
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIEGO GONZÁLEZ DEL  RÍO 

 

 

 

 

 

 

 

EL PROBLEMA 
ISOPERIMÉTRICO  

 

 

 

            

 

 

 

 

160a 
2025 

 

 Publicaciones 
del 

Departamento 
de Geometría y  Topología 

 

 

 

     UNIVERSIDADE DE SANTIAGO DE COMPOSTELA 
 



 

 

DIEGO GONZÁLEZ DEL RÍO 

 

 

 

 

 

 

 

 

EL PROBLEMA ISOPERIMÉTRICO  

 
 

 

 

    

 

 

 

160a 
2025 

 

 Publicaciones 
del 
Departamento 
de Geometría y Topología 

  

 

  UNIVERSIDADE DE SANTIAGO DE COMPOSTELA 
 

 



 

 

© Universidade de Santiago de Compostela, 2025 

 

 

 

Esta obra atópase baixo unha licenza internacional Creative Commons BY-NC-ND 4.0. 
Calquera forma de reprodución, distribución, comunicación pública ou transformación 

desta obra non incluída na licenza Creative Commons BY-NC-ND 4.0 só pode ser realizada 
coa autorización expresa dos titulares, salvo excepción prevista pola lei. Pode acceder Vde. 
ao texto completo da licenza nesta ligazón: https://creativecommons.org/licenses/by-nc-

nd/4.0/deed.gl 

 

 

 

 

Esta obra se encuentra bajo una licencia internacional Creative Commons BY-NC-ND 4.0. Cualquier 
forma de reproducción, distribución, comunicación pública o transformación de esta obra no 

incluida en la licencia Cretative Commons BY-NC-ND 4.0 solo puede ser realizada con la 
autorización expresa de los titulares, salvo excepción prevista por la ley. Puede Vd. acceder al texto 

completo de la licencia en este enlace: https://creativecommons.org/licenses/by-nc-
nd/4.0/deed.es 

 

 

 

This work is licensed under a Creative Commons BY NC ND 4.0 international license. Any 
form of reproduction, distribution, public communication or transformation of this work 
not included under the Creative Commons BY-NC-ND 4.0 license can only be carried out 
with the express authorization of the proprietors, save where otherwise provided by the 

law. You can access the full text of the license at https://creativecommons.org/licenses/by-
nc-nd/4.0/legalcode 

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.gl
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.gl
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


MÁSTER EN MATEMÁTICAS

Trabajo Fin de Máster

El problema isoperimétrico

Diego González del Río

Julio, 2025

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

1





Índice

Resumen 5

Abstract 6

Introducción 7

1. Preliminares y motivación 13
1.1. Geometría de hipersuperficies . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2. Área, volumen y regiones isoperimétricas . . . . . . . . . . . . . . . . . . . 17
1.3. Generalidades sobre el problema isoperimétrico . . . . . . . . . . . . . . . 18

2. El problema isoperimétrico en el espacio euclídeo 23
2.1. Desigualdad isoperimétrica en R2 . . . . . . . . . . . . . . . . . . . . . . . 24
2.2. El Teorema de Alexandrov en Rn . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1. Curvatura media de un grafo y resultados de EDPs elípticas . . . . 28
2.2.2. El teorema de Alexandrov . . . . . . . . . . . . . . . . . . . . . . . 33

2.3. Fórmulas y propiedades variacionales . . . . . . . . . . . . . . . . . . . . . 36
2.3.1. Fórmula de la primera variación . . . . . . . . . . . . . . . . . . . . 37
2.3.2. Variaciones que conservan el volumen . . . . . . . . . . . . . . . . . 43
2.3.3. El problema isoperimétrico en Rn . . . . . . . . . . . . . . . . . . . 50

3. La constante isoperimétrica de Cheeger 51
3.1. Preliminares sobre grupos de Lie . . . . . . . . . . . . . . . . . . . . . . . 53
3.2. Resultados relevantes sobre grupos de Lie . . . . . . . . . . . . . . . . . . . 55
3.3. La constante isoperimétrica de Cheeger de una variedad riemanniana . . . 60
3.4. Cheeger en grupos de Lie resolubles y simplemente conexos . . . . . . . . . 64
3.5. Un ejemplo importante: espacios simétricos . . . . . . . . . . . . . . . . . . 72

3.5.1. Tipos de espacios simétricos . . . . . . . . . . . . . . . . . . . . . . 75
3.5.2. Espacios simétricos de tipo no compacto: espacios de raíz y descom-

posición de Iwasawa . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.3. Cheeger en un espacio simétrico de tipo no compacto . . . . . . . . 79

Bibliografía 83

3





Resumen
El presente trabajo aborda el estudio del problema isoperimétrico desde sus raíces más

clásicas hasta su formulación en contextos geométricos más avanzados. Dicho problema
aspira a comprender qué regiones de un espacio ambiente dado minimizan el área de su
frontera bajo una restricción de volumen fijo. En su formulación clásica en el plano euclídeo
R2, se demuestra rigurosamente que entre todas las curvas de Jordan la que encierra mayor
área es la circunferencia, hecho que se formaliza mediante la desigualdad isoperimétrica en
el plano. Además, se generaliza el problema isoperimétrico a dimensión superior, mostrando
que en Rn la esfera es la única hipersuperficie compacta y conexa que minimiza el área
para un volumen fijado. Esto se llevará a cabo probando el teorema de Alexandrov y las
propiedades variacionales de las hipersuperficies de curvatura media constante.

Este trabajo extiende el análisis del problema isoperimétrico al marco de las variedades
riemannianas, donde la resolución del problema isoperimétrico resulta ser de gran dificul-
tad. En este contexto, se introduce la constante isoperimétrica de Cheeger, definida como
el ínfimo de los cocientes entre área de frontera y volumen de dominios regulares. Esta
constante posee además propiedades analíticas profundas, ya que proporciona una cota
inferior para el primer autovalor del operador de Laplace-Beltrami con condiciones de Di-
richlet. Además, el presente trabajo estudia en detalle el cálculo explícito de la constante
isoperimétrica de Cheeger en cierta familia de espacios geométricos de gran importancia,
como es el caso de los grupos de Lie resolubles y simplemente conexos con métrica inva-
riante a la izquierda, donde dicha constante puede expresarse en términos de la traza de
la representación adjunta del álgebra de Lie.

Finalmente, se analiza un caso particularmente interesante: los espacios simétricos de
tipo no compacto. Cada uno de estos espacios resulta ser isométrico a un grupo de Lie reso-
luble y simplemente conexo con métrica invariante a la izquierda, permitiendo calcular en
ellos la constante de Cheeger mediante herramientas estructurales como la descomposición
en espacios de raíces y la descomposición de Iwasawa. Además, se explicitará el cálculo de
la constante de Cheeger en el caso concreto de los espacios hiperbólicos real y complejo.

5



Abstract
The present work addresses the study of the isoperimetric problem, tracing its develop-

ment from its most classical roots to its formulation in more advanced geometric contexts.
This problem seeks to understand which regions within a given ambient space minimize
the area of their boundary under a fixed volume constraint. In its classical formulation
in the Euclidean plane R2, it is rigorously shown that among all Jordan curves, the one
that encloses the greatest area is the circle—a fact formalized through the isoperimetric
inequality in the plane. Moreover, the isoperimetric problem is generalized to higher dimen-
sions, showing that in Rn, the sphere is the unique compact and connected hypersurface
that minimizes surface area for a given volume. This will be demonstrated by proving Ale-
xandrov’s theorem and exploring the variational properties of hypersurfaces with constant
mean curvature.

This work further extends the study of the isoperimetric problem to the setting of
Riemannian manifolds, where solving the isoperimetric problem proves to be significantly
more challenging. In this context, the Cheeger isoperimetric constant is introduced, defi-
ned as the infimum of the ratios between boundary area and volume of regular domains.
This constant also possesses deep analytical properties, as it provides a lower bound for
the first eigenvalue of the Laplace–Beltrami operator with Dirichlet boundary conditions.
Furthermore, the present work provides a detailed study of the explicit computation of the
Cheeger isoperimetric constant in a certain family of geometrically significant spaces, such
as solvable, simply connected Lie groups equipped with a left-invariant metric, where the
constant can be expressed in terms of the trace of the adjoint representation of the Lie
algebra.

Finally, a particularly interesting case is analyzed: symmetric spaces of non-compact
type. Each of these spaces turns out to be isometric to a solvable, simply connected Lie
group endowed with a left-invariant metric, allowing for the computation of the Cheeger
constant using structural tools such as the root space decomposition and the Iwasawa
decomposition. Additionally, the explicit calculation of the Cheeger constant is presented
for the specific cases of real and complex hyperbolic spaces.
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Introducción

El problema isoperimétrico es uno de los más antiguos y fundamentales en la historia
de las matemáticas, con raíces que se remontan a la antigüedad. En un principio, se pre-
tendía averiguar cuál de entre todas las figuras planas de un perímetro dado encerraba la
mayor cantidad de área. La respuesta, intuitivamente evidente, es el círculo. Sin embargo,
la demostración rigurosa de este hecho ha sido objeto de estudio a través de los siglos,
involucrando a matemáticos como Jakob Steiner o Leonhard Euler entre otros [23], [54]. El
caso del plano euclídeo R2 se corresponde con el problema isoperimétrico clásico y su de-
mostración se atribuye al matemático Erhard Schmidt (1939), véanse [14, Section 3], [48].
Para abordar este resultado es necesario conocer la noción de curva cerrada, diferenciable
y simple del plano euclídeo, lo que se conoce como curva de Jordan en R2. De esta forma,
este teorema nos dice que para toda curva de Jordan en el plano, de longitud l, se verifica
que l2 ≥ 4πA, siendo A el área encerrada por dicha curva, pues sabemos, precisamente
por el teorema de la curva de Jordan, que en el plano R2 cada curva de Jordan divide al
plano en dos componentes conexas, una de ellas interior y la otra exterior a la curva. Por
otro lado, la igualdad en este resultado se da si y solo si la curva que consideramos es una
circunferencia. Daremos una demostración de este resultado en la Sección 2.1 del presente
trabajo.

El desarrollo del cálculo de variaciones y la geometría diferencial a lo largo de la his-
toria ha permitido que el problema isoperimétrico se generalice a dimensión superior y a
espacios más complejos y generales como las variedades riemannianas. En este contexto,
se busca determinar entre todas las regiones de una variedad con un volumen fijo, aquellas
cuyas fronteras tienen el área mínima. Este estudio ha revelado profundas conexiones entre
la geometría, el análisis y la topología de los espacios considerados. En el caso del espacio
euclídeo Rn, el problema isoperimétrico tiene una respuesta bastante intuitiva, pues se sa-
be que las hipersuperficies conexas y compactas que minimizan su área para un volumen
encerrado fijado son las esferas. Para probar este hecho en Rn se puede apelar al teore-
ma de Alexandrov, que nos dice que las hipersuperficies embebidas, conexas, compactas
y de curvatura media constante en Rn son precisamente las esferas. Ahora bien, en un
contexto más general, como es el de las variedades riemannianas, podemos centrarnos en
las hipersuperficies compactas, conexas y embebidas de una tal variedad que dividan a la
variedad ambiente en dos regiones conexas, al menos una de ellas acotada, cuyo volumen
llamamos volumen encerrado. Como comentaremos en las sucesivas secciones del presente
trabajo, estas hipótesis sobre hipersuperficies pueden cambiar dependiendo del contexto y
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8 Introducción

la naturaleza del problema. En este caso, podemos poner el foco en las variaciones, que
consisten en perturbaciones realizadas a nuestra hipersuperficie a lo largo de la dirección
de un campo diferenciable y, en concreto, en las que preservan el volumen, es decir, aque-
llas variaciones cuyas hipersuperficies encierran un volumen constante. La utilidad de esto
consiste en que las hipersuperficies de curvatura media constante se pueden caracterizar
como los puntos críticos de la función área, para cualquier variación que preserve el vo-
lumen. Combinando este hecho con el teorema de Alexandrov, se puede dar respuesta al
problema isoperimétrico clásico en el espacio euclídeo Rn. Es decir, obtendremos que, para
un volumen dado, la hipersuperficie compacta y conexa que tiene menor área encerrando
dicho volumen es la (n− 1)-esfera. La discusión y demostración de estos resultados son el
objeto del Capítulo 2.

Siguiendo esta línea y, de forma análoga a como ocurría en R2, se puede considerar la
desigualdad isoperimétrica generalizada en Rn. De esta forma, si consideramos una región
Ω del espacio Rn se cumple que

área(∂Ω)n ≥ nn · volumen(Bn) · volumen(Ω)n−1,

donde Bn es la bola euclídea en Rn de radio 1. Además, una región Ω cumple la igualdad
anterior si y solo si es una bola abierta. Esto constituye la desigualdad isoperimétrica
en Rn. Se puede dar una demostración de la desigualdad isoperimétrica por medio de la
desigualdad de Brunn-Minkowski [45].

Desde un punto de vista riemanniano, después de analizar el problema y la desigualdad
isoperimétrica en el espacio euclídeo, lo natural es preguntarse qué sucede en los espacios de
curvatura constante, ya que a menudo ciertos fenómenos matemáticos en el mundo euclídeo
admiten generalización a los espacios esféricos e hiperbólicos. La desigualdad isoperimétrica
en Rn puede reescribirse así, véase [11, pág. 2]:

A(∂Ω)
V (Ω)1− 1

n

≥ A(Sn−1)
V (Bn)1− 1

n

,

donde V denota el volumen de una región y A el volumen (o área) de una hipersuperficie.
A pesar de que esta desigualdad no admite una extensión inmediata a los espacios de
curvatura constante no nula, sigue siendo cierto que todos los dominios considerados con un
cierto volumen tienen el área de sus fronteras minimizada por bolas. Por ejemplo, en el caso
del plano hiperbólico real RH2 de curvatura seccional −1, la desigualdad isoperimétrica
establece que para cada curva simple cerrada y diferenciable a trozos con longitud l, se
tiene que

l2 ≥ 4πA+ A2,

donde A > 0 es el área encerrada por dicha curva. Por otro lado, la igualdad se da si y solo

si la curva es una circunferencia en RH2 de radio sinh−1
(√

A(4π+A)
2π

)
; véase [31] para más

información.
Por otro lado, Schmidt [47] ya resolvió el problema isoperimétrico en los espacios mo-

delo de curvatura constante. El trabajo de Schmidt resultó ser bastante complicado, por lo
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que se han dado demostraciones alternativas. En el contexto de la geometría de Riemann,
ha sido particularmente importante (y muy influyente) el método de reflexión de planos
móviles empleado por Alexandrov [1], [2] para el caso del espacio euclídeo Rn, que también
puede utilizarse en el caso del espacio hiperbólico real RHn y de la semiesfera (superior)
o casquete esférico Sn

+. Dicho método consiste en reflejar una hipersuperficie dada con res-
pecto a hiperplanos paralelos “móviles” (o hipersuperficies totalmente geodésicas), hasta
detectar que la hipersuperficie reflejada toca la hipersuperficie de partida desde el interior.
En ese caso, si la hipersuperficie de partida tiene curvatura media constante, satisface cier-
ta ecuación en derivadas parciales elíptica, que también es satisfecha por la hipersuperficie
reflejada. Las propiedades de unicidad de solución de dichas ecuaciones (dadas a través
de principios del máximo) permiten derivar que la hipersuperficie y su reflejada coinciden,
por lo que dicha hipersuperficie goza de una simetría. Como esto es válido para cualquier
familia de hiperplanos paralelos, se deduce que la hipersuperficie es simétrica respecto de
hiperplanos en todas las direcciones, lo que permite concluir que es una esfera. A efectos de
generalizar este método a variedades riemannianas más generales, el hecho crucial es que,
para que un espacio admita reflexiones respecto a una hipersuperficie, dicha hipersuperficie
(al ser conformada por puntos fijos de una isometría ambiental) debe ser totalmente geo-
désica. Los espacios modelo gozan de hipersuperficies totalmente geodésicas en todas las
direcciones, por lo que el método de Alexandrov se puede aplicar en estos casos de modo
similar al caso euclídeo (con la restricción de considerar la semiesfera en vez de la esfera,
pues en caso contrario el teorema de Alexandrov es falso).

En un contexto más general, nos va a interesar trasladar el estudio del problema iso-
perimétrico del espacio euclídeo a variedades riemannianas más generales con geometría
acotada. De esta forma, nos saltamos varios niveles intermedios de generalización, como
pueden ser la esfera, el espacio hiperbólico, los espacios homogéneos 3-dimensionales, o
los espacios simétricos; véase la Sección 1.3 para una breve revisión del problema isope-
rimétrico en diferentes contextos riemannianos. En este contexto, también es razonable
cambiar nuestro punto de vista con respecto a las preguntas que planteamos. En una va-
riedad riemanniana general, las posibilidades de encontrar el dominio (o los dominios) de
área de frontera mínima, dando de antemano el volumen de dicho dominio, son práctica-
mente nulas, a excepción de algunos casos muy especiales. Además, diferentes elecciones
del volumen prescrito pueden cambiar por completo el carácter del problema. En vista
de estas dificultades, surgen las llamadas constantes isoperimétricas. En este trabajo nos
centraremos en la constante isoperimétrica de Cheeger, que tiene por expresión

h(M) := ı́nf
Ω

A(∂Ω)
V (Ω) ,

donde Ω recorre todos los abiertos de la variedad riemanniana M con clausura compacta
y cuya frontera es una hipersuperficie diferenciable.

Con esta definición, es fácil comprobar que la constante isoperimétrica de Cheeger del
plano R2 es cero. En este caso, la constante isoperimétrica de Cheeger no es más que el
ínfimo de todos los cocientes de la longitud de una curva de Jordan por el área que encierra
dicha curva. De esta forma, tomando bolas abiertas con centro el origen B((0, 0), r), con
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radio r > 0, tendremos que
long(∂B((0, 0), r))
A(B((0, 0), r)) = 2

r

y esto es siempre mayor o igual que la constante de Cheeger para el plano R2. Así, como
el radio r > 0 es arbitrario, si lo tomamos cuando r −→ ∞, se tiene que la constante
isoperimétrica de Cheeger del plano es cero.

La constante isoperimétrica de Cheeger surge como una forma de cuantificar el pro-
blema isoperimétrico en contextos donde no tienen por qué existir soluciones óptimas (es
decir, conjuntos que minimicen el área de la frontera bajo una restricción de volumen). En
relación con el problema isoperimétrico clásico, la constante isoperimétrica de Cheeger nos
dice cuál es el menor cociente área/volumen que existe en nuestra variedad. Por otro lado,
a pesar de que la constante isoperimétrica de Cheeger sea, en ocasiones, difícil de calcular,
siempre está bien definida. Además, la constante de Cheeger goza de una propiedad analíti-
ca muy interesante, ya que establece una cota inferior para el primer valor propio no trivial
del operador de Laplace-Beltrami con condición de Dirichlet sobre regiones relativamente
compactas de la variedad que estemos considerando.

Existen ciertos espacios en los que se ha estudiado la constante isoperimétrica de Chee-
ger y en los cuales se conoce bastante información sobre ella. Por ejemplo, del mismo modo
que para el plano euclídeo, en los espacios euclídeos Rn se tiene que h(Rn) = 0. Toda
variedad compacta tiene constante de Cheeger (definida como anteriormente) nula, si bien
se puede modificar la definición vista para dar lugar a una teoría de interés en el caso
compacto (véase [11, Section VI.2]). Ahora bien, centrándonos en el caso no compacto, y
de nuevo desde un punto devista riemanniano, el primer contexto donde abordar el estudio
de dicha constante es el de los espacios homogéneos. Dentro de ellos, los grupos de Lie
con métrica invariante a la izquierda constituyen una amplia familia de espacios homogé-
neos. En particular, los grupos de Lie resolubles y simplemente conexos son difeomorfos
a espacios euclídeos (por lo tanto, no compactos), y dotados de métricas invariantes a la
izquierda, su constante de Cheeger se puede calcular de forma explícita, en términos de la
traza de la representación adjunta del álgebra de Lie [41]. Los grupos de Lie resolubles con
métrica invariante a la izquierda constituyen variedades riemannianas de gran interés. Por
ejemplo, incluyen familias muy importantes de solitones de Ricci (en concreto, aquellos
solitones de Ricci homogéneos de tipo expansivo) y de variedades Einstein homogéneas [7],
[32], dentro de las cuales destacan la familia de los espacios simétricos de tipo no compacto.
En la parte final de este trabajo (Capítulo 3), basándonos en el artículo de Peyerimhoff y
Samiou [41], presentamos y demostramos la fórmula explícita de la constante de Cheeger
de los grupos de Lie resolubles simplemente conexos con métrica invariante a la izquierda.
Además, después de una breve introducción a los espacios simétricos y a su estructura alge-
braica subyacente, aplicamos dicha fórmula a los espacios simétricos de tipo no compacto
y, en particular, a los espacios hiperbólicos reales y complejos.

En cuanto a la estructura del trabajo, en el Capítulo 1 se introducen los conceptos bá-
sicos necesarios de geometría riemanniana y, en concreto, de geometría de hipersuperficies.
Se abordan temas como las métricas riemannianas, la geometría de las hipersuperficies de
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una variedad riemanniana y se define el concepto de hipersuperficie de curvatura media
constante (CMC). En la segunda sección de este capítulo se aborda el concepto de volumen
en una variedad riemanniana orientable de dimensión n. Esto nos llevará a poder introducir
el concepto de región diferenciable de una variedad riemanniana y de volumen ligado a esa
región. Finalmente, definiremos el concepto de área (volumen) de una hipersuperficie y el
de región isoperimétrica, que consiste en una región de un cierto volumen que minimiza el
área de su frontera entre todas las regiones de la variedad ambiente con dicho volumen.
Por otro lado, en la última sección, hablaremos sobre generalidades del problema isope-
rimétrico, discutiendo, de forma breve, algunos contextos y formulaciones más generales
donde se puede tratar dicho problema.

En el capítulo dos se analiza el problema isoperimétrico en el espacio euclídeo Rn. Se
estudian la soluciones óptimas al problema isoperimétrico, que serán las esferas de dicho
espacio y, además, se exploran técnicas utilizadas para abordar este problema en el caso
euclídeo, como el método de reflexión de planos móviles de Alexandrov. Además, en este
mismo capítulo estudiaremos las propiedades variacionales de las hipersuperficies embebi-
das de una variedad riemanniana haciendo especial hincapié en la fórmula de la primera
variación. Posteriormente, daremos una caracterización de las hipersuperficies embebidas
de curvatura media constante en términos de las variaciones que preservan el volumen.
Esto, combinado con el teorema de Alexandrov, nos dará una demostración del problema
isoperimétrico en el espacio euclídeo Rn.

En el tercer capítulo se introducen, en primer lugar, preliminares relativos a los grupos
de Lie, donde se presentan las definiciones básicas en la teoría de grupos y álgebras de Lie.
Realizaremos todo este proceso con el objetivo de calcular la constante isoperimétrica de
Cheeger para un grupo de Lie resoluble y simplemente conexo con métrica invariante a la
izquierda. En esta línea, se detallarán resultados que conectan la constante de Cheeger con
la estructura algebraica de estos grupos, permitiendo obtener descripciones explícitas en
términos de la traza de la representación adjunta a nivel de álgebras de Lie y comprender
mejor el fenómeno isoperimétrico en estos contextos. Después de calcular la constante de
Cheeger de un grupo de Lie resoluble y simplemente conexo, trasladeremos este cálculo a
un ejemplo importante, los espacios simétricos riemannianos. En este contexto, daremos
las propiedades y definiciones más básicas acerca de estos espacios, para posteriormente
hablar de los tipos de espacios simétricos centrándonos en los de tipo no compacto. Además,
introduciremos las nociones de raíz, espacio de raíz, sistema de raíces y descomposición de
Iwasawa. Esta última descomposición nos permitirá modelar el espacio simétrico como
un grupo de Lie resoluble y simplemente conexo con métrica invariante a la izquierda.
Finalmente, explicitaremos el cálculo de la constante isoperimétrica de Cheeger para un
espacio simétrico de tipo no compacto, en términos de las raíces positivas de su sistema de
raíces asociado y de sus multiplicidades. Finalmente, particularizaremos esta descripción
para el caso de los espacios hiperbólicos real y complejo.





Capítulo 1

Preliminares y motivación

El objetivo de este primer capítulo es introducir una serie de definiciones básicas que
serán utilizadas en el transcurso de la memoria, así como proporcionar un contexto y mo-
tivación apropiados para el estudio del problema isoperimétrico desde el punto de vista de
la geometría de Riemann. Así, en la primera sección, incluiremos las nociones relativas a
geometría riemanniana de hipersuperficies. Las hipersuperficies son subvariedades de codi-
mensión uno en una variedad riemanniana ambiente. Su estudio surge de modo natural al
abordar el problema isoperimétrico, ya que la frontera de un dominio (o región) diferen-
ciable es una hipersuperficie. Por medio de la descomposición del espacio tangente de una
subvariedad en sus partes tangente y normal, podremos definir operadores fundamentales
en geometría de subvariedades como la segunda forma fundamental o el operador de forma,
recordando algunas propiedades básicas de los mismos. Un concepto clave para abordar
el problema isoperimétrico es el de curvatura media de una hipersuperficie. Al final de la
primera sección de este capítulo, recordaremos dicho concepto, lo que nos conducirá a la
noción de hipersuperficie de curvatura media constante (CMC). Para concluir, introduci-
remos, a modo de recordatorio, las nociones de punto umbílico, subvariedad totalmente
umbílica y subvariedad totalmente geodésica. Finalmente, incluiremos algunos ejemplos
ilustrativos de estos conceptos.

En la segunda sección de este capítulo, recordaremos las definiciones más básicas y
necesarias relativas al cálculo de volúmenes en variedades riemannianas. Para ello introdu-
ciremos la noción de forma de volumen en una variedad riemanniana, lo que nos llevará a la
definición de región de una variedad riemanniana y de volumen de la misma pasando por la
noción de región isoperimétrica, que será un concepto clave para el posterior planteamiento
y resolución del problema isoperimétrico.

Finalmente, incluimos una tercera sección de generalidades sobre el problema isoperi-
métrico, donde presentamos algunos de los resultados más importantes en el estudio de
este problema, definiendo el marco histórico y matemático donde se enmarcará el estudio
que realizaremos en los siguientes capítulos.
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1.1. Geometría de hipersuperficies
Como se ha comentado, a lo largo de esta memoria vamos a utilizar algunos resulta-

dos y definiciones de geometría riemanniana de hipersuperficies que vamos a recordar a
continuación. En esta parte del trabajo, hemos seguido principalmente la referencia [33,
Chapters 2, 4, 5, 8].

En primer lugar, fijemos algo de notación. Cuando hablemos de M y, salvo que se
especifique lo contrario, representará una variedad riemanniana de dimensión n ≥ 2. De-
notaremos por X(M) al conjunto de los campos de vectores diferenciables de la variedad
M , donde por diferenciable se entiende de clase C∞(M). Utilizaremos ∇ para denotar la
conexión de Levi-Civita de la variedad riemanniana M . Además, utilizaremos ⟨·, ·⟩ o g
para referirnos a la métrica riemanniana de nuestra variedad M . Por otro lado, dado un
campo X ∈ X(M) se suele denotar por |X| a la norma de dicho campo en la métrica de
M . Dado un punto p de la variedad M denotamos por TpM al espacio tangente a M en el
punto p y por TM al fibrado tangente de dicha variedad. Además, dado un punto p ∈ M
denotaremos por T ∗

pM al espacio cotangente a la variedad en el punto p, con lo que

T ∗M =
⊔

p∈M

T ∗
pM =

{
(p, ω) : p ∈ M, ω ∈ T ∗

pM
}
.

Denotaremos por ∧k(M) al espacio vectorial de las k-formas diferenciales de una variedad
riemanniana M .

A continuación, pasamos a las definiciones y resultados más relevantes de geometría de
hipersuperficies que nos harán falta en los sucesivos capítulos de esta memoria.

