

Divergence: Consider a local orthonormal frame {E1, . . . , En}, which means that g(Ei, Ej) =
εiδij , where εi = ±1 and δij is the Kronecker delta. Let T be a (0, s)-tensor. Then, the r-
divergence of T is given by

divr T (X1, . . . , Xs−1) =
n∑

i=1

εi(∇Ei
T )(X1, . . . , Xr−1, Ei, Xr, . . . , Xs−1),

i.e., it is the (metric) trace of ∇T over its first and (r+1)-th arguments. Hence, it does not depend
on the choice of local frame. Henceforth, we will write div1 = div and refer to the 1-divergence
simply as the divergence.

This definition is motivated by the fact that, if M is compact and orientable, then by Stokes’
theorem div is the negative of the formal adjoint of the covariant derivative of tensors. This
means that for any two tensors T,K of types (0, s) and (0, s− 1) respectively,∫

M

⟨T,∇K⟩dvolg = −
∫
M

⟨div T,K⟩dvolg

where ⟨−,−⟩ denotes the product of tensors given by the metric g, ⟨T,∇K⟩ = T i1···is∇i1Ki2···is ;
and dvolg =

√
|g| dx1∧· · ·∧dxn is the usual Riemannian volume element, with |g| = ε det(gij),

where ε = ±1 depending on the signature of the metric. We say that T is harmonic if div T = 0.
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1.1.2 Tensors related to curvature
In terms of the Levi-Civita connection, we define the (1, 3)-curvature tensor by the convention

R(X, Y )Z = ∇[X,Y ]Z −∇X∇YZ +∇Y∇XZ.

The curvature tensor of type (0, 4) is then given by

R(X, Y, Z, U) = g(R(X, Y )Z,U).

The (0, 4)-curvature tensor has the following symmetries:

(i) R(X, Y, Z, U) = −R(Y,X,Z, U) = −R(X, Y, U, Z),

(ii) R(X, Y, Z, U) = R(Z,U,X, Y ),

(iii) R(X, Y, Z, U) +R(Y, Z,X, U) +R(Z,X, Y, U) = 0.

Item (iii) is known as the first Bianchi identity. Additionally, it satisfies the differential property
known as the second Bianchi identity:

(iv) (∇XR)(Y, Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X, Y, U, V ) = 0.

On a semi-Riemannian manifold (M, g), the standard curvature tensor is

R0(X, Y, Z, U) =
1

2
(g⃝∧ g)(X, Y, Z, U) = g(X,Z)g(Y, U)− g(Y, Z)g(X,U),

where ⃝∧ denotes the Kulkarni-Nomizu product, which acts on two symmetric (0, 2)-tensors T
and S as

(T ⃝∧ S)(X, Y, Z, U) = T (X,Z)S(Y, U) + T (Y, U)S(X,Z)

−T (X,U)S(Y, Z)− T (Y, Z)S(X,U).

A tangent plane Π = span{x, y} ⊂ TpM is called non-degenerate if R0(x, y, x, y) ̸= 0, in which
case we define its sectional curvature as

K(Π) =
R(x, y, x, y)

R0(x, y, x, y)
.

If at each p ∈ M , K(Π) = c for some constant c, for all non-degenerate tangent planes Π ⊂
TpM , then the curvature tensor takes the form

R(X, Y, Z, U) = cR0(X, Y, Z, U)

and it is said that (M, g) has constant sectional curvature c. Note that we do not need to impose
that the constant c be the same for all p ∈ M , since this is a consequence of Schur’s Lemma.
If R vanishes, we say that the manifold is flat. Geodesically complete manifolds of constant
sectional curvature are called space forms. The universal cover of a space form is isometric to
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a pseudosphere Sn
ν (r), to a pseudo-hyperbolic space Hn

ν (r), or to the indefinite flat space Rn
ν ,

depending on the signature of its metric and the sign of its sectional curvature. In Riemannian
signature, we get standard spheres, hyperbolic spaces and Euclidean spaces, and this becomes
the well-known Killing-Hopf Theorem. As a result of this fact, the three simply connected space
forms are sometimes referred to as the model spaces.

Another important geometric object is the Ricci tensor, a (0, 2)-tensor given by the contrac-
tion

ρ(X, Y ) = tr(Z 7→ R(X,Z)Y ).

Thus, in index notation, ρij = R k
ikj , and for an orthonormal frame {E1, . . . , En},

ρ(X, Y ) =
n∑

i=1

εiR(X,Ei, Y, Ei).

Due to the symmetries of the curvature tensor, the Ricci tensor is symmetric. Thus, its metrically
equivalent (1, 1)-tensor is self-adjoint. We refer to this tensor as the Ricci operator, and denote
it by Ric, so that ρ(X, Y ) = g(Ric(X), Y ) = g(X,Ric(Y )). If ρ = 0, we say that (M, g) is
Ricci-flat, while if ρ = λg for some λ ∈ R, we say that (M, g) is Einstein. This is a condition of
great importance, not only from the point of view of Geometry, but also in Physics, in particular
in metric theories of gravitation such as General Relativity (see Section 1.4 for further details on
Einstein metrics).

The contraction of the Ricci tensor yields the scalar curvature,

τ = tr(X 7→ Ric(X)) = Ricii .

From the Ricci tensor, we also define the Schouten tensor P and the Schouten scalar J , which is
its trace:

P =
1

n− 2

(
ρ− τ

2(n− 1)
g

)
, J = trP =

τ

2(n− 1)
. (1.1)

The Weyl tensor of type (0, 4) is now given by

W = R− P ⃝∧ g = R− 1

n− 2

(
ρ⃝∧ g − τ

n− 1
R0

)
.

Note that, if (M, g) is Einstein with ρ = λg, then contraction yields τ = nλ, and consequently
R = τ

n(n−1)
R0 +W . Thus, any Einstein manifold with W = 0 has constant sectional curvature.

As we will see shortly, the Weyl tensor is related to the conformal properties of the underlying
manifold. Moreover, for any 3-dimensional manifold, the Weyl tensor vanishes, so the curvature
is completely determined by the Ricci tensor. In particular, any Einstein manifold of dimension
three has constant sectional curvature (so any Ricci-flat 3-dimensional manifold is flat).

Finally, another important object is the Cotton tensor, given by the skew-symmetrization of
∇P :

dP (X, Y, Z) = (n− 2) {(∇Y P )(X,Z)− (∇ZP )(X, Y )} . (1.2)



6 1 Preliminaries

Conformal transformations, local conformal flatness and the Weyl tensor

Let (M, g) and (N, ĝ) be two semi-Riemannian manifolds and Φ : M → N a diffeomorphism
between them. We say that Φ is a conformal map if there exists a positive function u ∈ C∞(M)
such that the pullback Φ∗ĝ satisfies

(Φ∗ĝ)p(x, y) = ĝΦ(p)(Φ∗(p)x,Φ∗(p)y) = (u(p))−2gp(x, y),

where Φ∗(p) is the pushforward at p, for all p ∈ M and x, y ∈ TpM . We then say that (M, g)
and (N, ĝ) are conformally equivalent (in the Riemannian sense).

If u is a constant, we say that Φ is a homothety (it rescales the metric), while if u = 1, it
is a Riemannian isometry (since it preserves the metric). In these cases, we say that (M, g) and
(N, ĝ) are homothetic or isometric (in the Riemannian sense), respectively.

Thus, we say that a manifold (M, g) is locally conformally flat if for every p ∈M there exists
a neighborhood of p which is conformally equivalent to a flat manifold. If (M, g) is globally
conformally equivalent to a flat manifold, then it is conformally flat. This condition is related to
the Weyl tensor through the following result.

Lemma 1.1. Let (M, g) and (N, ĝ) be two conformally equivalent manifolds with ĝ = u−2g, and
W and Ŵ their Weyl tensors. Then, Ŵ = u−2W . In particular, if a semi-Riemannian manifold
is locally conformally flat, then W = 0.

For a manifold with n ≥ 4, the Cotton tensor dP vanishes whenever W does. This follows
from the fact that they are related via the differential identity

divW =
n− 3

n− 2
dP. (1.3)

However, when n = 3, this is not the case. Indeed, the Weyl tensor always vanishes for n = 3,
but the Cotton tensor does not in general. Furthermore, local conformal flatness is characterized
in terms of W and dP , depending on the dimension of the manifold.

Theorem 1.2. Let (M, g) be an n-dimensional manifold. Then,

• If n ≥ 4, (M, g) is locally conformally flat if and only if the Weyl tensor vanishes in M .

• If n = 3, (M, g) is locally conformally flat if and only if the Cotton tensor vanishes in M .

Some differential identities related to curvature

Throughout this thesis, we will make use of some identities involving curvature-related objects
and differential operators. Here we present some of them. Firstly, from the second Bianchi
identity, it follows that the divergence of the Riemann curvature tensor is given by

divR(X, Y, Z) = (∇Y ρ)(X,Z)− (∇Zρ)(X, Y ).
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Thus, the curvature is harmonic if and only if the skew-symmetrization of ∇ρ vanishes. This
is also known as the Codazzi condition. Now, recalling the relation (1.3) between the Weyl and
Cotton tensors, we see that if n > 3,W is harmonic if and only if the Schouten tensor is Codazzi.

Moreover, contracting and taking the divergence on the second Bianchi identity yields the
contracted Bianchi identity:

div ρ =
1

2
dτ.

Finally, the Hessian tensor of a function can also be related to curvature through the Bochner
formula

div Hesf = d(∆f) + ρ(∇f,−),

and the following expression involving the skew-symmetrization of ∇Hesf :

(∇Z Hesf )(X, Y )− (∇Y Hesf )(X,Z) = R(∇h,X, Y, Z).

1.1.3 Self-adjoint operators in Lorentzian spaces
Many of the tensor fields that play a role in the context of this work are symmetric (0, 2)-tensors,
such as the Ricci and Hessian tensors. By raising an index, from a (0, 2)-tensor T one can always
build the associated linear operator QT , which is thus self adjoint, meaning

T (X, Y ) = g(QT (X), Y ) = g(X,QT (Y )), for all X, Y ∈ X(N).

In Riemannian signature, this means that, at each point p ∈ M , we can always find an orthonor-
mal basis B = {e1, . . . , en} of TpM such that each ei is an eigenvector of QT (moreover, this can
be extended to a local orthonormal frame comprised of eigenvectors). Thus, in the basis B, the
associated matrix of QT becomes diagonal. However, this is not always true in other signatures.
In particular, the structure of self-adjoint operators in Lorentzian spaces plays a key role in Part II
of this thesis.

A self-adjoint linear operator Q on a Lorentzian vector space V has an associated matrix of
exactly one of the following four types (see [97]):

On the one hand, relative to an orthonormal basis B1 = {e1, . . . , en}, where g(e1, e1) = −1,
g(ei, ei) = 1 for i ≥ 2,

Q =


λ1

. . .
. . .

. . .
λn

 or Q =


a b
−b a

λ1
. . .

λn−2


with b ̸= 0. Notice that the eigenvalues are {λ1, . . . , λn} in the first case, whereas in the second
one they are {a ± bi, λ1, . . . , λn−2}. Following standard terminology, we refer to the diagonal
case as Type I.a and to the case with two complex (non-real) eigenvalues as Type I.b.
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Alternatively, relative to a pseudo-orthonormal basis of the form B2 = {u, v, e1, . . . , en−2},
where the only non-vanishing terms of the metric are given by g(ei, ei) = 1 and g(u, v) = 1,
there are two more possible forms:

Q =


α 0
ε α

λ1
. . .

λn−2

 or Q =



α 0 1
0 α 0
0 1 α

λ1
. . .

λn−3


,

where ε = ±1, whose eigenvalues are {α, λ1, . . . , λn−2} and {α, λ1, . . . , λn−3}, respectively.
We call these forms Type II and Type III, respectively. Notice that, in any case, the non-diagonal
part of the matrix arises due to the indefinite metric, and the remaining diagonal part is associated
to spacelike eigenvectors.

The metrics under consideration in Part II of this thesis are Lorentzian. Thus, since for such
a manifold, for every p ∈M , the tangent space TpM is a Lorentzian vector space, it follows that
the Ricci operator Ric takes exactly one of these four forms at each point of M . This fact will be
crucial for the classification results presented in Chapters 5 and 6.

1.2 Warped products
A simple geometric structure is that of a direct product manifold, this is, a semi-Riemannian
manifold M = (M, g) which decomposes as M = (B×F, gB⊕gF ), where (B, gB) and (F, gF )
are also semi-Riemannian manifolds. If the metric on the second factor is modified by a positive
function φ ∈ C∞(M), the resulting manifold M endowed with the metric g = gB ⊕ φ2gF is
called a twisted product, and φ is the twisting function.

A more specific and highly relevant example occurs when φ is defined only on B. This gives
rise to a structure (M, g = gB ⊕ φ2gF ) = B ×φ F known as a warped product. The manifolds
B and F are called the base and the fiber of the product, respectively, and φ is referred to as
the warping function. This construction was introduced in [4] as a means to study manifolds
with negative curvature, and it is found in multiple contexts in Mathematics and Physics, such as
the construction of static spacetimes or Einstein manifolds with certain properties. The latter is
closely related to the concept of quasi-Einstein manifolds (see Section 1.4).

Throughout this thesis, we will work with warped products with 1-dimensional base of the
form I ×φ N , where I is an open interval in R. This structure allows for the components of the
curvature and the Levi-Civita connection to be described in terms of the curvature and connection
of the fiber and the warping function (see [97]). Indeed, let t be a local coordinate parameterizing
I by arc length, and let X, Y, Z be lifts to I ×φ N of vector fields in N . Then, the Levi-Civita
connection of the warped product takes the form

∇∂t∂t = 0, ∇X∂t = ∇∂tX =
φ′

φ
X, ∇XY = −εφ

′

φ
g(X, Y )∂t +∇N

XY, (1.4)
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where ∇N is the Levi-Civita connection of (N, gN) and ε = g(∂t, ∂t) = ±1. For the curvature
tensor R, the only components that may not vanish (modulo symmetries) are the following:

R(X, ∂t)∂t = φ′′

φ
X, R(∂t, X)Y = εφ

′′

φ
g(X, Y )∂t,

R(X, Y )Z = RN(X, Y )Z − ε (φ
′)2

φ2 (g(X,Z)Y − g(Y, Z)X).
(1.5)

Contracting these expressions, the components of the Ricci tensor follow:

ρ(∂t, ∂t) = −(n− 1)φ
′′

φ
, ρ(∂t, X) = 0,

ρ(X, Y ) = ρN(X, Y )− ε
(

φ′′

φ
+ (n− 2) (φ

′)2

φ2

)
g(X, Y ),

(1.6)

and further contraction yields the scalar curvature

τ =
ε

φ2

(
ετN − 2(n− 1)φφ′′ − (n− 1)(n− 2)(φ′)2

)
, (1.7)

where RN , ρN and τN are the curvature tensor, Ricci tensor and scalar curvature of (N, gN),
respectively.

Notice that, for this structure, the canonical foliation LI is totally geodesic (this follows from
∇∂t∂t = 0), and the canonical foliation LN is umbilical, since the second fundamental form
associated to LN is given by II(X, Y ) = −εφ′

φ
g(X, Y )∂t. Hence, the normal curvature vector

of each leaf of LN , which is the vector H such that II(X, Y ) = g(X, Y )H , is H = −εφ′

φ
∂t.

Since for umbilical submanifolds the mean curvature vector coincides with the normal curvature
vector, and ∇X∂t is orthogonal to ∂t for all X tangent to N , it follows that the mean curvature
vector is parallel in the normal bundle, i.e., ∇⊥H = 0, where ∇⊥ is the normal connection. Thus,
LN is indeed spherical. It turns out that these properties characterize general warped products,
with twisted products being characterized by a weaker condition.

Theorem 1.3 [72, 104]. Let g be a metric defined on a product manifold B × F , such that the
canonical foliations LB and LF intersect orthogonally. Then,

• If LB is totally geodesic and LF is totally umbilical, then the manifold splits locally as a
twisted product.

• If LB is totally geodesic and LF is spherical, then the manifold splits locally as a warped
product.

We will point out the following useful alternative characterization of twisted products which
can be reduced to warped products:

Theorem 1.4 [61]. Let B ×φ̃ F be a twisted product of the manifolds (B, gB) and (F, gF ), with
dimF > 1. Then, ρ(X, V ) = 0 for all X, V lifts of vector fields in B and F respectively if and
only if B ×φ̃ F can be expressed as a warped product B ×φ F of (B, gB) and (F, ĝF ), where ĝF

is a conformal metric to gF .
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Geodesic completeness of Riemannian warped products is an essential notion for the global
results that we will present in Chapters 2 and 3. As it turns out, due to the Hopf-Rinow Theorem,
this property is inferred from the completeness of the base and the fiber.

Theorem 1.5 [97]. If (B, gB) and (F, gF ) are complete Riemannian manifolds, then the warped
product B ×φ F is complete for every warping function φ.

Thus, in the case of 1-dimensional fiber, if I = R (with positive definite metric) and (N, gN)
is a complete Riemannian manifold, then I ×φ N is complete, irrespective of the form of the
warping function φ ∈ C∞(R). However, this characterization does not hold for manifolds with
indefinite metrics, even if both B and F have definite metrics (see [97]). Some partial results
for the geodesic completeness of warped products in the semi-Riemannian setting can be found
in [107], but even for warped products with Lorentzian 1-dimensional base and Riemannian fiber
the characterization of geodesic completeness is no easy task [110].

As a final note on warped products, we will point out that the Weyl tensor of a warped
product depends strongly on the geometry of the fiber, particularly in the case where the base is
1-dimensional, as the following result shows.

Theorem 1.6 [21, 66]. Let I ×φ N be a semi-Riemannian warped product with 1-dimensional
base. Then,

• I×φN is locally conformally flat if and only if (N, gN) is a manifold of constant sectional
curvature.

• I ×φ N has harmonic Weyl tensor if and only if (N, gN) is Einstein.

Warped products can be generalized by adding additional fibers (F1, g1), . . . , (Fk, gk), with
their corresponding warping functions φ1, . . . , φk defined on B, giving rise to a multiply warped
product B×f1 F1×· · ·×fk Fk with the metric given by gB ⊕ f 2

1 g1⊕· · ·⊕ f 2
kgk. The expressions

for the components of the Levi-Civita connection and the Ricci tensor for these structures are
computed, for example, in [55].

1.3 Spacetimes with a distinguished lightlike vector field
Spacetimes characterized by the existence of a distinguished lightlike vector field have attracted
the attention of both mathematicians and physicists for a long time, and some of these families
play a pivotal role in Part II of this thesis. In this section, we recall definitions and basic facts
about these spacetimes.

Kundt spacetimes
Kundt spacetimes are Lorentzian manifolds of dimension n ≥ 3 with a lightlike geodesic vector
field V which is recurrent in its orthogonal complement (see, for example, [7]). This means that
there exists a differential 1-form ω such that

∇V V = 0 and ∇XV = ω(X)V for all X ∈ V ⊥. (1.8)
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Alternatively, Kundt spacetimes can be defined using optical scalars. For any lightlike vector
field V , the optical scalars of expansion, shear and twist are given, respectively, by

θ = 1
n−2

∇iV
i,

σ2 = (∇iV j)∇(iVj) − (n− 2)θ2,

ω2 = (∇iV j)∇[iVj],

(1.9)

where parentheses denote symmetrization and brackets denote skew-symmetrization when placed
in the subindices. Kundt spacetimes are then characterized by a lightlike geodesic vector field
with zero optical scalars, which means that it is expansion-free, shear-free and twist-free (see
[46, 48, 103]).

Kundt spacetimes are interesting from both a geometric and a physical point of view. Due to
this fact, literature devoted to these spacetimes is vast, with [7,9,46,48,103,114] being just a few
examples. We refer to [9] for relations with supersymmetric solutions of supergravity theories
and their role in string theory. They also play a central role in the study of spaces with vanishing
scalar invariants (VSI) (respectively, constant scalar invariants (CSI)) i.e., spaces such that all
polynomial scalar invariants constructed from the curvature tensor and its covariant derivatives
are zero (respectively, constant). Indeed, in dimension three, every CSI spacetime is either Kundt
or locally homogeneous [49]. Moreover, in arbitrary dimension, every VSI spacetime is Kundt
[50].

For an n-dimensional Kundt spacetime, the metric can be written in appropriate local coor-
dinates (u, v, x1, . . . , xn−2) as

g = dv

(
2du+ F (u, v, x)dv +

n−2∑
i=1

2Kxi
(u, v, x)dxi

)
+

n−2∑
i,j=1

gij(v, x)dxidxj, (1.10)

where F , Kxi
and gij are functions of the specified coordinates, and ∂u is lightlike and has

vanishing optical scalars. In dimension four, coordinates in (1.10) can be further specialized so
that gij = P (v, x)δij for some function P (see [114]).

In dimension three, the geometry of Kundt spacetimes is more rigid than in higher dimen-
sions. Indeed, the presence of an expansion-free lightlike geodesic vector field guarantees that
the shear and twist vanish as well, so the spacetime is Kundt [46]. In this case, the expression
(1.10) can be normalized so that g11 = 1. Thus, the metric can be written in local coordinates
(u, v, x) as

g(u, v, x) = dv(2du+ F (u, v, x)dv + 2K(u, v, x)dx) + dx2. (1.11)

Brinkmann waves
A more specific situation appears when on a Kundt spacetime the distinguished lightlike geodesic
vector field V is recurrent, i.e. ∇XV = ω(X)⊗V , for a 1-form ω, which means that the line field
span{V } is parallel. A spacetime admitting a parallel lightlike line field is said to be a Brinkmann
wave. Due to their holonomy structure, these spacetimes highlight some fundamental differences
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between Riemannian and Lorentzian geometry. Indeed, let (M, g) be a semi-Riemannian mani-
fold and p ∈ M . If E ⊂ TpM is an invariant subspace for the holonomy action, then E⊥ is also
invariant. Hence, every holonomy invariant subspace defines, via parallel translation, two paral-
lel distributions D and D⊥ (i.e., ∇D ⊂ D and ∇D⊥ ⊂ D⊥) in TM . The holonomy group acts
irreducibly if it does not admit any invariant subspace E which is proper (1 ≤ dimE ≤ n− 1).
In this case, we say that (M, g) is irreducible.

If E is invariant and, additionally, it is non-degenerate, then we say that the holonomy acts
decomposably and that (M, g) is decomposable. In this case, (M, g) splits locally as a product
M = M1 ×M2 with metric g = g1 ⊕ g2, where (Mi, gi) are semi-Riemannian manifolds which
are integral manifolds of the distributions D and D⊥. This decomposition is global if the mani-
fold is assumed to be simply connected and geodesically complete, as shown by the de Rham-Wu
splitting theorem [52, 119]. If there is no non-degenerate proper subspace that is invariant under
the holonomy action, we say that the holonomy acts indecomposably, or that (M, g) is indecom-
posable. Hence, it follows that every reducible Riemannian manifold is decomposable.

However, if the metric g is semi-Riemannian andE is a degenerate subspace (E∩E⊥ ̸= {0})
which is invariant under the holonomy action, then there is a totally degenerate distribution
D ∩ D⊥ with totally geodesic leaves. Thus, the holonomy group may act indecomposably but
not irreducibly, meaning that the de Rham-Wu splitting theorem does not apply. This is the case
if the holonomy action admits a totally lightlike (i.e., spanned by lightlike vectors) invariant sub-
space, but no non-degenerate invariant subspaces. Brinkmann waves illustrate this phenomenon
in Lorentzian geometry.

Local coordinates given for Kundt spacetimes in (1.10) are further specialized for Brinkmann
waves. Indeed, we can write the metric of a Brinkmann wave as

g = dv

(
2du+ F (u, v, x)dv +

n−2∑
i=1

2Kxi
(v, x)dxi

)
+

n−2∑
i,j=1

gij(v, x)dxidxj.

Notice that, in contrast to (1.10), now the functions Kxi
do not depend on the coordinate u.

This guarantees that ∂u is recurrent (in addition to being lightlike), so it plays the role of the
distinguished vector field V . Moreover, if ∂u can rescaled to a parallel vector field, then ∂uF = 0
(see, for example, [86]).

In particular, the coordinates of a 3-dimensional Brinkmann wave can be manipulated so that
the metric takes the form

g(u, v, x) = dv (2du+ F (u, v, x)dv) + dx2. (1.12)

Pure radiation waves, pp-waves and plane waves

Among Brinkmann waves, there are special families of interest that are obtained by imposing
some conditions on the curvature. Following terminology in [86], pure radiation waves (pr-
waves for short), are Brinkmann waves whose curvature tensor satisfies R(V ⊥, V ⊥,−,−) = 0.
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In this case, the Brinkmann wave metric reduces to a much simpler form:

g = 2dudv + F (u, v, x)dv2 +
n−2∑
i,j=1

dx2i . (1.13)

Whenever ∂u = V is parallel, the pr-wave is said to be a plane-fronted wave with paral-
lel propagation, or pp-wave for short. For pp-waves, F can be taken to satisfy ∂uF = 0.
Note that a Brinkmann wave with parallel lightlike vector field V is a pp-wave if and only if
R(V ⊥, V ⊥,−,−) = 0. Moreover, it was shown in [86] that a pr-wave is a pp-wave if and only
if it is Ricci-isotropic, i.e., g(Ric(X),Ric(X)) = 0 for all X ∈ X(M). For Brinkmann waves,
this is equivalent to the condition that Ric(X) = 0 for all X ∈ V ⊥.

Finally, a pp-wave with transversally parallel curvature tensor (i.e., such that ∇V ⊥R = 0) is
called a plane wave. In local coordinates, the metric of a plane wave is given by the pr-wave
metric (1.13) where

F (u, v, x) =
n∑

i,j=1

aij(v)xixj

and the coefficients aij are smooth functions of v. Plane waves defined on Rn are examples
of geodesically complete Lorentzian manifolds [30]. Note that, if the aij are constants, these
metrics correspond to Cahen-Wallach symmetric spaces [27].

Among plane waves metrics in dimension three, given by (1.13) with F (v, x) = α(v)x2,
there are two families that are locally homogeneous [65]. The first one is precisely the family of
Cahen-Wallach symmetric spaces CWε, with F (v, x) = εx2. The second one is the family Pc,
defined by F (v, x) = −β(v)x2 with β′ = cβ3/2 for a constant c and β > 0.

Moreover, it was shown recently in [70] that compact locally homogeneous plane waves of
any dimension are quotients of a homogeneous plane wave by a discrete subgroup of its isometry
group.

Pure radiation waves, pp-waves and plane waves are examples of the famed family of gravi-
tational waves, which are predicted as special solutions of the Einstein field equations in General
Relativity. The detection of such deformations of spacetime by experimental means in recent
years has sparked a renewed interest in the topic (see [98,114] for further details and [57,95,101]
for some classic examples of gravitational waves).

1.4 Notable geometric equations
As its title suggests, this thesis is centered around the analysis of several geometric equations in
the context of smooth metric measure spaces. The study of geometric equations on manifolds is
a storied field, with classic examples like Einstein manifolds in General Relativity, the conformal
Einstein equation introduced by Brinkmann [11] (see also [83]) or the different generalizations
of the Obata equation [84,96,120], to cite just a few examples closely related to the topics of this
work.

Usually, these equations feature a combination of curvature-related tensors and differential
operators. Thus, when working in coordinates, they take the form of a system of PDEs involving
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the components of the metric and, often, additional functions with a certain geometric meaning.
In this section, we go over some notable geometric equations which appear throughout the thesis.

Einstein metrics

Einstein manifolds, which we have already mentioned, arise as critical points of the Einstein-
Hilbert functional, also known as the total scalar curvature functional. This is a key functional
in the theory of General Relativity (see, for example, [3, 114]) and it is given for a compact and
orientable semi-Riemannian manifold (M, g) as the volume integral

SHE : g 7→
∫
M

τ dvolg.

We say that the metric g is critical under variations of the form g[t] = g + tḡ, where ḡ is a
symmetric (0, 2)-tensor, if the variational derivative δ(SHE) = d

dt

∣∣
t=0

SHE(g[t]) vanishes. This
variation takes the form (see, for example, [3])

δ(SHE) =

∫
M

〈
ρ− τ

2
g, ḡ
〉
dvolg. (1.14)

The tensor G = ρ − τ
2
g is often referred to as the gradient of the functional SHE . Due to

its importance in General Relativity, it is also known as the Einstein tensor. Since for critical
metrics δ(SHE) vanishes for all variations ḡ, it follows from the expression above that G must
also vanish. However, in this case, taking the trace of G shows that 2−n

2
τ = 0, so τ = 0 (recall

that we are taking n ≥ 3). Thus, critical metrics for SHE are Ricci-flat.
In order to arrive at the standard definition of Einstein metrics, and since the Einstein-Hilbert

functional is not invariant under homotheties, one considers the restriction of the variational
problem to variations that keep the volume of the manifold, i.e., the integral

∫
M
dvolg, constant.

These variations turn out to be exactly those that are orthogonal to the metric tensor, meaning
⟨g, ḡ⟩ = 0. Thus, from (1.14), it follows that critical metrics for the restricted variational prob-
lem are metrics whose Einstein tensor is a multiple of g at each point of the manifold. This is
equivalent to the condition

ρ = λg, for some λ ∈ C∞(M).

By taking traces in this equation, it follows that λ = τ
n

. Then, taking divergences and using the
contracted Bianchi identity yields 1

2
dτ = dλ = 1

n
dτ . Since n ̸= 2, λ and the scalar curvature τ

are constants. This result is known as Schur’s Lemma and it motivates the definition of Einstein
manifolds as those with ρ = λg for some λ ∈ R, as given in Section 1.1.2.

In dimension two, the situation is slightly different. In this case, the Gauss-Bonnet Theorem
shows that SHE is always a multiple of the Euler characteristic, so all metrics are critical and
ρ = τ

2
g for all 2-dimensional semi-Riemannian manifolds (M, g). However, this does not imply

the constancy of τ .
In Physics, especially within the framework of General Relativity in Lorentzian manifolds, it

is common to write the condition ρ = λg in terms of the Einstein tensor G as

G+ Λg = ρ− τ

2
g + Λg = 0, for some Λ ∈ R,



1.4 Notable geometric equations 15

giving rise to the Einstein field equations. Einstein manifolds model the behavior of spacetimes
in the absence of matter, so they are also referred to as vacuum solutions to the field equations,
while Λ is known as the cosmological constant, due to its influence in the rate of expansion
of the Universe. Moreover, the divergence of this equation vanishes, which is interpreted as a
law of conservation of energy. When matter is introduced, this is usually taken into account
via the introduction of a stress-energy tensor T which models the type of matter that populates
the spacetime. The Einstein field equations then become G + Λg = T (see [114] for details
on different vacuum and non-vacuum solutions). Throughout the rest of the thesis, we will
often include the term Λg in the Einstein tensor itself, and refer to it as the Einstein tensor with
cosmological constant.

Notice that, although this characterization of Einstein metrics as critical points of a certain
functional requires the underlying manifold to be closed (compact without boundary), the same
process works for general manifolds (with or without boundary), as long as the problem is re-
stricted to variations with compact support which vanish on a neighborhood of the boundary of
the support. Furthermore, the tensorial equations resulting from this variational approach make
sense for any semi-Riemannian manifold, so “being Einstein" is not an exclusive property of
closed (or orientable) manifolds.

An important property of Riemannian Einstein metrics is their (real) analyticity in harmonic
coordinates (that is, coordinates (x1, . . . , xn) such that ∆xi = 0 for all i = 1, . . . n), which al-
ways exist locally (see [3, K.45]). This means that there exists an atlas, contained in the maximal
smooth atlas of the manifold, such that the coordinates for each chart are harmonic and analytic,
and such that the transition functions are analytic as well. This property of Einstein metrics
comes from standard results in elliptic PDEs (see, for example, [3, 5.26], and Theorem 1.15 for
a related result in a more general context). In particular, this means that any analytic function of
the components of the metric is determined by its value on an open set. For example, an immedi-
ate consequence is that if two Riemannian Einstein metrics coincide as tensors fields on an open
set, then they are equal on the whole manifold.

Notice that, according to the decomposition R = P ⃝∧ g +W of the curvature tensor in Sec-
tion 1.1.2, an Einstein manifold is locally conformally flat if and only if it has constant sectional
curvature τ

n(n−1)
. However, since the scalar curvature τ is constant for all Einstein manifolds, the

Schouten tensor P is Codazzi and the Cotton tensor dP vanishes, even if W ̸= 0. Moreover, by
(1.3), we have that divW is a multiple of dP , therefore Einstein manifolds have harmonic Weyl
tensor. This is not the case for other Einstein-type structures, so the condition divW = 0 is often
introduced as a means to study them (see the section below for examples of this).

Gradient Ricci solitons and quasi-Einstein manifolds

Ricci solitons arise, in a certain sense, as self-similar solutions to the Ricci flow, given by the
evolution equation ∂

∂t
gt = −2ρgt , where gt is a 1-parameter family of semi-Riemannian metrics

on a manifold M . This flow was introduced by Hamilton [69], as a tool intended to be utilized
in the resolution of the Poincaré Conjecture. For an initial Einstein metric g = gt

∣∣
t=0

, as the
flow evolves, gt remains invariant modulo homotheties. In general, if in addition to homotheties
we allow an initial metric g to change via diffeomorphisms, the solution gt is said to be self-
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similar, i.e., there exists a positive function σ(t) and a 1-parameter family of diffeomorphisms
φt ∈ Diff(M) such that gt = σ(t)φ∗

tg. There exists a correspondence between self-similar
solutions and vector fields X ∈ X(M) such that

ρ+ LXg = λg, for some λ ∈ R,

where L denotes the Lie derivative. Thus, a triple (M, g,X) satisfying the geometric equation
above is called a Ricci soliton. A more specific example of this structure is given by gradient
Ricci solitons, i.e., triples (M, g, f) where f ∈ C∞(M) and (M, g,∇f) is a Ricci soliton as
portrayed above. In this case, the Ricci soliton equation becomes

ρ+Hesf = λg.

These structures appear, for example, in Perelman’s work on the Ricci flow [100], which eventu-
ally provided the first proof of the Poincaré Conjecture.

A well-known generalization of the gradient Ricci soliton equation is the quasi-Einstein equa-
tion:

ρ+Hesf −αdf ⊗ df = λg, where λ, α ∈ R.

Manifolds satisfying this equation for some f , α and λ are said to be quasi-Einstein (QE). Note
that gradient Ricci solitons are QE manifolds with α = 0. Structures of this type appear in
numerous contexts in Mathematics and Physics, from the construction of Einstein warped prod-
ucts (see, for example, [77]) to modified theories of gravity (see [117]). A particularly relevant
context in which the QE equation plays a role is the construction of manifolds which can be
conformally transformed into an Einstein manifold. Indeed, the Ricci tensor transforms under
the conformal change ĝ = e−

2
n
fg as (see, for example, [83])

ρ̂ = ρ+Hesf +
1

n
df ⊗ df +

1

n
(∆f − ∥∇f∥2)g.

Hence, ĝ is Einstein if and only if the underlying manifold is QE for the density f and the
parameter α = − 1

n
(this is often called the conformal Einstein equation). Consequently, this

value of α is distinguished and the behavior of solutions is different than that of solutions for
other values of α (see [14, 19, 44] for some examples of this fact).

Due to the fact that smooth metric measure spaces are characterized by the presence of a
density f ∈ C∞(M), it comes as no surprise that geometric objects such as Ricci solitons and
QE manifolds are intimately related to them. We refer to Section 1.5 below for further motivation
for QE manifolds from the point of view of smooth metric measure spaces.

Given their importance, both Ricci solitons and QE manifolds have drawn considerable inter-
est over the past twenty years, especially in Riemannian signature. Thus, literature on the topic
is extensive and we refer, for example, to [32, 59, 93], the survey [31] and references therein for
results on gradient Ricci solitons; and to [43, 45, 71] for QE manifolds. In Lorentzian signature,
results can also be found in works such as [12, 15] for solitons and [14, 19] for QE manifolds.
See also [13] for results for solitons in signature (2, 2).
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In a similar way to that of Einstein manifolds, Riemannian Ricci solitons and QE manifolds
are shown to be real analytic in harmonic coordinates [71], meaning that both the metric and the
function f are. Thus, both of them are determined by their values on an open set.

Notice that, for Einstein manifolds with n ≥ 3, the constancy of the λ term in the equation
ρ = λg is guaranteed by the contracted Bianchi identity. This is no longer the case for quasi-
Einstein manifolds, so it makes sense to consider a further generalization known as generalized
quasi-Einstein (GQE) manifolds [44], i.e., manifolds (M, g) satisfying

ρ+Hesf −αdf ⊗ df = λg, for some f, λ ∈ C∞(M), α ∈ R.

GQE manifolds generalize a number of geometric conditions and therefore have been extensively
analyzed in literature. For example, unlike Einstein manifolds, QE and GQE manifolds do not
have harmonic Weyl tensor in general, and classification results under conditions of this type
have been found in both Riemannian [44] and Lorentzian [19] signatures. When α = 0, the
resulting structure is known as an almost gradient Ricci soliton, and such manifolds have also
been studied (see, for example, [102], where they were introduced).

The generalized Obata equation

In his seminal work [96], Obata studied the geometric equation

Hesu +cug = 0, for some c ∈ R+,

for a smooth function u on a Riemannian manifold (M, g), and showed that the only complete
manifold (up to isometry) admitting a solution is the standard round sphere of radius 1√

c
. Since

then, this equation has been referred to as the Obata equation, and several different generaliza-
tions of it have appeared in literature (see, for example, [84,120]), related to a number of relevant
geometric problems. Among them, we highlight conformal transformations between Einstein
spaces [10, 82] and the Lichnerowicz–Obata theorem for the first eigenvalue of the Laplacian on
compact Einstein manifolds [96]. A version of this equation also plays a central role in Part I of
this thesis.

A natural generalization of the Obata equations is as follows. Given a semi-Riemannian
manifold (M, g), we say that a function u ∈ C∞(M) is a solution of the generalized Obata
equation if it satisfies

Hesu +γ(u)g = 0, for some smooth function γ. (1.15)

If γ is linear in u, the function u is said to be concircular, in which case this equation is related
to conformal transformations between Einstein spaces [82].

Notice that solutions to this equation are necessarily solutions of the local Möbius equation
Hesh = ∆h

n
g (see [99, 121]), which is also related to conformal changes of Einstein metrics

that are Einstein as well. We refer to [83] for a survey of this topic in semi-Riemannian ge-
ometry. Also, the local Möbius equation was applied to give the warped product structure of a
Schwarzschild space-time in [60].
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The existence of a global solution of (1.15) on a Riemannian manifold (M, g) has consid-
erable implications on the geometry of said manifold. Indeed, by the following construction,
which was presented in detail in [120] (although many aspects of it were outlined in the older
work [82]), we can build manifolds that admit a solution with at least one critical point for a
suitable function γ.

Let γ be a smooth function defined on an interval I = (a, b), [a, b), (a, b] or [a, b] (with a, b
possibly infinite), and assume that there exists η ∈ I such that γ(η) ̸= 0. Let ω be the unique
maximally extended solution of the initial value problem

ω′′ + γ(ω) = 0, ω(0) = η, ω′(0) = 0.

Define T as the (possibly infinite) supremum of t such that ω is defined on [0, t] and ω′ ̸= 0 in
(0, t], and consider the following warped metric on (0, T )× Sn−1:

g = dt2 + γ(η)−2(ω′)2gSn−1 ,

which extends smoothly through t = 0 to the Euclidean open ball of radius T , BT (0). Then, if
T = ∞, then BT (0) = Rn. On the other hand, if T is finite, g extends smoothly to Sn, where
Sn \ {p,−p} is identified with (0, T ) × Sn−1. These complete extensions are denoted by Mη

γ .
Moreover, taking u = ω(t) on (0, T ) × Sn−1 guarantees that u extends smoothly to Mη

γ . Note
that u(0) = η, that u has a critical point at t = 0 and another one at t = T when T is finite; and
that u satisfies the generalized Obata equation (1.15) on Mη

γ .
As it turns out, this process not only provides a way to build complete manifolds admitting

solutions, but these constructions are the only ones (up to isometry) with solutions with critical
points. Moreover, solutions without critical points are also restricted, as the following theorem
shows.

Theorem 1.7. [120, Theorem 4.6] Let (Mn, g) be a complete Riemannian manifold admitting a
non-constant smooth solution u of the generalized Obata equation (1.15) for a smooth function
γ. Then,

1. If u has critical points (at most, it can have two), then (M, g) is isometric to a suitable
Mη

γ .

2. If u does not have critical points, (M, g) is isometric to a warped product R×φ N , where
N is complete and u is defined on the base R.

In Chapters 2 and 3, we will make use of Theorem 1.7 in order to both determine the geometry
of complete solutions, and to give explicit expressions for the density in local coordinates.

1.5 Smooth metric measure spaces
Smooth metric measure spaces (SMMSs for short) are the main focus of this thesis. Roughly
speaking, a manifold with density or smooth metric measure space is a semi-Riemannian mani-
fold (M, g) endowed with a smooth measure which is, in general, different from the usual Rie-
mannian measure. This can be formalized by introducing a smooth function f ∈ C∞(M), called
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density function or simply density, such that the aforementioned smooth measure is given by
the weighted volume element dν = e−fdvolg, Thus, a first definition for a SMMS is a triple
(M, g, e−fdvolg). Alternatively, we can consider the density as a positive function h = e−f and
make use of the simpler notation (M, g, h). This is the notation that we will use for Part II of
this dissertation. When the density function f is constant, we say that the corresponding SMMS
is trivial, since in this case the scope of the analysis is reduced to standard semi-Riemannian
geometry. Henceforth, unless specifically stated, we will assume that all SMMSs are non-trivial.
We refer to Morgan’s book [92] for a good introduction to geometric measure theory, including
basic notions of the geometry of smooth metric measure spaces.

When using this definition, we say that two SMMSs (Mn
1 , g1, h1), (M

n
2 , g2, h2) are isometric

if there exists a Riemannian isometry ψ : (M1, g1) → (M2, g2) preserving the density, i.e., such
that h1 = h2 ◦ ψ.

When presented with the notion of SMMSs, a question which arises naturally is that of the
influence of the density on the geometric features of the underlying semi-Riemannian manifold.
The problem in this sense is twofold: First, one might wonder how to define appropriate geomet-
ric objects which retain geometric meaning while incorporating information on the density. From
this perspective, weighted invariants are defined as functions on the space of metric-measure
structures

M(M) = Met(M)× C∞(M),

where Met(M) is the space of metrics (of whatever signature we are considering); which are
invariant with respect to the action of the diffeomorphism group Diff(M). With this, we can
define weighted functionals, i.e., maps S : M → R such that S(φ∗g, φ∗f) = S(g, f) for every
φ ∈ Diff(M) and every (g, f) ∈ M. Another class consists of weighted scalars, namely maps
I : M → C∞(M) such that I(φ∗g, φ∗f) = φ∗I(g, f). Similarly, we can define weighted
tensors, and so on.

Secondly, as a result of these weighted invariants involving both the metric and the density,
it is natural to question how the geometry of the manifolds themselves reflects on the admissible
forms of the density, and vice versa.

Among the different weighted local invariants of SMMSs, the most well-known one is per-
haps the m-Bakry-Émery Ricci tensor

ρmf = ρ+Hesf −
1

m
df ⊗ df, (1.16)

on whose study rests much of the literature on SMMSs. The earliest version of this object in
literature is the ∞-Bakry-Émery Ricci tensor, where we formally set m = ∞ so that

ρ∞f = ρ+Hesf

(see [88] and references therein for some geometric properties of this tensor). The tensor ρ∞f was
introduced in relation to diffusion processes [1], but it also gives rise to gradient Ricci solitons
when ρ∞f = λg for some λ ∈ R (see Section 1.4 for details), which is relevant for the proof of the
Poincaré conjecture by Perelman [100]. Indeed, shrinking gradient Ricci solitons arise as critical
points related to the W-functional that Perelman uses in his results. This is in turn related to the
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isoperimetric problem through the Gaussian logarithmic Sobolev inequality (see also [75, 108]
for some results on the isoperimetric problem in manifolds with density).

Nevertheless, in this dissertation, we do not consider the case m = ∞. Indeed, we will
restrict our study to positive values of m, as explained below. In this case, the m-Bakry-Émery
Ricci tensor has also proved to be significant in numerous contexts. One example is quasi-
Einstein structures (ρmf = λg, see Section 1.4), which along with gradient Ricci solitons can be
formulated in a useful uniform manner using the formalism of SMMSs. In another vein, works
such as [2,74,116] consider bounded Bakry-Émery Ricci tensors and some curvature-dimension
inequalities to extend spectral gap theorems or to obtain topological restrictions. This tensor also
appears in Riemannian signature linked to the study of the static perfect fluid Einstein equation
[79] and in Lorentzian signature in relation to splitting and singularity theorems [42, 118] and
scalar-tensor gravity theories [117].

As we will see shortly, most of the weighted invariants of interest to this dissertation are
constructed from the Bakry-Émery Ricci tensor, so it will be a central aspect of our discussion.

SMMSs and their relation to GNS inequalities

In recent years, a new framework has been introduced, mostly through the works of Case (see
[34–41]), which generalizes the concept of SMMSs explained above. Although this framework
makes sense in any signature, the motivation behind it stems from problems in Riemannian
signature, so this is the formalism that we will use in Part I of this thesis, where we focus on
results for Riemannian SMMSs.

Sobolev-type inequalities are a quintessential example of how analytic inequalities play an
important role in geometric analysis. For example, the classical Sobolev inequality states that
there is a constant CS such that(∫

Rn

w
2n
n−2

)n−2
n

≤ CS

(∫
Rn

∥∇w∥2
)
, for all w in the Sobolev space L2

1(Rn),

where ∥∇w∥2 = g(∇w,∇w). On the other hand, the Yamabe problem (the question of when one
can find a metric of constant scalar curvature in a given conformal class on a compact manifold)
is equivalent to finding a smooth function w which realizes the Yamabe constant

σ1(g) = inf


∫ (

∥∇w∥2 + n−2
4(n−1)

τw2
)
dvolg(∫

w
2n
n−2dvolg

)n−2
n

: 0 ̸= w ∈ L2
1(M)

 .

Its standard resolution requires knowing the best (or sharp) value of the constant CS in the
Sobolev inequality on Rn, which turns out to be the inverse of the Yamabe constant on the sphere
(see [111] and references therein for details).

For other types of Gagliardo-Nirenberg-Sobolev inequalities, the sharp constants are not
known. However, they have been computed by Del Pino and Dolbeaut [53] for the following
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special cases, which are useful for studying some fast diffusion equations:

Λm,n

(∫
Rn

w
2(m+n)
m+n−2

) 2m+n−2
n

≤
(∫

Rn

∥∇w∥2
)(∫

Rn

w
2(m+n−1)
m+n−2

) 2m
n

,

for m ∈ [0,∞), Λm,n the known sharp constant and suitable functions w. Note that the value
m = 0 recovers the classical Sobolev inequality. Case proved [38] that a similar connection
exists between Yamabe-type constants and these inequalities by defining, using the formalism
of SMMSs, a series of conformally invariant (in an appropriate weighted sense which we will
define shortly) quantities known as weighted Yamabe constants. These invariants coincide with
the sharp Del Pino-Dolbeaut constants when working in the Euclidean space, making explicit
the connection between weighted conformal geometry and GNS inequalities. Moreover, Case
also describes and partially solves in [36] a weighted Yamabe-type problem, and shows how
the weighted Yamabe constants interpolate between the usual Yamabe constant (for m = 0)
and another Riemannian invariant of importance, known as the ν-entropy (for m = ∞), which
arises in Perelman’s study of the Ricci flow [100] as the infimum of the W-functional (which we
have already mentioned) over the density and a certain scale parameter. Moreover, the ν-entropy
realizes the sharp constant for the Gaussian logarithmic Sobolev inequality in Euclidean space
(see [36]).

Definition of SMMSs and weighted tensors

Throughout Part I of this thesis, we will use the following definition for smooth metric measure
spaces. This is the most general way to define SMMSs within Case’s formalism.

Definition 1.8. A smooth metric measure space is a five-tuple (Mn, g, f,m, µ), where (Mn, g)
is an n-dimensional Riemannian manifold (recall that we consider n ≥ 3), f ∈ C∞(M) is the
density, m ∈ R+ is a dimensional parameter and µ ∈ R is an auxiliary curvature parameter.

Notice that, in contrast to the definition at the start of this section, we include the parameter
m from the m-Bakry-Émery Ricci tensor and an additional parameter µ. Both of them have
relevant geometric meanings, which we will explain shortly. The theory of SMMSs developed in
the aforementioned previous works usually assumes that m is non-negative (indeed, in the Del
Pino-Dolbeaut inequalities, this is also the case). Moreover, by convention, weighted invariants
are defined in such a way that they coincide with their Riemannian counterparts when m = 0.
Hence, we assume m ∈ R+. However, the results in this thesis formally extend to negative
values m ∈ R−\{1 − n, 2 − n} (values m = 1 − n, 2 − n are not admissible, see expression
(1.19) below and results thereafter).

