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Resumen

El presente trabajo aborda el estudio del problema isoperimétrico desde sus raices mas
clasicas hasta su formulacion en contextos geométricos mas avanzados. Dicho problema
aspira a comprender qué regiones de un espacio ambiente dado minimizan el area de su
frontera bajo una restriccién de volumen fijo. En su formulacion clasica en el plano euclideo
R?, se demuestra rigurosamente que entre todas las curvas de Jordan la que encierra mayor
area es la circunferencia, hecho que se formaliza mediante la desigualdad isoperimétrica en
el plano. Ademas, se generaliza el problema isoperimétrico a dimensién superior, mostrando
que en R" la esfera es la tinica hipersuperficie compacta y conexa que minimiza el area
para un volumen fijado. Esto se llevard a cabo probando el teorema de Alexandrov y las
propiedades variacionales de las hipersuperficies de curvatura media constante.

Este trabajo extiende el andlisis del problema isoperimétrico al marco de las variedades
riemannianas, donde la resolucion del problema isoperimétrico resulta ser de gran dificul-
tad. En este contexto, se introduce la constante isoperimétrica de Cheeger, definida como
el infimo de los cocientes entre area de frontera y volumen de dominios regulares. Esta
constante posee ademéas propiedades analiticas profundas, ya que proporciona una cota
inferior para el primer autovalor del operador de Laplace-Beltrami con condiciones de Di-
richlet. Ademas, el presente trabajo estudia en detalle el calculo explicito de la constante
isoperimétrica de Cheeger en cierta familia de espacios geométricos de gran importancia,
como es el caso de los grupos de Lie resolubles y simplemente conexos con métrica inva-
riante a la izquierda, donde dicha constante puede expresarse en términos de la traza de
la representacion adjunta del dlgebra de Lie.

Finalmente, se analiza un caso particularmente interesante: los espacios simétricos de
tipo no compacto. Cada uno de estos espacios resulta ser isométrico a un grupo de Lie reso-
luble y simplemente conexo con métrica invariante a la izquierda, permitiendo calcular en
ellos la constante de Cheeger mediante herramientas estructurales como la descomposicién
en espacios de raices y la descomposicion de Iwasawa. Ademas, se explicitara el calculo de
la constante de Cheeger en el caso concreto de los espacios hiperbélicos real y complejo.



Abstract

The present work addresses the study of the isoperimetric problem, tracing its develop-
ment from its most classical roots to its formulation in more advanced geometric contexts.
This problem seeks to understand which regions within a given ambient space minimize
the area of their boundary under a fixed volume constraint. In its classical formulation
in the Euclidean plane R?, it is rigorously shown that among all Jordan curves, the one
that encloses the greatest area is the circle—a fact formalized through the isoperimetric
inequality in the plane. Moreover, the isoperimetric problem is generalized to higher dimen-
sions, showing that in R™, the sphere is the unique compact and connected hypersurface
that minimizes surface area for a given volume. This will be demonstrated by proving Ale-
xandrov’s theorem and exploring the variational properties of hypersurfaces with constant
mean curvature.

This work further extends the study of the isoperimetric problem to the setting of
Riemannian manifolds, where solving the isoperimetric problem proves to be significantly
more challenging. In this context, the Cheeger isoperimetric constant is introduced, defi-
ned as the infimum of the ratios between boundary area and volume of regular domains.
This constant also possesses deep analytical properties, as it provides a lower bound for
the first eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary conditions.
Furthermore, the present work provides a detailed study of the explicit computation of the
Cheeger isoperimetric constant in a certain family of geometrically significant spaces, such
as solvable, simply connected Lie groups equipped with a left-invariant metric, where the
constant can be expressed in terms of the trace of the adjoint representation of the Lie
algebra.

Finally, a particularly interesting case is analyzed: symmetric spaces of non-compact
type. Each of these spaces turns out to be isometric to a solvable, simply connected Lie
group endowed with a left-invariant metric, allowing for the computation of the Cheeger
constant using structural tools such as the root space decomposition and the Iwasawa
decomposition. Additionally, the explicit calculation of the Cheeger constant is presented
for the specific cases of real and complex hyperbolic spaces.



Introduccion

El problema isoperimétrico es uno de los més antiguos y fundamentales en la historia
de las matematicas, con raices que se remontan a la antigiiedad. En un principio, se pre-
tendia averiguar cudl de entre todas las figuras planas de un perimetro dado encerraba la
mayor cantidad de area. La respuesta, intuitivamente evidente, es el circulo. Sin embargo,
la demostraciéon rigurosa de este hecho ha sido objeto de estudio a través de los siglos,
involucrando a matematicos como Jakob Steiner o Leonhard Euler entre otros [23], [54]. El
caso del plano euclideo R? se corresponde con el problema isoperimétrico clasico y su de-
mostracién se atribuye al matemdtico Erhard Schmidt (1939), véanse [14, Section 3], [48].
Para abordar este resultado es necesario conocer la nociéon de curva cerrada, diferenciable
y simple del plano euclideo, lo que se conoce como curva de Jordan en R?. De esta forma,
este teorema nos dice que para toda curva de Jordan en el plano, de longitud [, se verifica
que (2 > 47 A, siendo A el drea encerrada por dicha curva, pues sabemos, precisamente
por el teorema de la curva de Jordan, que en el plano R? cada curva de Jordan divide al
plano en dos componentes conexas, una de ellas interior y la otra exterior a la curva. Por
otro lado, la igualdad en este resultado se da si y solo si la curva que consideramos es una
circunferencia. Daremos una demostracion de este resultado en la Seccién 2.1 del presente
trabajo.

El desarrollo del cdlculo de variaciones y la geometria diferencial a lo largo de la his-
toria ha permitido que el problema isoperimétrico se generalice a dimensién superior y a
espacios mas complejos y generales como las variedades riemannianas. En este contexto,
se busca determinar entre todas las regiones de una variedad con un volumen fijo, aquellas
cuyas fronteras tienen el drea minima. Este estudio ha revelado profundas conexiones entre
la geometria, el analisis y la topologia de los espacios considerados. En el caso del espacio
euclideo R™, el problema isoperimétrico tiene una respuesta bastante intuitiva, pues se sa-
be que las hipersuperficies conexas y compactas que minimizan su area para un volumen
encerrado fijado son las esferas. Para probar este hecho en R" se puede apelar al teore-
ma de Alexandrov, que nos dice que las hipersuperficies embebidas, conexas, compactas
y de curvatura media constante en R™ son precisamente las esferas. Ahora bien, en un
contexto méas general, como es el de las variedades riemannianas, podemos centrarnos en
las hipersuperficies compactas, conexas y embebidas de una tal variedad que dividan a la
variedad ambiente en dos regiones conexas, al menos una de ellas acotada, cuyo volumen
llamamos volumen encerrado. Como comentaremos en las sucesivas secciones del presente
trabajo, estas hipodtesis sobre hipersuperficies pueden cambiar dependiendo del contexto y
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8 Introduccion

la naturaleza del problema. En este caso, podemos poner el foco en las variaciones, que
consisten en perturbaciones realizadas a nuestra hipersuperficie a lo largo de la direccion
de un campo diferenciable y, en concreto, en las que preservan el volumen, es decir, aque-
llas variaciones cuyas hipersuperficies encierran un volumen constante. La utilidad de esto
consiste en que las hipersuperficies de curvatura media constante se pueden caracterizar
como los puntos criticos de la funcién area, para cualquier variacion que preserve el vo-
lumen. Combinando este hecho con el teorema de Alexandrov, se puede dar respuesta al
problema isoperimétrico clasico en el espacio euclideo R™. Es decir, obtendremos que, para
un volumen dado, la hipersuperficie compacta y conexa que tiene menor area encerrando
dicho volumen es la (n — 1)-esfera. La discusion y demostracién de estos resultados son el
objeto del Capitulo 2.

Siguiendo esta linea y, de forma andloga a como ocurria en R?, se puede considerar la
desigualdad isoperimétrica generalizada en R™. De esta forma, si consideramos una region
Q) del espacio R™ se cumple que

drea(0Q)" > n" - volumen(B") - volumen(Q)" !,

donde B™ es la bola euclidea en R™ de radio 1. Ademads, una regién €2 cumple la igualdad
anterior si y solo si es una bola abierta. Esto constituye la desigualdad isoperimétrica
en R™. Se puede dar una demostracion de la desigualdad isoperimétrica por medio de la
desigualdad de Brunn-Minkowski [45].

Desde un punto de vista riemanniano, después de analizar el problema y la desigualdad
isoperimétrica en el espacio euclideo, lo natural es preguntarse qué sucede en los espacios de
curvatura constante, ya que a menudo ciertos fenémenos matematicos en el mundo euclideo
admiten generalizacion a los espacios esféricos e hiperbélicos. La desigualdad isoperimétrica
en R™ puede reescribirse asi, véase [11, pag. 2]:

A0Q) _ ASH
V(@ T V(B

donde V' denota el volumen de una regién y A el volumen (o area) de una hipersuperficie.
A pesar de que esta desigualdad no admite una extension inmediata a los espacios de
curvatura constante no nula, sigue siendo cierto que todos los dominios considerados con un
cierto volumen tienen el area de sus fronteras minimizada por bolas. Por ejemplo, en el caso
del plano hiperbélico real RH? de curvatura seccional —1, la desigualdad isoperimétrica
establece que para cada curva simple cerrada y diferenciable a trozos con longitud [, se
tiene que
> 41 A+ A%

donde A > 0 es el drea encerrada por dicha curva. Por otro lado, la igualdad se da si y solo

\ A(4T+A)

o >; véase [31] para mas

si la curva es una circunferencia en RH? de radio sinh1<

informacion.
Por otro lado, Schmidt [47] ya resolvié el problema isoperimétrico en los espacios mo-
delo de curvatura constante. El trabajo de Schmidt resulté ser bastante complicado, por lo
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que se han dado demostraciones alternativas. En el contexto de la geometria de Riemann,
ha sido particularmente importante (y muy influyente) el método de reflexiéon de planos
moéviles empleado por Alexandrov [1], [2] para el caso del espacio euclideo R", que también
puede utilizarse en el caso del espacio hiperbélico real RH™ y de la semiesfera (superior)
o casquete esférico S} . Dicho método consiste en reflejar una hipersuperficie dada con res-
pecto a hiperplanos paralelos “méviles” (o hipersuperficies totalmente geodésicas), hasta
detectar que la hipersuperficie reflejada toca la hipersuperficie de partida desde el interior.
En ese caso, si la hipersuperficie de partida tiene curvatura media constante, satisface cier-
ta ecuacion en derivadas parciales eliptica, que también es satisfecha por la hipersuperficie
reflejada. Las propiedades de unicidad de solucién de dichas ecuaciones (dadas a través
de principios del maximo) permiten derivar que la hipersuperficie y su reflejada coinciden,
por lo que dicha hipersuperficie goza de una simetria. Como esto es valido para cualquier
familia de hiperplanos paralelos, se deduce que la hipersuperficie es simétrica respecto de
hiperplanos en todas las direcciones, lo que permite concluir que es una esfera. A efectos de
generalizar este método a variedades riemannianas mas generales, el hecho crucial es que,
para que un espacio admita reflexiones respecto a una hipersuperficie, dicha hipersuperficie
(al ser conformada por puntos fijos de una isometria ambiental) debe ser totalmente geo-
désica. Los espacios modelo gozan de hipersuperficies totalmente geodésicas en todas las
direcciones, por lo que el método de Alexandrov se puede aplicar en estos casos de modo
similar al caso euclideo (con la restriccién de considerar la semiesfera en vez de la esfera,
pues en caso contrario el teorema de Alexandrov es falso).

En un contexto mas general, nos va a interesar trasladar el estudio del problema iso-
perimétrico del espacio euclideo a variedades riemannianas méas generales con geometria
acotada. De esta forma, nos saltamos varios niveles intermedios de generalizaciéon, como
pueden ser la esfera, el espacio hiperbdlico, los espacios homogéneos 3-dimensionales, o
los espacios simétricos; véase la Seccion 1.3 para una breve revisiéon del problema isope-
rimétrico en diferentes contextos riemannianos. En este contexto, también es razonable
cambiar nuestro punto de vista con respecto a las preguntas que planteamos. En una va-
riedad riemanniana general, las posibilidades de encontrar el dominio (o los dominios) de
area de frontera minima, dando de antemano el volumen de dicho dominio, son practica-
mente nulas, a excepcion de algunos casos muy especiales. Ademas, diferentes elecciones
del volumen prescrito pueden cambiar por completo el caracter del problema. En vista
de estas dificultades, surgen las llamadas constantes isoperimétricas. En este trabajo nos
centraremos en la constante isoperimétrica de Cheeger, que tiene por expresién

A(9)

h(M) = inf SOk

donde 2 recorre todos los abiertos de la variedad riemanniana M con clausura compacta
y cuya frontera es una hipersuperficie diferenciable.

Con esta definicién, es facil comprobar que la constante isoperimétrica de Cheeger del
plano R? es cero. En este caso, la constante isoperimétrica de Cheeger no es mds que el
infimo de todos los cocientes de la longitud de una curva de Jordan por el area que encierra
dicha curva. De esta forma, tomando bolas abiertas con centro el origen B((0,0),7), con



10 Introduccion

radio » > 0, tendremos que
long(@B((0,0), 1) _ 2

A(B((0,0),r)) r

y esto es siempre mayor o igual que la constante de Cheeger para el plano R2. Asi, como
el radio » > 0 es arbitrario, si lo tomamos cuando r — o0, se tiene que la constante
isoperimétrica de Cheeger del plano es cero.

La constante isoperimétrica de Cheeger surge como una forma de cuantificar el pro-
blema isoperimétrico en contextos donde no tienen por qué existir soluciones éptimas (es
decir, conjuntos que minimicen el area de la frontera bajo una restriccién de volumen). En
relacion con el problema isoperimétrico clasico, la constante isoperimétrica de Cheeger nos
dice cudl es el menor cociente drea/volumen que existe en nuestra variedad. Por otro lado,
a pesar de que la constante isoperimétrica de Cheeger sea, en ocasiones, dificil de calcular,
siempre esta bien definida. Ademas, la constante de Cheeger goza de una propiedad analiti-
ca muy interesante, ya que establece una cota inferior para el primer valor propio no trivial
del operador de Laplace-Beltrami con condiciéon de Dirichlet sobre regiones relativamente
compactas de la variedad que estemos considerando.

Existen ciertos espacios en los que se ha estudiado la constante isoperimétrica de Chee-
ger y en los cuales se conoce bastante informacion sobre ella. Por ejemplo, del mismo modo
que para el plano euclideo, en los espacios euclideos R"™ se tiene que h(R") = 0. Toda
variedad compacta tiene constante de Cheeger (definida como anteriormente) nula, si bien
se puede modificar la definicién vista para dar lugar a una teoria de interés en el caso
compacto (véase [11, Section VI.2]). Ahora bien, centrandonos en el caso no compacto, y
de nuevo desde un punto devista riemanniano, el primer contexto donde abordar el estudio
de dicha constante es el de los espacios homogéneos. Dentro de ellos, los grupos de Lie
con métrica invariante a la izquierda constituyen una amplia familia de espacios homogé-
neos. En particular, los grupos de Lie resolubles y simplemente conexos son difeomorfos
a espacios euclideos (por lo tanto, no compactos), y dotados de métricas invariantes a la
izquierda, su constante de Cheeger se puede calcular de forma explicita, en términos de la
traza de la representacién adjunta del algebra de Lie [41]. Los grupos de Lie resolubles con
métrica invariante a la izquierda constituyen variedades riemannianas de gran interés. Por
ejemplo, incluyen familias muy importantes de solitones de Ricci (en concreto, aquellos
solitones de Ricci homogéneos de tipo expansivo) y de variedades Einstein homogéneas [7],
[32], dentro de las cuales destacan la familia de los espacios simétricos de tipo no compacto.
En la parte final de este trabajo (Capitulo 3), basandonos en el articulo de Peyerimhoff y
Samiou [41], presentamos y demostramos la férmula explicita de la constante de Cheeger
de los grupos de Lie resolubles simplemente conexos con métrica invariante a la izquierda.
Ademas, después de una breve introduccion a los espacios simétricos y a su estructura alge-
braica subyacente, aplicamos dicha férmula a los espacios simétricos de tipo no compacto
y, en particular, a los espacios hiperbodlicos reales y complejos.

En cuanto a la estructura del trabajo, en el Capitulo 1 se introducen los conceptos ba-
sicos necesarios de geometria riemanniana y, en concreto, de geometria de hipersuperficies.
Se abordan temas como las métricas riemannianas, la geometria de las hipersuperficies de
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una variedad riemanniana y se define el concepto de hipersuperficie de curvatura media
constante (CMC). En la segunda seccién de este capitulo se aborda el concepto de volumen
en una variedad riemanniana orientable de dimension n. Esto nos llevara a poder introducir
el concepto de region diferenciable de una variedad riemanniana y de volumen ligado a esa
region. Finalmente, definiremos el concepto de drea (volumen) de una hipersuperficie y el
de region isoperimétrica, que consiste en una regién de un cierto volumen que minimiza el
area de su frontera entre todas las regiones de la variedad ambiente con dicho volumen.
Por otro lado, en la tltima seccion, hablaremos sobre generalidades del problema isope-
rimétrico, discutiendo, de forma breve, algunos contextos y formulaciones més generales
donde se puede tratar dicho problema.

En el capitulo dos se analiza el problema isoperimétrico en el espacio euclideo R™. Se
estudian la soluciones éptimas al problema isoperimétrico, que seran las esferas de dicho
espacio y, ademas, se exploran técnicas utilizadas para abordar este problema en el caso
euclideo, como el método de reflexion de planos moviles de Alexandrov. Ademas, en este
mismo capitulo estudiaremos las propiedades variacionales de las hipersuperficies embebi-
das de una variedad riemanniana haciendo especial hincapié en la férmula de la primera
variacion. Posteriormente, daremos una caracterizacion de las hipersuperficies embebidas
de curvatura media constante en términos de las variaciones que preservan el volumen.
Esto, combinado con el teorema de Alexandrov, nos dara una demostracién del problema
isoperimétrico en el espacio euclideo R™.

En el tercer capitulo se introducen, en primer lugar, preliminares relativos a los grupos
de Lie, donde se presentan las definiciones basicas en la teoria de grupos y dlgebras de Lie.
Realizaremos todo este proceso con el objetivo de calcular la constante isoperimétrica de
Cheeger para un grupo de Lie resoluble y simplemente conexo con métrica invariante a la
izquierda. En esta linea, se detallaran resultados que conectan la constante de Cheeger con
la estructura algebraica de estos grupos, permitiendo obtener descripciones explicitas en
términos de la traza de la representacién adjunta a nivel de algebras de Lie y comprender
mejor el fendmeno isoperimétrico en estos contextos. Después de calcular la constante de
Cheeger de un grupo de Lie resoluble y simplemente conexo, trasladeremos este calculo a
un ejemplo importante, los espacios simétricos riemannianos. En este contexto, daremos
las propiedades y definiciones mas basicas acerca de estos espacios, para posteriormente
hablar de los tipos de espacios simétricos centrandonos en los de tipo no compacto. Ademas,
introduciremos las nociones de raiz, espacio de raiz, sistema de raices y descomposicién de
Iwasawa. Esta tultima descomposicion nos permitird modelar el espacio simétrico como
un grupo de Lie resoluble y simplemente conexo con métrica invariante a la izquierda.
Finalmente, explicitaremos el calculo de la constante isoperimétrica de Cheeger para un
espacio simétrico de tipo no compacto, en términos de las raices positivas de su sistema de
raices asociado y de sus multiplicidades. Finalmente, particularizaremos esta descripcion
para el caso de los espacios hiperbodlicos real y complejo.






Capitulo 1

Preliminares y motivaciéon

El objetivo de este primer capitulo es introducir una serie de definiciones basicas que
seran utilizadas en el transcurso de la memoria, asi como proporcionar un contexto y mo-
tivacién apropiados para el estudio del problema isoperimétrico desde el punto de vista de
la geometria de Riemann. Asi, en la primera seccion, incluiremos las nociones relativas a
geometria riemanniana de hipersuperficies. Las hipersuperficies son subvariedades de codi-
mension uno en una variedad riemanniana ambiente. Su estudio surge de modo natural al
abordar el problema isoperimétrico, ya que la frontera de un dominio (o regién) diferen-
ciable es una hipersuperficie. Por medio de la descomposiciéon del espacio tangente de una
subvariedad en sus partes tangente y normal, podremos definir operadores fundamentales
en geometria de subvariedades como la segunda forma fundamental o el operador de forma,
recordando algunas propiedades basicas de los mismos. Un concepto clave para abordar
el problema isoperimétrico es el de curvatura media de una hipersuperficie. Al final de la
primera seccion de este capitulo, recordaremos dicho concepto, lo que nos conducird a la
nocion de hipersuperficie de curvatura media constante (CMC). Para concluir, introduci-
remos, a modo de recordatorio, las nociones de punto umbilico, subvariedad totalmente
umbilica y subvariedad totalmente geodésica. Finalmente, incluiremos algunos ejemplos
ilustrativos de estos conceptos.

En la segunda seccién de este capitulo, recordaremos las definiciones mas basicas y
necesarias relativas al cdlculo de volimenes en variedades riemannianas. Para ello introdu-
ciremos la nocién de forma de volumen en una variedad riemanniana, lo que nos llevara a la
definicién de region de una variedad riemanniana y de volumen de la misma pasando por la
nocion de region isoperimétrica, que serd un concepto clave para el posterior planteamiento
y resoluciéon del problema isoperimétrico.

Finalmente, incluimos una tercera secciéon de generalidades sobre el problema isoperi-
métrico, donde presentamos algunos de los resultados mas importantes en el estudio de
este problema, definiendo el marco histérico y mateméatico donde se enmarcara el estudio
que realizaremos en los siguientes capitulos.

13
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1.1. Geometria de hipersuperficies

Como se ha comentado, a lo largo de esta memoria vamos a utilizar algunos resulta-
dos y definiciones de geometria riemanniana de hipersuperficies que vamos a recordar a
continuacion. En esta parte del trabajo, hemos seguido principalmente la referencia [33,
Chapters 2, 4, 5, 8].

En primer lugar, fijemos algo de notaciéon. Cuando hablemos de M vy, salvo que se
especifique lo contrario, representara una variedad riemanniana de dimensién n > 2. De-
notaremos por X(M) al conjunto de los campos de vectores diferenciables de la variedad
M, donde por diferenciable se entiende de clase C*°(M). Utilizaremos V para denotar la
conexion de Levi-Civita de la variedad riemanniana M. Ademds, utilizaremos (-,-) o g
para referirnos a la métrica riemanniana de nuestra variedad M. Por otro lado, dado un
campo X € X(M) se suele denotar por |X| a la norma de dicho campo en la métrica de
M. Dado un punto p de la variedad M denotamos por T,M al espacio tangente a M en el
punto p y por T'M al fibrado tangente de dicha variedad. Ademaés, dado un punto p € M
denotaremos por 77 M al espacio cotangente a la variedad en el punto p, con lo que

M= || T;M ={(p,w) :p€ M, weT;M}.
peEM

Denotaremos por A*(M) al espacio vectorial de las k-formas diferenciales de una variedad
riemanniana M.

A continuacién, pasamos a las definiciones y resultados més relevantes de geometria de
hipersuperficies que nos haran falta en los sucesivos capitulos de esta memoria.

Sean (M™, g) y (M", ¢') dos variedades riemannianas y sea f: M — M una inmersién,
es decir, una aplicacién diferenciable tal que f,, es inyectiva para cada p € M. Se dice que
f es una inmersion isométrica si g(u,v) = ¢'(fipu, fopv) para cada u,v € T,M y para cada
p € M. Ademés, si f: M — M es una inmersién, podemos dotar a M de la métrica f*g
inducida por f dada por f*g(u,v) = g(f.u, f«v). Con esta métrica tenemos que (M, f*g) es
una variedad de Riemann y, ademés, f: (M, f*g) — (M, g) es una inmersién isométrica.
Por otro lado, atendiendo a las propiedades de la funcién f diremos que:

(1) En el caso de que f sea una inmersién, M se dice que es subvariedad inmersa de M.

(1) Si ademds esa f es inyectiva, f(M) se dice subvariedad inmersa inyectivamente en
M.

(111) Si f es un embebimiento, diremos que f(M) es una subvariedad embebida de M.

Toda inmersion es localmente un embebimiento. Es decir, en el contexto establecido arriba,
para cada p € M existe un entorno abierto U de p en M de forma que fl|y: U —
M es un embebimiento, es decir, una inmersién inyectiva y homeomorfismo sobre f(U).
De esta forma, cuando efectuemos argumentos locales supondremos que, si tenemos una
subvariedad M de una variedad riemanniana M, M es una subvariedad embebida en M.
Directamente, hablaremos de subvariedad de M.
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En lo referente al espacio tangente de una subvariedad M de una variedad riemanniana
M, para cada p € M tenemos la descomposicién TpM =T,M® TPLM en suma directa
ortogonal. De esta forma, denotamos por TpLM al espacio normal a M en p, que tam-
bién suele denotarse por v, M. Definimos el fibrado normal de M como T+M = vM =

{(p, v)eT M:peMuwve TpLM } = Upe MTPLM . Ess una variedad diferenciable de dimen-

sién dim M y fibrado vectorial sobre M donde la proyeccién 7: T+M —s M esté defi-
nida por (p,v) — p, con fibras 7 !(p) = TpLM . En estas condiciones, denotamos por
X+(M) =T (T+M) al conjunto de campos de vectores diferenciables a lo largo de toda la
subvariedad M y normales a M en todo punto. Asi, un n € X+(M) se dice campo normal a
M. Recordemos brevemente que, si tenemos una subvariedad M de una variedad rieman-
niana M, si tomamos un v € T,,M , con p € M, tenemos que v se puede descomponer en
su parte tangente a M, que se denota por v, y su parte ortogonal a M, que se denota por
v*. Recordemos ademds que esta definicién de componente ortogonal viene determinada
por la métrica de la variedad ambiente M. Por otro lado, dada una subvariedad M de una
variedad riemanniana M denotaremos por I'(T'M|,) al conjunto de los campos vectoriales
a lo largo de M, pero no necesariamente tangentes a M. Es decir, son las secciones del
fibrado vectorial dado por la restriccién a M del fibrado tangente a M.