Sean (Mm, g) y (M̄n, g′) dos variedades riemannianas y sea f : M −→ M̄ una inmersión,
es decir, una aplicación diferenciable tal que f∗p es inyectiva para cada p ∈ M . Se dice que
f es una inmersión isométrica si g(u, v) = g′(f∗pu, f∗pv) para cada u, v ∈ TpM y para cada
p ∈ M . Además, si f : M −→ M̄ es una inmersión, podemos dotar a M de la métrica f ∗g
inducida por f dada por f ∗g(u, v) = g(f∗u, f∗v). Con esta métrica tenemos que (M, f ∗g) es
una variedad de Riemann y, además, f : (M, f ∗g) −→ (M̄, g) es una inmersión isométrica.
Por otro lado, atendiendo a las propiedades de la función f diremos que:

(i) En el caso de que f sea una inmersión, M se dice que es subvariedad inmersa de M̄.

(ii) Si además esa f es inyectiva, f(M) se dice subvariedad inmersa inyectivamente en
M̄.

(iii) Si f es un embebimiento, diremos que f(M) es una subvariedad embebida de M̄.

Toda inmersión es localmente un embebimiento. Es decir, en el contexto establecido arriba,
para cada p ∈ M existe un entorno abierto U de p en M de forma que f |U : U −→
M̄ es un embebimiento, es decir, una inmersión inyectiva y homeomorfismo sobre f(U).
De esta forma, cuando efectuemos argumentos locales supondremos que, si tenemos una
subvariedad M de una variedad riemanniana M̄ , M es una subvariedad embebida en M̄ .
Directamente, hablaremos de subvariedad de M̄ .
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En lo referente al espacio tangente de una subvariedad M de una variedad riemanniana
M̄ , para cada p ∈ M tenemos la descomposición TpM̄ = TpM ⊕ T⊥

p M en suma directa
ortogonal. De esta forma, denotamos por T⊥

p M al espacio normal a M en p, que tam-
bién suele denotarse por νpM . Definimos el fibrado normal de M como T⊥M = νM ={
(p, v) ∈ TM̄ : p ∈ M, v ∈ T⊥

p M
}

≡ ⊔p∈MT
⊥
p M . Es una variedad diferenciable de dimen-

sión dim M̄ y fibrado vectorial sobre M donde la proyección π : T⊥M −→ M está defi-
nida por (p, v) 7−→ p, con fibras π−1(p) = T⊥

p M . En estas condiciones, denotamos por
X⊥(M) = Γ(T⊥M) al conjunto de campos de vectores diferenciables a lo largo de toda la
subvariedad M y normales a M en todo punto. Así, un η ∈ X⊥(M) se dice campo normal a
M . Recordemos brevemente que, si tenemos una subvariedad M de una variedad rieman-
niana M̄ , si tomamos un v ∈ TpM̄ , con p ∈ M , tenemos que v se puede descomponer en
su parte tangente a M , que se denota por v⊤, y su parte ortogonal a M , que se denota por
v⊥. Recordemos además que esta definición de componente ortogonal viene determinada
por la métrica de la variedad ambiente M̄ . Por otro lado, dada una subvariedad M de una
variedad riemanniana M̄ denotaremos por Γ(TM̄ |M) al conjunto de los campos vectoriales
a lo largo de M , pero no necesariamente tangentes a M . Es decir, son las secciones del
fibrado vectorial dado por la restricción a M del fibrado tangente a M̄ .

En lo que sigue consideraremos una subvariedad M de una variedad de Riemann M̄ y
denotaremos por ∇ y ∇̄ a las conexiones de Levi-Civita de M y M̄ respectivamente. Se
puede probar que dados campos de vectores X, Y ∈ X(M), se verifica que ∇XY = (∇̄XY )⊤.

En el ámbito de las subvariedades de una variedad riemanniana, tenemos dos operadores
fundamentales que vamos a definir a continuación. Por un lado, dada una subvariedad M
de una variedad riemanniana M̄ se define la segunda forma fundamental de M como la
siguiente aplicación:

II : X(M) × X(M) −→ X⊥(M)
(X, Y ) 7−→ II(X, Y ) = (∇̄XY )⊥.

(1.1)

En las condiciones de esta definición, se puede probar que la segunda forma fundamental
es C∞(M)−bilineal y simétrica. Por otro lado, se define el operador forma o de Weingarten
de M con respecto a un η ∈ X⊥(M) como SηX = −(∇̄Xη)⊤ para cada X ∈ X(M).
Además, dada una subvariedad M de una variedad riemanniana M̄ y dados X, Y ∈ X(M),
η ∈ X⊥(M), se cumple que ⟨II(X, Y ), η⟩ = ⟨SηX, Y ⟩. En esta línea, sabemos que el
operador forma Sη es C∞(M)-lineal. Además, se verifica que Sη es autoadjunto respecto de
la métrica riemanniana de la variedad y dado un X ∈ X(M), (SηX)p, con p un punto de
M , solo depende de ηp y de Xp.

Si tomamos η ∈ X⊥(M), las curvaturas principales de M con respecto a η son los
autovalores de Sη. Notemos en esta definición que, para tener una aplicación lineal, es
necesario fijar el punto p, considerando así, Sp

η : TpM −→ TpM . Si no fijamos el p los
autovalores son funciones que no necesariamente son diferenciables, pero sí continuas. Por
otro lado, los autoespacios del operador forma se llaman espacios de curvatura principal y
los autovectores son las direcciones principales.

Hasta ahoraM denotaba una subvariedad de una variedad riemanniana M̄ de dimensión
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n. De ahora en adelante, salvo que se indique lo contrario, M será una hipersuperficie, es
decir, una subvariedad de codimensión 1.

Sea M una hipersuperficie de una variedad riemanniana M̄ de dimensión n. Dado
η ∈ X⊥(M) unitario (lo cual, al menos localmente, es decir, restringiendo a un abierto de
M , siempre lo podemos suponer) se define la curvatura media de M con respecto a η, como
la función H : M −→ R dada por

H(p) = tr(Sp
η) =

n−1∑
i=1

κi(p) (1.2)

para cada p ∈ M , donde tr denota la traza de un endomorfismo. Diremos que M es una
hipersuperficie de curvatura media constante si su curvatura media, respecto a un campo
normal unitario a M , es constante a lo largo de M . Además, dado un punto p ∈ M y dada
una referencia ortonormal e1, ..., en−1 para TM en torno a p, se define el vector curvatura
media de M en p como

H⃗(p) =
n−1∑
i=1

(∇̄ei
ei)⊥, (1.3)

donde recordemos que ∇̄ denota la conexión de Levi-Civita de la variedad ambiente M̄ .

Observación 1.1. El vector curvatura media puede definirse para cualquier subvariedad de
una variedad riemanniana ambiente, no solo para el caso de hipersuperficies, simplemente
tomando la definición previa y sumando respecto a una referencia ortonormal e1, ..., en para
TM .

Para el caso de hipersuperficies se verifica que H⃗ = H · η, donde η es un campo normal
unitario sobre M y H es la función curvatura media respecto del campo η.

Notemos que por el teorema de diagonalización de endomorfismos autoadjuntos, si
llamamos κ1(p) ≤ ... ≤ κn−1(p) a las curvaturas principales en p ∈ M , entonces existe
una base ortonormal {v1, ..., vn−1} de TpM que está formada por direcciones principales,
es decir, Sp

ηvj = κj(p)vj.
Dado p ∈ M diremos que es un punto umbílico de M si las curvaturas principales en p

coinciden, es decir, si κ1(p) = ... = κn−1(p). Diremos además que M es totalmente umbílica
si todos sus puntos son umbílicos. Por otro lado, si κ1(p) = ... = κn−1(p) = 0 para cada
p ∈ M , se dice que M es totalmente geodésica. Esta última definición puede extenderse
a subvariedades de codimensión arbitraria, es decir, podemos considerar una subvariedad
totalmente geodésica como aquella verificando que II = 0. Nótese que la definición de
subvariedad totalmente umbílica es equivalente a que se cumpla Sp

ηv = H(p)v para cada
v ∈ TpM , donde H es la curvatura media respecto de un campo normal unitario η.

Veamos algún ejemplo para ilustrar estas definiciones.

Ejemplo 1.2. Consideremos como variedad ambiente el espacio euclídeo Rn y fijemos un
punto p ∈ Rn. Sabemos que la esfera de radio R > 0 y centro p ∈ Rn es el conjunto
Sn−1

R (p) = {q ∈ Rn : |q − p| = R}. En ese caso, el vector normal unitario en un punto q de
la esfera apuntando hacia fuera es de la forma ηq = q−p

R
. Así, para cada v ∈ TqSn−1

R (p) se



1.2 Área, volumen y regiones isoperimétricas 17

tiene que Sq
ηv = − v

R
. Se obtiene así que κj(q) = − 1

R
para cada j = 1, ..., n−1. Esto prueba

que la esfera de centro p y radio R en Rn es totalmente umbílica y de curvatura media
constante 1−n

R
.

Ejemplo 1.3. Un ejemplo de hipersuperficie totalmente geodésica es un hiperplano Σ en
Rn. En efecto, fijemos un vector normal unitario a dicho hiperplano η. Dado un punto p ∈ Σ,
como ese η es constante, entonces Sp

η = 0 y |IIp|2 = 0, de donde se deduce que κ1(p) =
... = κn−1(p) = 0, por lo que Σ es totalmente geodésica. Un resultado clásico nos asegura
que las hipersuperficies totalmente umbílicas de un espacio euclídeo son precisamente (los
subconjuntos abiertos de) las esferas y los hiperplanos. En particular, las hipersuperficies
totalmente geodésicas de Rn son los subconjuntos abiertos de los hiperplanos de Rn.

1.2. Área, volumen y regiones isoperimétricas
Comenzamos definiendo los conceptos clave de volumen, región y área, para a conti-

nuación definir la noción de región isoperimétrica.
En primer lugar, sabemos que, dada una variedad riemanniana (M, g) de dimensión n

orientable, existe una única n-forma de volumen en M que denotamos por ωM , llamada
la forma riemanniana de volumen, que podemos caracterizar de las siguientes tres formas
equivalentes:

(i) Si (ε1, ..., εn) es una referencia local y ortonormal orientada para T ∗M , entonces

ωM = ε1 ∧ ... ∧ εn.

(ii) Si (E1, ..., En) es una referencia ortonormal orientada para TM , entonces

ωM(E1, ..., En) = 1.

(iii) Si (x1, ..., xn) son coordenadas locales y gij son los coeficientes de la métrica rieman-
niana en dichas coordenadas, entonces

ωM =
√

det gijdx
1 ∧ ... ∧ dxn.

Por medio de estas definiciones, podemos definir el concepto de volumen de una variedad
riemanniana compacta M de dimensión n. Llamaremos volumen de M a la integral∫

M
ωM ,

donde ωM es la n-forma de volumen asociada a M . Notemos que en el caso de que la
variedad M no fuese compacta, esta integral puede ser infinito.

Dada una variedad riemanniana M , diremos que un subconjunto Ω ⊆ M es una región
diferenciable de M si es un abierto, relativamente compacto y su frontera, que denotamos
por ∂Ω, es una hipersuperficie diferenciable (es decir, una subvariedad de dimensión n− 1)
embebida, compacta y conexa.
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Observación 1.4. Es también habitual definir una región de una variedad riemannia-
na como un abierto relativamente compacto cuya frontera tiene estructura de variedad
diferenciable a trozos y cuya codimensión es 1. Esto es una noción intermedia entre la de-
finición de región diferenciable que acabamos de dar y la noción más general de conjuntos
de perímetro finito, cuyas fronteras son corrientes rectificables, véanse [8, Section 3] y [35,
Sections 3.14, 3.15]. Ahora bien, nosotros nos centraremos en este trabajo en las regiones
cuya frontera es una hipersuperficie diferenciable de la variedad riemanniana ambiente.
A pesar de esto, merece la pena comentar que el problema isoperimétrico, en general, se
plantea para regiones no necesariamente diferenciables. Se puede probar (aunque es un
teorema nada trivial) que las regiones isoperimétricas tienen frontera diferenciable salvo
por un subconjunto cerrado de codimensión a lo sumo seis; véase el Teorema 1.7 de la
siguiente sección para un enunciado preciso.
Observación 1.5. Salvo en lo que queda de capítulo, a lo largo del cual será interesante
precisar el tipo de región que estamos considerando debido a sus propiedades geométricas,
en el resto del trabajo hablaremos directamente de regiones para referirnos a las regiones
diferenciables definidas en el párrafo anterior.

Dada una región Ω de una variedad riemanniana M , si fijamos coordenadas locales
(x1, ..., xn), llamaremos volumen de la región Ω, y lo denotaremos por V (Ω), a la integral
extendida a la región Ω de la n-forma de volumen ωM =

√
det(gij)dx1 ∧ ... ∧ dxn. Con el

término extendida nos referimos a que si la región Ω no está contenida íntegramente en
un entorno coordenado, definimos su volumen de forma análoga tomando varios entornos
coordenados y empleando particiones diferenciables de la unidad. En el caso de que Ω sea
una región diferenciable, dado que ∂Ω es una hipersuperficie, es habitual llamar área a su
volumen y se denota como A(∂Ω).
Observación 1.6. En caso de que nuestra variedad M tenga dimensión m = 2, se suele
llamar al volumen de una región Ω en M el área de Ω y se denota por A(Ω). Análogamente,
al área de ∂Ω se le llama longitud de ∂Ω y se escribe como l(∂Ω).

Dado que la cuestión isoperimétrica más sencilla consiste en analizar las regiones Ω de
una cierta variedad riemanniana M que, dado un volumen fijado, minimicen el área de su
frontera, es pertinente considerar la siguiente definición.

Sea M una variedad riemanniana. Dada una región diferenciable Ω de M diremos
que es una región isoperimétrica de volumen v ∈ (0, V (M)) si V (Ω) = v y se cumple la
desigualdad A(∂Ω) ≤ A(∂Ω′) para cada región Ω′ en M cumpliendo que V (Ω′) = v. Esta
definición es equivalente a que se satisfaga la igualdad

A(∂Ω) = inf {A(∂Ω′) : Ω′ ⊆ M región y V (Ω′) = v} .

1.3. Generalidades sobre el problema isoperimétrico
En esta sección, exponemos de modo menos técnico que en el resto del trabajo y sin

voluntad de ser exhaustivos, distintos aspectos alrededor del problema isoperimétrico, co-
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menzando por su planteamiento en el espacio euclídeo hasta algunos resultados conocidos
de variedades de Riemann más generales. Para más detalles pueden consultarse, por ejem-
plo, [8, Section 3], [11, Sections I, II], [12, pág. 247-248], [35, Sections 3.14, 3.15], [38] y
[45, Tema 3]. Para una perspectiva histórica del problema, puede consultarse [6].

En primer lugar, comencemos recordando que el problema isoperimétrico clásico surge
de la problemática de tratar de encerrar la mayor cantidad posible de área con el menor
perímetro. Esto en el caso del plano euclídeo R2 tiene una solución intuitiva clara, dada
por cualquier circunferencia. Nótese que, para tratar el caso del plano euclídeo, es natural
hablar del concepto de curva de Jordan, pues es la noción de curva que nos garantiza que
se encierre un área acotada, gracias al teorema de la curva de Jordan. Así, la desigualdad
isoperimétrica en el plano establece que dada una curva de Jordan de longitud l, se tiene
que l2 ≥ 4πA, siendo A el área de la región encerrada por dicha curva en R2. Además, la
igualdad se obtiene si y solo si la curva es una circunferencia. Probaremos este resultado
en la Sección 2.1 del presente trabajo. Este resultado tiene su generalización a dimensión
superior, es decir, al caso del espacio euclídeo Rn, donde puede considerarse, de manera
análoga, la desigualdad

A(∂Ω)n ≥ nnV (Bn)V (Ω)n−1,

donde Ω es una región en Rn y Bn = B(0, 1) es la bola abierta de radio 1. Además, la
igualdad se tiene si y solo si la región Ω es una bola abierta. La demostración de este
resultado, que puede verse en [45, pág. 21], emplea técnicas de geometría diferencial y la
desigualdad de Brunn-Minkowski, la cual afirma que

V (A+B) 1
n ≥ V (A) 1

n + V (B) 1
n ,

donde A y B son dos subconjuntos compactos no vacíos de Rn y, además, se tiene que
A + B = {a+ b : a ∈ A, b ∈ B} es su suma de Minkowski. Véase [45, Tema 3, Sección 4]
para una demostración de este resultado.

El problema isoperimétrico clásico en Rn se plantea averiguar, para un volumen dado,
cuál de entre todas las hipersuperficies compactas y conexas encerrando ese volumen tiene
menor área. La desigualdad isoperimétrica para Rn nos garantiza que las esferas son las
únicas soluciones a dicho problema. Sin embargo, es posible deducir este resultado sin echar
mano de la desigualdad isoperimétrica (y, en última instancia de la desigualdad de Brunn-
Minkowski). Una demostración geométrico-analítica de gran interés viene de la mano del
teorema de Alexandrov [1], [9, pág. 9-13]. Este resultado asegura que toda hipersuperficie
embebida, compacta y conexa de Rn con curvatura media constante es una esfera; véase
Corolario 2.22. Su demostración utiliza la propiedad de unicidad de ecuaciones en derivadas
parciales elípticas junto con el influyente método de los planos móviles desarrollado por
Alexandrov. En la Sección 2.2.2, incluimos la prueba de este resultado. Así, se puede
resolver el problema isoperimétrico en Rn combinando el teorema de Alexandrov con las
propiedades variacionales de las hipersuperficies de curvatura media constante (que nos
proporcionan una caracterización de las mismas como puntos críticos del funcional área
para cualquier variación que preserve el volumen). Véanse las Secciones 2.2 y 2.3 para más
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detalles y demostraciones. Cabe mencionar que en todo este proceso estamos considerando
hipersuperficies con suficiente regularidad, es decir, de clase C2 o superior.

En un contexto más general, y desde un punto de vista riemanniano, podemos ex-
pandir el problema isoperimétrico a los denominados espacios modelo o espacios forma
simplemente conexos, es decir, las variedades riemannianas completas y simplemente co-
nexas con curvatura seccional constante, que no son más que las esferas redondas y los
espacios hiperbólicos (reales), además de los espacios euclídeos. Para ilustrar el problema
en este contexto más general, consideremos de nuevo el espacio euclídeo Rn, con n ≥ 2. En
este contexto, la desigualdad isoperimétrica se puede reescribir como

A(∂Ω)
V (Ω)1− 1

n

≥ A(Sn−1)
V (Bn)1− 1

n

, (1.4)

donde Ω es cualquier dominio acotado y Bn es la bola unitaria en Rn, A(Sn−1) es el área
(volumen) de la esfera unidad en Rn y V (Bn) el volumen encerrado por la bola unidad. Con
este planteamiento, se puede comprobar, véase [11, pág. 4], que en un espacio de curvatura
constante no nula (esfera o espacio hiperbólico), la formulación (1.4) de la desigualdad
isoperimétrica no es válida. A pesar de esto, sigue ocurriendo que las esferas geodésicas son
las regiones isoperimétricas. En el caso de dimensión 2 se puede probar una desigualdad
isoperimétrica que generaliza la dada para el plano euclídeo. Así, si M = M2

κ, el espacio
modelo de curvatura constante κ, entonces la desigualdad isoperimétrica es, véase [11,
pág. 4]:

l2 ≥ 4πA− κA2,

donde se obtiene la igualdad si y solo si el dominio es una bola geodésica, y siendo l la
longitud de arco de una curva simple, cerrada y diferenciable a trozos y A el área encerrada
por dicha curva. Así, por ejemplo, en el caso del plano hiperbólico real RH2 de curvatura
seccional constante igual a −1, se puede probar, véase [31], que para cada curva simple
cerrada y diferenciable a trozos con longitud l, se verifica que

l2 ≥ 4πA+ A2,

donde la igualdad se tiene si y solo si la curva es una circunferencia en RH2 de radio

sinh
(√

A(4π+A)
2π

)
.

En lo referente a la solución del problema isoperimétrico en los espacios modelo de
curvatura seccional constante (espacio euclídeo, esfera y espacio hiperbólico), la primera
solución fue dada por E. Schmidt [47]. Sin embargo, se han dado demostraciones alterna-
tivas. En el espacio hiperbólico real RHn y la semiesfera o casquete esférico Sn

+ se puede
emplear el método de los planos móviles de Alexandrov, reflejando con respecto a hipersu-
perficies totalmente geodésicas en RHn y Sn

+ [1]. Cabe mencionar que para poder emplear
este método (y probar así el teorema de Alexandrov) es necesario restringirse a la semi-
esfera. Si no, el teorema de Alexandrov es falso (por ejemplo, el toro de Clifford en S3

tiene curvatura media constante cero). A pesar de esto, el problema isoperimétrico sigue
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teniendo las bolas geodésicas como solución, si bien para demostrar esto hay que remitirse
a otras pruebas (como la noción de estabilidad), que comentamos más abajo.

Más allá de los espacios de curvatura constante, la solución al problema isoperimétrico
es conocida en muy pocos espacios ambiente. Citamos a continuación algunos trabajos
que corresponden principalmente a espacios homogéneos y de dimensión 3. En concreto,
una solución detallada en el espacio S2 × S1, con la métrica producto estándar, puede
verse en [40]. Para otras variedades homogéneas, como RH2 × R, RH2 × S1 y Sn × R,
se pueden consultar [29], [40] y [39], respectivamente. El caso de S1 × Rn también se
encuentra resuelto en [40] y, además, se muestra que cuando n ≥ 9, los onduloides son
minimizadores en lugar de los cilindros para ciertos volúmenes. Una idea clave empleada
en los resultados citados consiste en explotar la simetría del problema para reducirlo al
análisis de una ecuación diferencial ordinaria. Por otro lado, el caso del espacio T 2 × R,
donde T 2 es el toro plano, no está resuelto de manera completa; sin embargo, se pueden
encontrar aportaciones al respecto en [26], [?] y [?]. En variedades riemannianas compactas
arbitrarias, es conocido que las fronteras de las regiones isoperimétricas pequeñas están
cerca de las esferas redondas, véanse [36], [?].

Siguiendo con las propiedades variacionales, en el presente trabajo, se prueba (Teore-
ma 2.44), en esencia, que ser frontera de una región conexa diferenciable isoperimétrica
implica tener curvatura media constante, al constituir un punto crítico del funcional área
para volumen constante. Ahora bien, hay variedades riemannianas donde el conocimiento
de las hipersuperficies compactas con curvatura media constante no permite determinar
las regiones isoperimétricas. Para resolver esta dificultad la idea es considerar regiones que
cumplan una condición más restrictiva: que su frontera sea una hipersuperficie no solamente
de curvatura media constante, sino también estable. La condición de estabilidad requiere,
además de que la hipersuperficie sea un punto crítico para el funcional área (para volumen
encerrado constante), que la derivada segunda de dicho funcional sea no negativa (lo cuál
es más que la bien conocida condición necesaria de mínimo local para una función); véase
[45, Tema 3, Sección 3]. Así, si en un espacio clasificamos las hipersuperficies estables de
curvatura media constante, estas serán las candidatas a frontera de región isoperimétrica.
Este es el caso de los espacios modelo de curvatura constante, donde las únicas hiper-
superficies compactas CMC estables son las esferas geodésicas [4], resultado que permite
resolver el problema isoperimétrico en dichos espacios. En un contexto más general, pero
aún en el ámbito de curvatura constante, podemos considerar los espacios lente L(p, q),
donde p ∈ Z+ y gcd(p, q) = 1. Estos constituyen un tipo especial de variedad tridimensio-
nal que se obtiene como cociente de una esfera S3 bajo una acción libre y diferenciable de
un grupo cíclico finito. Pues bien, existe un resultado que nos dice que las únicas hiper-
superficies estables en L(3, 1) y en L(3, 2) son esferas geodésicas o cocientes de toros de
Clifford; véase [?, pág. 477] para más información al respecto. En espacios de cruvatura no
constante, al igual que sucede con los teoremas de tipo Alexandrov, la determinación de
las hipersuperficies CMC estables se considera un problema muy complejo.

El problema isoperimétrico en una variedad riemanniana M arbitraria puede refor-
mularse en términos del llamado perfil isoperimétrico. Este concepto surge en vista de la
dificultad de determinar las regiones isoperimétricas en variedades riemannianas más com-
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plicadas que las mencionadas arriba. El perfil isoperimétrico de una variedad riemanniana
M , véase [12, pág. 247], es la aplicación IM : (0, V (M)) −→ R, dada por

IM(ν) = ı́nf {A(∂Ω) : V (Ω) = ν, Ω ⊂ M} ,
donde Ω recorre todos los subconjuntos abiertos relativamente compactos deM con frontera
diferenciable, es decir, todas las regiones diferenciables de M (en particular pueden tener un
número finito de componentes). Naturalmente, buscamos de forma explícita la función IM ,
lo cual rara vez es posible, en cuyo caso el foco se centra en derivar propiedades analíticas
de dicha función. Debido a la dificultad de calcular IM , se puede considerar una solución
más débil del problema tratando de proporcionar una cota inferior ϕ(ν) para IM(ν), esto
es, una desigualdad isoperimétrica de la forma

A(∂Ω) ≥ ϕ(V (Ω)),
donde Ω es una región diferenciable y relativamente compacta. Además, se pretende saber
si, dado un valor ν, existe una región Ω de tal manera que V (Ω) = ν y A(∂Ω) = IM(ν), es
decir, si para dicho volumen ν existe una región isoperimétrica (también llamada minimi-
zador) Ω con volumen V (Ω) = ν. Es más, uno se plantea conocer si la frontera de nuestra
región isoperimétrica es diferenciable y, por otro lado, en caso de que la solución exista,
determinar si es única. En lo relativo a la unicidad de las soluciones, se puede probar que
si Ω es una región isoperimétrica en una variedad M y φ : M −→ M es una isometría,
entonces φ(Ω) es una región isoperimétrica en Ω (que podría coincidir o no con Ω). De esta
forma, es importante plantear la cuestión de la unicidad salvo isometrías. Así, cuantas más
isometrías posea una variedad, más difícil será que haya unicidad, en el sentido estricto
de la palabra [45, pág. 6]. En una situación más general tenemos el siguiente teorema de
existencia y regularidad. Véase [12, pág. 248-249] para más detalles del teorema.
Teorema 1.7. Si M es una variedad riemanniana de dimensión n y es compacta o recubre
a un compacto, entonces para cada ν ∈ (0, V (M)), existe una región Ων ⊂ M cuya frontera
minimiza el área entre todas las regiones diferenciables de volumen ν, es decir, IM(ν) =
A(∂Ων). Es más, salvo por un conjunto singular de dimensión de Hausdorff n − 8, la
frontera ∂Ων de cualquier minimizador es una hipersuperficie embebida diferenciable con
curvatura media constante.

Es pertinente hacer varias observaciones. Por un lado, en lo relativo a la regularidad de
las regiones isoperimétricas (y la constancia de la curvatura media de las correspondien-
tes fronteras) no se requiere la hipótesis de compacidad: se tiene para cualquier variedad
riemanniana completa. En relación a la existencia, la hipótesis de la compacidad de M
en el teorema de existencia de regiones isoperimétricas se puede relajar a que V (M) < ∞
[45, pág. 6]. También es sabido que existen regiones isoperimétricas en cualquier variedad
homogénea. Es conveniente enfatizar que en dimensión n ≥ 8, la existencia de soluciones
al problema isoperimétrico se consigue en una categoría de regiones que pueden contener
singularidades en su frontera. A pesar de esto, la cuestión de la existencia no es nada
trivial y existen variedades donde no existen soluciones al problema isoperimétrico; véase
por ejemplo el reciente artículo [3]. Para más información y referencias sobre estas y otras
cuestiones relacionadas pueden consultarse [?], [45].



Capítulo 2

El problema isoperimétrico en el
espacio euclídeo

En este capítulo, estudiaremos el problema isoperimétrico en cualquier espacio euclídeo
Rn donde n ≥ 2. A modo de motivación y, dado que el problema isoperimétrico más
clásico surge al tratar de considerar cuál es la región del plano euclideo R2 que encierra
una mayor área con menor longitud de su frontera, en la primera sección de este capítulo
vamos a ofrecer una demostración de la desigualdad isoperimétrica en R2, donde además de
probar dicha desigualdad veremos que el disco es la región del plano que maximiza su área
minimizando la longitud de su frontera. La demostración de la desigualdad isoperimétrica
en R2 se atribuye al matemático E. Schmidt en 1939 [48] (véase [17, pág. 34] para una
versión traducida). Para la demostración de este resultado, definiremos lo que se entiende
por curva de Jordan en R2, para a continuación enunciar y demostrar la desigualdad
isoperimétrica en el plano. Este teorema nos dice que toda curva de Jordan de longitud l
verifica que l2 ≥ 4πA, donde A es el área que encierra dicha curva. Además, tendremos
que la igualdad se da si y solo si dicha curva es una circunferencia.

