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Resumen

El objetivo principal de este trabajo es el de comenzar el estudio sistematico de las
hipersuperfices homogéneas de curvatura adaptada en el contexto de los espacios simétricos
de tipo no compacto. En este sentido, comenzamos el trabajo con algunos preliminares de
Geometria de Riemann para introducir a continuacion los espacios simétri-
cos junto con algunas de sus propiedades fundamentales. Luego, pasamos a centrarnos en
los espacios simétricos de tipo no compacto, y a detallar como éstos pueden ser descritos
como grupos de Lie resolubles con una métrica invariante a la izquierda. A continuacion,
presentamos las acciones de cohomogeneidad uno en espacios simétricos de tipo no compac-
to, con especial énfasis en las que producen una foliaciéon de Riemann. Probamos finalmente
que, en una amplia clase de espacios simétricos de tipo no compacto, las foliaciones
homogéneas de cohomogeneidad uno son de curvatura adaptada.

Abstract

The main aim of this work is to address the study of curvature adapted homogeneous
hypersurfaces in symmetric spaces of non-compact type. In this line, we start by presenting
some preliminary results concerning Riemannian Geometry in order to bring in symmetric
spaces and analyze some of their fundamental properties. Next, we focus on symmetric
spaces of non-compact type and we show that they can be described as solvable Lie
groups endowed with a left-invariant metric. Finally, we present cohomogeneity one actions
on symmetric spaces of non-compact type, paying special attention to those producing
a Riemannian foliation. We finally proof that, in a wide class of symmetric spaces of
non-compact type, homogeneous foliations of cohomogeneity one are curvature adapted.






Introduccion

La geometria de subvariedades ha resultado ser una de las ramas mas fructiferas
y significativas dentro de la Geometria de Riemann, y, de modo mas general, dentro
de la Geometria Diferencial. En este sentido, es natural comenzar analizando aquellas
subvariedades con un alto grado de simetria, por ejemplo, las subvariedades (extrinseca-
mente) homogéneas, que son las que pueden describirse como la 6rbita por un punto de un
subgrupo de Lie del grupo de isometrias del espacio ambiente. Esto convierte a los espacios
simétricos en un marco particularmente interesante y adecuado para estudiar tal clase de
subvariedades, pues son espacios equipados con grupos de isometrias lo suficientemente
grandes para este planteamiento.

Otra clase de hipersuperficies de especial interés es la de las hipersuperficies de curva-
tura adaptada, introducidas por D’Atri [15] en la segunda mitad de la década de 1970, bajo
el nombre de amenable hypersurfaces. Reciben este nombre, curvatura adaptada, porque en
cierto modo puede entenderse que su geometria extrinseca esta bien adaptada respecto a su
geometria intrinseca. En términos més precisos, la manera usual de entender la geometria
extrinseca de una hipersuperficie M de una variedad de Riemman M es a través del
operador forma Sg, con respecto a un vector normal { a M en M. Por otra parte, si
R es el operador curvatura de M, el operador de Jacobi Re = R(-,£)¢ mide la curvatura
intrinseca de M en la direccién de &. Pues bien, la hipersuperficie M se dice de curvatura
adaptada si el operador forma y el operador de Jacobi conmutan o, equivalentemente, si
existe una base para la cual diagonalizan simultaneamente.

En los espacios forma, todas las hipersuperficies son de curvatura adaptada. Como cabe
esperar, esto deja de ser asi en espacios simétricos en general. De hecho, las hipersuperficies
de curvatura adaptada han sido especialmente estudiadas en espacios simétricos de rango
uno. Asi, en los espacios forma complejos, la condiciéon de curvatura adaptada coincide con
la condicion de ser Hopf. De forma maés concreta, J¢ es una direccién principal del operador
forma, donde J denota la estructura compleja del espacio. Las hipersuperficies Hopf con
curvaturas principales constantes estan clasificadas tanto en los espacios proyectivos com-
plejos [27] como en los espacios hiperbdlicos complejos [3]. En el primer caso, se recuperan
todos los ejemplos de hipersuperficies homogéneas [40], mientras que en el segundo aparecen
ejemplos de hipersuperficies homogéneas no Hopf [11]: la hipersuperficie de Lohnherr
[32] y los tubos alrededor de las conocidas como subvariedades de Berndt-Briick [5]. Las
hipersuperficies de curvatura adaptada también estan clasificadas en: los espacios proyecti-
vos cuaterniénicos [4]; los espacios hiperbdlicos cuaternionicos, con la hipétesis adicional
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8 Introduccion

de curvaturas principales constantes [4]; y en el plano proyectivo de Cayley [34].

Con estas consideraciones en mente, nuestro objetivo en este trabajo sera estudiar las
subvariedades de curvatura adaptada en espacios simétricos de tipo no compacto. A este
respecto, en [13] se muestran algunos resultados que simplifican la tarea de caracterizacién
de este tipo de subvariedades. En concreto, se muestra que el estudio de las subvariedades
de curvatura adaptada en espacios simétricos se reduce al estudio de dicha propiedad en
hipersuperficies.