En lo que sigue consideraremos una subvariedad M de una variedad de Riemann M y
denotaremos por V y V a las conexiones de Levi-Civita de M y M respectivamente. Se
puede probar que dados campos de vectores X, Y € X(M), se verifica que VxY = (VxY)T.

En el ambito de las subvariedades de una variedad riemanniana, tenemos dos operadores
fundamentales que vamos a definir a continuacién. Por un lado, dada una subvariedad M
de una variedad riemanniana M se define la sequnda forma fundamental de M como la
siguiente aplicacion:

IT: X(M) x X(M) — X-(M)

_ (1.1)
(X,Y)— II(X,Y) = (VxY)*

En las condiciones de esta definicion, se puede probar que la segunda forma fundamental
es C*°(M)—bilineal y simétrica. Por otro lado, se define el operador forma o de Weingarten
de M con respecto a un n € X*+(M) como S,X = —(Vxn)' para cada X € X(M).
Ademés, dada una subvariedad M de una variedad riemanniana M y dados X,Y € X(M),
n € XH(M), se cumple que (II(X,Y),n) = (5,X,Y). En esta linea, sabemos que el
operador forma S, es C*°(M)-lineal. Ademas, se verifica que 5, es autoadjunto respecto de
la métrica riemanniana de la variedad y dado un X € X(M), (5,X),, con p un punto de
M, solo depende de 7, y de X,.

Si tomamos n € X (M), las curvaturas principales de M con respecto a n son los
autovalores de S,. Notemos en esta definicién que, para tener una aplicacién lineal, es
necesario fijar el punto p, considerando asi, SI: T,M — T,M. Si no fijamos el p los
autovalores son funciones que no necesariamente son diferenciables, pero si continuas. Por
otro lado, los autoespacios del operador forma se llaman espacios de curvatura principal y
los autovectores son las direcciones principales.

Hasta ahora M denotaba una subvariedad de una variedad riemanniana M de dimensién
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n. De ahora en adelante, salvo que se indique lo contrario, M sera una hipersuperficie, es
decir, una subvariedad de codimension 1.

Sea M una hipersuperficie de una variedad riemanniana M de dimensién n. Dado
n € X+ (M) unitario (lo cual, al menos localmente, es decir, restringiendo a un abierto de
M, siempre lo podemos suponer) se define la curvatura media de M con respecto a 7, como
la funciéon H: M — R dada por

H(p) = tx(Sy) = )_ ri(p) (1.2)
i=1
para cada p € M, donde tr denota la traza de un endomorfismo. Diremos que M es una
hipersuperficie de curvatura media constante si su curvatura media, respecto a un campo
normal unitario a M, es constante a lo largo de M. Ademas, dado un punto p € M y dada
una referencia ortonormal ey, ...,e,_1 para T'M en torno a p, se define el vector curvatura
media de M en p como

n—1

H(p) = > (Veen)*, (1.3)

i=1

donde recordemos que V denota la conexién de Levi-Civita de la variedad ambiente M.

Observacién 1.1. El vector curvatura media puede definirse para cualquier subvariedad de
una variedad riemanniana ambiente, no solo para el caso de hipersuperficies, simplemente
tomando la definicién previa y sumando respecto a una referencia ortonormal ey, ..., e,, para

TM.

Para el caso de hipersuperficies se verifica que H=H- 71, donde n es un campo normal
unitario sobre M y H es la funcién curvatura media respecto del campo 7.

Notemos que por el teorema de diagonalizacién de endomorfismos autoadjuntos, si
llamamos k1(p) < ... < k,_1(p) a las curvaturas principales en p € M, entonces existe
una base ortonormal {vy,...,v,—1} de T,M que esta formada por direcciones principales,
es decir, Shv; = r;(p)v;.

Dado p € M diremos que es un punto umbilico de M si las curvaturas principales en p
coinciden, es decir, si k1(p) = ... = k,_1(p). Diremos ademés que M es totalmente umbilica
si todos sus puntos son umbilicos. Por otro lado, si k1(p) = ... = kp—1(p) = 0 para cada
p € M, se dice que M es totalmente geodésica. Esta ultima definicién puede extenderse
a subvariedades de codimensién arbitraria, es decir, podemos considerar una subvariedad
totalmente geodésica como aquella verificando que Il = 0. Nétese que la definicién de
subvariedad totalmente umbilica es equivalente a que se cumpla Shv = H (p)v para cada
v e T,M, donde H es la curvatura media respecto de un campo normal unitario 7.

Veamos algiin ejemplo para ilustrar estas definiciones.

Ejemplo 1.2. Consideremos como variedad ambiente el espacio euclideo R" y fijemos un
punto p € R™. Sabemos que la esfera de radio R > 0 y centro p € R" es el conjunto
S¥(p) = {g € R" : |¢ — p| = R}. En ese caso, el vector normal unitario en un punto ¢ de
la esfera apuntando hacia fuera es de la forma n, = 42F. Asi, para cada v € TqS"R_l(p) se
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tiene que Sjv = —Z. Se obtiene asi que ki(q) = —% para cada j = 1,...,n— 1. Esto prueba
que la esfera de centro p y radio R en R" es totalmente umbilica y de curvatura media

constante 1’7”.

Ejemplo 1.3. Un ejemplo de hipersuperficie totalmente geodésica es un hiperplano ¥ en
R". En efecto, fijemos un vector normal unitario a dicho hiperplano 7. Dado un punto p € ¥,
como ese 7 es constante, entonces S? = 0y |IL,|> = 0, de donde se deduce que r;(p) =
.. = Kn_1(p) = 0, por lo que ¥ es totalmente geodésica. Un resultado cldsico nos asegura
que las hipersuperficies totalmente umbilicas de un espacio euclideo son precisamente (los
subconjuntos abiertos de) las esferas y los hiperplanos. En particular, las hipersuperficies
totalmente geodésicas de R™ son los subconjuntos abiertos de los hiperplanos de R".

1.2. Area, volumen y regiones isoperimétricas

Comenzamos definiendo los conceptos clave de volumen, region y area, para a conti-
nuacion definir la nociéon de region isoperimétrica.

En primer lugar, sabemos que, dada una variedad riemanniana (M, g) de dimensién n
orientable, existe una tnica n-forma de volumen en M que denotamos por wys, llamada
la forma riemanniana de volumen, que podemos caracterizar de las siguientes tres formas
equivalentes:

(1) Si (ey,...,&5,) es una referencia local y ortonormal orientada para T%M, entonces

wy =€ AL AE™

(11) Si (B, ..., E,) es una referencia ortonormal orientada para T'M, entonces

CUM(El, 7En) = 1.

(111) Si (4, ..., 2,) son coordenadas locales y g;; son los coeficientes de la métrica rieman-
niana en dichas coordenadas, entonces

wy = y/det g,-jdml A oA dx™.

Por medio de estas definiciones, podemos definir el concepto de volumen de una variedad
riemanniana compacta M de dimension n. Llamaremos volumen de M a la integral

/ W,
M

donde wy, es la n-forma de volumen asociada a M. Notemos que en el caso de que la
variedad M no fuese compacta, esta integral puede ser infinito.

Dada una variedad riemanniana M, diremos que un subconjunto 2 C M es una region
diferenciable de M si es un abierto, relativamente compacto y su frontera, que denotamos
por 02, es una hipersuperficie diferenciable (es decir, una subvariedad de dimensién n — 1)
embebida, compacta y conexa.
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Observaciéon 1.4. Es también habitual definir una regién de una variedad riemannia-
na como un abierto relativamente compacto cuya frontera tiene estructura de variedad
diferenciable a trozos y cuya codimensién es 1. Esto es una nocién intermedia entre la de-
finicion de region diferenciable que acabamos de dar y la nocién mas general de conjuntos
de perimetro finito, cuyas fronteras son corrientes rectificables, véanse [8, Section 3| y [35,
Sections 3.14, 3.15]. Ahora bien, nosotros nos centraremos en este trabajo en las regiones
cuya frontera es una hipersuperficie diferenciable de la variedad riemanniana ambiente.
A pesar de esto, merece la pena comentar que el problema isoperimétrico, en general, se
plantea para regiones no necesariamente diferenciables. Se puede probar (aunque es un
teorema nada trivial) que las regiones isoperimétricas tienen frontera diferenciable salvo
por un subconjunto cerrado de codimensién a lo sumo seis; véase el Teorema 1.7 de la
siguiente seccién para un enunciado preciso.

Observacion 1.5. Salvo en lo que queda de capitulo, a lo largo del cual sera interesante
precisar el tipo de region que estamos considerando debido a sus propiedades geométricas,
en el resto del trabajo hablaremos directamente de regiones para referirnos a las regiones
diferenciables definidas en el parrafo anterior.

Dada una regién 2 de una variedad riemanniana M, si fijamos coordenadas locales
(21, ..., T,), llamaremos volumen de la region €2, y lo denotaremos por V(f2), a la integral

extendida a la region 2 de la n-forma de volumen wy; = \/det(g;;)dx; A ... A dz,,. Con el
término extendida nos referimos a que si la region 2 no estd contenida integramente en
un entorno coordenado, definimos su volumen de forma analoga tomando varios entornos
coordenados y empleando particiones diferenciables de la unidad. En el caso de que ) sea
una region diferenciable, dado que 0f) es una hipersuperficie, es habitual llamar drea a su
volumen y se denota como A(952).

Observacion 1.6. En caso de que nuestra variedad M tenga dimensiéon m = 2, se suele
llamar al volumen de una regién €2 en M el area de ) y se denota por A(2). Andlogamente,
al area de 0N se le llama longitud de 0) y se escribe como [(0f2).

Dado que la cuestion isoperimétrica mas sencilla consiste en analizar las regiones €2 de
una cierta variedad riemanniana M que, dado un volumen fijado, minimicen el area de su
frontera, es pertinente considerar la siguiente definicién.

Sea M una variedad riemanniana. Dada una region diferenciable €2 de M diremos
que es una region isoperimétrica de volumen v € (0,V(M)) si V(2) = v y se cumple la
desigualdad A(0Q2) < A(0Y) para cada region €2’ en M cumpliendo que V(') = v. Esta
definicién es equivalente a que se satisfaga la igualdad

A(0Q) = inf {A(0Q) : Q' C M region y V() = v}.

1.3. Generalidades sobre el problema isoperimétrico

En esta seccion, exponemos de modo menos técnico que en el resto del trabajo y sin
voluntad de ser exhaustivos, distintos aspectos alrededor del problema isoperimétrico, co-
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menzando por su planteamiento en el espacio euclideo hasta algunos resultados conocidos
de variedades de Riemann mas generales. Para més detalles pueden consultarse, por ejem-
plo, [8, Section 3|, [11, Sections I, II], [12, pag. 247-248], [35, Sections 3.14, 3.15], [38] y
[45, Tema 3]. Para una perspectiva histérica del problema, puede consultarse [6].

En primer lugar, comencemos recordando que el problema isoperimétrico clésico surge
de la problematica de tratar de encerrar la mayor cantidad posible de area con el menor
perfmetro. Esto en el caso del plano euclideo R? tiene una solucién intuitiva clara, dada
por cualquier circunferencia. Notese que, para tratar el caso del plano euclideo, es natural
hablar del concepto de curva de Jordan, pues es la nocién de curva que nos garantiza que
se encierre un area acotada, gracias al teorema de la curva de Jordan. Asi, la desigualdad
isoperimétrica en el plano establece que dada una curva de Jordan de longitud [, se tiene
que [2 > 47 A, siendo A el 4rea de la regién encerrada por dicha curva en R%2. Ademss, la
igualdad se obtiene si y solo si la curva es una circunferencia. Probaremos este resultado
en la Seccién 2.1 del presente trabajo. Este resultado tiene su generalizacion a dimension
superior, es decir, al caso del espacio euclideo R", donde puede considerarse, de manera
analoga, la desigualdad

AQ@Q)" = "V (B"V ()",

donde ) es una regiéon en R" y B" = B(0, 1) es la bola abierta de radio 1. Ademaés, la
igualdad se tiene si y solo si la region ) es una bola abierta. La demostraciéon de este
resultado, que puede verse en [45, pag. 21], emplea técnicas de geometria diferencial y la
desigualdad de Brunn-Minkowski, la cual afirma que

3=

V(A+ B)# > V(A)# + V(B)¥,

donde A y B son dos subconjuntos compactos no vacios de R" y, ademas, se tiene que
A+B={a+b:a€ A bec B} es susuma de Minkowski. Véase [45, Tema 3, Seccién 4]
para una demostracion de este resultado.

El problema isoperimétrico clasico en R™ se plantea averiguar, para un volumen dado,
cual de entre todas las hipersuperficies compactas y conexas encerrando ese volumen tiene
menor area. La desigualdad isoperimétrica para R™ nos garantiza que las esferas son las
unicas soluciones a dicho problema. Sin embargo, es posible deducir este resultado sin echar
mano de la desigualdad isoperimétrica (y, en ultima instancia de la desigualdad de Brunn-
Minkowski). Una demostracion geométrico-analitica de gran interés viene de la mano del
teorema de Alexandrov [1], [9, pdg. 9-13]. Este resultado asegura que toda hipersuperficie
embebida, compacta y conexa de R"™ con curvatura media constante es una esfera; véase
Corolario 2.22. Su demostracién utiliza la propiedad de unicidad de ecuaciones en derivadas
parciales elipticas junto con el influyente método de los planos moéviles desarrollado por
Alexandrov. En la Seccién 2.2.2, incluimos la prueba de este resultado. Asi, se puede
resolver el problema isoperimétrico en R™ combinando el teorema de Alexandrov con las
propiedades variacionales de las hipersuperficies de curvatura media constante (que nos
proporcionan una caracterizaciéon de las mismas como puntos criticos del funcional area
para cualquier variacién que preserve el volumen). Véanse las Secciones 2.2 y 2.3 para més
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detalles y demostraciones. Cabe mencionar que en todo este proceso estamos considerando
hipersuperficies con suficiente regularidad, es decir, de clase C? o superior.

En un contexto mas general, y desde un punto de vista riemanniano, podemos ex-
pandir el problema isoperimétrico a los denominados espacios modelo o espacios forma
simplemente conexos, es decir, las variedades riemannianas completas y simplemente co-
nexas con curvatura seccional constante, que no son mas que las esferas redondas y los
espacios hiperbélicos (reales), ademas de los espacios euclideos. Para ilustrar el problema
en este contexto mas general, consideremos de nuevo el espacio euclideo R™, con n > 2. En
este contexto, la desigualdad isoperimétrica se puede reescribir como

A0Q) _ ASH
V() r T V(B

(1.4)

donde € es cualquier dominio acotado y B" es la bola unitaria en R™, A(S"!) es el 4rea
(volumen) de la esfera unidad en R™ y V' (B") el volumen encerrado por la bola unidad. Con
este planteamiento, se puede comprobar, véase [11, pag. 4], que en un espacio de curvatura
constante no nula (esfera o espacio hiperbédlico), la formulacion (1.4) de la desigualdad
isoperimétrica no es valida. A pesar de esto, sigue ocurriendo que las esferas geodésicas son
las regiones isoperimétricas. En el caso de dimensiéon 2 se puede probar una desigualdad
isoperimétrica que generaliza la dada para el plano euclideo. Asi, si M = M2, el espacio

modelo de curvatura constante k, entonces la desigualdad isoperimétrica es, véase [11,
péag. 4]:
2> 47 A — kA%,

donde se obtiene la igualdad si y solo si el dominio es una bola geodésica, y siendo [ la
longitud de arco de una curva simple, cerrada y diferenciable a trozos y A el drea encerrada
por dicha curva. Asi, por ejemplo, en el caso del plano hiperbélico real RH? de curvatura
seccional constante igual a —1, se puede probar, véase [31], que para cada curva simple
cerrada y diferenciable a trozos con longitud [, se verifica que

12> 47 A+ A%,

donde la igualdad se tiene si y solo si la curva es una circunferencia en RH? de radio
. A/ T+A
sinh (A(;TH>.

En lo referente a la solucién del problema isoperimétrico en los espacios modelo de
curvatura seccional constante (espacio euclideo, esfera y espacio hiperbélico), la primera
solucion fue dada por E. Schmidt [47]. Sin embargo, se han dado demostraciones alterna-
tivas. En el espacio hiperbélico real RH™ y la semiesfera o casquete esférico S} se puede
emplear el método de los planos méviles de Alexandrov, reflejando con respecto a hipersu-
perficies totalmente geodésicas en RH"™ y S’} [1]. Cabe mencionar que para poder emplear
este método (y probar asi el teorema de Alexandrov) es necesario restringirse a la semi-
esfera. Si no, el teorema de Alexandrov es falso (por ejemplo, el toro de Clifford en S?
tiene curvatura media constante cero). A pesar de esto, el problema isoperimétrico sigue
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teniendo las bolas geodésicas como solucién, si bien para demostrar esto hay que remitirse
a otras pruebas (como la nocién de estabilidad), que comentamos mas abajo.

Mas alla de los espacios de curvatura constante, la soluciéon al problema isoperimétrico
es conocida en muy pocos espacios ambiente. Citamos a continuacién algunos trabajos
que corresponden principalmente a espacios homogéneos y de dimensiéon 3. En concreto,
una solucién detallada en el espacio S? x S!, con la métrica producto estdndar, puede
verse en [40]. Para otras variedades homogéneas, como RH? x R, RH? x S! y S" x R,
se pueden consultar [29], [40] y [39], respectivamente. El caso de S! x R™ también se
encuentra resuelto en [40] y, ademds, se muestra que cuando n > 9, los onduloides son
minimizadores en lugar de los cilindros para ciertos volimenes. Una idea clave empleada
en los resultados citados consiste en explotar la simetria del problema para reducirlo al
analisis de una ecuacién diferencial ordinaria. Por otro lado, el caso del espacio T? x R,
donde T? es el toro plano, no esté resuelto de manera completa; sin embargo, se pueden
encontrar aportaciones al respecto en [26], [?] y [?]. En variedades riemannianas compactas
arbitrarias, es conocido que las fronteras de las regiones isoperimétricas pequenas estan
cerca de las esferas redondas, véanse [36], [?].

Siguiendo con las propiedades variacionales, en el presente trabajo, se prueba (Teore-
ma 2.44), en esencia, que ser frontera de una regién conexa diferenciable isoperimétrica
implica tener curvatura media constante, al constituir un punto critico del funcional area
para volumen constante. Ahora bien, hay variedades riemannianas donde el conocimiento
de las hipersuperficies compactas con curvatura media constante no permite determinar
las regiones isoperimétricas. Para resolver esta dificultad la idea es considerar regiones que
cumplan una condicién mas restrictiva: que su frontera sea una hipersuperficie no solamente
de curvatura media constante, sino también estable. La condicion de estabilidad requiere,
ademads de que la hipersuperficie sea un punto critico para el funcional area (para volumen
encerrado constante), que la derivada segunda de dicho funcional sea no negativa (lo cuél
es mas que la bien conocida condicién necesaria de minimo local para una funcién); véase
[45, Tema 3, Seccién 3|. Asi, si en un espacio clasificamos las hipersuperficies estables de
curvatura media constante, estas seran las candidatas a frontera de region isoperimétrica.
Este es el caso de los espacios modelo de curvatura constante, donde las tnicas hiper-
superficies compactas CMC estables son las esferas geodésicas [4], resultado que permite
resolver el problema isoperimétrico en dichos espacios. En un contexto mas general, pero
aun en el ambito de curvatura constante, podemos considerar los espacios lente L(p,q),
donde p € Z" y ged(p, q) = 1. Estos constituyen un tipo especial de variedad tridimensio-
nal que se obtiene como cociente de una esfera S* bajo una acciéon libre y diferenciable de
un grupo ciclico finito. Pues bien, existe un resultado que nos dice que las tinicas hiper-
superficies estables en L(3,1) y en L(3,2) son esferas geodésicas o cocientes de toros de
Clifford; véase [?, pag. 477] para més informacion al respecto. En espacios de cruvatura no
constante, al igual que sucede con los teoremas de tipo Alexandrov, la determinacion de
las hipersuperficies CMC estables se considera un problema muy complejo.

El problema isoperimétrico en una variedad riemanniana M arbitraria puede refor-
mularse en términos del llamado perfil isoperimétrico. Este concepto surge en vista de la
dificultad de determinar las regiones isoperimétricas en variedades riemannianas mas com-
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plicadas que las mencionadas arriba. El perfil isoperimétrico de una variedad riemanniana
M, véase [12, pag. 247], es la aplicacion Ip,: (0,V(M)) — R, dada por

Iny(v) =inf{A0Q) : V(Q)=v, QC M},

donde €2 recorre todos los subconjuntos abiertos relativamente compactos de M con frontera
diferenciable, es decir, todas las regiones diferenciables de M (en particular pueden tener un
nimero finito de componentes). Naturalmente, buscamos de forma explicita la funcién I,
lo cual rara vez es posible, en cuyo caso el foco se centra en derivar propiedades analiticas
de dicha funcién. Debido a la dificultad de calcular I,;, se puede considerar una solucion
més débil del problema tratando de proporcionar una cota inferior ¢(v) para Ip;(v), esto
es, una desigualdad isoperimétrica de la forma

A(992) = p(V(2)),

donde €2 es una region diferenciable y relativamente compacta. Ademas, se pretende saber
si, dado un valor v, existe una regién €2 de tal manera que V() = v y A(0Q) = I (v), es
decir, si para dicho volumen v existe una regién isoperimétrica (también llamada minimi-
zador) € con volumen V' (§2) = v. Es més, uno se plantea conocer si la frontera de nuestra
region isoperimétrica es diferenciable y, por otro lado, en caso de que la solucién exista,
determinar si es tnica. En lo relativo a la unicidad de las soluciones, se puede probar que
si {2 es una region isoperimétrica en una variedad M y ¢: M — M es una isometria,
entonces p(§2) es una region isoperimétrica en €2 (que podria coincidir o no con ). De esta
forma, es importante plantear la cuestion de la unicidad salvo isometrias. Asi, cuantas mas
isometrias posea una variedad, méas dificil serd que haya unicidad, en el sentido estricto
de la palabra [45, pag. 6]. En una situacién mas general tenemos el siguiente teorema de
existencia y regularidad. Véase [12, pag. 248-249] para més detalles del teorema.

Teorema 1.7. Si M es una variedad riemanniana de dimension n y es compacta o recubre
a un compacto, entonces para cada v € (0,V(M)), existe una region Q, C M cuya frontera
minimiza el drea entre todas las regiones diferenciables de volumen v, es decir, Iy (v) =
A(0Q2,). Es mds, salvo por un conjunto singular de dimension de Hausdorff n — 8, la
frontera 092, de cualquier minimizador es una hipersuperficie embebida diferenciable con
curvatura media constante.

Es pertinente hacer varias observaciones. Por un lado, en lo relativo a la regularidad de
las regiones isoperimétricas (y la constancia de la curvatura media de las correspondien-
tes fronteras) no se requiere la hipdtesis de compacidad: se tiene para cualquier variedad
riemanniana completa. En relaciéon a la existencia, la hipotesis de la compacidad de M
en el teorema de existencia de regiones isoperimétricas se puede relajar a que V(M) < oo
[45, pag. 6]. También es sabido que existen regiones isoperimétricas en cualquier variedad
homogénea. Es conveniente enfatizar que en dimensiéon n > 8, la existencia de soluciones
al problema isoperimétrico se consigue en una categoria de regiones que pueden contener
singularidades en su frontera. A pesar de esto, la cuestién de la existencia no es nada
trivial y existen variedades donde no existen soluciones al problema isoperimétrico; véase
por ejemplo el reciente articulo [3]. Para mas informacion y referencias sobre estas y otras
cuestiones relacionadas pueden consultarse [?], [45].



Capitulo 2

El problema isoperimétrico en el
espacio euclideo

En este capitulo, estudiaremos el problema isoperimétrico en cualquier espacio euclideo
R™ donde n > 2. A modo de motivacién y, dado que el problema isoperimétrico més
clasico surge al tratar de considerar cudl es la regién del plano euclideo R? que encierra
una mayor area con menor longitud de su frontera, en la primera secciéon de este capitulo
vamos a ofrecer una demostraciéon de la desigualdad isoperimétrica en R?, donde ademds de
probar dicha desigualdad veremos que el disco es la region del plano que maximiza su area
minimizando la longitud de su frontera. La demostracién de la desigualdad isoperimétrica
en R? se atribuye al matemdtico E. Schmidt en 1939 [48] (véase [17, pag. 34] para una
version traducida). Para la demostracion de este resultado, definiremos lo que se entiende
por curva de Jordan en R2?, para a continuacién enunciar y demostrar la desigualdad
isoperimétrica en el plano. Este teorema nos dice que toda curva de Jordan de longitud [
verifica que [2 > 47 A, donde A es el drea que encierra dicha curva. Ademds, tendremos
que la igualdad se da si y solo si dicha curva es una circunferencia.