En la segunda sección, vamos a demostrar el teorema de Alexandrov en el espacio euclí-
deo Rn debido a A. Alexandrov [1]. Este teorema es una pieza fundamental para el estudio
de las hipersuperficies en el espacio euclídeo Rn, pues establece que las hipersuperficies
embebidas, conexas, compactas y de curvatura media constante en Rn son las esferas. Para
probar este resultado, emplearemos el método de reflexión de planos móviles. Este método
se utiliza para demostrar que las hipersuperficies del espacio euclídeo embebidas, cone-
xas, compactas y de curvatura media constante poseen un plano de simetría en cualquier
dirección. Por otro lado, si tenemos una hipersuperficie del espacio euclídeo en estas condi-
ciones, se puede deducir que es una esfera, por lo que estos argumentos son suficientes para
probar el teorema de Alexandrov. No obstante, para demostrar este teorema necesitaremos
algunos resultados para concluir cuándo dos hipersuperficies en Rn que pueden escribirse
como el grafo de una función son iguales, al menos localmente. Aquí entrarán en juego una
serie de conceptos y resultados del estudio de ecuaciones en derivadas parciales (EDPs)
elípticas, extraídos de [9] y [22].

En la tercera sección de este capítulo, abordaremos las propiedades variacionales de las
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hipersuperficies embebidas compactas de una variedad riemanniana, para posteriormente
aplicar estas fórmulas y resultados en el contexto del problema isoperimétrico en el espacio
euclídeo Rn. Esta sección se centra en dos conceptos clave: por un lado, las variaciones de
hipersuperficies compactas y embebidas en una variedad riemanniana y, por otro lado, las
fórmulas de variación asociadas al área y al volumen de dichas hipersuperficies. La idea
detrás de esto es que una variación de una hipersuperficie M es una deformación diferen-
ciable que genera una familia de hipersuperficies Mt, para t ∈ (−ε, ε), con M0 = M . Esta
deformación se realiza en la dirección de un campo vectorial X que recibirá el nombre
de campo variacional. Con estas y otras definiciones, podremos obtener la fórmula de la
primera variación para el área de una hipersuperficie. Esta nos dice que el vector curvatu-
ra media H⃗ determina la dirección de máxima disminución del área bajo deformaciones.
Siguiendo con las propiedades variacionales, nos preguntaremos por la existencia de varia-
ciones que conservan el volumen. Estas son aquellas que dejan fijo el volumen encerrado
por una hipersuperficie compacta y conexa para un cierto rango del parámetro de defor-
mación t. De esta forma, estaremos en condiciones de dar una caracterización para las
hipersuperficies de curvatura media constante de una variedad riemanniana, pues estas
serán aquellas que son puntos críticos del funcional área para todas las variaciones que
conservan el volumen. Este resultado es fundamental para demostrar que las esferas son
las únicas hipersuperficies embebidas, compactas y conexas de Rn que minimizan el área
fijado un volumen encerrado. En esta parte seguiremos la referencia [49].

En la parte final de este capítulo, emplearemos el estudio desarrollado previamente para
dar respuesta al problema isoperimétrico clásico en el espacio euclídeo Rn. Este nos dirá
que entre todas las hipersuperficies compactas y conexas encerrando un volumen dado,
la de menor área es la esfera. Esto será una consecuencia, prácticamente inmediata, del
teorema de Alexandrov y la caracterización variacional de las hipersuperficies de curvatura
media constante.

2.1. Desigualdad isoperimétrica en R2

Como se ha comentado en la introducción de este capítulo, en esta primera sección
vamos a abordar la desigualdad isoperimétrica en R2. Para ello vamos a comenzar recor-
dando algunas definiciones necesarias antes de pasar a la prueba del teorema central de
esta sección.

Definición 2.1. Sea α : I −→ R2, t 7→ α(t) = (x1(t), x2(t)), una parametrización de una
curva en R2, donde I es un intervalo de R (que puede ser R, un intervalo de la forma [a, b]
o cualquier otro intervalo). Diremos que:

(i) α es regular si es diferenciable y α′(t) ̸= 0, para cada t ∈ I.

(ii) α es cerrada si se cumple una de las siguientes condiciones:

a) I = R y existe un T > 0 tal que α(t+ T ) = α(t), para cada t ∈ R.
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b) I = [a, b] y se verifica que α(a) = α(b). Si además α es diferenciable, se requiere
que sus derivadas de orden k en a y en b coincidan para todo k.

c) Además, diremos que α es cerrada simple si α cumple la condición a) y es
inyectiva en [0, T ), o si α cumple la condición b) y es inyectiva en [a, b).

Definición 2.2. Dada una curva parametrizada por α : R −→ R2, diremos que es una
curva de Jordan si es una curva cerrada y simple.

Definición 2.3. Sea una curva regular contenida en R2 y parametrizada por α : R −→ R2.
Dado [a, b] ⊂ R, se define la longitud del arco de curva α([a, b]) como la siguiente integral:

l(α)|[a,b] =
∫ b

a
|α′(t)|dt. (2.1)

Pasamos ahora a enunciar y demostrar la desigualdad isoperimétrica en el plano euclí-
deo R2. Además, este resultado dará respuesta al problema isoperimétrico en dimensión
n = 2. La demostración de este resultado puede encontrarse en [17, pág. 34]. Pero pri-
mero enunciemos el teorema de la curva de Jordan, pues involucra varios conceptos que
necesitaremos para la demostración de la desigualdad isoperimétrica en el plano R2.

Teorema 2.4 (Teorema de la curva de Jordan). Sea α : [0, l] −→ R2 una curva regular,
cerrada y simple. Entonces R2 \ α([0, l]) tiene exactamente dos componentes conexas y
α([0, l]) es su frontera común.

Observación 2.5. Nótese que debido al Teorema 2.4 una curva regular, cerrada y simple
divide al plano en dos componentes conexas (o regiones), una de ellas acotada que recibe
el nombre de componente interior a la curva y la otra no acotada que recibe el nombre
de componente exterior a la curva. Por otro lado, existe una versión más general de este
teorema, la cual no exige que la curva sea regular. Una demostración de este resultado
puede encontrarse en [25, pág. 169].

Observación 2.6. En ocasiones, nos referiremos a curva haciendo alusión a la traza de su
parametrización y no a la parametrización en sí. Es decir, si tenemos una curva parame-
trizada por α : I ⊂ R −→ R, también la identificaremos con su traza C = α(I).

Teorema 2.7. Sea α : R −→ R2 una curva de Jordan, regular, de longitud l y sea A el
área de la región interior Ω encerrada por la curva C = α(R). Entonces, se cumple que
l2 ≥ 4πA. Además, la igualdad se da si y solo si C es una circunferencia.

Demostración. Dado que por hipótesis tenemos que la curva es una curva de Jordan,
regular y diferenciable podemos tomar una parametrización por longitud de arco y asumir
que está dada por α : [a, b] −→ R2, la cual suponemos en la forma α(t) = (x(t), y(t)) en
R2, donde el intervalo [a, b] es un intervalo de longitud mínima tal que α(a) = α(b). Es
más, como sabemos por hipótesis que la longitud de nuestra curva es l, podemos suponer,
sin pérdida de generalidad, que [a, b] = [0, l]. De esta forma, podemos obtener la siguiente
fórmula para el área de la región interior Ω encerrada por la curva, que denotamos por
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A(Ω). Además, suponemos que la curva está positivamente orientada, es decir, que se
recorre en el sentido contrario a las agujas del reloj.

A(Ω) =
∫ ∫

Ω
1dxdy =

∫ l

0
⟨(−y(t), 0), (x′(t), y′(t))⟩dt, (2.2)

donde la segunda igualdad se ha obtenido empleando el Teorema de Green en el plano.
Por otro lado, ∫ l

0
x(t)y′(t) dt =

∫ l

0
(x(t)y(t))′ dt −

∫ l

0
x′(t)y(t) dt

= [x(l)y(l) − x(0)y(0)] −
∫ l

0
x′(s)y(s) ds

= −
∫ l

0
x′(s)y(s)ds.

(2.3)

Combinado la fórmula (2.3) con la fórmula (2.2) obtenemos que

A(Ω) =
∫ l

0
x(t)y′(t)dt = 1

2

∫ l

0
(x(t)y′(t) − y(t)x′(t))dt. (2.4)

Consideremos dos rectas paralelas E,E ′ que no son tangentes a la curva C = α([0, l]).
En ese caso, podemos desplazarlas hasta que ambas sean tangentes a la curva C. Así,
obtendríamos dos rectas paralelas L y L′ tangentes a la curva C, por lo que la curva estaría
contenida en la región comprendia por las rectas L y L′. Tomemos S1

r un circunferencia de
radio r que sea tangente a las rectas L y L′, pero que no corte a la curva C. Sea O el centro
de dicha circunferencia y tomemos un sistema de coordenadas centrado en O y cuyo eje
x sea perpendicular a las rectas L y L′. Supongamos que la parametrización que tenemos
de nuestra curva, a saber, α(s) = (x(s), y(s)), tiene puntos de tangencia con L y L′ en los
valores del parámetro s = 0 y s = s1 respectivamente.

Figura 2.1: Idea de la demostración desigualdad isoperimétrica en el plano. Imagen extraída
de [17].
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Como se muestra en la Figura 2.1, definimos la parametrización de S1
r mediante ᾱ(t) =

(x̄(t), ȳ(t)) = (x(t), ȳ(t)) con t ∈ [0, l]. De la definición de S1
r se sigue que la distancia

entre las rectas L y L′ es 2r, por lo que aplicando la fórmula (2.4) y llamando Ā al área
interior encerrada por la circunferencia S1

r, tenemos que A = A(Ω) =
∫ l

0 x(t)y′(t)dt y
πr2 = Ā = −

∫ l
0 x

′(t)ȳ(t)dt. De esta forma, podemos deducir que:

A+ πr2 =
∫ l

0
(x(t)y′(t) − ȳ(t)x′(t)) dt ≤

∫ l

0

√
(x(t)y′(t) − ȳ(t)x′(t))2 dt

≤
∫ l

0

√
(x2(t) + ȳ2(t))((x′(t))2 + (y′(t))2) dt

=
∫ l

0

√
x̄2(t) + ȳ2(t)dt = lr

(2.5)

Nótese que en la desigualdad anterior hemos utilizado que |⟨v1, v2⟩|2 ≤ |v1|2|v2|2, donde
la igualdad se da si y solo si v1 y v2 son múltiplos el uno del otro. De esta forma, hemos
obtenido que A+ πr2 ≤ lr, pero por otro lado, utilizando la desigualdad entre las medias
geométrica y aritmética, obtenemos que

√
A

√
πr ≤ 1

2(A+ πr2) ≤ 1
2 lr. (2.6)

Entonces 4πAr2 ≤ l2r2 y, por lo tanto, 4πA ≤ l2, lo que concluye la prueba para la primera
parte del enunciado.

Para la segunda parte del enunciado, supongamos que 4πA = l2. Por (2.6), dado que
tenemos la igualdad entre la primera y la tercera desigualdad, deducimos que A = πr2,
por lo tanto, l = 2πr y en consecuencia ese r no depende de la elección de la dirección
de L. Además, por la igualdad en la expresión (2.5) obtenemos que (x, ȳ) = λ(y′,−x′) y
entonces λ = x

y′ = − ȳ
x′ =

√
x2+ȳ2√

(y′)2+(x′)2
= ±r, por lo que x = ±ry′, siempre que y′ ̸= 0.

Si y′ = 0 entonces dado que nuestra curva es regular, se tiene que cumplir que x′ ̸= 0 y,
por lo tanto, el argumento que hemos empleado sigue siendo válido, pues tendríamos que
(0, ȳ) = λ(0,−x′), de donde obtendríamos que ȳ = −λx′ y podríamos obtener análogamente
el valor del parámetro λ. Ahora bien, al no depender r de la dirección de la elección de L
podemos intercambiar x e y en la última relación, por lo que y = ±rx′. Así, x2(s)+y2(s) =
r2((x′(s))2 + (y′(s))2) = r2. Esto nos dice que nuestra curva C es una circunferencia y que
por lo tanto la región interior Ω contenida por dicha curva es un círculo.

2.2. El Teorema de Alexandrov en Rn

En esta sección vamos a demostrar el teorema de Alexandrov en el espacio euclídeo
Rn. Para ello, como ya se comentó, emplearemos el método de reflexión de planos móviles,
debido precisamente a Alexandrov en su artículo seminal [2]. Para aplicar dicho método, se
necesitará una serie de definiciones y resultados del estudio de las ecuaciones en derivadas
parciales (EDPs) elípticas que introduciremos en la primera subsección de esta parte de la
memoria.
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2.2.1. Curvatura media de un grafo y resultados de EDPs elíp-
ticas

En esta subsección vamos a exponer los resultados más relevantes de EDPs elípticas
que necesitamos para demostrar el teorema de Alexandrov. Además, necesitaremos algu-
nos cálculos sobre hipersuperficies escritas como el grafo de una función de clase C2 que
realizaremos a continuación.
Observación 2.8. Tomemos un abierto U de Rn y sea f una función real en C2(U). El
grafo de f nos da una hipersuperficie en Rn+1 definida por

T = {(x1, ..., xn, f(x1, ..., xn)) : (x1, ..., xn) ∈ U} .

Por un lado, es claro que T es un conjunto de nivel para la aplicación (x1, ..., xn+1) 7→
xn+1 − f(x1, ..., xn); de hecho, es el conjunto de nivel del cero. Por otro, el campo de
vectores normal unitario a T apuntando hacia abajo tiene la expresión

ν(x1, ..., xn) = 1√
1 + |∇f(x1, ..., xn)|2

(∇f(x1, ..., xn),−1). (2.7)

Es decir, para cada (x1, ..., xn) ∈ U el vector ν(x1, ..., xn) puede verse como un punto en la
semiesfera unitaria inferior abierta Sn

− de Rn+1, la cual puede parametrizarse como

(y1, ..., yn,−
√

1 − |(y1, ..., yn)|2)

con (y1, ..., yn) ∈ Rn y |(y1, ..., yn)| < 1.
En lo que sigue consideraremos en T las coordenadas (x1, ..., xn) y en Sn

− las coordenadas
(y1, ..., yn). En estas coordenadas, la aplicación de Gauss para T viene dada por la expresión
G : T −→ Sn

−, x 7−→ G(x) = ∇f(x)√
1+|∇f(x)|2

.
Sabemos que las curvaturas principales de la hipersuperficie T en un punto p de la

misma son los autovalores del operador Sp
ν(p). Estos autovalores vendrán dados por los

autovalores de la matriz jacobiana de la aplicación de Gauss que hemos calculado en el
párrafo anterior, pero cambiada de signo. De esta forma, nos bastará con calcular los
autovalores de dicha matriz jacobiana para obtener las curvaturas principales en el punto
p y calcular así la curvatura media en cada punto de la hipersuperficie.

En primer lugar, nuestra aplicación de Gauss en coordenadas tiene la siguiente expresión

(y1, ..., yn) = 1√
1 + |∇f(x1, ..., xn)|2

(
∂f

∂x1
, ...,

∂f

∂xn

)
,

por lo que

∂yi

∂xj

= 1
1 + |∇f |2

(
∂2f

∂xi∂xj

√
1 + |∇f |2 − ∂f

∂xi

2∑n
k=1

∂2f
∂xk∂xj

∂f
∂xk

2
√

1 + |∇f |2

)

= 1
(1 + |∇f |2)3/2

(
∂2f

∂xi∂xj

(1 + |∇f |2) − ∂f

∂xi

n∑
k=1

∂2f

∂xk∂xj

∂f

∂xk

)
.
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De esta forma, obtenemos que para cada p ∈ T

Sp
ν(p) = −

( ∂2f
∂xi∂xj

(1 + |∇f |2) − ∂f
∂xi

∑n
k=1

∂2f
∂xk∂xj

∂f
∂xk

(1 + |∇f |2)3/2

)
i,j

, (2.8)

donde dicha expresión matricial está tomada respecto de la base de vectores coordenados
de la parametrización de T que estamos considerando. Así, podemos calcular la curvatura
media en un punto p de nuestra hipersuperficie T como

H(p) = tr(Sp
ν(p)) =

(
n∑

i=1
− ∂

∂xi

( ∂f
∂xi√

1 + |∇f(p)|2

))

= −
(

1√
1 + |∇f(p)|2

n∑
i=1

∂2f

∂2xi

(p) − 1
(1 + |∇f(p)|2)3/2

n∑
i=1

∂f

∂xi

(p)
n∑

k=1

∂2f

∂xk∂xi

(p) ∂f
∂xk

(p)
)

= −
(

∆f(p)√
1 + |∇f(p)|2

−
∑n

i,k=1
∂f
∂xi

(p) ∂2f
∂xk∂xi

(p) ∂f
∂xk

(p)
(1 + |∇f(p)|2)3/2

)

= −
(

∆f(p)√
1 + |∇f(p)|2

− D2f(p)(∇f(p),∇f(p))
(1 + |∇f(p)|2)3/2

)
.

Nótese que D2f(p) representa la matriz hessiana de f en el punto p y además la estamos
considerando como una aplicación bilineal. Ahora bien, definamos

āij(y) := −
(

δij√
1 + |y|2

− yiyj

(1 + |y|2)3/2

)
para cada (y1, ..., yn) ∈ Rn. (2.9)

De esta forma, obtenemos que la curvatura media en un punto p de nuestra hipersuperficie
tiene la expresión

H(p) =
n∑

i,j=1
āij(p)(∇f(p)) ∂2f

∂xi∂xj

(p). (2.10)

Nos centramos ahora en establecer las definiciones y resultados sobre EDPs elípticas
necesarios para probar el teorema de Alexandrov en Rn. Para ello vamos a comenzar con
el principio fuerte del máximo y el lema de Hopf.

Introducimos a continuación el concepto de EDP SMP-admisible, donde SMP son las
siglas de strong maximun principle (principio fuerte del máximo). Esta definición nos será
de gran utilidad en lo que sigue.

Definición 2.9. Dado U abierto de Rn diremos que una EDP con incógnita ω ∈ C2(U) es
SMP − admisible si es de la forma

n∑
i,j=1

aij(x) ∂2ω

∂xi∂xj

(x) +
n∑

k=1
bk(x) ∂ω

∂xk

(x) = 0 para cada x ∈ U (2.11)

y cumpliendo las siguientes condiciones:
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1. Las funciones aij, bk : U −→ R son acotadas.

2. Para cada x ∈ U la matriz A(x) = (aij(x))n
i,j=1 es simétrica y uniformemente elíptica.

El concepto uniformemente elíptica se refiere a que existe una constante λ > 0 de
forma que para cada x ∈ U el menor autovalor de A(x) es al menos λ. Esto es
equivalente a que la función matricial A = (aij)n

i,j=1, donde hacemos variar el punto x,
es uniformemente elíptica. Es decir, si vemos A(x) como una forma bilineal simétrica,
esto es equivalente a que A(x)(ξ, ξ) ≥ λ|ξ|2 para cada x ∈ U y para cada ξ ∈ Rn,
siendo λ > 0 una constante independiente de x y de ξ.

El concepto de EDP elíptica SMP-admisible ha sido extraído de [9]. Por otro lado,
nótese que una EDP SMP-admisible no es más que una EDP lineal homogénea elíptica
de orden dos que no posee término de orden cero. Es decir, no tiene un término de la
forma c(x)ω(x). Por otro lado, dado un abierto U de Rn y dado x ∈ U , nos va a interesar
considerar la aplicación bilineal cuya matriz asociada es

Ā(x) = (−āij(x))n
i,j=1, (2.12)

donde āij viene dada por la ecuación (2.9), pues es la que nos aparecerá en los resultados
previos a la demostración del teorema de Alexandrov.

Teorema 2.10 (Principio fuerte del máximo). Sea U un subconjunto de Rn abierto, conexo
y acotado. Supongamos que ω ∈ C2(U)⋂ C(Ū) es una solución de una EDP que sea SMP-
admisible. Si ω alcanza su máximo sobre Ū en un punto interior, entonces ω es constante
en U .

Teorema 2.11 (Lema de Hopf). Sea U un subconjunto abierto de Rn y sea ω ∈ C2(U)⋂ C(Ū)
una solución de una EDP SMP-admisible. Supongamos que existe un punto y ∈ ∂U de
forma que ω(y) > ω(x) para cada x ∈ U y supongamos que existe una bola abierta B
contenida estrictamente en U con y ∈ ∂B. Entonces, ∂ω

∂ν
(y) > 0 donde ese ν es el vector

normal unitario exterior a B en el punto y.

La demostración tanto del Teorema 2.10, como del Teorema 2.11, pueden verse en [22,
Section 6.4].

Observación 2.12. En el Teorema 2.11, la hipótesis de la existencia de la bola abierta B
se cumple, por ejemplo, si la frontera ∂U del abierto U es diferenciable de clase C2.

A continuación, vamos a enunciar unos resultados que nos darán condiciones suficientes
para determinar cuándo dos hipersuperficies que pueden escribirse, al menos localmente,
como el grafo de una función son la misma.

Lema 2.13. Sea V un abierto de Rn acotado. Consideremos la matriz Ā(·) = (−āij(·))n
i,j=1

como aplicación bilineal (dada en la ecuación (2.12)). Entonces existe λ > 0 de forma que
Ā(x)(ξ, ξ) ≥ λ|ξ|2 para cada x ∈ V , ξ ∈ Rn.
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Demostración. Si tomamos un x ∈ V arbitrario y consideramos los coeficientes −āij(x)
dados en la Observación 2.8 (ecuación (2.9)) obtenemos que

Ā(x) = (−āij(x))n
i,j=1 =

(
δij√

1 + |x|2
− xi · xj

(1 + |x|2)3/2

)n

i,j=1
.

De esta forma, si tomamos ξ ∈ Rn arbitrario y le aplicamos Ā(x) obtenemos

Ā(x)(ξ, ξ) = −
n∑

i,j=1
āij(x)ξi · ξj =

n∑
i,j=1

−āij(x)ξi · ξj

=
(

|ξ|2√
1 + |x|2

− ⟨x, ξ⟩2

(1 + |x|2)3/2

)

≥ |ξ|2√
1 + |x|2

− |x|2 · |ξ|2

(1 + |x|2)3/2

≥ |ξ|2
(

1√
1 +M2

− M2

(1 +M2)3/2

)
= |ξ|2 1

(1 +M2)3/2 .

La primera desigualdad se obtiene aplicando Cauchy-Schwarz, pues obtenemos que ⟨x, ξ⟩2 ≤
|x|2 · |ξ|2. Ahora bien, como V es acotado, existe M > 0 tal que |x| ≤ M para cada x ∈ V ,
por lo que se tiene la última desigualdad. Además, si tomamos λ = 1

(1+M2)3/2 tenemos el
resultado.

Lema 2.14. Sea U un abierto conexo y acotado de Rn y sean u, v ∈ C2(U)⋂ C(Ū) tales
que ∇u,∇v,D2u,D2v son acotadas en U . Supongamos que las hipersuperficies de Rn+1 que
definen los grafos de u y v son de curvatura media constante y tienen la misma curvatura
media (en ambos casos respecto de un campo normal unitario que apunta hacia abajo).
Entonces, ω := u− v es solución de una EDP SMP-admisible.

Demostración. Por la Observación 2.8 tenemos que la curvatura media de la hipersuperfi-
cie dada por el grafo de u es H = ∑n

i,j=1 āij(∇u) ∂2u
∂xi∂xj

, mientras que para la hipersuperficie
definida por v tenemos H = ∑n

i,j=1 āij(∇v) ∂2v
∂xi∂xj

. Nótese que aunque en principio la defini-
ción de H depende del punto de nuestra hipersuperficie, en este caso, al ser hipersuperficies
de curvatura media constante podemos obviar dicho punto.

Ahora bien, por hipótesis ambas curvaturas coinciden, por lo que podemos restar ambas
expresiones obteniendo

0 =
n∑

i,j=1
āij(∇v) ∂2v

∂xi∂xj

− āij(∇u) ∂2u

∂xi∂xj

. (2.13)

Tomemos ω = u − v. Si sumamos y restamos el término āij(∇v) ∂2u
∂xi∂xj

en el interior del
sumatorio de la expresión anterior obtenemos que

0 =
n∑

i,j=1
−āij(∇v) ∂2ω

∂xi∂xj

+ (−āij(∇u) + āij(∇v)) ∂2u

∂xi∂xj

. (2.14)
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Podemos aplicar el teorema fundamental del cálculo para obtener

āij(∇v) − āij(∇u) =
∫ 1

0

∂

∂t
āij(t∇v + (1 − t)∇u) dt. (2.15)

Utilizando la regla de la cadena para derivar la expresión de dentro de la integral en (2.15)
obtenemos la expresión

∂

∂t
āij((1 − t)∇u+ t∇v) = ⟨∇āij((1 − t)∇u+ t∇v),∇u− ∇v⟩

= ⟨∇āij((1 − t)∇u+ t∇v),∇ω⟩.

Es decir, hemos obtenido que

āij(∇v) − āij(∇u) = ⟨
∫ 1

0
∇āij((1 − t)∇u+ t∇v) dt,∇ω⟩. (2.16)

Para ver que verifica una EDP SMP-admisible, tomemos un p ∈ U y sean

aij(p) := −āij(∇u(p)),

bk(p) :=
n∑

i,j=1

∂2v

∂xi∂xj

(p)
∫ 1

0

āij

∂xk

((1 − t)∇u+ t∇v) dt.

Por lo que por (2.13) se puede reescribir (2.16) como

0 =
n∑

i,j=1
aij(p)

∂2ω

∂xi∂xj

(p) +
n∑

k=1
bk(p) ∂ω

∂xk

(p) para cada p ∈ U. (2.17)

Nos faltaría comprobar en primer lugar, que las funciones aij y las bk son acotadas. Esto
es claro por la hipótesis de acotación de ∇u,∇v,D2u y D2v. Por lo tanto, para concluir
la demostración, tan solo falta ver que la matriz Ā(p) := (−āij(p))n

i,j=1 es simétrica y
uniformemente elíptica. La simetría es clara por la Observación 2.8 pues ya calculamos en
ella los āij(p).

Por otro lado, dado que por hipótesis U es un abierto acotado de Rn, estamos en
condiciones de aplicar el Lema 2.13, obteniendo así que Ā(p) es uniformemente elíptica
al tener por coeficientes los aij(p) := −āij(p), calculados en la Observación 2.8. Como la
elección de p era arbitraria, obtenemos el resultado.

Con estos resultados, estamos en condiciones de presentar dos lemas que nos proporcio-
narán condiciones suficientes para concluir cuándo dos hipersuperficies de curvatura media
constante son la misma.

Lema 2.15. Sea U = {p ∈ Rn : |p| < r}, es decir, U es la bola abierta de radio r centrada
en el origen de Rn. Supongamos que tenemos dos funciones u, v ∈ C2(U)⋂ C(Ū) que deter-
minan el grafo de dos hipersuperficies de curvatura media constante con la misma curvatura
media, tales que ∇u, ∇v, D2u, D2v son acotadas en U . Si u ≤ v en U y u(0) = v(0),
entonces u = v en U .
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Demostración. Tomemos ω = u − v. Por hipótesis sabemos que u ≤ v en U , por lo que
ω ≤ 0 en U y como u(0) = v(0), entonces ω alcanza un máximo en el punto 0. Ahora bien,
por el Lema 2.14 ω es solución de una EDP SMP-admisible, por lo tanto, podemos aplicar
el principio fuerte del máximo (Teorema 2.10) a ω. De esta forma, ω ha de ser constante
en U , pero como ω(0) = u(0) − v(0) = 0, entonces ω ≡ 0, por lo que u = v en U .