Usando acciones isométricas, podemos obtener subvariedades homogéneas de un espa-
cio simétrico. En particular, cuando las érbitas principales de una accién isométrica sean
hipersuperficies, estaremos hablando de acciones de cohomogeneidad uno. Teniendo estas
consideraciones presentes, es natural estudiar cuando las érbitas de las acciones de cohomo-
geneidad uno en un espacio simétrico son de curvatura adaptada. En el caso concreto de
los espacios simétricos de tipo no compacto, se tiene que las acciones de cohomogeneidad
uno pueden tener o bien una unica drbita singular, o bien ninguna [5]. Las acciones de
cohomogeneidad uno sin orbitas singulares inducen foliaciones de Riemann, y cada érbita
de las mismas es una hoja. Las acciones de cohomogeneidad uno que inducen foliaciones
se estudian y clasifican en [9]. El objetivo final en este trabajo es estudiar la propiedad
de curvatura adaptada en las hojas de una foliacion de este tipo. De hecho, obtenemos el
siguiente

Teorema Principal. Sea M = G /K un espacio simétrico irreducible de tipo no compacto
diferente de los siguientes:

SUr,r+n SOZT+2 Spr,r—i—n E6_14 FZQO
S(U,Uprn) Ussr ' SpSpre,’  Spin(10)U; 2 Spin(9)”

Entonces, todas las hojas de cualquier foliacion de cohomogeneidad uno en M son de
curvatura adaptada.

Con este fin, dedicaremos un primer capitulo a introducir las nociones basicas relacio-
nadas con la Geometria de Riemann, grupos y algebras de Lie y acciones isométricas
necesarias para el desarrollo del trabajo. El segundo capitulo lo dedicaremos a la introduc-
cién y estudio de las propiedades béasicas de un espacio simétrico, asi como a la presentacion
de los distintos tipos de espacios simétricos que existen. Centrandonos en el caso de los
espacios simétricos de tipo no compacto, estudiaremos también algunas de sus descomposi-
ciones, asi como un modelo de estos espacios simétricos que nos permite identificarlos como
grupos de Lie resolubles dotados de una métrica invariante a la izquierda. Finalmente,
presentaremos en el tercer capitulo las acciones de cohomogeneidad uno y algunos resulta-
dos relacionados con las mismas, centrandonos especialmente en aquellos referentes a
foliaciones de Riemann, inducidas por acciones de cohomogeneidad uno sin 6rbitas singu-
lares. Una vez presentada la clasificacion de este tipo de acciones de cohomogeneidad uno,
estudiaremos en cada uno de ellos si las hojas de la foliacion son subvariedades de curvatura
adaptada.



Capitulo 1

Preliminares

Dedicamos el presente capitulo del texto a introducir los conceptos, la terminologia
y las notaciones relativas esencialmente a la geometria de subvariedades y a la teoria de
acciones isométricas que seran empleadas a lo largo del trabajo.

De un modo mas preciso, dedicaremos la Seccién 1.1 a introducir algunos de los
aspectos centrales de la Geometria de Riemann, como lo son las nociones de variedad
de Riemann, métrica, conexién de Levi-Civita, isometria y endomorfismo de curvatura. La
Seccion 1.2 se centrard en presentar el concepto de subvariedad de Riemann e introducir la
segunda forma fundamental. Ademaés, definimos el concepto central del trabajo: subvarie-
dad de curvatura adaptada. La Seccién 1.3 la centraremos en acciones isométricas de
grupos de Lie sobre variedades de Riemann, aunque para ello recordaremos brevemente los
conceptos de grupo de Lie y 4dlgebra de Lie. En la Seccién 1.4 desarrollaremos brevemente la
teoria de algebras de Lie, definiendo principalmente los conceptos de algebra de Lie simple,
semisimple, resoluble y nilpotente, e introduciendo la forma de Killing de un dlgebra de
Lie.

Las primeras dos secciones se confeccionaron usando como referencia [30], asi como
[13] a la hora hablar de subvariedades de curvatura adaptada. La tercera seccion se basa
principalmente en [28] en su primera mitad, mientras que en la seccién de acciones isométri-
cas (Seccién 1.3) se utilizé [1]. En la Seccién 1.4 se siguié como referencia [28].

1.1. Geometria de Riemann

Una variedad de Riemann (M, g) es una variedad diferenciable M equipada con una
métrica Riemanniana g, es decir, un campo tensorial diferenciable bilineal simétrico definido
positivo de tipo (0,2). Esto quiere decir que g es una aplicacién diferenciable g: M —
T*M x T*M (con T*M el dual del fibrado tangente TM) que a cada punto p € M le
asocia una aplicacion bilineal simétrica y definida positiva g,(-,-), también denotada por
(-,*)p- En consonancia con la notacién del producto escalar en cada punto, a partir de ahora
denotaremos la métrica como (-, -).

Una nociéon que debemos definir en este punto es el concepto de isometria. Un difeo-
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morfismo f: (M, g) — (N, ¢') entre dos variedades de Riemann se dice que es una isometria
si
g (fapv, fipw) = g(v,w), para cualesquiera v,w € T,M y cualquier p € M,

donde f,, denota la aplicacién diferencial del difeomorfismo f en el punto p € M. Si
tomamos el caso particular de que M = N y g = ¢/, f seria una isometria de M en si
mismo. Denotamos el conjunto de las isometrias de una variedad de Riemann en si misma
por I(M). Este conjunto es un grupo de Lie (en [35] se puede encontrar una prueba de
este hecho).