En la segunda seccién, vamos a demostrar el teorema de Alexandrov en el espacio eucli-
deo R™ debido a A. Alexandrov [1]. Este teorema es una pieza fundamental para el estudio
de las hipersuperficies en el espacio euclideo R", pues establece que las hipersuperficies
embebidas, conexas, compactas y de curvatura media constante en R” son las esferas. Para
probar este resultado, emplearemos el método de reflexion de planos moviles. Este método
se utiliza para demostrar que las hipersuperficies del espacio euclideo embebidas, cone-
xas, compactas y de curvatura media constante poseen un plano de simetria en cualquier
direccion. Por otro lado, si tenemos una hipersuperficie del espacio euclideo en estas condi-
ciones, se puede deducir que es una esfera, por lo que estos argumentos son suficientes para
probar el teorema de Alexandrov. No obstante, para demostrar este teorema necesitaremos
algunos resultados para concluir cudndo dos hipersuperficies en R" que pueden escribirse
como el grafo de una funcién son iguales, al menos localmente. Aqui entraran en juego una
serie de conceptos y resultados del estudio de ecuaciones en derivadas parciales (EDPs)
elipticas, extraidos de [9] y [22].

En la tercera seccion de este capitulo, abordaremos las propiedades variacionales de las
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hipersuperficies embebidas compactas de una variedad riemanniana, para posteriormente
aplicar estas formulas y resultados en el contexto del problema isoperimétrico en el espacio
euclideo R™. Esta seccion se centra en dos conceptos clave: por un lado, las variaciones de
hipersuperficies compactas y embebidas en una variedad riemanniana y, por otro lado, las
formulas de variacién asociadas al area y al volumen de dichas hipersuperficies. La idea
detras de esto es que una variaciéon de una hipersuperficie M es una deformacién diferen-
ciable que genera una familia de hipersuperficies M;, para t € (—¢,¢), con My = M. Esta
deformacién se realiza en la direccion de un campo vectorial X que recibird el nombre
de campo variacional. Con estas y otras definiciones, podremos obtener la formula de la
primera variacién para el area de una hipersuperficie. Esta nos dice que el vector curvatu-
ra media H determina la direccién de méxima disminucién del 4rea bajo deformaciones.
Siguiendo con las propiedades variacionales, nos preguntaremos por la existencia de varia-
ciones que conservan el volumen. Estas son aquellas que dejan fijo el volumen encerrado
por una hipersuperficie compacta y conexa para un cierto rango del parametro de defor-
macion t. De esta forma, estaremos en condiciones de dar una caracterizacion para las
hipersuperficies de curvatura media constante de una variedad riemanniana, pues estas
seran aquellas que son puntos criticos del funcional area para todas las variaciones que
conservan el volumen. Este resultado es fundamental para demostrar que las esferas son
las tnicas hipersuperficies embebidas, compactas y conexas de R" que minimizan el area
fijado un volumen encerrado. En esta parte seguiremos la referencia [49].

En la parte final de este capitulo, emplearemos el estudio desarrollado previamente para
dar respuesta al problema isoperimétrico clasico en el espacio euclideo R". Este nos dira
que entre todas las hipersuperficies compactas y conexas encerrando un volumen dado,
la de menor area es la esfera. Esto serda una consecuencia, practicamente inmediata, del
teorema de Alexandrov y la caracterizacién variacional de las hipersuperficies de curvatura
media constante.

2.1. Desigualdad isoperimétrica en R?

Como se ha comentado en la introduccién de este capitulo, en esta primera seccién
vamos a abordar la desigualdad isoperimétrica en R2. Para ello vamos a comenzar recor-
dando algunas definiciones necesarias antes de pasar a la prueba del teorema central de
esta seccion.

Definicién 2.1. Sea a: I — R? ¢ — «a(t) = (x1(t), 72(t)), una parametrizacién de una
curva en R?, donde I es un intervalo de R (que puede ser R, un intervalo de la forma [a, b]
o cualquier otro intervalo). Diremos que:

(1) « es regular si es diferenciable y o/(t) # 0, para cada t € 1.
(1) « es cerrada si se cumple una de las siguientes condiciones:

a) I =Ry existe un 7' > 0 tal que a(t +7T) = «a(t), para cada t € R.
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b) I = [a,b]y se verifica que a(a) = a(b). Si ademas « es diferenciable, se requiere
que sus derivadas de orden k en a y en b coincidan para todo k.

¢) Ademads, diremos que « es cerrada simple si a cumple la condicién a) y es
inyectiva en [0,7), o si a cumple la condicién b) y es inyectiva en [a, b).

Definicién 2.2. Dada una curva parametrizada por a: R — R2, diremos que es una
curva de Jordan si es una curva cerrada y simple.

Definicién 2.3. Sea una curva regular contenida en R? y parametrizada por a: R — R
Dado [a,b] C R, se define la longitud del arco de curva a([a, b]) como la siguiente integral:

1)y = / "o (1)t (2.1)

Pasamos ahora a enunciar y demostrar la desigualdad isoperimétrica en el plano eucli-
deo R2. Ademés, este resultado dard respuesta al problema isoperimétrico en dimensién
n = 2. La demostracién de este resultado puede encontrarse en [17, pag. 34]. Pero pri-
mero enunciemos el teorema de la curva de Jordan, pues involucra varios conceptos que
necesitaremos para la demostracién de la desigualdad isoperimétrica en el plano R2.

Teorema 2.4 (Teorema de la curva de Jordan). Sea «: [0,]] — R? una curva regular,
cerrada y simple. Entonces R* \ «([0,1]) tiene eractamente dos componentes conexas y
a([0,1]) es su frontera comin.

Observacion 2.5. Nétese que debido al Teorema 2.4 una curva regular, cerrada y simple
divide al plano en dos componentes conexas (o regiones), una de ellas acotada que recibe
el nombre de componente interior a la curva y la otra no acotada que recibe el nombre
de componente exterior a la curva. Por otro lado, existe una versiéon mas general de este
teorema, la cual no exige que la curva sea regular. Una demostracion de este resultado
puede encontrarse en [25, pag. 169].

Observaciéon 2.6. En ocasiones, nos referiremos a curva haciendo alusion a la traza de su
parametrizaciéon y no a la parametrizacion en si. Es decir, si tenemos una curva parame-
trizada por a: I C R — R, también la identificaremos con su traza C' = a([).

Teorema 2.7. Sea a: R — R? una curva de Jordan, reqular, de longitud | y sea A el
drea de la region interior Q) encerrada por la curva C' = «(R). Entonces, se cumple que
12> 4nA. Ademds, la igualdad se da si y solo si C' es una circunferencia.

Demostracion. Dado que por hipdtesis tenemos que la curva es una curva de Jordan,
regular y diferenciable podemos tomar una parametrizacion por longitud de arco y asumir
que estd dada por a: [a,b] — R?, la cual suponemos en la forma «a(t) = (x(t),y(t)) en
R? donde el intervalo [a,b] es un intervalo de longitud minima tal que a(a) = «a(b). Es
mas, como sabemos por hipétesis que la longitud de nuestra curva es [, podemos suponer,
sin pérdida de generalidad, que [a, b] = [0,(]. De esta forma, podemos obtener la siguiente
formula para el area de la regiéon interior 2 encerrada por la curva, que denotamos por
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A(Q). Ademads, suponemos que la curva estd positivamente orientada, es decir, que se
recorre en el sentido contrario a las agujas del reloj.

:/ffmw=4%ﬂmmmwwwwmw, (2.2)

donde la segunda igualdad se ha obtenido empleando el Teorema de Green en el plano.
Por otro lado,

ﬂwwwﬁzgho<»w—/%wo
= [a(y() = 2()y(0)] = | #/(s)y (23
=— /Ol 2'(s)y(s)ds.

Combinado la féormula (2.3) con la féormula (2.2) obtenemos que
! / ]' ! / /
AQ) = [ 2/t =3 [ @0y () -y (1) (2.4)
0 0

Consideremos dos rectas paralelas E, E' que no son tangentes a la curva C' = «([0,1]).
En ese caso, podemos desplazarlas hasta que ambas sean tangentes a la curva C. Asi,

obtendriamos dos rectas paralelas L y L’ tangentes a la curva C, por lo que la curva estaria
contenida en la regién comprendia por las rectas L y L. Tomemos S! un circunferencia de
radio r que sea tangente a las rectas L y L', pero que no corte a la curva C. Sea O el centro
de dicha circunferencia y tomemos un sistema de coordenadas centrado en O y cuyo eje
x sea perpendicular a las rectas L y L'. Supongamos que la parametrizacién que tenemos
de nuestra curva, a saber, a(s) = (z(s), y(s)), tiene puntos de tangencia con L y L’ en los
valores del parametro s = 0 y s = s; respectivamente.

~

St o

Figura 2.1: Idea de la demostracién desigualdad isoperimétrica en el plano. Imagen extraida

de [17].
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Como se muestra en la Figura 2.1, definimos la parametrizacién de S} mediante a(t) =
(z(t),5(t)) = (z(t),y(t)) con t € [0,1]. De la definicién de S! se sigue que la distancia
entre las rectas L y L' es 2r, por lo que aplicando la férmula (2.4) y llamando A al 4rea
interior encerrada por la circunferencia S!, tenemos que A = A(Q) = [lz(t)y/(t)dt y
2 = A= — [l2/(t)y(t)dt. De esta forma, podemos deducir que:

Atmr® = /0 @t () - 50 0) dt < /0 | V@@)y' () — 5(t)a'(1))? dt
< [0+ 2@ @2+ 0P (25)
:K () + P()dt = Ir

Nétese que en la desigualdad anterior hemos utilizado que |(vy, v2)[* < |v1]?|ve]?, donde
la igualdad se da si y solo si v; y vo son multiplos el uno del otro. De esta forma, hemos
obtenido que A + 7r? < Ir, pero por otro lado, utilizando la desigualdad entre las medias
geométrica y aritmética, obtenemos que

1 1
VATr < 5(14 + 7r?) < ilr. (2.6)

Entonces 41 Ar? < ?r? y, por lo tanto, 47 A < [2, lo que concluye la prueba para la primera
parte del enunciado.

Para la segunda parte del enunciado, supongamos que 47mA = [2. Por (2.6), dado que
tenemos la igualdad entre la primera y la tercera desigualdad, deducimos que A = 7r?,
por lo tanto, [ = 27r y en consecuencia ese r no depende de la eleccion de la direcciéon
de L. Ademas, por la igualdad en la expresiéon (2.5) obtenemos que (z,y) = Ay, —2') y
entonces A = i = —x@, = (7% = +r, por lo que z = +ry/, siempre que 3y’ # 0.
Si 3 = 0 entonces dado que nuestra curva es regular, se tiene que cumplir que 2’ # 0 vy,
por lo tanto, el argumento que hemos empleado sigue siendo vélido, pues tendriamos que
(0,79) = A0, —2'), de donde obtendriamos que y = — A2’ y podriamos obtener andlogamente
el valor del parametro A. Ahora bien, al no depender r de la direcciéon de la eleccion de L
podemos intercambiar z e y en la dltima relacion, por lo que y = +ra’. Asi, 2%(s) +y%(s) =
r?((2'(s))? + (y'(s))?) = r?. Esto nos dice que nuestra curva C' es una circunferencia y que
por lo tanto la region interior €2 contenida por dicha curva es un circulo. [

2.2. El Teorema de Alexandrov en R"

En esta seccion vamos a demostrar el teorema de Alexandrov en el espacio euclideo
R". Para ello, como ya se comentd, emplearemos el método de reflexién de planos méviles,
debido precisamente a Alexandrov en su articulo seminal [2]. Para aplicar dicho método, se
necesitard una serie de definiciones y resultados del estudio de las ecuaciones en derivadas
parciales (EDPs) elipticas que introduciremos en la primera subseccién de esta parte de la
memoria.
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2.2.1. Curvatura media de un grafo y resultados de EDPs elip-
ticas

En esta subseccion vamos a exponer los resultados més relevantes de EDPs elipticas
que necesitamos para demostrar el teorema de Alexandrov. Ademds, necesitaremos algu-
nos célculos sobre hipersuperficies escritas como el grafo de una funcién de clase C? que
realizaremos a continuacion.

Observaciéon 2.8. Tomemos un abierto U de R" y sea f una funcién real en C*(U). El
grafo de f nos da una hipersuperficie en R"*! definida por

T ={(x1,....,xn, f(x1, ..., xpn)) : (x1,..c,xn) €U} .

Por un lado, es claro que T' es un conjunto de nivel para la aplicaciéon (1, ..., z,11) —
Tpr1 — f(21,...,2,); de hecho, es el conjunto de nivel del cero. Por otro, el campo de
vectores normal unitario a 7" apuntando hacia abajo tiene la expresion

1
\/1 + |V f (1, __’xn)|2(vf(x1, ), —1). 27

Es decir, para cada (z1, ..., 2,) € U el vector v(xy, ..., z,) puede verse como un punto en la
semiesfera unitaria inferior abierta S* de R"*!, la cual puede parametrizarse como

(Y1 weos Y =L = (Y1, ees ) [2)

con (Y1, ..., Yn) € R™ v [(y1, .o, yn)| < 1.
En lo que sigue consideraremos en T las coordenadas (z1, ..., ,,) y en S™ las coordenadas

(y1, ---, Yn)- En estas coordenadas, la aplicacién de Gauss para T viene dada por la expresién

n Vf(x
GT%Si,ZC'—)G(l’):%

Sabemos que las curvaturas principales de la hipersuperficie T en un punto p de la
misma son los autovalores del operador Sf(p). Estos autovalores vendran dados por los
autovalores de la matriz jacobiana de la aplicacion de Gauss que hemos calculado en el
parrafo anterior, pero cambiada de signo. De esta forma, nos bastara con calcular los
autovalores de dicha matriz jacobiana para obtener las curvaturas principales en el punto
p y calcular asi la curvatura media en cada punto de la hipersuperficie.

En primer lugar, nuestra aplicaciéon de Gauss en coordenadas tiene la siguiente expresion

V(Ty, .y Tp) =

(Y15 s Yn) = ! <8f 8f>
T L IV f (@ e )P0 O )

por lo que
_0%f  of

8yi 1 an / 8f Zk 1 94,0z, Oz
or; 1+|Vf]? (8:67;895]- +IVIF - Or; 2,/1+|Vf2

B 1 0 f "9 f Of
A+ VPR (8@8:6 L+ V1) Z * 0wy, 0, Gsck>
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De esta forma, obtenemos que para cada p € T

of o%f  of
v L+ V23 "

(2.8)

donde dicha expresion matricial esta tomada respecto de la base de vectores coordenados
de la parametrizacion de T que estamos considerando. Asi, podemos calcular la curvatura
media en un punto p de nuestra hipersuperficie 7" como

) ng 5
H(p) = tr(S,,)) = (2_&;( 1+ ‘Vlf(p)|2>>

_ 1 = O 1 SILAAE \ Of
__< 1+|Vf(p)|2iz:1a2f”i(p)_(1+|Vf(p)|2)3/2i1 O 2 xkaxz 8xk()>

:_< Af(p) __&ﬂﬁwgg@ﬁw)
1+ |Vf(p)? (1+ [V f(p)[2)3

:_< Af(p) _D2f(p>(Vf(p),Vf(p))>
VR GNP )

Notese que D? f(p) representa la matriz hessiana de f en el punto p y ademds la estamos
considerando como una aplicacién bilineal. Ahora bien, definamos

5i "
a;;(y) = —( I — Yil; > para cada (yi,...,yn) € R™. (2.9)

J1+ g2 @+ [y

De esta forma, obtenemos que la curvatura media en un punto p de nuestra hipersuperficie
tiene la expresion

H) = 3 a5 (V1) 500 2.10)

1,j=1

Nos centramos ahora en establecer las definiciones y resultados sobre EDPs elipticas
necesarios para probar el teorema de Alexandrov en R™. Para ello vamos a comenzar con
el principio fuerte del mdximo y el lema de Hopf.

Introducimos a continuaciéon el concepto de EDP SMP-admisible, donde SMP son las
siglas de strong mazimun principle (principio fuerte del maximo). Esta definicién nos serd
de gran utilidad en lo que sigue.

Definicién 2.9. Dado U abierto de R™ diremos que una EDP con incégnita w € C*(U) es
SMP — admisible si es de la forma

n 82(,0
”zzzl aij(x)axi(%] Z bi(z 8 k =0 para cada x € U (2.11)

y cumpliendo las siguientes condiciones:
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1. Las funciones a;;, by: U — R son acotadas.

2. Para cada x € U la matriz A(x) = (a;;(z))};=; es simétrica y uniformemente eliptica.
El concepto uniformemente eliptica se refiere a que existe una constante A > 0 de
forma que para cada x € U el menor autovalor de A(x) es al menos A. Esto es
equivalente a que la funcién matricial A = (a;;)7,—,, donde hacemos variar el punto z,
es uniformemente eliptica. Es decir, si vemos A(z) como una forma bilineal simétrica,
esto es equivalente a que A(z)(,€) > A¢|? para cada x € U y para cada £ € R",
siendo A > 0 una constante independiente de z y de &.

El concepto de EDP eliptica SMP-admisible ha sido extraido de [9]. Por otro lado,
noétese que una EDP SMP-admisible no es méas que una EDP lineal homogénea eliptica
de orden dos que no posee término de orden cero. Es decir, no tiene un término de la
forma c(x)w(z). Por otro lado, dado un abierto U de R" y dado = € U, nos va a interesar
considerar la aplicacion bilineal cuya matriz asociada es

Az) = (=i (2))ij=1, (2.12)

donde a;; viene dada por la ecuacién (2.9), pues es la que nos aparecera en los resultados
previos a la demostracion del teorema de Alexandrov.

Teorema 2.10 (Principio fuerte del méximo). Sea U un subconjunto de R™ abierto, conexo
y acotado. Supongamos que w € C*(U)NC(U) es una solucién de una EDP que sea SMP-

admisible. Si w alcanza su maximo sobre U en un punto interior, entonces w es constante
en U.

Teorema 2.11 (Lema de Hopf). Sea U un subconjunto abierto de R™ y sea w € C*(U)NC(U)
una solucion de una EDP SMP-admisible. Supongamos que existe un punto y € OU de
forma que w(y) > w(x) para cada x € U y supongamos que existe una bola abierta B
contenida estrictamente en U con y € 0B. Entonces, a—“VJ(y) > 0 donde ese v es el vector

B
normal unitario exterior a B en el punto y.

La demostracién tanto del Teorema 2.10, como del Teorema 2.11, pueden verse en [22,
Section 6.4].

Observacion 2.12. En el Teorema 2.11, la hipdtesis de la existencia de la bola abierta B
se cumple, por ejemplo, si la frontera OU del abierto U es diferenciable de clase C2.

A continuacion, vamos a enunciar unos resultados que nos daran condiciones suficientes
para determinar cuando dos hipersuperficies que pueden escribirse, al menos localmente,
como el grafo de una funciéon son la misma.

Lema 2.13. Sea V un abierto de R™ acotado. Consideremos la matriz A(-) = (=i (1)} =1
como aplicacion bilineal (dada en la ecuacion (2.12)). Entonces existe X\ > 0 de forma que

A(z)(&,€) > MNE|* para cada z € V, € € R™.



2.2.1 Curvatura media de un grafo y resultados de EDPs elipticas 31

Demostracion. Si tomamos un x € V arbitrario y consideramos los coeficientes —a;;(x)
dados en la Observacién 2.8 (ecuacién (2.9)) obtenemos que

A(z) = (=ay(2)}oy = ( : v )

At Q+RPy?),

De esta forma, si tomamos ¢ € R™ arbitrario y le aplicamos A(x) obtenemos

n

A &6 = -3 ay@é &= 3 —ay(@)6 -

ij=1 ij=1

:< ér (@87 )
J1+ [z (L [z?)?2
€7 P lgP

>
J1+ 2 (L [z]?)32

>W< LM )—W:l
> 16 =7 ~ aarE) ~ o

La primera desigualdad se obtiene aplicando Cauchy-Schwarz, pues obtenemos que (x, £)? <
|z|% - |€]%. Ahora bien, como V es acotado, existe M > 0 tal que |x| < M para cada z € V,
por lo que se tiene la dltima desigualdad. Ademads, si tomamos A = tenemos el

resultado. ]
Lema 2.14. Sea U un abierto conexo y acotado de R™ y sean u,v € C2(U)NC(U) tales
que Vu, Vv, D*u, D*v son acotadas en U. Supongamos que las hipersuperficies de R"*1 que
definen los grafos de u y v son de curvatura media constante y tienen la misma curvatura
media (en ambos casos respecto de un campo normal unitario que apunta hacia abajo).
Entonces, w :=u — v es solucion de una EDP SMP-admisible.

Demostracion. Por la Observacion 2.8 tenemos que la curvatura media de la hipersuperfi-
. — 2 . . .
cie dada por el grafo de w es H = 377", _; aij(Vu)%, mientras que para la hipersuperficie
) 7 j

definida por v tenemos H = >
ciéon de H depende del punto de nuestra hipersuperficie, en este caso, al ser hipersuperficies
de curvatura media constante podemos obviar dicho punto.

Ahora bien, por hipdtesis ambas curvaturas coinciden, por lo que podemos restar ambas
expresiones obteniendo

n — 82v , R .
ti=1@ij(V0) iz, Nétese que aunque en principio la defini-

n 0%*v 0%u
0= a;;i (V —a;; (Vu) ———. 2.13
i,jzlaj( U> 61’281‘] CL]< u)ﬁxﬁmj ( )
Tomemos w = w — v. Si sumamos y restamos el término a;;(Vv) 85?5; - en el interior del
1dTj
sumatorio de la expresion anterior obtenemos que
" 0*w 0%*u
0= —a;; (V —a;;(V a;;i (V . 2.14
i;1 aJ( U)axzax]_’_( a]( U)+6L]( v))ax28$] ( )
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Podemos aplicar el teorema fundamental del célculo para obtener
19
G5 (Vv) — ay; (V) = / a3 (tV0 + (1= £)Vu) d. (2.15)
0

Utilizando la regla de la cadena para derivar la expresién de dentro de la integral en (2.15)
obtenemos la expresion

0 _ _
aa,-j((l —t)Vu+tVv) = (Va;((1 — t)Vu + tVv), Vu — Vo)

Es decir, hemos obtenido que
1
Gy, (V) — @iy (V) = (/ Vs (1 — £)Vu + tVv) dt, Vo). (2.16)
0
Para ver que verifica una EDP SMP-admisible, tomemos un p € U y sean

Qjj (p) = —ELij(Vu(p)),

b()-—f; v (p) by (1 — t)Vu + tVo) dt
kA\P) 521 070 b o Oz ’

Por lo que por (2.13) se puede reescribir (2.16) como

" 0w
=" a;(p) 895895 Z bi(p 85Ek para cada p € U. (2.17)
ing=1 0

Nos faltarfa comprobar en primer lugar, que las funciones a;; y las by son acotadas. Esto
es claro por la hipétesis de acotacién de Vu, Vv, D?>u v D?v. Por lo tanto, para concluir
la. demostracion, tan solo falta ver que la matriz A(p) = (—ay;(p));—;, es simétrica y
uniformemente eliptica. La simetria es clara por la Observacion 2.8 pues ya calculamos en
ella los a;;(p).

Por otro lado, dado que por hipdtesis U es un abierto acotado de R™, estamos en
condiciones de aplicar el Lema 2.13, obteniendo asf que A(p) es uniformemente eliptica
al tener por coeficientes los a;;(p) := —a;;(p), calculados en la Observacion 2.8. Como la
eleccion de p era arbitraria, obtenemos el resultado. O

Con estos resultados, estamos en condiciones de presentar dos lemas que nos proporcio-
naran condiciones suficientes para concluir cudndo dos hipersuperficies de curvatura media
constante son la misma.

Lema 2.15. Sea U = {p € R" : |p| < r}, es decir, U es la bola abierta de radio r centrada
en el origen de R™. Supongamos que tenemos dos funciones u,v € C2(U)NC(U) que deter-
minan el grafo de dos hipersuperficies de curvatura media constante con la misma curvatura
media, tales que Vu, Vv, D*>u, D*v son acotadas en U. Siu < v en U y u(0) = v(0),
entonces u =1v en U.
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Demostracion. Tomemos w = u — v. Por hipdtesis sabemos que u < v en U, por lo que
w<0en Uy como u(0) =wv(0), entonces w alcanza un méaximo en el punto 0. Ahora bien,
por el Lema 2.14 w es solucién de una EDP SMP-admisible, por lo tanto, podemos aplicar
el principio fuerte del méximo (Teorema 2.10) a w. De esta forma, w ha de ser constante
en U, pero como w(0) = u(0) —v(0) = 0, entonces w = 0, por lo que u =v en U. O

Lema 2.16. Sea U = {p € R": |p| <1, p, > 0}, es decir, U es la mitad superior de la
bola abierta de radio r centrada en el origen de R"™. Supongamos que tememos u,v €
C2(UYNC(U) dos funciones que determinan el grafo de dos hipersuperficies de curvatura
media constante con la misma curvatura media, tales que Vu, Vv, D*u, D*v son acotadas
enU. Siu<wvenU, u0)=v(0)y %(O) = 2v(0), entonces u =v en U.

~ Ozn

Demostracion. Tomemos w = u — v. Por hipdtesis sabemos que v < v en U por lo que
w < 0en U y que w alcanza un maximo en 0, pues w(0) = 0. Ahora bien, por el Lema 2.15

podemos aplicar el Lema de Hopf (Lema 2.11) en el punto 0. Como 867“;(0) = 0 obtenemos
que w ha de ser constante en U, pero como w(0) = u(0) — v(0) = 0, entonces w =0 en U.
Asi, obtenemos que © = v en U. O

2.2.2. El teorema de Alexandrov

A continuacién, vamos a demostrar el teorema de Alexandrov en R™. Como ya comen-
tamos en la introduccion de este capitulo, este resultado constituira una pieza fundamental
en la resolucién del problema isoperimétrico en el espacio euclideo R™. En su demostracién
se emplea una técnica conocida como el método de reflexion o de los planos méviles de Ale-
zandrov. Esta técnica fue creada por Alexandrov en [1], para probar que en R™ cualquier
hipersuperficie compacta, conexa y de curvatura media constante debe tener un plano de
simetria en cualquier direcciéon. Una vez probado esto, veremos un resultado que nos dice
que una hipersuperficie en estas condiciones ha de ser una esfera, lo que nos permitira pro-
bar el resultado central de esta seccién y concluir que cualquier hipersuperficie compacta,
conexa y de curvatura media constante en R" es una esfera.