Lema 2.16. Sea U = {p ∈ Rn : |p| < r, pn > 0}, es decir, U es la mitad superior de la
bola abierta de radio r centrada en el origen de Rn. Supongamos que tenemos u, v ∈
C2(U)⋂ C(Ū) dos funciones que determinan el grafo de dos hipersuperficies de curvatura
media constante con la misma curvatura media, tales que ∇u,∇v,D2u,D2v son acotadas
en U . Si u ≤ v en U , u(0) = v(0) y ∂u

∂xn
(0) = ∂v

∂xn
(0), entonces u = v en U .

Demostración. Tomemos ω = u − v. Por hipótesis sabemos que u ≤ v en U por lo que
ω ≤ 0 en U y que ω alcanza un máximo en 0, pues ω(0) = 0. Ahora bien, por el Lema 2.15
podemos aplicar el Lema de Hopf (Lema 2.11) en el punto 0. Como ∂ω

∂xn
(0) = 0 obtenemos

que ω ha de ser constante en U , pero como ω(0) = u(0) − v(0) = 0, entonces ω ≡ 0 en U .
Así, obtenemos que u = v en U .

2.2.2. El teorema de Alexandrov
A continuación, vamos a demostrar el teorema de Alexandrov en Rn. Como ya comen-

tamos en la introducción de este capítulo, este resultado constituirá una pieza fundamental
en la resolución del problema isoperimétrico en el espacio euclídeo Rn. En su demostración
se emplea una técnica conocida como el método de reflexión o de los planos móviles de Ale-
xandrov. Esta técnica fue creada por Alexandrov en [1], para probar que en Rn cualquier
hipersuperficie compacta, conexa y de curvatura media constante debe tener un plano de
simetría en cualquier dirección. Una vez probado esto, veremos un resultado que nos dice
que una hipersuperficie en estas condiciones ha de ser una esfera, lo que nos permitirá pro-
bar el resultado central de esta sección y concluir que cualquier hipersuperficie compacta,
conexa y de curvatura media constante en Rn es una esfera.

En lo que queda de sección, vamos a suponer que M es una hipersuperficie embebida,
conexa y compacta de Rn. En las siguientes líneas probaremos que si M tiene un hiperplano
de simetría en cualquier dirección entonces M es una esfera. Para demostrar este resultado,
nos será de gran utilidad conocer el concepto de centro de masa para una hipersuperficie
de Rn. Veamos su definición.

Definición 2.17. Dada una hipersuperficie compacta M de Rn y dado r⃗ el vector posición
en cada punto de M , se define el centro de masa R de M como la única solución de la
expresión

R = 1
V (M)

∫
M
r⃗ dV,

donde dV denota a la n-forma de volumen en Rn.

Lema 2.18. Sea M una hipersuperficie compacta y conexa de Rn. Si M tiene un plano de
simetría en cualquier dirección, entonces es una esfera.
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Demostración. Por medio de una traslación, si fuese necesario, podemos ubicar M de forma
que su centro de masa (Definición 2.17) ocupe el origen de coordenadas. De esta forma,
es claro que ahora cada plano de simetría de M contiene al origen, pues cada uno de sus
planos de simetría pasa por su centro de masa. Por hipótesis, M posee un plano de simetría
en cada dirección, por lo que cada plano conteniendo al origen es una plano de simetría
para M .

Considérese el grupo O(n) de isometrías lineales de Rn. Sabemos que cada elemento
de este grupo puede escribirse como una composición finita de reflexiones respecto de
hiperplanos que contienen al origen, véase [30, Sections 0.3, 0.4] y [21, Section 2.3]. Ahora
bien, como M es invariante bajo esa reflexión, M es invariante bajo cada transformación
ortogonal. Así, como M es conexa y cerrada, M ha de ser una esfera.

En virtud del lema anterior, el teorema de Alexandrov se seguirá de probar que toda
hipersuperficie conexa y compacta de Rn con curvatura media constante tiene un hiper-
plano de simetría en cualquier dirección. Esto será el objetivo del siguiente resultado, que
constituye el núcleo central de la prueba del teorema de Alexandrov mediante el método
de los planos móviles. Pero antes recordemos el teorema de separación de Jordan-Brouwer.
Este resultado nos dice que cualquier hipersuperficie compacta y conexa de Rn divide al
espacio euclídeo en dos regiones conexas.

Teorema 2.19 (Teorema de separación de Jordan-Brouwer). Sea M una hipersuperficie
compacta y conexa del espacio euclídeo Rn. Entonces M divide a Rn en dos regiones cone-
xas, una de ellas exterior, que denotamos por D0 y una interior, que denotamos por D1.
Además, D1 es una variedad compacta con borde ∂D1 = M .

Una demostración del Teorema 2.19 puede verse en [24, pág. 89].

Proposición 2.20. Sea M una hipersuperficie de Rn+1 compacta, conexa y de curvatura
media constante. En estas condiciones, M posee un plano de simetría en cualquier direc-
ción.

Demostración. Supongamos que M es una hipersuperficie embebida de Rn+1 compac-
ta, conexa y de curvatura media constante. Sea ξ ∈ Sn, donde Sn es la esfera unita-
ria de Rn+1 y ese ξ lo mantenemos fijo. Consideremos P = {x ∈ Rn+1 : ⟨x, ξ⟩ = 0} y
Pt = {x ∈ Rn+1 : ⟨x, ξ⟩ = t} = P + tξ de forma que t ∈ R. Por lo tanto, es claro que
P es un hiperplano de Rn+1 que pasa por el origen y es ortogonal a ξ y, por otro la-
do, Pt se obtiene a partir de P trasladándolo una distacia t en la dirección de ξ. Ahora
bien, para cada t ∈ R se tiene que Pt divide a M en dos partes; por un lado, la región
M+

t := M
⋂ {x ∈ Rn+1 : ⟨x, ξ⟩ ≥ t} y, por otro, M−

t := M
⋂ {x ∈ Rn+1 : ⟨x, ξ⟩ ≤ t}. De

esta forma, nótese que M+
t y M−

t son hipersuperficies con borde ∂M+
t = ∂M−

t = M
⋂
Pt.

Como M es compacta por hipótesis, sabemos por el Teorema 2.19 que es la frontera de
una región Ω ⊆ Rn+1 acotada y cerrada. Definamos ahora M̄−

t como la reflexión respecto
de Pt de M−

t . Entonces dado t ∈ R suficientemente pequeño, negativo si fuese necesario,
M̄−

t = ∅ pues el hiperplano Pt quedaría por debajo de M . Así, si vamos aumentando el
valor del t, existirá un t ∈ R para el cual M̄−

t

⋂Ω ̸= ∅.
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Definamos t0 := inf
{
t ∈ R : M̄−

t ̸⊂ Ω
}

y nótese que t0 < ∞ al ser M compacta. Fijemos
t = t0. En ese caso para ese valor del parámetro t ocurren al menos una de las dos siguientes
situaciones:

Caso 1: La intersección int(M+
t )⋂ int(M̄−

t ) ̸= ∅, es decir, M+
t y M̄−

t tienen un punto
interior en común.

Caso 2: Existe un punto y ∈ M
⋂
Pt de forma que TyM

+
t = TyM̄

−
t .

Para el primer caso, por el carácter minimal de t = t0 podemos escribir M̄−
t como

un grafo sobre el hiperplano Pt. Ahora queremos ver que si tomamos un punto y ∈
int(M+

t )⋂ int(M̄−
t ) existe un entorno abierto de y en el cual las dos hipersuperficies M+

t

y M̄−
t coinciden. En efecto, sea pues un punto y de esta forma y tomemos un sistema de

coordenadas (x1, ..., xn+1) con las siguientes propiedades:

1. El origen es el punto y.

2. span {∂x1, ..., ∂xn} es el espacio tangente a M en ese punto y.

3. El vector ∂xn+1 se corresponde con la dirección ξ.

Tomando estas coordenadas y aplicando el teorema de la función implícita, existe una
función u y un entorno U del 0 de Rn, de forma que, en este entorno, M̄−

t viene dada
por la ecuación xn+1 = u(x1, ..., xn). Nótese además que u(0) = 0, pues se corresponde al
punto y. Ahora bien, como y ∈ int(M̄−

t ) y el segundo caso no puede darse para valores de t
menores que t0 debido a su carácter minimal, sabemos que el vector normal a M̄−

t en y no
es paralelo a Pt. Por otro lado, debido a la minimalidad de t = t0, M̄−

t queda por debajo
de M+

t , luego M̄−
t y M+

t tienen el mismo plano tangente en y. De aquí deducimos que el
vector normal a M+

t en y no es paralelo a Pt, por lo que restringiendo el entorno U del
origen de nuestras coordenadas si fuese necesario, se tiene que:

Existe una función diferenciable v : U −→ R con v(0) = 0 cumpliendo que M+
t puede

escribirse como (x1, ..., xn, v(x1, ..., xn)).

Se verifica que ∇u, ∇v, D2u, D2v están acotadas en U .

Así, como M̄−
t queda por debajo de M+

t , u ≤ v en U , además u(y) = v(y). Luego aplicando
Lema 2.15 obtenemos que u = v en U .

Como consecuencia de la argumentación previa deducimos que int(M+
t )⋂ int(M̄−

t ) es
un subconjunto abierto de M̄−

t , ya que para cada punto y ∈ int(M+
t ) ∩ int(M̄−

t ), podemos
encontrar un abierto U conteniendo a y donde M+

t y M̄−
t coinciden. La intersección de

estos grafos en un entorno abierto es también un conjunto abierto, ya que las funciones que
los definen son continuas y diferenciables. Además, dicho subconjunto es también cerrado
en M−

t , pues M+
t

⋂
M̄−

t es cerrado en M̄−
t . Esto se debe a que gracias al carácter minimal

de t0, cualquier punto límite de int(M+
t )⋂ int(M̄−

t ) que sea punto de M̄−
t ha de pertenecer

a M+
t , de lo contrario podríamos encontrar un valor menor para t de forma que M̄−

t no
corte a M+

t , lo que contradice la elección de t0. Así, si y ∈ int(M+
t )⋂ int(M̄−

t ) las dos
hipersuperficies, M̄−

t y M+
t , coinciden en la componente conexa de int(M̄−

t ) que contiene a
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y. Es decir, la clausura de la componente conexa en Rn+1 de int(M̄−
t ) que contiene al punto

y y su reflexión están contenidas en M . De esta forma, si juntamos M+
t y M−

t forman una
hipersuperficie cerrada, conexa y contenida en M , luego han de ser toda la hipersuperficie
M . Por lo tanto, hemos probado que Pt con t = t0 es un plano de simetría de M .

Finalmente, para el segundo caso supongamos un punto y ∈ M
⋂
Pt tal que TyM

+
t =

TyM̄
−
t , donde recordemos que habíamos fijado t = t0. En ese caso el espacio tangente a M

en y contiene a la dirección ξ. De forma análoga al caso anterior tomemos un sistema de
coordenadas (x1, ..., xn+1) con las siguientes propiedades:

1. El origen es y.

2. span {∂x1, ..., ∂xn} es el espacio tangente a M en y.

3. La coordenada xn corresponde a la dirección ξ.

4. La coordenada xn+1 corresponde a la dirección normal apuntando hacia afuera de M
en el punto y.

En estas coordenadas y, de forma análoga al caso anterior, M+
t y M̄−

t pueden escribirse
localmente como el grafo de una función. Es decir, aplicando el teorema de la función
implícita, M̄−

t está dada por xn+1 = u(x1, ..., xn) y M+
t está dada por xn+1 = v(x1, ..., xn)

para ciertas u, v : Ū −→ R, donde U = {x ∈ Rn : |x|2 < r, xn > 0} para algún r > 0
suficientemente pequeño y u, v ∈ C2(U)⋂ C(Ū). Así, tomemos un r suficientemente pequeño
de forma que ∇u,∇v,D2u,D2v sean acotadas en U . Ahora bien, como y ∈ M+

t

⋂
M̄−

t , por
las coordenadas que hemos fijado, u(0) = v(0). Entonces como el vector normal a M
en y es tangente a Pt con t = t0, tenemos que ∂u

∂xn
(0) = ∂v

∂xn
(0) y, por la minimalidad

de t0, u ≤ v en U . Aplicando el Lema 2.16 obtenemos que u = v en U . Por lo tanto,
int(M+

t )⋂ int(M̄−
t ) ̸= ∅ y en consecuencia podemos reducirnos al primero de los casos.

Corolario 2.21 (Teorema de Alexandrov). Sea M una hipersuperficie embebida de Rn+1

compacta, conexa y de curvatura media constante. Entonces M es una n-esfera.

Demostración. Por la Proposición 2.20 sabemos que al ser M una hipersuperficie de Rn+1

compacta, conexa y de curvatura media constante, M posee un plano de simetría en cual-
quier dirección. Ahora bien, por el Lema 2.18, si esto ocurre, M es una n-esfera.

2.3. Fórmulas y propiedades variacionales
Dado que uno de nuestros objetivos es determinar cuáles son las soluciones al problema

isoperimétrico en Rn, a lo largo de esta sección vamos a introducir el concepto de variación
de una hipersuperficie M en una variedad riemanniana M̄ y la fórmula de la primera
variación. De forma intuitiva, una variación de una hipersuperficie M consiste en una
deformación de M , a través de una familia diferenciable Mt de hipersuperficies, con t ∈
(−ε, ε), de forma que M0 = M . Dicha deformación se realiza en la dirección de vectores
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que conforman un campo de vectores a lo largo de M denominado campo de vectores
variacional.

Una vez tratadas las principales definiciones sobre variaciones y la fórmula de la prime-
ra variación, dado que pretendemos dar respuesta al problema isoperimétrico en el espacio
euclídeo Rn, nos centraremos en las variaciones que preservan el volumen. Es decir, si no-
sotros tenemos un volumen dado, el problema isoperimétrico nos hace plantearnos cuáles
de entre todas las hipersuperficies que encierran ese volumen minimizan su área. Estas
hipersuperficies se van a corresponder con mínimos para la función área, entre todas las
hipersuperficies encerrando ese volumen y, por lo tanto, serán puntos críticos para dicha
función, por lo que ∂

∂t
|t=0A(Mt) = 0, donde Mt, t ∈ (−ε, ε), es una variación de una de estas

hipersuperficies. Por otro lado, en lo referente al volumen encerrado por una hipersuperficie,
ya que en una variedad riemanniana ambiente arbitraria no podemos apelar al Teorema de
Jordan-Brouwer, supondremos que nuestras hipersuperficies embebidas dividen a la varie-
dad ambiente en dos regiones, siendo al menos una de ellas acotada. Probaremos además la
existencia de variaciones que preservan el volumen, dando finalmente una caracterización
de las hipersuperficies con curvatura media constante de una variedad riemanniana, como
aquellas que son puntos críticos del funcional área para cualquier variación que preserve
el volumen. De esta forma, estaremos en condiciones de probar el problema isoperimétrico
en el espacio Rn, combinando esta caracterización con el Teorema de Alexandrov. Para los
contenidos de esta sección hemos seguido principalmente las referencias [49], [46].

2.3.1. Fórmula de la primera variación
Comenzamos con las definiciones y resultados básicos sobre variaciones y algunas pro-

piedades relevantes.

Definición 2.22. SeaM una hipersuperficie embebida de una variedad riemanniana (M̄, g)
de dimensión n. En estas condiciones, una variación de M consiste en una aplicación
diferenciable

F : M × (−ε, ε) −→ M̄

de forma que para cada t ∈ (−ε, ε), ε > 0, la función Ft : M −→ M̄ , dada por Ft(p) :=
F (p, t) para cada p ∈ M , satisface las siguientes condiciones:

(i) F0 es la inclusión.

(ii) Ft : M −→ M̄ es un embebimiento para cada t ∈ (−ε, ε).

El campo vectorial variacional X en un punto p ∈ M se define como el vector tangente
en t = 0 a la curva t 7→ Ft(p). Es decir, Xp = ∂F

∂t
(p, 0) = (dF )|(p,0)(∂t). Además, diremos que

la variación F con campo variacional X es de soporte compacto si el campo variacional X
tiene soporte compacto en M . Llamaremos soporte de F al soporte de X y lo denotaremos
por sop(X). Recordemos que el soporte del campo vectorial X es el menor subconjunto
cerrado que contiene a todos los puntos p ∈ M tales que Xp ̸= 0.
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Observación 2.23. Geométricamente, una variación con campo variacional de soporte
compacto, siguiendo la definición anterior, consiste en deformar la hipersuperficie en un
subconjunto compacto, pero dejándola invariante fuera de ese subconjunto.

Con la Definición 2.22, una pregunta natural que surge es si dada una hipersuperficie
M y un campo vectorial a lo largo de dicha hipersuperficie, existe una variación con dicho
campo como campo variacional. La respuesta es afirmativa, pero antes vamos a enunciar
y probar un resultado de carácter topológico que nos será de gran utilidad para probar la
existencia de variaciones.

Lema 2.24. Sean M y M̄ en las condiciones de la Definición 2.22 y sea X un campo
vectorial diferenciable a lo largo de M cuyo soporte es compacto. Entonces existe ε > 0,
de forma que la aplicación F : M × (−ε, ε) −→ M̄ dada por Ft(p) = F (p, t) = expp(tXp)
es una variación de M con campo variacional X.

Demostración. Recordemos en primer lugar que la aplicación exp denota la aplicación
exponencial de la variedad riemanniana M̄ . Tomemos

ε1 = mı́n
{
r > 0 : expp está definida en Bp(|Xp|r) para p ∈ sop(X)

}
.

De esta forma, F está bien definida y es diferenciable en M×(−ε1, ε1). Por otro lado, fijado
p se verifica que F (p, t) = expp(tXp) es la geodésica que pasa por p con velocidad inicial
Xp. Así, es claro que F0 es la inclusión y que X es el campo variacional de F . Finalmente,
dado que la aplicación exponencial es un difeomorfismo local en un entorno de 0 en TpM̄ ,
esto garantiza que escogiendo un ε1 > 0 quizá menor, la aplicación Ft tiene rango n − 1,
donde n = dim(M̄), por lo que Ft es una inmersión para cada t ∈ (−ε1, ε1).

Por otro lado, uno de los ingredientes necesarios para ver que las Ft son embebimientos
para un cierto rango del parámetro t, es ver que existe un cierto ε2 > 0, de forma que para
todo |t| < ε2 se verifique que Ft sea inyectiva. En primer lugar, definimos K := sop(X).
Si tomamos un p /∈ K se tiene que Xp = 0, por lo que Ft(p, t) = p, luego fuera del
compacto K la inyectividad está garantizada. Ahora bien, sabemos que la aplicación exp
es un difeomorfismo local, es decir, para cada p ∈ K existe un rp > 0, de forma que la
aplicación expp : B(0, rp) ⊂ TpM̄ −→ M̄ es inyectiva. Por continuidad del campo vectorial
X y compacidad deK, existe para cada punto p ∈ K un δp > 0 tal que |tXp| < rp, para todo
t ∈ (−δp, δp). Tomemos la bola B(p, rp), para cada p ∈ K, lo cual nos da un recubrimiento
del compacto K. Ahora bien, como K es compacto, podemos extraer un subrecubrimiento
finito, digamos

{
B(pj, rpj

)
}m

j=1
. Si tomamos ε2 = mı́n

{
δpj

: j = 1, ...,m
}
, se tiene que Ft

es inyectiva para cada t ∈ (−ε2, ε2). Por lo tanto, tomando ε = mı́n {ε1, ε2}, tenemos que
Ft es una inmersión inyectiva para cada t ∈ (−ε, ε).

Finalmente, nos falta por probar que las Ft son embebimientos. Para ello tenemos
que ver que son homeomorfismos sobre su imagen. En esta línea, consideremos para un
t ∈ (−ε, ε) la aplicación Ft : M −→ Ft(M). Sabemos que esa Ft (con codominio dado
por su imagen) es biyectiva, además por ser Ft una inmersión inyectiva, se verifica que
es un homeomorfismo local. De esta forma, por un resultado de topología que nos dice
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que si tenemos una aplicación entre espacios topológicos biyectiva y que, además, es un
homeomorfismo local, entonces es un homeomorfismo, se tiene que Ft es un homeomorfismo
sobre su imagen y, por lo tanto, como teníamos probado que es una inmersión inyectiva,
se tiene que Ft es un embebimiento para cada t ∈ (−ε, ε).

Definición 2.25. Dada una hipersuperficie M embebida en una variedad riemanniana M̄
de dimensión n y dada una variación F de M , diremos que F es una variación normal si
el campo vectorial variacional X de F es ortogonal a TpM para cada p ∈ M .

Nótese que al ser M una hipersuperficie embebida y conexa en M̄ , cada espacio normal
a M tiene dimensión 1, por lo que si elegimos un vector normal unitario N en un punto
de M tan solo tenemos como vectores normales unitarios N y −N . De esta forma, si M y
M̄ están orientadas, podemos elegir ese campo vectorial normal N de manera que

ω(E1, ..., En−1, Np) = 1,

para cada {E1, ..., En−1} base orientada de TpM , donde ω es la forma de orientación de M̄ .
De esta forma, llamaremos a este N la función de Gauss compatible con la orientación.

A continuación, vamos a enunciar y demostrar la fórmula de la primera variación. Pero
antes presentaremos unos breves preliminares necesarios para abordar dicha prueba.

Sea (M̄, g) una variedad riemanniana de dimensión n y sea M una hipersuperficie
embebida de esa M̄ . Consideremos una variación

F : M × (−ε, ε) −→ M̄, (p, t) 7→ F (p, t) = Ft(p).

Definamos Mt := Ft(M), donde F0(M) ≡ M y sea ωt la forma de volumen inducida en
Mt. En estas condiciones, definimos el volumen de Mt como

A(Mt) =
∫

M
F ∗

t ωt

y es claro que se tiene
A(M) =

∫
M
ω0 =

∫
M
F ∗

0ω0.

Por otro lado, dado p ∈ M , el campo variacional asociado es Xp = ∂F
∂t

(p, 0) = (dF )|(p,0)( ∂
∂t

).
A continuación, vamos a definir el operador estrella de Hodge (véanse por ejemplo [34,

pág. 438], [46]) y a enunciar y demostrar un resultado relativo a espacios vectoriales que
nos será de gran utilidad.

Definición 2.26. Sean (M̄, g) una variedad riemanniana de dimensión n y (U ; (x1, ..., xn))
un entorno coordenado. Sea ω la n-forma de volumen de M̄ expresada en esas coordenadas
locales. Dada α ∈ ∧k(M̄), se define el dual de Hodge u operador estrella de Hodge de α y
se denota por ⋆α, como la única (n − k)-forma tal que para cada β ∈ ∧k(M̄) se cumple
que

β ∧ ⋆α = ⟨β, α⟩ω.



40 2 El problema isoperimétrico en el espacio euclídeo

Observación 2.27. Nótese que la expresión ⟨α, β⟩ es una función escalar, es decir, una
0-forma, que en cada punto p ∈ M se calcula de la forma

⟨α, β⟩ := g(α♯, β♯),

donde g representa la métrica de la variedad riemanniana ambiente y α♯ (respectivamente
β♯) representa el vector asociado (por el isomorfismo musical ♯) en TpM a la 1-forma
α ∈ T ∗

pM , de tal forma que para cada X ∈ TpM se verifica que g(α♯, X) = α(X).

Observación 2.28. Nótese que con la Definición 2.26, dada una k-forma α y un entorno
coordenado (U ; (x1, ..., xn)), si escribimos

α|U = 1
k!

∑
i1,...,ik

ai1...ik
dxi1 ∧ ... ∧ dxik ,

se tiene que el dual de Hodge de α viene dado por

⋆α =

√
det(gij)

k!(n− k)!δ
1···n
i1···in

ai1···ikdxik+1 ∧ ... ∧ dxin ,

donde ai1···ik = gi1j1 · · · gikjkaj1···jk
. Además, los coeficientes δ12···n

i1···in
son el símbolo de permu-

tación de Levi-Civita. Es decir, si (i1 · · · in) es una permutación par de (12 · · ·n), entonces
se tiene que δ12···n

i1···in
= 1, por otro lado, se tiene que δ12···n

i1···in
= −1 si (i1 · · · in) es una per-

mutación impar de (12 · · ·n) y δ12···n
i1···in

= 0 en otro caso. Nótese que con permutación nos
referimos a cualquier reordenación de (12 · · ·n).

Por otro lado, se puede probar que la construcción de ⋆α es independiente de las coor-
denadas locales que escojamos, por lo que ⋆α está globalmente definida como (n−k)-forma.
Así, el operador ⋆ manda cada k-forma en una (n− k)-forma.

Lema 2.29. Supongamos que tenemos un espacio vectorial n-dimensional con producto in-
terior y una orientación fijada. Sea {v1, ..., vn} una base positivamente orientada. Entonces
se cumple que

det[v1|...|vn] =
√

det((⟨vi, vj⟩)i,j).

Demostración. En efecto, sea la matriz A := [v1|...|vn]. Esta matriz verifica que Aij =
⟨vj, Ei⟩, donde {E1, ..., En} es una base ortonormal positivamente orientada del espacio
vectorial. Tomemos B = (bij)i,j tal que bij = ⟨vi, vj⟩. En estas condiciones, es claro que

bij = ⟨vi, vj⟩ =
n∑

k=1
⟨vi, Ek⟩ · ⟨Ek, vj⟩

=
n∑

k=1
AkiAkj = (AtA)i,j,

por lo que B = AtA. De esta forma, se tiene que

det(B) = det(AtA) = det(At) det(A) = det(A)2,

luego det(A) =
√

det(B).
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Lema 2.30. Sea A(t) una curva diferenciable contenida en el grupo general lineal Gl(n,R)
verificando que A(0) = Id. Entonces se tiene que

d

dt
(detA(t))|t=0 = tr(A′(0)).

Demostración. Consideremos en el espacio vectorial V la n-forma ω que a cada base or-
denada {v1, ..., vn} le asigna el número real ω(v1, ..., vn) = det[v1|...|vn]. De esta forma, es
claro que se tiene

detA(t) = ω(A(t)e1|...|A(t)en).
Denotemos por A′(0) = (aij)i,j. En ese caso, se tiene que A′(0)ei = ∑n

j=1 aijej. Por lo tanto,

d

dt
(detA(t))|t=0 =

n∑
i=1

ω(e1, ..., A
′(0)ei, ei+1, ..., en) =

n∑
i=1

aii = tr(A′(0)).

Teorema 2.31 (Primera variación). Sea M una hipersuperficie embebida de una variedad
riemanniana (M̄, g = ⟨·, ·⟩) de dimensión n. Supongamos que M tiene campo curvatura
media H⃗ y sea F : M × (−ε, ε) −→ M̄ una variación de M con campo variacional X.
Entonces se tiene que

d

dt
A(Mt)|t=0 = −

∫
M

⟨H⃗,X⟩ω0, (2.18)

donde ω0 es la forma de volumen asociada a M0 = F0(M) = M .

Demostración. En primer lugar, llamemos ωt a la n-forma de volumen asociada a la hi-
persuperficie Mt. Observemos que dados p ∈ M y una referencia ortonormal {e1, ..., en−1}
positivamente orientado de TM la cual extendemos a una referencia ortonormal de campos
de vectores {e1, ..., en} para TM̄ en un entorno de p ∈ M̄ . En ese caso, el pullback de dicha
n-forma por la aplicación Ft viene dado por

F ∗
t ωt|p(e1, ..., en) = ωt|Ft(p)(dFt(e1), ..., dFt(en)) = det(dFt)ωt(e1, ..., en)|Ft(p) = det(dFt).

Definamos Gij(t) := ⟨dFt(ei), dFt(ej)⟩, G(t) = det((Gij(t))i,j) y dFt = [dFt(e1)|...|dFt(en)].
Así, por el Lema 2.29 tenemos que

det(dFt) =
√

det(G(t)).

Por lo tanto, obtendríamos que

d

dt
A(Mt)|t=0 =

∫
M

d

dt
|t=0F

∗
t ωt =

∫
M

d

dt
|t=0 det(dFt)ω0 =

∫
M

1
2

(
dG(t)
dt

|t=0

)
ω0.