Queremos imitar el concepto de derivada covariante que se tiene en superficies, pero no
podemos sumar vectores que estan en espacios tangentes distintos. Es por ello que tenemos
que introducir una conexién. Denotaremos por X(M) al conjunto de los campos de vectores
diferenciables en la variedad M y por C*(M) al conjunto de aplicaciones diferenciables de
M en R. Una conexion lineal V es una aplicacion

Vi X(M) x (M) —s X(M)
(X, Y) — VX}/,

tal que, dados XY, Z € X(M), f,g € C*(M) y a,b € R, satisface:
(a) VixsgvZ = [VxZ +gVyZ,
(b) Vx(aY +bZ) = aVyY +bVxZ,
(c) Vx(fY) = fVxY +(X[)Y.

Sea (M, g) una variedad de Riemann, y sea V una conexién lineal sobre M. Diremos que
V es compatible con la métrica g si Vxg(Y,Z) = g(VxY, Z) + g(Y,VxZ). La conexién
V se dird simétrica si satisface VxY — Vy X = [X,Y], donde [-,-] denota el corchete
de Lie de campos de vectores. Un resultado fundamental en relacién con las conexiones
en una variedad de Riemann (M, g) es que existe una tnica conexién compatible con la
métrica g y que ademas es simétrica. Esta conexién se conoce como conexion de Levi-Civita
de g o conexion Riemanniana. De ahora en adelante, salvo que se indique lo contrario,
consideraremos que V es la conexién de Levi-Civita. La conexiéon de Levi-Civita viene
determinada ademas por la conocida como formula de Koszul:

o(VxY,2) = (X g(¥,2) +Y g(X.7) ~ Zg(X.Y)
+gl1X,Y],2) +9(12,Y], X) +9(12,X), V).

(1.1)

El siguiente paso sera usar la conexiéon para derivar curvas en la variedad M. Sea
~v: I C R — M una curva diferenciable. Un campo de vectores diferenciable a lo largo de ~y
serd cualquier aplicacion diferenciable V': I C R — T'M de forma que V' (t) € T4 M para
todo t € I. Denotaremos por X; al conjunto de campos de vectores diferenciables de M a
lo largo de la curva . Por [30, Lemma 4.9], si D es una conexién (no necesariamente la de
Levi-Civita), entonces existe un tinico operador D;: X} — X/ tal que:
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(a) DAV +puW) = AD,V + uD, W, para cualesquiera V, W € X(M) campos de vectores
diferenciables a los largo de v y A\, u € R,

(b) Dy(fV) = (%f) V + fD,V, para toda funcién f: I C R — R diferenciable,
(c) SiV eslarestriccién a y de un campo de vectores Y en M, entonces DV (t) = D, )Y .

Diremos entonces que un campo V € X] es un campo de vectores paralelo a lo largo de
si D,V = 0 para todo t en el que esté definido V.

Ahora ya podemos definir el concepto de curva geodésica. Una curva diferenciable
v: (a,b) C R — M es geodésica (para la conexién de Levi-Civita, pero se define de forma
andloga para cualquier otra conexién) si se tiene que Dy¥(t) = 0 en cualquier instante
t € (a,b). De ahora en adelante, cuando la conexién que estemos utilizando sea la de
Levi-Civita, usaremos la notacion Vj en lugar de D;. Una variedad de Riemann se dice
geodésicamente completa si toda geodésica maximal (en el sentido de que no se puede
extender su dominio sin perder la propiedad de ser geodésica) estd definida para todo
teR.

Por otra parte, ya podemos también definir el concepto de distancia entre dos puntos
en una variedad de Riemann (M, g). Supondremos que la variedad es conexa, ya que si no
lo fuera basta con reducirse a cada componente conexa para tener los mismos conceptos.
La distancia entre dos puntos p, g € M es el infimo de las longitudes de las curvas regulares
a trozos con extremos en p y ¢q. Esto quiere decir que, salvo en un conjunto finito de puntos
{t;}, C (a,b), 4(t) # 0, junto con la propiedad de que y(a) = p y v(b) = ¢q. La longitud
de una curva regular v: [a,b] — M se define como

£0) = [ Va0 3Oy = [l dr

Con esta definicién de distancia, se tiene que cualquier variedad de Riemann conexa es un
espacio métrico cuya topologia inducida es la misma que la topologia de la variedad. Existe
una relacién entre las variedades geodésicamente completas y las variedades completas
como espacios métricos.

Teorema 1.1 (Teorema de Hopf-Rinow. [30, Theorem 6.13]). Una variedad de Riemann
conexa es geodésicamente completa si, y solo si, es completa como espacio métrico.

Corolario 1.2 ([30, Corollary 6.15]). Si (M, g) es una variedad de Riemann conexa y
completa, entonces dos puntos se pueden unir por un segmento de geodésica minimizante.

Ahora que hemos convertido cualquier variedad de Riemann en un espacio métrico, uno
podria centrar su atencion en las aplicaciones de la variedad en si misma que preservan la
distancia. El siguiente resultado nos indica que éstas son exactamente las isometrias de la
variedad de Riemann.