When working with this definition, in order to identify SMMSs, we need to fix the values of
the parameters m and µ. Thus, we say that two SMMSs

(Mn
1 , g1, f1,m1, µ1) and (Mn

2 , g2, f2,m2, µ2)

are isometric if there exists a Riemannian isometryψ : (M1, g1) → (M2, g2) such that f1 = f2◦ψ,
m1 = m2 and µ1 = µ2. Consequently, weighted invariants may now depend on m and µ, along
with the metric and the density (for further details, see [34]).
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Besides the weighted Yamabe constants, some of the weighted invariants defined within this
formalism are weighted analogues of σk-curvatures, which were introduced in [35] and further
analyzed in [34]. Tractor calculus has also been introduced into the study of SMMSs and quasi-
Einstein spaces [39, 41]. Nevertheless, for the purposes of this thesis, we will be interested in
weighted invariants related to curvature and some natural geometric equations that arise from
them. These are based, except for the placement of some constants, on those defined in [34, 41].

For a SMMS (M, g, f,m, µ) the positive density is now defined as v = e−
f
m , so that the

weighted volume element becomes dν = vmdvolg. From this point of view, the dimensional
parameter m indicates that we wish to consider (M, g, dν) as an (m + n)-dimensional metric-
measure space, meaning that we define curvature-related weighted invariants using the formal
warped product

Mn ×v F
m(µ) = (Mn × Fm, g ⊕ v2q(µ)), (1.17)

where F (µ) = (F, q(µ)) is an m-dimensional space form of constant sectional curvature µ. This
gives further justification for the assumption m ∈ R+. With this, many weighted invariants can
be regarded as restrictions of Riemannian invariants of (1.17) to M . Indeed, dν is the restriction
of the Riemannian volume element of the warped product to its base, and the m-Bakry-Émery
Ricci tensor (1.16) is the restriction of the Ricci tensor of the product to vector fields tangent to
M . Similarly, the weighted scalar curvature is

τmf = τ + 2∆f − m+ 1

m
∥∇f∥2 +m(m− 1)µ e

2
m
f , (1.18)

which is the scalar curvature of (1.17), considered as a function onM . Recently, the linearization
of the weighted scalar curvature (for µ = 0) has been used to propose a weighted analogue of
Riemannian vacuum static spaces [73].

Following this pattern, the weighted Schouten tensor and weighted Schouten scalar are given,
respectively, by

Pm
f =

1

m+ n− 2
(ρmf − Jm

f g), Jm
f =

1

2(m+ n− 1)
τmf . (1.19)

Although τmf is regarded as a weighted analogue of the usual scalar curvature τ , it is not the trace
of the Bakry-Émery Ricci tensor (1.16). Moreover, Jm

f is not the trace of Pm
f , as opposed to the

usual Schouten tensor and scalar (1.1). The difference between these two quantities is denoted
by Y m

f = Jm
f − trPm

f and will play a role in Chapter 2.
From the Schouten tensor, we get the weighted Weyl tensor:

Wm
f = R− Pm

f ⃝∧ g. (1.20)

As we will show, this tensor is key when discussing conformal aspects of SMMSs, much like the
Weyl tensor in the context of semi-Riemannian manifolds. Finally, we will need the weighted
Cotton tensor, given by the skew-symmetrization of ∇Pm

f :

dPm
f (X, Y, Z) = (∇Y P

m
f )(X,Z)− (∇ZP

m
f )(X, Y ). (1.21)
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The relations between the main weighted and unweighted tensors can be summarized through
the following table:

Object Usual Weighted
Curvature tensor R R

Ricci tensor ρ ρmf = ρ+Hesf − 1
m
df ⊗ df

Scalar curvature τ
τmf = τ + 2∆f − m+1

m
∥∇f∥2

+m(m− 1)µ e2f/m

Schouten tensor
P = 1

n−2
(ρ− Jg)

J = τ
2(n−1)

Pm
f = 1

m+n−2
(ρmf − Jm

f g)

Jm
f = 1

2(m+n−1)
τmf

Weyl tensor W = R− P ⃝∧ g Wm
f = R− Pm

f ⃝∧ g

Table 1.1: Comparative between standard curvature-related tensors and their weighted analogues.

Note that the role of the auxiliary curvature parameter µ is made explicit in the definition of
the weighted scalar curvature. However, if m = 1, the value of µ becomes irrelevant. Indeed, in
this case, the fiber of the warped product (1.17) is 1-dimensional, so it has no sectional curvature.
Thus, we adapt notation and refer to SMMSs with m = 1 by the quadruple (M, g, f, 1).

Like in the case of curvature-related tensors, this pattern of generalization of Riemannian
geometric objects to the weighted setting also applies to some differential operators. Indeed, a
natural one to consider is the weighted divergence

divf T = div T − ι∇fT = div T − T (∇f, · · · ), (1.22)

which is the negative of the formal adjoint of the covariant derivative of tensors with respect to
the weighted measure e−fdvolg. The weighted Laplacian ∆f on functions is thus the formally
self-adjoint operator given by

∆fφ = ∆φ− g(∇f,∇φ)

for any φ ∈ C∞(M).

Weighted conformal classes
As previously pointed out, ideas of conformal geometry naturally enter into the study of SMMSs,
be it for quasi-Einstein manifolds [37, 39–41], the weighted Yamabe problem [36], or the prop-
erties of weighted σk-curvatures [34, 35]. Hence, in this section, we explain how conformal
geometry is naturally introduced into the weighted setting, and show some conformal properties
of the curvature-related weighted tensors of interest to this thesis.

Two SMMSs (M, g, f,m, µ) and (N, ĝ, f̂ ,m, µ) are conformally equivalent (in the weighted
sense) if there exists a Riemannian conformal map Φ : M → N , with Φ∗ĝ = e−2ϕ/mg for some
function ϕ ∈ C∞(M), and such that f̂ ◦Φ = f + ϕ. In order to simplify notation, and since Φ is
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a diffeomorphism, we say that the SMMSs (M, g, f,m, µ) and (M, ĝ, f̂ ,m, µ) are conformally
equivalent if there exists a smooth function ϕ ∈ C∞(M) such that ĝ = e−2ϕ/mg and f̂ = f + ϕ.

This definition is motivated by standard notions of conformal geometry on the formal warped
product (1.17). Indeed, consider the warped products

(M, g)×v F
m(µ) and (M, ĝ)×v̂ F

m(µ), (1.23)

where v = e−
f
m and v̂ = e−

f̂
m , and let u = eϕ/m. Then, we can rephrase the definition saying

that two SMMSs are conformally equivalent if there exists a positive u ∈ C∞(M) such that
ĝ = u−2g and v̂ = u−1v. As a consequence, the products in (1.23) are conformally equivalent
in the Riemannian sense, with the conformal factor u depending only on the base M . These
definitions can also be stated in local terms if instead of a global function ϕ (equivalently, u),
there is a function defined only on a neighborhood of each point.

A weighted invariant T = T (g, v) is said to be conformally invariant of weight s if for any
conformal factor u,

T (u−2g, u−1v) = u−s T (g, v).

For example, the weighted volume element of the conformally transformed manifold is dν̂ =
u−mvmdvolĝ = u−(m+n)vmdvolg, so it is conformally invariant of weight m + n. Moreover,
it transforms like the volume element of an (m + n)-dimensional manifold would under the
conformal transformation ĝ = u−2g, which is consistent with the interpretation of SMMSs as
bases of the formal warped products (1.23).

Once a notion of conformal class for SMMSs has been established, a natural question is
how to define weighted local conformal flatness. To this end, notice that direct products of
the form F n(−µ) × Fm(µ) are locally conformally flat, and those of the form F n(c) × R are
locally conformally flat for any c [124]. Thus, locally conformally flat SMMSs are those whose
associated warped product is in the conformal class of one of these structures (in the Riemannian
sense), taking into account that the conformal change is only defined on the base. This motivates
the following definition:

Definition 1.9. A SMMS (Mn, g, f,m, µ) with m ̸= 1 is locally conformally flat if it is locally
conformally equivalent to (F n, q(−µ), 0,m, µ). If m = 1, (Mn, g, f, 1) is locally conformally
flat if it is locally conformally equivalent to (F n, q(c), 0, 1) for some sectional curvature c.

Like in the unweighted context, the weighted Weyl tensor Wm
f is intimately related to local

conformal flatness. Indeed, let (M, g, f,m, µ) and (M, ĝ, f̂ ,m, µ) be two conformally equivalent
smooth metric measure spaces with ĝ = u−2g and v̂ = u−1v. Then,

Ŵm
f̂

= u−2Wm
f ,

so we see that the weighted Weyl tensor is a weighted conformal invariant (with weight 2), like
its analogue in the usual setting. Hence, the curvature tensor is completely controlled by the
weighted Schouten tensor within a weighted conformal class. Moreover, a SMMS with n ≥ 3
and m + n ̸= 3 (which are satisfied for all the SMMSs that we will consider) is locally confor-
mally flat in the weighted sense if and only if Wm

f = 0, in which case the weighted Cotton tensor
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dPm
f also vanishes. These properties, like many other weighted conditions, stem from their un-

weighted analogue in the formal warped product (1.17), when one considers conformal changes
defined only on the base. See [34,41] for the derivation of these formulas, other transformations
of curvature-related weighted invariants, and more details on conformal aspects of SMMSs.

1.6 Weighted Einstein manifolds

In Section 1.4, we presented Einstein manifolds as those that satisfy ρ = λg for some λ ∈ R,
explained how they arise through a variational approach, and touched on their importance in both
Mathematics and Physics. Thus, it makes sense to wonder how one should define an appropriate
Einstein-type structure in the aforementioned formalism for smooth metric measure spaces.

In this context, quasi-Einstein manifolds (those with ρmf = λg) arise as a strong candidate,
due to the Bakry-Émery Ricci tensor serving as the weighted analogue of the standard Ricci
tensor. However, note that, in the standard setting, the Einstein condition can be formulated in
terms of the Ricci tensor or, equivalently, in terms of the Schouten tensor, by saying a manifold
is Einstein if P = λg for some λ ∈ R. These two conditions are not equivalent for the weighted
analogues of these two tensors, so they lead to two distinct geometric notions. The first one is,
as previously mentioned, that of quasi-Einstein manifolds. The second one, which is the focus
of Part I of this thesis, is the following.

Definition 1.10 [34]. A smooth metric measure space (Mn, g, f,m, µ) is weighted Einstein if its
weighted Schouten tensor satisfies Pm

f = λg for some λ ∈ R.

For simplicity, since the SMMS structure is implied in our discussion, we will often refer
to weighted Einstein SMMSs simply as weighted Einstein (WE) manifolds. More explicitly, for
such a SMMS, the weighted Schouten tensor satisfies

Pm
f =

1

m+ n− 2
(ρmf − Jm

f g) = λg, for some λ ∈ R.

From this formula, it is clear that WE manifolds are particular cases of generalized quasi-Einstein
manifolds (those with ρmf = αg for some function α ∈ C∞(M)). Indeed, we have that a WE
manifold is GQE with

α = (m+ n− 2)λ+ Jm
f . (1.24)

The motivation for saying that the notion of weighted Einstein manifolds is the appropri-
ate generalization of Einstein-type structures to SMMSs, instead of QE or GQE manifolds, is
twofold:

Variational properties: On the one hand, WE manifolds with µ = 0 are critical points of the
total weighted scalar curvature functional

Wm[κ] : (g, f) 7→
∫
M

(τmf + 2m(m+ n− 2)κ(e
f
m − 1)) e−fdvolg,
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under simultaneous variations of the metric and the density that preserve the total weighted vol-
ume

∫
M
e−fdvolg. Indeed, for a fixed κ, a metric-measure structure (g, f) is critical if and only

if there exists λ ∈ R such that

Pm
f = λg and Jm

f = (m+ n)λ−mκe
f
m (1.25)

(see [36]). The total weighted scalar curvature functional is an important piece in the discussion
of the weighted Yamabe problem. Moreover, weighted Einstein manifolds also arise among the
critical points of functionals related to the weighted σk-curvatures, which are expected to lead to
sharp fully non-linear Gagliardo-Nirenberg-Sobolev inequalities (see [34]).

Relationship with QE manifolds: The constant κ that appears in (1.25) plays an essential role
in our study of weighted Einstein manifolds. As it turns out, such a constant exists for every such
manifold, not only in the case µ = 0, but for every µ ∈ R. Moreover, it encodes the relationship
between non-trivial quasi-Einstein and weighted Einstein manifolds in a remarkably simple way
(note that a trivial WE manifold is trivial QE with ρmf = ρ = (2(m + n − 1)λ − mκef/m)g.
These facts are summarized in the following lemma.

Lemma 1.11 [34]. Let (Mn, g, f,m, µ) be a non-trivial SMMS such that Pm
f = λg for some

λ ∈ R. Then, there is a unique constant κ ∈ R (called scale) such that

Jm
f = (m+ n)λ−mκe

f
m .

Moreover, if (M, g, f,m, µ) is weighted Einstein with κ = 0, then (M, g, f,m) is quasi-Einstein.
Also, if a quadruple (M, g, f,m) is quasi-Einstein, there exists an appropriate µ for which
(M, g, f,m, µ) is weighted Einstein with κ = 0.

From this result, it follows that weighted Einstein manifolds generalize quasi-Einstein man-
ifolds, while being in turn more rigid than generalized quasi-Einstein manifolds. Moreover, the
fact that they arise naturally within this framework through a variational approach means that
they are well-suited for weighted geometric conditions. Since they are a more general notion,
the geometric properties of WE manifolds are less well understood than those of QE manifolds
(see Section 1.4 and references therein for some results on the latter). Besides, they inhabit a mid-
dle ground where they present enough rigidity to obtain classification results under some natural
weighted assumptions, but not so much that their study is reduced to known problems. Finally,
we point out that the WE condition is a purely weighted notion, in the sense that it is not inherited
directly from unweighted conditions such as the Einstein character of the formal warped product
(1.17) (see Example 2.1 and Remark 2.3 for an example of this behavior). Indeed, this leads to
the notion of QE manifolds instead.

These factors, as well as the importance of WE manifolds in various analytic problems in
SMMSs, motivate the need for the research of such structures, which will be the focus of Part I
of this thesis.

The weighted space forms
The simplest way to build examples of weighted Einstein manifolds is by taking the three model
spaces (spheres, hyperbolic spaces and Euclidean spaces), and prescribing on them appropriate
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densities and values for the parameters m and µ. This process, in the case of quasi-Einstein
manifolds, gives rise to the positive and negative elliptic m-Gaussians [40], which are built on
the upper hemisphere of Sn and on Hn respectively. In [34], a WE manifold with positive scale
(thus, not quasi-Einstein), is constructed for µ = 0 on the punctured sphere (see Example 1.12
below). Nevertheless, the literature on the topic lacked a comprehensive list of families of WE
manifolds realized on space forms for all values of µ. Aiming to fill this gap, and due to the
fact that they play an essential role in the classification results in Chapters 2 and 3, we presented
in [24] the following constructions, which we called weighted space forms.

Example 1.12 (m-weighted n-sphere (Sn(2λ), g2λS , fm,m, µ)). Let (Sn(2λ), g2λS ) be the n-sphere
of constant sectional curvature 2λ > 0 (equivalently, of radius 1/

√
2λ), with the standard round

metric
g2λS = dt2 + (2λ)−1 sin2(t

√
2λ)gSn−1 , t ∈

(
0, π√

2λ

)
,

where t denotes the geodesic distance from the pole N of the sphere and Sn−1 is the (n − 1)-
sphere of radius 1. This metric extends smoothly to the poles N and −N . Take the positive
density v(t) = A + B cos(

√
2λt) for A ∈ R+, B ∈ R such that A > |B| and define, by

continuity, v(N) = A + B and v(−N) = A− B. For m ̸= 1, fix µ = 2λ(B2 − A2). Then, the
SMMSs (Sn(2λ), g2λS , fm,m, µ) and (Sn(2λ), g2λS , f1, 1), where fm = −m log v, are weighted
Einstein with Pm

f = λg and scale κ = 2λA > 0. Hence, these weighted spheres are only
quasi-Einstein in the trivial case, where ρmf = ρ = 2(n− 1)λg.

Note that, by removing the condition A > |B|, we also get incomplete examples defined on
the open set of points where v > 0. We present the two notable examples which where mentioned
above (cf. [34]):

1. A = B = 1 on the punctured sphere Sn(2λ) − {−N} gives the standard m-weighted
n-sphere of curvature 2λ.

2. A = 0 and B = 1 on the upper hemisphere Sn
+(2λ) gives the positive elliptic m-Gaussian,

which is a quasi-Einstein manifold since its scale vanishes (indeed, Jm
f = λ(m+n) in this

case).

Example 1.13 (m-weighted n-Euclidean space (Rn, gE, fm,m, µ)). Let (Rn, gE) be the standard
Euclidean space, whose metric can be written as a warped product as

gE = dt2 + t2gSn−1 , t ∈ (0,∞),

extending smoothly to t = 0. Consider the positive density v(t) = A + Bt2 with A ∈ R+,
B ∈ [0,∞). For m ̸= 1, set the parameter µ = −4AB. The SMMSs (Rn, gE, fm,m, µ) and
(Rn, gE, f1, 1) are weighted Einstein with Pm

f = 0 and scale κ = 2B ≥ 0, so they are quasi-
Einstein only when they are trivial.

Example 1.14 (m-weighted n-hyperbolic space (Hn(2λ), g2λH , fm,m, µ)). Let (Hn(2λ), g2λH ) be
the n-hyperbolic space of constant sectional curvature 2λ < 0, with the metric

g2λH = dt2 + (−2λ)−1 sinh2(t
√
−2λ)gSn−1 , t ∈ (0,∞),
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extending smoothly to t = 0. Take the positive density v(t) = A + B cosh(
√
−2λt), with

B ∈ [0,∞), A ∈ R such that A > −B. Moreover, for m ̸= 1, fix µ = 2λ(B2 − A2). Then, the
SMMSs (Hn(2λ), g2λH , fm,m, µ) and (Hn(2λ), g2λH , f1, 1) are weighted Einstein with Pm

f = λg
and scale κ = 2λA. Note that the scale can have any sign, depending on the value of A and, in
contrast to the two previous models, takingA = 0 results in a family of non-trivial quasi-Einstein
manifolds.

Thus, for any values of λ and m, we can build a complete weighted Einstein manifold by
considering the corresponding weighted space form. Hence, it is not surprising that these families
are key in global classification results of WE manifolds (see Theorems 2.23 and 3.10)

Analyticity of weighted Einstein manifolds
In order to achieve the classification results contained in Part I of this thesis, we will need to make
use of the analytic properties of weighted Einstein manifolds, namely of their (real) analyticity
in harmonic coordinates. For Einstein manifolds, Ricci solitons and quasi-Einstein metrics, this
was already known (see Section 1.4 and references therein). However, since WE manifolds are
a strict generalization of QE manifolds, a new result is needed which proves the real analyticity,
in harmonic coordinates, of both the metric and the density function, using similar techniques in
the context of SMMSs. This is indeed the purpose of the following theorem, which is contained
in [24].

Theorem 1.15. Let (Mn, g, f,m, µ) be a weighted Einstein SMMS. Then, both g and f are real
analytic in harmonic coordinates on M .

Proof. Assume Pm
f = λg and take traces in this equation, using (1.18) and (1.19), to obtain

(2m+ n− 2)τ + 2(m− 1)∆f +
(m− 1)(n− 2)

m
∥∇f∥2

− nm(m− 1)µe
2
m
f = 2(m+ n− 1)(m+ n− 2)nλ.

Note that, if m = 1, this becomes τ = 2n(n− 1)λ, so τ is constant. If m ̸= 1, we can write

∆f = 1
2(m−1)

(−(2m+ n− 2)τ + 2(m+ n− 1)(m+ n− 2)nλ)

−n−2
2m

∥∇f∥2 + mn
2
µe

2
m
f .

(1.26)

Furthermore, let κ ∈ R be the scale of (Mn, g, f,m, µ), so that Jm
f = (m + n)λ −mκe

f
m (see

Lemma 1.11). Solving this equation for τ yields

τ + 2∆f = 2(m+ n− 1)
(
(m+ n)λ−mκe

f
m

)
+m+1

m
∥∇f∥2 −m(m− 1)µ e

2
m
f .

(1.27)

If m = 1, since τ is constant, equation (1.27) becomes ∆f + l.o.t = 0, where l.o.t. stands for
lower order terms involving the metric and the density function. If m ̸= 1, we can use (1.27) to
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write τ + 2∆f + l.o.t = 0, while, by (1.26), we have ∆f + 2m+n−2
2(m−1)

τ + l.o.t = 0. Combining
both equations, we have

m+ n− 1

m− 1
∆f + l.o.t = 0.

Since n ≥ 3 and m ∈ R+ − {1}, we can write ∆f + l.o.t = 0. Moreover, from (1.24), we can
write the weighted Einstein equation as ρmf = ((m+n− 2)λ+ Jm

f )g. Using Lemma 1.11 again,
this expression takes the form

ρ+Hesf −
1

m
df ⊗ df = (2(m+ n− 1)λ−mκe

f
m )g

so, for any m ∈ R+, we end up with

ρ+Hesf + l.o.t = 0,

∆f + l.o.t = 0.

In harmonic coordinates (x1, . . . , xn) (recall that this means that ∆xi = 0 for all i = 1, . . . , n),
which always exist locally [3, K.45], a direct computation shows that these geometric equations
become a quasi-linear second-order system of PDEs:

−1
2
grs

∂2gij
∂xr∂xs +

∂2f
∂xi∂xj

+ l.o.t = 0,

grs ∂2f
∂xr∂xs + l.o.t = 0.

Let S2(T ∗M) be the space of symmetric (0, 2)-tensor fields on M . Then, the principal symbol
associated to this quasi-linear system is the linear map σξ : S2(T ∗M)⊕C∞(M) → S2(T ∗M)⊕
C∞(M) given by

(h, ω) 7→ σξ(h, ω) =

(
−1

2
∥ξ∥2h+ ωξ ⊗ ξ, ∥ξ∥2ω

)
.

If σξ(h, ω) = 0 and ξ ̸= 0, then it follows that ω = 0. In this case, h must also vanish. Thus,
σξ is an automorphism of S2(T ∗M) ⊕ C∞(M), which means that the quasi-linear system is
elliptic. Moreover, the whole system is of the form F (g, f, ∂g, ∂f, ∂2g, ∂2f) = 0, where F is
real analytic. From regularity results for quasi-linear elliptic PDEs, it follows that both the metric
and the density function are real analytic in harmonic coordinates (see [3, J.41]).

The real analyticity of weighted Einstein manifolds proved in Theorem 1.15 has a number
of immediate and highly relevant geometric implications. Firstly, this means that if the metrics
(respectively, densities) of two weighted Einstein structures on the same manifold coincide on
an open subset, then they are equal on the whole manifold. Moreover, for any non-trivial WE
manifold (M, g, f,m, µ), since f is non-constant and analytic in harmonic coordinates, the set
M̃ = {p ∈M |(∇f)p ̸= 0} of regular points of f is open and dense in M .





Part I

The geometry of weighted Einstein
manifolds





I The geometry of weighted Einstein manifolds 33

Throughout Section 1.5, we went over several key aspects about smooth metric measure
spaces, like their relation to important problems in geometric analysis and the kinds of weighted
invariants that are of interest when working in a weighted context. Specifically for the Rieman-
nian setting, we explained how SMMSs are defined as five-tuples (M, g, f,m, µ), where f is the
density function and m and µ are parameters with certain geometric interpretations.

In particular, in Section 1.6 we presented a natural analogue of Einstein manifolds, weighted
Einstein manifolds, coming from a relevant variational problem, and generalizing an important
geometric notion such as quasi-Einstein manifolds. These are SMMSs whose weighted Schouten
tensor (1.19) satisfies

Pm
f =

1

m+ n− 2
(ρmf − Jm

f g) = λg, for some λ ∈ R.

Motivated by the importance of these structures for the study of SMMSs, Part I of this dissertation
is devoted to the analysis of the weighted Einstein equation under several weighted geometric
conditions that arise naturally for manifods with density. In Chapter 2, we translate the condition
of the harmonicity of the Weyl tensor (see [19,44] for results for quasi-Einstein manifolds under
this assumption) to the weighted setting and study WE manifolds with divf W

m
f = 0. On the

other hand, in Chapter 3 we tackle a problem from weighted conformal geometry (see [34, 36]):
The classification of WE manifolds which admit another WE structure in their conformal class.
This translates a classical problem in Riemannian Geometry due to Brinkmann [10] to the
weighted setting, and it entails a thorough study of a generalized Obata equation (2.22) involving
the conformal factor u which relates both WE structures.

In both chapters, we start by performing a local study of the geometry of the SMMSs of
interest. Then, we impose the condition of completeness in order to obtain global classifica-
tion results. In Chapter 2, we assume all SMMSs are non-trivial (f non-constant), while in
Chapter 3, we impose non-constancy on the conformal factor u. Thus, the analyticity of WE
manifolds, which is guaranteed by Theorem 1.15 (see also Lemma 3.1), plays a key role by en-
suring that the set of regular points of f or u is dense in the underlying manifold. As it turns
out, these geometric conditions mean that the weighted analogues of the space forms that we
defined in Section 1.5 naturally play an essential role. However, more involved structures are
also admissible, many of which are not built on Einstein manifolds and arise as purely weighted
objects without unweighted counterparts.





Chapter 2

Weighted Einstein manifolds with weighted
harmonic Weyl tensor

In this chapter, we characterize the geometric structure of weighted Einstein manifolds with
weighted harmonic Weyl tensor. The results in this chapter are contained in the article [24].

When discussing Einstein-type structures on semi-Riemannian manifolds, such as gradient
Ricci solitons or quasi-Einstein manifolds, conditions on the Weyl tensor are often used as a
means to obtain classification results. This is a very natural process, given that the Einstein-
type equation provides information on the part of the curvature controlled by the Ricci tensor,
so restrictions on the Weyl tensor usually provide additional information. The most natural one
is local conformal flatness (W = 0). However, this is quite restrictive, so the weaker assump-
tion divW = 0 is often made instead in order to gain flexibility while meaningfully reducing
the complexity of the problem. Indeed, this harmonicity condition has been used to study, for
example, Ricci solitons [59, 93] and generalized QE manifolds [19, 44].

The equation divW = 0 arises naturally in discussions of spaces which are conformally
Einstein, i.e., semi-Riemannian manifolds (M, g) which locally admit a conformal transforma-
tion ĝ = e−2σg such that the resulting manifold is Einstein (see Section 1.4 for comments on
the relation between a certain quasi-Einstein equation and this conformal problem). This is be-
cause the divergence of the standard Weyl tensor transforms under this conformal change as
d̂ivŴ = divW + (3−n)ι∇σW . Additionally, the Einstein condition implies the harmonicity of
the Weyl tensor, since the Schouten tensor (1.1) of an Einstein manifold is Codazzi. Thus, if ĝ is
Einstein, then divW + (3− n)ι∇σW = 0.

Therefore, a natural question when studying weighted Einstein (Riemannian) smooth metric
measure spaces is how analogous conditions on the weighted Weyl tensor Wm

f given by (1.20)
affect their geometry. Recall that the WE equation is the Einstein-type equation Pm

f = λg for
some λ ∈ R, where Pm

f is the weighted Schouten tensor (1.19). If we impose local conformal
flatness in the weighted sense, i.e., Wm

f = 0, it follows that

R = λg⃝∧ g,

that is, the underlying manifold has constant sectional curvature 2λ. This greatly limits the
amount of admissible geometries for these SMMSs. Hence, we translate the harmonicity con-
dition divW = 0 to the weighted setting by considering the weighted divergence (1.22) and
imposing the weighted harmonicity of the weighted Weyl tensor:

0 = divf W
m
f = divWm

f − ι∇fW
m
f = divWm

f −Wm
f (∇f,−,−,−).

35
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For simplicity, we say that a SMMS such that divf Wm
f = 0 has weighted harmonic Weyl tensor.

The purpose of this chapter is to study the geometric structure of weighted Einstein manifolds
under this condition.

An important detail to point out is that this is not a direct translation of an unweighted ge-
ometric problem. Indeed, in contrast to the usual setting, for smooth metric measure spaces,
the condition divf W

m
f = 0 does not follow from Pm

f = λg, for any value of the dimensional
parameter m. The following examples illustrate this fact appropriately.

Example 2.1. Let m ∈ R+ − {1
2
}, and let (R+ × R3, g) be the 4-dimensional Riemannian

manifold with local coordinates (x1, . . . , x4) and metric given by the only non-vanishing com-
ponents g(∂xi

, ∂xi
) = x2m1 for i = 1, . . . , 4. The Ricci tensor is determined by the following

non-vanishing components

ρ (∂x1 , ∂x1) =
3m

x21
, ρ (∂xi

, ∂xi
) =

m− 2m2

x21
for i > 1.

For the density function fm(x1) = −2m(m+1) log(x1), and the parameter µ = 0, the Bakry-
Émery Ricci tensor is diagonal with ρmf (∂xi

, ∂xi
) = m−4m2−2m3

x2
1

for every i = 1, . . . , n. Now,
direct computations show that

Jm
f = −m

(
2m2 + 4m− 1

)
x
−2(m+1)
1

and that the corresponding SMMS is weighted Einstein with Pm
f = 0. However, its weighted

Weyl tensor is not weighted harmonic. Indeed, the non-vanishing components of divf Wm
f are

divf W
m
f (∂xi

, ∂x1 , ∂xi
) = 2m(2m2+m−1)

x3
1

, i > 1 (up to symmetries).

The following SMMS in dimension 3 provides an example of weighted Einstein manifold
with divf W

m
f ̸= 0 for the remaining value m = 1

2
.

Example 2.2. Let (R+×R2, g) be the 3-dimensional Riemannian manifold with the metric given

by the only non-vanishing components g(∂xi
, ∂xi

) = x
2
3
(3−

√
6)

1 for i = 1, 2, 3. The Ricci tensor is
given by

ρ (∂x1 , ∂x1) = −
2
(√

6− 3
)

3x21
, ρ (∂xi

, ∂xi
) =

√
6− 2

3x21
.

For the density function f(x1) = −
√

2
3
log(x1), and the parameters m = 1

2
and µ = 0, this

manifold satisfies ρ1/2f = 0, hence it is quasi-Einstein, and P 1/2
f = 0. However, its weighted

Weyl tensor is not harmonic in the weighted sense. The non-vanishing components of divf W
1/2
f

are divf W
1/2
f (∂xi

, ∂x1 , ∂xi
) = 4(

√
6−3)

9x3
1

, i > 1 (up to symmetries).

Remark 2.3. Although several geometric conditions on SMMSs have a counterpart on formal
warped products of the form (1.17), the ones that we are considering in this chapter do not in
general. In fact, fix m = 3 in Example 2.1 and take the warped product R+ × R3 ×v R3,
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where v(x1) = x81. This warped product is not Einstein but has harmonic Weyl tensor. Thus,
Example 2.1 further illustrates that a weighted Einstein SMMS does not give rise to an Einstein
warped product (1.17) and that a warped product (1.17) with harmonic Weyl tensor does not
induce a SMMS with weighted harmonic Weyl tensor.

Additionally, the weighted harmonicity condition on the weighted Weyl tensor does not in-
duce, in general, a warped product (1.17) with harmonic Weyl tensor (cf. Remark 2.20). Indeed,
for µ ̸= 0, consider the SMMS (R+×φR3, f, 2, µ), where φ(t) = t

1
3 and f(t) = − log(t) (hence

v(t) = t
1
2 ). This SMMS has weighted harmonic Weyl tensor, but it is not weighted Einstein for

any λ ∈ R. However, the warped product R+ ×φ R3 ×v F
2(µ) does not have harmonic Weyl

tensor.

Outline of the chapter

This chapter is broadly divided into three sections. First, we analyze the local structure of
weighted Einstein manifolds (M, g, f,m, µ) with weighted harmonic Weyl tensor without further
assumptions (Section 2.1) and prove the main local rigidity result (Theorem 2.14) which guaran-
tees the splitting of the underlying manifold as a warped product I ×φ N around regular points
of f . This result gives two cases (Einstein and non-Einstein) which are analyzed separately.

Thus, in Section 2.2, we focus on the Einstein case, which is less rigid than its non-Einstein
counterpart. We describe both the warping and density functions φ and f , as well as the Einstein
constant of the fiber N and the value of the parameter µ, to obtain Theorem 2.16, completing
the local classification result around regular points of f . Moreover, since f is real analytic in
harmonic coordinates by Theorem 1.15, the set of its regular points is dense in M . Therefore,
Theorems 2.14 and Theorem 2.16 determine the local geometric features of an open dense subset
of these SMMSs. In low dimensions, stronger rigidity results are provided in Corollary 2.18.

Finally, in Section 2.3, making use of the aforementioned analyticity of WE manifolds, we
prove Theorem 2.23, a global rigidity result which states that there exist only four families of
complete weighted Einstein SMMSs with weighted harmonic Weyl tensor (the three weighted
space forms and an additional family of warped products).

2.1 Local structure

The objective in this section is to study the local geometric structure of weighted Einstein man-
ifolds with weighted harmonic Weyl tensor, culminating with the proof of Theorem 2.14. The
following family of examples will play a key role in the non-Einstein case of this result.

Example 2.4. Take a SMMS of the form (I ×φN, g, f,
1
2
, 0), where I ×φN is a warped product

of an open interval I ⊂ R+ and a Ricci-flat manifold N . Now, set the warping and density
functions

φ(t) = A(Bt)
1

n−1 , f(t) = − log(Bt),
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where t is the natural coordinate in R+ and A,B ∈ R+. The Ricci tensor of I ×φ N is given by

ρ(∂t, ∂t) =
(n− 2)

(n− 1)t2
, ρ(∂t, X) = 0, ρ(X, Y ) = 0,

for any X, Y ∈ X(N). Moreover, the Bakry-Émery Ricci tensor is given by

ρ
1/2
f (∂t, ∂t) = − 1

(n−1)t2
,

ρ
1/2
f (∂t, X) = 0,

ρ
1/2
f (X, Y ) = −A2(Bt)

2
n−1

(n−1)t2
gN(X, Y ),

for any X, Y ∈ X(N). The weighted Schouten scalar is J1/2
f = − 1

(n−1)t2
. Hence, these SMMSs

satisfy P 1/2
f = 0 and divf W

1/2
f = 0, so they are weighted Einstein and have weighted harmonic

Weyl tensor. However, the scalar curvature of the underlying manifold is non-constant, τ =
(n−2)
(n−1)t2

, therefore they are not Einstein. In particular, if N is the usual flat Euclidean space Rn−1

with coordinates (x1, . . . , xn−1), the weighted Einstein tensor W 1/2
f presents the following non-

zero components (up to symmetries):

W
1/2
f (∂t, ∂xi

, ∂t, ∂xi
) = (n−2)φ(t)2

(n−1)2t2
,

W
1/2
f (∂xi

, ∂xj
, ∂xi

, ∂xj
) = − φ(t)4

(n−1)2t2
, i ̸= j.

Note that (I ×φN, g) is an incomplete manifold, and it cannot be isometrically embedded (as an
open set) in any complete manifold (see Lemma 2.21).

Remark 2.5. Notice that the value m = 1
2

is special in the family of SMMSs given by Ex-
ample 2.1. Indeed, the SMMS (R+ × R3, g, f1/2,

1
2
, 0) corresponds to Example 2.4 for t =

2
3
(x1)

3/2, A = 1 and B = 3
2
. The weighted Schouten tensor and the weighted divergence of

its weighted Weyl tensor vanish (P 1/2
f = 0 and divf W

1/2
f = 0), but the weighted Weyl ten-

sor itself does not. Its non-zero components are W 1/2
f1/2

(∂xi
, ∂x1 , ∂xi

, ∂x1) = 1
2x1

for i ̸= 1, and

W
1/2
f1/2

(∂xi
, ∂xj

, ∂xi
, ∂xj

) = − 1
4x1

for 1 < i < j (up to symmetries).

In order to prove the local classification result, we begin by computing some geometric for-
mulas and proving the local splitting of these SMMSs as warped products with Einstein fiber.
Afterwards, we find necessary and sufficient conditions, in terms of an overdetermined system
of ODEs, for a SMMS to satisfy both the weighted Einstein and the weighted harmonicity con-
ditions. Solving this system yields the theorem.

The following lemma, which was adapted from the derivation in [41] to present the form
given in [34], provides a key identity involving the trace of the weighted Cotton tensor (1.21)
and the scalar Y m

f = Jm
f − trPm

f .
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Lemma 2.6 [41]. Let (M, g, f,m, µ) be a SMMS. Then,

tr(dPm
f ) = −

(
ι∇fP

m
f + dY m

f − 1

m
Y m
f df

)
,

where the trace is taken over the first and third arguments of dPm
f .

Proof. Consider the change of variable v = e−f/m. With this, the Bakry-Émery Ricci tensor
(1.16) becomes

ρmf = ρ−mv−1Hesv,

and the weighted scalar curvature (1.18) is

τmf = τ − 2mv−1∆v +m(m− 1)v−2(µ− ∥∇v∥2). (2.1)

On the one hand, let A = − 1
n
(∆v + Jv), where J = τ

2(n−1)
is the usual Schouten scalar. On the

other hand, let B = µ− 2Av − ∥∇v∥2. Then, the weighted scalar curvature can be written as

τmf = m+n−1
n−1

τ + 2mnv−1A+m(m− 1)v−2(µ− ∥∇v∥2)

= m+n−1
n−1

τ + 2m(m+ n− 1)v−1A+m(m− 1)v−2B.

Inserting his expression into the weighted Schouten tensor (1.19) yields

Pm
f = 1

m+n−2
(ρ−mv−1Hesv −Jm

f g)

= 1
m+n−2

(
ρ− Jg −mv−1Hesv −mv−1

(
A+ m−1

2(m+n−1)
v−1B

)
g
)

= n−2
m+n−2

P − mv−1

m+n−2

(
Hesv +Ag +

m−1
2(m+n−1)

v−1Bg
)
,

(2.2)

where P = 1
n−2

(ρ− Jg) is the usual Schouten tensor. The next step is to take this expression
and compute the weighted Cotton tensor (1.21), which is the skew-symmetrization of ∇Pm

f . To
that end, note that

(∇Y Hesh)(X,Z)− (∇Z Hesh)(X, Y ) = R(∇h,X,Z, Y ) = −ι∇hR(X, Y, Z),

and for any function F ∈ C∞(M),

(∇Y Fg)(X,Z)− (∇ZFg)(X, Y ) = dF (Y )g(X,Z)− dF (Z)g(X, Y )

= −g ∧ dF (X, Y, Z).

where ∧ acts on a 1-form ω and a tensor T of type (0, k) as

T ∧ ω(. . . , Y, Z) = ω(Z)T (. . . , Y )− ω(Y )T (. . . , Z).
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Thus, it follows from (2.2) and the definitions of the Cotton (1.2) and weighted Cotton (1.21)
tensors that

dPm
f = 1

m+n−2
dP − mv−2

m+n−2
(Hesv +Ag) ∧ dv

+ mv−1

m+n−2

(
ι∇vR + g ∧ dA+ vg ∧ d

(
m−1

2(m+n−1)
v−2B

))
= 1

m+n−2
dP + mv−1

m+n−2

(
ι∇vR + g ∧ dA

−v−1(Hesv +Ag) ∧ dv + vg ∧ d
(

m−1
2(m+n−1)

v−2B
))

.

(2.3)

Moreover, since R = P ⃝∧ g +W , we have

(P ⃝∧ g)(∇v,X, Y, Z) = P (∇v, Y )g(X,Z) + P (X,Z)g(∇v, Y )

−P (∇v, Z)g(X, Y )− P (X, Y )g(∇v, Z)
= −(P ∧ dv + g ∧ ι∇vP )(X, Y, Z),

so (2.3) becomes

dPm
f = 1

m+n−2
dP + mv−1

m+n−2

(
ι∇vW + g ∧ (dA− ι∇vP )

−v−1(vP +Hesv +Ag) ∧ dv + vg ∧ d
(

m−1
2(m+n−1)

v−2B
))

.
(2.4)

Now, we can take the trace of this expression. To that end, note that if ω is a 1-form and T is a
tensor of type (0, 2), in an orthonormal frame {E1, . . . , En},

tr(T ∧ ω)(X) =
∑n

i=1 T ∧ ω(Ei, X,Ei)

=
∑n

i=1 T (Ei, X)ω(Ei)−
∑n

i=1 T (Ei, Ei)ω(X)

= T (X,ω#)− ω(X) trT,

where ω# is the metrically equivalent vector of the 1-form ω and we have taken the trace over the
first and third arguments of T ∧ ω. In particular, tr(g ∧ ω) = −(n− 1)ω. Moreover, the Cotton
and Weyl tensors are traceless, and by the definition of A, tr(vP + Hesv +Ag) = 0. Thus, the
trace of equation (2.4) becomes

tr dPm
f = mv−1

m+n−2

(
(n− 2)ι∇vP − (n− 1)dA− v−1ι∇v(Hesv +Ag)

− (m−1)(n−1)
2(m+n−1)

vd (v−2B)
)
.

Using (2.2), we write this equation in terms of the weighted Schouten tensor:

tr dPm
f = mv−1ι∇vP

m
f + mv−1

m+n−2

(
(m− 1)v−1(ι∇v Hesv +Adv)

−(n− 1)dA+ m(m−1)
2(m+n−1)

v−2Bdv − (m−1)(n−1)
2(m+n−1)

vd (v−2B)
)
.
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We also have dB = −d(2vA+ ∥∇v∥2) = −2(Adv + vdA+ ι∇v Hesv), so

(m− 1)v−1(ι∇v Hesv +Adv) = −(m− 1)

(
dA+

1

2
v−1dB

)
.

Substituting this value into the equation above and grouping the terms involving B into a single
differential, we arrive at the following expression for the trace of the weighted Cotton tensor in
terms of the weighted Schouten tensor Pm

f and the auxiliary functions A and B:

tr dPm
f = mv−1

(
ι∇vP

m
f − dA− (m+ 2n− 2)(m− 1)

2(m+ n− 1)(m+ n− 2)
d(v−1B)

)
. (2.5)

Now, we need to compute Y m
f = Jm

f − trPm
f and its differential. To that end, note that, from

(1.19),

trPm
f =

1

m+ n− 2
(τ −mv−1∆v − nJm

f ),

so using (2.1) we obtain

Y m
f =

(m+2n−2)Jm
f −(τ−mv−1∆v)

m+n−2

= − mv−1

2(m+n−1)(m+n−2)

(
τv + 2(n− 1)∆v

−(m− 1)(m+ 2n− 2)v−1(µ− ∥∇v∥2)
)

= mv−1
(
A+ (m+2n−2)(m−1)

2(m+n−1)(m+n−2)
v−1B

)
.

Therefore,

dY m
f = −Y m

f v−1dv +mv−1

(
dA+

(m+ 2n− 2)(m− 1)

2(m+ n− 1)(m+ n− 2)
d(v−1B)

)
,

and equation (2.5) becomes

tr dPm
f = mv−1ι∇vP

m
f − dY m

f − Y m
f v−1dv

= −
(
ι∇fP

m
f + dY m

f − 1
m
Y m
f df

)
,

where we have used the fact that, since v = e−f/m, we have df = −mv−1dv.

The following lemma gives an additional key formula for the weighted divergence of the
weighted Weyl tensor Wm

f on a SMMS which is weighted Einstein.

Lemma 2.7. Let (Mn, g, f,m, µ) be a SMMS such that Pm
f = λg. Then, the following equation

is satisfied for all X, Y, Z ∈ X(M):

divf W
m
f (X, Y, Z) =

(
1
m
Y m
f + λ

)
{df(Y )g(X,Z)− df(Z)g(X, Y )}

− 1
m
{df(Y )Hesf (X,Z)− df(Z)Hesf (X, Y )} .

(2.6)
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Proof. Since the SMMS satisfies Pm
f = λg, its weighted Schouten tensor Pm

f is Codazzi, so the
weighted Cotton tensor (1.21) vanishes. Thus, the expression given by Lemma 2.6 transforms
into dJm

f = dY m
f =

(
1
m
Y m
f − λ

)
df . We calculate the covariant derivative of the Bakry-Émery

Ricci tensor,

(∇Y ρ
m
f )(X,Z) = (∇Y ρ)(X,Z) + g(∇Y∇Z∇f,X)− g(∇∇Y Z∇f,X)

− 1
m
{df(X)Hesf (Y, Z) + df(Z)Hesf (X, Y )} .

Furthermore, the weighted Einstein equation reads ρmf = {(m+2n−2)λ+Y m
f }g, so we also have

(∇Y ρ
m
f )(X,Z) =

(
1
m
Y m
f − λ

)
df(Y )g(X,Z). We now take the difference (∇Y ρ

m
f )(X,Z) −

(∇Zρ
m
f )(X, Y ) to find (cf. [19])

R(∇f,X, Y, Z) =
(

1
m
Y m
f − λ

)
{df(Z)g(X, Y )− df(Y )g(X,Z)}

+(∇Y ρ)(X,Z)− (∇Zρ)(X, Y )

+ 1
m
{df(Y )Hesf (X,Z)− df(Z)Hesf (X, Y )} .

(2.7)

Finally, since Pm
f = λg, we have Wm

f = R− λg⃝∧ g. Hence,

divf W
m
f (X, Y, Z) = divWm

f (X, Y, Z)− ι∇fW
m
f (X, Y, Z)

= divR(X, Y, Z)−R(∇f,X, Y, Z)
+2λ{df(Y )g(X,Z)− df(Z)g(X, Y )}.

(2.8)

Since divR(X, Y, Z) = (∇Y ρ)(X,Z) − (∇Zρ)(X, Y ), a combination of (2.7) and (2.8) yields
equation (2.6).

We are now ready to prove a first rigidity result, concerning the warped product structure of
these SMMSs around regular points of f .

Lemma 2.8. Let (Mn, g, f,m, µ) be a SMMS with Pm
f = λg and divf W

m
f = 0. Let p ∈M be a

regular point of f . Then, there exists a Riemannian isometry between a neighborhood U of p in
M and a warped product I×φN , where I ⊂ R is an open interval, N is an (n−1)-dimensional
Einstein manifold, and ∇f is tangent to I .

Proof. Since p is a regular point of f , ∇f ̸= 0 in a neighborhood of p. Thus, consider an
orthonormal frame B = {E1, . . . , En} around p, where E1 = ∇f/∥∇f∥. Since Wm

f is weighted
harmonic, the left-hand side of equation (2.6) vanishes. Consequently, we can take X = Z = E1

and Y = Ei, i ̸= 1, to find
Hesf (E1, Ei) = 0, i ̸= 1, (2.9)

which shows that the integral submanifold of ∇f is totally geodesic. Furthermore, taking X =
Ei, Y = Ej , Z = E1, with i, j ̸= 1, equation (2.6) yields

Hesf (Ei, Ej) = (Y m
f +mλ)δij, i, j ̸= 1. (2.10)

It follows that the level hypersurfaces of f around p are totally umbilical. Consequently, (M, g)
splits in a neighborhood U of p as a twisted product I×φ̃N , where I ⊂ R is an open interval, for
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some twisting function φ̃ on I×N (see Theorem 1.3). Moreover, from (2.10), the mean curvature
vector field of each leaf of the fiber is H = −Y m

f +mλ

∥∇f∥ E1, which is parallel in the normal bundle
(∇⊥H = 0, where ∇⊥ is the normal connection). Indeed, for i ̸= 1,

∇⊥
Ei
H = −g

(
∇Ei

Y m
f +mλ

∥∇f∥ E1, E1

)
E1

= −Ei

(
Y m
f +mλ

∥∇f∥

)
E1 −

Y m
f +mλ

∥∇f∥2 Hesf (E1, Ei)E1 = 0,

where we have used (2.9) and the fact that dY m
f =

(
1
m
Y m
f − λ

)
df by Lemma 2.6. Therefore,

the leaves of the fiber are spherical and, by Theorem 1.3, the twisted product reduces to a warped
product I×φN for some function φ on I . Alternatively, since ρmf = {(m+2n−2)λ+Y m

f }g and
Hesf diagonalizes in the frame B, so does the Ricci tensor. Hence, the vanishing condition on
mixed terms for ρ given in Theorem 1.4 is satisfied and also implies the reduction of the twisted
product to the warped product.

Now we show that N is Einstein as follows. Let t be a coordinate parameterizing I by arc
length, and consider the local orthonormal frame {∂t, E2, . . . , En}. Note that E2, . . . , En are
tangent to N . Thus, from the weighted Einstein condition and (2.10), we get that

ρ(Ei, Ej) = ρmf (Ei, Ej)− Hesf (Ei, Ej)

= {(m+ 2n− 2)λ+ Y m
f }δij − (Y m

f +mλ)δij

= 2(n− 1)λδij

for i, j = 2, . . . , n. Moreover, consider the basis {Ēi = φEi}i=2,...,n which is orthonormal on N .
From the expression of the Ricci tensor of a warped product (1.6), we have

ρN(Ēi, Ēj) = ρ(Ēi, Ēj) + g(Ēi, Ēj)
(

φ′′

φ
+ (n− 2) (φ

′)2

φ2

)
= φ2

(
2(n− 1)λ+ φ′′

φ
+ (n− 2) (φ

′)2

φ2

)
δij.

(2.11)

Since ρN(Ēi, Ēj) is a function defined on the fiber, it does not depend on t, which is a coordinate
of the base. Hence, ρN = βgN for some β ∈ R and N is Einstein.