Nótese que en la última igualdad hemos utilizado que detF0 = 1.
Tomemos un punto p ∈ M y un entorno coordenado para p en M× (−ε, ε) con vectores

coordenados ∂i|p = Ei|p i = 1, ..., n − 1 y ∂t de forma que Ei son ortonormales, tangentes
a las hipersuperficies Mt en un entorno de p en M̄ y, de forma que ∇̄Ei

Ej|p = 0 para
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cada i ̸= j. Recordemos que dado un punto p ∈ M siempre podemos elegir un sistema de
coordenadas alrededor de dicho punto, de forma que los vectores coordenados en tal punto
sean ortonormales. Además, estos vectores pueden extenderse en un entorno del punto
p, a campos Ei, por medio de transporte paralelo a través de curvas geodésicas radiales
garantizando que ∇Ei

Ej|p = 0. Sea Et
i := Ft∗Ei y sea Xt|p = dF

dt
(p, t) = F∗(∂tt), luego

X0 = X es el campo variacional.
Observemos que dado que ∂t es un campo vectorial en M × (−ε, ε) y, por otro lado, los

Ei son campos vectoriales en M que se extienden a M × (−ε, ε), se verifica que los Ei no
tienen direcciones en común con ∂t y viceversa, por lo que [∂t, Ei] = 0. Esto se debe a que,
ya que la variedad M × (−ε, ε) es un producto, se tiene que Ei proyecta de manera trivial
sobre el segundo factor. Así, tenemos que [Xt, E

t
i ] = [F∗∂t, F∗Ei] = F∗[∂t, Ei] = 0 y, de esta

forma, ∇̄XtE
t
i = ∇̄Et

i
Xt. De aquí deducimos que

1
2
d

dt
Gii(t)|t=0 = 1

2

(
d

dt
⟨Et

i , E
t
i⟩
)

|t=0 =
(

⟨∇̄XtE
t
i , E

t
i⟩
)

|t=0 =
(

⟨∇̄Et
i
Xt, E

t
i⟩
)

|t=0

=
(

⟨∇̄Et
i
Xt, E

t
i⟩ + ⟨Xt, ∇̄Et

i
Et

i⟩ − ⟨Xt, ∇̄Et
i
Et

i⟩
)

|t=0

=
(
Et

i⟨Xt, E
t
i⟩ − ⟨Xt, (∇̄Et

i
Et

i )⊤⟩ − ⟨Xt, (∇̄Et
i
Et

i )⊥⟩
)

|t=0

=
(
Et

i⟨Xt, E
t
i⟩ − ⟨Xt,∇Mt

Et
i
Et

i⟩ − ⟨Xt, II(Et
i , E

t
i )⟩
)

|t=0

= Ei⟨X,Ei⟩ − ⟨X,∇M
Ei
Ei⟩ − ⟨X, II(Ei, Ei)⟩.

Particularizando la expresión anterior en el punto p, tenemos que ∇M
Ei
Ei = 0, luego obte-

nemos que en el punto p
1
2
d

dt
Gii(t)|t=0 = Ei⟨X,Ei⟩ − ⟨X, II(Ei, Ei)⟩.

Realizando la suma en i obtenemos que

1
2

n−1∑
i=1

d

dt
Gii(t)|t=0 =

n−1∑
i=1

(Ei⟨X,Ei⟩ − ⟨X, II(Ei, Ei)⟩) = −⟨X, H⃗⟩ +
n−1∑
i=1

Ei⟨X,Ei⟩. (2.19)

Así, por la expresión obtenida en (2.19) aplicando el Lema 2.30 se tiene que

d

dt
ωt|t=0 = −⟨X, H⃗⟩ω0 +

n−1∑
i=1

Ei⟨X,Ei⟩ω0.

Para finalizar la prueba nos falta ver que la integral en M del segundo sumando de la
expresión anterior es igual a cero. Para probar esto, consideremos la 1-forma dual X∗ de
X. Esta 1-forma es la aplicación X∗(·) = ⟨X, ·⟩. Si tomamos α = ⋆(X∗) la (n − 1)-forma
dada por el operador de Hodge, afirmamos que

n−1∑
i=1

Ei⟨X,Ei⟩ω0 = dα.
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En efecto, ocurre que

dα(E1, ..., En) =
n∑

i=1
Ei(α(E1, ..., Êi, ..., En))

−
∑
i<j

(−1)i+jα([Ei, Ej], ..., Êi, ..., Êj, ..., En).

Ahora bien, nótese que dado que se cumple que ∇̄Ei
Ej|p = 0, entonces [Ei, Ej]|p = 0. Por

otro lado, X∗ = ∑n−1
k=1⟨X,Ek⟩θk, donde {θk}n−1

k=1 ⊂ ∧1(M) es la base dual de {Ek}n−1
k=1 . Esto

implica que
α = ⋆(X∗) =

n∑
k=1

(−1)k−1⟨X,Ei⟩θ1 ∧ ... ∧ θ̂k ∧ ... ∧ θn.

Entonces tenemos que α(E1, ..., Êi, ..., En) = (−1)i−1⟨X,Ei⟩. Y finalmente, si tomamos la
diferencial de α actuando sobre E1, ..., En, obtenemos que

dα(E1, ..., En)|p =
n∑

i=1
Ei(⟨X,Ei⟩)ω0(E1, ..., En).

Debido al hecho de que ∂
∂t
ωt|t=0 = −⟨X, H⃗⟩ω0 + dα, tan solo debemos recurrir al teorema

de Stokes para concluir la prueba. En efecto, por este teorema obtenemos que
d

dt
A(Mt)|t=0 =

∫
M

d

dt
ωt|t=0 = −

∫
M

⟨X, H⃗⟩ω0 +
∫

∂M
α = −

∫
M

⟨X, H⃗⟩ω0,

donde la última igualdad se da debido a que ∂M = ∅, lo que concluye la prueba.

2.3.2. Variaciones que conservan el volumen
Como ya hemos comentado, también nos interesa medir cómo el volumen encerrado

por una hipersuperficie cambia por medio de una variación de la misma. Para motivar esta
definición, podemos pensar en el caso de una superficie S del espacio euclídeo R3. Dicha
superficie divide a R3 en dos componentes conexas, una de ellas acotada. Esta es la región
interior definida o delimitada por S. Esto motiva la definición de volumen encerrado por
una hipersuperficie.

Por otro lado, introduciremos el concepto de variación que conserva el volumen. Estas
variaciones son aquellas que, para un cierto rango t ∈ (−ε, ε), el volumen encerrado por la
hipersuperficie Mt permanece constante. Como veremos estas serán precisamente aquellas
variaciones cuyo campo variacional es de la forma fN , siendo f una función diferenciable
cuya media a lo largo de la variedad M , cuando esta sea compacta, sea cero (es decir, que
la integral de f a lo largo de M sea idénticamente cero), además, N es el campo vectorial
unitario normal o aplicación de Gauss compatible con la orientación.
Definición 2.32. Sea M una hipersuperficie conexa y embebida de una variedad rieman-
niana M̄ . Supongamos que M divide a la variedad M̄ en dos regiones conexas, al menos
una de ellas acotada, y ambas con frontera M . Si Ω es dicha región acotada, llamaremos
volumen encerrado por M al volumen de la región Ω, denotándolo por V (Ω).
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Observación 2.33. A menudo, en lugar de la suposición de la Definición 2.32, se pide que
M̄ sea una variedad de Riemann orientable y que M sea una hipersuperficie orientada que
divide a M̄ en dos regiones conexas, de modo que un campo normal unitario a M definido
globalmente (que existe por las hipótesis de orientación) apunte hacia una región acotada
de las dos en las que M separa a M̄ .

Observación 2.34. En el caso del espacio euclídeo Rn, el Teorema 2.19 garantiza la
hipótesis de la definición anterior, es decir, dada una hipersuperficie conexa y compacta M
de Rn, esta divide al espacio en dos regiones conexas, una de ellas exterior y otra interior.
Lo mismo es cierto, en el caso de una esfera, por la proyección estereográfica, pero en este
caso ambas regiones son acotadas.

Observación 2.35. Para el caso de hipersuperficies en Rn, si F es una variación de una
hipersuperficie M compacta y conexa, podemos suponer, por compacidad de M , que para
un t suficientemente pequeño Ft : M −→ Rn es un difeomorfismo sobre su imagen y, así,
Ft(M) es una hipersuperficie compacta, embedida y con interior bien definido cuyo volumen
encerrado es V (Ft(M)). De esta forma, se puede comprobar que

V (Ft(M)) − V (M) =
∫

M×[0,t]
F ∗ω,

donde ω es la forma de volumen en Rn y considerando la orientación en M dada por
{e1, ..., en−1} verificando que ω(e1, ..., en−1, N) = 1. Aquí N es el campo de vectores unitario
normal a M apuntando hacia afuera de la región encerrada por M y {e1, ..., en−1} es una
referencia local ortonormal diferenciable para TM .

Nótese que en una situación más general, donde por ejemplo M sea una hipersuperficie
no embebida, no podemos garantizar que M encierre a un conjunto acotado, por lo que el
concepto de volumen encerrado carece de sentido.

A continuación, definimos el concepto de variación que conserva el volumen.

Definición 2.36 (Variación que conserva el volumen). Sea M una hipersuperficie conexa
de una variedad riemanniana (M̄, g) y supongamos que M determina una región acotada
Ω de M̄ . Sea X ∈ Γ(TM̄ |M) un campo vectorial a lo largo de M (pero no necesariamente
tangente a M) y sea F : M × (−ε, ε) −→ M̄ la variación de soporte compacto asociada a
ese campo X. Diremos que F conserva el volumen de Ω si para cada |t| < ε se verifica que

V (Ωt) = V (Ω).

Es decir, el funcional de volumen V (Ωt) permanece constante para cada t ∈ (−ε, ε).

Proposición 2.37. Sea M una hipersuperficie conexa, embebida y orientable de una va-
riedad riemanniana (M̄, ⟨·, ·⟩) orientable. Dada una variación F : M × (−ε, ε) −→ M̄ de
soporte compacto, si definimos Ωt como la región interior encerrada por Ft(M) = Mt, don-
de la región encerrada por M0 la denotamos como Ω, entonces se verifica que la aplicación

vF,D(Ωt) =
∫

D×[0,t]
F ∗ω,
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donde D es cualquier dominio relativamente compacto conteniendo el soporte de F , es
diferenciable en t = 0 y, además, se tiene que

d

dt
vF,D(Ωt)|t=0 =

∫
M

⟨X,N⟩, (2.20)

donde N es el campo unitario normal a M compatible con las orientaciones.

Observación 2.38. Puesto que pretendemos estudiar las variaciones que conservan el
volumen de una hipersuperficie, es fundamental comprender cómo se calcula y define el
cambio del volumen encerrado por una hipersuperficie. Es por ello que la Proposición 2.37
establece una fórmula para la derivada del funcional vF,D(Ωt). Sin embargo, es importan-
te destacar que vF,D(Ωt) no se define simplemente como el volumen de Ωt en el sentido
tradicional, sino como la integral de la forma de volumen ω en D × [0, t] bajo la acción
de la variación F y donde D es cualquier dominio relativamente compacto conteniendo
el soporte de F . Esta definición es clave, pues permite capturar el cambio en el volumen
debido a la variación, sin necesidad de restar explícitamente V (Ω0). Esto se complementa
con la Observación 2.35 al señalar que, para una variación que conserva el volumen, dado
que será un punto crítico para el funcional volumen para t = 0, se cumple:

0 = d

dt
vF,D(Ωt)|t=0 =

∫
M

⟨X,N⟩,

donde recordemos que X es el campo variacional y N es el campo unitario normal com-
patible con las orientaciones. Esto enfatiza la importancia de escoger campos variacionales
adecuados para garantizar que el volumen se mantenga constante.

Observación 2.39. A pesar de que la hipersuperficie M pueda no ser compacta, la integral
en la ecuación (2.20) está bien definida, debido a que la función p 7→ ⟨Xp, Np⟩ tiene soporte
compacto. Es más, la ecuación (2.20) asegura que v′

F,D(Ω0) no depende de la elección del
dominio D ni de la variación particular F . Solo depende del campo vectorial variacional
X y, de forma más precisa, de la componente normal del campo variacional X.

Demostración de la Proposición 2.37. Sea un punto p ∈ M y sea {e1, ..., en−1} una base
ortonormal orientada para TpM . Entonces, por el teorema de Fubini sabemos que

vF,D(Ωt) =
∫ t

0

∫
D

(F ∗ω)t,

donde ω denota la n-forma de volumen en M̄ . Por otro lado, se verifica que

(F ∗ω)t=0(p) = ω(dF(p,0)(e1), ..., dF(p,0)(en−1), dF(p,0)(∂t))
= ω(d(F0)p(e1), ..., d(F0)p(en−1), X) = ⟨X,N⟩ωM ∧ dt,

(2.21)

donde ωM denota la n-forma de volumen restringida a la hipersuperficie M . Por otro
lado, N es el vector normal unitario a M apuntando hacia afuera de la región Ω ence-
rrada por la hipersuperficie M , por lo que {d(F0)p(e1), ..., d(F0)p(en−1), Np} es una refe-
rencia orientada positivamente en M . Además, la última igualdad en la ecuación (2.21)
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se obtiene debido a que al evaluar ω(d(F0)p(e1), ..., d(F0)p(en−1), X) estamos calculan-
do el volumen del paralelepípedo determinado por d(F0)p(e1), ..., d(F0)p(en−1), X. Así,
se tiene que d(F0)p(e1), .., d(F0)p(en−1) ∈ TpM y, de esta forma, ⟨X,N⟩ representa la
componente normal de X, nótese que esta componente normal del campo vectorial X
es la que aporta algo de volumen al volumen total del paralelepípedo determinado por
d(F0)p(e1), ..., d(F0)p(en−1), X. Por otro lado, para obtener una n-forma de volumen, ne-
cesitamos completar con la dirección restante, de ahí que aparezca la dt al final de la
expresión (2.21).

Ahora bien, por la expresión que hemos obtenido para (F ∗ω)t=0(p) en un punto p ∈ M
arbitrario, es claro que

d

dt
vF,D(Ωt)|t=0 = d

dt

(∫ t

0

∫
M

⟨X,N⟩ωM ∧ dt

)
|t=0

=
∫

M
⟨X,N⟩ωM =

∫
M

⟨X,N⟩.

Esto se debe a que como el soporte de la variación y, por definición el del campo variacional
X, está contenido en D, que es un dominio relativamente compacto, se puede extender la
integral a toda la hipersuperficie M .

Observación 2.40. Observemos que se emplean dos notaciones diferentes para funciones
que están relacionadas con el volumen en el contexto de variaciones de hipersuperficies:
V (Ωt) y vF,D(Ωt). A pesar de que ambas están ligadas al volumen de la región encerrada
por una hipersuperficie Mt, hay diferencias conceptuales entre ellas. En primer lugar, te-
nemos V (Ωt), que representa directamente el volumen, en el sentido clásico, de la región
Ωt encerrada por la hipersuperficie Mt. Es la integral de la n-forma de volumen ω de la
variedad riemanniana ambiente M̄ , es decir,

V (Ωt) =
∫

Ωt

ω.

Por otro lado, vF,D(Ωt) es el funcional que modela el cambio del volumen bajo una variación
F en un dominio relativamente compacto de M que contenga al soporte de la variación.
Esta función está definida como

vF,D(Ωt) =
∫

D×[0,t]
F ∗ω.

Es decir, no representa el volumen de una región directamente, sino la acumulación de
cambio de volumen a lo largo de la deformación de la hipersuperficie cuando hacemos
variar el parámetro t. Esta forma resulta especialmente útil para calcular derivadas de
volumen respecto a t, en especial, en el contexto del cálculo variacional, pues evita tener
que restar volúmenes directamente como V (Ωt) − V (Ω0).

Observación 2.41. Notemos que si una variación de una hipersuperficie M conserva el
volumen de la región Ω encerrada por dicha hipersuperficie, se verifica que

d

dt
vF,D(Ωt)|t=0 =

∫
M

⟨X,N⟩ = 0.
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Por lo tanto, en virtud de la Proposición 2.37 si una variación conserva el volumen au-
tomáticamente se cumple que

∫
M⟨X,N⟩ = 0, siendo X el campo variacional asociado a

dicha variación. Por otro lado, nótese que ese N es el vector normal unitario o aplicación
de Gauss compatible con la orientación.

De nuevo, al igual que ocurría con la definición de variación, resulta natural hacerse la
pregunta de si existirán variaciones de una hipersuperficie que conserven el volumen. En
este sentido, el siguiente resultado nos garantiza la existencia de este tipo de variaciones
bajo algunas condiciones.

Lema 2.42 (Existencia de variaciones normales que preservan el volumen). Tomemos
M una hipersuperficie conexa, embebida y orientable de una variedad riemanniana M̄
orientable. Sea f : M −→ R una función diferenciable con soporte compacto y de media 0
en M , es decir, ∫

M
f = 0.

Entonces existe una variación normal F : M × (−ε, ε) −→ M̄ que preserva el volumen,
cuyo campo variacional es X = fN , donde N es la aplicación de Gauss de M compatible
con la orientación.

Demostración. Sea ε > 0 definido como en la demostración del Lema 2.24 y consideremos
g : D×(−ε, ε) −→ R una función diferenciable, donde D ⊆ M es un dominio relativamente
compacto. Definamos además la variación

F : D × (−ε, ε) −→ M, (p, t) 7→ F (p, t) = Ft(p) = expp g(p, t)Np.

De esta forma, F es una variación normal con campo variacional X = ∂F
∂t

(p, 0) = ∂g
∂t

(p, 0)N.
A continuación, probaremos que g puede escogerse de tal manera que X satisfaga las
condiciones del enunciado.

Nótese que F = e ◦ ψ, donde

ψ : M × (−ε, ε) −→ M × R, (p, t) 7→ (p, g(p, t)) y
e : M × (−ε, ε) −→ M̄, (p, t) 7→ expp(tNp).

De esta forma, se tiene que

vF,D(Ωt) =
∫

D×[0,t]
F ∗ω =

∫
D×[0,t]

ψ∗(e∗ω) =
∫

D×[0,t]
ψ∗(E(p, t)ωM ∧ dt)

=
∫

D×[0,t]
E(p, g(p, t))ψ∗(ωM ∧ dt) =

∫
D×[0,t]

E(p, g(p, t))dg
dt
ωM ∧ dt

=
∫ t

0

∫
D
E(p, g(p, t))dg

dt
,

donde E(p, t) es el determinante de de(p,t). Notemos que E(p, t) ̸= 0 para un t suficien-
temente pequeño, pues e(p, t) = expp(tNp) es un difeomorfismo local. Por otro lado, ωM
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es la forma de volumen riemanniana de M y hemos empleado el teorema de Fubini para
obtener la última igualdad.

Consideremos, dado p ∈ M , la aplicación g(p, t) como solución al siguiente problema
de valor inicial

dg

dt
= f(p)
E(p, g(p, t)) , g(p, 0) = 0.

Ahora bien, por la expresión que hemos calculado para vF,D(Ωt) y el hecho de que
∫

M f =
0, se tiene que vF,D(Ωt) = 0 para todo t. Además, es claro que dg

dt
(p, 0) = f(p), pues

E(p, g(p, 0)) = E(p, 0) = 1. Así, F es una variación normal que preserva el volumen con
campo variacional fN .

Observación 2.43. A partir de ahora, una variación normal que conserve el volumen
de una hipersuperficie embebida, conexa y orientable M de una variedad riemanniana
orientable M̄ será para nosotros una variación cuyo campo variacional es de la forma fN
con f : M −→ R una función diferenciable verificando que

∫
M f = 0 y N la aplicación de

Gauss de M .

Como hemos visto, el Teorema 2.31 y la Proposición 2.37 muestran que tan solo la
componente normal de los campos vectoriales variacionales afecta a las variaciones del
área y el volumen. Además, la dirección de máxima disminución de área es la dada por el
vector curvatura media.

A continuación, veremos un resultado que nos caracteriza las hipersuperficies de cur-
vatura media constante de una variedad riemanniana M̄ .

Teorema 2.44 (Caracterización de hipersuperficies CMC). Sea M una hipersuperficie
orientada, conexa y embebida de una variedad riemanniana orientable (M̄, g = ⟨·, ·⟩).
Entonces:

(i) M es minimal, es decir, tiene curvatura media constante igual a cero, si y solo si es
un punto crítico de la función área para cada variación de M de soporte compacto.

(ii) M tiene curvatura media constante si y solo si para toda variación de M que preserve
el volumen la derivada del área en t = 0 es cero.

Observación 2.45. La segunda de las afirmaciones quiere decir que son equivalentes que
una hipersuperficie M sea CMC y que sea un punto crítico del funcional área para cada
variación de soporte compacto cuyo campo variacional sea de la forma X = fN , donde
f ∈ C∞(M) satisface que

∫
M f = 0 y N es un campo vectorial normal unitario a M .

Demostración. Probemos la primera afirmación. En primer lugar, es claro que si la curva-
tura media de M es cero entonces por el Teorema 2.31, es un punto crítico para el funcional
de área para variaciones con soporte compacto. Recíprocamente, supongamos que M sa-
tisface dicha condición. En ese caso, sea f ∈ C∞(M) con soporte compacto y sea F una
variación con campo variacional ξ = fH⃗. Entonces por el Teorema 2.31 (primera variación
del área) se verifica que ∫

M
f |H⃗|2ω0 = 0, (2.22)
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donde recordemos que ω0 es la forma de volumen asociada a M0 = F0(M). La igualdad en
(2.22) se debe a que suponemos que M es un punto crítico. Finalmente, H⃗ = 0 debido a
que la igualdad (2.22) se tiene para cada f ∈ C∞(M) con soporte compacto y, por lo tanto,
M es minimal.

Veamos ahora la demostración de la segunda afirmación. En este caso, si M tiene
curvatura media constante H0, por (2.20) y el Teorema 2.31 obtenemos que

d

dt
|t=0A(Mt) = −

∫
M

⟨H⃗,X⟩ω0 = −H0
d

dt
|t=0vF,D(Ωt) = −H0v

′
F,D(Ω0),

donde D es cualquier dominio relativamente compacto conteniendo al soporte de la varia-
ción F . Por lo tanto, M es un punto crítico para el área de cualquier variación que conserve
el volumen. Nótese que en la anterior igualdad hemos utilizado que H⃗ = H0N .

Recíprocamente, sea D una región acotada en M y sea H0 = 1
A(D)

∫
D H. Supongamos

por contradicción, que existe p ∈ D, de forma que Hp −H0 ̸= 0. Sin pérdida de generalidad
podemos suponer que Hp −H0 > 0. Así, definamos

D+ = {q ∈ D : Hq −H0 > 0} ,

D− = {q ∈ D : Hq −H0 < 0} .
Sean f, g : M −→ R+ dos funciones diferenciables no negativas de forma que se cumplen
las siguientes condiciones:

1. p ∈ sop(f) ⊆ D+,

2. sop(g) ⊆ D−,

3.
∫

M(f + g)(H −H0) = 0.

Dado que
∫

D(H − H0) = 0 esta elección es siempre posible. En efecto, pues nótese que∫
M f(H − H0) > 0 y

∫
M g(H − H0) < 0, por lo que existe una constante λ > 0 tal que∫

M(f + λg)(H −H0) = 0. De esta forma, basta con tomar λ = 1.
Definamos ahora la función ψ : M −→ R dada por ψ(p) = (f(p) + g(p))(Hp − H0).

Entonces ψ es una función con soporte compacto y de media cero. Sea F la variación que
preserva el volumen asociada a ψ (ver Lema 2.42). Ahora bien, por hipótesis y empleando
la ecuación (2.31) obtenemos:

0 = − d

dt
|t=0A(Mt) =

∫
M

⟨H⃗,X⟩ =
∫

M
ψ⟨H⃗,N⟩

=
∫

M
ψH|N |2 =

∫
M
ψH =

∫
M
ψH −H0

∫
M
ψ

=
∫

M
(H −H0)ψ =

∫
M

(f + g)(H −H0)2 > 0.

Nótese que la expresión anterior es mayor que cero, debido a que (H −H0)2 > 0 y f, g > 0
y recordemos que

∫
M ψ = 0. Ahora bien, tenemos una contradicción. De esta forma, debe

ocurrir que H = H0 en D. Como esto ocurre para todo D ⊆ M , obtenemos que M tiene
curvatura media constante.
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2.3.3. El problema isoperimétrico en Rn

Como hemos visto, el Teorema 2.44 nos caracteriza las hipersuperficies de curvatura
media constante por medio de las variaciones que preservan el volumen. Ahora bien, sa-
bemos gracias al Corolario 2.21 que las hipersuperficies en Rn+1 compactas, conexas y de
curvatura media constante son justamente las esferas. De esta forma combinando ambos
resultados podemos dar una demostración del problema isoperimétrico clásico. Recordemos
que este problema se plantea averiguar cuáles de entre todas las hipersuperficies encerrando
un volumen dado tienen área mínima. Enunciemos esto de forma más precisa.

Corolario 2.46 (Problema isoperimétrico clásico). En el espacio euclídeo Rn, para un
volumen dado, de entre todas las hipersuperficies compactas y conexas encerrando ese vo-
lumen, la de menor área es la esfera.

Demostración. En primer lugar, tomemos un volumen v0 y una hipersuperficie embebida
M compacta y conexa de Rn encerrando ese volumen. Es decir, por el Teorema 2.19,
sabemos que esta hipersuperficie divide al espacio Rn en dos regiones conexas, una de
ellas interior que llamamos Ω, cuyo volumen será V (Ω) = v0. Ahora bien, si suponemos
que nuestra hipersuperficie tiene área mínima entre todas la hipersuperficies que encierran
dicho volumen, se cumple que para toda variación F de M que preserve el volumen, al ser
un punto crítico para el funcional de área, su derivada en t = 0 es igual a cero, por lo que
por el Teorema 2.44, M tiene curvatura media constante. Finalmente, por el teorema de
Alexandrov (Corolario 2.21), toda hipersuperficie compacta, conexa y de curvatura media
constante en Rn ha de ser una esfera.



Capítulo 3

La constante isoperimétrica de
Cheeger

En los capítulos anteriores hemos introducido el problema isoperimétrico desde un punto
de vista clásico. En el primer capítulo se establecieron los conocimientos previos necesarios
sobre geometría riemanniana y teoría de subvariedades, haciendo hincapié en las hipersu-
perficies de curvatura media constante (CMC), cuya relevancia se hace evidente al estudiar
regiones que minimizan el área de su frontera bajo restricciones de volumen. Posteriormen-
te, en el Capítulo 2, abordamos de manera sistemática el problema isoperimétrico en el
espacio euclídeo, demostrando, entre otros, el teorema de Alexandrov y su relación con las
propiedades variacionales del área y el volumen. En particular, se caracterizó a las esferas
como las únicas soluciones del problema isoperimétrico en Rn para regiones diferenciables
compactas y conexas.

El presente capítulo amplía el enfoque anterior introduciendo una herramienta clave en
la comprensión del problema isoperimétrico en espacios más generales: la constante isoperi-
métrica de Cheeger. A diferencia de lo visto hasta ahora, aquí no partimos necesariamente
de la existencia de soluciones óptimas (o minimizadores) al problema isoperimétrico, sino
que nos centramos en un cociente geométrico que mide cómo de “estrecho” puede ser un
subconjunto de la variedad, en relación con su volumen. Esta constante, introducida por
Jeff Cheeger [13] en el contexto del análisis espectral, resulta fundamental no solo des-
de el punto de vista geométrico, sino también por su conexión directa con el operador
de Laplace-Beltrami, a través de la desigualdad de Cheeger. Formalmente, la constante
isoperimétrica de Cheeger de una variedad riemanniana M se define como

h(M) = ı́nf
Ω

A(∂Ω)
V (Ω) ,

donde Ω recorre todos los abiertos de la variedad riemanniana M con clausura compacta
y cuya frontera es una hipersuperficie diferenciable.

Respecto a la estructura del capítulo, en la Sección 3.1 introduciremos conceptos pre-
liminares sobre grupos de Lie, dado que estos constituyen el contexto principal donde se
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explorará la constante isoperimétrica de Cheeger en este capítulo. En particular, definire-
mos los grupos de Lie y sus álgebras de Lie asociadas.