Teorema 1.3 ([23, Theorem 11.1]). Sea M una variedad Riemanniana y ¢ una aplicacion
que preserva distancias de M en si misma. Entonces M es una isometria.
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Ademas, las isometrias quedan determinadas por su imagen y diferencial en un tnico
punto:

Lema 1.4 ([23, Lemma 11.2]). Sean M una variedad Riemanniana, y ¢ y ¢ dos isometrias
de M. Supongamos que existe un punto p € M para el cual p(p) = Y(p) y dp, = dip,.
Entonces o = .

El concepto central de la Geometria de Riemann es el de curvatura. Sea (M, g) una
variedad de Riemann. Definimos el endomorfismo de curvatura (de Riemann) como el
campo tensorial R: X(M) x X(M) x X(M) — X(M) dado por la expresién

R(X,Y)Z =VxVyZ —VyVxZ — VixyZ.

Un ultimo concepto que introducimos en esta parte del capitulo es la curvatura seccional.
Dada una variedad de Riemann M y un punto p € M, si II es un subespacio de dimension
dos de T,M y V C T,M es cualquier entorno del 0 de T,M en el cual exp, es un
difeomorfismo, Si := exp,(IINV) es una subvariedad de dimensién dos de M que contiene
a p, que se denomina seccion plana determinada por II. La curvatura seccional de M
asociada a II, K(II), es la curvatura de Gauss de la superficie Sp en p con la métrica
inducida. Si {X,Y} es una base de II, también se puede denotar K (II) por K(X,Y). Por
[30, Proposition 8.8], se tiene que

(R(X,Y)Y, X)

RO = Xpyvp = (e vy

1.2. Subvariedades de Riemann

Si consideramos una variedad de Riemann (M ,§), M una variedad diferenciable, y una
inmersion f: M — M, podemos inducir una métrica de Riemann en M, f*g, conocida
como el pull-back de g en M. Esta métrica viene definida por

(f9)p(X,Y) == g,(fup X, fpY), para cualesquiera X,Y € T, M.

De ahora en adelante, salvo que indiquemos lo contrario, supondremos que las subvarieda-
des que consideremos seran embebidas, es decir, que existe un embebimiento ¢: M — M.
En este caso, podemos dotar a M con una métrica inducida por el pull-back de ¢, g = 1*g. De
esta forma, tenemos que (M, g) es una subvariedad de Riemann embebida en M. Teniendo
esto en cuenta, la dimensién del espacio tangente a M en p € M, T,M, es menor o
igual que la del espacio tangente 7, p]\7 , siendo T,,M subespacio vectorial de T, pM . Podemos
entonces considerar el complemento ortogonal de 7T, M con respecto a la métrica g, que
denominaremos conjunto normal y denotaremos por TpLM , de forma que podemos expresar
T, M como suma directa de dos subespacios vectoriales, T, M = T,M @ TLM

Nuestro siguiente objetivo es dar una conexion de Lev1 C1V1ta en M a partir de la
conexién de Levi-Civita de M, que denotaremos por V. Para ello, tomemos X, Y € X(M)
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dos campos de vectores, y sean X,Y € I{(M ) dos campos de vectores tales que X =X
e Y|y = Y. Definiremos el operador V como VY = (V Y)|a. Se puede comprobar

que esta definicién no depende de las extensiones XeY que hayamos elegido, por lo que
el operador estd bien definido, y ademds es simétrico ([30, Lemma 8.1]). Nétese que, en
principio, (VY')|ax € X(M) puede tener tanto componente tangencial como normal a M

_ — T
no nulas. Podemos entonces considerar la descomposicion ortogonal VxY = (V XY) +

— 1
(V XY) , con lo que definimos la sequnda forma fundamental II de M como

IH(X,)Y):= (VXY)L, para cualesquiera X,Y € X(M).

Si denotamos por V la conexion de Levi-Civita de (M, g), se satisface la formula de Gauss
([30, Theorem 8.2]) -
VxY =VxY +I1(X,Y),

donde VxY coincide con la parte tangencial de VxY y I1(X,Y) acabamos de definirla
como la parte normal.

Ahora introduciremos una pieza fundamental en este trabajo, que es el operador forma
de una variedad de Riemann. Denotemos por X+ (M) al conjunto de campos de vectores
diferenciables normales en todo punto a M (como subvariedad de M). Para cada £ €
X*+(M), el operador forma S¢ de M asociado al campo normal € es una aplicacién

Se: X(M) —s X(M)
X — SSX

donde S¢X es tal que g(S¢X,Y) = g(II(X,Y),§), para cada Y € X(M). El operador forma
es autoadjunto con respecto a la métrica g, es decir,

(X,8Y) = (SeX,Y), paracada X,Y € X(M).
Si aplicamos la ecuacion de Weingarten,

siendo € € XH(M) y X,Y € X(M) [30, Lemma 8.3], al operador forma, obtenemos

SeX =— (VXQT, para cualesquiera X € X(M), & € X*-(M). (1.3)

El objetivo final de este trabajo es el estudio de las hipersuperficies de curvatura
adaptada en espacios simétricos de tipo no compacto. Por lo tanto, ahora vamos a introducir
los conceptos que necesitaremos para tratar con éstas.