En lo que queda de seccién, vamos a suponer que M es una hipersuperficie embebida,
conexa y compacta de R". En las siguientes lineas probaremos que si M tiene un hiperplano
de simetria en cualquier direccién entonces M es una esfera. Para demostrar este resultado,
nos sera de gran utilidad conocer el concepto de centro de masa para una hipersuperficie
de R™. Veamos su definicién.

Definicién 2.17. Dada una hipersuperficie compacta M de R™ y dado 7 el vector posicion
en cada punto de M, se define el centro de masa R de M como la tnica solucién de la

expresion
1
R—— / AV,
VM) S

donde dV denota a la n-forma de volumen en R™.

Lema 2.18. Sea M una hipersuperficie compacta y conexa de R™. St M tiene un plano de
simetria en cualquier direccion, entonces es una esfera.
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Demostracion. Por medio de una traslacion, si fuese necesario, podemos ubicar M de forma
que su centro de masa (Definicién 2.17) ocupe el origen de coordenadas. De esta forma,
es claro que ahora cada plano de simetria de M contiene al origen, pues cada uno de sus
planos de simetria pasa por su centro de masa. Por hip6tesis, M posee un plano de simetria
en cada direccion, por lo que cada plano conteniendo al origen es una plano de simetria
para M.

Considérese el grupo O(n) de isometrias lineales de R™. Sabemos que cada elemento
de este grupo puede escribirse como una composicién finita de reflexiones respecto de
hiperplanos que contienen al origen, véase [30, Sections 0.3, 0.4] y [21, Section 2.3]. Ahora
bien, como M es invariante bajo esa reflexion, M es invariante bajo cada transformacion
ortogonal. Asi, como M es conexa y cerrada, M ha de ser una esfera. ]

En virtud del lema anterior, el teorema de Alexandrov se seguird de probar que toda
hipersuperficie conexa y compacta de R™ con curvatura media constante tiene un hiper-
plano de simetria en cualquier direccion. Esto sera el objetivo del siguiente resultado, que
constituye el nicleo central de la prueba del teorema de Alexandrov mediante el método
de los planos méviles. Pero antes recordemos el teorema de separacion de Jordan-Brouwer.
Este resultado nos dice que cualquier hipersuperficie compacta y conexa de R™ divide al
espacio euclideo en dos regiones conexas.

Teorema 2.19 (Teorema de separacién de Jordan-Brouwer). Sea M una hipersuperficie
compacta y conexa del espacio euclideo R™. Entonces M divide a R™ en dos regiones cone-
zas, una de ellas exterior, que denotamos por Dy y una interior, que denotamos por D;.
Ademds, D, es una variedad compacta con borde 0D, = M.

Una demostracién del Teorema 2.19 puede verse en [24, pag. 89].

Proposicién 2.20. Sea M una hipersuperficie de R"™' compacta, conexa y de curvatura
media constante. En estas condiciones, M posee un plano de simetria en cualquier direc-
cion.

Demostracion. Supongamos que M es una hipersuperficie embebida de R™*! compac-
ta, conexa y de curvatura media constante. Sea £ € S", donde S" es la esfera unita-
ria de R" y ese £ lo mantenemos fijo. Consideremos P = {z € R"™!: (z,£) =0} y
P, ={zeR": (z,§) =t} = P+t de forma que t € R. Por lo tanto, es claro que
P es un hiperplano de R""! que pasa por el origen y es ortogonal a & y, por otro la-
do, P; se obtiene a partir de P trasladandolo una distacia t en la direcciéon de &. Ahora
bien, para cada t € R se tiene que P; divide a M en dos partes; por un lado, la regién
M; == MN{zx e R"": (x,€) >t} vy, por otro, M; = MO {z € R*"™: (x,&) <t}. De
esta forma, nétese que M, v M, son hipersuperficies con borde OM;” = OM;, = M N P..

Como M es compacta por hipétesis, sabemos por el Teorema 2.19 que es la frontera de
una regién Q C R**! acotada y cerrada. Definamos ahora M;” como la reflexién respecto
de P, de M; . Entonces dado t € R suficientemente pequetio, negativo si fuese necesario,
M. = 0 pues el hiperplano P, quedaria por debajo de M. Asi, si vamos aumentando el
valor del t, existird un t € R para el cual M;” N Q # 0.
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Definamos ¢t := inf {t eER: M7 ¢ Q} y nétese que tg < oo al ser M compacta. Fijemos
t = ty. En ese caso para ese valor del parametro ¢ ocurren al menos una de las dos siguientes
situaciones:

Caso 1: La interseccién int(M;") Nint(M;) # 0, es decir, M, y M, tienen un punto
interior en comun.

Caso 2: Existe un punto y € M N P; de forma que T,M;” = T, M, .

Para el primer caso, por el cardcter minimal de t = t, podemos escribir M;” como
un grafo sobre el hiperplano P,. Ahora queremos ver que si tomamos un punto y €
int(M,") Nint(M,") existe un entorno abierto de y en el cual las dos hipersuperficies M,

y M; coinciden. En efecto, sea pues un punto y de esta forma y tomemos un sistema de
coordenadas (x1, ..., T,4+1) con las siguientes propiedades:

1. El origen es el punto y.
2. span{0wy,...,0x,} es el espacio tangente a M en ese punto y.
3. El vector 0z, se corresponde con la direccion &.

Tomando estas coordenadas y aplicando el teorema de la funcién implicita, existe una
funcién « y un entorno U del 0 de R”, de forma que, en este entorno, M; viene dada
por la ecuacién x,,1 = u(xy, ..., z,). Notese ademds que u(0) = 0, pues se corresponde al
punto y. Ahora bien, como y € int(M;") y el segundo caso no puede darse para valores de ¢
menores que to debido a su cardcter minimal, sabemos que el vector normal a M, en y no
es paralelo a P,. Por otro lado, debido a la minimalidad de t = ty, M, queda por debajo
de M;", luego M; y M;" tienen el mismo plano tangente en y. De aqui deducimos que el
vector normal a M;” en y no es paralelo a P,, por lo que restringiendo el entorno U del
origen de nuestras coordenadas si fuese necesario, se tiene que:

» Existe una funcién diferenciable v: U — R con v(0) = 0 cumpliendo que M;" puede
escribirse como (21, ..., Tp, V(T1, ..., Tp,)).

» Se verifica que Vu, Vv, D*u, D?v estan acotadas en U.

Asi, como M, queda por debajo de M,;", u < v en U, ademés u(y) = v(y). Luego aplicando
Lema 2.15 obtenemos que u = v en U.

Como consecuencia de la argumentacién previa deducimos que int(M,;") Nint(M,;") es
un subconjunto abierto de M;”, ya que para cada punto y € int(M,;") Nint(M,”), podemos
encontrar un abierto U conteniendo a y donde M;" y M, coinciden. La interseccién de
estos grafos en un entorno abierto es también un conjunto abierto, ya que las funciones que
los definen son continuas y diferenciables. Ademas, dicho subconjunto es también cerrado
en M, , pues M;" " M; es cerrado en M, . Esto se debe a que gracias al cardcter minimal
de to, cualquier punto limite de int(M,") Nint(M,;”) que sea punto de M, ha de pertenecer
a M;", de lo contrario podriamos encontrar un valor menor para t de forma que M; no
corte a M;", lo que contradice la eleccién de to. Asi, si y € int(M,;") Nint(M;) las dos
hipersuperficies, M,  y M;", coinciden en la componente conexa de int(M; ) que contiene a
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y. Es decir, la clausura de la componente conexa en R+ de int(Mt_) que contiene al punto
y v su reflexién estdn contenidas en M. De esta forma, si juntamos M, y M, forman una
hipersuperficie cerrada, conexa y contenida en M, luego han de ser toda la hipersuperficie
M. Por lo tanto, hemos probado que P; con t = t; es un plano de simetria de M.

Finalmente, para el segundo caso supongamos un punto y € M N P, tal que T, M;" =
T, y]\;_/t_, donde recordemos que habiamos fijado ¢t = ty3. En ese caso el espacio tangente a M
en y contiene a la direccién £. De forma andloga al caso anterior tomemos un sistema de
coordenadas (x1, ..., Z,41) con las siguientes propiedades:

1. El origen es y.
2. span {0z, ...,0x,} es el espacio tangente a M en y.
3. La coordenada x,, corresponde a la direccién &.

4. La coordenada z,,, corresponde a la direccién normal apuntando hacia afuera de M
en el punto y.

En estas coordenadas y, de forma andloga al caso anterior, M,;" y M; pueden escribirse
localmente como el grafo de una funcién. Es decir, aplicando el teorema de la funcion
implicita, M, estd dada por z,,1 = u(xy,...,x,) y M;" estd dada por z,41 = v(z1, ..., 2,)
para ciertas u,v: U — R, donde U = {z € R": |z|> <7, 2, > 0} para algtn r > 0
suficientemente pequetio y u,v € C3(U)N C(U ). Asi, tomemos un 7 suficientemente pequeno
de forma que Vu, Vv, D*u, D?v sean acotadas en U. Ahora bien, como y € M;* N M, , por
las coordenadas que hemos fijado, u(0) = wv(0). Entonces como el vector normal a M
en y es tangente a P, con t = fj, tenemos que 887“"(0) = 8‘%(0) y, por la minimalidad
de ty, u < v en U. Aplicando el Lema 2.16 obtenemos que u = v en U. Por lo tanto,
int(M,") Nint(M;") # 0 y en consecuencia podemos reducirnos al primero de los casos. [

Corolario 2.21 (Teorema de Alexandrov). Sea M una hipersuperficie embebida de R™ !
compacta, conexa y de curvatura media constante. Entonces M es una n-esfera.

Demostracién. Por la Proposicién 2.20 sabemos que al ser M una hipersuperficie de R"+!
compacta, conexa y de curvatura media constante, M posee un plano de simetria en cual-
quier direccién. Ahora bien, por el Lema 2.18, si esto ocurre, M es una n-esfera. O]

2.3. Férmulas y propiedades variacionales

Dado que uno de nuestros objetivos es determinar cuéles son las soluciones al problema
isoperimétrico en R", a lo largo de esta seccion vamos a introducir el concepto de variacion
de una hipersuperficie M en una variedad riemanniana M y la férmula de la primera
variacion. De forma intuitiva, una wvariacion de una hipersuperficie M consiste en una
deformacion de M, a través de una familia diferenciable M; de hipersuperficies, con t €
(—e,¢€), de forma que My = M. Dicha deformacién se realiza en la direccién de vectores
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que conforman un campo de vectores a lo largo de M denominado campo de vectores
variacional.

Una vez tratadas las principales definiciones sobre variaciones y la férmula de la prime-
ra variacién, dado que pretendemos dar respuesta al problema isoperimétrico en el espacio
euclideo R"™, nos centraremos en las variaciones que preservan el volumen. Es decir, si no-
sotros tenemos un volumen dado, el problema isoperimétrico nos hace plantearnos cuales
de entre todas las hipersuperficies que encierran ese volumen minimizan su area. Estas
hipersuperficies se van a corresponder con minimos para la funcion area, entre todas las
hipersuperficies encerrando ese volumen y, por lo tanto, seran puntos criticos para dicha
funcién, por lo que %\tZOA(Mt) = 0, donde M;, t € (—¢,¢), es una variacién de una de estas
hipersuperficies. Por otro lado, en lo referente al volumen encerrado por una hipersuperficie,
ya que en una variedad riemanniana ambiente arbitraria no podemos apelar al Teorema de
Jordan-Brouwer, supondremos que nuestras hipersuperficies embebidas dividen a la varie-
dad ambiente en dos regiones, siendo al menos una de ellas acotada. Probaremos ademas la
existencia de variaciones que preservan el volumen, dando finalmente una caracterizacion
de las hipersuperficies con curvatura media constante de una variedad riemanniana, como
aquellas que son puntos criticos del funcional area para cualquier variacion que preserve
el volumen. De esta forma, estaremos en condiciones de probar el problema isoperimétrico
en el espacio R", combinando esta caracterizacion con el Teorema de Alexandrov. Para los
contenidos de esta seccién hemos seguido principalmente las referencias [49], [46].

2.3.1. Foérmula de la primera variacion

Comenzamos con las definiciones y resultados basicos sobre variaciones y algunas pro-
piedades relevantes.

Definicién 2.22. Sea M una hipersuperficie embebida de una variedad riemanniana (M, g)
de dimension n. En estas condiciones, una wvariacion de M consiste en una aplicacion
diferenciable

F:Mx(—e¢) — M

de forma que para cada t € (—¢,¢), € > 0, la funcién F;: M — M, dada por Fy(p) :=
F(p,t) para cada p € M, satisface las siguientes condiciones:

(1) Fp es la inclusién.
(11) Fy: M — M es un embebimiento para cada t € (—¢,¢).

El campo vectorial variacional X en un punto p € M se define como el vector tangente
ent =0alacurvat— Fy(p). Es decir, X, = % (p,0) = (dF)|(,0)(0;). Ademés, diremos que
la variacién F' con campo variacional X es de soporte compacto si el campo variacional X
tiene soporte compacto en M. Llamaremos soporte de F' al soporte de X y lo denotaremos
por sop(X). Recordemos que el soporte del campo vectorial X es el menor subconjunto
cerrado que contiene a todos los puntos p € M tales que X, # 0.
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Observacién 2.23. Geométricamente, una variacion con campo variacional de soporte
compacto, siguiendo la definicién anterior, consiste en deformar la hipersuperficie en un
subconjunto compacto, pero dejandola invariante fuera de ese subconjunto.

Con la Definicion 2.22, una pregunta natural que surge es si dada una hipersuperficie
M y un campo vectorial a lo largo de dicha hipersuperficie, existe una variaciéon con dicho
campo como campo variacional. La respuesta es afirmativa, pero antes vamos a enunciar
y probar un resultado de caracter topologico que nos serda de gran utilidad para probar la
existencia de variaciones.

Lema 2.24. Sean M y M en las condiciones de la Definicion 2.22 y sea X un campo
vectorial diferenciable a lo largo de M cuyo soporte es compacto. Entonces existe € > 0,
de forma que la aplicacion F: M x (—¢,&) — M dada por F,(p) = F(p,t) = exp,(tX,)
es una variacion de M con campo variacional X .

Demostracion. Recordemos en primer lugar que la aplicacion exp denota la aplicacion
exponencial de la variedad riemanniana M. Tomemos

g1 = min {T > 0 : exp, estd definida en B,(|X,|r) para p € sop(X)} :

De esta forma, F' estd bien definida y es diferenciable en M x (—¢1,¢1). Por otro lado, fijado
p se verifica que F(p,t) = exp,(tX,) es la geodésica que pasa por p con velocidad inicial
X,. Asi, es claro que Fj es la inclusién y que X es el campo variacional de F'. Finalmente,
dado que la aplicaciéon exponencial es un difeomorfismo local en un entorno de 0 en 7, pM ,
esto garantiza que escogiendo un £; > 0 quizd menor, la aplicacién F; tiene rango n — 1,
donde n = dim(M), por lo que F; es una inmersién para cada t € (—ey, ;).

Por otro lado, uno de los ingredientes necesarios para ver que las F; son embebimientos
para un cierto rango del parametro t, es ver que existe un cierto e, > 0, de forma que para
todo [t| < e se verifique que F} sea inyectiva. En primer lugar, definimos K := sop(X).
Si tomamos un p ¢ K se tiene que X, = 0, por lo que Fi(p,t) = p, luego fuera del
compacto K la inyectividad esta garantizada. Ahora bien, sabemos que la aplicacién exp
es un difeomorfismo local, es decir, para cada p € K existe un 7, > 0, de forma que la
aplicacion exp,: B (0,7p) C TpM — M es inyectiva. Por continuidad del campo vectorial
X y compacidad de K, existe para cada punto p € K un 9, > 0 tal que |[tX,| < r,, para todo
t € (—=9,,6,). Tomemos la bola B(p,r,), para cada p € K, lo cual nos da un recubrimiento
del compacto K. Ahora bien, como K es compacto, podemos extraer un subrecubrimiento
finito, digamos {B(pj,rpj)}m

v Si tomamos 5 = min {5pj =1, ...,m}, se tiene que F;
es inyectiva para cada t € (—eg,5). Por lo tanto, tomando ¢ = min {1, g2}, tenemos que
F, es una inmersién inyectiva para cada t € (—¢,¢).

Finalmente, nos falta por probar que las F; son embebimientos. Para ello tenemos
que ver que son homeomorfismos sobre su imagen. En esta linea, consideremos para un
t € (—¢,¢) la aplicacién Fy: M — Fy(M). Sabemos que esa F; (con codominio dado
por su imagen) es biyectiva, ademds por ser F; una inmersién inyectiva, se verifica que
es un homeomorfismo local. De esta forma, por un resultado de topologia que nos dice
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que si tenemos una aplicacion entre espacios topologicos biyectiva y que, ademas, es un
homeomorfismo local, entonces es un homeomorfismo, se tiene que F; es un homeomorfismo
sobre su imagen y, por lo tanto, como teniamos probado que es una inmersion inyectiva,
se tiene que F; es un embebimiento para cada t € (—¢,¢). O

Definicién 2.25. Dada una hipersuperficie M embebida en una variedad riemanniana M
de dimensién n y dada una variacion F' de M, diremos que F' es una variacion normal si
el campo vectorial variacional X de F' es ortogonal a T),M para cada p € M.

Nétese que al ser M una hipersuperficie embebida y conexa en M, cada espacio normal
a M tiene dimension 1, por lo que si elegimos un vector normal unitario N en un punto
de M tan solo tenemos como vectores normales unitarios N y —N. De esta forma, si M y
M estén orientadas, podemos elegir ese campo vectorial normal N de manera que

W(El, ceey En—l; Np) = 1,

para cada {Ey, ..., E,_1} base orientada de T, M, donde w es la forma de orientacion de M.
De esta forma, llamaremos a este N la funcion de Gauss compatible con la orientacion.

A continuacién, vamos a enunciar y demostrar la formula de la primera variacion. Pero
antes presentaremos unos breves preliminares necesarios para abordar dicha prueba.

Sea (M,g) una variedad riemanniana de dimensién n y sea M una hipersuperficie
embebida de esa M. Consideremos una variacion

F: M x (—e,6) — M, (p,t) — F(p,t) = Fy(p).

Definamos M, := Fy(M), donde Fy(M) = M y sea w; la forma de volumen inducida en
M;. En estas condiciones, definimos el volumen de M; como

A(Mt) = /M Ft*wt

y es claro que se tiene

AM) = /Mwo = /MFgwo.

L . 9 5
Por otro lado, dado p € M, el campo variacional asociado es X, = %(p, 0) = (dF)|(,0)(2)-

A continuacién, vamos a definir el operador estrella de Hodge (véanse por ejemplo [34,
pag. 438|, [46]) y a enunciar y demostrar un resultado relativo a espacios vectoriales que
nos sera de gran utilidad.

Definicién 2.26. Sean (M, g) una variedad riemanniana de dimensién ny (U; (21, ..., 2"))

un entorno coordenado. Sea w la n-forma de volumen de M expresada en esas coordenadas
locales. Dada a € A\F(M), se define el dual de Hodge u operador estrella de Hodge de o'y
se denota por xa, como la tinica (n — k)-forma tal que para cada 8 € A*(M) se cumple
que

BA*a = (f, a)w.
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Observacién 2.27. Notese que la expresion (a, §) es una funcién escalar, es decir, una
0-forma, que en cada punto p € M se calcula de la forma

(. B) = g(o*, 5),

donde g representa la métrica de la variedad riemanniana ambiente y of (respectivamente
%) representa el vector asociado (por el isomorfismo musical §) en T,M a la 1-forma
o € TrM, de tal forma que para cada X € T,M se verifica que g(of, X) = a(X).

Observacion 2.28. Notese que con la Definicién 2.26, dada una k-forma « y un entorno

coordenado (U; (x',...,z™)), si escribimos

1 ) .
aly = i Z @iy dx't A A dxt

Ttk

se tiene que el dual de Hodge de « viene dado por

det(gij) .. .. . 1;
m5i1---inal RN LA dat

*Q =
donde a™ % = g"Jt ... glkikg; . Ademds, los coeficientes 67277 son el simbolo de permu-
tacién de Levi-Civita. Es decir, si (i - - - i,,) es una permutacién par de (12---n), entonces
. 120m _ - 120n _ e ;
se tiene que 51»1,,,2-’; = 1, por otro lado, se tiene que 51»1,,,27; = —1si (11 .- -zn) es una per-
mutacién impar de (12---n) y 6;%" = 0 en otro caso. Nétese que con permutaciéon nos
referimos a cualquier reordenaciéon de (12---n).
Por otro lado, se puede probar que la construccion de xa es independiente de las coor-
denadas locales que escojamos, por lo que *« estd globalmente definida como (n—k)-forma.

Asi, el operador * manda cada k-forma en una (n — k)-forma.

Lema 2.29. Supongamos que tenemos un espacio vectorial n-dimensional con producto in-
terior y una orientacion fijada. Sea {v1, ..., v, } una base positivamente orientada. Entonces
se cumple que

det[vy]...va] = y/det(((vi, v5))i)-
Demostracion. En efecto, sea la matriz A := [vq]...|v,]. Esta matriz verifica que A;; =

(vj, E;), donde {Ej,...,E,} es una base ortonormal positivamente orientada del espacio
vectorial. Tomemos B = (b;;);; tal que b;; = (v;, v;). En estas condiciones, es claro que

por lo que B = A'A. De esta forma, se tiene que

det(B) = det(A'A) = det(A") det(A) = det(A)?

luego det(A) = y/det(B). O
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Lema 2.30. Sea A(t) una curva diferenciable contenida en el grupo general lineal Gl(n,R)
verificando que A(0) = Id. Entonces se tiene que

d
%(det A(t))|t=0 = tr(A'(0)).
Demostracion. Consideremos en el espacio vectorial V' la n-forma w que a cada base or-
denada {vy,...,v,} le asigna el nimero real w(vy,...,v,) = det[v{]...|v,]. De esta forma, es
claro que se tiene

det A(t) = w(A(t)e|...|A(t)en).

Denotemos por A'(0) = (aj;);,;- En ese caso, se tiene que A’(0)e; = 3°7_; a;e;. Por lo tanto,

n

d / - /
a(det A(t))|i=0 = Zw(el, s AN0)es, €101y ey ) = Zan’ = tr(A'(0)). O
i1 i=1

Teorema 2.31 (Primera variacién). Sea M una hipersuperficie embebida de una variedad
riemanniana (M,g = (-,-)) de dimension n. Supongamos que M tiene campo curvatura
media H y sea F: M x (—e,€) — M wuna variacién de M con campo variacional X .
Entonces se tiene que

d .
ZAM) o = - /M(H,X>w0, (2.18)

donde wy es la forma de volumen asociada a My = Fo(M) = M.

Demostracion. En primer lugar, llamemos w; a la n-forma de volumen asociada a la hi-
persuperficie M;. Observemos que dados p € M y una referencia ortonormal {es, ...,e, 1}
positivamente orientado de T'M la cual extendemos a una referencia ortonormal de campos
de vectores {eq, ..., e, } para TM en un entorno de p € M. En ese caso, el pullback de dicha
n-forma por la aplicacion F; viene dado por

Fiwlp(er, ..., en) = wi|pp)(dFi(er), ..., dFy(en)) = det(dFy)wy(er, ..., en)| mp) = det(dFy).

Definamos Gw(t) = <dFt(6i),dFt(€j)>, G(t) = det((Gw(t))m) y dFt = [dﬂ(€1)||dﬂ(€n)]

Asi, por el Lema 2.29 tenemos que
det(dF;) = y/det(G(t)).
Por lo tanto, obtendriamos que

d d . d 1(dG(t
%A(Mt”tzo = /M £|t:0Ft Wy = /M %‘t:o det(dFt)Wo = /M 5 (dz(t>|t:0>w0'

Notese que en la ultima igualdad hemos utilizado que det Fyy = 1.

Tomemos un punto p € M y un entorno coordenado para p en M X (—¢, &) con vectores
coordenados 0;|, = Ei|, i = 1,...,n — 1 y 0; de forma que E; son ortonormales, tangentes
a las hipersuperficies M, en un entorno de p en M y, de forma que @EiEﬂp = 0 para
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cada i # j. Recordemos que dado un punto p € M siempre podemos elegir un sistema de
coordenadas alrededor de dicho punto, de forma que los vectores coordenados en tal punto
sean ortonormales. Ademas, estos vectores pueden extenderse en un entorno del punto
p, a campos F;, por medio de transporte paralelo a través de curvas geodésicas radiales
garantizando que Vg, Ej|, = 0. Sea E! := F,.E; y sea Xy|, = % (p,t) = F.(d;t), luego
Xo = X es el campo variacional.