En la Sección 3.2, se presentan una serie de resultados relevantes sobre grupos de
Lie, incluyendo propiedades estructurales relevantes, así como el papel de las medidas de
Haar. Además, se estudia cómo estas medidas se pueden construir a partir de formas de
volumen invariantes y se examina la regularidad y unicidad de las mismas, que constituyen
herramientas esenciales para definir el conceptos como el área y el volumen en este nuevo
contexto.

En la Sección 3.3, se formaliza la noción de la constante isoperimétrica de Cheeger en el
contexto de una variedad riemanniana general, es decir, no necesariamente compacta ni de
curvatura constante. Se justifica su interés, tanto desde el punto de vista geométrico, pues
proporciona una cota inferior para el área de la frontera de cualquier región de volumen
finito, como desde el punto de vista analítico, debido a su vínculo con el espectro del
operador laplaciano. En ese sentido, se presenta precisamente un resultado que relaciona
el primer autovalor del operador laplaciano con la constante isoperimétrica de Cheeger
asociada a un dominio normal de una variedad riemanniana M de dimensión n ≥ 2 no
compacta.

En lo relativo a la Sección 3.4, el foco se restringe a un caso particularmente interesante,
los grupos de Lie resolubles y simplemente conexos con métrica invariante a la izquierda,
pues en ellos se puede calcular de forma explícita la constante isoperimétrica de Cheeger
en términos de la representación adjunta del álgebra de Lie g del grupo de Lie G bajo
consideración. De esta forma, se presentan resultados que construyen la medida de Haar
en el caso particular de un grupo de Lie G = G0 ⋊R, dando posteriormente una acotación
para h(G) y mostrando que h(G) = tr(ad(H0)), donde H0 es un vector de norma uno en
el subálgebra de Lie R de G0 ⋊R para la métrica invariante por la izquierda del grupo G,
siempre que se tenga que h(G0) = 0. Finalmente, se relaciona todo esto con los grupos de
Lie resolubles y simplemente conexos calculando la constante isoperimétrica de Cheeger
en este caso más general. En esta línea llegaremos al resultado central de este capítulo
(Corolario 3.29), que nos dice que la constante isoperimétrica de Cheeger de un grupo
de Lie resoluble y simplemente conexo G con métrica invariante a la izquierda tiene la
expresión

h(G) = máx
H∈g, ||H||=1

tr(ad(H)).

Para concluir este capítulo, pondremos el foco en un caso concreto de grupos de Lie re-
solubles con métrica invariante a la izquierda. Así, introduciremos la noción de espacio
simétrico poniendo el foco en los de tipo no compacto, donde podremos definir la des-
composición en espacios de raíces y la descomposición de Iwasawa asociadas al álgebra
de Lie del correspondiente grupo de isometrías. Esto nos permitirá calcular la constante
isoperimétrica de Cheeger de un espacio simétrico de tipo no compacto, aplicando el Co-
rolario 3.29. Esto se debe a que se tiene que cada espacio simétrico de tipo no compacto
es isométrico a un grupo de Lie resoluble y simplemente conexo con métrica invariante a
la izquierda. Finalmente, incluiremos de manera breve el cálculo de la constante isoperi-
métrica de Cheeger en un par de familias de espacios simétricos de tipo no compacto muy
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concretos: los espacios hiperbólicos reales y complejos.

3.1. Preliminares sobre grupos de Lie
A lo largo de este capítulo vamos a utilizar algunas nociones generales sobre grupos de

Lie que vamos a recordar a continuación [30].
Un grupo de Lie G es una variedad diferenciable que también es un grupo, de forma

que las aplicaciones
p : G×G −→ G, (g, h) 7→ gh,

i : G −→ G, g 7→ g−1,

son diferenciables. Denotaremos por e al elemento neutro de un grupo de Lie G.

Ejemplo 3.1. Son ejemplos de grupos de Lie:

(i) (Rn,+), (Cn,+), (Mn×m(R),+). En general, cualquier espacio vectorial de dimensión
finita con la suma.

(ii) Dados G, H grupos de Lie, entonces G×H es también un grupo de Lie.

(iii) GL(n,R) = {A ∈ Mn×n(R) : det(A) ̸= 0},GL(n,C) = {A ∈ Mn×n(C) : det(A) ̸= 0}.

(iv) SL(n,R) = {A ∈ GL(n,R) : det(A) = 1}.

(v) O(n) =
{
A ∈ Mn×n(R) : ATA = Id

}
, el grupo de las matrices que preservan el pro-

ducto escalar de Rn.

(vi) SO(n) = O(n) ∩ SL(n).

Dado un grupo de Lie G, se define la traslación por la izquierda como Lg : G −→ G,
dada por h 7→ Lg(h) := gh, para cada g ∈ G. Por otro lado, se define la traslación por
la derecha como Rg : G −→ G dada por h 7→ Rg(h) := hg, para cada g ∈ G. Además, es
sencillo ver que las aplicaciones Lg, Rg y la inversión i son difeomorfismos, con inversas
(Lg)−1 = Lg−1 , (Rg)−1 = Rg−1 e i−1 = i.

Con estas nociones básicas acerca de grupos de Lie, pasamos a definir el concepto de
álgebra de Lie.

Un álgebra de Lie (sobre R) es un espacio vectorial real g junto con un operador bilineal
llamado corchete de Lie [·, ·] : g × g −→ g tal que:

(a) [X, Y ] = −[Y,X],

(b) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (identidad de Jacobi),
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para todos X, Y, Z ∈ g.
Por otro lado, dado G un grupo de Lie, se dice que X ∈ X(G) es invariante por la

izquierda si Lg∗h = XLg(h), para todos g, h ∈ G. Ahora bien, denotemos por g al espacio
de campos de vectores invariantes por la izquierda del grupo de Lie G. Si definimos la
aplicación α : g −→ TeG, dada por X 7→ Xe, resulta que α es un isomorfismo de espacios
vectoriales, cuya inversa es x ∈ TeG 7→ X ∈ g, donde Xg = Lg∗x. Se puede ver que todo
campo invariante por la izquierda es diferenciable. Además, si tenemos que X, Y ∈ g, por
definición, X está Lg-relacionado con X e Y está Lg-relacionado con Y y, por lo tanto,
[X, Y ] está Lg-relacionado con [X, Y ], es decir, se tiene que Lg∗h[X, Y ]h = [X, Y ]Lg(h),
por lo que obtenemos que [X, Y ] ∈ g. Esto convierte a g en un álgebra de Lie. Además,
observemos que dim(g) = dim(G). Así, dado un grupo de Lie G, se define el álgebra de
Lie de G como aquella construída a partir del corchete de Lie de campos invariantes a la
izquierda. Además, este álgebra de Lie es isomorfa al espacio tangente en el neutro dotado
del corchete de Lie inducido por los campos de vectores invariantes a la izquierda.

Recordemos ahora que, si tenemos un X ∈ g, una curva α : I −→ G es una curva
integral para el campo vectorial X por el neutro e ∈ G si verifica que α(0) = e y α′(t) =
Xα(t) = Lα(t)∗Xe. Así, se define la aplicación exponencial Exp: g −→ G, dada por X 7→
Exp(X) = α(1).

Dados dos grupos de Lie G y H, se dice que una aplicación φ : G −→ H es un homo-
morfismo de grupos de Lie si es un homomorfismo de grupos y si además es diferenciable
como aplicación entre variedades. Análogamente, un isomorfismo de grupos de Lie es un
isomorfismo de grupos que además es un difeomorfismo. Por otro lado, un automorfismo
de un grupo de Lie G es un isomorfismo de grupos de Lie de G en G.

De forma análoga, para álgebras de Lie se tiene que una aplicación ψ : g −→ h, don-
de g, h son álgebras de Lie, es un homomorfismo de álgebras de Lie si ψ es lineal y si
ψ([X, Y ]) = [ψ(X), ψ(Y )], para cada X, Y ∈ g. Además, un isomorfismo de álgebras de
Lie es un homomorfismo de álgebras de Lie biyectivo, y un automorfismo de álgebras de
Lie es un isomorfismo de una álgebra de Lie en sí misma.

En lo relativo a resultados de homomorfismos de grupo de Lie, destacamos el siguiente.

Proposición 3.2. Sea φ : G −→ H un homomorfismo de grupos de Lie y sean g, h sus
álgebras de Lie correspondientes. Entonces su diferencial φ∗ : g −→ h es un homomorfismo
de álgebras de Lie que satisface la condición de conmutatividad siguiente: φ◦Exp = Exp◦φ∗.

Dado un grupo de Lie G con álgebra de Lie g se define la conjugación por g como la
aplicación Ig : G −→ G, dada por h 7→ ghg−1. A su diferencial Ad(g) = Ig∗ se le llama
aplicación adjunta a nivel de grupos de Lie. Por otro lado, al homomorfismo de grupos de
Lie Ad: G −→ GL(g) se le llama representación adjunta del grupo de Lie G. Con estas
definiciones se cumple que Ig ◦ Exp = Exp ◦ Ad(g), para todo g ∈ G.

A nivel de álgebras de Lie se define la representación adjunta del álgebra de Lie g como
el homomorfismo de álgebras de Lie ad: g −→ gl(g) dado por ad(X)(Y ) = [X, Y ]. De esta
forma, se tiene que Ad(Exp(X)) = ead(X), para todo X ∈ g, donde la aplicación exponencial
e· de GL(g) se entiende como la aplicación exponencial habitual de un endomorfismo lineal.
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Dada una álgebra de Lie g, diremos que h es una subálgebra de Lie de g si h es un
subespacio vectorial de g tal que [X, Y ] ∈ h, para todos X, Y ∈ h. Por otro lado, diremos
que una subálgebra h del álgebra de Lie g es un ideal si [X, Y ] ∈ h, para cada X ∈ h, Y ∈ g.
Por otro lado, una álgebra de Lie g se dice abeliana si [X, Y ] = 0, para cada X, Y ∈ g.

3.2. Resultados relevantes sobre grupos de Lie
Pasamos ahora a definir y presentar algunos resultados básicos relativos a grupos de Lie

y que serán necesarios, en posteriores secciones, para calcular la constante isoperimétrica
de un grupo de Lie resoluble y simplemente conexo con métrica invariante a la izquierda.
Estas definiciones pasarán por recordar la definición de una k-forma invariante por la
izquierda (respectivamente, por la derecha), para llegar a la noción de medida de Haar en
un grupo de Lie G. Además, en lo relativo a las álgebras de Lie, definiremos las álgebras de
Lie simples, semisimples, nilpotentes y resolubles. Finalizaremos con el Teorema de Levi,
que asegura que toda álgebra de Lie se puede descomponer como suma semidirecta de una
álgebra de Lie semisimple y un álgebra de Lie resoluble. A lo largo de esta sección hemos
seguido principalmente la referencia [30, Chapter VIII]

En primer lugar, sea G un grupo de Lie, con álgebra de Lie g. Sabemos que para cada
g ∈ G podemos definir Lg : G −→ G, dada por h 7→ gh y Rg : G −→ G, dada por h 7→ hg,
como las traslaciones por la izquierda y por la derecha respectivamente.

Definición 3.3. Diremos que una k-forma ω ∈ ∧k(G) es invariante por la izquierda si
L∗

gω = ω, para cada g ∈ G. Análogamente, diremos que es invariante por la derecha si
R∗

gω = ω, para cada g ∈ G.

Recordemos que g se identifica con el espacio tangente en el neutro e ∈ G por medio de
la aplicación α : g −→ TeG, dada porX 7→ Xe. De esta forma, consideremosX1, ..., Xm base
de g, donde m es la dimensión de G. Podemos definir 1-formas diferenciables ω1, ..., ωm en G
tales que (ωi)g((Xj)g) = δij, para cada g ∈ G. Por otro lado, definiendo ω := ω1 ∧ ...∧ωm ∈∧m(G) tenemos que no se anula ω en G y, dado que el pullback conmuta con la operación
∧, se tiene que ω es invariante por la izquierda. Además, podemos orientar G de forma que
ω sea definida positiva [30, Proposition 8.9].

En un contexto más general, encontramos la siguiente definición y proposición relativas
a la integración de funciones continuas de soporte compacto en una variedad diferenciable
orientable.

Definición 3.4. Sean M,N dos variedades diferenciables orientadas de dimensión m y
ϕ : M −→ N un difeomorfismo. Diremos que ϕ preserva la orientación si para cada carta
(Uα, φα) de M , la carta (ϕ(Uα), φα ◦ ϕ−1) es positiva relativa al atlas de N . En este caso,
el atlas de cartas de la variedad N se puede tomar como (ϕ(Uα), φα ◦ ϕ−1).

En las condiciones de la definición anterior, la fórmula del cambio de variable para inte-
grales múltiples se puede expresar utilizando los pullbacks como en el siguiente resultado.
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Proposición 3.5. Sean M,N dos variedades diferenciables de dimensión m orientables
y sea ϕ : M −→ N un difeomorfismo que preserva la orientación. Entonces si ω es una
m-forma diferenciable en N , se tiene que∫

N
fω =

∫
M

(f ◦ ϕ)ϕ∗ω,

para cada f ∈ C0(N), donde C0(N) denota las funciones continuas de soporte compacto en
N .

Una demostración de la Proposición 3.5 puede verse en [30, Proposition 8.19].
Antes de enunciar el siguiente resultado, recordemos que si G es un grupo de Lie y,

por lo tanto, una variedad diferenciable, los conjuntos de Borel son los elementos de la σ-
álgebra generada por los conjuntos abiertos de G. Así, una medida de Borel es una medida
definida sobre esta σ-álgebra. En particular, una medida de Borel está completamente
determinada por su acción sobre funciones continuas con soporte compacto, gracias al
teorema de representación de Riesz. En este contexto, veremos que emplearemos una m-
forma invariante por la izquierda para construir la medida sobre G. Además, recordemos
que una medida µ es regular si para todo conjunto A ⊂ G de Borel, se tiene que:

(a) µ(A) = ı́nf {µ(U) : U ⊂ A, U abierto} (regularidad exterior).

(b) µ(A) = sup {µ(K) : K ⊂ A, K compacto} (regularidad interior).

Teorema 3.6. Si G es un grupo de Lie de dimensión m, entonces G admite una m-forma
invariante por la izquierda que no se anula. Además, G puede orientarse de forma que ω
sea positiva y ω defina una medida de Borel no nula dµ1 en G que es invariante por la
izquierda, es decir, dµ1(LgE) = dµ1(E), para cualquiera g ∈ G y cualquier conjunto E de
Borel en G.

Demostración. En primer lugar, por lo comentado en los párrafos anteriores, esa m-forma
ω existe y, además, se puede orientar G de forma que ω sea positiva. Consideremos como
dµ1 la medida asociada a ω, es decir,

∫
G fω =

∫
G f(x)dµ1(x), para cada f ∈ C0(G). Por la

Proposición 3.5 y la igualdad L∗
gω = ω, tenemos que∫

G
f(gx)dµ1(x) =

∫
G
f(x)dµ1(x), (3.1)

para cada f ∈ C0(G). Ahora bien, si tomamos K un compacto de G, aplicando la igualdad
(3.1) a cada función continua de soporte compacto f ≥ XK , donde XK es la función
característica sobre el compacto K y tomando el ínfimo de esas integrales, se obtiene que
dµ1(Lg−1K) = dµ1(K). Así, como G posee una base numerable, la medida definida por dµ1
es automáticamente regular y, así, se tiene que dµ1(Lg−1E) = dµ1(E) para cada conjunto
de Borel E.

Con el Teorema 3.6 podemos definir el concepto de medida de Haar en un grupo de Lie
G.



3.2 Resultados relevantes sobre grupos de Lie 57

Definición 3.7. Dado un grupo de Lie G, una medida de Borel no nula invariante por
traslaciones a la izquierda recibe el nombre de medida de Haar por la izquierda. De forma
análoga, una medida de Haar invariante por la derecha en G es una medida de Borel no
nula invariante por traslaciones a la derecha.

Observación 3.8. Nótese que el Teorema 3.6 nos garantiza la existencia de las medidas
de Haar invariantes por la izquierda.

Definición 3.9. Un grupo de Lie G se dice unimodular si cada medida de Haar invariante
por la izquierda lo es por la derecha (y viceversa). En este caso, hablaremos de medida de
Haar sobre G.

La existencia de medidas de Haar invariantes por la izquierda en un grupo de Lie G
motiva el siguiente resultado.

Teorema 3.10. Dado un grupo de Lie G, entonces dos medidas de Haar por la izquierda
en G son proporcionales.

Demostración. Sean dµ1 y dµ2 dos medidas de Haar por la izquierda sobreG. Consideremos
la medida dµ = dµ1 +dµ2, que es una medida de Haar invariante por la izquierda. Entonces
dµ(E) = 0 implica que dµ1(E) = 0. Ahora bien, por el teorema de Radon-Nikodym existe
un h1 ≥ 0, una función definida sobre G continua y que toma valores reales no negativos,
de forma que dµ1 = h1dµ. Fijemos g ∈ G. Por la invarianza por la izquierda de dµ1 y dµ,
tenemos que ∫

G
f(x)h1(g−1x)dµ(x) =

∫
G
f(gx)h1(x)dµ(x) =

∫
G
f(gx)dµ1(x)

=
∫

G
f(x)dµ1(x) =

∫
G
f(x)h1(x)dµ(x),

para cada función de Borel f ≥ 0. De esta forma, las medidas h1(g−1x)dµ(x) y h1(x)dµ(x)
son iguales y h1(g−1x) = h1(x) para casi todo x ∈ G respecto a la medida dµ. Ahora
bien, podemos tomar h1(g−1x) y h1(x) como funciones de (g, x) ∈ G × G y estas serán
funciones de Borel debido a que las operaciones de grupo son continuas. Además, para
cada g ∈ G ambas funciones coinciden para casi todo punto x ∈ G. Por el Teorema de
Fubini tendremos que ambas funciones coinciden para casi todo par (g, x) con respecto a
la medida producto y, por lo tanto, para cada x coinciden para casi todo g.

Fijemos ahora un punto x0 ∈ G de referencia. En ese caso, como vimos que h1(g−1x) =
h1(x) para casi todo punto x (fijado g), se cumple que h1(g−1x0) = h1(x0) para casi todo
g ∈ G. Así, tomando g = x0x

−1 se obtiene que h1(x) = h1(x0) para casi todo x ∈ G,
luego dµ1 = h1(x0)dµ. Por lo tanto, lo que tenemos es que dµ1 es múltiplo de dµ y, de
manera análoga, ocurre lo mismo con dµ2. De esta forma, se sigue que ambas medidas son
proporcionales.

Observación 3.11. En virtud del Teorema 3.10 se tiene que dos medidas de Haar por
la izquierda son proporcionales. Análogamente se tiene el resultado para medidas de Haar
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invariantes por la derecha, por lo que salvo proporcionalidad, dado un grupo de Lie G,
definiremos la medida de Haar por la izquierda, que denotaremos por dl y la medida de
Haar por la derecha, dr.

Definición 3.12. Dado un grupo de Lie G, se define la función modular ∆: G −→ R+ de
G dada por (el factor de proporcionalidad)

dl(·t) = ∆(t)−1dl(·), para cada t ∈ G.

En relación con la función modular que acabamos de definir, el siguiente resultado nos
proporciona su expresión en términos de la aplicación adjunta a nivel de grupos de Lie.

Proposición 3.13. Dado un grupo de Lie G, la función modular de G viene dada por
∆(t) = | det Ad(t)|.

Demostración. Sea X ∈ g y sean g, t ∈ G, h ∈ C∞(G). De esta forma se tiene que:

Rt−1∗g(Xg)h = Xg(h ◦Rt−1) = d

dr
h ◦Rt−1(gExp(rX))|r=0

= d

dr
h(gExp(rX)t−1)|r=0

= d

dr
h(gt−1It(Exp(rX)))|r=0

= d

dr
h(gt−1Exp ◦ Ad(t)(rX))|r=0

= d

dr
h(gt−1Exp(rAd(t)X))|r=0

= (Ad(t)X)gt−1h.

Por lo tanto obtenemos que

Rt−1∗g(Xg) = (Ad(t)X)gt−1 . (3.2)

Con la expresión obtenida en (3.2), si tomamos una m-forma ω invariante por la izquierda,
podemos realizar el siguiente cálculo:

(R∗
t−1ω)g((X1)g, ..., (Xm)g) = ωgt−1(Rt−1∗g(X1)g, ..., Rt−1∗g(Xm)g)

= ωgt−1((Ad(t)X1)gt−1 , ..., (Ad(t)Xm)gt−1)
= det(Ad(t))ωgt−1((X1)gt−1 , ..., (Xm)gt−1),

de donde se obtiene que
R∗

t−1ω = det(Ad(t))ω. (3.3)

Ahora bien, si suponemos que ω es positiva, obtenemos que o bien R∗
t−1ω, o bien −R∗

t−1ω
son positivas acorde al signo de det(Ad(t)). Por lo tanto, cuando el signo de det(Ad(t)) es
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positivo, combinando la Proposición 3.5 y (3.3) se obtiene

(det(Ad(t)))
∫

G
f(x)dl(x) = (det(Ad(t)))

∫
G
fω =

∫
G
fR∗

t−1ω

=
∫

G
(f ◦Rt)ω =

∫
G
f(xt)dl(x)

=
∫

G
f(x)dl(xt−1) = ∆(t)

∫
G
f(x)dl(x),

donde dl es la medida de Haar invariante por la izquierda construida como en el Teore-
ma 3.6. Así, se tiene que det(Ad(t)) = ∆(t). De esta forma, cuando det(Ad(t)) es ne-
gativo, cada uno de los pasos que acabamos de realizar se puede repetir a excepción de
la primera igualdad en la segunda línea del cálculo anterior. Ahora bien, como −R∗

t−1ω
es definida positiva, la Proposición 3.5 requiere de un signo menos en su fórmula, para
poder tomar ϕ = Rt−1 . Por lo tanto, − det(Ad(t)) = ∆(t). Finalmente, concluimos que
∆(t) = | det(Ad(t))|.

Para concluir este apartado, vamos a introducir algunos conceptos relativos a los diferen-
tes tipos de álgebras de Lie que existen, atendiendo a la cantidad de ideales que contienen
y su comportamiento con respecto a la operación corchete de Lie, para posteriormente
concluir con el Teorema de Levi.

Definición 3.14. Dado un álgebra de Lie g, se dice que es simple si no es abeliana y
no contiene ideales propios distintos de cero. Por otro lado, una álgebra de Lie se dice
semisimple si es suma directa de álgebras de Lie simples.

Definición 3.15. Dada una álgebra de Lie g, podemos construir las siguientes sucesiones:

(a) g0 = g ⊃ g1 = [g, g] ⊃ . . . ⊃ gj+1 = [g, gj] ⊃ . . .

(b) g0 = g ⊃ g1 = [g, g] ⊃ . . . ⊃ gj+1 = [gj, gj] ⊃ . . .

Diremos que g es nilpotente si existe un k tal que gk = 0. Por otro lado, diremos que g es
resoluble si existe un k de forma que gk = 0.

Definición 3.16. Dado un grupo de Lie G, se dice que nilpotente, resoluble, simple o semi-
simple si su álgebra de Lie es respectivamente, nilpotente, resoluble, simple o semisimple.

Definición 3.17 (Suma semidirecta de álgebras de Lie). Sean g, h álgebras de Lie y su-
pongamos que existe una aplicación

φ : h −→ Der(g),

donde Der(g) denota el conjunto de las derivaciones de g (es decir, transformaciones lineales
D : g −→ g que satisfacen la regla de Leibniz D([x, y]) = [D(x), y] + [x,D(y)]). Entonces
el espacio vectorial g ⊕ h se convierte en un álgebra de Lie con corchete definido por:

[(x1, y1), (x2, y2)] := ([x1, x2] + φ(y1)(x2) − φ(y2)(x1), [y1, y2]),
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para todos x1, x2 ∈ g e y1, y2 ∈ h. Esta nueva álgebra de Lie se llama suma semidirecta de
g y h y se denota por:

g⋊φ h.

En relación con las definiciones anteriores, tenemos el siguiente teorema que asegura
que toda álgebra de Lie se escribe como suma semidirecta de un álgebra de Lie semisimple
y una resoluble.

Teorema 3.18 (Teorema de Levi). Dada una álgebra de Lie g, entonces existen una álgebra
de Lie semisimple s y un álgebra de Lie resoluble r, tales que g ∼= s⋉ r (suma semidirecta).

Observación 3.19. Al álgebra de Lie r del teorema anterior se le denota por rad(g), se
denomina radical de g y se define como el mayor ideal resoluble de g.

3.3. La constante isoperimétrica de Cheeger de una
variedad riemanniana

A continuación, vamos a definir la constante isoperimétrica de Cheeger para una va-
riedad riemanniana no compacta de dimensión n ≥ 2. Como ya hemos comentado, este
concepto está estrechamente relacionado con la geometría de la variedad y el espectro del
operador de Laplace-Beltrami. De esta forma, en este contexto y salvo que se indique lo
contrario, M denotará una variedad riemanniana de dimensión n ≥ 2 no compacta. Como
veremos, esta constante proporciona una cota inferior para el valor del primer autovalor no
nulo del operador laplaciano. Tanto la definición de la constante isoperimétrica de Cheeger
como algunas propiedades interesantes se pueden consultar en [10, pág. 95-96].

El motivo de introducir las constantes isoperimétricas se debe a que nos va a inte-
resar trasladar el estudio del problema isoperimétrico del espacio euclídeo a variedades
riemannianas más generales con geometría acotada, véase [11, pág. 127]. En este contexto,
tenemos que cambiar nuestro punto de vista con respecto a las preguntas que nos plan-
teamos. Es decir, en una variedad riemanniana general, las posibilidades de encontrar el
dominio de área de frontera mínima, dando de antemano el volumen de dicho dominio,
son prácticamente nulas, a excepción de algunos casos muy especiales. Además, diferentes
elecciones del volumen prescrito pueden cambiar por completo el carácter del problema
[11, pág. 117]. Así, desde una perspectiva analítica, podemos no ser capaces de calcular de
forma precisa el ínfimo del problema

Ω 7→ A(∂Ω)
V (Ω)n−1

n

, (3.4)

donde n es la dimensión de la variedad y Ω denota un dominio acotado, relativamente
compacto y cuya frontera es una hipersuperficie diferenciable. De esta forma, más bien nos
plantearemos el siguiente problema: encontrar ν ∈ [1,∞), de forma que el funcional isope-
rimétrico (3.4), cambiando n por ν, esté acotado por una constante positiva. Observemos
que para ν = 1 el funcional se convierte en Ω 7→ A(∂Ω) y para ν = ∞ se tiene Ω 7→ A(∂Ω)

V (Ω) .
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Con objeto de estudiar los funcionales anteriores surgen las llamadas constantes iso-
perimétricas para una variedad riemanniana M de dimensión n ≥ 2. Así, la ν-constante
isoperimétrica se define como

Jν(M) = ı́nf
Ω

A(∂Ω)
V (Ω)1− 1

ν

,

donde Ω recorre todas las subvariedades abiertas de M con clausura compacta y cuya fron-
tera es una hipersuperficie diferenciable. En concreto, nos vamos a centrar en la constante
isoperimétrica de Cheeger, que viene dada por:

h(M) := J∞(M).

Merece la pena comentar por qué estudiamos la constante de Cheeger en una variedad
no compacta. Esto se debe a que si la variedad M fuese compacta, considerando Ω =
M \B(x, ε), para un ε suficientemente pequeño, y donde B(x, ε) denota la bola geodésica
en M de centro x y radio ε, se puede probar que Jν(M) = 0, para cada ν. Por esta razón,
restringiremos nuestro estudio de la constante de Cheeger al caso de las variedades no
compactas. Por otro lado, se puede adaptar la definición de constante isoperimétrica para
el caso de variedades compactas y obtener resultados interesantes (ver comentarios en [11,
Chapter VI.2]).

Así pues, tenemos la siguiente definición.

Definición 3.20. Se define la constante isoperimétrica de Cheeger de M como

h(M) := ı́nf
Ω

A(Ω)
V (Ω) , (3.5)

donde Ω recorre todos los abiertos de M con clausura compacta en M y cuya frontera
es una hipersuperficie diferenciable. Cabe mencionar que algunos autores denotan a esta
constante como Ch(M).