Sea M una subvariedad de M y sea £ un campo de vectores normales a M en M
podemos considerar el operador de Jacobi, Re == R(-, &), donde R denota el endomorﬁsmo
de curvatura de M. Por lo tanto, este operador nos permite medir la curvatura intrinseca
de M. Tanto el operador de Jacobi como el operador forma son autoadjuntos, sus autova-
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lores representan las curvaturas extremas, y sus autoespacios indican las direcciones para
las cuales la curvatura se hace extrema. Decimos entonces que una subvariedad M es de
curvatura adaptada a M si para cada vector normal a M, &, en un punto p € M, el
operador de Jacobi deja invariante T,M, R¢(T,M) C T,M, y si existe una base de T,,M en
la que diagonalizan S¢ y K¢ := Re¢|7,m de forma simultdnea. Alternativamente, la segunda
condicién se puede formular como:

Se o Ke = K¢ 0 S;

es decir, los operadores conmutan entre si. Denominaremos operador normal de Jacobi de
M con respecto a § al operador K. Para comprobar si una subvariedad es de curvatura
adaptada, es claro que solamente hace falta comprobar estas dos propiedades para vectores
normales unitarios.

1.3. Grupos de Lie, adlgebras de Lie y acciones de
grupos

Recordemos que un grupo de Lie G es una variedad diferenciable y un grupo en el que
la aplicaciéon multiplicacién m: G x G — G, dada por m(g,h) = gh, es diferenciable, asi
como lo es la inversién i: G — G, dada por i(g) = g~ !, para cualesquiera g, h € G. Dado un
grupo de Lie Gy g € GG, denotaremos las aplicaciones multiplicacion por la izquierda y por
la derecha como L,: G — G (dada por L,(h) = gh) y R,;: G — G (dada por R,(h) = hg),
respectivamente. Dado un grupo de Lie G, un subgrupo de Lie de G serd un subgrupo de G
que también es grupo de Lie. Un hecho importante al respecto es que un subgrupo cerrado
de un grupo de Lie G es un subgrupo de Lie embebido en G [31, Theorem 20.12].

Por otra parte, recordemos también que un dlgebra de Lie g real es un espacio vectorial
real dotado de una aplicacién bilineal, |-, -], que se suele denominar corchete, que ademés
es antisimétrica y verifica la identidad de Jacobi, esto es,

(X, [Y,Z]]+[Y,[Z,X]] +[Z,]X,Y]] =0, para cualesquiera X,Y,Z € g.

Cada grupo de Lie lleva asociada una tnica algebra de Lie, isomorfa como espacio vectorial
a T,G (denotando por e € G al neutro del grupo de Lie), y conformada por todos los campos
de vectores invariantes por la izquierda de G; es decir, los campos de vectores X € X(G)
tales que X o Ly, = L, o X para todo g € G. El corchete del dlgebra de Lie asociada a un
grupo de Lie G es precisamente el corchete de los campos de vectores de G.

Entre un grupo de Lie y su algebra de Lie asociada existe la aplicacion exponencial,
Exp: g — G, que a cada X € g le hace corresponder ax(1), siendo ax: R — G la
tinica curva integral del campo de vectores X en G con «(0) = e y o/x(t) = Xa, ) para
cualquier ¢ € R. La aplicaciéon exponencial permite establecer un diagrama conmutativo
que involucra homomorfismos de grupos de Lie (homomorfismos de grupos que son ademés
diferenciables). Sea f: G — H un homomorfismo de grupos de Lie entre G y H (cuyas
algebras de Lie son g y b, respectivamente), y sea f.: g — b su diferencial en el neutro
asociada; entonces el siguiente diagrama conmuta
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-
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Definimos la aplicacion adjunta de grupos de Lie como aquella que lleva un elemento
g € G en Ad(g) = (I,), siendo I,: G — G la aplicacién dada por I,(h) = ghg™'.
La aplicacion adjunta de algebras de Lie, que denotamos por ad, es la diferencial de la
aplicacion diferencial de grupos de Lie, ad = Ad,, o equivalentemente la aplicacion que
asocia a cada X € g la aplicacion ad(X), dada por ad(X)(Y) = [X, Y], para cada Y € g.

Recordemos también el concepto de centro tanto para grupos como algebras de Lie. Para
un dlgebra de Lie g, Z(g) se define como Z(g) = {X € g : [X,Y] =0, para todo Y € g}.
Para un grupo de Lie G, su definicién es Z(G) = {g € G : gh = hg, para todo h € G}.
El centro a nivel de grupos resulta coincidir con el nticleo de la aplicaciéon adjunta Ad,
Z(G) = ker(Ad), y Z(g) resulta ser el algebra de Lie asociada a Z(G) [31, Problems 20-20,
20-22].

Pasemos ahora a tratar con acciones diferenciables. Sean G un grupo de Lie y M una
variedad diferenciable. Se define una accion diferenciable por la izquierda ¢ de G sobre M
como una aplicacion diferenciable

o:GXM— M
(9.p) — ¥(g9,p),

tal que

1. p(e,p) = p, para e € G el elemento neutro y cualquier p € M.

2. ¢(g,¢(h,p)) = ¢(gh,p), conp e My g ,heq.

Normalmente usaremos la notacién g - p para referirnos a la accién diferenciable ¢(g, p).
Una accion diferenciable de GG sobre una variedad de Riemann M se dice isométrica para
cada g € G, el difeomorfismo ¢,: M — M definido como p — ¢ - p es una isometria.