Observemos que dado que J; es un campo vectorial en M x (—¢,¢) y, por otro lado, los
E; son campos vectoriales en M que se extienden a M x (—¢,¢), se verifica que los E; no
tienen direcciones en comun con J; y viceversa, por lo que [0;, E;] = 0. Esto se debe a que,
ya que la variedad M x (—¢,¢) es un producto, se tiene que F; proyecta de manera trivial
sobre el segundo factor. Asi, tenemos que [Xy, Ef| = [F.0,, FLE;] = F.[0;, E;] = 0y, de esta
forma, Vx, Ef =V gt X De aqui deducimos que

1d 1/d _ _

§%Gii<t)’t:0 = 2<dt<Ef’ Ef>> li=0 = <<VXtEf, Ef>> |t=0 = <<VEtha Ef>> =0
= <<VE;Xt7Ef> + (X, ?E;?ED — (X, VEfEf>> =0
- (E5<Xt, B — (X (Vi B)T) — (X, WE;Ef)ﬂ) o

. (E5<Xt, B! — (X0, VY BN — (X, TI(E, E§>>> mo
= E{(X,E;) — (X, vg{,m — (X, 11(E;, E))).

Particularizando la expresion anterior en el punto p, tenemos que V]‘E/[i E; = 0, luego obte-

nemos que en el punto p
1d
2dt

Realizando la suma en i obtenemos que

Gii(D)|i=0 = BE(X, E;) — (X, II(E;, E})).

1 n—1 d n—1 n—1

3 ; 2 Gilt)limo = Y (BAX, Bi) — (X, (B, ) = —(X, H) + 3~ Bi(X, ). (2.19)

i=1 =1

Asi, por la expresion obtenida en (2.19) aplicando el Lema 2.30 se tiene que

d . n—1
£wt\t:0 = —<X, H)u)o -+ Z EZ<X, E1,>W0
=1

Para finalizar la prueba nos falta ver que la integral en M del segundo sumando de la
expresion anterior es igual a cero. Para probar esto, consideremos la 1-forma dual X* de
X. Esta 1-forma es la aplicacion X*(-) = (X, ). Si tomamos a = *(X*) la (n — 1)-forma
dada por el operador de Hodge, afirmamos que

n—1

Z El<X, Ez>w0 = da.

=1
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En efecto, ocurre que
d(l/(El,..., ZE El,...,Ei,...,En))

—Z ’L+]Oé Ej],...,EZ',...,E]‘,...,E”).

1<j

Ahora bien, nétese que dado que se cumple que \V 2 E;|, = 0, entonces [E;, Ej||, = O Por
otro lado, X* = S0=1(X, E}.)6,, donde {8;,}7— € AY(M) es la base dual de {E}}/—;. Esto
implica que

Z DEYUX BN A AR A o A B,

Entonces tenemos que a(Ey, ..., E\i, Ey) = (=1)"7YX, E;). Y finalmente, si tomamos la
diferencial de v actuando sobre Fji, ..., E,,, obtenemos que

da(Ery oo By = 3 Ei((X, ENwo(Er, oy En).

i=1

Debido al hecho de que %wthzo = —(X, H Ywo + da, tan solo debemos recurrir al teorema
de Stokes para concluir la prueba. En efecto, por este teorema obtenemos que

d d — —
%A(Mtﬂtzo = /M %wt|t=0 = /M<X7 H>w0 + aMa = - /M<X’ H>W0,

donde la tltima igualdad se da debido a que M = (), lo que concluye la prueba. O

2.3.2. Variaciones que conservan el volumen

Como ya hemos comentado, también nos interesa medir cémo el volumen encerrado
por una hipersuperficie cambia por medio de una variacion de la misma. Para motivar esta
definicién, podemos pensar en el caso de una superficie S del espacio euclideo R3. Dicha
superficie divide a R? en dos componentes conexas, una de ellas acotada. Esta es la regién
interior definida o delimitada por S. Esto motiva la definicién de volumen encerrado por
una hipersuperficie.

Por otro lado, introduciremos el concepto de variacion que conserva el volumen. Estas
variaciones son aquellas que, para un cierto rango t € (—e, ), el volumen encerrado por la
hipersuperficie M; permanece constante. Como veremos estas seran precisamente aquellas
variaciones cuyo campo variacional es de la forma fN, siendo f una funcién diferenciable
cuya media a lo largo de la variedad M, cuando esta sea compacta, sea cero (es decir, que
la integral de f a lo largo de M sea idénticamente cero), ademds, N es el campo vectorial
unitario normal o aplicaciéon de Gauss compatible con la orientacién.

Definicién 2.32. Sea M una hipersuperficie conexa y embebida de una variedad rieman-
niana M. Supongamos que M divide a la variedad M en dos regiones conexas, al menos
una de ellas acotada, y ambas con frontera M. Si ) es dicha region acotada, llamaremos
volumen encerrado por M al volumen de la region 2, denotédndolo por V().
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Observaciéon 2.33. A menudo, en lugar de la suposicién de la Definicion 2.32, se pide que
M sea una variedad de Riemann orientable y que M sea una hipersuperficie orientada que
divide a M en dos regiones conexas, de modo que un campo normal unitario a M definido
globalmente (que existe por las hipétesis de orientacién) apunte hacia una regiéon acotada
de las dos en las que M separa a M.

Observacion 2.34. En el caso del espacio euclideo R", el Teorema 2.19 garantiza la
hipétesis de la definiciéon anterior, es decir, dada una hipersuperficie conexa y compacta M
de R"™, esta divide al espacio en dos regiones conexas, una de ellas exterior y otra interior.
Lo mismo es cierto, en el caso de una esfera, por la proyeccién estereografica, pero en este
caso ambas regiones son acotadas.

Observacion 2.35. Para el caso de hipersuperficies en R", si F' es una variaciéon de una
hipersuperficie M compacta y conexa, podemos suponer, por compacidad de M, que para
un t suficientemente pequeno F;: M — R"™ es un difeomorfismo sobre su imagen vy, asi,
F,(M) es una hipersuperficie compacta, embedida y con interior bien definido cuyo volumen
encerrado es V(F;(M)). De esta forma, se puede comprobar que

V(F,(M)) — V(M) = /MX[M Fw,

donde w es la forma de volumen en R" y considerando la orientacién en M dada por
{e1, ..., en_1} verificando que w(ey, ..., e, 1, N) = 1. Aqui N es el campo de vectores unitario
normal a M apuntando hacia afuera de la regién encerrada por M y {ey,...,e,_1} es una
referencia local ortonormal diferenciable para T'M.

Nétese que en una situaciéon mas general, donde por ejemplo M sea una hipersuperficie
no embebida, no podemos garantizar que M encierre a un conjunto acotado, por lo que el
concepto de volumen encerrado carece de sentido.

A continuacién, definimos el concepto de variaciéon que conserva el volumen.

Definicion 2.36 (Variacién que conserva el volumen). Sea M una hipersuperficie conexa
de una variedad riemanniana (M, g) v supongamos que M determina una regién acotada
Q2 de M. Sea X € T(T'M|y) un campo vectorial a lo largo de M (pero no necesariamente
tangente a M) y sea F': M x (—¢,&) — M la variacién de soporte compacto asociada a
ese campo X. Diremos que F' conserva el volumen de (Q si para cada |t| < ¢ se verifica que

V() =V ().
Es decir, el funcional de volumen V'(€);) permanece constante para cada t € (—¢,¢).

Proposicién 2.37. Sea M una hipersuperficie conexa, embebida y orientable de una va-
riedad riemanniana (M, (-,-)) orientable. Dada una variacion F: M x (—e,e) — M de
soporte compacto, si definimos €y como la region interior encerrada por Fy(M) = M;, don-
de la region encerrada por My la denotamos como €2, entonces se verifica que la aplicacion

UF7D(Q,5) :/ F*w,

Dx[0,t]



2.3.2 Variaciones que conservan el volumen 45

donde D es cualquier dominio relativamente compacto conteniendo el soporte de F', es
diferenciable en t = 0 y, ademds, se tiene que

d
—0rp()li=o = /M<X, N, (2.20)

donde N es el campo unitario normal a M compatible con las orientaciones.

Observacién 2.38. Puesto que pretendemos estudiar las variaciones que conservan el
volumen de una hipersuperficie, es fundamental comprender cémo se calcula y define el
cambio del volumen encerrado por una hipersuperficie. Es por ello que la Proposicién 2.37
establece una formula para la derivada del funcional vg p(€2;). Sin embargo, es importan-
te destacar que v p(€) no se define simplemente como el volumen de €2, en el sentido
tradicional, sino como la integral de la forma de volumen w en D x [0,t] bajo la accién
de la variaciéon F' y donde D es cualquier dominio relativamente compacto conteniendo
el soporte de F'. Esta definicién es clave, pues permite capturar el cambio en el volumen
debido a la variacién, sin necesidad de restar explicitamente V' (£2y). Esto se complementa
con la Observacion 2.35 al senalar que, para una variaciéon que conserva el volumen, dado
que serd un punto critico para el funcional volumen para t = 0, se cumple:

d

0= %UF,D<Qt)|t:O = /M<X7 N>7

donde recordemos que X es el campo variacional y N es el campo unitario normal com-
patible con las orientaciones. Esto enfatiza la importancia de escoger campos variacionales
adecuados para garantizar que el volumen se mantenga constante.

Observacién 2.39. A pesar de que la hipersuperficie M pueda no ser compacta, la integral
en la ecuacion (2.20) esta bien definida, debido a que la funcién p — (X, N,) tiene soporte
compacto. Es mas, la ecuacién (2.20) asegura que v ,(€20) no depende de la eleccion del
dominio D ni de la variacién particular F. Solo depende del campo vectorial variacional
X vy, de forma mas precisa, de la componente normal del campo variacional X.

Demostracion de la Proposicion 2.37. Sea un punto p € M y sea {ey,...,e,_1} una base
ortonormal orientada para 7,M. Entonces, por el teorema de Fubini sabemos que

t
vrp() = [ [ ().,
0 JD
donde w denota la n-forma de volumen en M. Por otro lado, se verifica que

(F*w)i=0(p) = w(dFp0)(€1), s dFp0y(en—1), dFp0)(O1))

= w(d(Fy)p(e1), -, d(Fy)plen—1), X) = (X, N)wns A dt, (2.21)

donde wy; denota la n-forma de volumen restringida a la hipersuperficie M. Por otro
lado, N es el vector normal unitario a M apuntando hacia afuera de la region €2 ence-
rrada por la hipersuperficie M, por lo que {d(Fp),(e1), ..., d(Fo)p(en—1), Np} es una refe-
rencia orientada positivamente en M. Ademas, la dltima igualdad en la ecuacién (2.21)
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se obtiene debido a que al evaluar w(d(Fp),(e1), ..., d(Fo)p(en—1),X) estamos calculan-
do el volumen del paralelepipedo determinado por d(Fp),(e1), ..., d(Fo)p(en—1), X. Asi,
se tiene que d(Fy)y(er), .., d(Fo)p(en—1) € T,M y, de esta forma, (X, N) representa la
componente normal de X, nétese que esta componente normal del campo vectorial X
es la que aporta algo de volumen al volumen total del paralelepipedo determinado por
d(Fp)p(er), ..., d(Fo)p(en—1), X. Por otro lado, para obtener una n-forma de volumen, ne-
cesitamos completar con la direcciéon restante, de ahi que aparezca la dt al final de la
expresion (2.21).

Ahora bien, por la expresién que hemos obtenido para (F*w);—o(p) en un punto p € M
arbitrario, es claro que

d d t
%UF,D<Qt)|t=O = % </0 /M<X7 N>WM A\ dt) |t:0

- /M(X, Ny = /M<X, N).

Esto se debe a que como el soporte de la variacion y, por definicion el del campo variacional
X, esta contenido en D, que es un dominio relativamente compacto, se puede extender la
integral a toda la hipersuperficie M. O

Observacién 2.40. Observemos que se emplean dos notaciones diferentes para funciones
que estan relacionadas con el volumen en el contexto de variaciones de hipersuperficies:
V() y vrp(£2). A pesar de que ambas estan ligadas al volumen de la region encerrada
por una hipersuperficie M;, hay diferencias conceptuales entre ellas. En primer lugar, te-
nemos V'(€2;), que representa directamente el volumen, en el sentido clasico, de la regién
), encerrada por la hipersuperficie M,;. Es la integral de la n-forma de volumen w de la
variedad riemanniana ambiente M, es decir,

V() = / w.

Q
Por otro lado, vg p(€2) es el funcional que modela el cambio del volumen bajo una variacién
F' en un dominio relativamente compacto de M que contenga al soporte de la variacion.
Esta funciéon esta definida como

UpyD(Qt) :/Dx[ot} F*w.

Es decir, no representa el volumen de una region directamente, sino la acumulacion de
cambio de volumen a lo largo de la deformacion de la hipersuperficie cuando hacemos
variar el parametro t. Esta forma resulta especialmente ttil para calcular derivadas de
volumen respecto a t, en especial, en el contexto del calculo variacional, pues evita tener
que restar volumenes directamente como V' (€2;) — V(£2).

Observacién 2.41. Notemos que si una variacion de una hipersuperficie M conserva el
volumen de la region €2 encerrada por dicha hipersuperficie, se verifica que

d

Srn(@)limo = [ (X, N) = 0.
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Por lo tanto, en virtud de la Proposicion 2.37 si una variaciéon conserva el volumen au-
toméaticamente se cumple que [,,(X, N) = 0, siendo X el campo variacional asociado a
dicha variacion. Por otro lado, notese que ese IV es el vector normal unitario o aplicacion
de Gauss compatible con la orientacion.

De nuevo, al igual que ocurria con la definicién de variacion, resulta natural hacerse la
pregunta de si existiran variaciones de una hipersuperficie que conserven el volumen. En
este sentido, el siguiente resultado nos garantiza la existencia de este tipo de variaciones
bajo algunas condiciones.

Lema 2.42 (Existencia de variaciones normales que preservan el volumen). Tomemos
M wuna hipersuperficie conexa, embebida 1y orientable de una variedad riemanniana M
orientable. Sea f: M — R una funcion diferenciable con soporte compacto y de media O

en M, es decir,
/ F=0.
M

Entonces existe una variacion normal F: M x (—e,e) — M que preserva el volumen,
cuyo campo variacional es X = fN, donde N es la aplicacion de Gauss de M compatible
con la orientacion.

Demostracion. Sea € > 0 definido como en la demostracion del Lema 2.24 y consideremos
g: D x(—¢,e) — R una funcién diferenciable, donde D C M es un dominio relativamente
compacto. Definamos ademas la variacién

F: D x (_575) — Ma (p7 t) = F(p, t) = E<p) = eprg(p, t)Np‘

De esta forma, F' es una variaciéon normal con campo variacional X = %—f:(p, 0) = %(p, 0)N.
A continuacion, probaremos que g puede escogerse de tal manera que X satisfaga las
condiciones del enunciado.

Notese que F' = e o1, donde

b M x (—e,e) — M xR, (p,t) = (p,g(p,t)) 'y
e: M x (—e,6) — M, (p,t) — exp, (tVp).

De esta forma, se tiene que

UF,D(Qt) = /

Fo=[ w(ew)=[ (Bt Ady)
D x[0,t] Dx[0,t] Dx[0,t]

« d
= E(p,g(p, )" (wy A dt) = / E(p, g(p,£) o A dt
Dx[0,¢] Dx[0,4] dt

Z/Ot/DE(p,g(p,t))fg,

donde E(p,t) es el determinante de de(, . Notemos que E(p,t) # 0 para un ¢ suficien-
temente pequefio, pues e(p,t) = exp,(tN,) es un difeomorfismo local. Por otro lado, wy



48 2 El problema isoperimétrico en el espacio euclideo

es la forma de volumen riemanniana de M y hemos empleado el teorema de Fubini para
obtener la dltima igualdad.
Consideremos, dado p € M, la aplicacién g(p,t) como solucién al siguiente problema
de valor inicial
dg  [f(p)

dt  E(p,g(p,t)’

Ahora bien, por la expresién que hemos calculado para vg p(€2) v el hecho de que [, f =
0, se tiene que vpp(§2) = 0 para todo t. Ademads, es claro que ‘fl—f(p, 0) = f(p), pues
E(p,g(p,0)) = E(p,0) = 1. Asi, F' es una variacién normal que preserva el volumen con
campo variacional fN. O

9(p,0) = 0.

Observacién 2.43. A partir de ahora, una variacién normal que conserve el volumen
de una hipersuperficie embebida, conexa y orientable M de una variedad riemanniana
orientable M serd para nosotros una variacién cuyo campo variacional es de la forma fN
con f: M — R una funcién diferenciable verificando que [,, f =0y N la aplicacion de
Gauss de M.

Como hemos visto, el Teorema 2.31 y la Proposicién 2.37 muestran que tan solo la
componente normal de los campos vectoriales variacionales afecta a las variaciones del
area y el volumen. Ademas, la direccién de maxima disminucién de area es la dada por el
vector curvatura media.

A continuacién, veremos un resultado que nos caracteriza las hipersuperficies de cur-
vatura media constante de una variedad riemanniana M.

Teorema 2.44 (Caracterizacion de hipersuperficies CMC). Sea M una hipersuperficie
orientada, conexa y embebida de una variedad riemanniana orientable (M,g = (-,-)).
Entonces:

(1) M es minimal, es decir, tiene curvatura media constante igual a cero, si y solo si es
un punto critico de la funcion drea para cada variacion de M de soporte compacto.

(1) M tiene curvatura media constante si y solo si para toda variacion de M que preserve
el volumen la derivada del drea ent =0 es cero.

Observacién 2.45. La segunda de las afirmaciones quiere decir que son equivalentes que
una hipersuperficie M sea CMC y que sea un punto critico del funcional area para cada
variaciéon de soporte compacto cuyo campo variacional sea de la forma X = fN, donde
f € C®(M) satisface que [,; f =0y N es un campo vectorial normal unitario a M.

Demostracion. Probemos la primera afirmacién. En primer lugar, es claro que si la curva-
tura media de M es cero entonces por el Teorema 2.31, es un punto critico para el funcional
de area para variaciones con soporte compacto. Reciprocamente, supongamos que M sa-
tisface dicha condicién. En ese caso, sea f € C*°(M) con soporte compacto y sea F' una
variacion con campo variacional £ = f H. Entonces por el Teorema 2.31 (primera variaciéon
del area) se verifica que

/M FIH 2wy = 0, (2.22)
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donde recordemos que wy es la forma de volumen asociada a My = Fy(M). La igualdad en
(2.22) se debe a que suponemos que M es un punto critico. Finalmente, H = 0 debido a
que la igualdad (2.22) se tiene para cada f € C*°(M) con soporte compacto y, por lo tanto,
M es minimal.

Veamos ahora la demostracion de la segunda afirmacion. En este caso, si M tiene
curvatura media constante Hy, por (2.20) y el Teorema 2.31 obtenemos que

d = d
ZlimoA(M) = = [ (8, X)wn = —Ho|i=ovrp() = —Hov p (%),

donde D es cualquier dominio relativamente compacto conteniendo al soporte de la varia-
cion F'. Por lo tanto, M es un punto critico para el area de cualquier variacién que conserve
el volumen. Notese que en la anterior igualdad hemos utilizado que H = HyN.

Reciprocamente, sea D una regién acotada en M y sea Hy = ﬁ Jp H. Supongamos
por contradiccion, que existe p € D, de forma que H, — Hy # 0. Sin pérdida de generalidad
podemos suponer que H, — Hy > 0. Asi, definamos

Dt ={qe D:H,— Hy> 0},
D ={qeD:H,— Hy<0}.

Sean f,g: M — R* dos funciones diferenciables no negativas de forma que se cumplen
las siguientes condiciones:

L. p € sop(f) C D,
2. sop(g) € D7,

3. Ju(f +9)(H — Ho) = 0.

Dado que [,(H — Hy) = 0 esta eleccién es siempre posible. En efecto, pues nétese que
Sy J(H—Hy) >0y [,,9(H— Hy) <0, por lo que existe una constante A > 0 tal que
Sy (f +Ag)(H — Hy) = 0. De esta forma, basta con tomar \ = 1.

Definamos ahora la funcién ¢: M — R dada por ¥(p) = (f(p) + 9(p))(H, — Hp).
Entonces 1 es una funcién con soporte compacto y de media cero. Sea F' la variacién que
preserva el volumen asociada a ¢ (ver Lema 2.42). Ahora bien, por hipdtesis y empleando
la ecuacién (2.31) obtenemos:

0= S0 AQM) = [ () = [ w(H.N)
- ot = = o o
= | (H=Hop = [ (f+9)(H — H)* > 0.

Nétese que la expresion anterior es mayor que cero, debido a que (H — Hy)?2 >0y f,g >0
y recordemos que [;, % = 0. Ahora bien, tenemos una contradiccién. De esta forma, debe
ocurrir que H = Hy en D. Como esto ocurre para todo D C M, obtenemos que M tiene
curvatura media constante. [
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2.3.3. El problema isoperimétrico en R"

Como hemos visto, el Teorema 2.44 nos caracteriza las hipersuperficies de curvatura
media constante por medio de las variaciones que preservan el volumen. Ahora bien, sa-
bemos gracias al Corolario 2.21 que las hipersuperficies en R""! compactas, conexas y de
curvatura media constante son justamente las esferas. De esta forma combinando ambos
resultados podemos dar una demostracion del problema isoperimétrico clasico. Recordemos
que este problema se plantea averiguar cuales de entre todas las hipersuperficies encerrando
un volumen dado tienen area minima. Enunciemos esto de forma mas precisa.

Corolario 2.46 (Problema isoperimétrico cldsico). En el espacio euclideo R™, para un
volumen dado, de entre todas las hipersuperficies compactas y conexas encerrando ese vo-
lumen, la de menor drea es la esfera.

Demostracion. En primer lugar, tomemos un volumen vy y una hipersuperficie embebida
M compacta y conexa de R™ encerrando ese volumen. Es decir, por el Teorema 2.19,
sabemos que esta hipersuperficie divide al espacio R™ en dos regiones conexas, una de
ellas interior que llamamos €2, cuyo volumen serd V' (€2) = wvg. Ahora bien, si suponemos
que nuestra hipersuperficie tiene area minima entre todas la hipersuperficies que encierran
dicho volumen, se cumple que para toda variacion F' de M que preserve el volumen, al ser
un punto critico para el funcional de area, su derivada en ¢t = 0 es igual a cero, por lo que
por el Teorema 2.44, M tiene curvatura media constante. Finalmente, por el teorema de
Alexandrov (Corolario 2.21), toda hipersuperficie compacta, conexa y de curvatura media
constante en R™ ha de ser una esfera. ]



Capitulo 3

La constante isoperimétrica de
Cheeger

En los capitulos anteriores hemos introducido el problema isoperimétrico desde un punto
de vista clasico. En el primer capitulo se establecieron los conocimientos previos necesarios
sobre geometria riemanniana y teoria de subvariedades, haciendo hincapié en las hipersu-
perficies de curvatura media constante (CMC), cuya relevancia se hace evidente al estudiar
regiones que minimizan el area de su frontera bajo restricciones de volumen. Posteriormen-
te, en el Capitulo 2, abordamos de manera sistematica el problema isoperimétrico en el
espacio euclideo, demostrando, entre otros, el teorema de Alexandrov y su relacién con las
propiedades variacionales del area y el volumen. En particular, se caracterizé a las esferas
como las tnicas soluciones del problema isoperimétrico en R™ para regiones diferenciables
compactas y conexas.

El presente capitulo amplia el enfoque anterior introduciendo una herramienta clave en
la comprension del problema isoperimétrico en espacios mas generales: la constante isoperi-
métrica de Cheeger. A diferencia de lo visto hasta ahora, aqui no partimos necesariamente
de la existencia de soluciones 6ptimas (o minimizadores) al problema isoperimétrico, sino
que nos centramos en un cociente geométrico que mide cémo de “estrecho” puede ser un
subconjunto de la variedad, en relaciéon con su volumen. Esta constante, introducida por
Jeff Cheeger [13] en el contexto del andlisis espectral, resulta fundamental no solo des-
de el punto de vista geométrico, sino también por su conexién directa con el operador
de Laplace-Beltrami, a través de la desigualdad de Cheeger. Formalmente, la constante
isoperimétrica de Cheeger de una variedad riemanniana M se define como

A(09)

h(M) = inf

donde €2 recorre todos los abiertos de la variedad riemanniana M con clausura compacta
y cuya frontera es una hipersuperficie diferenciable.

Respecto a la estructura del capitulo, en la Seccién 3.1 introduciremos conceptos pre-
liminares sobre grupos de Lie, dado que estos constituyen el contexto principal donde se
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explorara la constante isoperimétrica de Cheeger en este capitulo. En particular, definire-
mos los grupos de Lie y sus algebras de Lie asociadas.

En la Seccion 3.2, se presentan una serie de resultados relevantes sobre grupos de
Lie, incluyendo propiedades estructurales relevantes, asi como el papel de las medidas de
Haar. Ademas, se estudia como estas medidas se pueden construir a partir de formas de
volumen invariantes y se examina la regularidad y unicidad de las mismas, que constituyen
herramientas esenciales para definir el conceptos como el area y el volumen en este nuevo
contexto.

En la Seccion 3.3, se formaliza la nocién de la constante isoperimétrica de Cheeger en el
contexto de una variedad riemanniana general, es decir, no necesariamente compacta ni de
curvatura constante. Se justifica su interés, tanto desde el punto de vista geométrico, pues
proporciona una cota inferior para el area de la frontera de cualquier regién de volumen
finito, como desde el punto de vista analitico, debido a su vinculo con el espectro del
operador laplaciano. En ese sentido, se presenta precisamente un resultado que relaciona
el primer autovalor del operador laplaciano con la constante isoperimétrica de Cheeger
asociada a un dominio normal de una variedad riemanniana M de dimensién n > 2 no
compacta.