Remark 2.9. Note that the local splitting given by Lemma 2.8 is reminiscent of the result found
by Catino [44], in the unweighted Riemannian setting, for generalized quasi-Einstein manifolds
with harmonic Weyl tensor such that ι∇fW=0. However, we do not require both summands in
divf W

m
f to vanish, but merely that they cancel out (see Example 2.4).

Remark 2.10. Warped products of the form I ×φ N with N Einstein have harmonic Weyl tensor
(see Theorem 1.6 and also [3, 16.26(i)]). Hence, it follows from the local structure described
in Lemma 2.8 and the density of regular points of f that the underlying manifold of a SMMS
which is weighted Einstein and has weighted harmonic Weyl tensor is not necessarily Einstein,
but does have harmonic Weyl tensor in the unweighted sense.
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By Lemma 2.8, whenever we are working locally around any regular point of f , we can
assume without loss of generality that our SMMSs are built on a warped product of the form
I ×φ N with the density function defined on I . Such a warped product is not weighted Einstein
with weighted harmonic Weyl tensor in general. Indeed, equation (2.11) imposes a constraint on
the warping function. The next result provides necessary and sufficient conditions that identify
these SMMSs in terms of an overdetermined system of ODEs.

Lemma 2.11. Let (I ×φ N, g, f,m, µ) be an n-dimensional warped product SMMS where I is
an open interval, ∇f is tangent to I , and such that ρN = βgN for some β ∈ R. Then Pm

f = λg,
for λ ∈ R, and divf W

m
f = 0 if and only if the following system of ODEs is satisfied:

0 = β − φ′′φ− (n− 2)(φ′)2 − 2(n− 1)λφ2, (2.12)

0 = f ′′ − (n− 1)
φ′′

φ
− 1

m
(f ′)2 − φ′f ′

φ
− 2(n− 1)λ, (2.13)

0 =
φ′f ′

φ
+ (n−m)λ− Jm

f , (2.14)

where the weighted Schouten scalar Jm
f is given by

2(m+ n− 1)Jm
f = (n− 1)β−(n−2)(φ′)2

φ2 + 2(n− 1)φ
′f ′−φ′′

φ

+2f ′′ − 1+m
m

(f ′)2 +m(m− 1)e2f/mµ.
(2.15)

Proof. Let t be a local coordinate parameterizing I by arc length. We work in the local orthonor-
mal frame B = {∂t, E2, . . . , En}. Using the warped product expressions for the connection (1.4)
and the Ricci tensor (1.6), and (2.11), the Bakry-Émery Ricci tensor (1.16) takes the form

ρmf (∂t, ∂t) = −(n− 1)φ
′′

φ
+ f ′′ − 1

m
(f ′)2,

ρmf (∂t, Ei) = 0,

ρmf (Ei, Ej) =
(

β
φ2 − φ′′

φ
− (n− 2) (φ

′)2

φ2 + φ′f ′

φ

)
δij.

Thus, the fact that (I ×φ N, g, f,m, µ) is weighted Einstein, using (1.24) to express it as ρmf =
((m+ n− 2)λ+ Jm

f )g, is equivalent to the following two equations:

−(n− 1)
φ′′

φ
+ f ′′ − 1

m
(f ′)2 = (m+ n− 2)λ+ Jm

f , (2.16)

β

φ2
− φ′′

φ
− (n− 2)

(φ′)2

φ2
+
φ′f ′

φ
= (m+ n− 2)λ+ Jm

f . (2.17)

On the one hand, a direct calculation on the warped product yields

Hesf (Ei, Ei) =
φ′f ′

φ
.
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On the other hand, if divf Wm
f = 0, then equation (2.10) is also satisfied, giving Hesf (Ei, Ei) =

(m−n)λ+Jm
f , where we have used that Y m

f = Jm
f −nλ on a weighted Einstein SMMS. Hence,

φ′f ′

φ
= (m − n)λ + Jm

f , which is equation (2.14). Now, using (2.14) to substitute the term Jm
f

in (2.17) and (2.16) yields, respectively, (2.12) and (2.13). The form of the weighted Schouten
scalar Jm

f follows from a direct computation of the weighted scalar curvature (1.18), using the
expression (1.7) of the scalar curvature of a warped product I ×φ N .

Conversely, if (2.12)-(2.14) are satisfied, then (2.16) and (2.17) hold and the equation Pm
f =

λg is also satisfied. Thus, we only need to check that they are sufficient conditions for the
weighted harmonicity condition divf W

m
f = 0. To that end, we use the expression given by (2.6)

for divf Wm
f , which applies to any weighted Einstein manifold. By the symmetries of this tensor,

we only need to analyze the following terms:

divf W
m
f (∂t, Ei, Ej) = 0,

divf W
m
f (Ei, Ej, Ek) = 0,

divf W
m
f (∂t, Ei, ∂t) = f ′

m
Hesf (∂t, Ei) = 0,

divf W
m
f (Ei, ∂t, Ej) =

(
1
m
Y m
f + λ

)
f ′δij − 1

m
f ′ Hesf (Ei, Ej)

= 1
m

(
Jm
f + (m− n)λ− φ′f ′

φ

)
f ′δij

(2.14)
= 0.

Hence, equations (2.12)-(2.14) are sufficient for the warped product I ×φ N to be a weighted
Einstein manifold with weighted harmonic Weyl tensor.

Remark 2.12. Consider a warped product SMMS (I ×φ N, g, f,m, µ) satisfying (2.12)–(2.14)
as in Lemma 2.11. Then, the Ricci tensor is readily determined using equations (2.12) and (1.6):

ρ(∂t, ∂t) = −(n− 1)
φ′′

φ
, ρ(∂t, X) = 0, ρ(X, Y ) = 2(n− 1)λg(X, Y ),

for any X, Y ∈ X(N). Therefore, the underlying manifold is Einstein if and only if φ′′ = −2λφ.
As we will shortly show, this is one of two cases which are allowed for this kind of manifold,
with the geometry of the non-Einstein case being very heavily restricted.

Lemma 2.13. Let (I ×φ N, g, f,m, µ) be an n-dimensional warped product SMMS where I is
an open interval, ∇f is tangent to I , and such that ρN = βgN for some β ∈ R. Let t be a local
coordinate parameterizing I by arc length. If Pm

f = λg for some λ ∈ R and divf W
m
f = 0, then

either I ×φ N is Einstein, or φ(t) = Ae−
f(t)
n−1 , for some A ∈ R+.

Proof. We adopt the notation in Lemma 2.11 and keep working in a local orthonormal frame
B = {∂t, E2, . . . , En}. The weighted Einstein condition and the harmonicity of the weighted
Weyl tensor guarantee that

0 = divf W
m
f (Ei, ∂t, Ei) = divR(Ei, ∂t, Ei)−R(∇f, Ei, ∂t, Ei) + 2λf ′. (2.18)

We will use this to obtain an additional ODE. Firstly, consider the divergence of the Riemann
curvature tensor, given by divR(X, Y, Z) = (∇Y ρ)(X,Z) − (∇Zρ)(X, Y ). On the one hand,
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(∇∂tρ)(Ei, Ei) = ∂t(ρ(Ei, Ei))−2ρ(∇∂tEi, Ei). But ρ(Ei, Ei) = 2(n−1)λ (see Remark 2.12),
so ∂t(ρ(Ei, Ei)) = 0. Moreover, g(∇∂tEi, Ei) = 1

2
∂t(g(Ei, Ei)) = 0, so ∇∂tEi ⊥ Ei. Since

B is a frame of eigenvectors for the Ricci operator (see the proof of Lemma 2.8), we have
ρ(∇∂tEi, Ei) = 0. On the other hand, we use the expression of the connection for a warped
product (1.4) to compute

(∇Ei
ρ)(∂t, Ei) = −ρ(∇Ei

∂t, Ei)− ρ(∂t,∇Ei
Ei)

= φ′

φ
(ρ(∂t, ∂t)− ρ(Ei, Ei)) ,

so

divR(Ei, ∂t, Ei) =
φ′

φ
(ρ(Ei, Ei)− ρ(∂t, ∂t)) = (n− 1)

φ′(φ′′ + 2λφ)

φ2
.

Additionally, the curvature term R(∇f, Ei, ∂t, Ei) takes the form

R(∇f, Ei, ∂t, Ei) = −Hesφ(∂t,∇f)
φ

= −φ
′′f ′

φ

by equation (1.5). With this, equation (2.18) becomes

1

φ2
(φ′′ + 2λφ)(φf ′ + (n− 1)φ′) = 0.

Thus, on a suitable open set, φ′′ + 2λφ = 0, or φf ′ + (n − 1)φ′ = 0. In the first case, the
underlying manifold is Einstein (see Remark 2.12). In the second one, we solve the ODE to get
φ(t) = Ae−

f(t)
n−1 , for A ∈ R+. Moreover, by the real analyticity of the metric (see Theorem 1.15),

if I ×φ N is Einstein in an open set, then it is Einstein everywhere. Thus, the result extends to
the whole product I ×φ N .

Lemma 2.13 reduces our study to only two possibilities. We will discuss the Einstein case in
detail in Section 2.2, but for now we give the main local rigidity result of this chapter.

Theorem 2.14. Let (Mn, g, f,m, µ) be a SMMS such that Pm
f = λg and divf W

m
f = 0. Then,

for each regular point p of f , there exists a Riemannian isometry between a neighborhood U of
p and a warped product I ×φ N , where I ⊂ R is an open interval, N is an (n− 1)-dimensional
Einstein manifold, and ∇f is tangent to I . Moreover, one of the following conditions holds:

1. I ×φ N is Einstein with ρ = 2(n− 1)λg.

2. (U , g
∣∣
U
, f
∣∣
U
,m, µ) is isometric to (I ×φ N, g, f,

1
2
, 0) as given in Example 2.4.

Proof. Let (Mn, g, f,m, µ) be a SMMS such that Pm
f = λg and divf W

m
f = 0. By Lemma 2.8,

around every regular point of f there exists a Riemannian isometry between a neighborhood U
and a warped product of the form I ×φ N , where I ⊂ R is an open interval, ∇f is tangent to I ,
and ρN = βgN for some β ∈ R. Using Lemma 2.13, we have that either I ×φ N is Einstein and

Theorem 2.14 (1) holds, or the warping and density functions are related by φ(t) = Ae−
f(t)
n−1 for
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some A ∈ R+, where t is a coordinate parameterizing I by arc length. Assume that the latter is
satisfied. Then, the necessary and sufficient conditions given by Lemma 2.11 take on a simpler
form. Indeed, equation (2.12) becomes

0 = β − A2

n− 1
e

−2f
n−1 (2(n− 1)2λ+ (f ′)2 − f ′′), (2.19)

while equation (2.13) turns into

(f ′)2 = 2m(f ′′ − (n− 1)λ). (2.20)

Now, taking the derivative of (2.20) yields f (3) = f ′f ′′

m
. Substituting this expression into the

derivative of (2.19) and using (2.20), we have

0 =
A2e−2f/(n−1)f ′

m(n− 1)2
(4m(m− n+ 1)(n− 1)λ− (4m2 − 2mn+ n− 1)f ′′). (2.21)

Note that the factor 4m2 − 2mn + n − 1 vanishes if and only if m = 1
2

or m = 1
2
(n − 1). This

results in three cases we need to analyze separately.

m /∈
{

1
2
, 1
2
(n− 1)

}
: Let B = 4m(m−n+1)(n−1)λ

4m2−2mn+n−1
. Then, from (2.21) it follows that f(t) = B

2
t2 +

Ct+D, where C,D ∈ R. Hence, we have 0 = f (3) = f ′f ′′

m
, but f ′ ̸= 0, so f ′′ = B must vanish.

Since m > 0 and n ≥ 3, B = 0 if and only if λ = 0 or m = n− 1.
If λ = 0, from (2.20), we have that f ′ = 0, which is not possible.
If m = n− 1, then from (2.20) we deduce C2 = −2(n− 1)2λ. With this, it follows from the

expression of φ that φ′′

φ
= −2λ, and the manifold is Einstein (see Remark 2.12).

m = 1
2
(n− 1): From (2.21), it follows that λ = 0. Solving (2.20), and through a suitable change

of the coordinate t (preserving the parameterization by arc length), if needed, we find f(t) =
−(n− 1) log(Et), where E ∈ R+. Hence, φ(t) = AEt, so φ′′ = 0 and the manifold is Einstein
(indeed, Ricci-flat).

m = 1
2
: From (2.21), it follows that (2n− 3)λ = 0 and, since n ≥ 3, we get that λ = 0. Now, we

solve (2.20) (translating t if needed) to find that f(t) = − log(Bt), where B ∈ R+, and hence
φ(t) = A(Bt)

1
n−1 . Then, (2.19) reduces to β = 0, so the fiber N must be Ricci-flat. Finally, a

direct computation shows that the condition given by (2.14) reduces to 0 = µ
4(2n−1)(Bt)4

, so µ = 0.
Hence, a SMMS of the form (I ×φN, g, f,

1
2
, 0) satisfies equations (2.12), (2.13) and (2.14) and,

moreover, is the only solution whose underlying manifold is not Einstein. This corresponds to
Theorem 2.14 (2).

Notice that we could eliminate the logarithm in the density function in Theorem 2.14 by
the change of variable v = e−f/m. Recall that the choice of v as a density is related to the
interpretation of weighted objects as their corresponding standard Riemannian counterparts on
certain formal warped products (we refer to Section 1.5 and Remark 2.20 for details).
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Remark 2.15. Note that, by the real analyticity of the metric (see Theorem 1.15), if (M, g) is
Einstein in an open set, then it is Einstein in the whole connected component containing it. Thus,
since we are dealing with connected manifolds, the Einstein behavior around a single regular
point is enough to infer that the whole manifold is Einstein with ρ = 2(n − 1)λg, even if the
parameters m, λ and µ were to coincide with those acceptable in the non-Einstein case given by
Example 2.4.

2.2 The Einstein case

Let (Mn, g, f,m, µ) be a SMMS with Pm
f = λg and divf W

m
f = 0. By Theorem 2.14, around

any regular point p of f , (M, g) is isometric to a warped product I ×φ N , where N is Einstein.
We have already shown that the non-Einstein case is heavily restricted, with only one allowed
value for the parameters λ, m and µ and for the Einstein constant of the fiber β, with the warping
and density functions also fixed up to integration constants. However, the next result shows that
if the total space I ×φ N is Einstein (which implies that the whole manifold M is Einstein by
analyticity, since M is connected), its geometry is more flexible, allowing for solutions to the
necessary and sufficient equations (2.12)-(2.14) for different combinations of parameters and
functions. The value m = 1 is exceptional and is excluded in the statement, although this case
also follows with an extra degree of freedom (see Remark 2.17 below).

Theorem 2.16. Let (Mn, g, f,m, µ) be a SMMS with (M, g) Einstein and such that Pm
f = λg

(with scale κ) and divf W
m
f = 0, with m ̸= 1. Then, for each regular point p of f , there exists

a Riemannian isometry between a neighborhood U of p and a warped product I ×φ N , where
I ⊂ R is an open interval, ρN = βgN , and f , φ, β and µ take the following forms (t is a
coordinate parameterizing I by arc length):

1. If λ > 0, then

φ(t) = a cos(t
√
2λ) + b sin(t

√
2λ),

f(t) = −m log
(

κ
2λ

− bc cos(t
√
2λ) + ac sin(t

√
2λ)
)
,

and

β = 2(a2 + b2)(n− 2)λ, µ = 2(a2 + b2)c2λ− κ2

2λ
.

2. If λ = 0, then
φ(t) = a(κt+ b),

f(t) = −m log
(
κ
2
t2 + bt+ d

)
,

and
β = a2κ2(n− 2), µ = b2 − 2dκ.
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3. If λ < 0, then
φ(t) = aet

√
−2λ + be−t

√
−2λ,

f(t) = −m log
(

κ
2λ

+ acet
√
−2λ − bce−t

√
−2λ
)
,

and

β = 8ab(n− 2)λ, µ = −8abc2λ− κ2

2λ
.

The constants a, b, c, d and the scale κ are such that φ is positive and f is well-defined on I .

Proof. Take a regular point p of f , and the local splitting as a warped product I ×φ N given by
Theorem 2.14 around p. The weighted Einstein condition and the harmonicity of the weighted
Weyl tensor guarantee that the necessary and sufficient equations (2.12)-(2.14) are satisfied.
Moreover, since the underlying manifold is Einstein, the ODE φ′′ + 2λφ = 0 must also be
satisfied (see Remark 2.12). Solving this equation, we can fix the different forms of φ, depend-
ing on the sign of λ. We analyze each case separately, describing the case λ > 0 in detail and
giving a schematic proof of the cases λ ≤ 0, which are analogous.

For λ > 0, φ(t) = a cos(
√
2λt) + b sin(

√
2λt), where the constants a, b are given by the data

of the corresponding initial value problem. Substituting φ into equation (2.12) yields

0 = β − 2(a2 + b2)(n− 2)λ,

from where β = 2(a2 + b2)(n − 2)λ. Now, consider the usual change of variable v = e−f/m.
Then, equation (2.13) imposes that

m(φ′v′ − φv′′)

φv
= 0.

Since v′ ̸= 0 (recall that we are only considering non-trivial SMMSs), it follows that c
√
2λφ =

v′ and so v(t) = d− bc cos(t
√
2λ) + ac sin(t

√
2λ) for some constants c, d.

Lastly, in order to fix the value of µ, we substitute the known values of β, φ and f into the
last of the necessary and sufficient equations, which is (2.14), where we compute Jm

f using the
expression (2.15):

0 =
m(m− 1)(2λc2 (a2 + b2)− 2λd2 − µ)

2(m+ n− 1)v2
.

From this expression we get that µ = 2λ((a2 + b2)c2 − d2). Finally, from the scale equation
Jm
f = (m + n)λ −mκv−1 provided by Lemma 1.11, we have m(κ − 2λd)v−1 = 0, so that the

scale κ of this weighted Einstein SMMS satisfies κ = 2λd and d can be substituted by κ
2λ

in the
previous expressions. This concludes the case λ > 0.

For λ < 0, φ′′+2λφ = 0 yields φ(t) = aet
√
−2λ+be−t

√
−2λ. Equation (2.12) then transforms

into 0 = 8ab(n − 2)λ − β. Moreover, via the expression φ′v′ − φv′′ = 0 provided by equation
(2.13), we have v(t) = d+ acet

√
−2λ − bce−t

√
−2λ. Substituting these into (2.14), we get

0 =
m(m− 1)(2λ(4abc2 + d2) + µ)

2(m+ n− 1)v2
,
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from where µ = −2λ(4abc2 + d2). Finally, the scale equation yields κ = 2λd once again, which
concludes the case λ < 0.

For λ = 0, φ′′ + 2λφ = 0 yields φ(t) = ãt + b̃. Equation (2.12) then transforms into
0 = ã2(n − 2) − β and since φ′v′ − φv′′ = 0 by (2.13), we can write v(t) =

(
ã
2
t2 + b̃t

)
c̃ + d

with c̃ ̸= 0. Substituting these into (2.14), we get

0 =
2m(m− 1)(2ãc̃d− b̃2c̃2 + µ)

(m+ n− 1)v2
,

so µ = b̃2c̃2 − 2ãc̃d. Finally, the scale equation yields κ = ãc̃. Now, renaming the constants so
that b̃c̃ = b and a = c̃−1 yields the result for λ = 0.

Remark 2.17. In the case m = 1, Theorem 2.16 still holds for the same values of φ, f and β.
The only difference with the case m ̸= 1 is that, since the auxiliary curvature parameter µ does
not appear in the definition of any weighted tensors when m = 1 (see Section 1.5), equations
(2.12)-(2.14) are satisfied for arbitrary values of µ.

Recall that, for Einstein manifolds, the curvature tensor decomposes as R = τ
2n(n−1)

g ⃝∧
g +W . If (Mn, g, f,m, µ) is an Einstein SMMS with Pm

f = λg and divf W
m
f = 0, then ρ =

2(n−1)λg and τ = 2n(n−1)λ (see Remark 2.12), which implies thatW = Wm
f = R−λg⃝∧ g,

i.e. the weighted and unweighted Weyl tensors become equal. Consequently, the following three
conditions are equivalent in this context:

1. M has constant sectional curvature.

2. M is locally conformally flat in the usual sense.

3. M is locally conformally flat in the weighted sense.

Moreover, by Theorem 1.6, a warped product I×φN is locally conformally flat if and only if
N has constant sectional curvature. Then, the following rigidity result in low dimensions follows
immediately.

Corollary 2.18. Let (Mn, g, f,m, µ) be an Einstein SMMS with n = 3 or 4. If Pm
f = λg and

divf W
m
f = 0, then (M, g) has constant sectional curvature 2λ.

Proof. By Theorem 2.14, the open dense set M̃ ⊂ M of regular points of f is locally isometric
to a warped product I ×φ N with the fiber N a 2 or 3-dimensional Einstein manifold. Hence,
N has constant sectional curvature and M̃ is locally conformally flat (see Theorem 1.6). By the
smoothness of the Weyl and Cotton tensors, it follows that M is locally conformally flat.

Nevertheless, for n ≥ 5, Corollary 2.18 no longer holds, and there exist Einstein SMMSs
which are weighted Einstein and have weighted harmonic Weyl tensor, but are not locally con-
formally flat. In order to build an example, it suffices to consider a warped product I ×φ N with
N Einstein but not locally conformally flat. The following construction illustrates this fact.
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Example 2.19. Let (M, g) be the warped product I ×φ N , where N is the Riemannian product
S1 × S2 of two surfaces of constant Gauss curvature β. Thus, N is Einstein with ρN = βgN .
Choose local coordinates (x1, x2) and (x3, x4), respectively, for S1 and S2 and consider the metric
of the warped product given by the non-vanishing components

g(∂t, ∂t) = 1, g(∂x1 , ∂x1) = g(∂x2 , ∂x2) = φ(t)2

(1+β
4
(x2

1+x2
2))

2 ,

g(∂x3 , ∂x3) = g(∂x4 , ∂x4) = φ(t)2

(1+β
4
(x2

3+x2
4))

2 .

Now, for λ ∈ R, fix φ(t), f(t), β and µ as in Theorem 2.16 (in agreement with the sign of λ),
choosing constants such that β ̸= 0. The SMMS defined by (I ×φ N, g, f,m, µ) is Einstein, and
satisfies P f

m = λg and divf W
m
f = 0, but is not of constant sectional curvature. Indeed, up to

symmetries, the nonzero components of the usual Weyl tensor (hence also of the weighted Weyl
tensor) are

W (∂x1 , ∂x2 , ∂x1 , ∂x2) = 512β φ(t)2

3(4+β(x2
1+x2

2))
4 ,

W (∂x3 , ∂x4 , ∂x3 , ∂x4) = 512β φ(t)2

3(4+β(x2
3+x2

4))
4 ,

W (∂xi
, ∂xj

, ∂xi
, ∂xj

) = − 256β φ(t)2

3(4+β(x2
1+x2

2))
2
(4+β(x2

3+x2
4))

2 , i = 1, 2, j = 3, 4.

Remark 2.20. Let us consider a SMMS (Mn, g, f,m, µ) which is Einstein, with Pm
f = λg and

divf W
m
f = 0, and adopt the notation in Theorem 2.16. Note that, if we make the change of

variable v = e−f/m in Theorem 2.16, we find that the density and warping functions satisfy
v′(t) = A−1φ(t), where A ̸= 0 is an integration constant fixed by the initial data. Thus, the
warped product I ×Av′ N is Einstein and the conformal metric v−2g is also Einstein, since v is
a solution of the local Möbius equation Hesv = ∆v

n
g (see [83] and Section 1.4 for details). A

classical result by Brinkmann [10] states that warped products in Theorem 2.16 are characteristic
of Einstein metrics that are conformally transformed into Einstein metrics.

Moreover, these warped products have harmonic Weyl tensor in the usual sense (see Re-
mark 2.10). In fact, we have that Wm

f = W , so the harmonicity condition divf W
m
f = 0 can be

reformulated in terms of W as the condition ι∇fW = 0. Also, recall that the divergence of the
Weyl tensor is modified by a conformal change g̃ = e−2fg as d̂ivŴ = divW + (3 − n)ι∇fW

(see [83]). Hence, given that W is harmonic and ι∇fW = 0, it follows that d̂ivŴ = 0, so we
can rephrase the role of the density function by stating that it defines a conformal change of the
metric that preserves the harmonicity of the Weyl tensor of M .

In terms of the geometric interpretation of weighted objects as Riemannian invariants of the
formal warped product (1.17), we have that its auxiliary manifold becomes a multiply warped
product of the form I ×Av′ N ×v F

m(µ). Multiply warped product metrics have been consid-
ered in different contexts to obtain examples of manifolds with some curvature features; see,
for example, [20, 55] for studies of these metrics related to the Einstein condition, local con-
formal flatness and negative curvature. Similarly to how quasi-Einstein manifolds can be used
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as bases to find Einstein warped products (see [77]), we can use weighted Einstein manifolds
with weighted harmonic Weyl tensor in order to find multiply warped products satisfying certain
geometric properties. For example, these multiply warped products have harmonic Weyl tensor.
Indeed, notice that a conformal change of the form g⊕ v2gF 7→ 1

v2
g⊕ gF transforms the warped

product into a direct product of two Einstein manifolds, so this product manifold has harmonic
Weyl tensor. Since v only depends on t and ι∂tW = 0, the inverse of the previous conformal
change preserves the vanishing of the divergence of the Weyl tensor. This harmonicity can also
be proved directly on the multiply warped product by checking the conditions in [66].

Furthermore, although the multiply warped products I ×Av′ N ×v F
m(µ) are not Einstein

in general, we can make them so by choosing appropriate constants of integration, namely by
taking κ = 0, with the Einstein constant being λ̃ = 2(m+ n− 1)λ. Recall that, by Lemma 1.11,
taking the scale κ to be zero makes the resulting SMMS a quasi-Einstein manifold.

2.3 Global results
Now we turn our attention to global questions and study obstructions to the existence of complete
weighted Einstein manifolds with weighted harmonic Weyl tensor. In related contexts, several
authors have given results for complete and simply connected quasi-Einstein manifolds (see,
for example, [71, Theorem 1.2]). However, in this weighted setting, we will show that taking
advantage of a relation between the weighted Einstein and generalized Obata equations (see
Section 1.4), we can disregard simple connectedness and prove the main global rigidity result of
this chapter (Theorem 2.23) by imposing only the completeness assumption.

The following two lemmas highlight some properties of both the Einstein and non-Einstein
cases which will be key in our proof of Theorem 2.23.

Lemma 2.21. Let (I ×φ N, g, f,
1
2
, 0) be a SMMS given as in Example 2.4. Then, (I ×φ N, g) is

incomplete, and cannot be isometrically embedded as an open set in any complete manifold.

Proof. The Ricci tensor of I ×φ N has only one non-zero component:

ρ(∂t, ∂t) =
(n− 2)

(n− 1)t2
.

Moreover, α(t) = t is a geodesic, since α′(t) = ∂t and ∇α′(t)α
′(t) = ∇∂t∂t = 0. No-

tice that ρ(α′(t), α′(t)) = (n−2)
(n−1)t2

on I . Suppose (I ×φ N, g) can be isometrically embed-
ded into a complete manifold. Then limt→0+ ρ(α

′(t), α′(t)) exists, contradicting the formula
ρ(α′(t), α′(t)) = (n−2)

(n−1)t2
.

Lemma 2.22. Let (Mn, g, f,m, µ) be a SMMS with (M, g) Einstein and such that Pm
f = λg and

divf W
m
f = 0. Then, the function v = e−

f
m is a solution in M of the generalized Obata equation

Hesv +γ(v)g = 0, (2.22)

with γ(v) = 2λv − κ, where κ ∈ R is the scale of (Mn, g, f,m, µ).
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Proof. Since (M, g) is Einstein, by Theorem 2.14 we know that ρ = 2(n − 1)λg. Now, by the
change of variable v = e−

f
m , we have Hesf − 1

m
df ⊗ df = −m

v
Hesv. Using the scale equation

Jm
f = (m+ n)λ−mκe

f
m (see Lemma 1.11), the weighted Einstein equation Pm

f = λg reads

λg = 1
m+n−2

{
ρ+Hesf − 1

m
df ⊗ df − Jm

f

}
= 1

m+n−2

(
−m

v
Hesv +((n−m− 2)λ+ m

v
κ)g
)
,

from where
−mHesv +(mκ− 2mλv)g = 0,

and the result follows.

Now, using the previous results, we are ready to prove the global result characterizing com-
plete Einstein SMMSs with weighted harmonic Weyl tensor.

Theorem 2.23. Let (Mn, g, f,m, µ) be a complete SMMS such that Pm
f = λg (with scale κ) and

divf W
m
f = 0. Then, (Mn, g, f,m, µ) is isometric to one of the following spaces:

1. A weighted space form as described in Examples 1.12, 1.13 and 1.14.

2. An Einstein warped product R ×φ N , where N is a Ricci-flat complete manifold. In this
case, there is a coordinate t parameterizing R by arc length such that the warping and
density functions take the forms

φ(t) = Aet
√
−2λ , f(t) = −m log

(
κ
2λ

+Bet
√
−2λ
)

,

for some B ≥ 0 and κ ≤ 0. Moreover, m = 1 or µ = −κ2

2λ
≥ 0.

Proof. Let (Mn, g, f,m, µ) be a complete SMMS with Pm
f = λg and divf W

m
f = 0. By

Lemma 2.14, around regular points of f , (M, g) is either Einstein or given by Example 2.4.
If (M, g) is Einstein around any regular point of f , then it is Einstein everywhere by analyticity
(see Remark 2.15). On the other hand, if (M, g) is not Einstein, Lemma 2.21 guarantees that
Example 2.4 cannot be complete. Thus, we assume that (M, g) is Einstein henceforth. Then, by
Lemma 2.22, v = e−f/m satisfies the generalized Obata equation (2.22) with γ(v) = 2λv − κ.

Firstly, assume that v has critical points. Then, by Theorem 1.7, (M, g) is isometric to a
complete extension of the warped metric

g = dt2 + φ(t)2gSn−1 , t ∈ (0, T ),

with φ(t) = (v′(t))
(2λv(0)−κ)

, where

v′′ + 2λv − κ = 0, v(0) = ξ > 0, v′(0) = 0.

If λ > 0, it follows that v(t) = κ
2λ

+ (2ξλ−κ) cos(
√
2λt)

2λ
, with t ∈ (0, π√

2λ
). The warping function is

φ(t) =
sin(

√
2λt)√
2λ

. Hence, (M, g) is isometric to a sphere of constant sectional curvature 2λ. By
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imposing the weighted Einstein equation, we obtain that µ = 2ξ(ξλ−κ) orm = 1 and, therefore,
(M, g, f,m, µ) and (M, g, f, 1) are isometric to the m-weighted n-sphere as in Example 1.12.
On the other hand, if λ = 0, κ ̸= 0, then v(t) = ξ + κ

2
t2 with t ∈ (0,∞); the warping function is

φ(t) = t and µ = −2ξκ, so (M, g, f,m, µ) is isometric to the m-weighted n-Euclidean space as

in Example 1.13. Finally, if λ < 0, we have v(t) = κ
2λ
+

(2ξλ−κ) cosh(
√
−2λt)

2λ
, with t ∈ (0,∞). The

warping function is given by φ(t) =
sinh(

√
−2λt)√

−2λ
. Similarly to the first case, the weighted Einstein

equation yields µ = 2ξ(ξλ−κ) and (M, g, f,m, µ) is isometric to the m-weighted n-hyperbolic
space as in Example 1.14. These three cases constitute Theorem 2.23 (1).

Lastly, consider all remaining cases, where it is assumed that v has no critical points. Then,
by Theorem 1.7, (M, g) splits globally as a warped product R×φN where N is complete. Thus,
the forms of the warping and density functions given by Theorem 2.16 for the Einstein case can
be taken to be global. For λ ≥ 0, these density functions either present critical points (so they
correspond to a local description of one of the previous examples) or are such that v = e−f/m

turns nonpositive for some values of a coordinate t parameterizing R by arc length (so they
result in incomplete manifolds). Hence, let us focus on the case λ < 0. The form of the warping
function is φ(t) = aet

√
−2λ+be−t

√
−2λ as in Theorem 2.16 (3). For φ to stay positive for all t ∈ R,

a and b must be nonnegative. Note that this also prevents v(t) = κ
2λ

+ acet
√
−2λ − bce−t

√
−2λ

from presenting critical points. In addition, v must remain positive for all t ∈ R. Assume first
that a, b > 0, then v turns nonpositive for large enough values of t if c < 0, and for small enough
values of t if c > 0, so this case is not admissible. Hence, either a > 0 and b = 0, or a = 0
and b > 0. Notice that a reparametrization of the form t → −t together with a change c → −c
interchange a and b, so we can assume b = 0 and v(t) = κ

2λ
+acet

√
−2λ. Thus, v remains positive

if and only if c > 0 and κ
2λ

≥ 0 (hence κ ≤ 0).
Now, let A = a and B = ac. It follows from Theorem 2.16 (3) that β = 0 (hence N is

Ricci-flat),
φ(t) = Ae

√
−2λ t, f(t) = −m log

( κ
2λ

+Bet
√
−2λ
)
,

with A,B ∈ R+ and, moreover, either m = 1 (see Remark 2.17) or µ = −κ2

2λ
≥ 0. This is the

remaining case, Theorem 2.23 (2).

Notice that, if λ ≥ 0, the weighted space forms in Examples 1.12 and 1.13 are the only
complete SMMSs which are weighted Einstein and satisfy divf W

m
f = 0. In contrast, if λ < 0,

we have both m-weighted n-hyperbolic space (Example 1.14) and the warped products in The-
orem 2.23 (2). If the dimension is n ≤ 4, both of these latter examples have an underlying
manifold of negative constant sectional curvature (see Corollary 2.18). Nevertheless, these two
SMMSs are not isometric, indeed the density function has one critical point in the m-weighted
n-hyperbolic space, but has no critical points in Theorem 2.23 (2). For n ≥ 5, any complete
Ricci-flat (non-flat) manifold N gives rise to a complete SMMS via the construction in Theo-
rem 2.23 (2). Moreover, the underlying Riemannian manifold does not have constant sectional
curvature. Examples of complete Ricci-flat, non-flat manifolds in Riemannian signature are the
Eguchi-Hanson metric on the cotangent bundle of the 2-sphere T ∗S2 (see [56]); and Calabi-Yau
manifolds, which are notable examples of complete, Ricci-flat Kähler manifolds (see [123]).



Chapter 3
Weighted Einstein manifolds in the same

conformal class

As we pointed out in our introduction of (Riemannian) smooth metric measure spaces in Sec-
tion 1.5, ideas related to conformal geometry naturally come up, and the definitions of local
conformal class and local conformal flatness in the weighted sense are built from their Rieman-
nian counterparts in the formal warped product (1.17). Thus, one might wonder to what extent
one can generalize problems of standard conformal geometry to the context of SMMSs, what the
similarities and differences between both settings are, and what the consequences of the corre-
sponding weighted results are on the underlying Riemannian spaces.

A question of great significance in Riemannian geometry is whether a certain geometric prop-
erty is satisfied by some manifold in a given conformal class. Examples of this are the conformal
Einstein equation and the Yamabe problem (see Sections 1.4 and 1.5 for details, respectively).
Related to the former, the matter of finding which manifolds admit more than one Einstein met-
ric in a conformal class is a classical one. First contributions on it date back to Brinkmann [10],
and literature on the topic is extensive. See, for example, [82, 122], where the former includes a
detailed review of the subject.

This question has a seamless generalization to SMMSs. Indeed, since weighted Einstein
manifolds are the natural Einstein-type structure for SMMSs, one starts by considering the con-
formal weighted Einstein equation. For two conformally equivalent SMMSs (Mn, g, f,m, µ)

and (Mn, ĝ, f̂ ,m, µ), where ĝ = e−
2ϕ
m g and f̂ = f + ϕ, taking u = e

ϕ
m and using the transfor-

mation formulae in [34], one has

P̂m
f̂

= Pm
f + u−1Hesu−

1

2
u−2∥∇u∥2g. (3.1)

Thus, the problem of finding conformal classes which admit weighted Einstein representatives
entails finding a Riemannian metric g, a density function f and a conformal function u defined
on M so that (3.1) is satisfied for P̂m

f̂
= λ̂u−2g and some constant λ̂. This translates into finding

a solution of the system of PDEs

Pm
f + u−1Hesu = u−2

(
λ̂+

1

2
∥∇u∥2

)
g (3.2)

for a constant λ̂, which turns out to be an unmanageable problem in general. However, the
complexity of the system can be reduced by considering the question of non-uniqueness, this is,
to find weighted Einstein SMMSs that admit another weighted SMMS in their conformal class
(excluding homotheties, i.e., rescalings of the metric by a constant factor).

55
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Moreover, this is not just an ad-hoc extension of the classical unweighted problem, but one
that is of use both in the weighted Yamabe problem [36] and in the search for sharp fully non-
linear Sobolev inequalities based on the weighted σk-curvatures [34]. Indeed, first results in this
regard were given in [36] for µ = 0. On the one hand, it was shown that if M is compact then the
SMMS is conformal to the standard sphere (Sn, g, 0, 1, 0). On the other hand, if the manifold is
complete and the weighted Schouten tensor (1.19) vanishes, then it is isometric to the Euclidean
space with a particular family of possible density functions. Additionally, some partial results
were given in [34] for specific families of SMMSs. In this chapter, we generalize these results
and give a complete answer to this problem, determining all conformal classes which admit more
than one weighted Einstein representative. These results are contained in the work [18].

We will show that, in fact, some of the solutions we obtain are built on Einstein manifolds
which conformally transform into another Einstein manifold. Thus, we recover part of the known
results from the context where the density is constant, although in our case there is, additionally,
a change of density. We emphasize, however, that there are also weighted Einstein solutions
whose underlying manifold is not Einstein (see Theorems 3.4 and 3.10 below).

Outline of the chapter

Much like in Chapter 2, this analysis is divided into two distinct types of results: local and
global. On the one hand, in Section 3.1 we discuss the local geometric structure of manifolds
which admit two weighted Einstein structures in the same weighted conformal class. From the
transformation formula (3.1), we prove the splitting of these SMMSs as warped products with
one-dimensional base. Further study of the transformation formula and the resulting weighted
Einstein equations allows us to prove the main local classification result (Theorem 3.4). Addi-
tionally, we provide some remarks and examples of SMMSs that give more insight into the types
of geometries that arise for the different items of the theorem.

On the other hand, in Section 3.2 we prove a global classification result (Theorem 3.10) for
SMMSs whose underlying manifold (M, g) is complete. In this context, the admissible geome-
tries with two weighted Einstein representatives of the same weighted conformal class are either
weighted space forms (see definitions in Section 1.5) or special families of warped products.
Then, we perform an analysis of the compact case, extending a result in [36] and showing that if
the weighted Einstein manifolds are compact then they are necessarily a sphere (Corollary 3.12).
We end the chapter with a brief note on WE weighted Bach-flat manifolds (Section 3.3), which
further highlights the relation between the SMMSs in Chapters 2 and 3.

Computations in this chapter are more easily performed by considering the change of variable
v = e−

f
m (see Section 1.5 for motivation for this alternative definition of the density), so that a

conformal change transforms the metric and the density as ĝ = u−2g and v̂ = u−1v, respectively.
It is also worth noting that, since conformal transformations can transform non-trivial manifolds
into trivial ones and vice versa, it is useful to include the trivial case in our analysis.
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3.1 Conformally weighted Einstein SMMSs: local study
Before diving into the geometric features of the SMMSs of interest in this chapter, we discuss
the analytic properties of the conformal factor. Thus, suppose that for two locally conformally
equivalent SMMSs with ĝ = u−2g and v̂ = u−1v, we have Pm

f = λg and P̂m
f̂

= λ̂ĝ. As shown
in Theorem 1.15, an important property of weighted Einstein manifolds is that both the metric
and the density function are real analytic in harmonic coordinates. As a consequence, we show
that the conformal factor u relating both of them is also analytic.

Lemma 3.1. If u is a solution of (3.2) on a weighted Einstein SMMS (M, g, f,m, µ), then u is
(real) analytic in harmonic coordinates on M .

Proof. From the fact that (M, g, f,m, µ) satisfies Pm
f = λg for some constant λ, it follows that

(3.2) becomes

Hesu = u

(
λ̂u−2 − λ+

1

2
u−2∥∇u∥2

)
g, (3.3)

or, taking the trace of this equation,

∆u+ l.o.t = 0,

where l.o.t. stands for lower order terms. In harmonic coordinates, this geometric equation
becomes the quasi-linear second-order PDE grs ∂2u

∂xr∂xs + l.o.t = 0, which is elliptic due to the
fact that the metric g is positive definite (recall that we are working in the Riemannian setting).

Moreover, since WE metrics are real analytic in harmonic coordinates (see Theorem 1.15),
the equation is of the form F (u, ∂u, ∂2u) = 0, with F real analytic. It follows that the conformal
factor u is real analytic in harmonic coordinates (see, for example, [3, J.41]).

As a result of the previous lemma, the set of regular points of u is open and dense in M . We
will use this fact in subsequent arguments.

Now, we begin the analysis of the transformation formula (3.2) from a local point of view
without further assumptions. We start by proving that the conformal factor satisfies a generalized
Obata equation (compare with the proof of [36, Proposition 9.5]). This is the same equation
satisfied by a conformal factor transforming an Einstein metric into another one (cf. [10, 82]
and see Section 1.4 for further details) and it provides some information on the structure of the
underlying manifold, which decomposes as a warped product.

Lemma 3.2. Let (Mn, g, v,m, µ) be a SMMS such that Pm
f = λg and u a non-constant solution

of (3.2). Then, the function u is a solution of the generalized Obata equation (2.22)

Hesu +γ(u)g = 0, (3.4)

with γ(u) = 2λu−ν, for some constant ν ∈ R. Moreover, around any regular point of u, (M, g)
is locally isometric to a warped product I×φN , where I ⊂ R is an open interval, ∇u is tangent
to I , and φ(t) = ±u′(t), where t is a local coordinate parameterizing I by arc length.
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Proof. Since Pm
f = λg, the Hessian of u is given by (3.3). Thus, it follows that the level hyper-

surfaces of u around regular points are totally umbilical. Moreover, letting E1 = ∇u/∥∇u∥, by
(3.3) we have

g(∇XY,E1) = − 1

∥∇u∥
Hesu(X, Y ) = Hg(X, Y ) for X, Y ∈ ∇u⊥,

where H = − u
∥∇u∥

(
λ̂u−2 − λ+ 1

2
u−2∥∇u∥2

)
. Now, note that for a vector field X ∈ ∇u⊥, by

(3.3),

2∥∇u∥X(∥∇u∥) = X(∥∇u∥2) = 2Hesu(∇u,X) = −∥∇u∥Hg(∇u,X) = 0,

and thusX(H) = 0. Consequently, the mean curvature vector fieldHE1 is parallel in the normal
bundle span{∇u}. Indeed, once again by (3.3),

∇⊥
X(HE1) = g(∇X(HE1), E1)E1 =

H

∥∇u∥
Hesu(E1, X) = 0,

so the level hypersurfaces of u are spherical. Therefore, as a consequence of Theorem 1.3, in a
neighborhood of each regular point, (M, g) splits as a warped product I×φN , for some function
φ defined on I .

Let t be a coordinate parameterizing I by arc length. Then, evaluating equation (3.3) in
(∂t, ∂t) yields

u−2

(
λu2 − λ̂− 1

2
(u′)2 + uu′′

)
= 0. (3.5)

Now, we compute

((u′)2u−1 + 2λu+ 2λ̂u−1)′ = u−2(2u′′u− (u′)2 − 2λ̂+ 2λu2)u′ = 0

where the middle expression vanishes by (3.5). Hence (u′)2u−1 + 2λu + 2λ̂u−1 = ν for some
constant ν ∈ R, which yields (u′)2 = −2λu2 + 2νu − 2λ̂. Substituting the value of (u′)2 into
(3.3) we obtain Hesu +(2λu − ν)g = 0, which is the generalized Obata equation (3.4) around
regular points of u. Since the set of regular points of u is open and dense in M by Lemma 3.1,
by smoothness, equation (3.4) extends to M .

Moreover, for any unitary vector field X ∈ ∂⊥t , we use the warped product decomposition
and the formula (1.4) for its connection to compute Hesu(X,X) = u′φ′

φ
. Hence, (3.3) yields

u′φ′

uφ
=

λ̂

u2
− λ+

(u′)2

2u2
,

whereas by (3.5) we have
u′′

u
=

λ̂

u2
− λ+

(u′)2

2u2
.

From these two expressions it follows that u′φ′ − u′′φ = 0, and then φ = Ku′ for some K ∈ R
such that φ > 0 in I (recall that u is non-constant). Rescaling the metric in N , we can assume
K = 1 if u′ > 0 and K = −1 if u′ < 0.
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Notice that, as pointed out in [82, Proposition 4], conformal changes given by solutions to
equation (3.4) preserve the constancy of the scalar curvature, which is a crucial fact in the study
of conformal transformations preserving the Einstein character. However, recall that weighted
Einstein manifolds do not have constant scalar curvature in general (see, for example, Exam-
ple 2.4), so this fact does not always apply in this context.

Another essential difference between the usual setting and conformal changes that transform
a WE manifold into another is the transformation of the density. As a next step, we analyze
the form of the density function assuming that the manifold decomposes as a warped product
according to Lemma 3.2.

Lemma 3.3. Let (Mn, g, f,m, µ), where (M, g) = I ×φN and Pm
f = λg, admit a non-constant

solution of (3.2). Then v = e−
f
m splits as

v = φ(t)vN(x1, . . . , xn−1) + α(t)

where t parameterizes I by arc length and x1, . . . xn−1 are coordinates of the fiber N .

Proof. By Lemma 3.2, we have that u′′+2λu−ν = 0 andφ = ±u′. Hence φ′′

φ
= −2λ. Moreover,

since (M, g) = I ×φN , the Ricci tensor takes the form portrayed in (1.6). In particular, we have
ρ(∂t, X) = 0 for X ∈ ∂⊥t and t parameterizing I by arc length. Now, from the definition of
the Schouten tensor (1.19), and using the scale equation Jm

f = (m + n)λ − mκe
f
m given by

Lemma 1.11, the weighted Einstein equation Pm
f = λg can be written as

ρ+Hesf −
1

m
df ⊗ df =

(
2(m+ n− 1)λ−mκe

f
m

)
g. (3.6)

Under the change of variable v = e−
f
m , equation (3.6) takes the form

ρ−mv−1Hesv = (2(m+ n− 1)λ−mκv−1)g. (3.7)

Thus, taking X the lift of a vector field in N we have −mv−1Hesv(∂t, X) = 0, and computing
this Hessian using the expressions for the Levi-Civita connection of a warped product (1.4) yields

0 = Hesv(∂t, X) = ∂tX(v)− φ′

φ
X(v).

Therefore, locally either X(v) = 0 or ∂tX(v)
X(v)

= φ′

φ
. In the latter case we have

∂t log(X(v)) = (logφ)′,

and integrating with respect to t we obtain

logX(v) = logφ+ v̄XN (−→x ),

where −→x = (x1, . . . , xn−1) are coordinates on N . Hence, in either case, X(v) = φ(t)vXN (−→x )
where vXN does not depend on t, but may depend on the choice of X . Since φ depends only on t
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and there is no confusion, we omit this dependence to simplify notation henceforth. Set notation
v
∂xi
N = viN and take X = ∂x1 , so ∂x1(v) = φv1N(

−→x ). Integrating this expression with respect to
x1 yields

v = φ ṽ1N(
−→x ) + α1(t, x2, . . . , xn−1) (3.8)

for some function ṽ1N(
−→x ) on N and some function α1 which does not depend on x1. Now, we

work with this expression to see that the form in (3.8) can be rearranged so that α1 does not
depend on x2. We differentiate this expression with respect to ∂x2 to find

φv2N(
−→x ) = ∂x2(v) = φ∂x2 ṽ

1
N(

−→x ) + ∂x2α1(t, x2, . . . , xn−1).

Hence,
v2N(

−→x )− ∂x2 ṽ
1
N(

−→x ) = φ−1 ∂x2α1(t, x2, . . . , xn−1).

Since the left-hand side of this equation does not depend on t, differentiating with respect to t
gives

0 = φ−2(φ∂t∂x2α1 − φ′∂x2α1),

from where it follows that either α1 does not depend on x2, and thus we attain our objective, or
∂t∂x2α1

∂x2α1
= φ′

φ
. Assuming that the latter holds, we integrate with respect to t to find

∂x2α1(t, x2, . . . , xn−1) = φγ1(x2, . . . , xn−1)

for some function γ1 on N . Hence, we write

α1(t, x2, . . . , xn−1) = φ
∫
γ1(x2, . . . , xn−1)dx2 + α2(t, x3, . . . , xn−1)

= φ γ̃1(x2, . . . , xn−1) + α2(t, x3, . . . , xn−1)

for some γ̃1 defined on N and α2 not depending on x1 and x2. Substituting this value of α1 into
(3.8), we have

v = φ ṽ1N(
−→x ) + α1(t, x2, . . . , xn−1)

= φ (ṽ1N(
−→x ) + γ̃1(x2, . . . , xn−1)) + α2(t, x3, . . . , xn−1)

= φ ṽ2N(
−→x ) + α2(t, x3, . . . , xn−1),

where ṽ2N(
−→x ) = ṽ1N(

−→x ) + γ̃1(x2, . . . , xn−1). Thus, we get that v is of the form of (3.8) with α
not depending on x1 and x2. Now, using ∂xi

(v) = viN(
−→x )φ(t) for i = 3, . . . , n−1, we repeat the

process outlined above, eliminating the dependence on the xi variable from the corresponding αi

function. After a number of iterations, v becomes

v = φvN(x1, . . . , xn−1) + α(t)

for a function vN defined on the fiber and a function α defined on the base.