Definimos la érbita de la accion diferenciable ¢ pasando por un punto p € M como el
conjunto

G-p={g-p:geG}

Definimos también el grupo de isotropia de una accién diferenciable en un punto p € M
como el conjunto
Gy={9€G:g9-p=p}

Una accién diferenciable se dice libre si g-p = p para algin p € M, implica que g = e. Una
accion diferenciable se dice efectiva si g - p = p para todo p € M, tiene como consecuencia
que g = e. Si una accién isométrica es efectiva, se tiene que G es isomorfo a un subgrupo
del grupo I(M) de isometrias de M.

Una accién diferenciable se dice transitiva si para cualesquiera p,q € M, existe un
g € G tal que g -p = ¢q. Cuando se tiene una accién transitiva de un grupo G sobre
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una variedad diferenciable M, ésta resulta ser difeomorfa al cociente del grupo G que
actia transitivamente sobre ella por el grupo de isotropia en un punto cualquiera de la
variedad [31, Theorem 21.18]. En este caso, la variedad M también se puede denominar
G-espacio homogéneo. Como veremos, éste serd el tipo de espacios con el que trataremos
en los siguientes capitulos.

Una accién diferenciable se dice propia si la aplicacion G x M — M x M, dada por
(9,p) — (p,g - p) es propia; es decir, la preimagen de un compacto por esta aplicaciéon es
compacto.

Si consideramos una accion diferenciable de un grupo G sobre una variedad diferencia-
ble M, decimos que p € M esta relacionado con ¢ € M si existe g € GG tal que g - p = q.
Esto establece una relacion de equivalencia en M, donde cada punto esta relacionado con
todos los demas puntos de su orbita. Podemos entonces considerar el espacio de orbitas de
la accion diferenciable, M /G, al cual se le dota de la topologia cociente. Las érbitas de una
accién siempre son subvariedades inmersas en M, pero si ademas la accién es propia, las
6rbitas resultan ser subvariedades embebidas [31, Proposition 21.7].

Una subvariedad P de una variedad de Riemann M se dice (extrinsecamente) homogé-
nea si para cualesquiera dos puntos p, ¢ € P, existe una isometria g de M tal que ¢ = g(p)
y g(P) = P. Equivalentemente, si P es cerrada, P es homogénea si existe un subgrupo
de Lie H del grupo de isometrias de M, I[(M), tal que P = H - p, para algin p € P; o
lo que es lo mismo, P es una oOrbita de una accién isométrica sobre M. Una subvariedad
homogénea P de M es embebida si H = {g € I(M) : g(P) = P} es un subgrupo cerrado
(por lo tanto es subgrupo de Lie) de I(M); es decir, la accién es propia.

Proposicién 1.5 ([17, Theorem 4]). Sea G un subgrupo de Lie cerrado de I(M). Entonces,
la accion p,: GXM — M, dada por ¢(g,p) = g(p), es propia. Es mds, G actia propiamente
sobre M si, y solo si, G es un subgrupo cerrado de I(M).

1.4. Forma de Killing

En esta seccion recogemos algunas de las definiciones basicas relacionadas con las
algebras de Lie, asi como la definicién de la forma de Killing, junto con algunos resultados
que utilizaremos en capitulos posteriores.

Sea g un algebra de Lie de dimensién finita. Definimos la serie derivada de g como

0 =g, g0 =[g®,g0], §®=[gW,g"], ..., g = [, g,

Por definiciéon de ideal de un algebra de Lie, se tiene que todos los elementos de la serie
derivada de g son ideales de esta algebra de Lie. Decimos que el algebra de Lie g es resoluble
si existe k € N tal que g®) = 0. En particular, diremos que g es resoluble en k pasos si
g =0ygt 0.

Por otra parte, también podemos definir la serie descendente del algebra de Lie g como

go=9, g1=1[00, S=[00 ., 9=1[00-] -
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Resulta de nuevo que cada elemento de la serie descendente es un ideal de g. Diremos que
g es nilpotente si existe un k£ € N tal que g = 0. Diremos que ademaés es nilpotente en k
pasos si gy =0y gr_1 # 0.

Por un argumento inductivo, se comprueba que g = [gt-=1) g+=1] c [g, g* V] = gy,
con lo que toda algebra de Lie nilpotente es resoluble. El reciproco no es necesariamente
cierto: podemos considerar

0 (0
g= —T 0 z xvyVZER )
0

que es resoluble, pero no nilpotente, con el corchete usual de las algebras de Lie matriciales,
dado por [A, B] = AB — BA, con A, B € g. También se tiene que si un algebra de Lie es
abeliana (i.e. [g,g] = 0), es tanto resoluble como nilpotente en un paso.

Definimos el radical de un éalgebra de Lie g, rad(g), como el tnico ideal resoluble
maximal para la inclusion. Un dlgebra de Lie g se dice que es simple si tiene dimension
dim(g) > 2 y si no tiene ideales propios no triviales.

Por su parte, un algebra de Lie semisimple es aquella cuyos ideales resolubles son
triviales, es decir, rad(g) = 0. De esta definicién se sigue que el unico ideal abeliano de
g debe ser el 0. El reciproco de esta afirmacion también resulta ser cierto. En efecto,
supongamos que rad(g) es no trivial. Como rad(g) es resoluble, existe un k£ € N tal que
rad(g)® = [rad(g)(k_l),rad(g)(k_l)} = 0, con rad(g)*=Y #£ 0. Por lo tanto, rad(g)®*—!
seria un ideal abeliano de g no nulo, llegando a contradiccién. Ademas, un algebra de Lie
es semisimple si, y sélo si, es suma directa de algebras de Lie simples [28, Theorem 1.54].