En lo relativo a la Seccién 3.4, el foco se restringe a un caso particularmente interesante,
los grupos de Lie resolubles y simplemente conexos con métrica invariante a la izquierda,
pues en ellos se puede calcular de forma explicita la constante isoperimétrica de Cheeger
en términos de la representacion adjunta del algebra de Lie g del grupo de Lie G bajo
consideraciéon. De esta forma, se presentan resultados que construyen la medida de Haar
en el caso particular de un grupo de Lie G = Gy x R, dando posteriormente una acotaciéon
para h(G) y mostrando que h(G) = tr(ad(Hy)), donde Hy es un vector de norma uno en
el subdlgebra de Lie R de Gg x R para la métrica invariante por la izquierda del grupo G,
siempre que se tenga que h(Go) = 0. Finalmente, se relaciona todo esto con los grupos de
Lie resolubles y simplemente conexos calculando la constante isoperimétrica de Cheeger
en este caso mas general. En esta linea llegaremos al resultado central de este capitulo
(Corolario 3.29), que nos dice que la constante isoperimétrica de Cheeger de un grupo
de Lie resoluble y simplemente conexo G con métrica invariante a la izquierda tiene la
expresion

h(G)= max tr(ad(H)).
Heg, ||H||=1
Para concluir este capitulo, pondremos el foco en un caso concreto de grupos de Lie re-
solubles con métrica invariante a la izquierda. Asi, introduciremos la nocién de espacio
simétrico poniendo el foco en los de tipo no compacto, donde podremos definir la des-
composicién en espacios de raices y la descomposicion de Iwasawa asociadas al algebra
de Lie del correspondiente grupo de isometrias. Esto nos permitira calcular la constante
isoperimétrica de Cheeger de un espacio simétrico de tipo no compacto, aplicando el Co-
rolario 3.29. Esto se debe a que se tiene que cada espacio simétrico de tipo no compacto
es isométrico a un grupo de Lie resoluble y simplemente conexo con métrica invariante a
la izquierda. Finalmente, incluiremos de manera breve el célculo de la constante isoperi-
métrica de Cheeger en un par de familias de espacios simétricos de tipo no compacto muy
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concretos: los espacios hiperbodlicos reales y complejos.

3.1. Preliminares sobre grupos de Lie

A lo largo de este capitulo vamos a utilizar algunas nociones generales sobre grupos de
Lie que vamos a recordar a continuacién [30].

Un grupo de Lie G es una variedad diferenciable que también es un grupo, de forma
que las aplicaciones

p:GxG— G, (g,h)— gh,
i:G—G, g—gl,
son diferenciables. Denotaremos por e al elemento neutro de un grupo de Lie G.

Ejemplo 3.1. Son ejemplos de grupos de Lie:

(1) (R™,+), (C",+), (Myxm(R), +). En general, cualquier espacio vectorial de dimension
finita con la suma.

(1) Dados G, H grupos de Lie, entonces G x H es también un grupo de Lie.
(1) GL(n,R) = {A € M,xn(R) : det(A) # 0}, GL(n,C) = {A € M5, (C) : det(A) # 0}.
(tv) SL(n,R) ={A € GL(n,R) : det(A) = 1}.

(v) O(n) = {A € Mpn(R) : ATA = Id}, el grupo de las matrices que preservan el pro-
ducto escalar de R".

(vi) SO(n) =0O(n)N SL(n).

Dado un grupo de Lie G, se define la traslacion por la izquierda como Ly: G — G,
dada por h — Ly(h) := gh, para cada g € G. Por otro lado, se define la traslacion por
la derecha como R,: G — G dada por h — Ry(h) := hg, para cada g € G. Ademas, es
sencillo ver que las aplicaciones Ly, R, y la inversién ¢ son difeomorfismos, con inversas
(Lg)fl = Lgfl, (Rg)fl = Rg71 ei l=1.

Con estas nociones béasicas acerca de grupos de Lie, pasamos a definir el concepto de
algebra de Lie.

Un dlgebra de Lie (sobre R) es un espacio vectorial real g junto con un operador bilineal
llamado corchete de Lie [-,-]: g x g — g tal que:

(a) [X, Y] = —[¥, X],

(b) [X,[Y,Z]| +[Y,[Z,X]] +[Z,[X,Y]] =0 (identidad de Jacobi),
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para todos X, Y, Z € g.

Por otro lado, dado G un grupo de Lie, se dice que X € X(G) es invariante por la
izquierda si Ly, = Xp,(n), para todos g,h € G. Ahora bien, denotemos por g al espacio
de campos de vectores invariantes por la izquierda del grupo de Lie G. Si definimos la
aplicacion a: g — T.G, dada por X — X, resulta que o es un isomorfismo de espacios
vectoriales, cuya inversa es x € T,G — X € g, donde X, = Lg.x. Se puede ver que todo
campo invariante por la izquierda es diferenciable. Ademas, si tenemos que X,Y € g, por
definicién, X estd Lg-relacionado con X e Y estd Lg-relacionado con Y y, por lo tanto,
[X,Y] estd Lg-relacionado con [X,Y], es decir, se tiene que Ly, [ X, Y], = [X, Y], ),
por lo que obtenemos que [X,Y] € g. Esto convierte a g en un algebra de Lie. Ademas,
observemos que dim(g) = dim(G). Asi, dado un grupo de Lie G, se define el dlgebra de
Lie de G como aquella construida a partir del corchete de Lie de campos invariantes a la
izquierda. Ademas, este algebra de Lie es isomorfa al espacio tangente en el neutro dotado
del corchete de Lie inducido por los campos de vectores invariantes a la izquierda.

Recordemos ahora que, si tenemos un X € g, una curva a: I — G es una curva
integral para el campo vectorial X por el neutro e € G si verifica que a(0) = ey o/(t) =
Xa@) = La@«Xe. Asi, se define la aplicacién exponencial Exp: g — G, dada por X
Exp(X) = a(1).

Dados dos grupos de Lie G y H, se dice que una aplicaciéon ¢: G — H es un homo-
morfismo de grupos de Lie si es un homomorfismo de grupos y si ademaés es diferenciable
como aplicacién entre variedades. Analogamente, un isomorfismo de grupos de Lie es un
isomorfismo de grupos que ademas es un difeomorfismo. Por otro lado, un automorfismo
de un grupo de Lie G es un isomorfismo de grupos de Lie de G en G.

De forma andloga, para algebras de Lie se tiene que una aplicacion ¢: g — b, don-
de g, b son algebras de Lie, es un homomorfismo de dlgebras de Lie si i es lineal y si
(X, Y]) = [Y(X),¥(Y)], para cada X,Y € g. Ademds, un isomorfismo de dlgebras de
Lie es un homomorfismo de algebras de Lie biyectivo, y un automorfismo de dlgebras de
Lie es un isomorfismo de una algebra de Lie en si misma.

En lo relativo a resultados de homomorfismos de grupo de Lie, destacamos el siguiente.

Proposicién 3.2. Sea ¢: G — H un homomorfismo de grupos de Lie y sean g,b sus
algebras de Lie correspondientes. Entonces su diferencial @.: g — b es un homomorfismo
de dalgebras de Lie que satisface la condicion de conmutatividad siguiente: poFxp = Expoy,.

Dado un grupo de Lie G con algebra de Lie g se define la conjugacion por g como la
aplicaciéon I,: G — G, dada por h + ghg~'. A su diferencial Ad(g) = I,. se le llama
aplicacion adjunta a nivel de grupos de Lie. Por otro lado, al homomorfismo de grupos de
Lie Ad: G — GL(g) se le llama representacion adjunta del grupo de Lie G. Con estas
definiciones se cumple que I, o Exp = Exp o Ad(g), para todo g € G.

A nivel de algebras de Lie se define la representacion adjunta del algebra de Lie g como
el homomorfismo de algebras de Lie ad: g — gl(g) dado por ad(X)(Y) = [X,Y]. De esta
forma, se tiene que Ad(Exp(X)) = ¢*4X) para todo X € g, donde la aplicacién exponencial
e de GL(g) se entiende como la aplicacién exponencial habitual de un endomorfismo lineal.
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Dada una algebra de Lie g, diremos que h es una subdlgebra de Lie de g si b es un
subespacio vectorial de g tal que [X,Y] € b, para todos X,Y € h. Por otro lado, diremos
que una subdlgebra b del dlgebra de Lie g es un ideal si [X,Y] € b, paracada X € h, Y € g.
Por otro lado, una &lgebra de Lie g se dice abeliana si [X,Y] = 0, para cada X,Y € g.

3.2. Resultados relevantes sobre grupos de Lie

Pasamos ahora a definir y presentar algunos resultados basicos relativos a grupos de Lie
y que seran necesarios, en posteriores secciones, para calcular la constante isoperimétrica
de un grupo de Lie resoluble y simplemente conexo con métrica invariante a la izquierda.
Estas definiciones pasaran por recordar la definicion de una k-forma invariante por la
izquierda (respectivamente, por la derecha), para llegar a la nociéon de medida de Haar en
un grupo de Lie G. Ademads, en lo relativo a las algebras de Lie, definiremos las dlgebras de
Lie simples, semisimples, nilpotentes y resolubles. Finalizaremos con el Teorema de Levi,
que asegura que toda algebra de Lie se puede descomponer como suma semidirecta de una
algebra de Lie semisimple y un algebra de Lie resoluble. A lo largo de esta secciéon hemos
seguido principalmente la referencia [30, Chapter VIII]

En primer lugar, sea G un grupo de Lie, con algebra de Lie g. Sabemos que para cada
g € G podemos definir L,: G — G, dada por h— gh y R,: G — G, dada por h — hg,
como las traslaciones por la izquierda y por la derecha respectivamente.

Definicién 3.3. Diremos que una k-forma w € /\k(G) es invariante por la izquierda si
Lijw = w, para cada g € G. Andlogamente, diremos que es invariante por la derecha si
Ryw = w, para cada g € G.

Recordemos que g se identifica con el espacio tangente en el neutro e € G por medio de
la aplicacion a: g — TG, dada por X — X,. De esta forma, consideremos X1, ..., X,,, base
de g, donde m es la dimensién de G. Podemos definir 1-formas diferenciables wy, ..., w,, en G
tales que (w;)g((X;)y) = 6i;, para cada g € G. Por otro lado, definiendo w 1= wy A ... Aw,, €
A" (G) tenemos que no se anula w en Gy, dado que el pullback conmuta con la operacién
A, se tiene que w es invariante por la izquierda. Ademas, podemos orientar GG de forma que
w sea definida positiva [30, Proposition 8.9].

En un contexto mas general, encontramos la siguiente definicién y proposicion relativas
a la integracion de funciones continuas de soporte compacto en una variedad diferenciable
orientable.

Definicién 3.4. Sean M, N dos variedades diferenciables orientadas de dimensiéon m y
¢: M — N un difeomorfismo. Diremos que ¢ preserva la orientacion si para cada carta
(Uy, o) de M, la carta (¢(Uy,), pa © ¢ 1) es positiva relativa al atlas de N. En este caso,
el atlas de cartas de la variedad N se puede tomar como (¢(Uy), o 0 ¢71).

En las condiciones de la definicién anterior, la formula del cambio de variable para inte-
grales multiples se puede expresar utilizando los pullbacks como en el siguiente resultado.
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Proposicion 3.5. Sean M, N dos variedades diferenciables de dimension m orientables
y sea ¢: M — N un difeomorfismo que preserva la orientacion. Entonces si w es una
m-forma diferenciable en N, se tiene que

. fo= ] (Fo)se,

para cada f € Co(N), donde Co(N) denota las funciones continuas de soporte compacto en
N.

Una demostracién de la Proposiciéon 3.5 puede verse en [30, Proposition 8.19].

Antes de enunciar el siguiente resultado, recordemos que si G es un grupo de Lie vy,
por lo tanto, una variedad diferenciable, los conjuntos de Borel son los elementos de la o-
algebra generada por los conjuntos abiertos de G. Asi, una medida de Borel es una medida
definida sobre esta o-algebra. En particular, una medida de Borel estd completamente
determinada por su acciéon sobre funciones continuas con soporte compacto, gracias al
teorema de representacion de Riesz. En este contexto, veremos que emplearemos una m-
forma invariante por la izquierda para construir la medida sobre G. Ademas, recordemos
que una medida p es regular si para todo conjunto A C GG de Borel, se tiene que:

(a) p(A) =inf{u(U):U C A, U abierto} (regularidad exterior).
(b) u(A) =sup{u(K): K C A, K compacto} (regularidad interior).

Teorema 3.6. S G es un grupo de Lie de dimension m, entonces G admite una m-forma
invariante por la izquierda que no se anula. Ademds, G puede orientarse de forma que w
sea positiva y w defina una medida de Borel no nula duy, en G que es invariante por la
izquierda, es decir, dui(LyE) = dpi (E), para cualquiera g € G y cualquier conjunto E de
Borel en G.

Demostracion. En primer lugar, por lo comentado en los parrafos anteriores, esa m-forma
w existe y, ademas, se puede orientar G de forma que w sea positiva. Consideremos como
dpy la medida asociada a w, es decir, [ fw = [ f(x)dp(x), para cada f € Co(G). Por la
Proposicién 3.5 y la igualdad Ljw = w, tenemos que

[ Ham)din(@) = [ F@)dm(z). (3.1)

para cada f € Co(G). Ahora bien, si tomamos K un compacto de G, aplicando la igualdad
(3.1) a cada funcién continua de soporte compacto f > Xy, donde Xk es la funcién
caracteristica sobre el compacto K y tomando el infimo de esas integrales, se obtiene que
dpi(Ly-1K) = dpy (K). Asi, como G posee una base numerable, la medida definida por dy
es automaticamente regular y, asi, se tiene que dyy(L,~1E) = dpy (E) para cada conjunto
de Borel F. ]

Con el Teorema 3.6 podemos definir el concepto de medida de Haar en un grupo de Lie

G.
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Definicién 3.7. Dado un grupo de Lie GG, una medida de Borel no nula invariante por
traslaciones a la izquierda recibe el nombre de medida de Haar por la izquierda. De forma
andloga, una medida de Haar invariante por la derecha en G es una medida de Borel no
nula invariante por traslaciones a la derecha.

Observacién 3.8. Notese que el Teorema 3.6 nos garantiza la existencia de las medidas
de Haar invariantes por la izquierda.

Definicién 3.9. Un grupo de Lie G se dice unimodular si cada medida de Haar invariante
por la izquierda lo es por la derecha (y viceversa). En este caso, hablaremos de medida de
Haar sobre G.

La existencia de medidas de Haar invariantes por la izquierda en un grupo de Lie GG
motiva el siguiente resultado.

Teorema 3.10. Dado un grupo de Lie G, entonces dos medidas de Haar por la izquierda
en G son proporcionales.

Demostracion. Sean duy v due dos medidas de Haar por la izquierda sobre G. Consideremos
la medida dy = dpg +dus, que es una medida de Haar invariante por la izquierda. Entonces
du(E) = 0 implica que duy (E) = 0. Ahora bien, por el teorema de Radon-Nikodym existe
un h; > 0, una funcién definida sobre G continua y que toma valores reales no negativos,
de forma que du; = hidp. Fijemos g € G. Por la invarianza por la izquierda de du, y dpu,
tenemos que

/f Vhi (g~ ) dp(x /fgxhl )dp(x /fgfcdul()
= [ @) = [ f@)h()dutz).

para cada funcién de Borel f > 0. De esta forma, las medidas hy (g7 z)du(x) y hy(z)dp(x)
son iguales y hi(g~'x) = hi(x) para casi todo z € G respecto a la medida du. Ahora
bien, podemos tomar hy(g~'z) y hi(x) como funciones de (g,7) € G x G y estas serdn
funciones de Borel debido a que las operaciones de grupo son continuas. Ademads, para
cada g € G ambas funciones coinciden para casi todo punto x € G. Por el Teorema de
Fubini tendremos que ambas funciones coinciden para casi todo par (g, x) con respecto a
la medida producto y, por lo tanto, para cada x coinciden para casi todo g.

Fijemos ahora un punto zy € G de referencia. En ese caso, como vimos que h;(g~'z) =
hi(x) para casi todo punto x (fijado g), se cumple que hi(g ' zo) = hi(zg) para casi todo
g € G. Asi, tomando g = xoz~! se obtiene que hi(x) = hi(x) para casi todo x € G,
luego dpy = hyi(xg)dp. Por lo tanto, lo que tenemos es que dyuy es multiplo de du vy, de
manera analoga, ocurre lo mismo con dpus. De esta forma, se sigue que ambas medidas son
proporcionales. ]

Observacién 3.11. En virtud del Teorema 3.10 se tiene que dos medidas de Haar por
la izquierda son proporcionales. Anadlogamente se tiene el resultado para medidas de Haar
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invariantes por la derecha, por lo que salvo proporcionalidad, dado un grupo de Lie G,
definiremos la medida de Haar por la izquierda, que denotaremos por d; y la medida de
Haar por la derecha, d,.

Definiciéon 3.12. Dado un grupo de Lie G, se define la funcidn modular A: G — R de
G dada por (el factor de proporcionalidad)

di(-t) = A(t)'dy(-), paracadateG.

En relacién con la funcién modular que acabamos de definir, el siguiente resultado nos
proporciona su expresion en términos de la aplicacién adjunta a nivel de grupos de Lie.

Proposiciéon 3.13. Dado un grupo de Lie G, la funcion modular de G viene dada por
A(t) = | det Ad(t)].

Demostracion. Sea X € gy sean g,t € G, h € C*((G). De esta forma se tiene que:

d
Rt’l*g(Xg)h = Xg(hoR-1) = %h o Ry-1(gExp(rX))lr=o

d
= —-h(gExp(rX)t™)—

= h(gt L (Exp(r X))o

= jh(gt_lExp o Ad(t)(rX))]r=o
.

= h(gt Exp(rAd(1) X))o
— (Ad()X) g1

Por lo tanto obtenemos que
Ri-1.4(X,) = (Ad(t) X ) gp-1. (3.2)

Con la expresién obtenida en (3.2), si tomamos una m-forma w invariante por la izquierda,
podemos realizar el siguiente calculo:

(erlw)g«Xl)gv ey (Xm)g) = wgt‘l(Rt—l*g(Xl)gv ) Rt‘l*g(Xm)g)
= et (AA() X1) g1 ooy (AA(E) X))
= det(Ad(t))wgt—l ((Xl)gt—l, ceey (Xm)gt_1)7

de donde se obtiene que
Ri_1w = det(Ad(t))w. (3.3)

Ahora bien, si suponemos que w es positiva, obtenemos que o bien R} ;w, o bien —R; ;w
son positivas acorde al signo de det(Ad(t)). Por lo tanto, cuando el signo de det(Ad(t)) es
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positivo, combinando la Proposicién 3.5 y (3.3) se obtiene
(det(Ad(t /f V() = (det(Ad(t /fw_/fR

:/ oRtw:/fxtdlx
_/f Vi (at /f Vi

donde d; es la medida de Haar invariante por la izquierda construida como en el Teore-
ma 3.6. Asi, se tiene que det(Ad(t)) = A(t). De esta forma, cuando det(Ad(¢)) es ne-
gativo, cada uno de los pasos que acabamos de realizar se puede repetir a excepcion de
la primera igualdad en la segunda linea del célculo anterior. Ahora bien, como —R;_ w
es definida positiva, la Proposicion 3.5 requiere de un signo menos en su formula, para
poder tomar ¢ = R;-1. Por lo tanto, —det(Ad(t)) = A(t). Finalmente, concluimos que
A(t) = | det(Ad(t))]. O]

Para concluir este apartado, vamos a introducir algunos conceptos relativos a los diferen-
tes tipos de algebras de Lie que existen, atendiendo a la cantidad de ideales que contienen
y su comportamiento con respecto a la operacion corchete de Lie, para posteriormente
concluir con el Teorema de Levi.

Definicién 3.14. Dado un &lgebra de Lie g, se dice que es simple si no es abeliana y
no contiene ideales propios distintos de cero. Por otro lado, una algebra de Lie se dice
semisimple si es suma directa de algebras de Lie simples.

Definicién 3.15. Dada una éalgebra de Lie g, podemos construir las siguientes sucesiones:
(@) go=9> g =100l D...Dgj1 =199 D
(b) =92 g ' =[golD... 0" =[¢/.¢'] O

Diremos que g es nilpotente si existe un k tal que g = 0. Por otro lado, diremos que g es
resoluble si existe un k de forma que g¥ = 0.

Definiciéon 3.16. Dado un grupo de Lie G, se dice que nilpotente, resoluble, simple o semi-
simple si su algebra de Lie es respectivamente, nilpotente, resoluble, simple o semisimple.

Definicién 3.17 (Suma semidirecta de algebras de Lie). Sean g,b élgebras de Lie y su-
pongamos que existe una aplicacion

¢: h — Der(g),

donde Der(g) denota el conjunto de las derivaciones de g (es decir, transformaciones lineales
D: g — g que satisfacen la regla de Leibniz D([z,y]) = [D(z),y] + [z, D(y)]). Entonces
el espacio vectorial g @ b se convierte en un algebra de Lie con corchete definido por:

(21, 91), (w2, 42)] = ([21, 22] + o (y1) (22) — @(y2)(21), [v1, B2]),
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para todos x1, 22 € g e y1,y2 € b. Esta nueva édlgebra de Lie se llama suma semidirecta de
g v b y se denota por:

g X, b.

En relacion con las definiciones anteriores, tenemos el siguiente teorema que asegura
que toda algebra de Lie se escribe como suma semidirecta de un algebra de Lie semisimple
y una resoluble.

Teorema 3.18 (Teorema de Levi). Dada una dlgebra de Lie g, entonces existen una dlgebra
de Lie semisimple s y un dlgebra de Lie resoluble v, tales que g = s X ¢t (suma semidirecta).

Observacién 3.19. Al algebra de Lie t del teorema anterior se le denota por rad(g), se
denomina radical de g y se define como el mayor ideal resoluble de g.

3.3. La constante isoperimétrica de Cheeger de una
variedad riemanniana

A continuacién, vamos a definir la constante isoperimétrica de Cheeger para una va-
riedad riemanniana no compacta de dimension n > 2. Como ya hemos comentado, este
concepto esta estrechamente relacionado con la geometria de la variedad y el espectro del
operador de Laplace-Beltrami. De esta forma, en este contexto y salvo que se indique lo
contrario, M denotard una variedad riemanniana de dimensiéon n > 2 no compacta. Como
veremos, esta constante proporciona una cota inferior para el valor del primer autovalor no
nulo del operador laplaciano. Tanto la definicién de la constante isoperimétrica de Cheeger
como algunas propiedades interesantes se pueden consultar en [10, pdg. 95-96].

El motivo de introducir las constantes isoperimétricas se debe a que nos va a inte-
resar trasladar el estudio del problema isoperimétrico del espacio euclideo a variedades
riemannianas mas generales con geometria acotada, véase [11, pag. 127]. En este contexto,
tenemos que cambiar nuestro punto de vista con respecto a las preguntas que nos plan-
teamos. Es decir, en una variedad riemanniana general, las posibilidades de encontrar el
dominio de area de frontera minima, dando de antemano el volumen de dicho dominio,
son préacticamente nulas, a excepcion de algunos casos muy especiales. Ademads, diferentes
elecciones del volumen prescrito pueden cambiar por completo el caracter del problema
[11, pag. 117]. Asi, desde una perspectiva analitica, podemos no ser capaces de calcular de
forma precisa el infimo del problema

A(0Q)

n—1)"

= (3.4)

donde n es la dimension de la variedad y 2 denota un dominio acotado, relativamente
compacto y cuya frontera es una hipersuperficie diferenciable. De esta forma, més bien nos
plantearemos el siguiente problema: encontrar v € [1,00), de forma que el funcional isope-
rimétrico (3.4), cambiando n por v, esté acotado por una constante positiva. Observemos

que para v = 1 el funcional se convierte en Q — A(J2) y para v = oo se tiene {2 — /‘1/((8;;)).
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Con objeto de estudiar los funcionales anteriores surgen las llamadas constantes iso-
perimétricas para una variedad riemanniana M de dimensién n > 2. Asi, la v-constante
isoperimétrica se define como

.. A9
J, (M) = inf (71);,
V)T
donde €2 recorre todas las subvariedades abiertas de M con clausura compacta y cuya fron-
tera es una hipersuperficie diferenciable. En concreto, nos vamos a centrar en la constante
isoperimétrica de Cheeger, que viene dada por:

h(M) := Joo(M).

Merece la pena comentar por qué estudiamos la constante de Cheeger en una variedad
no compacta. Esto se debe a que si la variedad M fuese compacta, considerando 2 =
M \ B(x,¢), para un ¢ suficientemente pequenio, y donde B(z,¢) denota la bola geodésica
en M de centro z y radio ¢, se puede probar que J,(M) = 0, para cada v. Por esta razén,
restringiremos nuestro estudio de la constante de Cheeger al caso de las variedades no
compactas. Por otro lado, se puede adaptar la definicién de constante isoperimétrica para
el caso de variedades compactas y obtener resultados interesantes (ver comentarios en [11,
Chapter VI.2]).

Asi pues, tenemos la siguiente definicion.

Definicién 3.20. Se define la constante isoperimétrica de Cheeger de M como

_ A
h(M) := 1gf V@)

(3.5)

donde € recorre todos los abiertos de M con clausura compacta en M y cuya frontera
es una hipersuperficie diferenciable. Cabe mencionar que algunos autores denotan a esta
constante como Ch(M).

Definicién 3.21. Dada una variedad riemanniana M no compacta de dimension n > 2,
diremos que un abierto €2 de M es un dominio normal si es conexo, tiene clausura compacta
dentro de M y su frontera es diferenciable a trozos, es decir, que 02 es una union finita de
hipersuperficies diferenciables con borde que se intersecan en puntos o aristas (por ejemplo
un cubo).