For the form of the density function given by Lemma 3.3, the remaining components of the
weighted Einstein equation (3.7) provide additional information on the density and the geometry
of the underlying manifold, allowing us to prove the main local classification result.
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Theorem 3.4. Let (Mn, g, f,m, µ) be a weighted Einstein SMMS, with Pm
f = λg, such that there

exists a conformally equivalent SMMS (Mn, ĝ, f̂ ,m, µ) which is weighted Einstein with P̂m
f̂

=

λ̂ĝ. Then, on a neighborhood of each regular point of the conformal factor u, M decomposes as
a warped product I×φN , where I ⊂ R is an open interval and ∇u is tangent to I . Furthermore,
one of the following holds:

1. (M, g) and (M, ĝ) are Einstein with ρ = 2(n− 1)λg and ρ̂ = 2(n− 1)λ̂g, and the density
takes the form f = −m log(φvN +α), where vN is a function on N and α is a function on
I .

Moreover, the fiber (N, gN) is Einstein and there exist constants ξ, ν determined by v and
u such that HesNvN = (ξ − (ν2 − 4λλ̂)vN)g

N .

2. (Mn, g, f,m) and (Mn, ĝ, f̂ ,m) are quasi-Einstein with ρmf = 2(m+ n− 1)λg and ρ̂m
f̂
=

2(m+ n− 1)λ̂ĝ, and the density f splits as f = −m log(φ) + fN where fN is a function
on N .

Moreover, the fiber (N, gN , fN ,m) is quasi-Einstein too.

Proof. Let (Mn, g, f,m, µ) be a SMMS such that Pm
f = λg and such that there exists a SMMS

(Mn, ĝ, f̂ ,m, µ), with ĝ = u−2g, v̂ = u−1v (where v = e−
f
m and u is non-constant) and such

that P̂m
f̂

= λ̂ĝ. By Lemma 3.2, (M, g) splits locally around the regular points of the conformal
factor u as a warped product I ×φ N , where φ′′ = −2λφ. Moreover, by Lemma 3.3, the density
takes the form v = φvN + α, where vN is defined on N and α is defined on I .

From the expression (1.6) for the Ricci tensor of a warped product, we have ρ(∂t, ∂t) =
−(n− 1)φ

′′

φ
= 2(n− 1)λ, so the weighted Einstein equation (3.7) yields

ρmf (∂t, ∂t) = 2(n− 1)λ−mv−1Hesv(∂t, ∂t) = 2(m+ n− 1)λ−mκv−1.

Hence Hesv(∂t, ∂t) = ∂2t v = −2λv+κ. Since v = φvN +α, and knowing that φ′′ = −2λφ, this
implies α′′ = −2λα + κ. Now, consider the following decomposition:

Hesv = vN Hesφ+φHesvN +dvN ⊗ dφ+ dφ⊗ dvN +Hesα .

Take two lifts X, Y of vector fields in N . Since φ and α depend only on t, we have

Hesv(X, Y ) = vN(φ
′)2φgN(X, Y ) + φHesvN (X, Y ) + α′φ′φgN(X, Y ).

Using this expression and (1.6), equation (3.7) for X, Y reads

ρmf (X, Y ) = ρN(X, Y )− (φ′′φ+ (n− 2)(φ′)2) gN(X, Y )

−mv−1(vN(φ
′)2φ+ α′φ′φ)gN(X, Y )

−mv−1φHesvN (X, Y )

= (2(m+ n− 1)λ−mκv−1)φ2gN(X, Y ).

(3.9)
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Let X be a unit eigenvector of the Ricci operator RicN , and let

ρN(X,X) = gN(RicN(X), X) = r(X)

be its associated eigenvalue. Also, denote HesvN (X,X) = h(X) and notice that, by (3.9), X
is also an eigenvector of the Hessian operator. In order to simplify notation, we omit the X
dependence in the following calculations unless explicitly needed. From the formula

h = HesvN (X,X) = g(∇X∇vN , X) = φ2gN(∇X(φ
−2∇NvN), X)

= gN(∇N
X∇NvN , X) = HesNvN (X,X),

it follows that h, as well as r, is also a function defined on the fiber N . Taking Y = X in (3.9)
and multiplying by v, we obtain the following equation:

0 = vr − v (φ′′φ+ (n− 2)(φ′)2)−m(vN(φ
′)2φ+ α′φ′φ)

−mφh− (2(m+ n− 1)λv −mκ)φ2,
(3.10)

where v = φvN + α, φ and α depend on t, and the remaining functions depend only on the
coordinates x1, . . . , xn−1 of the fiber N . Now, differentiating (3.10) with respect to any xi and
substituting φ′′ = −2λφ yields

α∂xi
r + φ

(
∂xi

(vNr)−m∂xi
h− (m+ n− 2)(2λφ2 + (φ′)2)∂xi

vN
)
= 0.

Note that the expression 2λφ2 + (φ′)2 is constant. Indeed,

(2λφ2 + (φ′)2)′ = 2φ′(2λφ+ φ′′) = 0.

Moreover, since φ = ±u′, u′′ = −2λu + ν and (u′)2 = −2λu2 + 2νu − 2λ̂ by Lemma 3.2, we
can write

2λφ2 + (φ′)2 = ν2 − 4λλ̂. (3.11)

Thus, the equation above becomes

α∂xi
r + φ

(
∂xi

(vNr)−m∂xi
h− (m+ n− 2)(ν2 − 4λλ̂)∂xi

vN

)
= 0.

On a suitable open set, it follows that either ∂xi
r = 0 or

αφ−1 = −∂xi
(vNr)−m∂xi

h− (m+ n− 2)(ν2 − 4λλ̂)∂xi
vN

∂xi
r

= A

for some constant A, since the left-hand side is a function of t and the expression in the middle is
defined on N . Moreover, if we take ṽN = vN + A, we have v = φṽN , so this can be considered
as a solution with α = 0. Hence, we conclude that ∂xi

r(X) = 0 for all i = 1, . . . , n− 1 and all
eigenvectors X (name it Case 1), or v splits as v = φṽN (name it Case 2). We analyze the two
possibilities separately.
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Case 1. Assume that ∂xi
r(X) = 0 for all i = 1, . . . , n− 1 and all eigenvectors X on an open

set. Then, we have

0 = −m∂xi
h+ (r − (m+ n− 2)(ν2 − 4λλ̂))∂xi

vN ,

which can be integrated and solved for h to find

h = m−1(r − (m+ n− 2)(ν2 − 4λλ̂))vn − ξ (3.12)

for some constant ξ. Substituting this value of h into (3.10), and using φ′′ = −2λφ and (3.11)
yields

0 = α(r − (n− 2)(ν2 − 4λλ̂)− 2mλφ2) +mφ(ξ + κφ− α′φ′). (3.13)

Notice that, since α = 0 leads to Case 2, we can further assume α ̸= 0 in this instance. Dividing
by φ and differentiating with respect to t, we simplify using that φ′′ = −2λφ and α′′ = −2λα+κ
to obtain

0 =
(r − (n− 2)(ν2 − 4λλ̂))(φα′ − αφ′)

φ2
,

so, locally, either φα′ − αφ′ or r = (n− 2)(ν2 − 4λλ̂). The first case implies α = Cφ for some
C ∈ R, so it can be reformulated as α = 0 again, thus fitting into Case 2 below.

Assume r = (n − 2)(ν2 − 4λλ̂). Since r = ρN(X,X) for an arbitrary Ricci eigenvector, it
follows that

ρN = (n− 2)(ν2 − 4λλ̂)gN = (n− 2)

(
2λ+

(φ′)2

φ2

)
g (3.14)

and the fiber (N, gN) is Einstein. Additionally, by (1.6), we have

ρ(X, Y ) = ρN(X, Y )−
(
φ′′

φ
+ (n− 2)

(φ′)2

φ2

)
g(X, Y ) = 2(n− 1)λg(X, Y ),

so the Ricci tensor satisfies ρ = 2(n − 1)λg, i.e., (M, g) is Einstein on an open set. Moreover,
(3.13) becomes

mφ(ξ + (κ− 2λα)φ− α′φ′) = 0, (3.15)

from where ξ = α′φ′− (κ−2λα)φ, which is indeed a constant due to the equations φ′′ = −2λφ
and α′′ = −2λα + κ. Furthermore, note that this shows that ξ does not depend on the choice
of the eigenvalue X . Equation (3.12) now yields that h(X) = −(ξ + (ν2 − 4λλ̂)vN) for every
eigenvector X , so vN satisfies the generalized Obata equation

HesNvN = −(ξ + (ν2 − 4λλ̂)vN)g
N . (3.16)

Moreover, the form of the conformal factor u given by Lemma 3.2 around its regular points
yields ρ̂ = 2(n − 1)λ̂ĝ (see Remark 3.6 for details). This corresponds to Theorem 3.4 (1) on a
suitable open set.
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Case 2. Consider now solutions with α = 0, i.e., those whose density is v = φvN . From the
fact that α′′ = −2λα + κ, it follows that κ = 0, so (M, g, f,m) is quasi-Einstein. Moreover,
from (3.6) we obtain that ρmf = 2(m+ n− 1)λg. With this, equation (3.9) takes the form(

ρN −mvN
−1HesvN

)
(X, Y ) = (m+ n− 2)(2λφ2 + (φ′)2)gN(X, Y )

= (m+ n− 2)(ν2 − 4λλ̂)gN(X, Y )
(3.17)

where we have also used equation (3.11). The left-hand side in (3.17) is the Bakry-Émery Ricci
tensor ρmfN on (N, gN , fN = −m log vN ,m), so the fiber is also quasi-Einstein. Now the form
of u given by Lemma 3.2 leads to ρ̂m

f̂
= 2(m + n − 1)λ̂ĝ (see Remark 3.6 for details), so

Theorem 3.4 (2) follows on a suitable open set.
Finally, since by Theorem 1.15 weighted Einstein manifolds and their densities are real ana-

lytic in harmonic coordinates, and (M, g) and (M, ĝ) are Einstein (respectively, quasi-Einstein)
on an open set, they are Einstein (respectively, quasi-Einstein) everywhere.

Remark 3.5. Although we are considering manifolds of dimension n ≥ 3, Lemma 3.2 also ap-
plies to the 2-dimensional case. In this context, the lemma implies that, around regular points of
the conformal factor u, (M2, g) splits as a warped product of two open intervals I1 ×φ I2, where
the warping function satisfies φ′′ = −2λφ. A direct computation shows that the sectional curva-
ture is constant (indeed, it is 2λ), and this property is extended by smoothness to (M, g). Thus,
the two-dimensional setting becomes a reduced version of the Einstein case in Theorem 3.4. This
is also the case for the global result for complete manifolds (see Theorem 3.10).

3.1.1 Remarks and examples

In this section, we will provide some additional information on the weighted Einstein SMMSs
that appear in Theorem 3.4. We will also construct some examples of such SMMSs and explicit
conformal factors that transform them into conformally equivalent weighted Einstein manifolds.

Notice that, as a consequence of Theorem 3.4, some of the manifolds of interest to this work
have constant scalar curvature. Indeed, they are Einstein (Item (1)). However, this does not hold
in general for manifolds in Item (2), which do have constant weighted scalar curvature (since they
are quasi-Einstein), but not constant scalar curvature. In both cases, the corresponding constancy
is preserved by the conformal transformation, as the following remark explains.

Remark 3.6. The conformal factor in Theorem 3.4 transforms Einstein manifolds into Einstein
manifolds (Item (1)) and quasi-Einstein manifolds into quasi-Einstein manifolds (Item (2)). The
first case corresponds to conformal transformations that have been already described in the lit-
erature (see [82]), so only the second case needs to be checked. Nevertheless, in order to be
self-contained and justify the precise description in Theorem 3.4, we include the details of both
transformations as follows.

The underlying manifolds of SMMSs described in Theorem 3.4 (1) are Einstein with ρ =
2(n − 1)λg. In this case, the conformally transformed manifold (M, ĝ) where ĝ = u−2g is also
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Einstein with ρ̂ = 2(n − 1)λ̂ĝ. Indeed, by the transformation formula for the Ricci tensor (see,
for example, [83]),

ρ̂ = ρ+ u−2((n− 2)uHesu +(u∆u)g − (n− 1)∥∇u∥2g),

the conformal factor is a concircular function (Hesu = (ν − 2λu)g), and since (u′)2 = −2λu2 +

2νu− 2λ̂ by Lemma 3.2, the value of ρ̂ follows.
For SMMSs in Theorem 3.4 (2), (M, g, f,m) is quasi-Einstein with ρmf = 2(m+n−1)λg. We

check that the conformal transformation preserves the quasi-Einstein character as follows. The
Bakry-Émery Ricci tensor transforms under a weighted conformal change ĝ = u−2g, v̂ = u−1v
as (see [40])

ρ̂m
f̂

= ρmf + (m+ n− 2)u−1Hesu

+(u−1(∆u− g(∇f,∇u))− (m+ n− 1)u−2∥∇u∥2)g.

Moreover, by Lemmas 3.2 and 3.3, and the proof of Theorem 3.4, we have φ = ±u′, u′′ =
ν − 2λu and f = −m log(φvN). Hence, g(∇f,∇u) = −mu′′ = −m(ν − 2λu) and substituting
these values into the expression above yields ρ̂m

f̂
= 2(m+n−1)λ̂ĝ, so the transformed manifold

is quasi-Einstein. Hence, weighted conformal transformations of manifolds in Theorem 3.4 (1)
stay in that family, and the same is true for Theorem 3.4 (2).

Remark 3.7. For non-trivial manifolds in Theorem 3.4 (1) (the Einstein case), a warped product
decomposition similar to that given by Lemma 3.2 arises with respect to the density v. Indeed,
since the underlying manifold (M, g) is Einstein with ρ = 2(n − 1)λg, the weighted Einstein
equation (3.7) reads

Hesv = −(2λv − κ)g, (3.18)

(compare with the proof of Lemma 2.22). Hence, the arguments from Lemma 3.2 can be mim-
icked to split M around regular points of v, with the fibers being level hypersurfaces of v. This
approach has the advantage of v depending only on a coordinate of the base, but in general this
will no longer apply to u.

Moreover, for the same manifolds in Theorem 3.4 (1) and the warped product splitting I×φN
given in the theorem (i.e. with the fibers being level hypersurfaces of u), (3.16) is again an
Obata-type equation holding on the fiber. Hence, it induces an additional splitting of the form
N = I2 ×φ2 N2 around regular points of vN , where the fibers are level hypersurfaces of vN .
This can be used to extract further information about the geometry of N , using known properties
of the solutions of the generalized Obata equation (see Theorem 1.7, and also [120] for further
details).

Remark 3.8. For manifolds in Theorem 3.4 (1), since ρ = 2(n − 1)λg, the curvature tensor
satisfies R = λg⃝∧ g +W . Additionally, since Pm

f = λg, the weighted Weyl tensor (1.20) takes
the form Wm

f = W = R− λg⃝∧ g.
The warped product splitting I ×φ N with N Einstein guarantees that the Weyl tensor is

harmonic (see Theorem 1.6). Also, if we consider the alternative warped product splitting dis-
cussed in Remark 3.7 around regular points of the density v, it is straightforward to check that
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ι∇fW
m
f = 0. Hence, it follows that the weighted divergence divf W

m
f = divWm

f − ι∇fW
m
f

vanishes too. In the non-trivial case, it follows that the manifolds in Theorem 3.4 (1) are thus ex-
actly those that arise in Theorem 2.16 (the local result for the Einstein case with divf W

m
f = 0).

In particular, weighted space forms are included in this family, but other kinds of SMMSs with
Wm

f ̸= 0 also appear (see Example 2.19).
Consequently, we can use the local warped product decomposition from Theorem 2.16, where

(M, g) is locally isometric to I×φN , where N is Einstein with ρN = βgN . Let t be a coordinate
parameterizing I by arc length. In general, as pointed out in Remark 3.7, the density v and the
conformal factor u do not necessarily depend on the same variables. However, in the case where
u = u(t) and v = v(t), we can use the aforementioned theorem, along with Lemma 3.2, to
describe these SMMSs very explicitly. Indeed, the functions v, φ and u and the parameters β
and µ take the following forms (the value of µ being irrelevant if m = 1):

λ > 0 φ(t) = a cos(t
√
2λ) + b sin(t

√
2λ) β = 2(a2 + b2)(n− 2)λ

v(t) = κ
2λ − bc cos(t

√
2λ) + ac sin(t

√
2λ) µ = 2(a2 + b2)c2λ− κ2

2λ

u(t) = ν
2λ ∓ b√

2λ
cos(t

√
2λ)± a√

2λ
sin(t

√
2λ) λ̂ = ν2

4λ − a2+b2

2

λ = 0 φ(t) = aκt+ b β = a2κ2(n− 2)

v(t) = κ
2 t

2 + ct+ d where b = ac if κ ̸= 0 µ = c2 − 2dκ

u(t) = νt2

2 ± bt+ l (ν = ±aκ) λ̂ = −1
2b

2 + lν

λ < 0 φ(t) = aet
√
−2λ + be−t

√
−2λ β = 8ab(n− 2)λ

v(t) = κ
2λ + acet

√
−2λ − bce−t

√
−2λ µ = −8abc2λ− κ2

2λ

u(t) = ν
2λ ± a√

−2λ
et

√
−2λ ∓ b√

−2λ
e−t

√
−2λ λ̂ = ν2

4λ − 2ab

Table 3.1: Local descriptions of the density v, warping function φ and conformal factor u in the
warped product decomposition I ×φ N of SMMSs in Theorem 3.4 (1) when u and v are defined
on I (cf. Theorem 2.16); and corresponding values of the parameters β, µ and λ̂.

The constants a, b, c, d and the scale κ are such that φ, v and u are positive on I . Notice that
the density and the conformal factor present qualitatively the same behavior, up to some constant
translation and rescaling. This allows for conformal changes between trivial and non-trivial
SMMSs by suitably adjusting the constants involved (cf. Remark 3.15).

Moreover, observe that in all three cases the value of λ̂ after the conformal change can be any
real number. This contrasts with the behavior of global conformal changes (see Theorem 3.10
and Corollary 3.12).

Although many relatively simple weighted Einstein structures are realized on Einstein man-
ifolds (such as the weighted space forms), more involved structures are admissible as well, like
those that fall into Theorem 3.4 (2), whose underlying manifold is quasi-Einstein. The following
is an example constructed from a quasi-Einstein manifold with ρmf = 0 that was built in [113, Ex-
ample 2].
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Example 3.9. For any value of m ̸= 1, consider the direct product (N, g0) = (Ñ2
n−2 ×R, gÑ ⊕

ds2), where Ñ is an Einstein manifold with positive Einstein constant ξ, i.e. ρÑ = ξgÑ . Define
the function σ : C∞(N) → R by σ = m

√
ξ√

m+n−3
πR, where πR denotes the projection on R, and

take the conformal metric gN = e−2 σ
m g0. Then, (N, gN , σ,m) is a quasi-Einstein manifold with

(ρmσ )
N = 0 (see [113]).

Next, consider the direct product (Mn, g) = (I × N, dt2 ⊕ gN), where I ⊂ R is an open
interval, and set f = σ. Taking µ = ξ

m−1
makes (M, g, f,m, µ) a weighted Einstein manifold

with λ = 0 (and it is also quasi-Einstein with ρmf = 0). Moreover, let u = at + b for constants
a ̸= 0, b such that u > 0 in I . Take the weighted conformal change given by ĝ = u−2g and
f̂ = f + m log (u). Then, (M, ĝ, f̂ ,m, µ) is weighted Einstein with λ̂ = −a2

2
< 0, and also

quasi-Einstein with ρ̂m
f̂

= −(m + n − 1)a2ĝ. Note that neither (M, g) nor (M, ĝ) are Einstein.

Indeed, τ = m(n−2)
m+n−3

ξe2
f
m and τ̂ = u2τ − n(n− 1)a2 are non-constant.

3.2 The complete case
A key point in our analysis of SMMSs with two weighted Einstein structures in the same weighted
conformal class is that the conformal factor satisfies the generalized Obata equation (3.4), but the
results stated in the previous section have mostly been centered around the local features of the
geometry of the SMMSs of interest. In this section, we focus on SMMSs with complete under-
lying manifold to prove the main global classification result of the chapter, taking into account
that the function γ in (3.4) takes the form γ(u) = 2λu− ν given in Lemma 3.2.

Theorem 3.10. Let (Mn, g, f,m, µ) be a complete SMMS such that Pm
f = λg, with scale κ, and

such that there exists a conformally equivalent weighted Einstein SMMS. Then, (M, g, f,m, µ)
is isometric to one of the following SMMSs:

1. A weighted space form as described in Examples 1.12, 1.13 and 1.14.

2. A warped product R ×φ N , with N complete, and such that φ(t) = Aet
√
−2λ, where t

parameterizes R by arc length. Moreover, λ < 0 and one of the following holds:

(a) (M, g) is Einstein and (N, gN) is Ricci-flat. The density function has the form

f(t) = −m log
( κ
2λ

+Bet
√
−2λ
)
,

for some B ≥ 0 and κ ≤ 0. Moreover, m = 1 or µ = −κ2

2λ
≥ 0.

(b) (M, g, f,m) is quasi-Einstein, f splits as f = −m logφ + fN , and (N, gN , fN ,m)
is also quasi-Einstein with (ρmfN )

N = 0.

Proof. Let (Mn, g, f,m, µ) be a complete SMMS with Pm
f = λg, such that there exists a SMMS

(Mn, ĝ, f̂ ,m, µ), with P̂m
f̂

= λ̂ĝ, related by a non-constant conformal factor u, i.e. ĝ = u−2g and
v̂ = u−1v. By Lemma 3.2 we know that the (globally defined) conformal factor u satisfies the
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generalized Obata equation Hesu = (ν − 2λu)g, which allows us to apply Theorem 1.7. There
are two possibilities that we analyze separately. First, consider the case where u has critical
points. Then, (M, g) is isometric to

g = dt2 + φ(t)2gSn−1 , t ∈ (0, T ),

with φ(t) = u′(t)
(2λu(0)−ν)

, where

u′′ + 2λu− ν = 0, u(0) = ξ > 0, u′(0) = 0.

If λ > 0, it follows that u(t) = 1
2λ

(
ν + (2ξλ− ν) cos(t

√
2λ)
)

, with t ∈ (0, π√
2λ
). The warping

function is φ(t) = 1√
2λ

sin
(
t
√
2λ
)

. Hence, (M, g) is isometric to a sphere of constant sectional
curvature 2λ, which only admits solutions in the form of the m-weighted n-spheres as described
in Example 1.12. For λ = 0 and λ < 0 analogous processes lead to the m-weighted n-Euclidean
spaces of Example 1.13 and to the m-weighted n-hyperbolic spaces of Example 1.14. Locally,
these spaces look like the SMMSs in Theorem 3.4 (1). Moreover, by the argument in Remark 3.8,
they have weighted harmonic Weyl tensor, so the classification in Theorem 2.23 also implies this
conclusion in the non-trivial case. These are the SMMSs in Theorem 3.10 (1).

Now, we consider the other possibility in Theorem 1.7, this is, the case where u has no critical
points, which guarantees that (M, g) is isometric to a warped product of the form R×φN where
∇u is tangent to R.

Then, we use the fact that the functions v, φ and u are globally defined. The warping function
φ and the conformal factor u satisfy the ODEs u′′ + 2λu − ν = 0 and φ = ±u′ given in
Lemma 3.2, and the only global solutions such that u has no critical points and both u and φ
remain positive on R are (after an inversion of the sign of t if necessary) of the form φ = Aet

√
−2λ

and u(t) = ν
2λ

+ A√
−2λ

et
√
−2λ for λ < 0 and some A > 0, ν ≤ 0 (compare with the proof of

Theorem 2.23). Now, the expression of φ yields, from (3.11), ν2 − 4λλ̂ = 2λφ2 + (φ′)2 = 0.

Thus, λ̂ = ν2

4λ
≤ 0, so u(t) =

√
λ̂
λ
+ A√

−2λ
et

√
−2λ.

By Lemma 3.3, the density v takes the form v = φvN +α. We distinguish between the cases
where α ̸= 0 and α = 0.

Case 1. Assume α ̸= 0. First, observe that the SMMS falls into Theorem 3.4 (1), so g and
g̃ are Einstein. From (3.14), since 2λφ2 + (φ′)2 = 0, we obtain ρN = 0, i.e. the fiber N is
Ricci-flat.

From α′′ = −2λα+ κ, it follows that α(t) = κ
2λ

+Bet
√
−2λ +Ce−t

√
−2λ for some B,C ≥ 0

such that v > 0. Moreover, for this form of α, equation (3.15) reduces to ξ = 4ACλ, so the
generalized Obata equation (3.16) for the fiber takes the form HesvN = −4ACλgN . Hence,
either vN is constant and C = 0; or C > 0.

• If vN is constant and C = 0, redefining the constant B if necessary, we can take v =
α(t) = κ

2λ
+Bet

√
−2λ. In order for v to stay positive in R, it follows that κ ≤ 0. Moreover,

a straightforward calculation from the weighted Einstein equation Pm
f = λg yields that

m = 1 or µ = −κ2

2λ
≥ 0. This corresponds to Theorem 3.10 (2.a).
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• If C > 0, from equation HesvN = −4ACλgN , it follows that N is isometric to Rn−1 and
vN(r) = −2ACλr2 + D, where r is the radial coordinate around some point of Rn−1

(see [120, Theorem 6.3]). The manifold R ×φ Rn−1 is isometric to the hyperbolic space.
In order to see that this case corresponds to Example 1.14, we keep analyzing the density
function. Since A,C > 0 and λ < 0, it follows that v remains positive for all values of
r if and only if D ≥ 0. Redefining the constant B, we can write v = κ

2λ
+ Bet

√
−2λ +

Ce−t
√
−2λ − 2A2Cλr2et

√
−2λ, so v necessarily has a critical point. Now, applying the

splitting given in Remark 3.7 and knowing that v has critical points, by Theorem 1.7, we
conclude that this case corresponds to Example 1.14 (the m-weighted n-hyperbolic space)
so it falls into Theorem 3.10 (1). Additionally, with this expression for v, one checks that
these SMMSs satisfyW = Wm

f = 0, so the conclusion also follows from the classification
in Theorem 2.23.

Case 2. Assume α = 0. Notice that, in this case, the SMMS falls into Theorem 3.4 (2). Then,
equation (3.17) guarantees that (N, gN , fN = −m log vN ,m) is quasi-Einstein with (ρmfN )

N = 0.
This yields the quasi-Einstein manifolds in Theorem 3.10 (2.b).

The underlying manifolds (M, g) for the SMMSs in Theorem 3.10 (2.a) and the weighted
space forms in Theorem 3.10 (1) are Einstein with ρ = 2(n − 1)λg. Hence, they fall into
Theorem 3.4 (1). Furthermore, these complete manifolds are precisely those that admit a non-
homothetic conformal change into another Einstein manifold (see [82, Theorem 27]). Conse-
quently, for trivial SMMSs, i.e., those with constant density function, we recover this classical
result. Strikingly, the non-trivial SMMSs in these families correspond exactly with those which
are weighted Einstein and have harmonic weighted Weyl tensor, as shown in Theorem 2.23.

Note that, much like in Theorem 2.23 (3.b), the warped product construction I ×φ N in
Theorem 3.10 (2.a) can be performed for any complete Ricci-flat fiber N , without changing
the parameters of the resulting SMMS (I ×φ N, g, f,m, µ). The most obvious choice is the
flat Euclidean manifold Rn−1, but if the fiber is of dimension n ≥ 4, then N can be taken to
be complete and Ricci-flat, but not flat. For example, two types of manifolds which fit this
description and were already mentioned in Chapter 2 are the cotangent bundle of the 2-sphere
T ∗S2 with the Eguchi-Hanson metric (see [56]), and Calabi-Yau manifolds (see [123]).

As a result of the discussion above, it follows that the genuinely new metric structures in
Theorem 3.10 are those given in Theorem 3.10 (2.b). In order to build an example of this kind,
it suffices to take any non-trivial complete quasi-Einstein manifold with ρmf = 0 as a fiber.
The following one illustrates this fact, using a complete fiber related to the construction of the
generalized Schwarzschild metric (see [3, Example 9.118a] and [71] for more details).

Example 3.11. For m > 1, consider the two-dimensional manifold N = R2 endowed with the
warped product metric gN = dx2 + (ω′(x))2dθ2, where ω is the unique solution on [0,∞) of the
problem

(ω′)2 = 1− ω1−m, ω(0) = 1, ω ≥ 0.

For example, if m = 3, then ω(x) =
√
1 + x2. This metric extends smoothly across x = 0,

and the resulting manifold (N, gN ,−m log(ω),m) is complete and quasi-Einstein (with quasi-
Einstein constant 0), but ρN is not, in general, a constant multiple of the metric (indeed, for



70 3 WE manifolds in the same conformal class

m = 3, ρN = 3
(1+x2)2

gN ). Thus, for (R3, g = dt2+φ2gN), λ < 0, φ(t) = e
√
−2λt and f(t, x, θ) =

−m
(√

−2λ t+ log(ω(x))
)
, the SMMS (R3, g, f,m, µ) is quasi-Einstein with ρmf = 2(m+2)λg

and thus, weighted Einstein for an appropriate µ (for m = 3, the value is µ = 1). Moreover, for

λ̂ < 0 and the conformal factor u(t) =
√

λ̂
λ
+ 1√

−2λ
e
√
−2λt, the conformally transformed SMMS

(R3, u−2g, f + m log(u),m, µ) is also quasi-Einstein with ρ̂m
f̂

= 2(m + 2)λ̂ĝ, hence weighted

Einstein with P̂m
f̂

= λ̂ĝ.

Theorem 3.10 has very strong consequences in the case of compact SMMSs. Indeed, the
following rigidity result generalizes the one given in [36] for µ = 0. Moreover, from the point of
view that smooth metric measure spaces generalize manifolds with constant density, we can say
that it also extends [82, Corollary 23] to the weighted setting, in the sense that the existence of
a solution of the generalized Obata equation forces the underlying manifold to be conformally
equivalent to a sphere.

Corollary 3.12. Let (Mn, g, f,m, µ) be a non-trivial compact weighted Einstein SMMS. If there
exists a non-constant conformal factor such that the transformed manifold is weighted Einstein,
then (M, g, f,m, µ) is an m-weighted n-sphere (which is conformally equivalent to a standard
sphere with vanishing density).

Proof. Out of the admissible geometries for complete SMMSs given by Theorem 3.10, the only
compact ones are the weighted spheres in Example 1.12. Hence, λ > 0 and (Mn, g, f,m, µ) is
globally isometric to such a sphere, so v(t) = A + B cos(

√
2λt) for some constants A ∈ R+,

B ∈ R such that A > |B|. Now, we can take the conformal factor u = v, so that f̂ = f +
m log u = 0. Then, it is straightforward to prove that the conformally transformed SMMS
(M,u−2g, 0,m, µ) has constant sectional curvature λ̂ = (A2 − B2)λ > 0, so it is isometric to
the sphere (Sn, g2λ̂S , 0,m, µ), which is a trivial weighted Einstein manifold with P̂m

f̂
= λ̂g2λ̂S .

Remark 3.13. Note that, according to Example 1.12, the curvature parameter µ for the weighted
spheres is given by µ = 2λ(B2 − A2). Thus, the condition A > |B| guarantees that the only
weighted spheres with µ = 0 are those with m = 1, where µ does not play a role. Thus, this
recovers the result in [36].

Example 3.14. Due to the fact that the density v satisfies (3.18), the only weighted Einstein
structures on standard spheres are the m-weighted n-spheres portrayed in Example 1.12. How-
ever, since the symmetry of the sphere allows for the poles to be any two antipodal points, the
conformal factor does not necessarily vary in the same direction as the density, and it can be used
to rotate it and modify its radius while maintaining its weighted Einstein character. For example,
let λ > 0 and consider the sphere (Sn, g2λS ), whose metric can be written as

g2λS = dt2 + (2λ)−1 sin2(
√
2λt)(dθ2 + sin2(θ)gSn−2), t ∈

(
0, π√

2λ

)
, θ ∈ (0, π) .

The warping function φ(t) = sin(t
√
2λ)√

2λ
is induced by the conformal transformation given by

u(t) = ν
2λ

− cos(t
√
2λ)

2λ
, with ν > 1, since φ = u′. Now, instead of the density given in Exam-

ple 1.12, consider v(t, θ) = Aφ(t) cos(θ) + B cos(t
√
2λ) + κ

2λ
(where, A,B, κ are such that v
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is always positive). The corresponding SMMS (Sn, g2λS , f,m, µ) is weighted Einstein with scale
κ and Pm

f = λg for µ = A2 + 2λB2 − κ2

2λ
or m = 1. Notice that v is of the form given in

Lemma 3.3 with α(t) = κ
2λ

+ B cos(t
√
2λ), so that ξ = α′φ′ − (κ− 2λα)φ = 0, where ξ is the

constant in the generalized Obata equation (3.16).
Moreover, the transformed manifold (Sn, ĝ, f̂ ,m, µ), is weighted Einstein with P̂m

f̂
= λ̂ĝ

and λ̂ = ν2−1
4λ

> 0. In this case, vN(θ) = A cos(θ) is indeed a solution of the generalized Obata
equation (3.16) on Sn−1 for ξ = 0 and ν2−4λλ̂ = 1, as stated in Theorem 3.4 (1), and the metric
ĝ has constant sectional curvature 2λ̂, so (Sn, ĝ, f̂ ,m, µ) is a weighted sphere.

Remark 3.15. The proof of Corollary 3.12 relies on the fact that we can take the conformal factor
u to be equal to the density function v so that f̂ = f +m log u = 0. This is possible for most
of the other Einstein manifolds in Theorem 3.10. However, the sign of the weighted Einstein
constant is not necessarily preserved under such transformations when λ ≤ 0, in constrast to the
case λ > 0.

λ = 0: For the m-weighted n-Euclidean space as in Example 1.13 and the conformal change
u(t) = v(t) = A + Bt2, (Mn, ĝ = u−2gE, 0,m, µ) is isometric to the punctured sphere
(Sn \ {N}, g2λ̂S , 0,m, µ) with λ̂ = 2AB > 0, which is weighted Einstein with P̂m

f̂
= λ̂g2λ̂S .

Indeed, note that ĝ = u−2g is essentially the change of the metric given by stereographic projec-
tion.

λ < 0: For the m-weighted n-hyperbolic space of constant sectional curvature 2λ as in Ex-
ample 1.14 and the conformal change given by u(t) = v(t) = A + B cosh(

√
2λt), (Mn, ĝ =

u−2g2λH , 0,m, µ) is weighted Einstein with λ̂ = (A2 − B2)λ, and it has constant sectional cur-
vature 2λ̂. In this case, λ̂ can be positive, zero or negative depending on the values of A and
B (since A > −B), so (M, ĝ) can be isometric to a punctured sphere, a Euclidean space or a
hyperbolic space.

On the other hand, for a warped product R ×φ N as in Theorem 3.10 (2.a), where u(t) =

v(t) = κ
2λ

+ A√
−2λ

et
√
−2λ, N is a Ricci-flat complete manifold and φ(t) = Aet

√
−2λ, we have that

for λ̂ = κ2

4λ
≤ 0, the transformed SMMS (M, ĝ, 0,m, µ) satisfies P̂m

f̂
= λ̂ĝ.

In contrast to the previous items, in the cases in Theorem 3.10 (2.b) where vN is non-constant,
the conformal factor is defined on the base of the warped product I ×φ N , while the density has
a non-constant component in N , so we cannot take u = v. Nevertheless, in Theorem 3.10 (2.b)
we can take u = φ, in which case the transformed density f̂ will be constant on the base of the
product.

3.3 A note on weighted Bach-flat WE manifolds
As a final note before moving on to Part II of the dissertation, we point out the interesting
interplay between the SMMSs in Chapters 2 and 3 and the weighted analogue of the Bach tensor
B, which is related to the conformal properties of semi-Riemannian manifolds. In particular,
the Bach-flat condition (i.e., B = 0) is useful in discussions around the conformal Einstein
equation introduced by Brinkmann [11]. Firstly, let T be a (0, 4)-tensor and S a (0, 2)-tensor,
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and denote by T (−,−)− and S(−) the (1, 3) and (1, 1)-tensors such that g(T (X, Y )Z,U) =
T (X, Y, Z, U) and g(S(X), Y ) = S(X, Y ) for all X, Y, Z, U ∈ X(M). Then, we define the
following contraction:

T [S](X, Y ) = tr(Z 7→ T (X,S(Z))Y ).

Let {E1, . . . , En} be a local orthonormal frame, then

T [S](X, Y ) =
n∑

i,j=1

T (X,Ei, Y, Ej)S(Ei, Ej).

or, in index notation, T [S]ij = TikjlS
kl. Thus, the trace of the weighted Weyl tensor over its

second and fourth arguments, which coincides with its trace over the first and third arguments
due to its symmetries, is trWm

f = Wm
f [g]. With this, the usual Bach tensor is is written as

B = div2 dP +W [ρ] = 0 (up to constant scaling). For SMMSs, the weighted Bach tensor takes
a similar form:

Bm
f = (divf )2dP

m
f +

1

m
df ⊗ tr dPm

f +Wm
f

[
Pm
f −

Y m
f

m
g

]
, (3.19)

where

(divf )2dP
m
f (X, Y ) =

n∑
i=1

(∇Ei
dPm

f )(X,Ei, Y )− dPm
f (X,∇f, Y ),

Y m
f = Jm

f − trPm
f and tr dPm

f is taken over its first and third arguments. This definition comes
from the application of tractor calculus to SMMSs [39, 41] and, although it plays an important
role in variational results regarding the weighted σk-curvatures (see [34]), its influence over the
geometry of SMMS is more nebulous than that of its unweighted counterpart. Thus, one might
wonder to what extent, if at all, the relation between some significant families of manifolds and
the Bach-flat condition extends to their weighted counterparts. For example, since Am

f = 0
implies dPm

f = 0 (see [34, 41] and Section 1.5 for details), it follows that locally conformally
flat SMMSs are weighted Bach-flat, thus mirroring this characteristic of locally conformally flat
manifolds in the standard setting.

However, this analogous behavior does not extend to weighted Einstein manifolds. In the
unweighted setting, Einstein manifolds of any dimension, as well as 4-dimensional conformally
Einstein manifolds, are Bach-flat (see, for example, [83]). In contrast, weighted Einstein man-
ifolds do not necessarily have vanishing weighted Bach tensor. Nevertheless, we will see that
the less general quasi-Einstein manifolds do present this property. In fact, QE manifolds and the
WE manifolds with divf W

m
f = 0 discussed in the Einstein case of Chapter 2 turn out to be the

only examples of weighted Bach-flat WE manifolds. In order to prove this, we start by recalling
a useful computation from [41], whose derivation we adapt to our notation.

Lemma 3.16 [41]. Let (M, g, f,m, µ) be a SMMS. Then,

trWm
f = mPm

f +mv−1Hesv +Y
m
f g.
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Proof. From the definition of the weighted Weyl tensor (1.20), we have

Wm
f = R− Pm

f ⃝∧ g = W − (Pm
f − P )⃝∧ g.

Now, notice that for any symmetric (0, 2)-tensor T , the trace over the first and third arguments of
the Kulkarni-Nomizu product T ⃝∧ g is tr(T ⃝∧ g) = (n− 2)T + (trT )g. Thus, since the usual
Weyl tensor is traceless,

trWm
f = −(n− 2)(Pm

f − P )− (Jm
f − J)g + Y m

f g.

Moreover, from the formulas in Lemma 2.6, it follows that Jm
f − J = mv−1∗, and

Pm
f − P = − m

m+ n− 2
P − mv−1

m+ n− 2
(Hesv + ∗ g) ,

for a scalar ∗ whose value is irrelevant to our argument. Therefore,

trWm
f = m(n−2)

m+n−2
P + mv−1(n−2)

m+n−2
(Hesv + ∗ g)−mv−1 ∗ g + Y m

f g

= mPm
f +mv−1Hesv +Y

m
f g.

Our claim then follows from the study of the form of (3.19) for a WE manifold.

Lemma 3.17. Let (Mn, g, f,m, µ) be a non-trivial weighted Einstein SMMS with Pm
f = λg

and scale κ. Then, it is weighted Bach-flat if and only if it is quasi-Einstein (i.e., κ = 0) or an
Einstein SMMS with divf W

m
f = 0 as in Theorem 2.16.

Proof. For any WE manifold, we have dPm
f = 0. Moreover, since Pm

f = λg and the scale is κ,
the weighted Schouten scalar takes the form Jm

f = (m+ n)λ−mκv−1. With this, the weighted
Bach tensor (3.19) reduces to

Bm
f (X, Y ) = Wm

f

[
λg −

Jm
f − nλ

m
g

]
= κv−1 trWm

f . (3.20)

Hence, a weighted Einstein manifold is weighted Bach-flat if and only if it is quasi-Einstein
(κ = 0) or it satisfies trWm

f = 0. In the case with non-vanishing scale, by Lemma 2.7, we have

divf W
m
f = −

(
1
m
Y m
f + λ

)
g ∧ df + 1

m
Hesf ∧ df

=
(
(Y m

f +mλ)g +mv−1Hesv
)
∧ v−1dv

= trWm
f ∧ v−1dv

On the other hand, since Wm
f = R − λg ⃝∧ g by the weighted Einstein condition, we have

trWm
f = ρ − 2(n − 1)λg. Thus, trWm

f = 0 if and only if ρ = 2(n − 1)λg. Moreover, by the
equation above, these SMMSs have divf W

m
f = 0. The SMMSs satisfiying these conditions are

described in Theorem 2.16.
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From Lemma 3.17, we see that the condition divf W
m
f = 0 does not guarantee the weighted

Bach-flatness of a weighted Einstein manifold. Indeed, the key non-Einstein SMMS portrayed in
Example 2.4 hasBm

f ̸= 0, since its weighted Schouten scalar is J1/2
f = − 1

(n−1)t2
= −mκv−1 ̸= 0

(recall that λ = 0 for this SMMS), which implies κ ̸= 0. This contrasts with the situation in
the problem of non-uniqueness of WE structures in the same conformal class, given that all of
the SMMSs presented throughout Chapter 3 are weighted Bach-flat, as shown by the following
result.

Corollary 3.18. Let (Mn, g, f,m, µ) be a non-trivial weighted Einstein SMMS with Pm
f = λg

and scale κ. If (Mn, g, f,m, µ) admits another WE representative in its conformal class, then it
is weighted Bach-flat.

Proof. By Theorem 3.4, weighted Einstein manifolds (including trivial ones) which admit an-
other WE representative in their conformal class are either quasi-Einstein with ρmf = 2(m+ n−
1)λ (so κ = 0) or Einstein with ρ = 2(n − 1)λg (in which case trWm

f and divf W
m
f vanish).

From equation (3.20), it follows that (Mn, g, f,m, µ) is weighted Bach-flat in either case.
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Up until this point, this thesis has been mostly centered around results concerning smooth
metric measure spaces in Riemannian signature, using definitions coined by Case and motivated
by problems in geometric analysis for definite metrics (see Section 1.5). Nevertheless, in prin-
ciple, SMMSs can present metrics of any signature, since the introduction of a density function
also makes sense for indefinite metrics.

In this context, Lorentzian manifolds with density, which we will also refer to as smooth met-
ric measure spacetimes, are particularly relevant due to their potential applications to modified
theories of gravity. An example of this are scalar–tensor gravitational theories (such as dilaton
gravity and Brans-Dicke theory), in particular when the Jordan frame replaces the Einstein frame
to be used as conformal gauge. For instance, in this context, in the Brans-Dicke family of theo-
ries the density function is taken as a scalar field non-minimally coupled to the metric tensor in
the Einstein frame [117].

Similarly, comparison geometry results for standard Lorentzian manifolds have also been ex-
tended to SMMSs by Case [42] and Woolgar and Wylie [118], who stated new versions of the
Hawking-Penrose singularity theorem and the timelike splitting theorem in terms of the Bakry-
Émery Ricci tensor (1.16). Moreover, Rupert and Woolgar [109] explored the extension of ana-
logues of theorems from black holes in General Relativity by imposing energy conditions on this
tensor and the density function.

This part of the thesis revolves around the definition and study of an analogue, suitable for
manifolds with density, of the usual Einstein tensor (with cosmological constant), which is

G = ρ− τ

2
g + Λg. (II.1)

The name of the cosmological constant Λ is a reference to its influence on the accelerated expan-
sion of the Universe. This tensor plays an essential role in General Relativity, and it arises both
from the variation of the Einstein-Hilbert functional (see Section 1.4) and as the only symmetric
(0, 2)-tensor which is divergence-free, dependent only on the metric and its first two derivatives,
and which is linear on the second derivatives of the metric [89]. Thus, in Chapter 4, we define a
weighted Einstein tensor that includes information on the density function through two different
avenues: Firstly, we utilize a variational approach from a weighted Einstein-Hilbert functional,
and secondly, we consider the translation of the characterizing properties of G to the weighted
setting in a very natural way. As a result of this process, we define our weighted analogue of the
Einstein tensor (with cosmological constant) as

Gh = hρ− Hesh +(∆h+ Λ)g

for a positive density function h ∈ C∞(M). Manifolds admitting a density such thatGh vanishes
are said to be solutions of the (vacuum) weighted Einstein field equations.

Thus, Chapters 5 and 6 are devoted to the study of the local geometric structure of manifolds
with vanishing weighted Einstein tensor under different geometric conditions. In the first of
these two chapters, we study isotropic solutions, meaning those whose density h has a lightlike
gradient ∇h. In Chapter 6, we analyze solutions under several conditions on the Weyl tensor,
focusing on solutions with harmonic Weyl tensor (divW = 0). Finally, in Chapter 7 we present
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some notable examples, including a full classification of 4-dimensional solutions realized on
pure radiation waves. Solutions within this family of manifolds illustrate many of the features
described in previous chapters, especially in the isotropic case.

Throughout this part of the thesis, since we are concerned with local geometric features of
solutions, all SMMSs are assumed to be non-trivial and we work around regular points of the
density function (∇h ̸= 0).



Chapter 4

Derivation of the field equations

Throughout the rest of this dissertation, we work in a Lorentzian smooth metric measure space of
the form (M, g, h dvolg), where h is a positive density function and dvolg =

√
|g| dx1∧· · ·∧dxn

is the usual Riemannian volume element, with |g| = − det(gij). Since dvolg is determined by
the metric, we will make use of the simpler notation (M, g, h) (see Section 1.5 for more details
on smooth metric measure spaces).

This chapter is devoted to the derivation of weighted Einstein field equations that take into
account the presence of the density h in an appropriate manner. These equations amount to the
vanishing of the tensor

Gh = hρ− Hesh+(∆h+ Λ)g,

which generalizes the usual Einstein tensor with cosmological constant (II.1) (indeed, the vanish-
ing of Gh reduces to the Einstein condition when h is constant). Firstly, we employ a variational
approach by looking for suitably constrained critical points of a modified Einstein-Hilbert func-
tional, which yields the equation Gh = 0 (with Λ = 0). Secondly, we translate the characterizing
properties of the standard Einstein tensor to te weighted setting to obtain Gh. These derivations
are included in the works [22,25]. Recall that, for the rest of the thesis, we are only interested in
non-trivial SMMSs, so we assume that the density h is non-constant on any open subset of M .

4.1 Variational problem with constraints

In this section, we use a modified version of the Einstein-Hilbert functional to obtain the weighted
Einstein tensor. To this end, consider the space M of Lorentzian metric-measure structures on
M , i.e. M = Lor(M)×C∞(M ;R+), where Lor(M) is the space of Lorentzian metrics onM and
C∞(M ;R+) is the space of positive smooth functions on M , which will be acting as densities.
In this section, we will be considering integrals with respect to the weighted volume element
dVh = h dvolg. Thus, exclusively for the purpose of developing the following variations, assume
that the density function has compact support, so that all integrands do.

Now, define the weighted Einstein-Hilbert functional as the functional S : M → R given by

S : (g, h) 7→ S(g,h) =

∫
M

τh dvolg,

which generalizes the usual Einstein-Hilbert functional, since for h ≡ 1, we recover it exactly.
Note that this functional shows a dependence on the metric through its scalar curvature and a
direct dependence on the density function through the weighted volume. For simplicity, we

79
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assume the dependence on the metric and we write S(g,h) = Sh in order to highlight the differ-
ence between the weighted Einstein-Hilbert functional and its unweighted analogue. Since we
are assuming that h is non-constant, the behavior of Sh is quite different from its unweighted
counterpart.