Definimos la forma de Killing del algebra de Lie g como la aplicacién B: g x g — R
dada por la expresion

B(X,Y) =tr(ad(X)oad(Y)), para cualesquiera X,Y € g.

Se puede comprobar que la forma de Killing es una forma bilineal simétrica de g.
Finalmente, enunciamos algunos resultados que utilizaremos en los capitulos siguientes.

Comenzamos por dar un criterio para determinar la semisimplicidad de un algebra de Lie

a partir de su forma de Killing, conocido como criterio de Cartan para la semisimplicidad.

Teorema 1.6 ([28, Theorem 4.15]). Un dlgebra de Lie g es semisimple si, y solo si, su
forma de Killing es no degenerada.

Decimos que un algebra de Lie es compacta si existe un grupo de Lie G compacto
cuya algebra de Lie sea g. Las algebras de Lie compactas semisimples admiten la siguiente
caracterizacion.

Proposicién 1.7 ([41, Proposition 3.25]). Sea g un dlgebra de Lie, y sea B su forma de
Killing. La forma B es definida negativa si, y solo si, g es compacta con Z(g) = 0.
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Proposiciéon 1.8 ([41, Proposition 3.24]). Si g es un dlgebra de Lie compacta, entonces
existe un producto interior en g para el cual ad(X) € gl(g) es antisimétrico para todo
Xeg.

El ultimo resultado que presentamos en este capitulo nos indica cudl es el comporta-
miento de la forma de Killing con respecto a automorfismos del algebra de Lie. Recordemos
que un automorfismo de un grupo (respectivamente algebra) de Lie es un isomorfismo del
grupo (algebra) de Lie en si mismo. Recordemos también que un automorfismo de un grupo
de Lie G tiene por diferencial un automorfismo de su algebra de Lie g. Denotaremos por
Aut(G) al conjunto de automorfismos de un grupo de Lie Gy por Aut(g) al conjunto de
automorfismos de un algebra de Lie g.

Proposicién 1.9 ([41, Proposition 1.37]). Sea g un dlgebra de Lie, B su forma de Killing
y A € Aut(g). Entonces

(a) B es invariante por A, es decir, B(AX, AY) = B(X,Y) para cualesquiera X,Y € g.
(b) Sean X,Y,Z € g. Entonces B(ad(Z)X,Y) + B(X,ad(Z)Y) = 0.



Capitulo 2

Espacios simétricos

Este capitulo lo dedicaremos a la introduccion y al estudio de los espacios simétricos, con
especial énfasis en los de tipo no compacto. Comenzamos por dar la definicion de espacio
simétrico en la Seccién 2.1, en la que también demostramos que son variedades de Riemann
completas y homogéneas. En la Seccion 2.2 pasamos a centrarnos en las herramientas
algebraicas relacionadas con los espacios simétricos, y comenzamos por introducir la conoci-
da como descomposicion de Cartan. Esta nos permitira distinguir entre espacios simétricos
de tipo Euclidiano, de tipo compacto o de tipo no compacto, lo cual detallaremos en la
Seccién 2.3. En la Seccion 2.4, nos centraremos en la descomposicion de Iwasawa asociada a
los espacios simétricos de tipo no compacto, para lo cual tendremos que introducir también
la descomposicion en espacios de raices y la teoria de espacios de raices. Finalmente, en la
Seccion 2.5 veremos que todo lo anterior nos permite identificar cada espacio simétrico de
tipo no compacto con un grupo de Lie resoluble con una métrica invariante a la izquierda.

Este capitulo ha sido escrito tomando como referencias [23] y [41] para la Seccion 2.1,
la Seccion 2.2 y la Seccién 2.3. Para la Seccion 2.4, los resultados presentados aparecen
reflejados en [28], pero para su adaptacién al capitulo se utilizé [20, Section 3.1]. Para la
elaboracién de la Seccion 2.5 se siguié [20, Section 3.2].

2.1. Definiciéon y primeras consecuencias

Diremos que una variedad de Riemann conexa, (M, g), es un espacio simétrico (global) si
en cada punto p € M existe una isometria s,: M — M, conocida como reflexion geodésica
en p, con las siguientes propiedades:

1. Fija el punto p, esto es, s,(p) = p.
2. La diferencial de s, en p, (sp)sp: T,M — T,M, es (s,). = —1d.

Esta definicion también se puede dar localmente. Un espacio simétrico local es una variedad
de Riemann conexa, (M, g), tal que para todo punto p € M, existe un r > 0 para el cual
podemos encontrar una isometria s,: B,(r) — B,(r) que satisface las dos propiedades
anteriores. Recordemos que B,(r) = {qg € M : d(p,q) < r} se conoce como bola geodésica.

19
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Sea M un espacio simétrico y sea s, la reflexiéon geodésica por p € M. Observemos la
isometria que estamos considerando es una involucion ya que 512, = Id. En efecto, se tiene
que s,(sp(p)) = 5p(P) = P Y (5p)7) = (5p)sp(8p)sp = —(5p)sp = Id, con lo que tenemos una
isometria que deja fijo p y con diferencial la identidad, algo que comparte con la aplicacion
identidad. Por lo tanto, usando el Lema 1.4, deducimos que 5127 = Id.