Definición 3.21. Dada una variedad riemanniana M no compacta de dimensión n ≥ 2,
diremos que un abierto Ω de M es un dominio normal si es conexo, tiene clausura compacta
dentro de M y su frontera es diferenciable a trozos, es decir, que ∂Ω es una unión finita de
hipersuperficies diferenciables con borde que se intersecan en puntos o aristas (por ejemplo
un cubo).

Con la definición de dominio normal de una variedad, podemos introducir el problema
de autovalores para el operador laplaciano con condiciones de Dirichlet y con ello la noción
del primer autovalor del operador laplaciano. Veamos esto en detalle.

Definición 3.22. Consideremos una variedad riemanniana M bajo las hipótesis de la
Definición 3.21 y un dominio normal Ω de dicha variedad. En estas condiciones podemos
plantear el siguiente problema con condiciones de contorno tipo Dirichlet∆u+ λu = 0 en Ω,

u = 0 en ∂Ω,
(3.6)
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donde u es una función de al menos clase C2(Ω) y continua en Ω̄, y λ es un número real que
depende de u. Si una función u no idénticamente nula es solución del problema anterior
para un cierto λ, diremos que λ es un autovalor del laplaciano en Ω con autovector o
autofunción u. Por otro lado, si consideramos los autovalores del operador laplaciano ∆,
se puede probar que son de la forma λ1 < λ2 ≤ λ3 ≤ · · · , donde la multiplicidad de λ1 es
uno [10, pág. 8]. De esta forma, denotamos λ(Ω) := λ1 y lo llamamos primer autovalor del
laplaciano con condición de Dirichlet para el dominio Ω.

Con la Definición 3.22 tiene sentido considerar el Teorema 3.23 que enunciamos más
abajo y que acota dicho autovalor, para un dominio normal, en función de la constante
isoperimétrica de Cheeger. Pero antes recordemos brevemente la fórmula de la co-área, que
nos será de gran utilidad para demostrar el Teorema 3.23.

Consideremos una función f ∈ C∞(M), con ∇f ̸= 0 en casi todo punto de M , es decir,
el conjunto de los puntos donde ∇f = 0 tiene medida nula en M . De esta forma, para
cualquier función integrable f se cumple que en cualquier dominio normal Ω de M , se
verifica que ∫

Ω
||∇f ||dV =

∫ ∞

0
A(t)dt,

donde A(t) representa el área de {p ∈ Ω : f(p) = t}, es decir, el conjunto de nivel para la
constante t. Una demostración detallada de esto puede verse en [10, pág. 86]. Nótese además
que dV hace referencia a la medida de volumen de la variedad riemanniana (orientable)
M .

Teorema 3.23. Sea M una variedad riemanniana orientable de dimensión n ≥ 2 no
compacta. Entonces para cualquier dominio normal Ω de M se tiene que

λ(Ω) ≥ h2(Ω)
4 . (3.7)

Demostración. Consideremos u la autofunción asociada al autovalor λ(Ω), es decir, tenemos
la siguiente situación ∆u+ λ(Ω)u = 0 en Ω

u = 0 en ∂Ω.

Por otro lado, dada u ∈ C∞(M) sabemos que ∇u es el campo vectorial que verifica
⟨∇u,X⟩ = X(u), para cada X ∈ X(M). Además, por la regla de la cadena, se tiene
que

⟨∇u2, X⟩ = X(u2) = 2uX(u) = 2u⟨∇u,X⟩ = ⟨2u∇u,X⟩.

Como esta igualdad se tiene para cada X ∈ X(M), obtenemos que ∇u2 = 2u∇u.
Denotemos, para el resto de la demostración, por || · || a la norma en el espacio de

funciones L2(Ω) y recordemos la primera fórmula de Rayleigh [10, pág. 16-17]. Esta nos
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dice que para un dominio normal se tiene que el primer autovalor del operador laplaciano
tiene la siguiente expresión:

λ(Ω) = ı́nf
v∈H1

0 (Ω)\{0}

∫
Ω |∇v|2dV∫

Ω v
2dV

, (3.8)

donde, recordemos, que el espacio de Sobolev H1
0 (Ω) consiste en las funciones integrables

en Ω cuya primera derivada débil es integrable en Ω y con traza igual a cero sobre ∂Ω.
Además, dicho ínfimo se alcanza en cualquier autofunción asociada al primer autovalor del
laplaciano. Ahora bien, como hemos supuesto que u es la autofunción para λ(Ω), se tiene
por la expresión dada en (3.8) que λ(Ω) ≥ ||∇u||2

||u||2 , pues en la autofunción u se alcanza
el mínimo. Por otro lado, por la expresión que habíamos obtenido para ∇u2, es decir,
∇u2 = 2u∇u, se tiene por la desigualdad de Cauchy-Schwarz que

∫
Ω

|∇u2|dV =
∫

Ω
|2u∇u|dV ≤

(∫
Ω
(2u)2dV

)1/2

·
(∫

Ω
|∇u|2dV

)1/2

= 2||u|| · ||∇u||.

Combinando esto con (3.8) se tiene que

λ(Ω) ≥ ||∇u||2

||u||2
≥ 1

4

(∫
Ω |∇u2|dV∫

Ω u
2dV

)2

. (3.9)

Aplicando la fórmula de la co-área particularizando en el caso de la función u2, se tiene que∫
Ω ||∇u2||dV =

∫∞
0 A(t)dt, donde A(t) es el área de la superficie de nivel u2 = t. Además,

nótese que la integral se toma únicamente en [0,∞), debido a que se integra u2 ≥ 0. Así,
si denotamos por V (t) al volumen de la región {u2 ≥ t} := {p ∈ Ω : u2(p) ≥ t} se obtiene:∫

Ω
||∇u2||dV =

∫ ∞

0
A(t)dt

≥ h(Ω)
∫ ∞

0
V (t)dt

= −h(Ω)
∫ ∞

0
tV ′(t)dt

= h(Ω)
∫

Ω
u2dV,

donde para pasar de la segunda a la tercera línea se ha empleado la integración por partes.
En efecto, aplicando la integración por partes se tiene∫ ∞

0
V (t)dt = [tV (t)]∞0 −

∫ ∞

0
tV ′(t)dt.

Veamos que el primer sumando es igual a cero. En efecto, tenemos [tV (t)]∞0 = ĺımt7→∞ tV (t).
Ahora bien, sabemos que u2 es acotada, por lo que existe un tmax, de forma que V (t) = 0
para cada t > tmax, debido a que para cada t > tmax se verifica que {u2 ≥ t} = ∅, por lo



64 3 La constante isoperimétrica de Cheeger

que ĺımt7→∞ tV (t) = 0. Así, se tiene el paso de la segunda a la tercera línea. Finalmente,
para la última igualdad, empleando de nuevo la integración por partes y el teorema de
Fubini, se obtiene

−h(Ω)
∫ ∞

0
tV ′(t)dt = −h(Ω)

(
[tV (t)]∞0 −

∫ ∞

0
V (t)dt

)

= h(Ω)
∫ ∞

0
V (t)dt

= h(Ω)
∫ ∞

0
(
∫

{p∈Ω:u2(p)≥t}
1 dV )dt

= h(Ω)
∫

Ω
(
∫ u2

0
1dt)dV

= h(Ω)
∫

Ω
u2dV,

donde recordemos que el término [tV (t)]∞0 = 0. Así, se concluye que λ(Ω) ≥ h2(Ω)
4 , lo que

prueba el teorema.

3.4. La constante isoperimétrica de Cheeger de un
grupo de Lie resoluble y simplemente conexo

A lo largo de esta sección, vamos a introducir una serie de resultados que nos permitirán
calcular, de forma explícita, la constante isoperimétrica de Cheeger en el caso de un grupo
de Lie G simplemente conexo y resoluble (es decir, con álgebra de Lie resoluble) con métrica
invariante a la izquierda. Como ya comentamos en la introducción de este capítulo, esto
nos permitirá aplicar estos cálculos en el contexto de los espacios simétricos de tipo no
compacto, pues se sabe que cada espacio de este tipo es isométrico a un grupo de Lie
resoluble simplemente conexo con métrica invariante a la izquierda. En esta sección se ha
seguido el artículo original de Peyerimhoff y Samiou [41].

Comenzaremos considerando una clase particular de grupos de Lie, de la forma G0 ⋊
R. Más adelante, veremos que el trabajo que realizaremos para esta clase de grupos nos
permitirá abordar el caso general. De esta forma, tomemos un grupo de Lie G de la forma
G = G0 ⋊ R, donde estamos considerando R = (R,+) como grupo de Lie, con álgebra
de Lie g = g0 ⋊ R, la suma semidirecta de las dos álgebras de Lie, donde recordemos que
R es la parte abeliana con corchete [·, ·] = 0. Además, equipemos a G con una métrica
invariante a la izquierda, de forma que g0 ⊥ R. Por otro lado, si denotamos a H0 como uno
de los vectores unitarios del álgebra de Lie R, según la métrica considerada, obtenemos el
difeomorfismo ϕ : G0 × R −→ G, dado por (g0, t) 7→ g0ExpR(tH0). Aquí, ExpR : R −→ R
denota la aplicación exponencial del grupo de Lie (R,+), que se puede identificar con la
aplicación identidad de R.

A continuación, vamos a ver un resultado que establece la expresión explícita, en tér-
minos de la representación adjunta a nivel de álgebras de Lie, de la medida de Haar por la
izquierda de un grupo de Lie G como el descrito anteriormente.
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Lema 3.24. Sea G = G0 ⋊R un grupo de Lie como el descrito arriba. La medida de Haar
invariante por la izquierda dµ en G está dada por la expresión

dµ(g0, t) = det(ead(−tH0))dν(g0)dt = e−ttr(ad(H0))dν(g0)dt, (3.10)

donde dν es la medida de Haar izquierda en G0 ≡ G0 × {0}.

Observación 3.25. Nótese que aquí e denota la aplicación exponencial de Aut(g) y, por
lo tanto, se puede identificar con la exponencial de matrices habitual.

Demostración. En primer lugar, dνdt es invariante por la izquierda para G0, pues dados
h0, g0 ∈ G0, y t ∈ R, si h0 actúa por la izquierda sobre un elemento (g0, t), se tiene que
h0 · (g0, t) = (h0g0, t). Por otro lado, dado que la medida dν es invariante por la izquierda
por definición y la medida dt no se ve afectada al no actuar h0 sobre la componente de R,
si tomamos f ∈ C0(G0 × R), se tiene que

∫
G0×R

f(h0g0, t)dν(g0)dt =
∫
R
(
∫

G0
f(h0g0, t)dν(g0))dt

=
∫
R
(
∫

G0
f(g̃0, t)dν(g̃0))dt

=
∫

G0×R
f(g0, t)dν(g0)dt.

Nótese que hemos realizado en cambio de variable g̃0 = h0g0. Así, hemos obtenido que dνdt
es invariante por la izquierda bajo G0.

Por otro lado, consideremos la acción por la derecha de un elemento s ∈ R, es decir,
s · (g0, t) = (g0, t + s). Como dt es invariante por traslaciones (medida de Lebesgue) y dν
en G0 no se ve afectada, tenemos que

∫
G0×R

f(g0, t+ s)dν(g0)dt =
∫

G0
(f(g0, t+ s)dt)dν(g0)

=
∫

G0
(f(g0, t̃)dt̃)dν(g0)

=
∫

G0×R
f(g0, t)dν(g0)dt,

donde hemos empleado el cambio de variable t̃ = t+ s.
La idea ahora consiste en construir la medida de Haar invariante por la izquierda, dµ,

en G = G0 ⋊R, de la forma dµ(g0, t) = δ(t)dν(g0)dt, donde δ(t) es un factor de corrección
que tenemos que determinar.

Sean a = ExpR(sH0), f ∈ C∞
0 (G) (es decir, función de clase infinito y soporte compacto)

y ψ : G0 −→ G0, dada por g0 7→ ag0a
−1. En ese caso, tomando un g ∈ G, podemos realizar
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el cálculo siguiente:∫
G
f(ag)dµ(g) =

∫
R
(
∫

G0
f(ag0ExpR(tH0))δ(t)dν(g0))dt

=
∫
R
(
∫

G0
f(ψ(g0)aExpR(tH0))δ(t)dν(g0))dt

=
∫
R
(
∫

G0
f(ψ(g0)ExpR((s+ t)H0))δ(t)dν(g0))dt

=
∫
R
(
∫

G0
f(g0ExpR((s+ t)H0))| detDψ−1(g0)|dν(g0))dt.

Calculemos ahora el término | det(Dψ−1(g0))|. Para ello, tomemos X1, ..., Xn una base orto-
normal de g0 con respecto a la métrica invariante por la izquierda. Entonces consideremos
los campos de vectores Yj = d

dt
g0ExpR(tXj)|t=0, con j = 1, ..., n. Se tiene que Yj, con

j = 1, ..., n es una base ortonormal para Tg0G0. En efecto, pues utilizando la invarianza
por la izquierda de los campos Xj, se tiene que

Yj = d

dt
g0ExpR(tXj)|t=0

= d

dt
Lg0ExpR(tXj)|t=0

= Lg0∗Xj|e = Xj|g0 .

Con los campos Yj, podemos calcular el término | det(Dψ−1(g0))|.

Dψ−1(g0)(Yj) = ψ−1
∗g0(Yj)

= d

dt
ψ−1(g0ExpR(tXj))|t=0

= d

dt
a−1g0ExpR(tXj)a|t=0

= a−1g0(
d

dt
ExpR(tXj)|t=0)a

= a−1g0Xja = La−1g0a∗(a−1Xja)
= La−1g0a∗(Ad(a−1)(Xj))
= La−1g0a∗(ead(−sH0)Xj).

Por lo tanto, hemos obtenido que | det(Dψ−1(g0))| = det(ead(−sH0)). Y, de esta forma
podemos calcular la expresión de

∫
G f(ag)dµ(g):∫

G
f(ag)dµ(g) =

∫
R
(δ(t) det(ead(−sH0))

∫
G0
f(g0ExpR((s+ t)H0))dν(g0))dt

=
∫

G
f(g)dµ(g) =

∫
R
(δ(s+ t)

∫
G0
f(g0ExpR((s+ t)H0))dν(g0))dt,

de donde se obtiene la identidad multiplicativa

δ(t) det(ead(−sH0)) = δ(s+ t),
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es decir, δ(t) = det(ead(−tH0)). Ahora bien, como la aplicación traza es la diferencial de la
aplicación determinante, se tiene que

det(ead(−tH0)) = etr(ad(−tH0)) = etr(−tad(H0)) = e−ttr(ad(H0)).

Finalmente, se obtiene que

det(ead(−tH0)) = e−ttr(ad(H0)),

lo que completa la prueba.

El siguiente resultado nos proporciona una cota inferior para la constante isoperimétrica
de Cheeger de un grupo de Lie G como el considerado arriba.

Teorema 3.26. Sea G un grupo de Lie de la forma G0 ⋊ R, con álgebra de Lie g0 ⋊ R
(producto semidirecto de álgebras de Lie), con una métrica invariante a la izquierda, de
forma que g0 ⊥ R. Entonces se tiene que

h(G) ≥ |tr(ad(H0))|.

Además, si h(G0) = 0, entonces se tiene la igualdad.

Demostración. Recordemos que teníamos el difeomorfismo ϕ : G0 × R −→ G, dado por
(g0, t) 7→ g0ExpR(tH0), por lo que podemos suponer que G ≡ G0 × R y denotemos por
π : G −→ G0 la proyección. Además, sin pérdida de generalidad, podemos suponer que
tr(ad(H0)) ≥ 0 (en caso contrario basta con tomar −H0 en lugar de H0).

Para un subconjunto K ⊂ G conexo y compacto, con interior no vacío y cuya frontera
∂K sea una hipersuperficie diferenciable, definimos

U := π(K) \ {Puntos críticos de π|∂K} .

Además, definimos en U las funciones

δ+(u) := máx {t : (u, t) ∈ K}

y
δ−(u) := mı́n {t : (u, t) ∈ K} .

Nótese que las funciones δ+ y δ− son diferenciables en U , pues el conjunto U , por el
Teorema de Sard, es denso en π(K). Además, la diferenciabilidad se desprende de que en el
conjunto U , la restricción π|∂K no tiene puntos críticos, luego ∂K corta a las fibras {u}×R
de manera transversal y, de nuevo, por el Teorema de Sard U es denso en π(K).

Definimos ahora ∂K+ := {(u, δ+(u)) : u ∈ U} y ∂K− := {(u, δ−(u)) : u ∈ U}, es decir,
las gráficas de δ+ y δ−. Veamos cómo podemos estimar los volúmenes de K y ∂K. Por el
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Lema 3.24, tenemos que

V (K) =
∫

K
dµ(g) =

∫
K
dµ(g0, t)

=
∫

K
e−ttr(ad(H0))dν(g0)dt

≤
∫

U
(
∫ δ+(u)

δ−(u)
e−ttr(ad(H0))dt)dν(u)

=
∫

U

1
tr(ad(H0))

(−e−tr(ad(H0))δ+(u) + e−tr(ad(H0))δ−(u))dν(u)

≤ 1
tr(ad(H0))

∫
U
e−tr(ad(H0))δ+(u) + e−tr(ad(H0))δ−(u)dν(u),

donde la primera desigualdad se consigue debido a que

K ⊂
{
(u, t) ∈ G0 × R : u ∈ U, δ−(u) ≤ t ≤ δ+(u)

}
.

Ahora bien, es claro que A(∂K) ≥ A(∂K+) +A(∂K−), por lo que si nos centramos en
∂K+, podemos obtener que

A(∂K+) =
∫

U

√
det(⟨φ∗uei, φ∗uej⟩(u,δ+(u)))n

i,j=1dν(u), (3.11)

donde φ : U −→ ∂K+, está dada por u 7→ (u, δ+(u)) y {e1, ..., en} es una base ortonormal
de TuG0. Acotemos ahora el término de la integral (3.11).√

det(⟨φ∗uei, φ∗uej⟩(u,δ+(u)))n
i,j=1 =

=
√

det((⟨ei, ej⟩(u,δ+(u)) + ei(δ+)ej(δ+))n
i,j=1)

≥
√

det((⟨ei, ej⟩(u,δ+(u)))n
i,j=1

= e−δ+(u)tr(ad(H0)).

Nótese que la última desigualdad proviene de que si escribimos A := (⟨ei, ej⟩(u,δ+(u)))n
i,j=1

y B := A+ (ei(δ+)ej(δ+))n
i,j=1, donde A ∈ Mn×n(R) es simétrica y no negativa, se obtiene

que det(B) ≥ det(A). Por otro lado, la igualdad del final se obtiene por la medida de Haar
invariante a la izquierda que habíamos calculado en el Lema 3.24 para G0 × {0} ≡ G0,
donde {e1, ..., en} es base ortonormal de TuG0. Además nótese que los vectores ei de la
derecha de la desigualdad se consideran como elementos en T(u,δ+(u))G.

De manera análoga, podemos realizar la misma estimación para el caso de ∂K− obte-
niendo que

A(∂K+) ≥
∫

U
e−δ+(u)tr(ad(H0))dν(u) (3.12)

y
A(∂K−) ≥

∫
U
e−δ−(u)tr(ad(H0))dν(u). (3.13)
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Así, aplicando (3.12) y (3.13) se obtiene la siguiente estimación:

A(∂K) ≥ A(∂K+) + A(∂K−)

≥
∫

U
e−δ+(u)tr(ad(H0)) + e−δ−(u)tr(ad(H0))dν(u).

De esta manera, se tiene que

tr(ad(H0))V (K) ≤ A(∂K+) + A(∂K−) ≤ A(∂K),

lo que equivale a
A(∂K)
V (K) ≥ tr(ad(H0)).

Finalmente, se concluye que h(G) ≥ |tr(ad(H0))|.
Pasemos ahora a probar la igualdad en el caso de que h(G0) = 0. Consideremos ahora

un conjunto K0 ⊂ G0 arbitrario y sea el conjunto K = K0 × [a, b] ⊂ G ∼= G0 × R, cuya
frontera será de la forma (K0 × {a, b}) ∪ (∂K0 × [a, b]). Calculemos V (K) empleando la
medida de Haar izquierda del Lema 3.24, tenemos que

V (K) =
∫ b

a
(
∫

K0
e−ttr(ad(H0))dν(g0))dt

= VG0(K0)
∫ b

a
e−ttr(ad(H0))dt

= VG0(K0)
e−atr(ad(H0)) − e−btr(ad(H0))

tr(ad(H0))
.

(3.14)

Empleando de nuevo la medida de Haar obtenida en el Lema 3.24, tenemos que

A(K0 × {a, b}) = A(K0 × {a}) + A(K0 × {b})

=
∫

K0
dν(g0)(e−atr(ad(H0)) + e−btr(ad(H0)))

= V (K0)(e−atr(ad(H0)) + e−btr(ad(H0))).

Ahora tomando b suficientemente pequeño, deducimos que

A(K0 × {a, b})
V (K) = V (K0)(e−atr(ad(H0)) + e−btr(ad(H0)))

V (K0) e−atr(ad(H0))−e−btr(ad(H0))

tr(ad(H0))

= tr(ad(H0))
e−atr(ad(H0)) + e−btr(ad(H0))

e−atr(ad(H0)) − e−btr(ad(H0))

= tr(ad(H0)) + tr(ad(H0))
2e−btr(ad(H0))

e−atr(ad(H0)) − e−btr(ad(H0))

≤ tr(ad(H0)) + ε.

(3.15)

Nótese que estas estimaciones tienen sentido aunque tr(ad(H0)) = 0.
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Recordemos que n = dim(g0) y consideremos una base ortonormal {e1, ..., en−1} de
Tu∂K0 ⊂ g0 y denotemos At = e−t·(ad(H0)). Notemos que det(At) = e−t·tr(ad(H0)). Por otro
lado,

A(∂K0 × [a, b]) =
∫ b

a
A(∂K0 × {t})dt,

pues al ser un producto, se puede descomponer el área como la integral de las áreas de
las secciones horizontales. Además, dado que en ∂K0 × {t} ⊂ G ∼= G0 × R la medida de
Haar por la izquierda es la dada por el Lema 3.24, se puede calcular A(∂K0 × {t}) de la
siguiente forma:

A(∂K0 × {t}) =
∫

∂K0

√
det((⟨Atei, Atej⟩)n−1

i,j=1)dvol∂K0(u), (3.16)

donde dvol∂K0 denota la medida de Haar de G0 sobre la subvariedad ∂K0.
Consideremos ahora A∗

t el operador adjunto respecto de la métrica invariante a la
izquierda, es decir, es el operador que cumple que ⟨Atei, Atej⟩ = ⟨ei, A

∗
tAtej⟩. Ahora,

tomemos PV la proyección sobre el hiperplano V de g0. Con esta proyección, podemos
acotar superiormente el integrando de la expresión (3.16). En efecto, definiendo

M := máx
{√

det(PV ◦ A∗
tAt|V ) : t ∈ [a, b], V ⊂ g0, V hiperplano de g0

}
,

se obtiene que √
det((⟨Atei, Atej⟩)n−1

i,j=1) =
√

det((⟨ei, A∗
tAtej⟩)n−1

i,j=1)
≤ M.

Ahora acotemos la expresión
A(∂K0 × [a, b])

V (K) = A(∂K0 × [a, b]) · tr(ad(H0))
(e−atr(ad(H0)) − e−btr(ad(H0)))V (K0)

. (3.17)

En primer lugar, dado t ∈ [a, b] fijo, sabemos que

A(∂K0 × {t}) ≤ M
∫

∂K0
dvol∂K0(u) = M · A(∂K0) = M · A(∂K0 × {t}). (3.18)

Ahora bien, por (3.18), si variamos t en el intervalo [a, b] se obtiene

A(∂K0 × [a, b]) ≤ M
∫ b

a
A(∂K0)dt = M · A(∂K0)(b− a). (3.19)

Combinando la expresión (3.19) con (3.17) y observando que, dado que h(G0) = 0, se puede
tomar A(∂K0)

V (K0) tan pequeño como nosotros queramos, obtenemos la siguiente acotación para
(3.17):

A(∂K0 × [a, b])
V (K) ≤ M · A(∂K0)(b− a) · tr(ad(H0))

(e−atr(ad(H0)) − e−btr(ad(H0)))V (K0)

= M · tr(ad(H0))(b− a)
e−atr(ad(H0)) − e−btr(ad(H0)) · A(∂K0)

V (K0)
≤ ε.

(3.20)
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Finalmente, combinando las expresiones (3.15) y (3.20), tenemos que

A(∂K)
V (K) = A(K0) × {a, b}

V (K) + A(∂K0 × [a, b])
V (K)

≤ tr(ad(H0)) + 2ε,

para cada ε > 0. Por lo que, si hacemos tender ε a cero, obtenemos que A(∂K)
V (K) = tr(ad(H0)),

luego h(G) = tr(ad(H0)).

El Teorema 3.26 es un pilar fundamental para calcular la constante isoperimétrica de
Cheeger de un grupo de Lie resoluble y simplemente conexo, pero antes de esto vamos a
enunciar un resultado que nos permite caracterizar a los grupos de Lie unimodulares en
términos de su constante isoperimétrica de Cheeger. Una demostración de este resultado
puede verse en [28, Corolario 3.6].

Teorema 3.27. Dado un grupo de Lie G simplemente conexo y resoluble, entonces h(G) =
0 si y solo si es unimodular.

A continuación, vamos a enunciar un resultado básico relativo a las aplicaciones lineales
y los máximos de las mismas, que nos será de utilidad.

Lema 3.28. Sea V un espacio vectorial real de dimensión n con producto escalar ⟨·, ·⟩ y
sea α ∈ V ∗ \ {0}. Entonces, si v0 ∈ V , con ||v0|| = 1, maximiza α en S1(V ), entonces
v0 ⊥ ker(α).

Demostración. En primer lugar tenemos que α es una forma lineal no nula en un espacio
vectorial de dimensión n, por lo que existe a = (a1, ..., an) vector no nulo, de forma que
α(v) = ⟨a, v⟩. Ahora bien, por la desigualdad de Cauchy-Schwarz, se tiene que α(v) =
⟨a, v⟩ ≤ ||a|| · ||v||, pero si nos restringimos a la esfera S1(V ), se tiene que ⟨a, v⟩ ≤ ||a||
y, por lo tanto la igualdad se alcanza si y solo si v = a

||a|| . Por tanto, si suponemos que
el máximo en S1(V ) para α se alcanza en un vector v0 ∈ S1(V ), se tiene que v0 = a

||a|| .
Finalmente, es claro que ese v0 es ortogonal, respecto a ⟨·, ·⟩, a ker(α).

Corolario 3.29. Dado un grupo de Lie G simplemente conexo y resoluble con álgebra de
Lie g, su constante isperimétrica de Cheeger es

h(G) = máx
H∈g,||H||=1

tr(ad(H)).

Demostración. Consideremos la aplicación α : g −→ R, dada por X 7→ tr(ad(X)) y sea
g0 := ker(α). Veamos que g0 es un ideal de g. Para ello tendremos que ver que α es un
homomorfismo de álgebras de Lie. Ahora bien, como tenemos el grupo de Lie R ≡ (R,+)
su operación corchete es en realidad [·, ·] = 0, por lo que bastará con ver que dados
X, Y ∈ g, α([X, Y ]) = tr(ad([X, Y ])) = tr([[X, Y ], ·]) = 0. Pero esto es claro, pues nótese
que la representación adjunta a nivel de álgebras de Lie es un homomorfismo de álgebras
de Lie ad: g −→ End(g), por lo que ad([X, Y ]) = [ad(X), ad(Y )] = ad(X) ◦ ad(Y ) −
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ad(Y ) ◦ ad(X) y, así, tr(ad([X, Y ])) = 0, ya que la traza de una composición de varios
endomorfismos es invariante por permutaciones cíclicas de dicha composición. De esta
forma, α es homomorfismo de álgebras de Lie, por lo que g0 = ker(α) es un ideal de g.
Además, es claro que [g, g] ⊂ g0 y es un ideal de g0.