A defining feature of a SMMS (M, g, h) as a weighted geometric object is its weighted vol-
ume element dVh. Hence, it is natural to pose the variational problem of finding the critical
points of Sh, constrained to variations of the metric-measure structure of (M, g, h) which keep
the weighted volume element invariant at each point of the manifold. By a variation of the
metric-measure structure, we mean a simultaneous variation of both the metric and the density
function, with the same variation parameter t:

g[t] = g + tḡ, h[t] = h+ th̄, dVh[t] = h[t]dvolg[t], (4.1)

where ḡ is a symmetric (0, 2)-tensor and h̄ ∈ C∞(M). In order to maintain the compact support
of the integrands, we assume that any variations of h have compact support as well. Since we
are working with manifolds without boundary, we do not need to worry about boundary terms.
Otherwise, we would need to impose the conditions that the variations and their first derivatives
vanish on the boundary (see, for example, [106]).

For a variation of the metric-measure structure (4.1), through the well-known expression
δ
√

|g| = 1
2

√
|g| tr ḡ (where we use δ to denote the variation), the invariance of the weighted

volume element reads

δ(dVh) =
d
dt

∣∣
t=0

dVh[t] = h̄ dvolg + h d
dt

∣∣
t=0

dvolg[t]

=
(
h̄+ 1

2
h tr ḡ

)
dvolg = 0.

(4.2)

Also due to this invariance, we compute the variation of the functional,

δSh =
d

dt
Sh

∣∣∣∣
t=0

=

∫
M

dτ

dt

∣∣∣∣
t=0

dVh +

∫
M

τ δ(dVh) =

∫
M

dτ

dt

∣∣∣∣
t=0

h dvolg.

Hence, we need the linearization δτ(ḡ) = dτ
dt

∣∣
t=0

of the scalar curvature τ . This is a known
computation (see Remark 4.1 below), but, for the sake of self-containment, we compute the
variation explicitly.

Using index notation, let δgij = dg[t]ij

dt

∣∣∣
t=0

, and notice that δgij ̸= gikgjlḡkl. Indeed, since

gikgkj = δij (the identity matrix), we have δ(gikgkj) = 0 and so gikḡkj = −δgikgkj . From this, it
follows that δgij = −gikgjlḡkl. Now, through a slight abuse of notation, take δgij = ḡij , so that
for any (0, 2)-tensor T , the formula Tij ḡij = −⟨T, ḡ⟩ is satisfied.

Now, since τ = ρii = ρijg
ij = ⟨ρ, g⟩, we can write

δτ(ḡ) =
dτ

dt

∣∣∣∣
t=0

= ρij ḡ
ij + gijδρij = −⟨ρ, ḡ⟩+ ⟨δρ, g⟩.

Inserting this into the variation of Sh, we arrive at a variational expression that must hold at
critical points

δSh =

∫
M

(−⟨ρ, ḡ⟩+ ⟨δρ, g⟩)h dvolg = 0.
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Since the first summand already explicitly features the variation of the metric, we need to focus
on the second term of this expression. The process to obtain this variation is laid out, for example,
in [106], and some of the formulas used are explained in [67, Appendix A], so we retrace the
most important steps here. Firstly, use the Palatini identity for the variation of the Ricci tensor in
terms of the variation of the Christoffel symbols:

δρij = ∇k(δΓ
k

ij )−∇j(δΓ
k

ik ),

so that we have ∫
M

⟨δρ, g⟩h dvolg =
∫
M

gij(∇k(δΓ
k

ij )−∇j(δΓ
k

ik ))h dvolg. (4.3)

Now, we can rewrite the two terms in the integral as

hgij∇k(Γ
k

ij ) = ∇k(hg
ijδΓ k

ij )− (∇kh)g
ijδΓ k

ij ,

hgij∇j(δΓ
k

ik ) = ∇j(hg
ijδΓ k

ik )− (∇jh)g
ijδΓ k

ik .

The first terms on the right-hand side of these equations are divergences, whose integral over M
vanishes by virtue of Stokes’ theorem. Moreover, interchanging the dummy indices j and k in
the second expression, the remaining terms can be written in terms of the variation of the metric
as follows [67, Appendix A]:

(∇kh)(g
ikδΓ j

ij − gijδΓ k
ij ) = (∇kh)(∇i(ḡ

ik)− gij∇k(ḡij)).

Thus, the term (4.3) of the variation takes the form∫
M

(∇kh)(∇i(ḡ
ik)− gij∇k(ḡij))dvolg.

Like in the previous step, we now decompose (using the fact that ∇g = 0) the two terms of the
integral in a way that includes a divergence term which can be ignored as we integrate over M :

(∇kh)∇i(ḡ
ik) = ∇i((∇kh)ḡ

ik)− (∇i∇kh)ḡ
ik,

(∇kh)gij∇k(ḡij) = ∇k((∇kh)gij(ḡ
ij))− (∇k∇kh)gij ḡ

ij.

Hence, (4.3) finally reads∫
M

(gij∇k∇kh−∇i∇jh)ḡ
ijdvolg =

∫
M

⟨Hesh−∆hg, ḡ⟩dvolg,

and the complete variation of the action is

δSh =

∫
M

⟨−hρ+Hesh −∆hg, ḡ⟩dvolg. (4.4)

Note that we have the freedom to choose any variation of the metric ḡ, since there always exists
a variation of the density, given by (4.2) as h̄ = −1

2
h tr ḡ, which preserves the weighted volume
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element h dvolg. Hence, the left-hand side of the product ⟨−hρ + Hesh −∆hg, ḡ⟩ must vanish
for all critical points of Sh, restricted to variations of the metric-measure structure preserving the
weighted volume element. Thus, we define the weighted Einstein tensor of the SMMS (M, g, h)
as

Gh = hρ− Hesh +∆hg, (4.5)

and it follows that the critical points in our constrained variational problem satisfy the equation

Gh = hρ− Hesh+∆hg = 0. (4.6)

By analogy with the vacuum Einstein field equations of General Relativity, we call this the (vac-
uum) weighted Einstein field equations. Henceforth, we will refer to them as the weighted Ein-
stein field equations or simply as the field equations, when the weighted context is clear. A
solution of the field equations is a SMMS (M, g, h) which satisfies Gh = 0.

Remark 4.1. The linearization of τ was already computed in [5, 87], in works on General Rela-
tivity (see also [3, 8, 62, 63] for discussions in Riemannian signature), as the operator acting on
symmetric (0, 2)-tensors by

δτ(ḡ) =
dτ

dt

∣∣∣∣
t=0

= −∆tr(ḡ) + div div ḡ − ⟨ρ, ḡ⟩.

Indeed, we can obtain this formula by using the formal adjoint of δτ with respect to the L2-inner
product on (M, g): ∫

M

δτ(ḡ)h dvolg =

∫
M

⟨δτ ∗(h), ḡ⟩dvolg.

By the discussion above and the expression (4.4), it follows that

δτ ∗(h) = −hρ+Hesh−∆hg,

and, since Hesh = ∇dh, div is the negative of the formal adjoint of ∇, and ∆ is formally
self-adjoint,∫

M

⟨−hρ+Hesh −∆hg, ḡ⟩dvolg =
∫

(−⟨ρ, ḡ⟩+ div div ḡ −∆(⟨g, ḡ⟩))h dvolg.

Hence, the value of δτ(ḡ) follows. From this point of view, the search for solutions to the
vacuum weighted Einstein field equations starts by determining what kinds of manifolds satisfy
ker(Γ) ̸= 0, where Γ : M → S2(T ∗M) is the map that takes the metric-measure structure (g, h)
to the symmetric (0, 2)-tensor δτ ∗(h) = −hρ + Hesh −∆hg. Then, computing ker(Γ) gives the
explicit solutions on a given manifold.

Besides the discussion in this thesis, equation (4.6) and formally similar variants of it appear
in several contexts as very natural second order differential equations with geometric interest.
For example,considering the space of manifolds with constant scalar curvature, critical metrics
for the volume functional admit non-trivial solutions for the equation δτ ∗(h) = κg for κ constant.
This analysis was localized to the case where the metric deformation is supported on the closure
of a bounded domain in [51, 90], defining the V -static spaces.
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Remark 4.2. Geometrically, (4.6) presents a notable relationship with certain families of warped
products. Indeed, the Ricci tensor of a warped product of the form N ×φ I , where N is n-
dimensional and I ⊂ R is a real interval, is given by [97]:

ρ(X, Y ) = ρN(X, Y )− 1
φ
Hesφ(X, Y ),

ρ(X, ∂t) = 0,

ρ(∂t, ∂t) = −φ(∆φ) gI(∂t, ∂t),

where X, Y are vector fields tangent to N , t is a coordinate parameterizing I by arc length, and
ρN is the Ricci tensor of N . Necessary and sufficient conditions for a warped product N ×φ I to
be Einstein follow:

ρN − 1

φ
HesNφ = λgN , −∆φ = λφ,

where λ is constant. By replacing λ in the expression on the left-hand side, one gets φρN −
Hesφ+∆φgN = 0, which corresponds to equation (4.6). Thus, for any Einstein warped product
N ×φ I , the smooth metric measure space (N, gN , φ) is a solution of the vacuum weighted
Einstein field equation (4.6). When the vector field ∂t is timelike, this process gives rise to
Riemannian vacuum static spaces.

Remark 4.2 shows how a static vacuum solution of the usual Einstein field equations is con-
structed from a Riemannian manifold with a density satisfying (4.6). When the stress-energy
tensor of a perfect fluid is introduced, an analogous process gives rise to the formally similar
equation

hρ− Hesh =
1

n
(hτ −∆h) g,

where τ and h are related to the pressure and energy density of the higher dimensional static
Lorentzian spacetime (see [80]).

Due to its physical significance and its relation to the linearization of the scalar curvature,
equation (4.6) has drawn significant attention in the Riemannian setting. The works of Kobayashi
and Lafontaine [79, 84] laid the groundwork for a systematic study of its Riemannian solutions
(see also [78,105,112]). In this thesis, we present new results concerning solutions in Lorentzian
signature, which had not been explored previously.

It is also noteworthy that, recently, Ho and Shin studied the kernel of the formal adjoint for the
linearization of the weighted scalar curvature (1.18) with µ = 0 to propose a weighted analogue
of vacuum static spaces in the Riemannian setting. They also studied the locally conformally flat
weighted case, and considered some stability and prescribed weighted scalar curvature problems
associated to closed SMMSs [73].

Remark 4.3. Another example of the geometric significance of equations formally related to (4.6)
is the following: In [3], it was shown that an n-dimensional compact Riemannian manifold which
is critical for the Einstein-Hilbert functional, restricted to the space of metrics with constant
scalar curvature and unit volume, satisfies the Critical Point Equation (CPE):

(f + 1)ρ− Hesf +
(
∆f − τ

n

)
g = 0,
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for a certain function f . Besse conjectured in [3] that the only critical compact Riemannian man-
ifolds are standard spheres. Since then, a number of papers have provided positive results under
some extra assumptions (see, for example, [76, 94]). Due to their formal resemblance, solutions
of the CPE equation in the Lorentzian setting share some geometric features with solutions of
the weighted Einstein field equations (see Remark 5.13).

Remark 4.4. Metric theories of gravitation often derive their field equations from a modified
version of the Einstein-Hilbert functional, either by taking a function of the scalar curvature, as
in f(R)-gravity [26], or by incorporating scalar fields which play similar roles to our density,
like in Jordan-Brans-Dicke theory [91].

In a similar manner, a way to generalize the weighted field equations (4.6) is to include a
density-dependent potential function V (h) and a density-independent matter Lagrangian Lm,
by analogy with physicists’ interpretation of the stress-energy tensor in General Relativity. Thus,
the functional Sh becomes

Sh,V,Lm =

∫
M

(τh− 2V (h) + Lm) dvolg,

and the variational problem with constraints leads to the following equation:

hρ− Hesh +(∆h+ V − hV ′)g = T,

where V ′ = dV
dh

and T is such that ⟨T, ḡ⟩ = − 1√
|g|
δ(
√

|g|Lm). The potential terms come from

the constraint (4.2) and the variation

δ(2V dvolg) = 2V ′(h)h̄ dvolg + V (h)tr ḡ dvolg = (V − hV ′)tr ḡ dvolg.

(cf. [91]). The stress-energy tensor T is physically interpreted as the one which models the
matter content of the spacetime, so T = 0 indicates a vacuum. If, additionally, the potential V is
constant, the equation reduces to hρ− Hesh +(∆h + V )g = 0. In this case, V plays the role of
a cosmological constant. As we will see shortly, the non-variational derivation of the weighted
field equations naturally yields such a constant. However, the variational approach requires an
ad-hoc, although standard, modification of the weighted functional Sh of the form

Sh,Λ =

∫
M

(τh− 2Λ) dvolg.

4.2 Derivation through the characterizing properties of G

As mentioned in the introduction to Part II, the Einstein tensor (II.1) on a spacetime (M, g) is
characterized (up to multiplicative constants) by the following four properties (see [89]):

1. Symmetry.

2. Vanishing divergence.
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3. Dependence on the metric tensor g and its first two derivatives.

4. Linearity in the second derivatives of g.

Our objective in this section is to define a tensor on a smooth metric measure space that suitably
generalizes the Einstein tensor while also satisfying analogous characterizing properties, with
the caveat that now they must include information on the density function h. Thus, we expect
our tensor to present the following properties:

1. Symmetry.

2. Vanishing divergence.

3. Dependence on the metric tensor g, the density function h and their first two derivatives.

4. Linearity in the second derivatives of g and h.

Since the Bakry-Émery Ricci tensor (1.16) is the natural Ricci-type tensor in smooth metric mea-
sure spaces, we will use it as our key building block. Moreover, we will see that the weighted
Einstein tensor defined through this process essentially mimics the one obtained through a vari-
ational approach in Section 4.1.

Now, motivated by the computations in the previous section and the relationship between the
value of the dimensional parameter m and vacuum static spaces (see Remark 4.2), and given that
the auxiliary curvature parameter µ does not play a role in this setting (see Section 1.5 and recall
that the value m = 1 makes µ irrelevant), we take m = 1 and h = e−f to rewrite (1.16) as

ρh = ρ− Hesh
h

.

Since a suitable generalization of the Einstein tensor must depend on the metric tensor (property
3 above), we allow a summand which is a multiple of g. Thus, we consider a tensor of the form
ρh + λg, where λ ∈ C∞(M). Motivated by the linearity in the second derivatives (property 4),
we perform a linearization of this tensor, resulting in

Gh = hρ− Hesh+λhg.

Einstein manifolds have constant scalar curvature and we will show (see Lemma 4.5 below) that
the weighted analogue that we are going to define also has this property. Hence, we compute the
divergence of Gh in the case where τ is constant:

div(Gh) = div(hρ)− div Hesh+div(λhg)

= h div ρ+ ι∇hρ− d∆h− ι∇hρ+ d(λh)

= 1
2
h dτ − d∆h+ d(λh)

= d(λh−∆h),

where ι denotes the interior product, ιXρ = ρ(X, ·), and we have used the contracted Bianchi
identity div ρ = 1

2
dτ and the Bochner formula div Hesh = d∆h+ι∇hρ (see Section 1.1.2). Thus,
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for Gh to be divergence-free if τ is constant, we get that λh = ∆h + Λ, where Λ ∈ R plays the
role of a cosmological constant. Consequently, we define a weighted Einstein tensor on a smooth
metric measure space (M, g, h) by

Gh = hρ− Hesh+(∆h+ Λ)g, (4.7)

as a (0, 2)-tensor satisfying properties 1, 3 and 4 above. Property 2 (vanishing divergence) is not
satisfied in general, but it is when the scalar curvature is constant (see Lemma 4.5 below). Notice
that, defined in this way (i.e., including the cosmological constant), Gh is indeed a generalization
of the Einstein tensor (II.1), since the vanishing of Gh is equivalent to the underlying manifold
being Einstein if h is constant. The associated (vacuum) field equations are thus

Gh = hρ− Hesh+(∆h+ Λ)g = 0. (4.8)

The definition of Gh in (4.7) only differs from (4.5), the one obtained through variational means,
by the appearance of a possibly non-zero cosmological constant, and this difference can be over-
come through a small modification of the weighted Einstein-Hilbert functional as in Remark 4.4.
In the following chapter, we will prove that solutions of (4.8) with ∇h lightlike do not admit
Λ ̸= 0, so (4.6) and (4.8) are equivalent in that context. Moreover, there are families of mani-
folds that only admit solutions with Λ = 0 (see Theorem 5.6).

As a final note in this chapter, we point out that solutions of the field equations (4.8) have
constant scalar curvature, which is also a property presented by the vacuum solutions of the usual
Einstein equations (i.e., standard Einstein manifolds). The following lemma, which was proved
in [8,63], and was applied in [25] to the Lorentzian setting of smooth metric measure spacetimes,
further cements (4.8) as a weighted analogue of the usual Einstein condition by proving that this
property is conserved for solutions with non-trivial densities.

Lemma 4.5. If (M, g, h) is a solution of the vacuum weighted Einstein field equations, then its
scalar curvature τ is constant.

Proof. We take the divergence of equation (4.8) to see, using the Bochner formula and the con-
tracted Bianchi identity, that 0 = h div ρ+ ι∇hρ− div Hesh +d∆h = 1

2
h dτ . Hence, since h ̸= 0

in every open subset, we conclude that τ is constant.



Chapter 5
Isotropic solutions

Once a weighted analogue of the Einstein field equations has been determined, in the form of
(4.6) or (4.8), our interest shifts towards the analysis of solutions, i.e, smooth metric measure
spacetimes (M, g, h) such that the weighted field equations are satisfied in M . Given the level
of complexity that this task reaches in the usual setting, it comes as no surprise that its weighted
version

0 = hρ− Hesh +(∆h+ Λ)g

is also too unwieldy to consider in its full generality.
Nevertheless, due to the fact that we are working in Lorentzian signature, the causal character

of ∇h crucially influences the geometry of solutions. Thus, since we only consider solutions with
∇h ̸= 0, we can split the problem of solving the field equations into two more narrow cases by
defining isotropic solutions as those with ∇h lightlike, and non-isotropic ones as those with ∇h
timelike or spacelike. In each case, the approach in treating an equation like (4.8) is different,
as are often distinct the features of the resulting solutions. Although the causal character of ∇h
can, in principle, change within the manifold, since our analysis in this part of the thesis is local,
we will restrict our work to open sets where this causal character remains constant.

Due to the formal similarity between our equations and those of vacuum static spaces in Rie-
mannian signature, some solutions in the non-isotropic case present similar geometric features to
those of their Riemannian counterparts (see Chapter 6). However, in this chapter we focus on the
purely Lorentzian context given by isotropic solutions. The results in this chapter are contained
in the article [25].

Outline of the chapter
Firstly, in Section 5.1 we consider isotropic solutions of (4.8) of arbitrary dimension n ≥ 3.
We will see that, in general, they are realized on Kundt spacetimes and, in certain cases, on
Brinkmann waves. Moreover, the scalar curvature vanishes and the Ricci operator is nilpotent.
These results are summarized in Theorem 5.4, which is the main result in arbitrary dimension in
this chapter.

For solutions in dimension three, the geometry of the underlying spacetime is more rigid
than in higher dimensions, so stronger results can be achieved, and the metric and density can be
more explicitly described in local coordinates. Indeed, in Section 5.2 we restrict the context to
dimension three to classify solutions on pp-waves, provide some illustrative examples, and prove
a complete classification result for 3-dimensional isotropic solutions (Theorem 5.11). Finally, in
Section 5.3 we provide some remarks on 4-dimensional spacetimes: we prove that 4-dimensional
Ricci-flat isotropic solutions are pp-waves; show that the classification result in three dimensions

87
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does not extend to four dimensions by giving an appropriate example; and build Ricci-flat 4-
dimensional warped products from the 3-dimensional solutions given in Section 5.2.

5.1 The field equations in arbitrary dimension

Let (M, g, h) be a smooth metric measure spacetime of dimension n. Taking traces in the field
equations, we have

0 = hτ + (n− 1)∆h+ nΛ, (5.1)

so ∆h can be given in terms of h, τ and Λ as ∆h = −hτ+nΛ
n−1

. The following result shows that,
for isotropic solutions, ∇h is geodesic and an eigenvector of the Ricci operator.

Lemma 5.1. Let (M, g, h) be an isotropic solution. Then,

∇∇h∇h = 0 and Ric(∇h) = hτ + Λ

(n− 1)h
∇h.

Proof. Since g(∇h,∇h) = 0, we have

0 = (∇Xg)(∇h,∇h) = −2Hesh(∇h,X) for all vector fields X.

Hence hesh(∇h) = ∇∇h∇h = 0 and, from equation (4.8),

Ric(∇h) = −∆h+ Λ

h
∇h =

hτ + Λ

(n− 1)h
∇h.

Let α = hτ+Λ
(n−1)h

be the eigenvalue of Ric associated to ∇h. Since ∇h is lightlike and
Ric(∇h) = α∇h, the Ricci operator has real eigenvalues. Moreover, since the Ricci opera-
tor is self-adjoint, from the discussion in Section 1.1.3 on self-adjoint operators in Lorentzian
spaces, there exists a pseudo-orthonormal basis

B = {∇h, U,X1, . . . , Xn−2} such that g(∇h, U) = g(Xi, Xi) = 1,

(other terms of g being zero) and such that the Ricci operator takes the form

Ric =



α ν µ
0 α 0 0
0 µ β1

β1

0
. . .

βn−2


(5.2)

In other words, we have Ric(∇h) = α∇h, Ric(U) = ν∇h+αU+µX1, Ric(X1) = µ∇h+β1X1

and Ric(Xi) = βiXi if i ̸= 1.
In the next lemma we show that the Ricci operator is indeed nilpotent and, moreover, the

constant Λ and the Laplacian of h vanish.
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Lemma 5.2. Let (M, g, h) be an isotropic solution. Then Ric is nilpotent, ∆h = 0 and Λ = 0.

Proof. By Lemma 4.5, the scalar curvature τ is constant. We use the contracted Bianchi identity
(see Section 1.1.2) to see that div ρ(∇h) = 1

2
dτ(∇h) = 0. Hence,

0 = div ρ(∇h) = (∇∇hρ)(U,∇h) + (∇Uρ)(∇h,∇h) +
∑
i

(∇Xi
ρ)(Xi,∇h). (5.3)

We compute each of these three terms separately. Note that α = hτ+Λ
(n−1)h

, and since Λ and τ are
constants, we have

∇h(α) = − Λ

(n− 1)h2
g(∇h,∇h) = 0.

Also, since ∇∇h∇h = 0 and

ρ(∇∇hU,∇h) = αg(∇∇hU,∇h) = α{∇hg(U,∇h)− g(U,∇∇h∇h)} = 0,

we write

(∇∇hρ)(U,∇h) = ∇h(ρ(U,∇h))− ρ(∇∇hU,∇h)− ρ(U,∇∇h∇h) = ∇h(α) = 0.

Since ρ(∇h,∇h) = 0, we see that

(∇Uρ)(∇h,∇h) = U(ρ(∇h,∇h))− 2ρ(∇U∇h,∇h) = −2αg(∇∇h∇h, U) = 0.

Now, we write the following three formulas:

ρ(Xi,∇h) = αg(Xi,∇h) = 0, for all i,∑
i ρ(∇Xi

Xi,∇h) = α
∑

i g(∇Xi
Xi,∇h) = −α∆h,∑

i ρ(Xi,∇Xi
∇h) =

∑
i g(Xi,Ric(∇Xi

∇h)) = tr(Ric ◦ hesh),

where we have used the fact that the terms

ρ(∇U∇h,∇h), ρ(∇∇hU,∇h) and ρ(U,∇∇h∇h)

all vanish. We then conclude∑
i

(∇Xi
ρ)(Xi,∇h) =

∑
i

{Xiρ(Xi,∇h)− ρ(∇Xi
Xi,∇h)− ρ(Xi,∇Xi

∇h)}

= α∆h− tr(Ric ◦ hesh).

Hence, from (5.3) it follows that

α∆h− tr(Ric ◦ hesh) = 0. (5.4)



90 5 Isotropic solutions

Notice that, by the field equations (4.8), the normal form of hesh has the same structure as that of
Ric. Thus, we set hesh(X1) = ∗∇h + γ1X1, where the value of ∗ is irrelevant to our argument,
and hesh(Xi) = γiXi for i ≥ 2. From (4.8) we have

0 = Gh(∇h, U) = hα +∆h+ Λ,

0 = Gh(Xi, Xi) = hβi − γi +∆h+ Λ,

so γi = h(βi − α). Hence, equation (5.4) becomes

0 = α
∑
i

γi −
∑
i

βiγi =
∑
i

γi(α− βi) = −
∑
i

γ2i
h
.

This implies γi = 0 for all i, and therefore ∆h = 0. Moreover, βi = α for all i. Now, from (5.1)
we get that hτ + nΛ = 0. Since τ and Λ are constant, but h is not, we conclude τ = Λ = 0.
Furthermore, βi = hτ+Λ

(n−1)h
= 0 and Ric is nilpotent.

As a consequence of Lemma 5.2, all isotropic solutions to the field equations (4.8) have
vanishing scalar curvature. However, this is not necessarily the case if ∇h is not lightlike. Indeed,
in this case, every value of τ is realizable, as the following examples built on two families of
Brinkmann waves show.

Example 5.3. We consider κ ̸= 0 and define the following examples:

1. For κ > 0, let g be a Brinkmann metric defined by (1.12) with

F (u, v, x) =
u2κ

2
+ σ(v)

(
u+ 2

√
2

κ
arctanh

(
tan

(
x
√
κ

2
√
2

)))
for an arbitrary function σ. Then the scalar curvature is τ = κ and the manifold satisfies
equation (4.8) for h(u, v, x) = cos

(
x
√

κ
2

)
and Λ = 0. Moreover,

∇h = −
√
κ

2
sin

(
x

√
κ

2

)
∂x and ∥∇h∥ =

1

2
κ sin2

(
x

√
κ

2

)
> 0,

so the vector field ∇h is spacelike, since ∇h ̸= 0.

2. For κ < 0, let g be a Brinkmann metric defined by (1.12) with

F (u, v, x) =
u2κ

2
+

√
2

−κ
σ(v)e

−x
√
−κ√
2 .

Then the scalar curvature is τ = κ and the manifold satisfies equation (4.8) for h(u, v, x) =
e
√

−κ
2

x and Λ = 0. Moreover,

∇h =

√
−κ
2
e
√

−κ
2

x∂x and ∥∇h∥ = −1

2
κe

√
−2κx > 0,

so the vector field ∇h is globally defined and it is spacelike.
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In conclusion, any constant scalar curvature τ is realizable by a solution of the field equations
(4.8) with vanishing cosmological constant and a Brinkmann wave as a background metric.

Next, we will continue the analysis of isotropic solutions to the field equations. As a con-
sequence of Lemma 5.2, we have that τ = 0, ∆h = 0 and Λ = 0, so equation (4.8) reduces
to

hρ = Hesh . (5.5)

Notice that this equation is linear in the function h. A more general version of (5.5) called
the affine quasi-Einstein equation, was considered in [17] for affine manifolds, so some of the
properties of solutions in the affine context extend to the Lorentzian setting. For example, if
(M, g) is real analytic then h is also real analytic. Further analysis of (5.5) yields the main
rigidity result of this chapter, which holds in arbitrary dimension.

Theorem 5.4. Let (Mn, g, h) be an isotropic solution of the weighted Einstein field equations
(4.8). Then one of the following possibilities holds:

1. (M, g) is a Ricci-flat Brinkmann wave and Hesh = 0.

2. The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave.

3. The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime.

Proof. We keep working in the pseudo-orthonormal basis B where, from (5.2) and as a conse-
quence of Lemma 5.2, the Ricci operator acts as follows:

Ric(∇h) = Ric(Xi) = 0, for i = 2, . . . , n− 2,

Ric(U) = ν∇h+ µX1, Ric(X1) = µ∇h.

We distinguish three cases: Ric is zero (µ = ν = 0), Ric is 2-step nilpotent (ν ̸= 0 and µ = 0)
and Ric is 3-step nilpotent (µ ̸= 0).

If the manifold is Ricci-flat, µ = ν = 0, then equation (5.5) reduces to Hesh = 0. Hence
∇h is a lightlike parallel vector field, so the manifold is a Ricci-flat Brinkmann wave with dis-
tinguished vector field ∇h (see Section 1.3). This corresponds to Theorem 5.4 (1).

If ν ̸= 0 and µ = 0, then the Ricci operator and, by (5.5), the Hessian operator are 2-step
nilpotent. We have ∇∇h∇h = ∇Xi

∇h = 0 for all i = 1, . . . , n − 2, while ∇U∇h = hν∇h, so
∇h is a lightlike recurrent vector field and the manifold is a Brinkmann wave. Theorem 5.4 (2)
follows.

If µ ̸= 0, then the Ricci and the Hessian operators are 3-step nilpotent. We already know,
by Lemma 5.1, that the lightlike vector field ∇h is geodesic. Moreover, since ∇X1∇h = hµX1

and ∇Xi
∇h = 0 for i > 1 the condition (1.8) is satisfied for the 1-form ω given by ω(∇h) = 0,

ω(X1) = hµ and ω(Xi) = 0 for all i = 2, . . . , n−2. It follows that (M, g) is a Kundt spacetime.
Alternatively, we can compute the optical scalars (1.9) for ∇h and see that they vanish.

Indeed, because ∇h is a gradient, it is twist-free (ω2 = 0). Moreover, we check that

θ =
1

n− 2
∇iV

i =
1

n− 2
∆h = 0,
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as a consequence of Lemma 5.2. Since hesh is nilpotent and θ = 0, ∇h is shear-free as well:

σ2 = ∥Hesh ∥2 − (n− 2)θ2 = 0,

from where we also conclude that (M, g) is a Kundt spacetime. This is the remaining possibility,
corresponding to Theorem 5.4 (3).

We have already pointed out (see Remark 4.2) how SMMSs which satisfy the weighted Ein-
stein field equation with Λ = 0 are related to Einstein warped products of the formN×h I . In the
isotropic case, as a consequence of the results in Section 5.1, solutions satisfy ∆h = 0 and Λ = 0.
Applying these facts to the formulas in Remark 4.2, we obtain the following consequence.

Corollary 5.5. A smooth metric measure space (N, g, h) with isotropic density h is a solution to
the weighted Einstein field equation (4.8) if and only if N ×h R is Ricci-flat.

5.2 The field equations in dimension three
One of the most useful consequences of Theorem 5.4 is that it reduces the study of isotropic so-
lutions to that of different families of Kundt spacetimes. As such, we can make use of the Kundt
coordinates and the forms of these metrics discussed in Section 1.3. In particular, Kundt space-
times in dimension three present a more rigid structure than in higher dimensions, which allows
us to explicitly solve the field equations and give expressions for the metric and the isotropic
density function h. We begin by studying pp-waves and Brinkmann waves, and then we go on
to Kundt spacetimes, ending with the statement and proof of the main classification theorem in
dimension three (Theorem 5.11).

pp-waves
First, consider 3-dimensional solutions to the field equations with the underlying structure of a
pp-wave. In this case, we are able to classify non-isotropic solutions as well. Noticeably, there
are no solutions with ∇h timelike.

Theorem 5.6. Let (M, g) be a 3-dimensional pp-wave. If (M, g, h) is a non-flat solution of (4.8),
then Λ = 0 and one of the following possibilities holds:

1. ∇h is lightlike and (M, g) is a plane wave which in local coordinates can be written as

g(u, v, x) = dv

(
2du− α′′(v)

α(v)
x2dv

)
+ dx2,

where h(u, v, x) = α(v) is an arbitrary positive function with α′′(v) ̸= 0.

2. ∇h is spacelike and (M, g) can be written in local coordinates as

g(u, v, x) = dv (2du+ F (v, x)dv) + dx2,
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with

F (v, x) =
(γ1α(v) + 2γ0(v)γ

′′
0 (v)) log(γ0(v) + γ1x)

γ21
− 2xγ′′0 (v)

γ1
+ β(v),

where h(u, v, x) = γ1x + γ0(v), γ1 ∈ R\{0}, and γ0, α, β are arbitrary functions such
that γ1α(v) + 2γ0(v)γ

′′
0 (v) ̸= 0 and γ1x+ γ0(v) > 0.

Proof. Since (M, g) is a pp-wave, there exist local coordinates so that the metric is given by
(1.12) where F (u, v, x) = F (v, x). In order to simplify notation, we denote Gh(∂u, ∂u) = Gh

uu,
Gh(∂u, ∂x) = Gh

ux, Gh(∂x, ∂x) = Gh
xx and so on, and we compute the expression of Gh given by

(4.7):
Gh

uu = −∂2uh, Gh
xx = Λ+ 2∂u∂vh− F∂2uh, Gh

ux = −∂u∂xh,

Gh
vv = F (−F∂2uh+ ∂2xh+ 2∂u∂vh+ Λ) + ∂vF∂uh−∂xF∂xh−2∂2

vh−h∂2
xF

2
,

Gh
vx = −∂v∂xh+ ∂xF∂uh

2
, Gh

uv = Λ+ ∂2xh+ ∂u∂vh− F∂2uh.

From Gh
uu = Gh

ux = 0 we get that h(u, v, x) = h1(v)u + h0(v, x). Now, from Gh
xx = Λ +

2h′1(v) = 0, we get that h1(v) = −Λ
2
v+k for a constant k. FromGh

uv = Λ+h′1(v)+∂
2
xh0(v, x) =

0, the function h reduces to the form

h(u, v, x) =

(
−Λ

2
v + k

)
u− Λ

4
x2 + h01(v)x+ h00(v).

If we differentiate Gh
vx = −h′01(v) + 1

4
(2k − vΛ) ∂xF (v, x) = 0 with respect to x, we obtain

1
4
(2k − vΛ) ∂2xF (v, x) = 0. If ∂2xF (v, x) = 0 then the manifold is Ricci-flat, and hence flat.

Therefore, we conclude that Λ = k = 0 and Gh
vx = −h′01(v) = 0, so h01 is indeed constant. The

function h reduces to h(u, v, x) = h01x+h00(v), with ∇h = h′00(v)∂u+h01∂x and ∥∇h∥2 = h201.
We analyze separately the isotropic case (∇h is lightlike: h01 = 0) and the non-isotropic case

(∇h is spacelike: h01 ̸= 0). If h01 = 0, then the only non-vanishing component of Gh is Gh
vv =

−h′′00(v)− 1
2
h00(v)∂

2
xF (v, x). Setting Gh

vv = 0 we obtain that F (v, x) is a polynomial of degree
two of the form F (v, x) = −h′′

00(v)

h00(v)
x2 +F1(v)x+F0(v) with h′′00(v) ̸= 0, otherwise the manifold

is flat. Therefore g is a plane wave and F can be further normalized so that F (v, x) = −h′′
00(v)

h00(v)
x2

(see, for example, [86]). This corresponds to Item (1).
We assume now that ∇h is spacelike, i.e. h01 ̸= 0. There is only one remaining non-zero

term of Gh:

Gh
vv =

1

2

(
−∂2xF (v, x)(h00(v) + h01x)− h01∂xF (v, x)− 2h′′00(v)

)
.

We solve Gh
vv = 0 to obtain the form of F in terms of γ0(v) = h00(v) and γ1 = h01 as given in

Item (2). Notice that the condition γ1α(v) + 2γ0(v)γ
′′
0 (v) ̸= 0 comes from the assumption that

the solution is non-flat, while γ1x+ γ0(v) > 0 comes from the positivity of the density function
h.
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Remark 5.7. Notice that, as a consequence of Theorem 5.6 (1), for any function h(v) with
h′′(v) ̸= 0 there always exists a plane wave (M, gpw) so that (M, gpw, h) is an isotropic solu-
tion to the field equations (4.8). Recall from Section 1.3 that, among plane wave metrics, given
by expression (1.12) with F (v, x) = a(v)x2, there are two families that are locally homoge-
neous [65]:

• The family Pc, defined by F (v, x) = −β(v)x2 with β′ = cβ3/2 for a constant c and β > 0.

• The family of Cahen-Wallach symmetric spaces CWε, defined by F (v, x) = εx2.

Since solutions in Theorem 5.6 (1) are of the form F (v, x) = −h′′(v)
h(v)

x2, we have the following:

• For c > 0, metrics in (1.12) with F (v, x) = − 4
c2v2

x2 belong to the family P−c. From the

equation β = h′′

h
, it follows that for h = h(v) = a1v

c−
√

c2+16
2c + a2v

c+
√

c2+16
2c , these metrics

are homogeneous solutions to the field equations. They show lightlike singularities and are
geodesically incomplete (we refer to [6] for details). Note that F is not defined on R3.

• For the densities

h(u, v, x) = b1 cos (v
√
ε) + b2 sin (v

√
ε) , if ε > 0,

h(u, v, x) = b1e
v
√
−ε + b2e

−v
√
−ε, if ε < 0,

Cahen-Wallach spaces CWε are solutions to the weighted Einstein field equations (4.8)
(indeed, h′′

h
= −ε). Moreover, these metrics are geodesically complete (see [6, 28]). Also,

for appropriate choices of h > 0 one has Hesh ̸= 0, so there exist global solutions to (4.8).

Brinkmann waves
It was shown in Theorem 5.4 that Brinkmann waves play a role when the Ricci operator is 2-step
nilpotent. We now show that all 3-dimensional isotropic solutions in this case are indeed plane
waves.

Theorem 5.8. If (M, g, h) is an isotropic solution of (4.8) with (M, g) being a 3-dimensional
Brinkmann wave, then (M, g) is a plane wave as in Theorem 5.6 (1).

Proof. Consider local coordinates as in (1.12). By Lemma 5.2, we have Λ = τ = ∆h = 0.
The scalar curvature takes the form τ = ∂2uF (u, v, x), and therefore we obtain F (u, v, x) =
F1(v, x)u + F0(v, x). With this reduction, the only non-zero component of the square of the
Ricci operator is Ric2(∂v) = 1

4
(∂xF1)

2 ∂u. A direct calculation shows Gh
uu = −∂2uh(u, v, x)

and Gh
ux = −∂u∂xh(u, v, x) and, from Gh

uu = Gh
ux = 0, we get that h(u, v, x) = h1(v)u +

h0(v, x). We differentiate the term Gh
xx = −h1(v)F1(v, x) + 2h′1(v) with respect to x to see that

h1(v)∂xF1(v, x) = 0. Hence h1 = 0 or ∂xF1(v, x) = 0.
If h1(v) = 0, then h(u, v, x) = h0(v, x) and 0 = ∥∇h∥2 = (∂xh0(v, x))

2, so the density
function reduces to h(u, v, x) = h00(v) > 0. Now, we compute 0 = Gh

vx = 1
2
h00(v)∂xF1(v, x) to

obtain that in any case ∂xF1(v, x) = 0. This condition yields F1(v, x) = F1(v) and, as a result,
the Ricci operator of (M, g) is at most 2-step nilpotent. It now follows that the manifold is a
pp-wave (see, for example, [86]). Hence, from Theorem 5.6, the result follows.
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Notice that, as a consequence of Theorem 5.8, all 3-dimensional isotropic solutions realized
on Brinkmann waves have at most 2-step nilpotent Ricci operator. Thus, any 3-dimensional
isotropic solution with 3-step nilpotent Ricci operator is Kundt by Theorem 5.4, but it is not a
Brinkmann wave (see Theorem 5.11 (2) for the solutions which present this behavior).

In the cases where ∇h is not lightlike, however, we observe a loss of rigidity in the underlying
manifold. Indeed, there exist 3-dimensional non-isotropic solutions which are Brinkmann waves
but not pp-waves. The following example illustrates this fact.

Example 5.9. Let (M, g) be a Brinkmann wave with metric given by (1.12) where

F (v, x) =
(4uv − x2) log(vx) + x2

2v2
.

The Ricci operator is given by

Ric(∂u) = 0, Ric(∂v) =
4uv + 2x2 log(vx) + x2

4v2x2
∂u +

1

vx
∂x, Ric(∂x) =

1

vx
∂u,

so it is 3-step nilpotent and, thus, it is not a pp-wave. A straightforward calculation shows that, for
h(u, v, x) = vx and Λ = 0, (M, g, h) is a solution of equation (4.8). Moreover, ∇h = x∂u+v∂x,
so ∥∇h∥2 = v2 and ∇h is spacelike.

Kundt spacetimes
To complete the classification of isotropic solutions, we consider a 3-dimensional Kundt space-
time and work with a metric given in local coordinates as in (1.11).

Lemma 5.10. Let (M, g) be a 3-dimensional Kundt spacetime with distinguished lightlike vector
field V . If Ric(V ) = 0 and τ = 0 then either (M, g) is a Brinkmann wave or there exist local
coordinates (u, v, x) such that g is of the form given in (1.11) with

F (u, v, x) = u2

x2 + γ1(v, x)u+ γ0(v, x),

K(u, v, x) = −2u
x
.

(5.6)

Proof. We consider the form of the metric given in (1.11), where V = ∂u. A direct calculation
shows that

Ric(V ) =
1

2

(
∂2uF − (∂uK)2 + ∂u∂xK − 2K∂2uK

)
∂u +

1

2
(∂2uK)∂x.

Hence, since Ric(V ) = 0, we have that ∂2uK = 0, so K(u, v, x) = ω1(v, x)u + ω0(v, x).
Now, Ric(V ) = 1

2
(∂2uF + ∂xω1 − ω2

1) ∂u and τ = ∂2uF + 2∂xω1 − 3
2
ω2
1 . From these relations

we obtain that 2∂xω1 − ω2
1 = 0 and, solving this differential equation, we obtain that either

ω1 = 0 or ω1(v, x) = − 2
x+φ(v)

. Moreover, since ∂2uF = ω2
1 − ∂xω1 = ∂xω1, we get that

F (u, v, x) = ε u2

(x+φ(v))2
+γ1(v, x)u+γ0(v, x), where ε = 0 if ω1 = 0 and ε = 1 if ω1 = − 2

x+φ(v)
.
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Appropriate changes of coordinates allow us to simplify the form of the functions F and
K as follows. We refer to [46] for changes of coordinates of 3-dimensional Kundt spacetimes
with functions F and K which are polynomial of degrees 3 and 2, respectively, in the variable
u; and to [103] for changes of coordinates in a broader context. Firstly, by setting (u, v, x) =
(ũ, ṽ, x̃+φ(ṽ)) and redefining γ0 and γ1, one can write F (u, v, x) = εu

2

x2+γ1(v, x)u+γ0(v, x) and
K(u, v, x) = −ε2u

x
+ω0(v, x). Moreover, a new change of the form (u, v, x) = (ũ+ψ(ṽ, x̃), ṽ, x̃)

for ψ(ṽ, x̃) solving the equation ω0 + ω1ψ + ∂x̃ψ = 0 transforms K into either K = 0, in which
case we have a Brinkmann wave, or K = −2u

x
.

With this, we are finally ready to prove the main classification result for 3-dimensional
isotropic solutions.

Theorem 5.11. Let (M, g, h) be a non-flat 3-dimensional isotropic solution of the weighted Ein-
stein field equations (4.8). Then, the Ricci operator is nilpotent and one of the following holds:

1. If Ric is 2-step nilpotent, then (M, g) is a plane wave and there exist local coordinates
(u, v, x) such that

g(u, v, x) = dv

(
2du− α′′(v)

α(v)
x2dv

)
+ dx2,

where h(u, v, x) = α(v) is an arbitrary positive function with α′′(v) ̸= 0.

2. If Ric is 3-step nilpotent, then (M, g) is a Kundt spacetime and there exist local coordinates
(u, v, x) so that h(u, v, x) = v > 0 and

g(u, v, x) = dv(2du+ F (u, v, x)dv + 2K(u, v, x)dx) + dx2, (5.7)

where
F (u, v, x) = u2

x2 + γ1(v, x)u+ γ0(v, x),

K(u, v, x) = −2u
x
,

with γ1(v, x) = α1(v)− 2 log(x)
v

and

γ0(v, x) = x2((log(x)−2) log(x)+2)
v2

+ x2α1(v)(1−log(x))
v

+x2α2(v) + xα3(v),

for arbitrary functions α1, α2 and α3.

Proof. Let (M, g, h) be a 3-dimensional isotropic solution of (4.8). Firstly, we assume that the
Ricci operator is 2-step nilpotent in order to prove Theorem 5.11 (1). By Theorem 5.4, (M, g) is a
Brinkmann wave where ∇h is a recurrent vector field. Now the result follows from Theorems 5.8
and 5.6 (1).

On the other hand, if the Ricci operator is 3-step nilpotent, by Theorem 5.4, (M, g) is a Kundt
spacetime where ∇h is the distinguished lightlike geodesic vector field with vanishing expansion
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scalar. Hence, there exist coordinates (u, v, x) as in (1.11) with ∇h = ∂u. For a general function
h(u, v, x) we compute

∇h(u, v, x) =
((
ω2 − F

)
∂uh− ω∂xh+ ∂vh

)
∂u + ∂uh ∂v + (∂xh− ω∂uh) ∂x

to see that ∇h = ∂u if and only if h(u, v, x) = v + κ, where κ is a constant. We normalize the
variable v and consider h(u, v, x) = v. Now, notice that Lemma 5.10 is satisfied for this solution.
Consequently, it is either a Brinkmann wave, in which case it has 2-step nilpotent Ricci operator
(see Theorem 5.8) and it is described in Theorem 5.11 (1); or we can consider F and W given
by expression (5.6). A direct computation of the tensor Gh shows that the non-zero components,
up to symmetries, are

Gh
vv = −uvx∂xγ1(v,x)−vx∂xγ0(v,x)+vγ0(v,x)+u

x2

−v∂2
xγ0(v,x)+uv∂2

xγ1(v,x)+γ1(v,x)
2

,

Gh
vx = 1

2
v∂xγ1(v, x) +

1
x
.

FromGh
vx = 0 we get that γ1(v, x) = α1(v)− 2 log(x)

v
. Finally, the remaining component becomes

Gh
vv =

(
−1

2
∂2xγ0(v, x) +

1

x
∂xγ0(v, x)−

1

x2
γ0(v, x)

)
v − 1

2
α1(v) +

1

v
log(x),

which we set to zero to obtain for γ0 the expression in Theorem 5.11 (2).

Remark 5.12. Recall that a spacetime is said to have vanishing scalar invariants (VSI) (respec-
tively, constant scalar invariants (CSI)) if all polynomial scalar invariants constructed from the
curvature tensor and its covariant derivatives are zero (respectively, constant).

Three-dimensional locally CSI spacetimes were classified in [49], showing that they are lo-
cally homogeneous or a Kundt spacetime. Metrics in Theorem 5.11 (2) are a subclass of VSI
Kundt metrics (cf. [50]).

Remark 5.13. In Remark 4.3, we presented the Critical Point Equation (CPE) as

(f + 1)ρ− Hesf +
(
∆f − τ

n

)
g = 0,

which is geometrically relevant and formally related to the field equations (4.8). Indeed, due to
this resemblance, a similar analysis to the one performed in Sections 5.1 and 5.2 leads to classifi-
cation results for solutions of this equation in the isotropic case if translated to Lorentzian signa-
ture. Furthermore, examples of solutions to this equation can be found among Kundt spacetimes
and pp-waves. Thus, for example, since ∆f = τ = 0 for isotropic solutions, 3-dimensional
Cahen-Wallach symmetric spaces (CWε) provide geodesically complete solutions to the CPE,
which are not Einstein, for f(u, v, x) = c1 cos (v

√
ε) + c2 sin (v

√
ε) − 1 if ε > 0, and for

f(u, v, x) = c1e
v
√
−ε + c2e

−v
√
−ε − 1 if ε < 0 (cf. Remark 5.7).
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5.3 Some remarks on four-dimensional spacetimes
In view of Theorem 5.4, if an isotropic solution to equation (4.8) is Ricci-flat, then Hesh = 0, so
∇h is a parallel lightlike vector field and the underlying spacetime is a Brinkmann wave. The
Ricci tensor determines the curvature in dimension three, so Ricci-flat 3-dimensional manifolds
are necessarily flat. However, there are 4-dimensional isotropic solutions which are Ricci-flat
but not flat. The following result shows that all solutions satisfying these conditions are indeed
pp-waves.

Theorem 5.14. Let (M, g, h) be a 4-dimensional isotropic Ricci-flat solution of the weighted
Einstein field equations (4.8). Then (M, g) is a pp-wave.

Proof. If (M, g, h) is an isotropic solution of (4.8) then, from Lemma 5.2, we have ∆h = 0 and
Λ = 0. Since ρ = 0, equation (4.8) implies Hesh = 0. For arbitrary vector fields X , Y , Z we
have

R(X, Y, Z,∇h) = (∇X Hesh)(Y, Z)− (∇Y Hesh)(X,Z) = 0. (5.8)

Let B = {∇h, U,X1, X2} be a pseudo-orthonormal basis such that g(∇h, U) = g(Xi, Xi) = 1
for i = 1, 2. Hence, ∇h⊥ = span{∇h,X1, X2}. Due to (5.8), we have that R(∇h,Xi) = 0. We
check that R(X1, X2) = 0 by computing

0 = ρ(X2, U) = R(X2, U, U,∇h) +R(X2, X1, U,X1) = R(X1, X2, X1, U),

0 = ρ(X1, U) = R(X1, U, U,∇h) +R(X1, X2, U,X2) = −R(X1, X2, X2, U),

0 = ρ(X1, X1) = 2R(X1, U,X1,∇h) +R(X1, X2, X1, X2)

= R(X1, X2, X1, X2).

From this, it follows that (M, g) is a Brinkmann wave with parallel lightlike vector field ∇h such
that R(∇h⊥,∇h⊥) = 0, so it is a pp-wave.