Con la definicion de dominio normal de una variedad, podemos introducir el problema
de autovalores para el operador laplaciano con condiciones de Dirichlet y con ello la nocion
del primer autovalor del operador laplaciano. Veamos esto en detalle.

Definicién 3.22. Consideremos una variedad riemanniana M bajo las hipotesis de la
Definicién 3.21 y un dominio normal €2 de dicha variedad. En estas condiciones podemos
plantear el siguiente problema con condiciones de contorno tipo Dirichlet

{Au +Au=0 en £ (3.6)

u=0 en 0f),



62 3 La constante isoperimétrica de Cheeger

donde u es una funcién de al menos clase C?(€2) y continua en Q, v X es un nimero real que
depende de u. Si una funcién u no idénticamente nula es solucién del problema anterior
para un cierto A, diremos que A es un autovalor del laplaciano en €2 con autovector o
autofuncién u. Por otro lado, si consideramos los autovalores del operador laplaciano A,
se puede probar que son de la forma A\; < Ay < A3 < --- | donde la multiplicidad de \; es
uno [10, pag. 8]. De esta forma, denotamos A(2) := A\; y lo llamamos primer autovalor del
laplaciano con condicién de Dirichlet para el dominio (2.

Con la Definiciéon 3.22 tiene sentido considerar el Teorema 3.23 que enunciamos més
abajo y que acota dicho autovalor, para un dominio normal, en funciéon de la constante
isoperimétrica de Cheeger. Pero antes recordemos brevemente la formula de la co-area, que
nos sera de gran utilidad para demostrar el Teorema 3.23.

Consideremos una funciéon f € C*°(M), con Vf # 0 en casi todo punto de M, es decir,
el conjunto de los puntos donde Vf = 0 tiene medida nula en M. De esta forma, para
cualquier funcion integrable f se cumple que en cualquier dominio normal € de M, se
verifica que .

Lwsiav = [~ A,
Q 0
donde A(t) representa el area de {p € Q0 : f(p) = t}, es decir, el conjunto de nivel para la
constante t. Una demostracién detallada de esto puede verse en [10, pag. 86]. Notese ademés

que dV hace referencia a la medida de volumen de la variedad riemanniana (orientable)
M.

Teorema 3.23. Sea M wuna variedad riemanniana orientable de dimension n > 2 no
compacta. Entonces para cualquier dominio normal 2 de M se tiene que

()

M) =2 —

(3.7)

Demostracion. Consideremos u la autofuncion asociada al autovalor A(€2), es decir, tenemos
la siguiente situacion

Au+AQu=0 en Q
u=0 en Of).

Por otro lado, dada u € C*(M) sabemos que Vu es el campo vectorial que verifica
(Vu, X) = X(u), para cada X € X(M). Ademads, por la regla de la cadena, se tiene
que

(Vu?, X) = X(u?) = 2uX (u) = 2u{Vu, X) = (2uVu, X).

Como esta igualdad se tiene para cada X € X(M), obtenemos que Vu? = 2uVu.
Denotemos, para el resto de la demostracién, por || - || a la norma en el espacio de
funciones L?*(2) y recordemos la primera férmula de Rayleigh [10, pdg. 16-17]. Esta nos
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dice que para un dominio normal se tiene que el primer autovalor del operador laplaciano
tiene la siguiente expresion:

2
A = g VeV

3.8
veH (\(0}  Jov2dV (38)

donde, recordemos, que el espacio de Sobolev Hj(£2) consiste en las funciones integrables
en ) cuya primera derivada débil es integrable en €2 y con traza igual a cero sobre 0f).
Ademas, dicho infimo se alcanza en cualquier autofuncién asociada al primer autovalor del
laplaciano. Ahora bien, como hemos supuesto que u es la autofuncién para A(2), se tiene

por la expresion dada en (3.8) que A(f2) > ”ﬂ;ﬁ‘f, pues en la autofuncién u se alcanza

el minimo. Por otro lado, por la expresién que habfamos obtenido para Vu?, es decir,
Vu? = 2uVu, se tiene por la desigualdad de Cauchy-Schwarz que

1/2 1/2
/ |Vu2|dV:/ [2uVu|dV < (/ (2u)2dv> . (/ |Vu|2dv>
Q Q Q Q

= 2[[ul] - [[Vul].

Combinando esto con (3.8) se tiene que

IVull2 _ 1/ Jq|Vu2ldV )’
Q) > > (w) . (3.9)

Aplicando la férmula de la co-4rea particularizando en el caso de la funcién u?, se tiene que
Jo IVu?||dV = [5° A(t)dt, donde A(t) es el drea de la superficie de nivel u? = t. Ademds,
nétese que la integral se toma tnicamente en [0, 00), debido a que se integra u? > 0. Asi,
si denotamos por V(¢) al volumen de la regién {u? >t} := {p € Q: u*(p) > t} se obtiene:

/Q||Vu2HdV:/OOOA(t)dt
> h(Q) /J T V()at
— _h(Q) /O T ()dt
— h(Q) /Q u2dV,

donde para pasar de la segunda a la tercera linea se ha empleado la integraciéon por partes.
En efecto, aplicando la integracion por partes se tiene

/ V(t)dt = [tV (£)] — / 1V (£)dt.

0 0

Veamos que el primer sumando es igual a cero. En efecto, tenemos [tV (¢)]5° = limy o0 tV (2).
Ahora bien, sabemos que u* es acotada, por lo que existe un t,,4,, de forma que V(t) = 0
para cada t > t,,q.., debido a que para cada t > t,,,, se verifica que {u2 >t} =0, porlo



64 3 La constante isoperimétrica de Cheeger

que limy otV (t) = 0. Asi, se tiene el paso de la segunda a la tercera linea. Finalmente,
para la ultima igualdad, empleando de nuevo la integraciéon por partes y el teorema de
Fubini, se obtiene

nie) [T <>([ Vil /0°°v<t>dt)

/

eQ u?(p)>t}
/ / 1dt)d
— h(Q / 24V,
@ [
donde recordemos que el término [tV (¢)]5° = 0. Asi, se concluye que A(2) > h2§9), lo que
prueba el teorema. ]

3.4. La constante isoperimétrica de Cheeger de un
grupo de Lie resoluble y simplemente conexo

Alo largo de esta seccion, vamos a introducir una serie de resultados que nos permitiran
calcular, de forma explicita, la constante isoperimétrica de Cheeger en el caso de un grupo
de Lie G simplemente conexo y resoluble (es decir, con dlgebra de Lie resoluble) con métrica
invariante a la izquierda. Como ya comentamos en la introduccién de este capitulo, esto
nos permitird aplicar estos calculos en el contexto de los espacios simétricos de tipo no
compacto, pues se sabe que cada espacio de este tipo es isométrico a un grupo de Lie
resoluble simplemente conexo con métrica invariante a la izquierda. En esta seccién se ha
seguido el articulo original de Peyerimhoff y Samiou [41].

Comenzaremos considerando una clase particular de grupos de Lie, de la forma Gy x
R. Mas adelante, veremos que el trabajo que realizaremos para esta clase de grupos nos
permitird abordar el caso general. De esta forma, tomemos un grupo de Lie G de la forma
G = Gy x R, donde estamos considerando R = (R, +) como grupo de Lie, con &lgebra
de Lie g = go x R, la suma semidirecta de las dos algebras de Lie, donde recordemos que
R es la parte abeliana con corchete [-,-] = 0. Ademds, equipemos a G con una métrica
invariante a la izquierda, de forma que gy 1. R. Por otro lado, si denotamos a Hy como uno
de los vectores unitarios del algebra de Lie R, segiin la métrica considerada, obtenemos el
difeomorfismo ¢: Gy x R — G, dado por (go,t) — goExpg(tHp). Aqui, Expp: R — R
denota la aplicacién exponencial del grupo de Lie (R, +), que se puede identificar con la
aplicacion identidad de R.

A continuacion, vamos a ver un resultado que establece la expresién explicita, en tér-
minos de la representacion adjunta a nivel de algebras de Lie, de la medida de Haar por la
izquierda de un grupo de Lie G como el descrito anteriormente.



3.4 Cheeger en grupos de Lie resolubles y simplemente conexos 65

Lema 3.24. Sea G = Gg xR un grupo de Lie como el descrito arriba. La medida de Haar
invariante por la izquierda dp en G estd dada por la expresion

dp(go, t) = det(e2HN dy(go)dt = et @IH) gy (g0, (3.10)
donde dv es la medida de Haar izquierda en Gy = Gy x {0}.

Observacién 3.25. Nétese que aqui e denota la aplicacién exponencial de Aut(g) y, por
lo tanto, se puede identificar con la exponencial de matrices habitual.

Demostracion. En primer lugar, dvdt es invariante por la izquierda para Gy, pues dados
ho,go € Go, y t € R, si hy actiia por la izquierda sobre un elemento (go,t), se tiene que
ho - (go,t) = (hogo,t). Por otro lado, dado que la medida dv es invariante por la izquierda
por definiciéon y la medida dt no se ve afectada al no actuar hy sobre la componente de R,
si tomamos f € Co(Gy x R), se tiene que

jgoxR(f(hogo,t)dy(go)dt j[(jiltf(hogo, P (o) )dt

—// (do, t)dv(go))dt

= Joorn f(go, t)dv(go)dt.

Nétese que hemos realizado en cambio de variable gy = hggg. Asi, hemos obtenido que dvdt
es invariante por la izquierda bajo Gy.

Por otro lado, consideremos la accién por la derecha de un elemento s € R, es decir,
s-(go,t) = (go,t + s). Como dt es invariante por traslaciones (medida de Lebesgue) y dv
en Gy no se ve afectada, tenemos que

/ f(go,t + s)dv(go)dt = f(go,t + s)dt)dv(go)
GoxR Go
= f(go,t dt )dv(go)
Go
= t)d dt,
= [ oo iv(an)at

donde hemos empleado el cambio de variable { = ¢ + s.

La idea ahora consiste en construir la medida de Haar invariante por la izquierda, du,
en G = Gy xR, de la forma du(go,t) = 0(t)dv(go)dt, donde §(t) es un factor de correccién
que tenemos que determinar.

Sean a = Expg(sHy), f € C°(G) (es decir, funcién de clase infinito y soporte compacto)
y 1 Gy — Gy, dada por gy — agoa™!. En ese caso, tomando un g € G, podemos realizar
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el caleulo siguiente:
| flag)dnta) = [ (| FlagoEsxpa(tH0)s(1)dv(g0))ds
= [ ([, 7 (a0)aBspa (tH))a(t)dv(g0)dt
= [ (], T0é(a0)Expa((s + ) Ho))s(1)dv(g0) s
= [, FlooEspa((s + t)Ho))] det Dv (go) v (g0))et

Calculemos ahora el término | det(D~!(gg))|. Para ello, tomemos X1, ..., X,, una base orto-
normal de gy con respecto a la métrica invariante por la izquierda. Entonces consideremos
los campos de vectores Y; = %QQEXPR(th)‘t:(), con j = 1,...,n. Se tiene que Yj, con
J = 1,...,n es una base ortonormal para T, Gy. En efecto, pues utilizando la invarianza
por la izquierda de los campos X, se tiene que

d
Y; = %gOEXpR(th”t:O

= thgoEXpR(th”tO
= Lgs Xjle = Xjlgo-
Con los campos Y;, podemos calcular el término | det(Dy~*(go))|-
D H(g0) (V) = 1 (Y3)
= il/f_l(goEXPR(th))’t:o

dta gOEXpR(tX )ali=o

N d
=a 90(%EXPR(th)|t:0)a
= a_lgoXja = Laflgoa*(a_lXja)
= Lo-1g0as(Ad(a™") (X))
= Ly1gyan (€500 X ),

a~lgoax

Por lo tanto, hemos obtenido que |det(Dy'(go))| = det(e*d(=H0)) Y de esta forma
podemos calcular la expresion de [ f(ag)du(g):

/waL)/QUMK o) [ (aoBspa (s + ) Ho))dv(go) i
= [ F@dula) = [[(6(s +0) [ FlaoExpa((s -+ 1) Ho))dv(ga) e,

de donde se obtiene la identidad multiplicativa

S5(t) det(e2d=sH0)) = §(s5 + 1),
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es decir, §(t) = det(e*(~#0)) Ahora bien, como la aplicacién traza es la diferencial de la
aplicacion determinante, se tiene que

det(ead(ftHo)) — etr(ad(ftHg)) — 6tr(ftad(Hg)) _ efttr(ad(Ho))

Finalmente, se obtiene que

det(ead(_tHO)) — e—ttr(ad(Ho))

Y

lo que completa la prueba. [

El siguiente resultado nos proporciona una cota inferior para la constante isoperimétrica
de Cheeger de un grupo de Lie GG como el considerado arriba.

Teorema 3.26. Sea G un grupo de Lie de la forma Gy x R, con dlgebra de Lie gg x R
(producto semidirecto de dlgebras de Lie), con una métrica invariante a la izquierda, de
forma que go L R. Entonces se tiene que

WG) = [tr(ad(Ho))|-
Ademds, si h(Go) = 0, entonces se tiene la igualdad.

Demostracion. Recordemos que teniamos el difeomorfismo ¢: Gy x R — G, dado por
(go,t) — goExpr(tHy), por lo que podemos suponer que G = Gy X R y denotemos por
m: G — Gy la proyeccion. Ademas, sin pérdida de generalidad, podemos suponer que
tr(ad(Hp)) > 0 (en caso contrario basta con tomar —H, en lugar de Hy).

Para un subconjunto K C GG conexo y compacto, con interior no vacio y cuya frontera
OK sea una hipersuperficie diferenciable, definimos

U :=7(K) \ {Puntos criticos de m|gx } .
Ademas, definimos en U las funciones

6T (u) = méx {t: (u,t) € K}

0" (u) :==min{t: (u,t) € K}.

Notese que las funciones 0% y 6~ son diferenciables en U, pues el conjunto U, por el
Teorema de Sard, es denso en 7(K). Ademas, la diferenciabilidad se desprende de que en el
conjunto U, la restricciéon 7|gx no tiene puntos criticos, luego 0K corta a las fibras {u} x R
de manera transversal y, de nuevo, por el Teorema de Sard U es denso en 7(K).
Definimos ahora 0K := {(u,0"(u)) :u € U} y 0K~ = {(u,0" (u)) : u € U}, es decir,
las graficas de 47 y 0. Veamos cémo podemos estimar los voliimenes de K y 0K. Por el
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Lema 3.24, tenemos que

WMZAW@:AW%M

:/ e*ttr(ad(Ho))dV(go)dt
K
5+ ()

S / (/ e—ttr(ad(Hg))dt)dV(u)

U J6—(u)

1 —tr(ad (Ho))3* (u) ,—tr(ad(Ho))5~ ()

= - (- r u T u d

/Utr(ad(HO))( ¢ e Jdv(u)

1 /"émmammﬁvo+e%mwﬁmw*wuV@%
U

= tr(ad(Hy))

donde la primera desigualdad se consigue debido a que
K C {(u,t) EGoxR:uel d (u) <t< 5+(u)}.

Ahora bien, es claro que A(OK) > A(OK™) + A(OK ™), por lo que si nos centramos en
OK™, podemos obtener que

A(OKT) Z/U\/det(@*ueia90*u€j>(u,5+(u)))ﬁj:1d’/(“)7 (3.11)

donde p: U — K™, estd dada por u — (u,d"(u)) y {e1,...,e,} es una base ortonormal
de T,,Gy. Acotemos ahora el término de la integral (3.11).

V(D o} st )iyt =
= \/det((<ei, €j) (uo+(w) + €i(07)e;(07))=1)

> \/det((<6i, €j>(u,6+(u)))?,j:1
ef5+(U)tr(ad(H0))_

Nétese que la tltima desigualdad proviene de que si escribimos A 1= ({e, €;) w5+ ()i j=1
y Bi= A+ (e;(07)e;(67))7 =1, donde A € M,,,n(R) es simétrica y no negativa, se obtiene
que det(B) > det(A). Por otro lado, la igualdad del final se obtiene por la medida de Haar
invariante a la izquierda que habiamos calculado en el Lema 3.24 para Gy x {0} = Gy,
donde {ey,...,e,} es base ortonormal de T,Gy. Ademdas nétese que los vectores e; de la
derecha de la desigualdad se consideran como elementos en T{, s+ ()G

De manera analoga, podemos realizar la misma estimacién para el caso de K~ obte-

niendo que

ABK*) > / ¢ (Wr(ad(Ho) gy () (3.12)
U
y
AOK™) ;zJ/ e =0 (Wt ad(Ho)) gy () (3.13)
U



3.4 Cheeger en grupos de Lie resolubles y simplemente conexos 69

Asi, aplicando (3.12) y (3.13) se obtiene la siguiente estimacion:

A(OK) > A(OK™) + A(DK ™)
S / 6_5+(u)tr(ad(HO)) + 6_5*(u)tr(ad(H0))dy(u>'
—Ju

De esta manera, se tiene que
tr(ad(Ho))V (K) < A(OK™') + A(OK™) < A(OK),

lo que equivale a

> tr(ad(Hy)).

Finalmente, se concluye que h(G) > |tr(ad(Hy))].

Pasemos ahora a probar la igualdad en el caso de que h(Gy) = 0. Consideremos ahora
un conjunto Ky C Gy arbitrario y sea el conjunto K = Ky X [a,b] C G = Gy x R, cuya
frontera sera de la forma (Ko x {a,b}) U (0K X [a,b]). Calculemos V (K') empleando la
medida de Haar izquierda del Lema 3.24, tenemos que

b
V(K) = / ( /K o=t GA(H0) gy g0Vt

b
= VG()(KO)/ e~ tredo)) gy (3.14)
—atr(ad(Ho)) __ efbtr(ad(Ho))

tr(ad(Hy))

e

= VGO (KO)

Empleando de nuevo la medida de Haar obtenida en el Lema 3.24, tenemos que
A(Kg x {a,b}) = A(Ky x {a}) + A(Ky x {b})
_/ dv(go) (e~ (ad(Ho)) _i_efbtr(ad(Ho)))
V(KO)(G—atr(ad(Ho)) e drad(Ho))y
Ahora tomando b suficientemente pequeno, deducimos que

A(Ky x {a,b})  V(E)(em@r@dto) 4 o=bur(ad(Ho))

- e—atr(ad(H ))_e—btr(ad(H )
V(E) V(Eo) Py —

6fatr(ad(H0)) _{_efbtr(ad(Ho))
o—atr(ad(Ho)) _ p—btr(ad(Ho)) (3.15)
2€—btr(ad(HU))

= tr(&d(Ho))

= tr(ad(Hy)) + tr(ad(Hy))
< tr(ad(Hp)) + e.

e—atr(ad(Ho)) — p—btr(ad(Ho))

Noétese que estas estimaciones tienen sentido aunque tr(ad(Hp)) = 0.
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Recordemos que n = dim(gg) y consideremos una base ortonormal {ej,...,e,_1} de
T,0K, C go v denotemos A, = e~*@d(Ho))  Notemos que det(4,) = e~ ##@d(Ho)  Por otro

lado,
b

A(OKy x [a,b]) = / A(OK, x {t))dt,

pues al ser un producto, se puede descomponer el area como la integral de las areas de
las secciones horizontales. Ademés, dado que en 0Ky x {t} C G = Gy x R la medida de
Haar por la izquierda es la dada por el Lema 3.24, se puede calcular A(0K, x {t}) de la
siguiente forma:

A(OK, x {t}) = /8 . Vdet(((Ages, Aes) )i ) dvolor, (u), (3.16)

donde dvolyg, denota la medida de Haar de GGy sobre la subvariedad 0Kj.

Consideremos ahora A; el operador adjunto respecto de la métrica invariante a la
izquierda, es decir, es el operador que cumple que (A;e;, Are;) = (e;, AfArej). Ahora,
tomemos Py la proyeccién sobre el hiperplano V' de gg. Con esta proyeccion, podemos
acotar superiormente el integrando de la expresién (3.16). En efecto, definiendo

M = max {\/det(PV o AfAilv) : t € [a,b], V C go, V hiperplano de go} ,

se obtiene que

Vet (((Ageq, Aves) i) = Jdet(((eq, A7 Aves) i)
< M.

Ahora acotemos la expresién

A(OKy x [a, b)) A(0Ky X [a,b]) - tr(ad(Hy))

V(K) - (e—atr(ad(Ho)) — ¢—bir(ad(Ho)) )V (F) (3.17)
En primer lugar, dado t € [a, ] fijo, sabemos que
AOKy x {}) < M /8 . dvolog, (u) = M - A(9Ko) = M - A(9Kq x {1)). (3.18)
Ahora bien, por (3.18), si variamos ¢ en el intervalo [a, b] se obtiene
A(OK, x [a,b]) < M/abA(aKo)dt =M - A(OKo) (b — a). (3.19)

Combinando la expresién (3.19) con (3.17) y observando que, dado que h(Gy) = 0, se puede

A(OK)p) ~ — .
tomar tan pequeiio como nosotros queramos, obtenemos la siguiente acotacion para
V(Ko) ’

(3.17):

A(0K x [a,b]) _ M - A(OKo)(b — a) - tr(ad(H,))
V(K> — (efatr(ad(Ho)) — e*btr(ad(HO)))V(Ko)
M -tr(ad(Hp))(b—a)  A(OKy)
T ematr(ad(Ho)) — e-bur(ad(H) © Y (K,) —

(3.20)
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Finalmente, combinando las expresiones (3.15) y (3.20), tenemos que

ADK)  A(Ko) x {a,b}  A(0K, x [a,])

V(K) V(K) V(K)
< tr(ad(Hp)) + 2,

para cada e > 0. Por lo que, si hacemos tender ¢ a cero, obtenemos que ?/(?If)) = tr(ad(Hy)),

luego h(G) = tr(ad(Hy)). O

El Teorema 3.26 es un pilar fundamental para calcular la constante isoperimétrica de
Cheeger de un grupo de Lie resoluble y simplemente conexo, pero antes de esto vamos a
enunciar un resultado que nos permite caracterizar a los grupos de Lie unimodulares en
términos de su constante isoperimétrica de Cheeger. Una demostracion de este resultado
puede verse en [28, Corolario 3.6].

Teorema 3.27. Dado un grupo de Lie G simplemente conezo y resoluble, entonces h(G) =
0 st y solo si es unimodular.

A continuacién, vamos a enunciar un resultado basico relativo a las aplicaciones lineales
y los maximos de las mismas, que nos sera de utilidad.

Lema 3.28. Sea V' un espacio vectorial real de dimension n con producto escalar {-,-) y
sea a € V*\ {0}. Entonces, si vg € V, con ||v|| = 1, mazimiza o en Sy(V'), entonces
vy L ker(a).

Demostracion. En primer lugar tenemos que « es una forma lineal no nula en un espacio
vectorial de dimensién n, por lo que existe a = (ay, ..., a,) vector no nulo, de forma que
a(v) = (a,v). Ahora bien, por la desigualdad de Cauchy-Schwarz, se tiene que «a(v) =

(a,v) < ||al| - ||v]|, pero si nos restringimos a la esfera S;(V'), se tiene que (a,v) < ||al|
y, por lo tanto la igualdad se alcanza si y solo si v = H%LH Por tanto, si suponemos que
el maximo en S'(V) para a se alcanza en un vector vg € S'(V'), se tiene que vo = rir.
Finalmente, es claro que ese vy es ortogonal, respecto a (-, ), a ker(a). ]

Corolario 3.29. Dado un grupo de Lie G simplemente conexo y resoluble con dlgebra de
Lie g, su constante isperimétrica de Cheeger es
h(G) = méax tr(ad(H)).
(6) =, mix_ t(ad(H)
Demostracion. Consideremos la aplicacion «: g — R, dada por X +— tr(ad(X)) y sea
go = ker(a). Veamos que gy es un ideal de g. Para ello tendremos que ver que « es un
homomorfismo de édlgebras de Lie. Ahora bien, como tenemos el grupo de Lie R = (R, +)
su operacién corchete es en realidad [-,-] = 0, por lo que bastard con ver que dados
X, Y € g, o[X,Y]) = tr(ad([X,Y])) = tr([[X,Y],-]) = 0. Pero esto es claro, pues nétese
que la representacion adjunta a nivel de algebras de Lie es un homomorfismo de &lgebras

de Lie ad: g — End(g), por lo que ad([X,Y]) = [ad(X),ad(Y)] = ad(X) o ad(Y) —
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ad(Y') o ad(X) vy, asi, tr(ad([X,Y])) = 0, ya que la traza de una composiciéon de varios
endomorfismos es invariante por permutaciones ciclicas de dicha composicién. De esta
forma, o es homomorfismo de &dlgebras de Lie, por lo que go = ker(«) es un ideal de g.
Ademés, es claro que [g,g] C go y es un ideal de go.

Consideremos ahora el grupo de Lie GGy simplemente conexo y unimodular con algebra
de Lie gg. Este grupo cumple que h(Gy) = 0, por el Teorema 3.27. Ahora bien, en el caso de
que Gy = G el Teorema 3.26 nos garantiza el resultado. En otro caso, gg tiene codimension
uno. En efecto, al ser G no unimodular, la 1-forma « es no nula para el vector Hy que
realiza el maximo. Ahora bien, el nicleo de una 1-forma no nula es siempre un subespacio
de codimension 1.