Consideremos ahora el grupo de Lie G0 simplemente conexo y unimodular con álgebra
de Lie g0. Este grupo cumple que h(G0) = 0, por el Teorema 3.27. Ahora bien, en el caso de
que G0 = G el Teorema 3.26 nos garantiza el resultado. En otro caso, g0 tiene codimensión
uno. En efecto, al ser G no unimodular, la 1-forma α es no nula para el vector H0 que
realiza el máximo. Ahora bien, el núcleo de una 1-forma no nula es siempre un subespacio
de codimensión 1.

Definamos H0 como el punto donde α alcanza el máximo en esfera unitaria de g, es
decir,

máx
H∈g,||H||=1

tr(ad(H)) = tr(ad(H0)).

Así, ahora tenemos que verificar que estamos en las hipótesis de Teorema 3.26, es decir,
tenemos que ver que H0 ⊥ g0. Pero esto es claro, pues α es una aplicación lineal y, en-
tonces, por el Lema 3.28 se tiene que H0 ⊥ g0. De esta forma, estamos en las hipótesis de
Teorema 3.26, luego obtenemos que h(G) = tr(ad(H0)).

3.5. Un ejemplo importante: espacios simétricos
En esta sección abordamos el cálculo de la constante isoperimétrica de Cheeger en un

contexto particularmente interesante: los espacios simétricos de tipo no compacto. Este
caso es relevante por varias razones. En primer lugar, estos espacios poseen una estructura
altamente simétrica que permite obtener descomposiciones algebraico-geométricas útiles.
En segundo lugar, todo espacio simétrico de tipo no compacto es isométrico a un grupo de
Lie resoluble y simplemente conexo con métrica invariante a la izquierda, lo cual conecta
con el enfoque desarrollado en las secciones anteriores, donde detallamos el cálculo de la
constante isoperimétrica de Cheeger para un grupo de Lie de estas características.

Esta sección se divide a su vez en varias subsecciones. En primer lugar, se presentará
la definición y propiedades básicas acerca de los espacios simétricos, para posteriormente,
en la primera sección hablar sobre los tipos de espacios simétricos, poniendo el foco en los
de tipo no compacto.

En la segunda sección, se introduce la noción de espacio raíz y un par de herramientas
fundamentales del análisis geométrico en estos espacios: la descomposición en espacios de
raíces y la descomposición de Iwasawa. En la primera parte, se desarrolla la noción de
sistema de raíces y espacio raíz. En cuanto a la descomposición de Iwasawa, se detallan los
pasos de la descomposición y cómo se utiliza para modelar el espacio simétrico como un
grupo de Lie resoluble. En este contexto, la métrica invariante a la izquierda desempeña
un papel esencial.

Finalmente, calcularemos la constante de Cheeger de un espacio simétrico de tipo no
compacto, aplicando el Corolario 3.30 a estos espacios. En este contexto, dicha constante
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puede calcularse de forma explícita a partir del peso (o multiplicidad) de las raíces positivas
del sistema de raíces.

A continuación, vamos a llevar a cabo una introducción a los espacios simétricos rie-
mannianos, poniendo el foco en los de tipo no compacto. Véase para más detalles [15,
Section 3]. Referencias estándar para el estudio de los espacios simétricos y herramientas
relacionadas son [27] y [30].

Comencemos con su definición y algunas propiedades fundamentales. En primer lugar,
sea M una variedad riemanniana conexa. Dado p ∈ M , podemos considerar la bola geodé-
sica B(p, r), centrada en el punto p y con radio r > 0 suficientemente pequeño. En dicha
bola, podemos definir la aplicación diferenciable

σp : B(p, r) −→ B(p, r), dada por q 7→ expp(−v),

donde v ∈ TpM y |v| < r. Esta aplicación es una reflexión geodésica respecto del punto p.
Además, es claro que σ2

p = Id. Con estos breves preliminares pordemos definir la noción de
espacio simétrico.

Definición 3.30. Un espacio simétrico riemanniano es una variedad riemanniana conexa
M , de forma que para cada p ∈ M la reflexión geodésica σp en el punto p está definida
globalmente en la variedad M y es una isometría de M .

Observación 3.31. Con la definición anterior, los espacios simétricos están caracterizados
por la existencia de simetrías centrales alrededor de cada punto. Con esta definición, se
puede ver que los espacios simétricos son completos (las geodésicas pueden extenderse apli-
cando reflexiones geodésicas) y homogéneos, pues tomando p1, p2 ∈ M , por completitud,
existe un segmento de geodésica que une p1 y p2, ahora bien, si tomamos q como su punto
medio, es claro que σq(p1) = p2.

Fijemos ahora un punto o ∈ M , que habitualmente recibe el nombre de origen o
punto base de M . La homogeneidad y la conexidad de M implican que el grupo de Lie
G = Isom(M)0 (componente conexa de Isom(M) que contiene a la identidad) actúa de
forma transitiva sobre M . Sea K = Go = {g ∈ G : g · o = o} el grupo de isotropía en el
origen o, el cual puede verse que es un grupo de Lie compacto.

Observación 3.32. Como G = Isom(M)0, considerando la acción φ : G×M −→ M , dada
por (g, p) 7→ g · p y M un espacio simétrico riemanniano, se puede probar que al ser G
un subgrupo de Lie cerrado del grupo de isometrías de M , la acción es propia. De esta
forma, sabemos que existe un difeomorfismo M ∼= G/Gp, donde ese Gp denota el grupo de
isotropía del punto p.

En virtud de la Observación 3.32 se tiene que el espacio simétrico riemanniano M es
difeomorfo a la variedad cociente G/K.

Observación 3.33. Nótese que con esta identificación, es decir, M ∼= G/K, el punto
origen o se corresponde con la clase eK.
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Dado el grupo de Lie G antes descrito, podemos definir la aplicación s : G −→ G, dada
por g 7→ σogσo, la cuál está bien definida y es involutiva como automorfismo de G. Además,
satisface que G0

s ⊂ K ⊂ Gs, donde Gs = {g ∈ G : s(g) = g} y G0
s es la componente conexa

de Gs que contiene a la identidad.

Definición 3.34. La diferencial de la aplicación s, es decir, θ := s∗ : g −→ g, es un
automorfismo involutivo de álgebras de Lie y es la llamada involución de Cartan asociada
con el espacio simétrico M = G/K.

Se tiene que k, el álgebra de Lie de K, es precisamente el (+1)-autoespacio de θ. Además,
si denotamos por p al (−1)-autoespacio de θ, entonces obtenemos que g = k ⊕ p, lo que
constituye la llamada descomposición de Cartan de g. Como θ es un automorfismo de
álgebras de Lie, es sencillo comprobar que [k, k] ⊂ k, [k, p] ⊂ p y [p, p] ⊂ k.

Consideremos ahora la aplicación ϕ : G −→ M , dada por g 7→ g(o) = g · o, cuya
diferencial es ϕ∗e : g −→ ToM . Esta diferencial induce un isomorfismo p ∼= ToM . En efecto,
ϕ∗e manda un X ∈ g al vector tangente en el punto o de la curva Exp(tX) · o, es decir,
ϕ∗e(X) = d

dt
|t=0Exp(tX) · o. Ahora bien, como se tiene que g = k ⊕ p, entonces si X ∈ k

se tiene que Exp(tX) · o = o, para cada t, luego ϕ∗e(X) = 0. Ahora bien, si consideramos
X ∈ p, la curva γ(t) = Exp(tX) · o es una curva en M con γ(0) = o y, además, ϕ∗e(X) =
γ′(0) ∈ ToM . Es decir, se tiene que p ∼= g/k = k ⊕ p/k ∼= ToM .

Definición 3.35. Si consideramos la linealización de la acción de la isotropía K ×M −→
M , dada por (k, p) 7→ k · p = k(p), en el punto o obtenemos una acción isométrica lineal
K×ToM −→ ToM, dada por k·v = k∗ov. Esta aplicación recibe el nombre de representación
de isotropía de M ∼= G/K en o.

La representación de isotropía se vuelve equivalente a la representación adjunta de K
en p, que es la acción K × p −→ p, dada por k ·X = Ad(k)X. Llamaremos también a esta
acción la representación de isotropía de M .

Por otro lado, el tensor curvatura en un espacio simétrico M en el punto base o admite
una descripción de la forma:

R(X, Y )Z = −[[X, Y ], Z] X, Y, Z ∈ p ∼= ToM. (3.21)

La fórmula (3.21) nos proporciona una caracterización simple de las subvariedades total-
mente geodésicas de los espacios simétricos: estas son (salvo congruencia con M) las de la
forma S = expos, donde s es un subespacio de p ∼= ToM , de tal forma que [[s, s], s] ⊂ s.

Definición 3.36. Un subespacio s de p como el descrito en el párrafo anterior recibe el
nombre de sistema triple de Lie.

Observación 3.37. En el caso particular de que s sea abeliano, entonces la subvariedad
totalmente geodésica correspondiente a expos es llana por (3.21), es decir, su curvatura
seccional es cero. En efecto, si s ⊂ p es abeliana, es decir, [X, Y ] = 0 para cada X, Y ∈ s,
entonces R(X, Y )Z = 0, para cada X, Y, Z ∈ s. De esta forma, por la ecuación de Gauss
de geometría de subvariedades, el tensor curvatura de la subvariedad totalmente geodésica
S = expos se anula también idénticamente, por lo que S es llana.
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Por otro lado, entre todos los subespacios abelianos de p, los maximales resultan ser
conjugados entre sí por la acción de isotropía de K, por lo que tienen todos ellos la misma
dimensión. Esto motiva la siguiente definición.

3.5.1. Tipos de espacios simétricos
Un espacio simétrico M ∼= G/K se dice (isotrópicamente) irreducible si la restricción de

su representación de isotropía a la componente conexa que contiene a la identidad de K es
irreducible. Esto equivale a la propiedad de que el recubrimiento riemanniano universal M̃
de M (el cual es un espacio simétrico) no sea un producto no trivial de espacios simétricos,
excepto que M̃ = Rn para algún n.

Recordemos ahora, que la forma de Killing de un álgebra de Lie g es la forma bilineal
simétrica B : g × g −→ R, dada por B(X, Y ) = tr(ad(X) ◦ ad(Y )), donde ad(X) = [X, ·].

Observación 3.38. Se puede ver que k y p son subespacios ortogonales con respecto a B.
En efecto, al ser B la forma de Killing de g, esta es invariante por automorfismos de álgebras
de Lie, en particular por la involución θ. Así, B(θX, θY ) = B(X, Y ), para todo X, Y ∈ g.
Ahora bien, recordemos que k = {X ∈ g : θX = X} y que p = {Y ∈ g : θY = −Y }, por lo
tanto, B(θX, θY ) = B(X, Y ) = B(X,−Y ) = −B(X, Y ) y, entonces B(X, Y ) = 0.

Definición 3.39. Un espacio simétrico M ∼= G/K se dice de tipo compacto, de tipo no
compacto o de tipo euclídeo si B|p×p es, respectivamente, definida negativa, definida positiva
o idénticamente cero.

Si M es un espacio simétrico de tipo compacto, entonces G es un grupo de Lie compacto
y semisimple y M es compacta y tiene curvatura seccional no negativa. Ahora bien, si
M es de tipo no compacto, entonces se tiene que G es un grupo de Lie no compacto,
real semisimple (con factores no compactos); además se tiene que M es una variedad
de Hadamard, es decir, es difeomorfa al espacio euclídeo y tiene curvatura seccional no
positiva. Por otro lado, si M es de tipo euclídeo, su recubrimiento universal riemanniano
es isométrico al espacio euclídeo Rn. En general, el recubrimiento universal riemanniano de
un espacio simétrico M se puede descomponer como un producto riemanniano de espacios
simétricos M̃ = M+×M−×M0, donde M+ es de tipo compacto, M− es de tipo no compacto
y M0 es un espacio euclídeo.

Existe una noción de dualidad entre la clase de espacios simétricos de tipo compacto
ya la de tipo no compacto. En particular, existe una correspondencia uno a uno entre los
espacios simétricos de tipo no compacto y los espacios simétricos simplemente conexos de
tipo compacto. Esta dualidad se puede explicitar en términos de las álgebras de Lie y los
grupos involucrados.

Por otro lado, espacios simétricos duales tienen el mismo rango y representaciones
de isotropía equivalentes y, además, la dualidad preserva la irreducibilidad. En cualquier
caso, es importante destacar que ambos tipos de espacios simétricos poseen propiedades
topológicas y geométricas muy diferentes.

A continuación, vamos a presentar algunos ejemplos para ilustrar la noción de dualidad.
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Ejemplo 3.40. (a) En primer lugar el espacio hiperbólico real RHn ∼= SO0
1,n/SOn, donde

SO0
1,n es la componente conexa que contiene a la identidad del grupo SO1,n. Este grupo

recibe el nombre de grupo ortogonal especial de Lorentz y tiene la siguiente descripción:

SO1,n =
{
A ∈ GL(n+ 1,R) : AtηA = η, det(A) = 1

}
,

siendo

η =
−1 0

0 Idn

 ,
donde Idn denota la matriz identidad n × n. De esta forma, SO0

1,n es el grupo de
isometrías que preservan la orientación del espacio hiperbólico real RHn. Se tiene que
RHn es un espacio simétrico de tipo no compacto que posee dos espacios simétricos
duales de tipo compacto: la esfera Sn ∼= SO(n+ 1)/SO(n) y el espacio proyectivo real
RP n ∼= SO(n+ 1)/O(n). Ambos espacios tienen rango uno.

(b) Los otros espacios de rango uno (no llanos) y simétricos son el espacio proyecti-
vo y los espacios hiperbólicos sobre álgebras de división normadas de los números
complejos C, los cuaternios H y los octonios O. Es decir, los espacios complejos
CP n = SU(n + 1)/S(U1Un) y CHn = SU1,n/S(U1Un), los espacios cuaterniónicos
HP n = Spn+1/Sp1Spn y HHn = Sp1,n/Sp1Spn y los planos de Cayley OP 2 = F4/Spin9
y OH2 = F−20

4 /Spin9 constituyen el resto de espacios simétricos de rango uno y tienen
curvatura no constante.

Para una lista completa de los espacios simétricos irreducibles (salvo recubrimientos)
véase [27, pág. 516-518].

3.5.2. Espacios simétricos de tipo no compacto: espacios de raíz
y descomposición de Iwasawa

Los espacios simétricos de tipo no compacto constituyen una familia rica de variedades
de Hadamard que generalizan los espacios hiperbólicos. Véase [5], [16], [20, Chapter 2], [27,
Chapter VI] y [30, Chapter VI] para más información sobre estos espacios.

Espacios de raíces

Sea M ∼= G/K un (no necesariamente irreducible) espacio simétrico de tipo no com-
pacto. Sea k ⊕ p la descomposición de Cartan del álgebra de Lie g del grupo de Lie G,
determinada por el punto base o. La forma de Killing B de g hace que k y p sean ortogona-
les y, además, se restringe a un producto interior definido positivo en p, por definición de
tipo no compacto, y resulta ser definido negativo cuando se restringe a k. De esta forma,
cambiando su signo en k, obtenemos un producto interior definido positivo en g. Equiva-
lentemente, este producto interior Bθ se puede definir como Bθ(X, Y ) = −B(θX, Y ), para
cada X, Y ∈ g, donde θ es la involución de Cartan.
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Definición 3.41. Sea a un subespacio abeliano maximal de p. Recordemos que dim a
coincide con el rango de M . Los endomorfismos ad(H) = [H, ·] de g, con H ∈ a, son
autoadjuntos con respecto a Bθ y conmutan unos con otros (debido a que ad es un ho-
momorfismo de álgebras de Lie y a es abeliana). De esta forma, dichos endomorfismos de
g diagonalizan simultáneamente. Sus autoespacios comunes se llaman espacios de raíces
restringidos y sus autovalores comunes no triviales (los cuales son lineales en H ∈ a) se
denominan raíces restringidas de g.

De una forma más precisa, para cada funcional lineal λ ∈ a∗ = Hom(a,R), consideremos
el subespacio de g dado por

gλ = {X ∈ g : [H,X] = λ(H)X, para cadaH ∈ a} .

Entonces cada gλ ̸= 0 es un espacio de raíces restringido y cada λ ̸= 0 con gλ ̸= 0 es una
raíz restringida. Nótese que 0 ̸= a ⊂ g0.

Definición 3.42. Denotemos ahora por

Σ = {λ ∈ a∗ : λ ̸= 0, gλ ̸= 0} ,

el conjunto de las raíces restringidas de g. Así, podemos escribir la siguiente suma directa
de descomposición Bθ-ortonormal

g = g0 ⊕
(⊕

λ∈Σ
gλ

)
.

Esto se conoce como la descomposición en espacios de raíces restringidas de g.

La multiplicidad, mλ, de la raíz restringida λ es la dimensión de su espacio de raíces,
es decir, mλ = dim gλ. En lo sucesivo, se omitirá el término “restringido”.

Por otro lado, las raíces y las descomposiciones en espacios de raíces poseen algunas
propiedades como las siguientes:

(a) [gλ, gµ] ⊂ gλ+µ, para cada λ, µ ∈ Σ ∪ {0}.

(b) θgλ = g−λ, para cada λ ∈ Σ ∪ {0}. Aquí, se tiene que λ ∈ Σ si y solo si −λ ∈ Σ.

Es más, el subconjunto finito Σ de a∗ formado por las raíces posee varias propiedades de
simetría.

Definición 3.43. Para cierto producto interior ⟨·, ·⟩ en a∗, se puede ver que Σ constituye
un sistema abstracto de raíces en el espacio euclídeo (a∗, ⟨·, ·⟩). Esto significa:

(a) a∗ = span(Σ).

(b) El número aαβ = 2⟨α,β⟩
⟨α,α⟩ es entero, para cada α, β ∈ Σ.
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(c) Se tiene que β − aαβα ∈ Σ, para cada α, β ∈ Σ.

Este sistema se llama no reducido si existe λ ∈ Σ de forma que 2λ ∈ Σ. En tal caso,
diremos que 2λ es una raíz no reducida.

Los sistemas de raíces pueden clasificarse. De hecho, esto constituye la base para la
clasificación de álgebras de Lie semisimples reales y para la de los espacios simétricos.

Por otro lado, la información que proporciona un sistema de raíces puede codificarse
en conjuntos de raíces más pequeños. Esto es, podemos considerar un semiespacio abierto
de a∗ que contenga exactamente la mitad de las raíces en Σ, declarando como positivas
aquellas raíces que se encuentren en este semiespacio. De esta forma, denotando por Σ+ al
conjunto de raíces positivas, obtenemos la descomposición Σ = Σ+ ⊔ (−Σ+).

Definición 3.44. Entre los elementos del conjunto Σ+, descrito en el párrafo anterior,
existen algunos que no pueden expresarse como suma de exactamente dos raíces positivas.
Estas son las llamadas raíces simples y denotamos por Λ a esta colección.

Observación 3.45. La colección Λ es una base para a∗ y, así, tiene por cardinal el rango
de M . De esta forma, cada raíz λ ∈ Σ resulta ser una combinación lineal de elementos de
Λ con coeficientes enteros, todos ellos no negativos (si λ ∈ Σ+), o todos ellos no positivos
(si λ ∈ −Σ+).

Descomposición de Iwasawa

Debido a las propiedades de la descomposición en espacios de raíces, se tiene que la
suma de los espacios de raíces positivas

n =
⊕

λ∈Σ+

gλ

es una subálgebra de Lie nilpotente de g.
Ahora bien, como a normaliza n, es decir, para cada H ∈ a y X ∈ n, [H,X] ∈ n,

obtenemos que la suma directa a ⊕ n es una subálgebra de Lie resoluble de g. Además, el
teorema de descomposición de Iwasawa para álgebras de Lie asegura que g = k⊕a⊕n como
suma directa de espacios vectoriales. En esta línea, denotemos por A y N a los subgrupos de
Lie conexos de G con álgebras de Lie a y n, respectivamente. Entonces AN es el subgrupo
conexo de G con álgebra de Lie a ⊕ n. Además, la descomposición de Iwasawa a nivel de
grupos de Lie establece que la aplicación

K × A×N −→ G, dada por (k, a, n) 7→ kan,

es un difeomorfismo y los grupos de Lie A,N y AN son difeomorfos a espacios euclídeos.
Por otro lado, en virtud de la descomposición de Iwasawa, la aplicación ϕ : G −→ M, dada
por g 7→ g · o, restringida a AN , es decir, ϕ|AN : AN −→ M , es un difeomorfismo.

Denotemos ahora por g a la métrica riemanniana simétrica de M y consideremos la
métrica pullback (ϕ|AN)∗g en AN . Denotaremos en lo que sigue a esta métrica por ⟨·, ·⟩.
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Se tiene que dicha métrica es invariante por la izquierda para el grupo de Lie AN . De esta
forma, lo que ocurre es que cada espacio simétrico de tipo no compacto M es isométrico a
un cierto grupo de Lie AN resoluble simplemente conexo equipado con una métrica (muy
concreta) invariante a la izquierda. Ahora bien, podemos equipar a a∗ con el producto
interior ⟨·, ·⟩ inducido por esta métrica de forma que, dados λ, µ ∈ a∗, ⟨λ, µ⟩ = ⟨Hλ, Hµ⟩,
donde Hλ ∈ a (análogamente con Hµ) está definido por ⟨Hλ, H⟩ = λ(H), para cada H ∈ a.

Observación 3.46. En particular, se tiene que un espacio simétrico de tipo no compacto
M es difeomorfo a un espacio euclídeo. Además, por la fórmula (3.21), se puede demostrar
que tal variedad M es de curvatura no positiva y, así, es una variedad de Hadamard. Esto
nos permite ver cualquiera de estos espacios como una bola abierta equipada con una cierta
métrica, de manera análoga al modelo de la bola del espacio hiperbólico real.

3.5.3. Cheeger en un espacio simétrico de tipo no compacto
A continuación, vamos a realizar el cálculo de la constante isoperimétrica de Cheeger

para un espacio simétrico de tipo no compacto.
Tomemos un espacio simétrico de tipo no compacto M y calculemos h(M). Sabemos

que M ∼= G/K y, por la descomposición de Iwasawa, se tiene que AN , dotado de una cierta
métrica invariante a la izquierda, es isométrico a M . Si suponemos además que el rango de
M es r, entonces, el álgebra de Lie de AN es a ⊕ n se verifica que a = (Rr, [·, ·] = 0) y por
definición, n = ⊕

λ∈Σ+ gλ. De esta forma, se obtiene aplicando el Corolario 3.29 que

h(M) = h(AN) = máx
X∈a⊕n, |X|=1

tr(ad(X)).

Calculemos ahora tr(ad(X)) para un X ∈ a⊕n arbitrario. En primer lugar, tomemos un
X ∈ gλ para algún λ ∈ Σ+. Entonces, si H ∈ a, ad(X)(H) = [X,H] = −λ(H)X ∈ gλ ⊥ a,
por lo que no contribuye a la traza de la aplicación. Si tomamos un Y ∈ gµ, entonces
ad(X)(Y ) = [X, Y ] ∈ gλ+µ ⊥ gµ, por lo tanto, de nuevo, no contribuye a la traza. De esta
forma, tr(ad(X)) = 0 si X ∈ gλ, para cada λ ∈ Σ+. Ahora bien, por linealidad concluimos
que tr(ad(X)) = 0, para cada X ∈ n.

Tomemos ahora un X ∈ a, en ese caso consideramos ad(X) : a⊕n −→ a⊕n. Tomemos
un H ∈ a, en ese caso, ad(X)(H) = [X,H] = 0, por lo que no contribuye a la traza.
Por otro lado, si tomamos un Y ∈ gµ, entonces ad(X)(Y ) = [X, Y ] = µ(X)Y ∈ gµ. Con
este razonamiento, podemos obtener una expresión para la traza de la aplicación ad(X).
En efecto, tendremos que tr(ad(X)) = ∑

λ∈Σ+(dim gλ)λ(X). Ahora bien, si tomamos un
X ∈ a ⊕ n arbitrario, entonces por linealidad tendremos que

tr(ad(X)) =
∑

λ∈Σ+

(dim gλ)λ(Xa),

donde Xa denota la proyección de X sobre el álgebra de Lie a.
Consideremos ahora la aplicación α : a ⊕ n −→ R, dada por

X 7→ tr(ad(X)) =
∑

λ∈Σ+

(dim gλ)λ(Xa).
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Ahora bien, si definimos δ = ∑
λ∈Σ+(dim gλ)λ ∈ a∗, obtenemos que α(X) = ⟨Hδ, Xa⟩. Así,

tenemos que

h(M) = h(AN) = máx
X∈a⊕n, |X|=1

tr(ad(X)) = máx
X∈a, |X|=1

⟨Hδ, X⟩,

donde Hδ = ∑
λ∈Σ+(dim gλ)Hλ.

Aplicando ahora el Lema 3.28, pero en este caso para S1(a ⊕ n), el máximo se alcanza
en Hδ

|Hδ| . Entonces lo que se obtiene es

h(M) = h(AN) = ⟨Hδ,
Hδ

|Hδ|
⟩ = |Hδ|. (3.22)

Observación 3.47. Como acabamos de ver, para un espacio simétrico de tipo no com-
pacto, la constante isoperimétrica de Cheeger es igual a |Hδ|, donde ese Hδ resulta ser el
campo curvatura media de N como subvariedad de AN (que es un campo invariante a la
izquierda en AN). Esto se deduce de [18, Section 2.1].

Para concluir esta sección, vamos a presentar, de manera breve, un par de ejemplos
de casos concretos de espacios simétricos de tipo no compacto, donde podemos calcular
la constante isoperimétrica de Cheeger. Se trata de los espacios hiperbólicos real RHn

y complejo CHn, ambos de rango uno. En ambos casos haremos uso del concepto de
horosfera. Una horosfera de un espacio hiperbólico (o más generalmente de una variedad
de Hadamard) es una hipersuperficie dada como conjunto de nivel de una función de
Busemann; véase [20, Section 1.10] para su definición. Realmente lo que usaremos es que
una horosfera en un espacio hiperbólico se puede caracterizar como una hipersuperficie
congruente al subgrupo N de AN , o equivalentemente, congruente a cualquiera de las
órbitas de la acción de N sobre el espacio hiperbólico M [19, Remark 5.4].

Ejemplo 3.48. En primer lugar, consideremos el caso del espacio hiperbólico real RHn.
En este caso, lo que tenemos es que Σ+ = {α} y, además, el rango de este espacio es igual
a uno. De esta forma, tenemos que a ⊕ n = R ⊕ gα, donde gα

∼= Rn−1. Ahora bien, es bien
sabido que en el caso del espacio hiperbólico real de curvatura seccional constante igual a
c < 0, se tiene que las horosferas de RHn son hipersuperficies totalmente umbilicales con
curvatura principal

√
−c. Además, en un espacio simétrico de tipo no compacto de rango

uno, se tiene que N , que es el subgrupo de Lie de G = SO0
1,n con álgebra de Lie n, es una

horosfera de AN y podemos calcular su curvatura media en términos de la del ambiente.
Por lo que en este caso, aplicando (3.22), se tiene que

h(RHn) = (n− 1)
√

−c.

Ejemplo 3.49. Consideremos ahora el espacio hiperbólico complejo CHn. En este caso,
Σ+ = {α, 2α} y, además, el rango de este espacio es uno. De esta forma, tenemos que a⊕n =
R⊕ gα ⊕ g2α, donde gα

∼= Cn−1 y g2α
∼= R. De nuevo al ser un espacio simétrico de tipo no

compacto de rango uno, tenemos que N es una horosfera de AN y, análogamente, se puede
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calcular su curvatura media en términos de la del espacio ambiente. Ahora bien, en este
caso CHn no tiene curvatura seccional constante, pero si posee una métrica riemanniana
de curvatura seccional holomorfa constante. Además, sabemos, véase [16, pág. 767], que
en el caso del espacio hiperbólico complejo las horosferas tienen dos curvaturas principales
λ1 =

√
−c
2 , con multiplicidad 2(n− 1), y λ2 =

√
−c, con multiplicidad uno. De esta forma,

por medio de la expresión (3.22) podemos calcular la constante isoperimétrica de Cheeger
del espacio hiperbólico complejo con su métrica simétrica (también llamada de Bergman)
como:

h(CHn) = 2(n− 1)
√

−c
2 +

√
−c = n

√
−c.
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