Remark 5.15. A pp-wave of any dimension is given in local coordinates by expression (1.13)
with ∂uF = 0. The only possibly non-zero component of its Ricci tensor is ρ(∂v, ∂v) = −1

2
∆xF ,

where ∆x =
∑

i
∂2

∂x2
i

is the Laplacian with respect to the flat spatial metric given by
∑n−2

i,j=1 dx
2
i .

Hence, a pp-wave is Ricci-flat if and only if ∆xF = 0. In dimension four, as a consequence of
Theorem 5.14, the only Ricci-flat isotropic solutions of the weighted Einstein field equations are
pp-waves of this type.

On the other hand, setting h(u, v, x) = v in a pp-wave of arbitrary dimension, a straight-
forward calculation shows that ∇h = ∂u is lightlike and Hesh = 0. Thus, any pp-wave
with ∆xF = 0 is a Ricci-flat isotropic solution of the weighted Einstein field equations with
h(u, v, x) = v.

A natural question that arises in view of Theorem 5.11 is whether an analogue of Item (1)
holds in higher dimension. The following example shows that, in general, isotropic solutions
of equation (4.8) realized on Brinkmann waves are not necessarily pp-waves, even if the Ricci
operator is 2-step nilpotent.
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Example 5.16. We consider local coordinates (u, v, x1, x2) and the metric given, up to symmetry,
by the following non-vanishing components:

g(∂u, ∂v) = 1, g(∂xi
, ∂xi

) = 1, g(∂v, ∂x2) = x1x2 + vx22,

g(∂v, ∂v) = (−2vx2 − x1 + 2vx2)u+
−2v2x3

1x2−vx4
1+3vx2

1x
2
2+12vx2

1x2+x3
1

6v
.

The function h(u, v, x1, x2) = v has lightlike gradient vector field ∇h = ∂u. A direct computa-
tion shows that this metric and the function h provide a solution to the field equations (4.8) with
Λ = 0.

The vector field ∇h is recurrent, since ∇∇h = −x1

2
dv ⊗ ∇h. Therefore, it is a Brinkmann

wave. Moreover, the Ricci tensor has only one non-zero component: ρ(∂v, ∂v) = −x1

2v
, so it is

2-step nilpotent.
Notice that ∇h⊥ = span{∂u, ∂x1 , ∂x2}. We check that

R(∂x1 , ∂x2 , ∂v, ∂x2) =
1

2
,

so R(∇h⊥,∇h⊥) ̸= 0, which means that the spacetime given by g is not a pp-wave. Conse-
quently, Theorem 5.11 (1) cannot be extended to higher dimension.

It was pointed out in Corollary 5.5 that 3-dimensional isotropic solutions of the weighted
Einstein field equations give rise to 4-dimensional warped products which are Ricci-flat. The
following are 4-dimensional examples obtained by applying this construction.

Example 5.17. We adopt notation from Theorem 5.6. Let N1 be the plane wave given in Theo-
rem 5.6 (1), let h1(u, v, x) = α(v) and let t be the coordinate of R. The 4-dimensional warped
product M1 = N1 ×h1 R is Ricci-flat and its Weyl tensor (hence its curvature tensor) is deter-
mined, up to symmetries, by the following terms:

W (∂v, ∂x, ∂v, ∂x) =
α′′(v)

α(v)
and W (∂v, ∂t, ∂v, ∂t) = −α(v)α′′(v).

Note that M1 is still a Brinkmann wave with parallel lightlike vector field V = ∂u. Furthermore,
it satisfies the curvature conditionsR(V ⊥, V ⊥) = 0 and ∇V ⊥R = 0, so it is indeed a plane wave.

Let N2 be the pp-wave given in Theorem 5.6 (2) and h2(u, v, x) = γ1x + γ0(v). Then
M2 = N2 ×h2 R is a 4-dimensional Ricci-flat warped product. Moreover, the Weyl tensor is
determined, up to symmetries, by:

W (∂v, ∂x, ∂v, ∂x) =
γ1α(v)+2γ0(v)γ′′

0 (v)

2(γ0(v)+γ1x)2
,

W (∂v, ∂t, ∂t, ∂v) = γ0(v)γ
′′
0 (v) +

γ1α(v)
2

.

As in the previous example, V = ∂u is still parallel and M2 satisfies R(V ⊥, V ⊥) = 0, thus
retaining the pp-wave character of N2.
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We adopt notation from Theorem 5.11 (2). Let N3 be the Kundt spacetime given by (5.7)
and h3(u, v, x) = v. The 4-dimensional warped product M3 = N3 ×h3 R is a Ricci-flat Kundt
spacetime and its Weyl tensor is given, up to symmetries, by

W (∂u, ∂v, ∂v, ∂x) = − 1
vx
, W (∂v, ∂t, ∂v, ∂t) = −1

2
vα1(v)− uv

x2 + log(x),

W (∂v, ∂t, ∂x, ∂t) =
v
x
, W (∂v, ∂x, ∂v, ∂x) =

vα1(v)− 6uv
x2

−2 log(x)

2v2
.

Since these examples are Ricci-flat 4-dimensional manifolds, their geometric information is en-
coded in the Weyl tensor, so it is convenient to analyze their Petrov type (we refer to [68,114] for
details). Since M1 and M2 are pp-waves, they are of type N (one easily checks that ι∂uW = 0).
The warped product M3, however, does not satisfy ιXW = 0 for any vector field X , but
ι∂uW = − 1

vx
dv⊗(dv∧dx), therefore it is of type III (see [68]). All these examples present a re-

peated principal lightlike direction spanned by the distinguished lightlike vector field ∂u. This is
a common trait of Ricci-flat Kundt spacetimes, as a consequence of the Goldberg-Sachs theorem
(see [114]).



Chapter 6

Solutions with conditions on the Weyl tensor

Throughout the previous chapter, we have seen how the causal character of the gradient of the
density function ∇h influences the geometry of solutions of the weighted Einstein field equa-
tions, more specifically in the isotropic case. Nevertheless, although Theorem 5.4 guarantees
that all isotropic solutions are realized on Kundt spacetimes, this is still a very broad family, and
the problem of classifying all solutions in arbitrary dimensions becomes unmanageable. This is
even more evident if we allow for solutions to be non-isotropic, due to the fact that, in general,
we lose the Kundt structure, so solving the field equations grows increasingly challenging as our
control over the metric dwindles.

In this chapter, we analyze solutions of the weighted Einstein field equations with vanishing
cosmological constant

hρ− Hesh+∆hg = 0

given by (4.6), both in the isotropic and non-isotropic cases. Since the field equations provide
information on the Ricci tensor, we impose some natural geometric conditions on the conformal
part of the curvature, i.e., the Weyl tensor. This discussion is local in nature, so we work in open
sets where ∇h ̸= 0, and given the fundamental differences in the approach needed to analyze
isotropic and non-isotropic solutions, we assume that the causal character of ∇h is constant. The
results in this chapter are contained in the work [22].

When considering geometric conditions on the Weyl tensor, the strongest possible one is lo-
cal conformal flatness, that is, W = 0. Unsurprisingly, this turns out to be quite restrictive, so
the aim of this chapter shifts to the discussion of the less rigid condition of the harmonicity of
the Weyl tensor, divW = 0. In this case, we focus on spacetimes in dimension four, due to their
physical significance as the basis of models in General Relativity. Recall that, as pointed out in
the introduction to Chapter 2, the condition divW = 0 arises naturally when studying confor-
mally Einstein manifolds (see, for example, [83]), and has been used to study other Einstein-type
structures such as generalized quasi-Einstein manifolds [19, 44].

Due to the fact that the scalar curvature of any solution of (4.6) is constant by Lemma 4.5,
the Cotton tensor (1.2) satisfies

dP (X, Y, Z) = divR(X, Y, Z) = (∇Y ρ)(X,Z)− (∇Zρ)(X, Y ).

Thus, for solutions of (4.6) the harmonicity of the Weyl tensor is equivalent to the harmonicity of
the curvature tensor, which is in turn equivalent to the Codazzi character of the Ricci tensor. Both
local conformal flatness and harmonic curvature are natural geometric conditions that have been
studied for vacuum static spaces in Riemannian signature (see [78, 79]). Consequently, parts of
our approach and some features of the solutions are similar to those in the aforementioned works.
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Nevertheless, the fact that we are working in Lorentzian signature allows for greater flexibility,
giving rise to new geometric structures not only in the purely Lorentzian isotropic case, but also
for non-isotropic solutions.

Indeed, solutions with harmonic curvature present different Jordan forms of the Ricci oper-
ator, which is not possible in the Riemannian context (see Section 1.1.3). Each of these forms
requires a different approach, but some geometric features are common to all solutions. Remark-
ably, it turns out that the underlying spacetimes for these solutions are typical examples that also
arise in the study of cosmological models in General Relativity without the presence of a den-
sity. In particular, we know from Chapter 5 that Kundt spacetimes play an essential role in the
isotropic case, but we see that they are also key in the classification of non-isotropic solutions.

Outline of the chapter

This chapter is organized as follows. In Section 6.1 we consider solutions with vanishing aug-
mented Cotton tensor, which leads to the proof of the main classification result for locally con-
formally flat solutions (Theorem 6.3). Then, in order to prove Theorem 6.36, which is the main
classification result for solutions satisfying divW = 0, each admissible normal form of Ric is
tackled in the corresponding section, in both the isotropic and non-isotropic cases. Further details
on the geometry and the form of the density function for solutions with different Jordan forms
are also provided in each of them.

In particular, in Section 6.2 we consider the diagonalizable case, where we follow some
ideas already used in the Riemannian case. In Section 6.3, we prove that the Ricci eigenvalues
of solutions with harmonic curvature are necessarily real. This is a long proof that requires a
detailed analysis of the geometry of solutions and takes advantage of the use of an algebraic tool
(Gröbner bases) on a set of polynomials to show that solutions with non-real eigenvalues do not
exist. Finally, in Section 6.4 we study non-diagonalizable solutions with minimal polynomial of
degrees two and three.

6.1 Solutions of the field equations

For isotropic solutions, we know from Chapter 5 that the weighted field equations (4.6) are
enough to force a Kundt structure on the underlying manifold. Nevertheless, in this case we are
implicitly imposing additional restrictions by assuming that ∇h is lightlike. Thus, lacking the
rigidity provided by Theorem 5.4, we need to establish some general geometric properties of
solutions. We begin by defining a useful auxiliary tensor related to static spaces in Riemannian
signature.

To that end, let J = τ
2(n−1)

be the usual Schouten scalar. Taking traces in (4.6), we have
∆h = − hτ

n−1
= −2Jh, so the field equations can also be written as

h (ρ− 2Jg) = h

(
ρ− τ

n− 1
g

)
= Hesh, (6.1)
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and d∆h = −2Jdh since the scalar curvature τ is constant by Lemma 4.5. Besides, we have

(∇Z Hesh)(X, Y )− (∇Y Hesh)(X,Z) = R(∇h,X, Y, Z),

so, using (6.1), we can write

R(∇h,X, Y, Z) = ∇Z(h(ρ− 2Jg))(X, Y )−∇Y (h(ρ− 2Jg))(X,Z)

= (ρ− 2Jg) ∧ dh(X, Y, Z)− h divR(X, Y, Z)

= ((ρ− 2Jg) ∧ dh− hdP )(X, Y, Z),

(6.2)

where, for a (0, 2)-tensor T and a 1-form ω,

T ∧ ω(X, Y, Z) = T (X, Y )ω(Z)− T (X,Z)ω(Y ).

Given the formal relationship between our field equations and vacuum static spaces, and follow-
ing terminology in [105], we define the augmented Cotton tensor

D = hdP + ι∇hW, (6.3)

where ι∇hW (X, Y, Z) = W (∇h,X, Y, Z). The tensor D is related to the Bach tensor in the
direction of ∇h and restrictions on it have consequences on the geometry of solutions in Rie-
mannian signature (see [105] for details). Moreover, the weighted Einstein field equations give
D a useful alternative characterization.

Lemma 6.1. For any solution of the vacuum weighted Einstein field equations, the augmented
Cotton tensor D satisfies

(n− 2)D = (n− 1)ρ ∧ dh+ g ∧ ι∇hρ− τg ∧ dh (6.4)

for all X, Y, Z ∈ X(M).

Proof. Substituting the definition of D in (6.2), and using the curvature decomposition R =
P ⃝∧ g +W , we get

ι∇h(P ⃝∧ g) = ρ ∧ dh− τ

n− 1
g ∧ dh−D.

Moreover, by the definition of P and the Kulkarni-Nomizu product,

ι∇h(P ⃝∧ g) = − (P ∧ dh+ g ∧ ι∇hP )

= − 1
n−2

(
g ∧ ι∇hρ+ ρ ∧ dh− τ

n−1
g ∧ dh

)
.

Equating both expressions for ι∇h(P ⃝∧ g), the result follows.
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6.1.1 Solutions with vanishing augmented Cotton tensor
As a first step in understanding solutions to the vacuum weighted Einstein field equations, we
consider those with vanishing augmented Cotton tensor. Recall that we are assuming that the
character of ∇h does not change in M . Throughout this section and in the rest of the chapter,
when considering the isotropic case, we will make use of the results in Chapter 5, in particular
of Theorem 5.4, allowing us to only work with Kundt spacetimes (or one of their subfami-
lies). Hence, as one might expect, the bulk of the work will consist in arguments regarding
non-isotropic solutions.

The following result shows that, if the augmented Cotton tensor vanishes, the underlying
manifold is a warped product or a Brinkmann wave, depending on whether h is non-isotropic or
isotropic, respectively.

Theorem 6.2. Let (M, g, h) be a solution of the weighted Einstein field equations (4.6) with
vanishing D tensor.

1. If g(∇h,∇h) ̸= 0, then (M, g) is locally isometric to a warped product I ×φ N , where
I ⊂ R is an open interval, N is an (n − 1)-dimensional Einstein manifold, and ∇h is
tangent to I .

2. If g(∇h,∇h) = 0, then (M, g) is a Brinkmann wave with either vanishing or 2-step nilpo-
tent Ricci operator.

Proof. We analyze both cases separately. Assume first that g(∇h,∇h) ̸= 0. Note that, for any
non-isotropic solution, since ∇h is not lightlike, we can consider a local pseudo-orthonormal
frame B = {E1, E2, . . . , En}, where E1 = ∇h

∥∇h∥ and ∥∇h∥ =
√
εg(∇h,∇h) (ε = ±1 de-

pending on whether ∇h is spacelike or timelike, respectively). Furthermore, without loss of
generality, we can take g(E2, E2) = ε2 = −ε and g(Ei, Ei) = 1 for i > 2.

On the one hand, in the expression (6.4) for the augmented Cotton tensor D, take Y = E1

∥∇h∥
so that g(∇h, Y ) = ε, and take X = Ei, Z = Ej , i, j > 1. Since D vanishes, we have
ρ(Ei, Ej) =

τ−ερ(E1,E1)
n−1

g(Ei, Ej). Then, by equation (6.1),

Hesh(Ei, Ej) = −hερ(E1, E1)

n− 1
g(Ei, Ej).

On the other hand, we can take X = Y = E1 and Z = Ei, i > 1 to find ρ(E1, Ei) =
Hesh(E1, Ei) = 0. It follows that the level hypersurfaces of h in M are totally umbilical and,
furthermore, that the distribution generated by ∇h is totally geodesic. Consequently, by Theo-
rem 1.3, (M, g) splits locally as a twisted product I ×φ̃ N , where I ⊂ R is an open interval,
for some function φ̃ on I × N . Moreover, since the mixed Ricci terms ρ(E1, Ei) vanish, from
Theorem 1.4 it follows that the twisted product reduces to a warped product I ×φ N for some
function φ on I .

Let t be a local coordinate parameterizing I by arc length with E1 = ∇t = ε∂t and let
εα = ρ(E1, E1) and λ = τ−α

n−1
. Then, we can write Hesh(E1, E1) = h′′ and, by the weighted

Einstein field equations (6.1), α = εh−1h′′ + 2J , so α depends only on t. Moreover, since τ is
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constant, ρ(Ei, Ej) = λg(Ei, Ej) depends only on t as well. We shall show that N is Einstein as
follows. Consider the basis {Ēi = φEi}i=2,...,n which is orthonormal on N . From the expression
of the Ricci tensor of a warped product (see (1.6)), we have

ρN(Ēi, Ēj) = ρ(Ēi, Ēj) + εg(Ēi, Ēj)
(

φ′′

φ
+ (n− 2) (φ

′)2

φ2

)
= φ2

(
ελ+ φ′′

φ
+ (n− 2) (φ

′)2

φ2

)
εg(Ei, Ej).

Since ρN(Ēi, Ēj) is a function defined on the fiber, it does not depend on t, which is a coordinate
of the base. Hence, ρN = βgN for some β ∈ R and N is Einstein. Thus, assertion (1) holds.

Now, assume g(∇h,∇h) = 0. Then, it follows from Theorem 5.4 that the Ricci operator Ric
is nilpotent. Moreover, there exists a pseudo-orthonormal basis {∇h, U,X1, . . . , Xn−2} such
that the non-zero terms of the metric tensor are g(∇h, U) = g(Xi, Xi) = 1, i = 1, . . . , n − 2,
and the non-zero terms of the Ricci operator are given by

Ric(U) = ν∇h+ µX1 and Ric(X1) = µ∇h
(see equation (5.2) and Lemma 5.2). Since D = 0, equation (6.4) evaluated on (U,U,X1) yields

0 = (n− 1)ρ ∧ dh(U,U,X1) + g ∧ ι∇hρ(U,U,X1)− τg ∧ dh(U,U,X1)

= −(n− 1)µ.

Hence, µ = 0, so the Ricci operator either vanishes or is two-step nilpotent. It follows from
Theorem 5.4 that (M, g) is a Brinkmann wave.

Note that the warped product structure of non-isotropic solutions with vanishing D tensor
described in Theorem 6.2 (1) is analogous to the case of Riemannian signature discussed in [105].
This analogy also works when considering locally conformally flat non-isotropic solutions and
comparing them to those studied in Riemannian signature in [79], as we will see in the following
section.

6.1.2 Locally conformally flat solutions
We will start this subsection keeping the dimension of the manifold arbitrary in order to prove a
general rigidity result, and then we will obtain a stronger variant of it in dimension four. Unsur-
prisingly, the vanishing of the Weyl tensor turns out to be more restrictive than the vanishing of
the augmented Cotton tensor.

Theorem 6.3. Let (M, g, h) be an n-dimensional locally conformally flat smooth metric measure
spacetime. Then, (M, g, h) is a solution of the vacuum weighted Einstein field equations (4.6) if
and only if one of the following is satisfied:

1. g(∇h,∇h) ̸= 0 and (M, g) is locally isometric to a warped product (I ×N, dt2 ⊕φ2gN),
where I ⊂ R is an open interval, N is an (n − 1)-dimensional manifold of constant
sectional curvature, and h(t) and φ(t) satisfy the following system of ODEs:

0 = h′φ′ − hφ′′,

0 = h′′ + (n− 1)hφ′′

φ
+ ε τ

n−1
h.

(6.5)
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2. g(∇h,∇h) = 0 and (M, g, h) is a plane wave. Moreover, there exist local coordinates
{u, v, x1, . . . , xn} such that the metric is given by

g(u, v, x1, . . . , xn−2) = 2dvdu+ F (v, x1, . . . , xn−2)dv
2 +

n−2∑
i=1

dx2i ,

where F (v, x1, . . . , xn−2) = − h′′(v)
(n−2)h(v)

∑n−2
i=1 x

2
i +

∑n−2
i=1 bi(v)xi + c(v).

Proof. We start with the case g(∇h,∇h) ̸= 0. In dimension three, local conformal flatness is
equivalent to the condition dP = 0, while for locally conformally flat manifolds of dimension
n ≥ 4, W = 0 implies dP = 0. In both cases, the augmented Cotton tensor D given by
(6.3) vanishes identically. Thus, we apply Theorem 6.2 to obtain a local splitting into a warped
product I×φN and adopt the notation of its proof. A warped product of the form I×φN is locally
conformally flat if and only if the fiber N has constant sectional curvature (see Theorem 1.6).

Once the local splitting into a warped product has been established, let ε = g(∂t, ∂t) and εi =
g(Ei, Ei). We use the gradient ∇h = εh′∂t, the expressions (1.4) and (1.6) for the connection
and the Ricci tensor of a warped product and the weighted Einstein field equations (6.1) to
compute the Laplacian of h, the two eigenvalues of the Ricci operator (Ric(∇h) = α∇h and
Ric(Ei) = λEi for i > 1) and the scalar curvature in terms of h and φ:

∆h = εg(∇∂t∇h, ∂t) +
∑n

i=2 εig(∇Ei
∇h,Ei)

(1.4)
= ε

(
h′′ + (n− 1)h

′φ′

φ

)
,

α = ερ(∂t, ∂t)
(1.6)
= −ε(n− 1)φ

′′

φ

(6.1)
= εh

′′

h
+ τ

n−1
,

λ = εiρ(Ei, Ei) =
τ−α
n−1

= εφ
′′

φ
+ τ

n−1
.

Moreover, since τ = α + (n− 1)λ, we have

−h α

n− 1
εi = h

(
λ− τ

n− 1

)
εi

(6.1)
= Hesh(Ei, Ei)

(1.4)
= ε

φ′h′

φ
εi,

so α = −(n − 1)εφ
′h′

hφ
. Equating this expression to the second expression for α above, we can

solve for τ . In summary, we obtain the following four quantities:

∆h = ε
(
h′′ + (n− 1)h

′φ′

φ

)
, α = −ε(n− 1)φ

′′

φ
= εh

′′

h
+ τ

n−1
,

λ = τ−α
n−1

= εφ
′′

φ
+ τ

n−1
, τ = −(n− 1)ε(h

′′

h
+ (n− 1)h

′φ′

hφ
).

The non-diagonal terms of Gh = hρ − Hesh +∆hg vanish identically. Since ε2 = 1, using the
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expressions above allows us to compute the diagonal terms as follows:

0 = Gh(∂t, ∂t) = hεα− h′′ + ε∆h

= −(n− 1)hφ
′′

φ
− h′′ + h′′ + (n− 1)h

′φ′

φ

= (n− 1)
(

h′φ′−hφ′′

φ

)
,

0 = Gh(Ei, Ei) =
(
hλ− εφ

′h′

φ
+∆h

)
εi

= ε
(
h
(

φ′′

φ
+ ε τ

n−1

)
+
(
h′′ + (n− 1)h

′φ′

φ

)
− h′φ′

φ

)
εi

= ε
(
h′′ + h(n− 1)φ

′′

φ
+ hε τ

n−1

)
εi,

where we have used the relation h′φ′ − hφ′′ = 0 that we got from the first expression to simplify
the second one. Hence, we obtain that the system of ODEs given in (6.5) are necessary and
sufficient conditions for a warped product as above to be a solution of the field equations (4.6).

Assume now that g(∇h,∇h) = 0. Since D = 0, we use Theorem 6.2 to see that (M, g) is
a Brinkmann wave with either vanishing or 2-step nilpotent Ricci tensor. Moreover, τ = J = 0
and the only possibly non-zero term of the Ricci tensor is ρ(U,U) = ν. In particular, if ν = 0,
then the manifold is flat. In any case, Ric∇h = 0, RicU = ν∇h and RicXi = 0 for all i, so
(M, g) is Ricci-isotropic, meaning that g(Ric(Y ),Ric(Y )) = 0 for all Y ∈ X(M). Therefore,
(M, g) is a pp-wave if and only if R(D⊥,D⊥, ·, ·) = 0, where D⊥ = span{∇h,X1, . . . , Xn−2}
(see Section 1.3 and [86]).

From W = 0 and τ = 0, we have that R = P⃝∧ g = 1
n−2

ρ⃝∧ g. Since RicXi = Ric∇h = 0,
by directly substituting in the curvature expression we get that R(D⊥,D⊥, ·, ·) = 0 and that
(M, g) is indeed a pp-wave.

Now, locally conformally flat pp-waves are plane waves that admit local Kundt-type coordi-
nates (u, v, x1 . . . , xn−2) such that the metric takes the form

g(u, v, x1, . . . , xn−2) = 2dvdu+ F (v, x1, . . . , xn−2)dv
2 +

n−2∑
i=1

dx2i ,

where F (v, x1, . . . , xn−2) =
a(v)
n−2

∑n−2
i=1 x

2
i +
∑n−2

i=1 bi(v)xi + c(v) (see, for example, [14]). With
respect to these coordinates, the only non-vanishing component of the Ricci tensor is ρ(∂u, ∂u) =
−a(u). Moreover, because the distinguished parallel lightlike distribution of the pp-wave corre-
sponds with ∇h by construction, it follows that ∇h is a multiple of ∂u, so h(v, u, x1, . . . , xn−2) =
h(v). Now, a direct computation of the terms in (4.6) yields the only condition:

−a(v)h(v)− h′′(v) = 0,

from where case (2) follows.

It is important to note that, in Theorem 6.3 (2), although (M, g) is a pp-wave, and hence
admits a parallel lightlike vector field, ∇h is not parallel in general. In fact, if it is parallel, then
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Hesh = hρ = 0 by the field equations, and given that W = 0 and τ = 0, the resulting solution is
flat.

Remark 6.4. The system of ODEs (6.5) was obtained in [79] for ε = 1 in the Riemannian setting.
An analogous reasoning to that in [79] shows that from (6.5), it follows that

γ = φn−1φ′′ + ετ
n(n−1)

φn,

εκ
n−2

= (φ′)2 + 2γ
n−2

φ2−n + ετ
n(n−1)

φ2,

where γ, κ are real constants and ρN = κgN . The discussion of the solutions to these ODEs
in [79] in terms of the constants τ , κ and γ, also applies to the Lorenztian case by substituting
τ and κ with ετ and εκ respectively. Note that these ODEs are also satisfied in the case D = 0
(not necessarily locally conformally flat), if we allow a generic Einstein fiber instead of a fiber
of constant sectional curvature.

Isotropic locally conformally flat solutions are completely characterized, for arbitrary dimen-
sion, in Theorem 6.3 (2). For the non-isotropic case, we give a detailed description in dimension
four as follows, where the nature of solutions depends on the sign of the scalar curvature, which
is constant by Lemma 4.5.

Corollary 6.5. Let (M, g, h) be a non-isotropic, non-flat solution of the weighted Einstein field
equations (4.6) with dimM = 4 and vanishing augmented Cotton tensor. Then M decomposes
locally as a product I × N , where I ⊂ R is an open interval with ∇h tangent to I; and N
is a 3-dimensional manifold with constant sectional curvature κ. Moreover, the metric and the
density functions satisfy one of the following:

1. g is a direct product metric εdt2 + gN with t a coordinate parameterizing I by arc length
such that

h(t) = c1 sin
(√

2εκ
φ
t
)
+ c2 cos

(√
2εκ
φ
t
)
, if εκ > 0,

h(t) = c1e
√

−2εκ
φ

t + c2e
−

√
−2εκ
φ

t, if εκ < 0.

2. g is a warped product metric εdt2 + φ(t)2gN with t a coordinate parameterizing I by arc
length such that the density function h satisfies h(t) = Aφ′(t), A ∈ R∗, and φ takes the
following forms, depending on the sign of the scalar curvature τ of the product:

φ(t)2 = 6κ
τ
+ c1 sin

(√
ετ
3
t
)
+ c2 cos

(√
ετ
3
t
)
, if ετ > 0,

φ(t)2 = 6κ
τ
+ c1e

√
− ετ

3
t + c1e

−
√

− ετ
3
t, if ετ < 0,

φ(t)2 = εκt2 + c1t+ c2, if τ = 0, c21 ̸= 4εc2κ,

where A, c1, c2 are suitable integration constants so that φ(t)2, h(t) > 0 for all t ∈ I .

Proof. From the first ODE in (6.5), it follows that either φ′ = 0, so we have a Riemannian
product, or h(t) = Aφ′(t) with A ∈ R∗ such that h > 0 for all t ∈ I . In the first case,
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the remaining non-vanishing components of the weighted Einstein field equations (6.1) take the
form

0 = Gh(Ei, Ej) = ε
(
h′′ + ε

τ

3
h
)
g(Ei, Ej),

where τ = 6κ
φ2 . We can solve the resulting ODE 0 = h′′ + 2εκ

φ2 h to determine the density function
in Item 1 of the corollary. Note that, if κ = 0, then the manifold is flat.

Now, assume that φ′ ̸= 0, so h(t) = Aφ′(t), and take F (t) = φ(t)2. Then, we compute the
scalar curvature of the warped product, in terms of κ and F , using (1.7), resulting in the equation
0 = τF − 3(2κ − εF ′′). We solve this ODE to get the different forms of φ2 in Item 2 of the
corollary. Then, a direct computation shows that all components of the weighted Einstein field
equations vanish. Note that, if τ = 0 and c21 = 4εc2κ, the manifold is flat.

For manifolds of dimensions other than 4, it is not possible to express all possible solutions in
such a simple way as in Corollary 6.5. However, we refer to Section 6.2 for some generalizations
of Kobayashi’s locally conformally flat static spaces to Lorentzian signature that are of special
interest, since they appear as submanifolds of higher-dimensional solutions. The following ex-
ample will be used to illustrate this fact.

Example 6.6. Let (I ×φ N, g, h) be a 3-dimensional (Riemannian or Lorentzian) SMMS, with
N a surface of constant Gauss curvature κ. By Theorem 1.6, this manifold is locally conformally
flat. Therefore, if this triple is a non-isotropic, non-flat solution of the weighted Einstein field
equations (4.6) with vanishing scalar curvature τ , then the system of ODEs (6.5) is satisfied.
Moreover, particularizing the equations in Remark 6.4 to n = 3 and τ = 0 yields γ = φ2φ′′ and
εκ = (φ′)2 + 2γφ−1 for some constant γ ∈ R\{0}, since the manifold becomes flat if γ = 0.
If γ > 0, this corresponds to case IV.I in [79], and if γ < 0, to case III.1 (substituting κ by εκ).
Notice that all solutions of this kind have two distinct Ricci eigenvalues.

6.2 Solutions with harmonic curvature. The diagonalizable
case

We have already seen how local conformal flatness only allows for very specific warped product
structures (see Theorem 6.3 and Corollary 6.5) and how they relate to the Riemannian static
spaces discussed in [79]. In order to get a broader family of solutions with a more flexible
geometry, we are going to focus on dimension four and impose a weaker restriction than local
conformal flatness: harmonic Weyl tensor. As we have already pointed out, due to Lemma 4.5,
this is equivalent to the harmonicity of the curvature tensor.

Our analysis is divided into several sections depending on the structure of the Ricci operator
Ric. We will prove shortly that, for solutions with harmonic curvature, ∇h is an eigenvalue
of Ric (see Lemma 6.10). With this information, we can apply the discussion on self-adjoint
operators in Lorentzian vector spaces (see Section 1.1.3) to Ric. Thus, if g(∇h,∇h) ̸= 0, at
each point of the manifold, Ric takes one of the following four forms: On the one hand, relative
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to an orthonormal frame B1 = {E1 = ∇h/∥∇h∥, E2, E3, E4},

Ric =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 or Ric =


λ 0 0 0
0 a b 0
0 −b a 0
0 0 0 α

 , (6.6)

with b ̸= 0. Recall that we refer to these structures as Type I.a and Type I.b, respectively. On the
other hand, relative to a pseudo-orthonormal frame B2 = {E1 = ∇h/∥∇h∥, U, V, E2}, where
the only non-vanishing terms of the metric are g(Ei, Ei) = 1, i = 1, 2, g(U, V ) = 1, there are
two more possible forms:

Ric =


λ 0 0 0
0 α 0 0
0 ε α 0
0 0 0 β

 or Ric =


λ 0 0 0
0 α 0 1
0 0 α 0
0 0 1 α

 , (6.7)

which we call Type II and Type III respectively.
For solutions with g(∇h,∇h) = 0, particularizing (5.2) in dimension four, and given that

the Ricci operator is nilpotent by Theorem 5.4, there exists an adapted pseudo-orthonormal
frame B0 = {∇h, U,X1, X2} such that the non-zero terms of the metric tensor are g(∇h, U) =
g(Xi, Xi) = 1, i = 1, 2, and the Ricci operator takes the form

Ric =


0 ν µ 0
0 0 0 0
0 µ 0 0
0 0 0 0

 . (6.8)

Hence, the isotropic solution is Ricci-flat (corresponding to Type I.a), 2-step nilpotent (µ = 0
and ν ̸= 0, Type II) or 3-step nilpotent (µ ̸= 0, Type III).

Henceforth, we will assume that the Ricci operator of any solution is of constant type in the
manifold. Otherwise, one would restrict to an open subset where this happens. In this section,
we treat the diagonalizable case (see Section 6.3 for a study of Type I.b and Section 6.4 for
details on Type II and Type III). Solutions with harmonic curvature were previously considered in
Riemannian signature in [78], where the Ricci operator is necessarily diagonalizable. Motivated
by this work, we follow some of the arguments applied to static spaces to obtain all possible
solutions in this setting (see also [54] for the study of eigendistributions of the Ricci operator on
manifolds with harmonic curvature, whose arguments we will mimic at some instances, and [32]
for related arguments for Ricci solitons). Unsurprisingly, some of the results in this section are
reminiscent of those in [78]. However, the fact that we are working in Lorentzian signature allows
for greater flexibility and gives rise to new geometric structures when the solution is isotropic.
Moreover, if ∇h is timelike, we will see that the Ricci operator is necessarily diagonalizable, so
all solutions where ∇h has this character are described below in Theorem 6.7.

Much like in the Riemannian case, the geometric structure of a non-isotropic solution strongly
depends on the number of distinct eigenvalues of Ric. Arguments in [54] and [78] show that this
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number does not change in an open dense subset of M . Indeed, for x ∈ M , let ERic(x) be the
number of distinct eigenvalues of Ricx and set

MRic = {x ∈M : ERic is constant in a neighborhood of x}.

It is clear that MRic is open. To show that this subset is dense, take x ∈ M and consider any
open ball B centered at x. Since the rank of ERic is finite, there is a point q ∈ B where ERic(q)
is the maximum of ERic on B. Since a small variation of the eigenvalues cannot decrease the
value ERic(q) and because it is maximum by definition, there is a neighborhood of q where
ERic = ERic(q), so q ∈ MRic. Therefore, since the number of distinct eigenvalues heavily
influences the geometry of solutions, we work locally around points that belong to MRic in the
non-isotropic case.

Theorem 6.7. Let (M, g, h) be a 4-dimensional smooth metric measure space with diagonaliz-
able Ricci operator and harmonic curvature (not locally conformally flat).

1. If g(∇h,∇h) = 0, then (M, g) is a solution of equation (4.6) if and only if (M, g) is a
Ricci-flat pp-wave and, in suitable local coordinates {u, v, x1, x2}, it can be written as

g(u, v, x1, x2) = 2dudv + F (v, x1, x2)dv
2 + dx21 + dx22, (6.9)

with ∆xF = ∂2x1
F + ∂2x2

F = 0, and h(u, v, x1, x2) = v.

2. If g(∇h,∇h) ̸= 0 and (M, g, h) is a solution to (4.6), then
(
MRic, g

∣∣
MRic

)
is locally

isometric to:

(a) A direct product I2 × M̃ , where M̃ = I1 ×ξ N is a warped product 3-dimensional
solution with τ̃ = 0 and N a surface of constant Gauss curvature. Moreover, h = cξ′

is defined on I1.

(b) A direct product N1 × N2 of two surfaces of constant Gauss curvature κ
2

and κ,
respectively. The density function is defined on N1 and is a solution to the Obata
equation HesN1

h = −κh
2
gN1 .

Remark 6.8. Notice that the condition on the defining function F of the pp-wave metric in (6.9)
resembles the Laplace equation. This is indeed a necessary and sufficient condition for a pp-
wave to be Ricci-flat (see Remark 5.15). Thus, consider, for example, a solution of the form
F (v, x1, x2) = f(v)(x21 − x22) to build solutions with harmonic Weyl tensor but which are not
locally conformally flat. Indeed, the non-vanishing components of the Weyl tensor are, up to
symmetries,

W (∂v, ∂x1 , ∂v, ∂x1) = W (∂v, ∂x2 , ∂v, ∂x2) = −f(v).

Remark 6.9. Solutions in Theorem 6.7 (2.a) are built from 3-dimensional locally conformally
flat solutions with vanishing scalar curvature (see Example 6.6), just by adding a 1-dimensional
factor, and result in a multiply warped product of the form I1×I2×ξN . If I1×ξN is Riemannian
with N of constant positive Gauss curvature (κ > 0), it was pointed out by Kobayashi that
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there is a solution in R × S2 which contains a spatial slice of the well-known Schwarzschild
spacetime. Thus, we construct a solution on the 4-dimensional spacetime R × (R ×φ S

2), with
the metric given by g = −ds2 ⊕ gSch, where gSch stands for the spatial part of the Schwarzschild
metric (see [114] for details on this solution). In contrast, solutions for κ < 0 are incomplete
(cf. [78, Example 3]).

From Example 6.6, taking κ = 0 allows for an explicit expression for φ(t). Indeed, if κ = 0,
then (φ′)2 + 2aφ−1 = 0 and a = φ2φ′′. Thus, we can write (φ′)2 + 2φφ′′ = 0. Solving this
ODE yields (after a translation of t, if needed) φ(t) = K1t

2/3 and h(t) = K2t
−1/3 for some

suitable K1, K2 ∈ R∗. This gives solutions with Ricci eigenvalues
{

4ε
9t2
, 0
}

(simple) and
{
− 2ε

9t2

}
(double).

Proof of Theorem 6.7 (1). If g(∇h,∇h) = 0, then by Theorem 5.4, Ric is nilpotent. Since
it diagonalizes by assumption, the manifold is necessarily Ricci-flat (hence all solutions of this
type have harmonic curvature tensor). Moreover, since we are working with 4-dimensional man-
ifolds, by Theorem 5.14, the underlying manifold (M, g) is thus a pp-wave, and there exist local
coordinates {u, v, x1, x2} so that the metric is given by (6.9). A direct computation shows that
the pp-wave is Ricci-flat if and only if the spacelike Laplacian vanishes: ∂2x1

F + ∂2x2
F = 0. In

these coordinates, h is only a function of v and, since Hesh = 0, we have h′′(v) = 0. Now, the
coordinate v can be normalized so that h(u, v, x1, x2) = v.

Non-isotropic solutions require a deeper analysis in order to provide the classification in
Theorem 6.7 (2). Thus, throughout the rest of this section, all solutions are assumed to be non-
isotropic. Following ideas developed in [78] for the Riemannian counterpart, we establish some
preliminary results. Although we are focusing on 4-dimensional manifolds, they apply to solu-
tions of arbitrary dimension.

Lemma 6.10. For any n-dimensional solution (M, g, h) of the weighted Einstein field equations
(4.6) with harmonic curvature, Ric(∇h) = λ∇h for some smooth function λ on M .

Proof. Assume divR = dP = 0. In (6.2), we can choose X = ∇h, Y ⊥ ∇h and Z such that
g(Z,∇h) = 1 to see that

0 = R(∇h,∇h, Y, Z)
= dh(Z)(ρ− 2Jg)(Y,∇h)− dh(Y )(ρ− 2Jg)(Z,∇h) = ρ(Y,∇h)

for every Y ⊥ ∇h. Consequently, ∇h is an eigenvector of the Ricci operator.

The fact that ∇h is a real eigenvector of Ric has important geometric consequences for vac-
uum solutions. For example, if ∇h is timelike, we consider the restriction of Ric to ∇h⊥. Since
the metric is positive definite in ∇h⊥, and Ric

∣∣
∇h⊥ is self-adjoint, it follows that it diagonalizes

in some orthonormal frame. Thus, the full Ricci operator Ric diagonalizes in a suitable pseudo-
orthonormal frame B1 = {E1, E2, E3, E4}, where E1 = ∇h/∥∇h∥ and ∥∇h∥ =

√
εg(∇h,∇h)

(with ε = g(E1, E1) = −1), g(E2, E2) = −ε and g(Ei, Ei) = 1 for i > 2. We will refer to this as
an adapted frame. Consequently, all solutions with ∇h timelike are described by Theorem 6.7.
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In contrast, if ∇h is spacelike, this structure is also possible, with ε = 1, but other Jordan
forms for Ric can also arise, as portrayed in (6.6) and (6.7). Nevertheless, since in this section
we are assuming that Ric diagonalizes, let RicEi = λiEi, with

ε = g(E1, E1) = ±1, g(E2, E2) = −ε and g(Ei, Ei) = 1, i = 3, . . . , n.

From the vacuum equation (6.1), it follows that the Hessian operator hesh diagonalizes in the
frame B1, with heshEi = h(λi − 2J)Ei. In particular, this implies that X(g(∇h,∇h)) =
2Hesh(∇h,X) = 0 for all X ⊥ ∇h, so the distribution generated by ∇h is totally geodesic.
This also means that ∥∇h∥ is constant on each connected component of the level sets of h, so
we can write

∇Ei
E1 =

1

∥∇h∥
∇Ei

∇h = βiEi with βi =
h(λi − 2J)

∥∇h∥
. (6.10)

Furthermore, we have

0 = Ei(g(∇h,Ej)) = g(∇Ei
∇h,Ej) + g(∇h,∇Ei

Ej) = g(∇h,∇Ei
Ej)

for i, j > 1, i ̸= j. It follows that span{E2, . . . , E4} is closed under Lie bracket, and the
distribution generated by span{E2, . . . , En} is integrable, soM splits locally as a product I×N ,
where I is an open interval to which E1 is tangent, and N projects onto the leaves of the foliation
generated by span{E2, . . . , En}. Moreover, we have

d

(
dh

∥∇h∥

)
= − 1

2∥∇h∥3
d∥∇h∥2 ∧ dh = 0,

since ∇X(∥∇h∥2) = 0 for X ⊥ ∇h. Thus, dh/∥∇h∥ is a closed form, and there is a local
coordinate t such that dt = dh/∥∇h∥. Note that ∇t = ∇h/∥∇h∥ = E1, so that ∇E1E1 = 0,
and h = h(t). With this, the metric takes the form

gM = εdt2 ⊕ gN , (6.11)

with N Lorentzian if ε = 1 and Riemannian if ε = −1, where gN possibly depends on t. We
compute

Hesh(E1, E1) = g(∇ε∂t(εh
′∂t), ε∂t) = h′′

and, from (6.1), we have λ1 = εh−1h′′ + 2J , so λ1 depends only on t. This will be important in
what follows, but first, we prove the following lemma.

Lemma 6.11. Let f1, . . . , fk be smooth functions defined on the product manifold (I×N, εdt2⊕
gN). If the power sums pj =

∑k
i=1 f

j
i for j = 1, . . . , k depend only on the coordinate t, then

each fi depends only on t as well.

Proof. Let sj be the j-th elementary symmetric polynomial in the variables f1, . . . , fk (by con-
vention, s0 = 1). It is well-known that the first k elementary symmetric polynomials are gen-
erated by the first k power sums pj through Newton’s identities. Since p0 = 1, . . . , pk depend
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only on t by assumption, then s0, . . . , sk also depend only on t. Now, consider the following
polynomial in R[f1, . . . , fk][x]:

(x− f1) · · · (x− fk) =
k∑

i=0

(−1)isi(f1, . . . , fk)x
k−i.

Note that, for a fixed t, changing the point in N does not change the polynomial, since all the
symmetric polynomials si depend only on t. Therefore, its roots, which are f1, . . . , fk, do not
change from point to point either, so they only depend on t.

We now apply this result to the eigenvalues of the Ricci operator.

Lemma 6.12. Let (M, g, h) be a non-isotropic solution of dimension n of the weighted Einstein
field equations (4.6) with harmonic curvature such that the Ricci operator Ric diagonalizes.
Then, all eigenvalues of Ric depend only on the local coordinate t of the metric (6.11).

Proof. From the harmonicity condition divR = 0, it follows that the Ricci tensor satisfies
(∇Ei

ρ)(Ei,∇h) = (∇∇hρ)(Ei, Ei). Then, using (6.1), we see that, for i ̸= 1,

(∇Ei
ρ)(Ei,∇h) = Ei(ρ(Ei,∇h))− ρ(∇Ei

Ei,∇h)− ρ(Ei,∇Ei
∇h)

= (λ1 − λi)g(Ei,∇Ei
∇h)

= εih(λ1 − λi)(λi − 2J),

where εi = g(Ei, Ei). On the other hand, (∇∇hρ)(Ei, Ei) = εi∇h(λi), so ∇h(λi) = h(λ1 −
λi)(λi− 2J). Now, since τ is constant and λ1 depends only on t, we have that τ −λ1 =

∑n
i=2 λi

depends only on t. Moreover,

0 = ∇h(τ) = ∇h(λ1) +
∑n

j=2 h(λ1 − λj)(λj − 2J)

= ∇h(λ1) + h(λ1 + 2J)
∑n

j=2 λj

−h
(
2J(n− 1)λ1 +

∑n
j=2 λ

2
j

)
.

Since ∇t = ∇h/∥∇h∥ and ∥∇h∥ depends only on t, every term in the equation above, except
for
∑n

j=2 λ
2
j , depends only on t. Thus,

∑n
j=1 λ

2
j depends only on t as well. We can perform this

same process for any k ∈ {1, . . . , n− 1} by induction:

k−1∇h
(∑n

i=1 λ
k
i

)
= λk−1

1 ∇h(λ1) +
∑n

j=2 λ
k−1
j ∇h(λj)

= λk−1
1 ∇h(λ1) + h

∑n
j=2 λ

k−1
j (λ1 − λj)(λj − 2J)

= λk−1
1 ∇h(λ1) + h(λ1 + 2J)

∑n
j=2 λ

k
j

−h
(
2Jλ1

∑n
j=2 λ

k−1
j +

∑n
j=2 λ

k+1
j

)
.

By assumption, every term in the equation above, except for
∑n

j=2 λ
k+1
j , depends only on t.

Thus,
∑n

j=1 λ
k+1
j depends only on t as well. As a result, applying Lemma 6.11, we have that

each λi, i = 1, . . . , n depends only on t. In particular, we have Ei(βj) = Ei(λj) = 0 for all
i, j = 2, . . . , n.
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It is well-known that the curvature tensor is harmonic if and only if the Ricci tensor is Co-
dazzi, i.e., if the skew-symmetrization of ∇ρ vanishes. Previous results from [54] show that this
Codazzi character imposes by itself some important restrictions on the geometry of the leaves
of the eigendistributions of Ric. Indeed, a version of the following result was proved in [54]
and extends from Riemannian to Lorentzian signature when Ric is diagonalizable. We include
the proof here in the interest of completeness and because we will use the weighted Einstein
field equations to provide additional information on the connection relations for a solution (see
also [78]).

Lemma 6.13 (cf. [54]). Let (M, g, h) be an n-dimensional non-isotropic solution of the weighted
Einstein field equations (4.6) with Codazzi and diagonalizable Ricci tensor. Then, the distribution
associated to each eigenvalue of Ric is integrable and their corresponding leaves are totally
umbilical submanifolds of M .

Proof. We work in an adapted local orthonormal frame B1 = {E1, . . . , En} that diagonalizes the
Ricci operator and such that g(Ei, Ei) = εi. Denote by Γijk = g(∇Ei

Ej, Ek) the corresponding
Christoffel symbols. First, note that, due to the fact that B is pseudo-orthonormal, Γijk = −Γikj

for all i, j, k. We calculate the covariant derivative of the Ricci tensor,

(∇Ei
ρ)(Ej, Ek) = Ei(ρ(Ej, Ek))− ρ(∇Ei

Ej, Ek)− ρ(Ej,∇Ei
Ek)

= εjδjkEi(λj) + (λj − λk)Γijk.

Now, since ρ is Codazzi, we have

εjδjkEi(λk) + (λj − λk)Γijk = εiδikEj(λk) + (λi − λk)Γjik. (6.12)

From here, choose i = 1, rearrange the labels so that j → i, k → j, and let i ̸= j, i, j > 1. We
obtain

(λi − λj)Γ1ij = (λ1 − λj)g(∇Ei
E1, Ej) = (λ1 − λj)βig(Ei, Ej) = 0.

Hence, for every i, j such that λi ̸= λj , Γ1ij = 0. Furthermore, since ∇E1E1 = 0, we have Γ1i1 =
−Γ11i = 0 and it is clear that Γ1ii = 0 since the adapted frame is pseudo-orthonormal. It follows
that ∇E1Ei stays in the eigenspace associated to the eigenvalue λi, while being orthogonal to Ei.

Similarly, Γii1 = −εiβi (see (6.10)) and, by (6.12) and Lemma 6.12, we also have (λj −
λi)Γiji = 0 if i, j > 1. Thus, Γiji = −Γiij = 0 if λi ̸= λj and Γiii = 0, so the component of
∇Ei

Ei that is perpendicular to E1 also stays in the eigenspace associated with λi, while being
orthogonal to Ei.