Definamos Hy como el punto donde « alcanza el maximo en esfera unitaria de g, es
decir,

Hegll%IZI tr(ad(H)) = tr(ad(Hy)).
Asi, ahora tenemos que verificar que estamos en las hipétesis de Teorema 3.26, es decir,
tenemos que ver que Hy L gg. Pero esto es claro, pues a es una aplicacion lineal y, en-
tonces, por el Lema 3.28 se tiene que Hy L go. De esta forma, estamos en las hipdtesis de
Teorema 3.26, luego obtenemos que h(G) = tr(ad(Hy)). O

3.5. Un ejemplo importante: espacios simétricos

En esta secciéon abordamos el célculo de la constante isoperimétrica de Cheeger en un
contexto particularmente interesante: los espacios simétricos de tipo no compacto. Este
caso es relevante por varias razones. En primer lugar, estos espacios poseen una estructura
altamente simétrica que permite obtener descomposiciones algebraico-geométricas ttiles.
En segundo lugar, todo espacio simétrico de tipo no compacto es isométrico a un grupo de
Lie resoluble y simplemente conexo con métrica invariante a la izquierda, lo cual conecta
con el enfoque desarrollado en las secciones anteriores, donde detallamos el calculo de la
constante isoperimétrica de Cheeger para un grupo de Lie de estas caracteristicas.

Esta secciéon se divide a su vez en varias subsecciones. En primer lugar, se presentara
la definicién y propiedades basicas acerca de los espacios simétricos, para posteriormente,
en la primera seccién hablar sobre los tipos de espacios simétricos, poniendo el foco en los
de tipo no compacto.

En la segunda seccién, se introduce la nocién de espacio raiz y un par de herramientas
fundamentales del analisis geométrico en estos espacios: la descomposicion en espacios de
raices y la descomposicién de Iwasawa. En la primera parte, se desarrolla la nocién de
sistema de raices y espacio raiz. En cuanto a la descomposicion de Iwasawa, se detallan los
pasos de la descomposicion y cémo se utiliza para modelar el espacio simétrico como un
grupo de Lie resoluble. En este contexto, la métrica invariante a la izquierda desempena
un papel esencial.

Finalmente, calcularemos la constante de Cheeger de un espacio simétrico de tipo no
compacto, aplicando el Corolario 3.30 a estos espacios. En este contexto, dicha constante
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puede calcularse de forma explicita a partir del peso (o multiplicidad) de las raices positivas
del sistema de raices.

A continuacién, vamos a llevar a cabo una introduccién a los espacios simétricos rie-
mannianos, poniendo el foco en los de tipo no compacto. Véase para més detalles [15,
Section 3|. Referencias estdndar para el estudio de los espacios simétricos y herramientas
relacionadas son [27] y [30].

Comencemos con su definicién y algunas propiedades fundamentales. En primer lugar,
sea M una variedad riemanniana conexa. Dado p € M, podemos considerar la bola geodé-
sica B(p,r), centrada en el punto p y con radio r > 0 suficientemente pequeno. En dicha
bola, podemos definir la aplicacion diferenciable

op: B(p,r) — B(p,7), dada por q = exp,(—v),

donde v € T,M y |v| < r. Esta aplicacién es una reflexién geodésica respecto del punto p.
Ademas, es claro que 0'72, = Id. Con estos breves preliminares pordemos definir la nocién de
espacio simétrico.

Definicién 3.30. Un espacio simétrico riemanniano es una variedad riemanniana conexa
M, de forma que para cada p € M la reflexién geodésica o, en el punto p esta definida
globalmente en la variedad M y es una isometria de M.

Observaciéon 3.31. Con la definicién anterior, los espacios simétricos estan caracterizados
por la existencia de simetrias centrales alrededor de cada punto. Con esta definicién, se
puede ver que los espacios simétricos son completos (las geodésicas pueden extenderse apli-
cando reflexiones geodésicas) y homogéneos, pues tomando py,ps € M, por completitud,
existe un segmento de geodésica que une p; y po, ahora bien, si tomamos ¢ como su punto
medio, es claro que o,(p1) = po.

Fijemos ahora un punto o € M, que habitualmente recibe el nombre de origen o
punto base de M. La homogeneidad y la conexidad de M implican que el grupo de Lie
G = Tsom(M)® (componente conexa de Isom(M) que contiene a la identidad) actia de
forma transitiva sobre M. Sea K = G, = {g € G : g-0 =0} el grupo de isotropia en el
origen o, el cual puede verse que es un grupo de Lie compacto.

Observacién 3.32. Como G = Isom(M)?, considerando la accién ¢: G x M — M, dada
por (g,p) — g -py M un espacio simétrico riemanniano, se puede probar que al ser G
un subgrupo de Lie cerrado del grupo de isometrias de M, la accién es propia. De esta
forma, sabemos que existe un difeomorfismo M = G/G,, donde ese G, denota el grupo de
isotropia del punto p.

En virtud de la Observacién 3.32 se tiene que el espacio simétrico riemanniano M es
difeomorfo a la variedad cociente G/K.

Observacién 3.33. Noétese que con esta identificacién, es decir, M = G/K, el punto
origen o se corresponde con la clase eK.
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Dado el grupo de Lie G antes descrito, podemos definir la aplicaciéon s: G — G, dada
por g — 0,90, la cual esta bien definida y es involutiva como automorfismo de G. Ademés,
satisface que G? C K C Gy, donde G4, = {g € G : 5(g) = g} y GY es la componente conexa
de G4 que contiene a la identidad.

Definicién 3.34. La diferencial de la aplicacién s, es decir, § := s,: g — @, es un
automorfismo involutivo de &lgebras de Lie y es la llamada involucion de Cartan asociada
con el espacio simétrico M = G/K.

Se tiene que &, el algebra de Lie de K, es precisamente el (+1)-autoespacio de §. Ademas,
si denotamos por p al (—1)-autoespacio de 6, entonces obtenemos que g = € @ p, lo que
constituye la llamada descomposicion de Cartan de g. Como 6 es un automorfismo de
dlgebras de Lie, es sencillo comprobar que [¢, €] C € [e,p] Cpy [p,p] C &

Consideremos ahora la aplicacion ¢: G — M, dada por g — g(0) = g - o, cuya
diferencial es ¢,.: g — T, M. Esta diferencial induce un isomorfismo p = T, M. En efecto,
¢+ manda un X € g al vector tangente en el punto o de la curva Exp(tX) - o, es decir,
¢se(X) = 4|,_oExp(tX) - 0. Ahora bien, como se tiene que g = £ p, entonces si X € &
se tiene que Exp(tX) - 0 = o, para cada t, luego ¢..(X) = 0. Ahora bien, si consideramos
X € p, la curva y(t) = Exp(tX) - 0 es una curva en M con v(0) = o y, ademads, ¢,.(X) =
7'(0) € T,M. Es decir, se tiene que p = g/t =t o p/t =T,M.

Definicién 3.35. Si consideramos la linealizacion de la accion de la isotropia K x M —
M, dada por (k,p) — k-p = k(p), en el punto o obtenemos una accién isométrica lineal
KxT,M — T,M, dada por k-v = k,,v. Esta aplicacion recibe el nombre de representacion
de isotropia de M = G /K en o.

La representacion de isotropia se vuelve equivalente a la representacion adjunta de K
en p, que es la acciéon K x p — p, dada por k- X = Ad(k)X. Llamaremos también a esta
accion la representacion de isotropia de M.

Por otro lado, el tensor curvatura en un espacio simétrico M en el punto base o admite
una descripcion de la forma:

R(X.Y)Z =—[[X,Y].Z] X,Y,Z€p=T,M. (3.21)

La férmula (3.21) nos proporciona una caracterizaciéon simple de las subvariedades total-
mente geodésicas de los espacios simétricos: estas son (salvo congruencia con M) las de la
forma S = exp,s, donde s es un subespacio de p = T, M, de tal forma que [[s, s],s] C s.

Definicién 3.36. Un subespacio s de p como el descrito en el parrafo anterior recibe el
nombre de sistema triple de Lie.

Observacion 3.37. En el caso particular de que s sea abeliano, entonces la subvariedad
totalmente geodésica correspondiente a exp,s es llana por (3.21), es decir, su curvatura
seccional es cero. En efecto, si s C p es abeliana, es decir, [X,Y] = 0 para cada X,Y € s,
entonces R(X,Y)Z = 0, para cada X,Y, Z € s. De esta forma, por la ecuacién de Gauss
de geometria de subvariedades, el tensor curvatura de la subvariedad totalmente geodésica
S = exp,s se anula también idénticamente, por lo que S es llana.
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Por otro lado, entre todos los subespacios abelianos de p, los maximales resultan ser
conjugados entre si por la accion de isotropia de K, por lo que tienen todos ellos la misma
dimensiéon. Esto motiva la siguiente definicion.

3.5.1. Tipos de espacios simétricos

Un espacio simétrico M = G/ K se dice (isotrépicamente) irreducible si la restriccién de
su representacion de isotropia a la componente conexa que contiene a la identidad de K es
irreducible. Esto equivale a la propiedad de que el recubrimiento riemanniano universal M
de M (el cual es un espacio simétrico) no sea un producto no trivial de espacios simétricos,
excepto que M = R™ para algtn n.

Recordemos ahora, que la forma de Killing de un algebra de Lie g es la forma bilineal
simétrica B: g x g — R, dada por B(X,Y) = tr(ad(X) o ad(Y)), donde ad(X) = [X, -].

Observaciéon 3.38. Se puede ver que £ y p son subespacios ortogonales con respecto a B.
En efecto, al ser B la forma de Killing de g, esta es invariante por automorfismos de dlgebras
de Lie, en particular por la involucion 6. Asi, B(6X,0Y) = B(X,Y), para todo X,Y € g.
Ahora bien, recordemos que t = {X € g: X =X} yquep={Y €g:0Y =—-Y}, porlo
tanto, B(0X,0Y) = B(X,Y) =B(X,-Y) = -B(X,Y) y, entonces B(X,Y) = 0.

Definicién 3.39. Un espacio simétrico M = G/K se dice de tipo compacto, de tipo no
compacto o de tipo euclideo si B|,x, €s, respectivamente, definida negativa, definida positiva
o idénticamente cero.

Si M es un espacio simétrico de tipo compacto, entonces G es un grupo de Lie compacto
y semisimple y M es compacta y tiene curvatura seccional no negativa. Ahora bien, si
M es de tipo no compacto, entonces se tiene que GG es un grupo de Lie no compacto,
real semisimple (con factores no compactos); ademds se tiene que M es una variedad
de Hadamard, es decir, es difeomorfa al espacio euclideo y tiene curvatura seccional no
positiva. Por otro lado, si M es de tipo euclideo, su recubrimiento universal riemanniano
es isométrico al espacio euclideo R™. En general, el recubrimiento universal riemanniano de
un espacio simétrico M se puede descomponer como un producto riemanniano de espacios
simétricos M = M, x M_ x My, donde M, es de tipo compacto, M_ es de tipo no compacto
y My es un espacio euclideo.

Existe una nocién de dualidad entre la clase de espacios simétricos de tipo compacto
ya la de tipo no compacto. En particular, existe una correspondencia uno a uno entre los
espacios simétricos de tipo no compacto y los espacios simétricos simplemente conexos de
tipo compacto. Esta dualidad se puede explicitar en términos de las algebras de Lie y los
grupos involucrados.

Por otro lado, espacios simétricos duales tienen el mismo rango y representaciones
de isotropia equivalentes y, ademads, la dualidad preserva la irreducibilidad. En cualquier
caso, es importante destacar que ambos tipos de espacios simétricos poseen propiedades
topologicas y geométricas muy diferentes.

A continuacion, vamos a presentar algunos ejemplos para ilustrar la nociéon de dualidad.
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Ejemplo 3.40. (a) En primer lugar el espacio hiperbélico real RH™ = S O?,n /SO,,, donde
S O%n es la componente conexa que contiene a la identidad del grupo SO ,,. Este grupo
recibe el nombre de grupo ortogonal especial de Lorentz y tiene la siguiente descripcion:

SO1, ={A€GL(n+1,R) : A'pA =1, det(A) =1},

(-1 0
77_()Idn’

donde Id,, denota la matriz identidad n x n. De esta forma, SO?JL es el grupo de
isometrias que preservan la orientacion del espacio hiperbdlico real RH™. Se tiene que
RH™ es un espacio simétrico de tipo no compacto que posee dos espacios simétricos
duales de tipo compacto: la esfera S = SO(n+1)/SO(n) y el espacio proyectivo real
RP" = SO(n +1)/O(n). Ambos espacios tienen rango uno.

siendo

(b) Los otros espacios de rango uno (no llanos) y simétricos son el espacio proyecti-
vo v los espacios hiperbodlicos sobre dlgebras de divisiéon normadas de los niimeros
complejos C, los cuaternios H y los octonios Q. Es decir, los espacios complejos
cpP* = SU(n+ 1)/S(U4U,) y CH™ = SU,,/S(U,U,), los espacios cuaternionicos
HP™ = Sp,11/Sp1Sp, y HH™ = Spy ./ Sp1.Spy, v los planos de Cayley QP? = F,/Sping
y OH? = F; % /Sping constituyen el resto de espacios simétricos de rango uno y tienen
curvatura no constante.

Para una lista completa de los espacios simétricos irreducibles (salvo recubrimientos)
véase [27, pag. 516-518].

3.5.2. Espacios simétricos de tipo no compacto: espacios de raiz
y descomposicion de Iwasawa

Los espacios simétricos de tipo no compacto constituyen una familia rica de variedades
de Hadamard que generalizan los espacios hiperbélicos. Véase [5], [16], 20, Chapter 2], [27,
Chapter VI] y [30, Chapter VI] para mas informacion sobre estos espacios.

Espacios de raices

Sea M = G/K un (no necesariamente irreducible) espacio simétrico de tipo no com-
pacto. Sea £ @ p la descomposicién de Cartan del algebra de Lie g del grupo de Lie G,
determinada por el punto base o. La forma de Killing B de g hace que £ y p sean ortogona-
les y, ademas, se restringe a un producto interior definido positivo en p, por definicién de
tipo no compacto, y resulta ser definido negativo cuando se restringe a €. De esta forma,
cambiando su signo en £, obtenemos un producto interior definido positivo en g. Equiva-
lentemente, este producto interior By se puede definir como By(X,Y) = —B(0X,Y), para
cada X,Y € g, donde 6 es la involucién de Cartan.
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Definicién 3.41. Sea a un subespacio abeliano maximal de p. Recordemos que dima
coincide con el rango de M. Los endomorfismos ad(H) = [H,:] de g, con H € a, son
autoadjuntos con respecto a By y conmutan unos con otros (debido a que ad es un ho-
momorfismo de algebras de Lie y a es abeliana). De esta forma, dichos endomorfismos de
g diagonalizan simultdaneamente. Sus autoespacios comunes se llaman espacios de raices
restringidos y sus autovalores comunes no triviales (los cuales son lineales en H € a) se
denominan raices restringidas de g.

De una forma més precisa, para cada funcional lineal A € a* = Hom(a, R), consideremos
el subespacio de g dado por

on={X e€g:[H X]=XH)X, para cada H € a}.

Entonces cada g, # 0 es un espacio de raices restringido y cada A # 0 con g, # 0 es una
raiz restringida. Notese que 0 # a C go.

Definicién 3.42. Denotemos ahora por
Y={ e€ea": N#0, g\ # 0},

el conjunto de las raices restringidas de g. Asi, podemos escribir la siguiente suma directa
de descomposiciéon By-ortonormal

g=2goD (EB gx>.
rey

Esto se conoce como la descomposicion en espacios de raices restringidas de g.

La multiplicidad, my, de la raiz restringida A es la dimension de su espacio de raices,
es decir, my = dim g,. En lo sucesivo, se omitira el término “restringido”.

Por otro lado, las raices y las descomposiciones en espacios de raices poseen algunas
propiedades como las siguientes:

(a) [gxr, 0u) C Gasp, para cada A, € X U {0}.
(b) fg) = g_», para cada A € XU {0}. Aqui, se tiene que A € ¥ si y solo si —\ € ¥.

Es mas, el subconjunto finito > de a* formado por las raices posee varias propiedades de
simetria.

Definicion 3.43. Para cierto producto interior (-, -) en a*, se puede ver que 3 constituye
un sistema abstracto de raices en el espacio euclideo (a*, (-, -)). Esto significa:

(a) a* = span(X).

(b) El nimero a,p = 2<<C‘jf>> es entero, para cada o, § € X.
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(c) Se tiene que 8 — agpr € X, para cada a, f € X.

Este sistema se llama no reducido si existe A € ¥ de forma que 2\ € ¥. En tal caso,
diremos que 2\ es una raiz no reducida.

Los sistemas de raices pueden clasificarse. De hecho, esto constituye la base para la
clasificacion de algebras de Lie semisimples reales y para la de los espacios simétricos.

Por otro lado, la informaciéon que proporciona un sistema de raices puede codificarse
en conjuntos de raices mas pequenos. Esto es, podemos considerar un semiespacio abierto
de a* que contenga exactamente la mitad de las raices en X, declarando como positivas
aquellas raices que se encuentren en este semiespacio. De esta forma, denotando por X* al
conjunto de raices positivas, obtenemos la descomposicion ¥ = X+ 1 (=),

Definicion 3.44. Entre los elementos del conjunto X1, descrito en el parrafo anterior,
existen algunos que no pueden expresarse como suma de exactamente dos raices positivas.
Estas son las llamadas raices simples y denotamos por A a esta coleccion.

Observacion 3.45. La coleccion A es una base para a* y, asi, tiene por cardinal el rango
de M. De esta forma, cada raiz A € ¥ resulta ser una combinacion lineal de elementos de
A con coeficientes enteros, todos ellos no negativos (si A € 1), o todos ellos no positivos
(si A e =X7).

Descomposiciéon de Iwasawa

Debido a las propiedades de la descomposicion en espacios de raices, se tiene que la
suma de los espacios de raices positivas

“:@9,\

Aext

es una subdlgebra de Lie nilpotente de g.

Ahora bien, como a normaliza n, es decir, para cada H € ay X € n, [H,X] € n,
obtenemos que la suma directa a @ n es una subdlgebra de Lie resoluble de g. Ademas, el
teorema de descomposicion de Iwasawa para algebras de Lie asegura que g = €@ adn como
suma directa de espacios vectoriales. En esta linea, denotemos por Ay N a los subgrupos de
Lie conexos de G con algebras de Lie a y n, respectivamente. Entonces AN es el subgrupo
conexo de G con algebra de Lie a @ n. Ademas, la descomposicion de Iwasawa a nivel de
grupos de Lie establece que la aplicacion

K xAx N — G, dadapor(k,a,n)— kan,

es un difeomorfismo y los grupos de Lie A, N y AN son difeomorfos a espacios euclideos.
Por otro lado, en virtud de la descomposicién de Iwasawa, la aplicacion ¢: G — M, dada
por g — g - o, restringida a AN, es decir, ¢|an: AN — M, es un difeomorfismo.
Denotemos ahora por g a la métrica riemanniana simétrica de M y consideremos la
métrica pullback (¢|an)*g en AN. Denotaremos en lo que sigue a esta métrica por (-, ).
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Se tiene que dicha métrica es invariante por la izquierda para el grupo de Lie AN. De esta
forma, lo que ocurre es que cada espacio simétrico de tipo no compacto M es isométrico a
un cierto grupo de Lie AN resoluble simplemente conexo equipado con una métrica (muy
concreta) invariante a la izquierda. Ahora bien, podemos equipar a a* con el producto
interior (-,-) inducido por esta métrica de forma que, dados A, v € a*, (A, u) = (Hy, H,,),
donde H) € a (andlogamente con H,,) esta definido por (Hy, H) = A(H), para cada H € a.

Observaciéon 3.46. En particular, se tiene que un espacio simétrico de tipo no compacto
M es difeomorfo a un espacio euclideo. Ademaés, por la férmula (3.21), se puede demostrar
que tal variedad M es de curvatura no positiva y, asi, es una variedad de Hadamard. Esto
nos permite ver cualquiera de estos espacios como una bola abierta equipada con una cierta
métrica, de manera analoga al modelo de la bola del espacio hiperbdlico real.

3.5.3. Cheeger en un espacio simétrico de tipo no compacto

A continuacion, vamos a realizar el calculo de la constante isoperimétrica de Cheeger
para un espacio simétrico de tipo no compacto.

Tomemos un espacio simétrico de tipo no compacto M y calculemos h(M). Sabemos
que M = G /K y, por la descomposicién de Iwasawa, se tiene que AN, dotado de una cierta
métrica invariante a la izquierda, es isométrico a M. Si suponemos ademas que el rango de
M es r, entonces, el dlgebra de Lie de AN es a @ n se verifica que a = (R", [-,:] = 0) y por
definicion, n = @ cxn+ gr. De esta forma, se obtiene aplicando el Corolario 3.29 que

h(M) = h(AN) = Xeaglf\}g(lzltr(ad()()).

Calculemos ahora tr(ad(X)) para un X € a@®n arbitrario. En primer lugar, tomemos un
X € g, para algin A € X7 Entonces, si H € a, ad(X)(H) = [X,H] = —AH)X € g\ L a,
por lo que no contribuye a la traza de la aplicacién. Si tomamos un Y € g,, entonces
ad(X)(Y) = [X,Y] € gr+u L g, por lo tanto, de nuevo, no contribuye a la traza. De esta
forma, tr(ad(X)) = 0si X € gy, para cada A € 7. Ahora bien, por linealidad concluimos
que tr(ad(X)) = 0, para cada X € n.

Tomemos ahora un X € a, en ese caso consideramos ad(X): a®n — a@® n. Tomemos
un H € a, en ese caso, ad(X)(H) = [X,H] = 0, por lo que no contribuye a la traza.
Por otro lado, si tomamos un Y € g, entonces ad(X)(Y) = [X,Y] = u(X)Y € g,. Con
este razonamiento, podemos obtener una expresién para la traza de la aplicacién ad(X).
En efecto, tendremos que tr(ad(X)) = > ex+ (dim gy)A(X). Ahora bien, si tomamos un
X € a® n arbitrario, entonces por linealidad tendremos que

tr(ad(X)) = Z+(dim o)A (Xa),

donde X, denota la proyecciéon de X sobre el algebra de Lie a.
Consideremos ahora la aplicacion a: a & n — R, dada por

X = tr(@d(X)) = 3 (dim ga)A(X,).

Aext
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Ahora bien, si definimos § = Y y\cy+ (dim gy)A € a*, obtenemos que a(X) = (Hs, X,). Asi,
tenemos que

h(M) = h(AN) = 3 tr(ad(X)) = 3 Hs, X
(M) =h{AN) =  _max  tr(ad(X)) = max (H; X),
donde Hs = > s+ (dim gy ) H).
Aplicando ahora el Lema 3.28, pero en este caso para S;(a @ n), el maximo se alcanza

en ﬁ—i' Entonces lo que se obtiene es

M5

A(M) = h(AN) = (Hy, T

) = |Hj|. (3.22)

Observacion 3.47. Como acabamos de ver, para un espacio simétrico de tipo no com-
pacto, la constante isoperimétrica de Cheeger es igual a |Hs|, donde ese Hy resulta ser el
campo curvatura media de N como subvariedad de AN (que es un campo invariante a la
izquierda en AN). Esto se deduce de [18, Section 2.1].

Para concluir esta seccién, vamos a presentar, de manera breve, un par de ejemplos
de casos concretos de espacios simétricos de tipo no compacto, donde podemos calcular
la constante isoperimétrica de Cheeger. Se trata de los espacios hiperbdlicos real RH"
y complejo CH", ambos de rango uno. En ambos casos haremos uso del concepto de
horosfera. Una horosfera de un espacio hiperbdlico (o més generalmente de una variedad
de Hadamard) es una hipersuperficie dada como conjunto de nivel de una funcién de
Busemann; véase [20, Section 1.10] para su definicién. Realmente lo que usaremos es que
una horosfera en un espacio hiperbdlico se puede caracterizar como una hipersuperficie
congruente al subgrupo N de AN, o equivalentemente, congruente a cualquiera de las
6rbitas de la accién de N sobre el espacio hiperbdlico M [19, Remark 5.4].

Ejemplo 3.48. En primer lugar, consideremos el caso del espacio hiperbdlico real RH™.
En este caso, lo que tenemos es que 7 = {a} y, ademds, el rango de este espacio es igual
a uno. De esta forma, tenemos que a ®n = R @ g,, donde g, = R""!. Ahora bien, es bien
sabido que en el caso del espacio hiperbdlico real de curvatura seccional constante igual a
¢ < 0, se tiene que las horosferas de RH™ son hipersuperficies totalmente umbilicales con
curvatura principal 1/—c. Ademés, en un espacio simétrico de tipo no compacto de rango
uno, se tiene que IV, que es el subgrupo de Lie de G = SO?}n con algebra de Lie n, es una
horosfera de AN y podemos calcular su curvatura media en términos de la del ambiente.
Por lo que en este caso, aplicando (3.22), se tiene que

h(RH™) = (n — 1)v/—c.

Ejemplo 3.49. Consideremos ahora el espacio hiperbolico complejo CH". En este caso,
¥t ={a,2a} y, ademads, el rango de este espacio es uno. De esta forma, tenemos que adn =
R @ go D goa, donde g, = C*" ! y gy, = R. De nuevo al ser un espacio simétrico de tipo no
compacto de rango uno, tenemos que N es una horosfera de AN y, analogamente, se puede
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calcular su curvatura media en términos de la del espacio ambiente. Ahora bien, en este
caso CH™ no tiene curvatura seccional constante, pero si posee una métrica riemanniana
de curvatura seccional holomorfa constante. Ademds, sabemos, véase [16, pag. 767], que
en el caso del espacio hiperbodlico complejo las horosferas tienen dos curvaturas principales
A = g, con multiplicidad 2(n — 1), y Ay = v/—c¢, con multiplicidad uno. De esta forma,
por medio de la expresién (3.22) podemos calcular la constante isoperimétrica de Cheeger
del espacio hiperbdlico complejo con su métrica simétrica (también llamada de Bergman)

COo1mo:

h(CH™) =2(n — 1)\/2__C +V—c=nv-c
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