For the rest of the connection coefficients Γijk, with i, j, k > 1, we use (6.12) and Lemma 6.12
to write (λj − λk)Γijk = (λi − λk)Γjik. It follows that, if λi = λk ̸= λj , −Γikj = Γijk = 0. In
other words, if Ei ̸= Ek belong to the same eigenspace, then ∇Ei

Ek stays in it.
In summary, let Ei, Ej be vectors in the same eigenspace (we denote the set of indices cor-

responding to eigenvectors in the eigenspace associated to λi by [i]), and Eµ so that λµ ̸= λi.
Then, in general, the connection relations read

∇E1E1 = 0, ∇Ei
E1 = βiEi, ∇E1Ei =

∑
k∈[i] εkΓ1ikEk,

∇Ei
Ej = −ε1εiβiδijE1 +

∑
k∈[i] εkΓijkEk,

∇Ei
Eµ =

∑
k/∈[i],k ̸=1,µ εkΓiµkEk.

(6.13)
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In particular, for two vectors in the same eigenspace,

[Ei, Ej] =
∑
k∈[i]

εk(Γijk − Γjik)Ek,

and so the distribution generated by all eigenvectors associated to λi is integrable. Moreover,
the second fundamental form satisfies II(Ei, Ej) = −ε1εiβiδijE1, so the tangent submanifold
to this distribution is totally umbilical with mean curvature vector field H = −ε1βiE1.

From this point on, we focus on 4-dimensional solutions to attain the classification in Theo-
rem 6.7 (2). Once we are working around a point in MRic, we perform specific analyses depend-
ing on whether the eigenvalues λ2, λ3 and λ4 are all different; or at least two of them coincide.
As it turns out, the first case is not admissible, independently of the causal (timelike or spacelike)
character of ∇h.

6.2.1 The three eigenvalues coincide: λ2 = λ3 = λ4

If λ2 = λ3 = λ4 then, from (6.13), the connection behaves as follows:

∇E1E1 = 0, ∇Ei
E1 = βiEi, ∇E1Ei =

∑
k ̸=i εkΓ1ikEk,

∇Ei
Ej = −ε1εiβiδijE1 +

∑
k ̸=i εkΓijkEk,

where i, j, k ∈ {2, 3, 4}, i ̸= k. We consider the distribution span{E2, E3, E4}, which is inte-
grable and whose tangent leaves are umbilical (see Lemma 6.13), with unit normal E1. Also, no-
tice that β2 = β3 = β4 and the mean curvature vector of these leaves satisfies ∇Ei

(−ε1β2E1) =
−ε1(β2)2Ei ⊥ E1. In other words, the mean curvature vector −ε1β3E1 is parallel in the normal
bundle span{E1}, so the leaves are indeed spherical. This formula comes from the fact that
β2 =

h(λ2−2J)
∥∇h∥ , and since J is constant by Lemma 4.5 and λ2 depends only on t by Lemma 6.12,

so does β2. Hence, by Theorem 1.3, the metric decomposes locally as a warped product I ×φN .
Moreover, the Ricci eigenvalues λi are equal for i = 2, 3, 4, so applying the formula (1.6), it
follows that N is Einstein. Since N is 3-dimensional, it is of constant sectional curvature. This
implies that I×φN is locally conformally flat (see Theorem 1.6), so these solutions were already
described in Theorem 6.3 (1), but do not fall into the scope of Theorem 6.7.

6.2.2 Two eigenvalues coincide: λ2 ̸= λ3 = λ4 or λ2 = λ3 ̸= λ4.
In order to fix a unique notation for all cases, we arrange the pseudo-orthonormal basis {E1 =
∇h/∥∇h∥, E2, E3, E4} so that λ2 ̸= λ3 = λ4 and we set g(Ei, Ei) = εi for i = 1, 2, 3, so the
unit timelike vector field could be E1, E2 or E3. In this context, the geometry of the manifold is
so restricted that it decomposes as a multiply warped product.

Lemma 6.14. Let (M, g, h) be a 4-dimensional non-isotropic solution of the weighted Einstein
field equations (4.6) with harmonic curvature tensor, such that the Ricci operator diagonalizes in
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the adapted local frame B1 = {E1, . . . , E4}. If there are two distinct eigenvalues λ2 ̸= λ3 = λ4,
then (M, g) splits locally as a multiply warped product I1 ×φ I2 ×ξ N with metric

g = ε1dt
2 + ε2φ(t)

2ds2 + ξ(t)2g̃, (6.14)

where g̃ is the metric of a Riemannian or Lorentzian surface of constant Gauss curvature κ and
h is a function on t.

Proof. We adapt the relations in (6.13) to this context to see that

∇E1E1 = 0, ∇Ei
E1 = βiEi, ∇E1E2 = 0,

∇E1E3 = Γ134E4, ∇E1E4 = ε3Γ143E3,

∇E2E2 = −ε1ε2β2E1, ∇E2E3 = Γ234E4, ∇E2E4 = ε3Γ243E3

∇E3E3 = −ε1ε3β3E1 + Γ334E4, ∇E4E4 = −ε1β4E1 + ε3Γ443E3,

∇E3E4 = ε3Γ343E3, ∇E4E3 = Γ434E4, ∇E3E2 = ∇E4E2 = 0.

From the behavior of the connection, it follows that the tangent submanifolds to the distributions
D1 = span{E1, E2} and D2 = span{E1, E3, E4} are totally geodesic, since ∇D1 ⊂ D1 and
∇D2 ⊂ D2. We already know, by Lemma 6.13, that leaves tangent to D3 = span{E3, E4}
are umbilical but, moreover, the mean curvature vector associated to these leaves is −ε1β3E1,
where β3 = β4 = h(λ3−2J)

∥∇h∥ . Since J is constant by Lemma 4.5 and λ3 depends only on t by
Lemma 6.12, we have that

∇Ei
(−ε1β3E1) = −ε1β2

3Ei ⊥ E1, E2 for i ∈ {3, 4}.

Therefore, the mean curvature vector −ε1β3E1 is parallel in span{E1, E2}, so the leaves are
indeed spherical. Since leaves tangent to span{E2} are also spherical by the same argument, by
Theorem 1.3, locally we can decompose the tangent submanifolds to the distributions D1 and D2

as warped products with 1-dimensional base. Furthermore, both warping functions depend on
the variable t in the decomposition (6.11). Thus, the manifold decomposes locally as a multiply
warped product as in (6.14), with h depending only on t.

Finally, since λ3 = λ4 depends only on t by Lemma 6.12, the Ricci tensor on the fiber g̃ has
constant eigenvalues (indeed, otherwise λ3 would depend at least on one coordinate of the fiber)
and hence it is of constant Gauss curvature.

Lemma 6.15. Let (M, g, h) be a multiply warped product solution as in (6.14) with h = h(t)
and harmonic curvature. Then one of the warping functions, either φ or ξ, is constant.

Proof. Let g be a multiply warped product metric as in (6.14). Let κ be the Gauss curvature of
g̃. We choose local coordinates (x2, x3) on N so that

g̃(x2, x3) =
1(

1 + κ
4
(ε3x22 + x23)

)2 (ε3dx22 + dx23).
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Using these coordinates and introducing the exponentials φ = ef1 and ξ = ef2 to simplify
expressions, we set local coordinates (t, x1, x2, x3) on M such that

g = ε1dt
2 + ε2e

2f1(t)dx21 + e2f2(t)g̃.

Now, from (6.2) we see that

0 = R(∇h, ∂x1 , ∂t, ∂x1)− (ρ− 2Jg) ∧ dh(∂x1 , ∂t, ∂x1)

= 2ε1ε2e2f1h′

3

(
−κε1e−2f2 − 2f ′

1
2 − f ′

1f
′
2 + 3f ′

2
2 − 2f ′′

1 + 2f ′′
2

)
,

from where
e2f2

(
2 (f ′

1)
2 + f ′

1f
′
2 − 3 (f ′

2)
2 + 2f ′′

1 − 2f ′′
2

)
+ κε1 = 0.

A direct computation also shows that

τ = −2ε1
(
−κε1e−2f2 + (f ′

1)
2 + 2f ′

1f
′
2 + 3 (f ′

2)
2 + f ′′

1 + 2f ′′
2

)
.

Using these two expressions we obtain that

f ′′
1 = −1

6
(6 (f ′

1)
2 + 6f ′

1f
′
2 + τε1) ,

f ′′
2 = 1

2
e−2f2κε1 − 3

2
(f ′

2)
2 − 1

2
f ′
1f

′
2 − τε1

6
.

Moreover, we compute

Gh(∂x1 , ∂x1) =
1

6
e2f1ε1ε2 (6 (2f

′
2h

′ + h′′) + h (τε1 − 6f ′
1f

′
2))

to get that h′′ = 1
6
(−12f ′

2h
′ + 6hf ′

1f
′
2 − hτε1). Thus, we have expressed the second derivatives

of h, f1 and f2 in terms of lower order terms. Now, we use these relations to compute

Gh(∂t, ∂t) = (f ′
1 + 2f ′

2)h
′ +
(
−κε1e−2f2 + (f ′

2)
2 + 2f ′

1f
′
2 +

τε1
2

)
h,

Gh(∂x3 , ∂x3) =
8ε1e2f2

(κx2
2ε3+κx2

3+4)2
((
f ′
1f

′
2 − (f ′

2)
2 + κε1e

−2f2
)
h+ 2 (f ′

1 − f ′
2)h

′) .
This leads to a homogeneous linear system of two equations in the unknowns h′ and h. Hence,
because h ̸= 0, the determinant of the associated matrix must vanish:

C1 = e2f2 (f ′
1 − f ′

2) (3f
′
1f

′
2 + τε1)− 3κε1f

′
1 = 0. (6.15)

Differentiating with respect to t and simplifying second order terms using the expressions above,
we get

f ′
1

(
3κε1f

′
1 − e2f2 (f ′

1 − f ′
2)
(
4 (f ′

2)
2 + 5f ′

1f
′
2 + τε1

))
= 0.

Thus, either f ′
1 = 0, in which case the lemma holds, or

C2 = 3κε1f
′
1 − e2f2 (f ′

1 − f ′
2)
(
4 (f ′

2)
2 + 5f ′

1f
′
2 + τε1

)
= 0.
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If C2 = 0, then we compute

0 = C1 + C2 = −2e2f2f ′
2 (f

′
1 − f ′

2) (f
′
1 + 2f ′

2) .

Hence, there are three possible cases. If f ′
2 = 0, the result follows. If f ′

1 = f ′
2, then by (6.15),

we have either f ′
1 = 0, so the result follows, or κ = 0, in which case the manifold is lo-

cally conformally flat. Finally, if f ′
1 = −2f ′

2, then f1(t) = C − 2f2(t) for a constant C, and
Gh(∂t, ∂t) = −6h(f ′

2)
2, so f ′

2 = 0.

Lemma 6.15 above shows that at least one of the warping functions is constant. Notice that if
both are constant, then we have a direct product. In this case, a direct computation of the equation
Gh = 0 shows that, necessarily, κ = 0, so the manifold is flat. As a result, we can restrict our
analysis of the multiply warped product solutions to the case where one of the warping functions
is constant and the other one is strictly non-constant. We first analyze the case ξ′ ̸= 0.

Case φ = constant

Lemma 6.16. Let (M, g, h) be a multiply warped product solution as in (6.14) with φ constant,
with harmonic curvature and h = h(t). Then, (M, g, h) is a solution of (4.6) if and only if τ = 0,
h = cξ′ and I1 ×ξ N is one of the 3-dimensional locally conformally flat solutions portrayed in
Example 6.6 for the density function h.

Proof. Consider a multiply warped product structure as in (6.14) with φ constant. Normal-
ize the coordinate s if necessary so that φ = 1. Because of the metric structure we have
R(∂t, ∂s, ∂t, ∂s) = 0 and ρ(∂s, ∂s) = 0, so we obtain 0 = τ = 2κ−ε14ξξ′′−2ε1(ξ′)2

ξ2
from (6.2).

This implies that the scalar curvature of I1 ×ξ N also vanishes.
From equation (4.6), we have that

Gh(∂t, ∂t) = 2
h′ξ′ − hξ′′

ξ
, and Gh(∂s, ∂s) =

ε1ε2 (ξh
′′ + 2h′ξ′)

ξ
.

Hence, on the one hand, solving h′ξ′ − hξ′′ = 0 we get h = cξ′ for a constant c ̸= 0 (recall that
we are assuming that ξ is non-constant). On the other hand, since h′ξ′ − hξ′′ = 0, we write

0 = ε1ε2G
h(∂s, ∂s) = h′′ + 2

ξ′h′

ξ
= h′′ + 2h

ξ′′

ξ
.

Thus, we see that, for the SMMS (I1×ξN, h), the system of ODEs (6.5) for a locally conformally
flat 3-dimensional solution with vanishing scalar curvature is satisfied. These spaces are further
described by Example 6.6.

Conversely, take any 3-dimensional solution (I1 ×ξ N, h), with (N, gN) of constant Gauss
curvature κ, h = h(t), and vanishing scalar curvature. Consider the 4-dimensional manifold
(M, g) = I1 × I2 ×ξ N . Then, τ = 2κ−4ε1ξξ′′−2ε1(ξ′)2

ξ2
= 0. Moreover, because the system of
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ODEs (6.5) is satisfied, we have h′ξ′ − hξ′′ = 0 and ξh′′ + 2h′ξ′ = 0, which imply Gh(∂t, ∂t) =
Gh(∂s, ∂s) = 0. Using that h = cξ′ we compute:

ε1ξ
2Gh(X,X) =

(
ξ (h′ξ′ + ξh′′) + h

(
κε1 − ξξ′′ − (ξ′)2

))
g(X,X)

= c(κε1ξ
′ − (ξ′)3 + ξ2ξ(3))g(X,X)

for any vector X tangent to N . Since τ ′ = −4(κξ′−ε1(ξ′)
3+ε1ξ2ξ(3))

ξ3
= 0, this term vanishes,

so (M, g, h) is a 4-dimensional solution. Moreover, κξ′ − ε1 (ξ
′)3 + ξ2ξ(3)ε1 = 0 is also the

necessary and sufficient condition for the manifold to have harmonic curvature.

Remark 6.17. Note that solutions given in Lemma 6.16 generically present three distinct eigen-
values for Ric. Indeed, in the frame {∂t, ∂s, ∂x1 , ∂x2} for the multiply warped product metric
(6.14), the Ricci operator takes the form

Ric =


−ε1 2ξ

′′

ξ
0 0 0

0 0 0 0
0 0 λ 0
0 0 0 λ

 , where λ =
κ− ε1((ξ

′)2 + ξξ′′)

ξ2
,

so there is a zero eigenvalue corresponding to the I2 factor and the number of eigenvalues re-
duces to two only if I1 ×ξ N is Einstein (note that ξ′′ ̸= 0 because h = cξ′ is non-constant by
assumption). In this case, since the scalar curvature of I1×ξN vanishes, the underlying manifold
is flat and ξ′′ = 0, so this case does not appear among our solutions.

Case ξ = constant

Lemma 6.18. Let (M, g, h) be a multiply warped product solution as in (6.14), with ξ constant,
with harmonic curvature and h = h(t). Then (M, g) is a direct product of two surfaces of
constant Gauss curvature and h = cφ′.

Proof. Since the metric ξ2g̃ on N has constant Gauss curvature κ
ξ2

, we can assume ξ = 1 in
(6.14) by a change of coordinates and a redefinition of κ. Then, the Ricci operator is given by

Ric(∂t) = −ε1φ
′′

φ
∂t, Ric(∂s) = −ε1φ

′′

φ
∂s, Ric(X) = κX for X tangent to N.

From (6.2), we have

0 = R(∇h, ∂s, ∂t, ∂s)− (ρ− 2Jg) ∧ dh(∂s, ∂t, ∂s) = −2

3
ε2φh

′ (κφ+ 2ε1φ
′′) .

This implies that − ε1φ′′

φ
= κ

2
, so the manifold is a direct product of two surfaces N1 and N2

with constant Gauss curvatures κ
2

and κ respectively. Moreover, we compute 0 = Gh(∂t, ∂t) =
h′φ′−hφ′′

φ
, to see that h = cφ′ for a suitable integration constant c ∈ R∗ (since φ is non-constant

in this context).



6.2.3 The three eigenvalues are different (λ2 ̸= λ3 ̸= λ4) 121

Remark 6.19. Assume we are in the conditions of Lemma 6.18. Then, we can use the product
structure of (6.14) with ξ = 1 to write simple coordinate expressions for φ and h. Firstly,
note that κ cannot vanish, since this results in a direct product of two flat surfaces (hence a flat
solution), with constant density function h.

Now, for κ ̸= 0, since − ε1φ′′

φ
= κ

2
, the warping function φ takes the following forms, depend-

ing on the sign of the product ε1κ:

φ(t) = c1 sin
(√

ε1κ
2
t
)
+ c2 cos

(√
ε1κ
2
t
)
, if ε1κ > 0,

φ(t) = c1e
√

− ε1κ
2

t ++c1e
−
√

− ε1κ
2

t, if ε1κ < 0,

where c1 and c2 are suitable integration constants so that φ(t), h(t) > 0 for all t ∈ I .

6.2.3 The three eigenvalues are different (λ2 ̸= λ3 ̸= λ4)
Finally, assume that the three eigenvalues λ2, λ3 and λ4 of the Ricci operator are distinct. We
show in Lemma 6.21 below that this case is not admissible, with the proof being essentially
a Lorentzian analogue to that given in [78] in Riemannian signature. Let ε1 = −ε2 = ε and
ε3 = ε4 = 1. From equation (6.13) we know that

∇E1E1 = 0, ∇Ei
E1 = βiEi, ∇Ei

Ei = −εεiβiE1,

∇E1Ei = 0, ∇Ei
Ej = εkΓijkEk,

(6.16)

where {i, j, k} = {2, 3, 4} and Γijk = g(∇Ei
Ej, Ek). From these relations, we obtain the

expression for the Ricci eigenvalues as follows.

Lemma 6.20. Let (M, g, h) be a 4-dimensional non-isotropic solution of the weighted Einstein
field equations (4.6) with harmonic curvature tensor, such that the Ricci operator diagonalizes
in the adapted local frame B1 = {E1, . . . , E4} and the eigenvalues λ2, λ3 and λ4 are pairwise
distinct. Then, they take the following forms:

−ελ2 = β2
2 + εβ′

2 + β2β3 + β2β4 − 2Γ342Γ432,

−ελ3 = β2
3 + εβ′

3 + β3β2 + β3β4 + 2β2−β4

β3−β4
Γ342Γ432,

−ελ4 = β2
4 + εβ′

4 + β4β2 + β4β3 + 2β2−β3

β4−β3
Γ342Γ432.

Proof. On the one hand, from (6.16) and for i, j ̸= 1, we compute

∇[Ej ,Ei]Ei = ∇∇Ej
Ei
Ei −∇∇Ei

Ej
Ei = εkεj(Γjik − Γijk)ΓkijEj,

∇Ej
∇Ei

Ei = −εεiβi∇Ej
E1 = −εεiβiβjEj,

∇Ei
∇Ej

Ei = εk∇Ei
(ΓjikEk) = εkEi(Γjik)Ek + εkεjΓjikΓikjEj,

while, on the other hand,

∇[E1,Ei]E1 = ∇∇E1
Ei
E1 −∇∇Ei

E1E1 = −β2
iEi,

∇E1∇Ei
E1 = ∇E1(βiEi) = εβ′

iEi,

∇Ei
∇E1E1 = 0.



122 6 Solutions with conditions on the Weyl tensor

Hence, we have the curvature components given by

Rjiji = −εεiεjβiβj + εk{(Γijk − Γjik)Γkij − ΓjikΓikj},

R1i1j = −εi(εβ′
i + β2

i )δij,

so the components of the Ricci tensor take the form:

−ελ2 = ρ22 = εR1212 +R3232 +R4242

= εβ′
2 + β2

2 + β2β3 + β2β4

+(Γ234 − Γ324)Γ423 − Γ324Γ243

+(Γ243 − Γ423)Γ324 − Γ423Γ234

= β2
2 + εβ′

2 + β2β3 + β2β4 − 2Γ342Γ432,

and
λ3 = ρ33 = εR1313 − εR2323 +R4343

= −εβ2
3 − β′

3 − ε(β2β3 + β4β3) + 2εΓ243Γ423

= −ε(β2
3 + εβ′

3 + β3β2 + β3β4 − 2Γ243Γ423),

where we have used that Γjki = −Γjik. The computation of λ4 is analogous to the previous one.
Now, since the Ricci tensor is Codazzi due to the harmonicity of the curvature, so is the Hessian
Hesh due to equation (6.1) and the constancy of J given by Lemma 4.5. Hence, if we compute
the covariant derivative of the Hessian tensor,

(∇Ei
Hesh)(Ej, Ek) = Ei(Hesh(Ej, Ek))− Hesh(∇Ei

Ej, Ek)

−Hesh(Ej,∇Ei
Ek)

= εjδjkEi(βj) + (βj − βk)Γijk,

and apply the Codazzi condition and the fact that Ei(βj) = 0 for i = 2, 3, 4 by Lemma 6.12, it
follows that (βj − βk)Γijk = (βi − βk)Γjik. Notice that this is the same process that we used in
Lemma 6.13 for the Ricci tensor. From these relations, knowing that Γjki = −Γjik, we write

Γ243Γ423 = −β2 − β4
β3 − β4

Γ342Γ432, Γ234Γ324 = −β2 − β3
β4 − β3

Γ342Γ432,

from where the result follows.

Lemma 6.21. Let (M, g, h) be a 4-dimensional non-isotropic solution of the weighted Einstein
field equations (4.6) with harmonic curvature tensor, such that the Ricci operator diagonalizes
in the adapted local frame B1 = {E1, . . . , E4}. Then, the eigenvalues λ2, λ3 and λ4 cannot be
pairwise distinct.

Proof. In addition to Lemma 6.20, we have two more possibilities in order to express these
components of the Ricci tensor. The first one is using the expression R1i1j = −εεi(λi − 2J)δij
given by (6.2), which yields

−ελi = εiRi1i1 − 2εJ = −εβ′
i − β2

i − 2εJ. (6.17)
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The other option is using the weighted Einstein field equations (6.1) itself, so we get

−ελi = −εh
′

h
βi − 2εJ. (6.18)

For the sake of clarity, let β2 = a, β3 = b, β4 = c, and let Γ = Γ342Γ432. Then, we take the
expressions given both by Lemma 6.20 and by (6.17) for the difference R22 −R33 and add them
to find

−2ε(λ2 − λ3) = (a− b)c− 2
a+ b− 2c

b− c
Γ,

while taking the expression given by (6.18) gives

−2ε(λ2 − λ3) = −2ε(a− b)
h′

h
.

Equating both expressions yields a first value for h′h−1:

−εh
′

h
=
c

2
− a+ b− 2c

(a− b)(b− c)
Γ.

By the same process, using the components λ2 and λ3, we have another expression for h′h−1:

−εh
′

h
=
b

2
− a+ c− 2b

(b− c)(c− a)
Γ.

We can now use both values to solve for Γ in terms of a, b and c. Indeed, take

P = a2 + b2 + c2 − ac− ab− bc

= 1
2
(a− b)2 + 1

2
(a− c)2 + 1

2
(b− c)2 ≥ 0,

with equality only being achievable when a = b = c. Then, we have

Γ = −(a− b)(a− c)(b− c)2

4P
.

Now, consider that (β4 − β2)Γ
2
34 = (β3 − β2)Γ

2
43. Thus, we can write

(Γ432)
2 = Γ432Γ432 =

c− a

b− a
Γ342Γ432 = −(a− c)2(b− c)2

4P
.

It follows that either a = c or b = c, which is a contradiction. Thus, β2, β3 and β4 cannot be
pairwise distinct, and the same holds for λ2, λ3 and λ4.

6.2.4 Proof of Theorem 6.7 (2).
Let (M, g, h) be a 4-dimensional solution of the field equations (4.6) with diagonalizable Ricci
operator and harmonic curvature (not locally conformally flat), and such that g(∇h,∇h) ̸= 0.
Then, for any point in MRic, which is open and dense in M , we apply Lemmas 6.10-6.18 to
find the admissible structures at the local level. Note that, in the hypotheses of Lemma 6.18,
the fact that h satisfies the Obata equation on N1 is immediate from HesN1

h = Hesh
∣∣
N1

=

h(ρ− τ
3
g)
∣∣
N1

= −κh
2
gN1 (since τ = 3κ).
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6.3 The case with complex eigenvalues
Throughout the previous section, we have discussed the admissible solutions with diagonalizable
Ricci operator (the only possible case if ∇h is timelike), and we have seen that the geometric
characteristics of such solutions are not dissimilar from those of Riemannian static spaces dis-
cussed in [78, 105] if the solution is non-isotropic. However, the fact that we are working in
Lorentzian signature means that Ric does not diagonalize, in general, when ∇h is spacelike or
lightlike. For isotropic solutions, it was shown in Theorem 5.4 that the eigenvalues of the Ricci
operator are necessarily real (indeed, vanishing). In this section, we show that this is also the
case for 4-dimensional non-isotropic solutions with harmonic curvature.

6.3.1 A note on Gröbner bases
In what follows, we will come across a system of polynomial equations {Pi = 0} in several
geometric variables of our SMMSs. Given the complexity of this system, in order to extract
information from it, we will use the algebraic tool of Gröbner bases, which we briefly introduce
here. We refer to [47] for details on the properties of Gröbner bases and some algorithms used
to compute them.

Given a generic monomial xα = xα1
1 · · ·xαn

n of total degree |α| = α1 + · · · + αn, we can
establish a one-to-one correspondence between monomials in the polynomial ring R[x1, . . . , xn]
and Zn

≥0 by considering the vector of exponents α = (α1, . . . , αn) ∈ Zn
≥0. A monomial order on

R[x1, . . . , xn] is a relation > on Zn
≥0 (equivalently, on the set of monomials xα) which satisfies

1. > is a total order on Zn
≥0.

2. If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

3. (Zn
≥0, >) is well-ordered, i.e., every non-empty subset of Zn

≥0 has a least element.

A few notable monomial orders are the following:

• Lexicographic order: α >lex β if the leftmost non-zero entry in α− β is positive.

• Graded lexicographic order: α >grlex β if |α| > β or |α| = |β| with α >lex β.

• Graded reverse lexicographic order: α >grevlex β if |α| > β or |α| = |β| and the rightmost
non-zero entry in α− β is negative.

Let P =
∑

α aαx
α ∈ R[x1, . . . , xn]. Given a monomial order, we define the leading term of

P, LT (P), as the monomial corresponding to the greatest α ∈ Zn
≥0 such that aα ̸= 0. For an

ideal I ⊂ R[x1, . . . , xn], let LT (I) be the set of leading terms of all polynomials in I, and
⟨LT (I)⟩ the ideal generated by this set. In particular, if I = ⟨Pi⟩, then ⟨LT (Pi)⟩ ⊂ ⟨LT (I)⟩,
but equality is not always attained.

A Gröbner basis for I, with respect to a certain monomial order, is a finite subset G =
{g1, . . . , gν} ⊂ I such that ⟨LT (g1), . . . , LT (gν)⟩ = ⟨LT (I)⟩. The following well-known result
guarantees that every non-zero ideal I ∈ R[x1, . . . , xn] admits a Gröbner basis:
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Hilbert Basis Theorem: Every ideal I ∈ R[x1, . . . , xn] has a finite generating set.

Moreover, every Gröbner basis G for an ideal I is a generating set for I. We can take
advantage of this fact in the following way: Consider the set of solutions of the polynomial
system given by the polynomials Pi, i.e., the set of vectors −→a = (a1, . . . , an) ∈ Rn such that
Pi(

−→a ) = 0 for all i. These solutions also cancel out any polynomial in the ideal I = ⟨Pi⟩.
Since I is generated by G, the solutions of the original system {Pi = 0} are the same as those
for the elements of G. This means that we can try to solve large polynomial systems by obtaining
simpler polynomials, sharing solutions with the original ones, as elements of a Gröbner basis.

There exist several algorithms for the computation of Gröbner bases, such as Buchberger’s
algorithm. Nevertheless, in any case, the construction of Gröbner basis is extremely dependent
on the choice of monomial order, as well as the way one sorts the variables in the polynomials
themselves. Indeed, a Gröbner basis might be simple or contain a small number of polynomials
for a certain order, while the basis for a different order might become completely unmanageable.
Thus, when working with this tool, it is essential to specify the order being used in order to make
the computations reproducible.

6.3.2 The nonexistence result
The following result tells us that, in the case of harmonic curvature, solutions of Type I.b (see
(6.6)) are not admissible.

Theorem 6.22. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equations
(4.6) with harmonic curvature. Then, the Ricci operator of (M, g) has real eigenvalues.

We emphasize that the harmonicity of the curvature is an essential assumption in Theo-
rem 6.22, since there are solutions with non-real eigenvalues and non-harmonic curvature, as
illustrated by the following example.

Example 6.23. In order to build a solution with complex eigenvalues for the Ricci operator,
we consider a left-invariant metric on the Lie group R3 ⋊ R, this is, a semi-direct extension of
the Abelian group. Let {e1, e2, e3, e4} be a basis of the corresponding Lie algebra, where e4
generates the R factor, and consider the Lie bracket given by

[e1, e4] = −e1, [e2, e4] = e3, [e3, e4] = −e2.

The Lorentzian metric is given by ⟨e1, e1⟩ = ⟨e2, e2⟩ = −⟨e3, e3⟩ = ⟨e4, e4⟩ = 1.
Now, we look for an expression of the metric in local coordinates (x, y, z, t) ∈ R4. Using

the relation dω(X, Y ) = Xω(Y ) − Y ω(X) − ω([X, Y ]), for a 1-form ω, on the dual basis
{e1, e2, e3, e4} we obtain

de1 = e1 ∧ e4, de2 = e3 ∧ e4, de3 = −e2 ∧ e4, de4 = 0.

By relating the basis {e1, e2, e3, e4} with {dx, dy, dz, dt} and integrating the corresponding equa-
tions we get a particular solution of the form e1 = e−tdx, e2 = cos(t)dy + sin(t)dz, e3 =
sin(t)dy − cos(t)dz, e4 = dt. Hence,

g = e2tdx2 + cos(2t)(dy2 − dz2) + 2 sin(2t)dydz + dt2.
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Consider the positive density function h(t) = e−t, whose gradient is ∇h = −e−t∂t, so we have
g(∇h,∇h) = e−2t > 0. Moreover, the Ricci and the Hessian operators are given by

Ric(∂x) = ∂t, Ric(∂y) = ∂z, Ric(∂z) = −∂y, Ric(∂t) = ∂t,

hesh(∂x) = e−t∂t, hesh(∂y) = e−t∂z,

hesh(∂z) = −e−t∂y, hesh(∂t) = e−t∂t,

so (R4, g, h) is a solution of Type I.b with λ = 1, α = b = −1 and a = 0. However, the curvature
tensor is not harmonic, since

(∇∂xρ)(∂t, ∂t)− (∇∂tρ)(∂x, ∂t) = 2e2t ̸= 0.

In order to prove Theorem 6.22, assume, on the contrary, that (M, g, h) is a 4-dimensional
solution of the weighted Einstein field equations (6.1) with ∇h spacelike and Ricci operator of
Type I.b inM , as shown in (6.6). We work on an adapted pseudo-orthonormal basis B1 = {E1 =
∇h/∥∇h∥, E2, E3, E4} and see that, by the field equations, the Hessian operator is given by

hesh∇h = λ̃∇h, heshE2 = ãE2 − b̃E3,

heshE3 = b̃E2 + ãE3, heshE4 = α̃E4,

where λ̃ = h(λ − 2J), ã = h(a − 2J), b̃ = hb and α̃ = h(α − 2J). We start by using the
harmonicity of the curvature to obtain information on a, b λ and α, and on the components of the
Levi-Civita connection, with the following two lemmas.

Lemma 6.24. Let (M, g, h) be a solution of Type I.b such that (M, g) has harmonic curvature.
Then, a, b, λ and α have vanishing derivatives in the direction of E2, E3 and E4. Moreover,

∇h(a) = h(b2 + (λ− a)(a− 2J)),

∇h(b) = hb(λ+ 2J − 2a),

∇h(α) = h(λ− α)(α− 2J),

∇h(λ) = −h(2b2 − 2a2 − α2 + (λ+ 2J)(2a+ α)− 6Jλ).

(6.19)

Proof. In the frame B1, and using the weighted Einstein field equations (6.1), we compute
(∇∇hρ)(E2,∇h) = 0 and (∇E2ρ)(∇h,∇h) = ∥∇h∥2E2(λ). Since ∇h is spacelike, from
the Codazzi condition (∇∇hρ)(E2,∇h) = (∇E2ρ)(∇h,∇h), we find E2(λ) = 0. Similarly, we
prove E3(λ) = E4(λ) = 0.

We continue to extract information from the Codazzi condition. On the one hand, we have

(∇∇hρ)(E2, E3) = −∇h(b) and (∇E2ρ)(∇h,E3) = −(λ− a)b̃+ bã,

which gives the expression for ∇h(b). In the same way, we compute (∇∇hρ)(Ei, Ei) and
(∇Ei

ρ)(∇h,Ei) for i = 2, 3 to find

−∇h(a) + 2bg(∇∇hE2, E3) = (a− λ)ã− bb̃,

∇h(a) + 2bg(∇∇hE2, E3) = (λ− a)ã+ bb̃,
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which yields g(∇∇hE2, E3) = 0 and the expression for ∇h(a). On the other hand,

(∇∇hρ)(E4, E4) = ∇h(α) and (∇E4ρ)(∇h,E4) = (λ− α)α̃,

which provides an equation for ∇h(α). Finally, since τ is constant by Lemma 4.5, and τ =
λ + 2a + α, we have 0 = ∇h(λ) + 2∇h(a) +∇h(α), which yields the last equation in (6.19).
Moreover, since we know Ei(λ) = 0 for i = 2, 3, 4 and τ is constant, it follows that 2Ei(a) =
−Ei(α). Thus, taking the derivative of this equation in the direction of Ei, for i = 2, 3, 4, it
follows that Ei(2a

2 + α2 − 2b2) = 0. Now, take

h−1∇h(a2 + 1
2
α2 − b2) = (λ+ 2J)(2a2 + α2 − 2b2)− 2Jλ(2a+ α)

−2a3 − α3 + 6ab2.

Differentiating this expression in the direction ofEi yieldsEi(2a
3+α3−6ab2) = 0. In summary,

we have three distinct expressions:

Ei(α) = −2Ei(a), Ei(2a
2 + α2 − 2b2) = 0, Ei(2a

3 + α3 − 6ab2) = 0,

for i = 2, 3, 4. Using the first and second ones, we can write Ei(b) =
a−α
b
Ei(a), so now the third

equation becomes

0 = 6a2Ei(a) + 3α2Ei(α)− 6b2Ei(a)− 12abEi(b)

= −6((a− α)2 + b2)Ei(a).

Since b ̸= 0, it follows that Ei(a) = Ei(α) = Ei(b) = 0.

Lemma 6.25. Let (M, g, h) be a solution of Type I.b such that (M, g) has harmonic curvature.
LetC be the matrix such thatC1i = ∇∇hEi,Ci1 = ∇Ei

∇h andCij = ∇Ei
Ej , for i, j ∈ {2, 3, 4}.

Then,

C =


λ̃∇h 0 0 0

ãE2 − b̃E3
ã

∥∇h∥2∇h+ α−a
b ΓE4

b̃
∥∇h∥2∇h+ ΓE4 Γ

(
α−a
b E2 − E3

)
b̃E2 + ãE3

b̃
∥∇h∥2∇h− ΓE4 − ã

∥∇h∥2∇h+ α−a
b ΓE4 −Γ

(
E2 +

α−a
b E3

)
α̃E4 − (α−a)2+b2

2b2
ΓE3 − (α−a)2+b2

2b2
ΓE2 − α̃

∥∇h∥2∇h


where Γ = g(∇E2E3, E4).

Proof. The column Ci1 is given by the weighted Einstein field equations (6.1) and the fact that
∇Ei

∇h = heshEi. We also use g(∇Ei
Ej,∇h) = −Hesh(Ei, Ej) to find the component in the

direction of ∇h of ∇Ei
Ej . Now, from the proof of Lemma 6.24, we know that g(∇∇hE2, E3) =

−g(∇∇hE3, E2) = 0. Next, we compute (∇∇hρ)(Ei, E4) = (∇Ei
ρ)(∇h,E4), with i = 2, 3, to

find
(α− a)g(E2,∇∇hE4) + bg(E3,∇∇hE4) = 0,

(α− a)g(E3,∇∇hE4)− bg(E2,∇∇hE4) = 0.
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Since b ̸= 0, we have g(∇∇hEi, E4) = −g(∇∇hE4, Ei) = 0, for i = 2, 3, 4. Moreover,
g(∇∇hEi,∇h) = Hesh(Ei,∇h) = 0 for i = 2, 3, 4. This completes the row C1i.

Let Γijk = g(∇Ei
Ej, Ek) (notice that Γijk = −Γikj) and set also ∇iρjk = (∇Ei

ρ)(Ej, Ek).
Then, compute ∇2ρ33 = 2bΓ223 and ∇3ρ23 = 0 to find Γ223 = 0. Analogously, from ∇3ρ22 =
∇2ρ32, we have Γ332 = 0. Moreover, from ∇iρ44 = ∇4ρi4 for i = 2, 3 it follows that

0 = bΓ443 + (α− a)Γ442, 0 = (α− a)Γ443 − bΓ442,

from where Γ443 = Γ442 = 0. Hence, the only non-vanishing Γijk (up to symmetries) are Γ4ij

and Γij4, where i, j = 2, 3. Finally, we use ∇4ρii = ∇iρ4i to find

2bΓ423 = −(α− a)Γ224 − bΓ234, 2bΓ423 = −(α− a)Γ334 + bΓ324,

while ∇3ρ24 = ∇2ρ34 = ∇4ρ23 gives two more relations:

0 = (α− a)Γ234 − bΓ224, 0 = (α− a)Γ324 + bΓ334.

Setting Γ234 = Γ, the indeterminate system given by these four equations yields

Γ224 = Γ334 =
α− a

b
Γ, Γ324 = −Γ, Γ423 = −(α− a)2 + b2

2b2
Γ,

which completes the remaining terms of the matrix C.

The two lemmas above exhaust the amount of information we can extract from the harmonic-
ity of the curvature tensor. However, more compatibility conditions can be obtained through the
Jacobi identity of vector fields and the restrictions that the weighted Einstein field equations
impose on the curvature tensor.

Lemma 6.26. Let (M, g, h) be a solution of Type I.b of the weighted Einstein field equations
such that (M, g) has harmonic curvature, with the connection coefficients given by Lemma 6.25.
Then, Ei(Γ) = 0 for i = 2, 3, 4.

Proof. We use the Jacobi identity of vector fields to write

[[E4, E2], E3] + [[E2, E3], E4] + [[E3, E4], E2] = 0.

With the notation of Lemma 6.25, the Lie brackets take the form

[E4, E2] = −α−a
b
ΓE2 − (α−a)2−b2

2b2
ΓE3, [E2, E3] = 2ΓE4,

[E3, E4] = −α−a
b
ΓE3 +

(α−a)2−b2

2b2
ΓE2.

Moreover, by Lemma 6.24, we have that Ei(α) = Ei(a) = Ei(b) = 0 for i = 2, 3, 4. Hence,

[[E4, E2], E3] = α−a
b
E3(Γ)E2 +

(α−a)2−b2

2b2
E3(Γ)E3 − 2α−a

b
Γ2E4,

[[E2, E3], E4] = −2E4(Γ)E4,

[[E3, E4], E2] = 2α−a
b
Γ2E4 +

α−a
b
E2(Γ)E3 − (α−a)2−b2

2b2
E2(Γ)E2.



6.3.2 The nonexistence result 129

Taking the sum of the three brackets, it follows that E4(Γ) = 0. Moreover, from the components
in the direction of E2 and E3 respectively, we have

0 = α−a
b
E3(Γ)− (α−a)2−b2

2b2
E2(Γ),

0 = (α−a)2−b2

2b2
E3(Γ) +

α−a
b
E2(Γ).

The determinant associated to this homogeneous system is
(

(α−a)2+b2

2b2

)2
̸= 0, so the only solu-

tion is E2(Γ) = E3(Γ) = 0.

Lemma 6.27. Let (M, g, h) be a solution of Type I.b of the weighted Einstein field equations
such that (M, g) has harmonic curvature, with the connection coefficients given by Lemma 6.25.
Then, the following equations are satisfied:

0 = (α−a)2+b2

b2
Γ2 − 2 (a− J)− h2

∥∇h∥2 ((a− 2J)2 + b2 + (a− 2J) (α− 2J)), (6.20)

0 = (α−a)((α−a)2+b2)
b2

Γ2 + 2b2 + h2

∥∇h∥2 b
2 (α− 2J) , (6.21)

0 = (α−a)2+b2

b2
Γ2 + α− J + h2

∥∇h∥2 (a− 2J) (α− 2J) . (6.22)

Proof. Recall that E1 =
∇h

∥∇h∥ and denote

Rijkl = R(Ei, Ej, Ek, El) = g((∇[Ei,Ej ] − [∇Ei
,∇Ej

])Ek, El).

We will use Lemmas 6.24, 6.25 and 6.26 to compute the different components of the curvature
tensor. For example,

R(E2, E4)E3 = α−a
b
Γ∇E2E3 +

(α−a)2−b2

2b2
Γ∇E3E3

+ (α−a)2+b2

2b2
Γ∇E2E2 +

b̃
∥∇h∥2∇E4∇h+ Γ∇E4E4

=
(

(α−a)((α−a)2+b2)
b3

Γ2 + b̃α̃
∥∇h∥2

)
E4.

Other components follow analogously, and the following are of interest:

−R3434 = R2424 = (α−a)2+b2

b2
Γ2 + h2

∥∇h∥2 (a− 2J) (α− 2J) ,

R2434 = (α−a)((α−a)2+b2)
b3

Γ2 + h2

∥∇h∥2 b (α− 2J) ,

R2323 = −2 (α−a)2+b2

b2
Γ2 + h2

∥∇h∥2
(
(a− 2J)2 + b2

)
.

(6.23)

On the other hand, we use equation (6.2) to compute the following components involving E1:

R2121 = a− 2J, R2131 = b, R4141 = −α + 2J. (6.24)

Now, using the definition of the Ricci tensor, we have

−a = ρ22 = R2121 +R2323 +R2424,

−b = ρ23 = R2131 +R2434,

α = ρ44 = R4141 −R2424 +R3434.

Substituting in the expressions given by (6.23) and (6.24), the result follows.
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6.3.3 Proof of Theorem 6.22

Let (M, g, h) be a 4-dimensional Type I.b solution of the weighted Einstein field equations (4.6)
such that (M, g) has harmonic curvature. For this solution, Lemmas 6.24-6.27 stated throughout
this section apply. Let H = h2

∥∇h∥2 . We analyze two cases separately: α = a and α ̸= a.

Case α = a: Equations (6.20), (6.21) and (6.22) in Lemma 6.27 reduce to

0 = 2 (a− J) +H(2 (a− 2J)2 + b2)− Γ2,

0 = 2b2 +Hb2 (a− 2J) ,

0 = a− J +H (a− 2J)2 + Γ2.

Since b ̸= 0, we solve for a in the second expression to get a = 2JH−1
H

. The remaining two
equations become

0 = b2H +
4

H
+ 2J − Γ2, 0 =

2

H
+ J + Γ2,

so adding both yields

0 = b2H +
6

H
+ 3J. (6.25)

Now, notice that ∇h(H) = 2h(1−H(λ− 2J)). Using this, the fact that λ = 6J − 3a = 6
H

, and
the expression for ∇h(b) given by Lemma 6.24, we differentiate (6.25) in the direction of ∇h.
This gives 0 = 2 h

H2 (5b
2H2 − 12JH + 30). Hence,

0 = 5b2H2 − 12JH + 30. (6.26)

Combining (6.25) and (6.26), it follows that 0 = 6 + b2H2, which is not possible.

Case α ̸= a: This case requires some fairly long, although straightforward, computations, which
we present schematically. Firstly, we compute the (6.21) − (α− a)(6.20) and (6.22) − (6.20) to
remove the terms involving Γ and obtain two polynomials in R[J, a, b, α,H], that must vanish at
every point of the manifold for our solution:

P1 = −ab2H − 8J2aH − 4JaHα+ 6Ja2H + 2Ja+ aHα2 − a3H

+2aα− 2a2 − 2Jb2H + 2b2Hα + 2b2 + 8J2Hα− 2JHα2 − 2Jα,

P2 = −8JaH + 2aHα + a2H + 2a+ b2H + 12J2H − 4JHα− 3J + α.

Now, use ∇h(H) = 2h(1 − H(λ − 2J)), λ = 6J − 2a − α and the derivatives given by
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Lemma 6.24 to compute two new polynomials P3 =
∇h(P1)

h
and P4 =

∇h(P2)
2h

:

P3 = 8Jab2H − 11ab2Hα + 4a2b2H − 22ab2 − 96J3aH − 64J2aHα

+108J2a2H + 24J2a+ 6Ja2Hα + 28JaHα2 − 40Ja3H + 30Jaα

−34Ja2 + a3Hα− 3a2Hα2 − 3aHα3 + 5a4H − 6a2α + 4aα2

+10a3 − 36J2b2H + 30Jb2Hα + 30Jb2 − 3b2Hα2 − b4H + 2b2α

+96J3Hα− 44J2Hα2 − 24J2α + 6JHα3 + 4Jα2,

P4 = −ab2H − 24J2aH + 8JaHα+ 8Ja2H + 6Ja− aHα2

−a2Hα− a3H − 2a2 + b2Hα + 2b2 + 24J3H

−12J2Hα− 6J2 + 2JHα2 + 3Jα− α2.

Finally, we compute P5 =
∇h(P3)

h
and P6 =

∇h(P4)
h

, which provides two additional polynomials:

P5 = 676J2ab2H − 514Jab2Hα− 92Ja2b2H − 900Jab2 + 94a2b2Hα

+51ab2Hα2 − 20a3b2H + 20ab4H + 12ab2α + 280a2b2

−1824J4aH − 1536J3aHα + 2744J3a2H + 456J3a+ 240J2a2Hα

+1012J2aHα2 − 1564J2a3H + 692J2aα− 840J2a2 + 70Ja3Hα

−234Ja2Hα2 − 210JaHα3 + 404Ja4H − 246Ja2α− 202Jaα2

+460Ja3 − 17a4Hα + 15a3Hα2 + 27a2Hα3 + 15aHα4 − 40a5H

+20a3α + 46a2α2 + 14aα3 − 80a4 − 840J3b2H + 696J2b2Hα

+672J2b2 − 138Jb2Hα2 − 16Jb4H + 38Jb2α + 9b2Hα3 − 9b4Hα

−18b2α2 − 24b4 + 1824J4Hα− 1208J3Hα2 − 456J3α

+312J2Hα3 + 148J2α2 − 30JHα4 − 12Jα3,

P6 = −7ab2Hα + 4a2b2H − 22ab2 − 336J3aH + 160J2aH

+184J2a2Hα + 84J2a− 36JaHα2 − 48Ja2Hα− 48Ja3H

−12Jaα− 50Ja2 + 3aHα3 + 5a2Hα2 + 5a3Hα + 5a4H + 2aα2

+2a2α + 10a3 − 24J2b2H + 24Jb2Hα + 38Jb2 − 3b2Hα2

−b4H − 2b2α + 240J4H − 168J3Hα− 60J3 + 52J2Hα2

+42J2α− 6JHα3 − 22Jα2 + 4α3.

Thus, at each point of the manifold, we have the system of polynomial equations {Pi = 0|i =
1, . . . , 6}, where Pi ∈ R[J, a, b, α,H]. Following the discussion in Section 6.3.1, we look for a
simpler polynomial by computing a Gröbner basis G for I using graded lexicographic order. As
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a result, we obtain a basis with 13 polynomials, which include the following one:

G = 16b8 + 8b6α2 + b4α4 ∈ G.

Since G ∈ ⟨Pi⟩ and Pi vanishes for all i, G must vanish as well. We conclude that b = 0
necessarily, contradicting the assumption that the solution is of Type I.b.

6.4 Non-diagonalizable cases with real eigenvalues
In this section, we focus on the two remaining cases, that is, those whose Ricci operator is non-
diagonalizable with real eigenvalues. Hence, we will tackle 4-dimensional solutions (M, g, h) of
the weighted Einstein field equations with ∇h spacelike, such that the Ricci operator is of Type
II or Type III, as given by (6.7). We also include in this section any isotropic solutions that are
either 2-step nilpotent or 3-step nilpotent. In this case, we will use an adapted frame which gives
a Ricci operator in the form of (6.8). As in the previous two sections, all solutions are assumed
to have harmonic curvature and the results will complete the proof of one of our main results
(Theorem 6.36). The aforementioned proof is included at the end of the chapter, in Section 6.5.

6.4.1 Type II solutions
We begin by analyzing solutions with Ricci operator of Type II. We already know from Theo-
rem 5.4 that isotropic solutions have nilpotent Ricci operator. Hence, we consider the case with
∇h spacelike first.

Assume Ric is of Type II with ∇h spacelike. Then, there exists a pseudo-orthonormal frame
B2 = {E1 = ∇h/∥∇h∥, U, V, E2} as in (6.7), where E1, E2 are spacelike and U, V lighlike, and
so that the Ricci operator is given by

Ric∇h = λ∇h, RicU = αU + εV, RicV = αV, RicE2 = βE2.

Now, from the weighted Einstein field equations (6.1), it follows that the Hessian operator hesh =
∇∇h has the following form in this frame:

hesh∇h = λ̃∇h, hesh U = α̃U + εhV, hesh V = α̃V, heshE2 = β̃E2,

where λ̃ = h(λ− 2J), α̃ = h(α− 2J) and β̃ = h(β − 2J).

Lemma 6.28. Let (M, g, h) be a Type II solution with ∇h spacelike. Then M splits as a direct
product I ×N , with metric gM = dt2 ⊕ gN (with gN possibly dependent on t), where ∂t = E1 =
∇h/∥∇h∥.

Proof. Since heshE1 = λ̃E1, the distribution generated by ∇h is totally geodesic. Furthermore,
we see that

0 = U(g(∇h, V )) = g(∇U∇h, V ) + g(∇h,∇UV ) = α̃ + g(∇h,∇UV ),

0 = V (g(∇h, U)) = g(∇V∇h, U) + g(∇h,∇VU) = α̃ + g(∇h,∇VU),
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so subtracting both expressions we get g([U, V ],∇h) = 0. We proceed analogously in order
to verify that g([U,E2],∇h) = g([V,E2],∇h) = 0. Thus, span{U, V,E2} is closed under Lie
bracket, and the distribution generated by span{U, V,E2} is integrable. By the same argument
that was used in Section 6.2 to obtain (6.11), it follows that, locally, M splits as a product I×N ,
with the metric gM = dt2 ⊕ gN , where t is such that dt = dh/∥∇h∥ and h = h(t). Note that,
since ∇h is spacelike, ∂t = ∇t = E1.

Notice that, from Lemma 6.28 we can compute Hesh(∂t, ∂t) = h′′, and λ = h−1h′′ + 2J , so
λ depends only on t. This is indeed true for the three eigenvalues.

Lemma 6.29. Let (M, g, h) be a Type II solution with ∇h spacelike. Then, all eigenvalues of
the Ricci operator depend only on the local coordinate t. Thus, for the adapted frame B2 =
{E1, U, V, E2} one has

U(α) = V (α) = E2(α) = 0 and U(β) = V (β) = E2(β) = 0.

Proof. Since the curvature tensor is harmonic, the Ricci tensor is Codazzi. Hence, on the one
hand, we have

(∇∇hρ)(U, V ) = ∇h(ρ(U, V ))− ρ(∇∇hU, V )− ρ(U,∇∇hV )

= ∇h(α)− αg(∇∇hU, V )− αg(U,∇∇hV )− εg(V,∇∇hV )

= ∇h(α),

where we have used ∇h(g(U, V )) = 0 and ∇h(g(V, V )) = 0. On the other hand,

(∇Uρ)(∇h, V ) = −ρ(∇U∇h, V )− ρ(∇h,∇UV )

= −αg(∇U∇h, V )− λg(∇h,∇UV ) = (λ− α)α̃,

so we end up with ∇h(α) = h(λ− α)(α− 2J). We can also write

(∇∇hρ)(E2, E2) = ∇h(β) and (∇E2ρ)(∇h,E2) = (λ− β)β̃

so that ∇h(β) = h(λ− β)(β − 2J). Now, since τ = λ+ 2α+ β is constant by Lemma 4.5 and
λ depends only on t, we have that

0 = ∇h(τ) = ∇h(λ) + 2∇h(α) +∇h(β)

= ∇h(λ) + 2h(λ− α)(α− 2J) + h(λ− β)(β − 2J)

= ∇h(λ) + h(λ+ 2J)(2α + β)− h (6Jλ+ (2α2 + β2)) .

Since every term in this expression except for 2α2 + β2 depends only on t, 2α2 + β2 depends on
t as well. Thus, for any vector field X ∈ ∂⊥t , we have

2X(α) +X(β) = 0, 2αX(α) + βX(β) = 0.

The determinant associated to this homogeneous system is 2(β − α), so either X(α) = X(β) =
0 or α = β. In both cases, it follows that α, β depend only on t. Alternatively, applying
Lemma 6.11 to the power sums 2α + β and 2α2 + β2 also yields the result.



134 6 Solutions with conditions on the Weyl tensor

The fact that the Ricci tensor is Codazzi, together with the information already obtained,
allow us to compute some Christoffel symbols as follows.

Lemma 6.30. Let (M, g, h) be a Type II solution with ∇h spacelike. Then, for the adapted frame
B2 = {∇h, U, V, E2}, the following equations are satisfied:

0 = (α− β)g(∇E2V,E2),

0 = (α− β)g(∇∇hU,E2) + εg(∇∇hV,E2),

0 = (α− β)g(∇∇hV,E2),

0 = g(∇V V, U),

0 = (α− β)g(∇V V,E2),

0 = (α− β)g(E2,∇UU) + εg(E2,∇UV )− 2εg(U,∇E2V ),

0 = (α− β)g(∇VU,E2) + εg(∇V V,E2),

0 = (α− β)g(∇UV,E2),

0 = (α− β)g(∇E2U,E2) + εg(∇E2V,E2).

Proof. Using Lemma 6.29 and the Codazzi character of the Ricci tensor, we further analyze the
connection coefficients for the different vectors. For example,

(∇V ρ)(E2, E2) = V (β)− 2ρ(∇VE2, E2) = −2βg(∇VE2, E2) = 0,

and similarly, (∇E2ρ)(V,E2) = (α − β)g(∇E2V,E2). Equating both expressions yields (α −
β)g(∇E2V,E2) = 0. The remaining components of the covariant derivative of the Ricci tensor
are computed in a similar manner, and we omit details.

Once we have obtained enough information on the Levi-Civita connection with respect to
the adapted frame, we are ready to give the following classification result for Type II solutions,
where we distinguish the isotropic case from that in which ∇h is spacelike.

Theorem 6.31. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equations
(4.6) with harmonic curvature and Ricci operator of Type II.

1. If g(∇h,∇h) > 0, then (M, g) is a Kundt spacetime.

2. If g(∇h,∇h) = 0, then Ric is 2-step nilpotent and (M, g) is a pp-wave. Moreover, there
exist local coordinates {u, v, x1, x2} such that

gppw(u, v, x1, x2) = 2 du dv + F (v, x1, x2) dv
2 + dx21 + dx22

with h = h(v) and ∆xF = ∂2x1
F + ∂2x2

F = −2h′′(v)
h(v)

.
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Proof. Assume first that ∇h is spacelike. We work in the adapted pseudo-orthonormal frame B2

so that Ric is given by (6.7). From Lemma 6.30, either if α = β or α ̸= β, we have

g(∇V V, U) = 0, g(∇V V,E2) = 0.

Moreover, g(∇V V, V ) = 0 (since g(V, V ) = 0), and

g(∇V V,∇h) = −Hesh(V, V ) = α̃g(V, V ) = 0.

Hence, ∇V V = 0 and V is geodesic.
In what follows, we prove that V satisfies ∇XV = ω(X)V for some 1-form ω and X ⊥ V

as in (1.8) to show that the spacetime is Kundt (recall this coordinate-free definition of Kundt
spacetimes from Section 1.3). We check directly from Lemma 6.30 that g(∇E2V,E2) = 0 and
g(∇∇hV,E2) = 0. Furthermore, from the structure of Hesh, it follows that

g(∇E2V,∇h) = −Hesh(V,E2) = 0, g(∇∇hV,∇h) = −Hesh(V,∇h) = 0.

Finally, since V is lightlike, g(∇∇hV, V ) = g(∇E2V, V ) = 0. Hence, for any X ⊥ V , we can
write ∇XV = ω(X)V for some 1-form ω satisfying ω(V ) = 0, ω(∇h) = g(∇∇hV, U) and
ω(E2) = g(∇E2V, U). Consequently, (M, g) is Kundt.

Now, we consider the isotropic case, i.e., the one where ∇h is lightlike. We work in the
pseudo-orthonormal frame B0 = {∇h, U,X1, X2} so that Ric takes the form of (6.8) with µ = 0.
Since Ric is 2-step nilpotent, the image of every vector field in this frame vanishes except for
Ric(U) = ν∇h.

Moreover, the field equations (6.1) reduce to hρ = Hesh, so we have ∇∇h∇h = ∇X1∇h =
∇X2∇h = 0, and ∇U∇h = hν∇h. Therefore, ∇h is recurrent and (M, g) is a Brinkmann
wave. Notice that (M, g) is also Ricci-isotropic, that is, Ric(X) = 0 for any X orthogonal to the
recurrent lightlike vector field ∇h.

Next, we compute

0 = ρ(X1, U) = R(X1, U, U,∇h) +R(X1, X2, U,X2), and

0 = ρ(X1, X1) = 2R(X1, U,X1,∇h) +R(X1, X2, X1, X2).

Additionally, since both the Cotton tensor dP and the Schouten scalar J vanish, we obtain from
(6.2) that R(∇h,X, Y, Z) = ρ ∧ dh(X, Y, Z), so

R(∇h, U, U,X1) = ρ ∧ dh(U,U,X1) = 0, and
R(∇h,X1, U,X1) = ρ ∧ dh(X1, U,X1) = 0.

Hence R(X1, X2, X2, U) = 0 and R(X1, X2, X1, X2) = 0. Proceeding analogously, we prove
that R(X1, X2, X1, U) = 0. In summary, we have R(∇h⊥,∇h⊥,−,−) = 0, and given that
(M, g) is a Ricci-isotropic Brinkmann wave, we conclude that (M, g) is a pp-wave (see Sec-
tion 1.3).

Adopt canonical coordinates for a pp-wave so that the metric is given as in (1.13) with ∂uF =
0. Then, the curvature tensor is harmonic if and only if ∆xF = ∂2x1

F + ∂2x2
F = λ(v) is a
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function of the coordinate v. Moreover, a direct computation shows that, for such a metric, the
only possibly non-vanishing component of Gh is

Gh(∂v, ∂v) =
1

2

(
−2h′′(v)− h(v)

(
∂2x1

F + ∂2x2
F
))
.

Hence, from Gh(∂v, ∂v) = 0, we obtain ∂2x1
F + ∂2x2

F = −2h′′(v)
h(v)

.

Remark 6.32. Note, from Theorem 6.31, that Type II solutions of the weighted Einstein field
equations with ∇h spacelike are Kundt spacetimes where the distinguished lightlike vector field
is V in the adapted frame B2 = {∇h, U, V, E2}. Indeed, the covariant derivative of V satisfies

∇V V = 0, ∇∇hV = g(∇∇hV, U)V, ∇E2V = g(∇E2V, U)V.

Associated to any Kundt spacetime, there exist canonical local coordinates as in (1.10). However,
not every Kundt spacetime has Ricci operator of Type II.

If α ̸= β in (6.7), using the conditions of the previous results for Type II solutions, we can
obtain more specialized coordinates as follows. From the relations obtained in Lemmas 6.28,
6.29 and 6.30 we get that

∇∇h∇h = λ̃∇h, ∇E2∇h = β̃E2, ∇E2E2 ∥ ∇h, and ∇∇hE2 = 0.

Hence, the distribution span{∇h,E2} is totally geodesic and span{U, V } is an integrable dis-
tribution, so the splitting in Lemma 6.28 can be further specialized. Thus, there exist local
coordinates {t, e2, u, v} so that h = h(t) and the metric takes the form

g(t, e2, u, v) = dt2 + r(t, e2)de
2
2 + 2H(t, e2, u, v)dvdu+ F (t, e2, u, v)dv

2.

Working with these local coordinates, a direct computation of the Hessian operator of h shows
that the eigenvalues are: h′′, h′∂tr

2r
, and h′∂tH

2H
. Recall that, by Lemma 6.29, the Ricci eigenvalues

only depend on the coordinate t. Since Ric and hesh are related by (6.1), the eigenvalues of the
Hessian are also only dependent on t. Hence, r and H decompose as r(t, e2) = r1(t)r2(e2) and
H(t, e2, v, u) = H0(t)H1(e2, v, u). Moreover, a direct computation of Gh yields

Gh(∂u, ∂e2) =
h

2H2
1

(∂e2H1∂uH1 −H1∂e2∂uH1) .

From where ∂e2H1∂uH1 −H1∂e2∂uH1 = 0, which induces an extra decomposition on the func-
tion H1 of the form H1(e2, u, v) = H2(e2, v)H3(u, v). Hence, the metric can be written as

g(t, e2, u, v) = dt2 + r1(t)r2(e2)de
2
2 + F (t, e2, u, v)dv

2

+2H0(t)H2(e2, v)H3(u, v)dudv.
(6.27)

Generically, metrics given by (6.27) have Ricci operator of type II. However, they do not have
harmonic Weyl tensor nor do they satisfy the weighted Einstein field equations in general.
Remark 6.33. In Chapter 7, we will provide a classification of solutions of dimension four real-
ized on the family of pure radiation waves, with the metric given by (1.13), in both the general
case (Theorem 7.2) and for solutions with harmonic curvature (Corollary 7.5). In the latter case,
isotropic solutions are realized on pp-waves and non-isotropic ones, on plane waves. In both
instances, they are of Type II. This contrasts with the broader family of Kundt spacetimes, where
we can find Type III solutions with harmonic curvature tensor (see Example 6.35).
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6.4.2 Type III solutions
The last family of solutions to consider is that of those with Ricci operator of Type III as portrayed
in (6.7) or in (6.8), depending on whether ∇h is spacelike or lightlike. We already know that
there are no solutions of this kind with ∇h timelike. In both possible cases, all solutions are
realized on Kundt spacetimes, as shown in the following result.

Theorem 6.34. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equations
(4.6) with harmonic curvature and Ricci operator of Type III. Then:

1. If g(∇h,∇h) > 0, (M, g) is a Kundt spacetime. Moreover, there exist local coordinates as
in (1.10) where h = h(v, x1, x2).

2. If g(∇h,∇h) = 0 then (M, g) is a Kundt spacetime. Moreover, the Ricci operator is 3-step
nilpotent and there exist local coordinates as in (1.10) with h = h(v).

Proof. We assume (M, g, h) is a 4-dimensional solution with harmonic curvature and Ricci op-
erator of Type III. We assume first that g(∇h,∇h) > 0. According to (6.7) and taking into
account Lemma 6.10, there exists a suitable adapted frame B2 = {∇h, U, V, E2} on which the
Ricci operator is given by

Ric∇h = λ∇h, RicU = αU, RicV = αV + E2 and RicE2 = αE2 + U.

The treatment of solutions of this type is similar to that of the previous case. However, proving
that the gradient of the Ricci eigenvalues has no component in ∇h⊥ is simpler. Indeed, we have

(∇∇hρ)(U,∇h) = ∇h(ρ(U,∇h))− ρ(∇∇hU,∇h)− ρ(U,∇∇h∇h)
= −λg(∇∇hU,∇h)− αg(U,∇∇h∇h) = 0,

where we have used ∇∇h∇h = h(λ− 2J)∇h and g(U,∇h) = 0. Now, we can write

(∇Uρ)(∇h,∇h) = U(ρ(∇h,∇h))− 2ρ(∇U∇h,∇h)
= U(λ)∥∇h∥2 + λU(g(∇h,∇h))− 2λg(∇U∇h,∇h)
= U(λ)∥∇h∥2.

Since the Ricci tensor is Codazzi and ∥∇h∥2 > 0, it follows that U(λ) = 0. Moreover, τ = λ+
3α is constant by Lemma 4.5, so U(α) = 0. We can similarly compute the analogous covariant
derivatives for V and E2 instead of U , yielding V (λ) = V (α) = 0 and E2(λ) = E2(α) = 0.

In order to show that (M, g) is a Kundt spacetime, we are going to see that the lightlike vector
U satisfies

∇UU = 0, ∇∇hU = g(∇∇hU, V )U, ∇E2U = g(∇E2U, V )U.

The process of computing the covariant derivatives of the Ricci tensor and applying the Co-
dazzi condition is the same as in previous instances, so we omit details. First, we compute
(∇Uρ)(U, V ) = −g(∇UU,E2) and (∇V ρ)(U,U) = 0, so g(∇UU,E2) = 0. Similarly, we have

(∇Uρ)(E2, V ) = g(∇UU, V ) and (∇V ρ)(E2, U) = 0,
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so g(∇UU, V ) = 0. The component in the direction of ∇h is easier to compute: g(∇UU,∇h) =
−Hesh(U,U) = 0. Similarly, since U is lightlike, it is immediate that g(∇UU,U) = 0. Thus,
we have proved that ∇UU = 0.

Now, we need to compute ∇∇hU and ∇E2U . For the first derivative, we write g(∇∇hU,U) =
0 and g(∇∇hU,∇h) = −Hesh(U,∇h) = 0. Therefore, we only need to determine the compo-
nent given by g(∇∇hU,E2). To that end, consider the covariant derivatives (∇∇hρ)(U, V ) =
∇h(α)−g(∇∇hU,E2) and (∇V ρ)(∇h, U) = h(α−2J)(λ−α). Moreover, h(α−2J) = −1

3
hλ

so, by the Codazzi condition on the Ricci tensor, we have

∇h(α) = g(∇∇hU,E2) +
h

3
(α− λ)λ. (6.28)

On the other hand, we can also compute (∇∇hρ)(E2, E2) = ∇h(α) + 2g(E2,∇∇hU) and
(∇E2ρ)(∇h,E2) =

h
3
(λ− α)λ, so

∇h(α) = −2g(∇∇hU,E2) +
h

3
(α− λ)λ. (6.29)

Combining (6.28) and (6.29), it follows that g(∇∇hU,E2) = 0.
Finally, for the derivative ∇E2U , since g(∇E2U,∇h) = −Hesh(E2, U) = 0, we only need

to compute g(∇E2U,E2). To that end, we use the fact that (∇E2ρ)(V, U) = g(E2,∇E2U) =
(∇V ρ)(E2, U) = 0.

Thus, we can write ∇∇hU = g(∇∇hU, V )U and ∇E2U = g(∇E2U, V )U . In summary, we
have ∇UU = 0 and that, for every X ⊥ U , ∇U = ω ⊗ U , for the 1-form ω defined in U⊥, and
given by ω(U) = 0, ω(∇h) = g(∇∇hU, V ) and ω(E2) = g(∇E2U, V ). By the characterization
given by (1.8), the underlying manifold (M, g) is a Kundt spacetime where U is the distinguished
lightlike vector field.

Additionally, in local coordinates (1.10), the distinguished lightlike geodesic vector field is
∂u, which is orthogonal to ∇h. Hence h = h(v, x1, x2) and Theorem 6.34 (1) follows.

Now, if g(∇h,∇h) = 0 on an open subset, then the Kundt character and the nilpotency of
Ric follow from Theorem 5.4. In local coordinates as in (1.10), since the distinguished geodesic
lightlike vector field in these coordinates is ∂u, we have that ∇h ∥ ∂u, so a direct computation
yields h(u, v, x1, x2) = h(v).

Example 6.35. The structure of isotropic solutions with 3-step nilpotent Ricci operator is very
rigid. However, we can build examples for any arbitrary nowhere constant density function
h = h(v). Consider the Kundt metric given by

g = dv (2du+ F (u, v, x)dv + 2ω(u, v, x)dx1) + g(v, x)(dx21 + dx22),

with
F (u, v, x1, x2) = u2h(v)4

Cx2
1

− 12Cx2
1(log(x1)−1)h′(v)2

h(v)6

ω(u, v, x1, x2) = −3Cx1h′(v)
h(v)5

− 2u
x1
, g(v, x1, x2) =

C
h(v)4

,

where C ̸= 0. This is an isotropic solution for the weighted Einstein field equations where Ric
has 3-step nilpotent Ricci operator and harmonic Weyl tensor, but it is not locally conformally
flat since the Weyl tensor does not vanish (for example, W (∂u, ∂v, ∂v, ∂x1) =

3h′(v)
2x1h(v)

̸= 0).
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6.5 The complete classification result
After analyzing solutions with all four admissible structures (Types I.a and I.b, Type II and Type
III), we summarize the results obtained in Sections 6.2–6.4 to give the complete statement of the
main theorem of this chapter.

Theorem 6.36. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equa-
tions (4.6) such that (M, g) has harmonic curvature tensor (not locally conformally flat). Assume
that the Jordan normal form of the Ricci operator Ric is constant in M . Then, the eigenvalues of
Ric are real and one of the following is satisfied:

1. Ric diagonalizes on (M, g) and g(∇h,∇h) ̸= 0. Furthermore, there exists an open dense
subset MRic of M such that, for every p ∈MRic, (M, g) is isometric on a neighborhood of
p to:

(a) A direct product I2 × M̃ , where M̃ = I1 ×ξ N is a warped product 3-dimensional
solution with τ̃ = 0 and N a surface of constant Gauss curvature.

(b) A direct product N1 × N2 of two surfaces of constant Gauss curvature κ
2

and κ,
respectively.

2. (M, g) is a Kundt spacetime and, depending on the causal character of ∇h, one of the
following applies:

(a) If g(∇h,∇h) = 0, then Ric is nilpotent and ∇h determines the lightlike parallel line
field. Moreover, if Ric vanishes or is 2-step nilpotent, the underlying manifold is a
pp-wave.

(b) If g(∇h,∇h) ̸= 0, then ∇h is spacelike and the distinguished lightlike vector field is
orthogonal to ∇h.

Proof. Let (M, g, h) be a 4-dimensional solution of the weighted Einstein field equations (4.6)
such that (M, g) has harmonic curvature tensor (not locally conformally flat). Additionally,
assume that Ric does not change type in M .

For Type I.a (diagonalizable) solutions, applying Theorem 6.7 in the non-isotropic case gives
Theorem 6.36 (1), whereas Ricci-flat isotropic solutions fall into Theorem 6.36 (2.a).

In the non-diagonalizable case, we first use Theorem 6.22 to prove that there are no solu-
tions of Type I.b., so all remaining admissible solutions are of Type II or Type III. Hence, we
apply Theorems 6.31 and 6.34 to complete Theorem 6.7 (2.a) in the isotropic case, and Theo-
rem 6.7 (2.b) in the non-isotropic case.





Chapter 7
Some notable examples

As a last aspect of our study of the weighted Einstein field equations, in this chapter we go over
some remarks and classification results that will help us to better understand the geometry of
solutions under some of the conditions considered throughout this dissertation. The results in
Sections 7.1 and 7.2 are included in the work [23].

Outline of the chapter
We begin with a brief remark on the role of the cosmological term Λ on non-isotropic solutions.
Then, in Sections 7.1 and 7.2, we move on to the main part of the chapter, which is the classi-
fication of solutions of the weighted field equations with vanishing cosmological term given by
(4.6),

hρ− Hesh+∆hg = 0,

realized on manifolds in the family of pure radiation waves. Tying into the discussion in Chap-
ter 6, and given their significance in General Relativity, we focus on 4-dimensional spacetimes.

Throughout Section 7.1, we carry out a systematic search of solutions of (4.6) realized on
4-dimensional pr-waves and provide a complete classification (Theorem 7.2). As it turns out,
the Ricci operator is necessarily nilpotent for any solution, not only for isotropic ones (recall that
this is guaranteed by Theorem 5.4); and there are no solutions with ∇h timelike. We also discuss
the existence of solutions with different metric-measure structures given by the aforementioned
classification. Finally, in Section 7.2 we provide some examples of solutions with special ge-
ometric features. Firstly, we prove a stronger rigidity result (Corollary 7.5) for 4-dimensional
pr-wave solutions with harmonic curvature, which are linked to the results in Chapter 6. Sec-
ondly, in Section 7.2.2 we build some geodesically complete families of solutions realized on
relevant types of plane waves, such as Cahen-Wallach symmetric spaces.

A remark on the role of the cosmological constant
In Chapter 6, we focused on the field equations (4.6) without cosmological term, i.e., Λ = 0.
Also, due to Lemma 5.2, if a solution to the weighted Einstein field equation is isotropic, then it
always has vanishing cosmological constant. Nevertheless, this implication does not hold if ∇h
is not lightlike. Furthermore, any value of Λ can be realized by appropriate local solutions.

Indeed, consider an n-dimensional Einstein manifold (M, g), with ρ = τ
n
g, that satisfies

equation (4.8), then

Hesh =

(
hτ

n
+∆h+ Λ

)
g.

141



142 7 Some notable examples

Notice that solutions of this equation are necessarily solutions of the local Möbius equation
Hesh = ∆h

n
g (see Section 1.4 for details on the significance of this geometric equation and its

relation to the generalized Obata equation).
For illustrative purposes, since 3-dimensional Einstein manifolds have constant sectional cur-

vature, one can solve the local Möbius equation on the de Sitter and the Anti-de-Sitter spacetimes
of dimension three to provide simple examples of solutions of (4.6) with Λ ̸= 0 as follows:

1. We consider the de Sitter space with coordinates (x, y, z) and metric

gdS = κ2
(
− cos2 ydx2 + dy2 + sin2 ydz2

)
.

The scalar curvature is given by τ = 6
κ2 . A direct calculation shows that a function of the

form h(x, y, z) = −κ2Λ
2

+ sin(y)(c1 cos(z) + c2 sin(z)) gives solutions to the weighted
Einstein field equations for constants c1, c2. Since

∥∇h∥2 = 1
κ2 (cos

2(y) (c2 sin(z) + c1 cos(z))
2

+(c2 cos(z)− c1 sin(z))
2) > 0

the gradient of h is spacelike. Thus, there exist local solutions of (4.8) for arbitrary Λ.

2. We consider the Anti-de Sitter space with coordinates (x, y, z) and metric

gAdS = κ2
(
− cosh2 ydx2 + dy2 + sinh2 ydz2

)
.

The scalar curvature is given by τ = − 6
κ2 . Functions of the form h(x, y, z) = κ2Λ

2
+

sinh(y)(c1 cos(z) + c2 sin(z)) provide solutions to (4.8) for constants c1 and c2. Note that
the gradient of h is always spacelike, since

∥∇h∥2 = 1
κ2

(
cosh2(y) (c2 sin(z) + c1 cos(z))

2

+(c2 cos(z)− c1 sin(z))
2) > 0.

Therefore, there are solutions with spacelike ∇h for arbitrary Λ in this spacetime as well.

7.1 Solutions realized on pure radiation waves
In Chapters 5 and 6, we showed how several families of Lorentzian manifolds with a distin-
guished lightlike vector field, such as pp-waves or, more broadly, Kundt spacetimes, play an
essential role in our classification results for solutions of the weighted Einstein field equations
(4.6). Due to the complexity of the general Kundt metric (1.10), attempting to classify all solu-
tions realized on manifolds of this type becomes unmanageable, even in the 4-dimensional case.
Nevertheless, there are simpler subfamilies of Kundt spacetimes which are still physically and
geometrically significant and therefore provide interesting examples. With this in mind, we con-
sider the family of 4-dimensional pr-waves (see Section 1.3). Recall from (1.13) that the metric
for this family of Brinkmann waves can be written in suitable local coordinates (u, v, x, y) as

g = 2dudv + F (u, v, x, y)dv2 + dx2 + dy2. (7.1)
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Like in the rest of Part II of this thesis, our analysis is local in nature, and we work in open sets
where ∇h ̸= 0 and its causal character remains invariant.

We begin our arguments to provide the classification of 4-dimensional solutions realized on
pr-waves with the following lemma, which gives the general form of the metric and the density
function of every possible solution.

Lemma 7.1. Let (M, g, h) be a 4-dimensional, non-flat solution of the weighted Einstein field
equations (4.6), realized on a pr-wave with metric given by (7.1) in the coordinates (u, v, x, y).
Then, the Ricci operator is nilpotent, and the density function h takes the form

h(v, x, y) = hx(v)x+ hy(v)y + h0(v), (7.2)

while the function F that defines the pr-wave is given by

F (u, v, x, y) = F1(v, x, y)u+ F0(v, x, y), (7.3)

for suitable smooth functions hx, hy, F1 and F0.

Proof. Consider coordinates (u, v, x, y) so that the metric of the pr-wave is written as in (7.1).
Then, the scalar curvature of the manifold is given by τ = ∂2uF . Since, by Lemma 4.5, τ is
constant for any solution, it follows that F takes the form F (u, v, x, y) = τ

2
u2 + F1(v, x, y)u +

F0(v, x, y). We simplify notation and denoteGh(∂u, ∂u) = Gh
uu,Gh(∂u, ∂x) = Gh

ux,Gh(∂x, ∂y) =
Gh

xy and so on to compute the following components of the weighted Einstein tensor:

Gh
uu = −∂2uh, Gh

ux = −∂u∂xh, Gh
uy = −∂u∂yh, Gh

xy = −∂x∂yh.

Hence h can be written as h(u, v, x, y) = h1(v)u+ hx(v, x) + hy(v, y) for certain h1, hx and hy.
Now, take the component Gh

yy = −h1(τu+ F1) + 2h′1 + ∂2xhx. Differentiate with respect to u to
find 0 = ∂uG

h
yy = −τh1. On the other hand, we compute the component

2Gh
vx = −2∂v∂xhx + (hx + hy + 2uh1)∂xF1 + h1∂xF0,

hence 0 = ∂uG
h
vx = h1∂xF1. Similarly, we find 0 = ∂uG

h
vy = h1∂yF1. Thus, there are two

possibilities: either h1 = 0 or h1 ̸= 0, τ = 0 and F1 = F1(v). We analyze them separately.

Case 1: h1 ̸= 0, τ = 0 and F1 = F1(v)

We will see that this case results in a flat manifold. Let h1 ̸= 0, τ = 0 and F1 = F1(v). The
only non-vanishing components (up to symmetries) of the curvature tensor for a pr-wave with
F (u, v, x, y) = F1(v)u+ F0(v, x, y) are

2R(∂x, ∂v, ∂v, ∂x) = ∂2xF0, 2R(∂y, ∂v, ∂v, ∂y) = ∂2yF0,

2R(∂y, ∂v, ∂v, ∂x) = ∂x∂yF0.
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Moreover, the weighted Einstein field equations yield 0 = 2∂xG
h
vy = h1∂x∂yF0. Since h1 ̸= 0,

we have R(∂y, ∂v, ∂v, ∂x) = 0. Additionally, we compute

0 = Gh
xx = −h1F1 + 2h′1 + ∂2yhy,

0 = Gh
yy = −h1F1 + 2h′1 + ∂2xhx,

0 = 2Gh
uv = −h1F1 + 2h′1 + 2∂2xhx + 2∂2yhy.

On the one hand, 0 = Gh
xx −Gh

yy = ∂2yhy − ∂2xhx and, on the other hand, Gh
xx +Gh

yy − 4Gh
uv =

−3
(
∂2xhx + ∂2yhy

)
, so ∂2xhx = ∂2yhy = 0. Now, we compute 0 = 2∂xG

h
vx = h1∂

2
xF0 and

0 = 2∂yG
h
vy = h1∂

2
yF0. Since h1 ̸= 0, we obtain that ∂2xF0 = ∂2yF0 = 0 and, hence,

R(∂x, ∂v, ∂v, ∂x) = R(∂y, ∂v, ∂v, ∂y) = 0. Thus, all components of the curvature tensor van-
ish and the underlying manifold (M, g) is flat, contrary to our assumption.

Case 2: h1 = 0

Then, by the weighted Einstein tensor components Gh
xx = ∂2yhy and Gh

yy = ∂2xhx, we find that h
takes the form in (7.2). Moreover, from Gh

uv = 1
2
τh, and since h > 0, we have τ = 0, so F is

given by (7.3). For this form of F , the Ricci operator is nilpotent.

With this lemma, we are in a position to prove the main classification result of this chapter.

Theorem 7.2. Let (M, g, h) be a 4-dimensional, non-flat solution of the weighted Einstein field
equations (4.6) realized on a pr-wave. Then ∇h is lightlike or spacelike, and the following holds:

1. If ∇h is lightlike, then (M, g) is a pp-wave with harmonic curvature. Moreover, there exist
local coordinates as in (7.1) with ∂2xF + ∂2yF = γ(v) and ∂uF = 0 such that the density
function h = h(v) satisfies 2h′′ + hγ = 0.

2. If ∇h is spacelike, then Ric is nilpotent and, moreover:

(a) If Ric is 2-step nilpotent, then (M, g) is a pp-wave. Moreover, there exist coordinates
as in (7.1) with ∂uF = 0 and density function of the form h(v, x, y) = h0(v) + (x +
Ay)hx, with A ∈ R and hx ̸= 0, satisfying

0 = −2Gh
vv = 2h′′0 + hx(∂xF + A∂yF ) + h(∂2xF + ∂2yF ). (7.4)

(b) If Ric is 3-step nilpotent, then there exist (u, v, x, y) such that the density function
takes the form h(v, x, y) = h0(v) + (x+Ay)hx(v), with A ∈ R and h′x ̸= 0, and the
metric is as in (7.1) with

F (u, v, x, y) = F0(v, x, y) + u

(
2h′x(v) log(h(v, x, y))

hx(v)
+ α(v)

)
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satisfying

0 = −2hxG
h
vv

= 2h′x(h
′
0 + (x+ Ay)h′x) log(h0 + (x+ Ay)hx)

+h2x(∂xF0 + A∂yF0 + (x+ Ay)(∂2xF0 + ∂2yF0))

+hx(α(h
′
0 + (x+ Ay)h′x) + 2h′′0 + 2(x+ Ay)h′′x)

+hxh0(∂
2
xF0 + ∂2yF0).

(7.5)

Proof. From Lemma 7.1, h and F are given by (7.2) and (7.3), respectively. A direct computation
shows that ∥∇h∥2 = h2x + h2y, so ∇h cannot be timelike. Thus, assume first that (M, g, h) is an
isotropic solution, so we get that hx = hy = 0 and h(u, v, x, y) = h(v). Now, we see that

2Gh
vx = h ∂xF1, and 2Gh

vy = h ∂yF1,

so ∂xF1 = ∂yF1 = 0 and F1(v, x, y) = F1(v). But this implies that the only non-vanishing
component of the Ricci operator is Ric(∂v) = −1

2

(
∂2xF0 + ∂2yF0

)
∂u, so Ric is 2-step nilpotent

and the pr-wave is indeed a pp-wave (see [86]). Thus, there exist specific coordinates (7.1) with
∂uF = 0, where the only non-zero component of Gh is 2Gh(∂v, ∂v) = −2h′′ − h

(
∂2xF + ∂2yF

)
,

so ∂2xF + ∂2yF = −2h′′(v)
h(v)

= γ(v). This is a sufficient condition for a pp-wave to have harmonic
curvature (see [19]), and Theorem 7.2 (1) follows.

Assume now that ∇h is spacelike. Recall that, by Lemma 7.1, h and F are given by (7.2)
and (7.3), respectively. Since ∥∇h∥2 = h2x + h2y, we assume without loss of generality that
hx ̸= 0 (otherwise, interchange the x and y coordinates). Under this condition, we compute the
component 0 = Gh

vx = −h′x + 1
2
(h0 + xhx + yhy)∂xF1 of the field equations. We solve this PDE

to find

F1(v, x, y) = α(v, y) + 2
log(h0(v) + xhx(v) + yhy(v))h

′
x(v)

hx(v)
.

For this form of F1, we compute 0 = 2∂xG
h
vy = hx∂yα so α = α(v). Moreover, in this case

0 = Gh
vy = hyh′

x

hx
− h′y. Hence, we have hy(v) = Ahx(v) for some A ∈ R (this includes the case

hy = 0). With this, all components of the weighted Einstein tensor vanish, except for Gh
vv, which

is given by expression (7.5).
The Ricci operator is given by

Ric(∂u) = 0, Ric(∂v) = ⋆∂u +
h′
x

h
∂x +

Ah′
x

h
∂y,

Ric(∂x) = h′
x

h
∂u, Ric(∂y) =

Ah′
x

h
∂u,

where the expression of the coefficient ⋆ is irrelevant for the nilpotency of Ric. Notice that Ric
is 3-step nilpotent if and only if h′x ̸= 0. This case corresponds to Theorem 7.2 (2.b).

Now, assume h′x = 0. In this case, the Ricci operator becomes 2-step nilpotent, so the pr-
wave is indeed a pp-wave and we can assume ∂uF = 0. Finally, a straightforward calculation
shows that the only remaining non-vanishing component of the weighted Einstein field equations
is given by (7.4).



146 7 Some notable examples

In view of the classification in Theorem 7.2, the Ricci operator is necessarily nilpotent for
any solution. Moreover, due to the structure of self-adjoint operators in Lorentzian vector spaces
(see Section 1.1.3), the degree of nilpotency of a self-adjoint operator is three at most, irre-
spective of the dimension of the underlying space. For these solutions, on the one hand, The-
orem 7.2 (1) and (2.a) result in examples with 2-step nilpotent Ricci operator and, on the other
hand, Theorem 7.2 (2.b) results in examples with 3-step nilpotent Ricci operator. Therefore, all
possible cases of nilpotency are exhausted for 4-dimensional non-isotropic solutions realized on
pr-waves.

Remark 7.3. Note, from Theorem 7.2 (1), that any isotropic solution on a pr-wave is a pp-wave
with harmonic curvature. Furthermore, any pp-wave with harmonic curvature gives rise to an
isotropic solution, since there always exists a local solution of the ODE 2h′′+hγ = 0 for a given
γ(v) = ∂2xF + ∂2yF . In particular, if γ is constant, the ODE reduces to the harmonic oscillator

equation. Thus, for γ < 0, the density function takes the form h(v) = Ae
√
−γv√
2 + Be

−
√
−γv√
2 , so

the solution can be extended to all R for appropriate values of A and B. We refer to the next
section for examples of geodesically complete solutions.

Remark 7.4. Non-isotropic solutions on pr-waves are described in Theorem 7.2 (2). Those with
2-step nilpotent Ricci operator are realized on pp-waves, but not every pp-wave gives rise to a
solution, since equation (7.4) imposes restrictions on the function F . However, given a (real)
analytic density function of the form h = h0(v) + (x + Ay)hx, there always exist local analytic
solutions of (7.4). Indeed, it is a second order quasi-linear PDE that we can write as

∂2xF = −1

h
(2h′′0 + hx(∂xF + A∂yF ))− ∂2yF. (7.6)

We consider the non-characteristic hypersurface x = 0 for this PDE and set analytic initial data
F
∣∣
x=0

= φ0 and ∂xF
∣∣
x=0

= φ1. Now, the Cauchy-Kovalevskaya Theorem guarantees that there
exists an analytic solution F to equation (7.6) (see, for example, [58]), thus giving rise to a
solution with the prescribed density.

The situation is similar for 3-step nilpotent solutions that are realized on pr-waves. Although
not every pr-wave results in a solution of the weighted field equations, for a given analytic
density function of the form h(v, x, y) = h0(v) + (x + Ay)hx(v), there exist forms of F that
give rise to pr-waves (M, g) so that (M, g, h) is a solution of (4.6). Indeed, since hx ̸= 0 and
h(v, x, y) = h0(v) + hx(v)(x + Ay) > 0, the hypersurface x = 0 is non-characteristic for the
PDE (7.5). Thus, for analytic functions h0, hx, α and analytic boundary conditions, due to the
Cauchy-Kovalevskaya Theorem, there is a unique local analytic solution of the corresponding
Cauchy problem.

7.2 Solutions with special geometric features
Our purpose in this section is to use the local description in Theorem 7.2 to provide explicit exam-
ples of solutions on pr-waves that show different properties and behavior. In the 4-dimensional
case, non-isotropic solutions with harmonic curvature either present specific product structures
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or are realized on Kundt spacetimes (see Theorem 6.36), with the latter case being less rigid.
Therefore, to improve our understanding of these Kundt solutions, we begin by focusing on
classifying all pr-waves which give rise to a solution with this curvature property. Then, we
turn our attention to examples of solutions realized on geodesically complete families of pr-
waves (such as Cahen-Wallach spacetimes), and explain obstructions to geodesic completeness
for non-isotropic solutions.

7.2.1 pr-waves with harmonic curvature
By Theorem 7.2 (1), isotropic solutions on pr-waves have harmonic curvature. This is not the
case in general for non-isotropic solutions, so we give a stronger rigidity result, with an explicit
description in local coordinates, for solutions on pr-waves which have harmonic curvature.

Corollary 7.5. Let (M, g, h) be a 4-dimensional, non-flat solution of the weighted Einstein field
equations, realized on a pr-wave with harmonic curvature. Then the following holds:

1. If ∇h is lightlike, then (M, g) is a pp-wave. In coordinates as in (7.1) with ∂uF = 0, F
satisfies ∂2xF +∂2yF = γ(v) and the density h = h(v) is subject to the ODE 2h′′+hγ = 0.

2. If ∇h is spacelike, then (M, g) is a plane wave. Moreover, the metric in (7.1) takes the
form

F (v, x, y) = Fx(v)x
2 + Fy(v)y

2 − 2A(Fx(v) + 2Fy(v))xy

with A ∈ R and Fx, Fy functions subject to the relation (2 − A2)Fx + (1 − 2A2)Fy = 0.
The density function has the form h(u, v, x, y) = h0(v) + (x + Ay)hx with h0 obeying
h′′0(v) + (Fx(v) + Fy(v))h0(v) = 0.

Proof. It was shown in the proof of Theorem 7.2 (1) that isotropic solutions of the field equations
are realized on manifolds with harmonic curvature, so Corollary 7.5 (1) holds and we focus on
the case with ∇h spacelike. From Theorem 7.2, the Ricci operator is 2 or 3-step nilpotent. If Ric
is 3-step nilpotent, then F takes the form given in Theorem 7.2 (2.b). In this case, we compute

0 = (∇∂uρ)(∂v, ∂v)− (∇∂vρ)(∂u, ∂v) =
(A2 + 1)hx(v)h

′
x(v)

h2
.

Hence h′x = 0 and we conclude that the Ricci operator is 2-step nilpotent. Since the image of
Ric is totally isotropic, the underlying manifold is a pp-wave (see Section 1.3).

Thus, adopting the notation in Theorem 7.2 (2.a), we take coordinates (u, v, x, y) as in (7.1)
with ∂uF = 0, such that the density function has the form h(u, v, x, y) = h0(v)+(x+Ay)hx with
hx ̸= 0. Recall that, in these coordinates, the curvature is harmonic if and only if ∂2xF + ∂2yF =
β(v), for an arbitrary function β ̸= 0.

Moreover, the only non-vanishing term of the weighted Einstein tensor is given by (7.4).
Using the fact that ∂2xF + ∂2yF = β(v), the crucial equation becomes 2h′′0 + hx(∂xF +A∂yF ) +
hβ = 0. Differentiating with respect to x and y yields

0 = hx(A∂x∂yF + (2∂2xF + ∂2yF )), 0 = hx(∂y∂xF + A(2∂2yF + ∂2xF )). (7.7)
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Since hx ̸= 0, we get that A∂x∂yF +(2∂2xF + ∂2yF ) = 0 and that ∂y∂xF +A(2∂2yF + ∂2xF ) = 0.
If A = 0, then ∂y∂xF = 0, while if A ̸= 0, combining both equations yields (1 + A2)∂x∂yF +

3Aβ = 0, and hence ∂x∂yF = −3Aβ(v)
1+A2 . Thus, for any value ofA, we have ∂2x∂yF = ∂x∂

2
yF = 0.

Moreover, differentiating A∂x∂yF + (2∂2xF + ∂2yF ) = 0 with respect to x and y, we get that
∂3xF = ∂3yF = 0 too.

It follows that F is a polynomial of order two in the variables x, y, whose coefficients are
smooth functions of v. Hence, the underlying manifold is a plane wave, and can be further
normalized so that

F (v, x, y) = Fy(v)y
2 + Fx(v)x

2 + Fxy(v)xy

for some smooth functions Fy, Fx and Fxy. With this, from (7.7) we get

0 = AFxy + 2(2Fx + Fy), 0 = Fxy + 2A(2Fy + Fx).

We can solve the second equation above to find Fxy = −2A(2Fy+Fx), and substituting this into
the first one yields (2− A2)Fx + (1− 2A2)Fy = 0.

Now, equation (7.4) reduces to

0 = h′′0(v) + (Fx + Fy)h0(v)− hxx
((
A2 − 2

)
Fx +

(
2A2 − 1

)
Fy

)
,

and, since (2−A2)Fx+(1−2A2)Fy = 0, we have that h0 satisfies h′′0(v)+ (Fx+Fy)h0(v) = 0.
This completes the proof of Corollary 7.5 (2).

7.2.2 Geodesically complete solutions
The family of plane waves as portrayed in Section 1.3 appears in Corollary 7.5 (2), since every
pr-wave with harmonic curvature that results in a non-isotropic solution of the field equations is
indeed a plane wave. Inspired by this fact and taking into account that plane waves on Rn are
geodesically complete (see [30]), one may look for global solutions in this context. However,
one of the difficulties in finding global solutions of the weighted Einstein field equations is that
some geodesically complete spacetimes do not admit a globally defined density function. In-
deed, notice that non-isotropic solutions described in Corollary 7.5 (2) cannot be extended to all
(x, y) ∈ R2. In this section we illustrate this fact and provide some global examples.

Cahen-Wallach spaces

Cahen-Wallach spaces are the only indecomposable but not irreducible symmetric manifolds (see
[27, 28]). They are plane waves, hence geodesically complete, and can be written in coordinates
(u, v, x, y) on R4 as in (7.1) with F (v, x, y) = ax2 + by2. Since Cahen-Wallach spaces are
symmetric, they have harmonic curvature and we can apply Corollary 7.5 directly to obtain the
following families of solutions:

• Global isotropic solutions. The density function h = h(v) satisfies the equation 0 =
h′′+(a+b)h. Thus, only spacetimes with a+b < 0 result in vacuum global solutions for an
appropriate density function. Indeed, a+ b ≥ 0 yields densities which turn nonpositive for
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certain values of v. Moreover if a+b < 0, h has the form h(v) = c1e
v
√
−a−b+c2e

−v
√
−a−b,

c1, c2 ∈ R. To define a global solution we can take c1, c2 ≥ 0 (allowing for c1 or c2 to
vanish) so as to keep h > 0 for all v ∈ R.

• Local non-isotropic solutions. By virtue of Corollary 7.5 (2), the form of F is restricted to
F (v, x, y) = a(x2 − 2y2) and the density function takes the form h(v, x) = h0(v) + hxx
with hx ̸= 0 and 0 = h′′0 − ah0. Thus, for a fixed value of v, the density turns non-positive
for large enough values of x. Hence, only local solutions are admissible.

A family of manifolds with recurrent curvature

Consider a plane wave on R4, given by the metric (7.1) with

F (v, x, y) = f(v)(ax2 + by2), (7.8)

in the usual coordinates (u, v, x, y), for a certain non-constant function f(v). One characteristic
property of these spacetimes is that they have recurrent curvature, this is, ∇R = σ ⊗ R for a
1-form σ, but they are not locally symmetric (see [64, 115]). Whenever a = b, the resulting
manifolds are locally conformally flat and they are referred to as Egorov spaces. Note that
Egorov spaces such that f(v) is a constant are Cahen-Wallach manifolds belonging to the family
of ε-spaces. Egorov spaces and ε-spaces are notable examples of Lorentzian manifolds with
large isometry groups (see [29]).

Spacetimes given by (7.8) are not homogeneous in general, but they have harmonic curvature
tensor, so we can apply Corollary 7.5 to find the following families of solutions:

1. Global isotropic solutions. For a density function of the form h = h(v) we have that ∇h
is lightlike. Moreover, the only non-vanishing component of (4.6) becomes (see Corol-
lary 7.5 (1))

0 = Gh
vv = −h′′ − (a+ b)fh. (7.9)

Hence, we can choose appropriate values of f that provide global solutions. For example,
we consider the following:

(a) Let h = h(v) and set f(v) = 1
h(v)

. Then (7.9) reduces to

0 = −Gvv = (a+ b) + h′′(v).

Thus, h(v) = −a+b
2
v2 + c1v + c2 is the general solution of the ODE. Choosing

a+ b < 0 and c2 > − c21
2(a+b)

, results in h(v) > 0 for all v ∈ R, giving rise to a global
solution.

(b) Let h = h(v) and f(v) = −1+(a+b)e4v

a+b
. Now, the ODE (7.9) is

h(v)
(
1 + (a+ b)e4v

)
− h′′(v) = 0.
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The general solution of this ODE for a+ b > 0 is

h(v) = e−v

(
c1 cosh

(
1

2
e2v

√
a+ b

)
+ c2 sinh

(
1

2
e2v

√
a+ b

))
.

Thus, for a + b > 0, we obtain geodesically complete solutions of (4.6) by taking
c1 > |c2|.

2. Local non-isotropic solutions. By Corollary 7.5 (2), we have F (v, x, y) = af(v)(x2−2y2)
and the density function takes the form h(v, x) = h0(v) + hxx, with hx ̸= 0 and h′′0(v) −
af(v)h0(v) = 0. As for Cahen-Wallach spaces, for a fixed v, the density turns non-positive
for large enough values of x, so only local solutions are admissible. For example, based
on the form of solutions given in the isotropic case, we have:

(a) Let f(v) = 1
h0(v)

to see that F (v, x, y) = a x2−2y2
a
2
v2+c1v+c2

and h(v, x) = a
2
v2+ c1v+ c2+

hxx define a local non-isotropic solution for a ̸= 0 and hx ̸= 0.

(b) Let f(v) = 1
a
+ e4v for a > 0 to obtain that F (v, x, y) = (1 + ae4v) (x2 − 2y2)

and h(v) = e−v
(
c1 cosh

(
1
2

√
ae2v

)
+ c2 sinh

(
1
2

√
ae2v

))
+ xhx define non-isotropic

solutions for positive values of x if hx > 0.
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