Una serie de propiedades que se derivan directamente de la definicién de espacio
simétrico se recogen en el siguiente resultado.

Proposiciéon 2.1. Sean M wun espacio simétrico, p € M un punto, y s, su reflexion
geodésica. Se tiene que:

(a) Si~vy:(—€,€) CR — M es una geodésica tal que v(0) = p, entonces s,(y(t)) = v(—t)
para cualquier t € (—e,€), donde € € RT.

(b) M es completo.

(c) M es un espacio homogéneo.
Demostracion. Demostremos cada uno de los puntos por separado:

(a) Como s, es una isometria, entonces la curva «, que definimos como a := s, 0 7y es
una geodésica tal que a(0) = (s, 07)(0) = s,(p) =p vy &(0) = (8p)«p(¥(0)) = —5(0).
Como dos geodésicas que pasan en un instante ¢ por un mismo punto con la misma
velocidad deben ser la misma, deducimos que a(t) debe ser exactamente ~y(—t).

(b) Usando el Teorema 1.1, como M es conexo por definicién, basta comprobar que es
geodésicamente completo para tener que es completo como espacio métrico. Consi-
deremos entonces v: [0,%y) C R — M una geodésica con v(0) = p. Lo que haremos
serd extenderla mediante reflexiones geodésicas respecto de puntos sobre v suficiente-
mente cerca del final de la geodésica. Sea ¢ > 0, y veamos que podemos reflejar la
geodésica hasta un instante ty+¢€ siempre que € < %0 En efecto, consideremos la curva
7: (—€,tg—€] — M dada por ¥(t) = y(—t+to—e). Esta curva verifica 7(0) = y(to—e¢)
y 7' (0) = —=v'(to — €). Ahora vamos a definir la curva 3(t) = s44,—e) © Y(t) = F(—=1);
es decir, 5(t) = y(t + to — €), vy esta definida mientras ¢t + to — € < to. Pero por otra
parte 8 estd definida mientras tg — € + tg — € > to, de lo que se deduce que podemos
prolongar v por reflexién hasta un instante ¢y + € con € < %0 Repitiendo el proceso
sucesivamente, podemos prolongar tanto como queramos las geodésicas; es decir, las
podemos definir en todo R. Por tanto, M es geodésicamente completo, y entonces
es completo. En la Figura 2.1 se puede ver un esquema del proceso seguido en esta
demostracion.

(c) Veamos que M es una variedad homogénea. Sean p,q € M dos puntos, y, usando el
Corolario 1.2 junto con el apartado anterior, sea v: [—to, o] — M un segmento de
geodésica que los una, siendo y(—tg) = p y v(to) = ¢q. Sea m = v(0) € M el punto
medio del segmento de geodésica. Consideremos la reflexiéon geodésica en m, s,,, asi
como la curva 3(t) := (s,, oy)(t). Entonces, usando el primer apartado, se tiene que

B(t) = 7(—1), de lo que tenemos que s,,(p) = sm(Y(—to)) = Bl—to) = A(to) = ¢. O
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Figura 2.1: Esquema de extension de geodésicas en un espacio simétrico. Primero solamente
teniendo un arco de la geodésica, luego seleccionando un punto suficientemente cerca del
extremo de la geodésica y finalmente consiguiendo una geodésica prolongada por reflexién
en el punto elegido.

El resultado (c) de la proposicién anterior nos da un hecho importante, y es que el
conjunto de isometrias de M, I(M) (que ya indicamos en el capitulo anterior que era un
grupo de Lie), actta transitivamente sobre el espacio simétrico M. Por lo tanto M serd
difeomorfo, como vimos en la Seccién 1.3, al cociente de I(M) por el grupo de isotropia de

un punto p € M, M = Il(%l Este difeomorfismo vendra dado por
I(M)
: — M
1(M),

ol(M), — o(p).

Ademas, veremos a continuacién que nos podemos restringir a la componente conexa de la

identidad de I(M):

Proposicién 2.2. Sea G = I°(M) la componente conexa de la identidad del grupo de
isometrias I1(M) de un espacio simétrico M. Entonces G es un grupo de Lie que actia
transitivamente sobre M.

Demostracion. Notese que la componente conexa de la identidad de un grupo de Lie
también es un grupo de Lie (véase, por ejemplo, [31, Proposition 7.12 y Lemma 7.15]).
Solamente nos resta ver que I°(M) actiia transitivamente sobre M. Para ello, consi-
deremos dos puntos p,q € M y veamos que existe o € I°(M) tal que o(p) = ¢q. Ya sabemos,
por el apartado (b) de la Proposicién 2.1, que podemos unir p y ¢ por un segmento de
geodésica v: [0,1] — M (con v(0) = p y v(1) = ¢). Ahora, usando el apartado (c) de la

Proposicién 2.1, tenemos 57(%)(1)) = ¢. Como s,(p) = p, se tiene que Sy(3) © 5p (p) =q.

Consideremos la aplicacién continua (se puede comprobar que, en efecto, esta aplicacion
es continua en la topologia compacto-abierto de I(M), pero no daremos aqui los detalles
de tal prueba)

U:[0,1] — I(M)
t»—>37( ) © Sy

i
2
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para la cual se tiene que W(0) = 3123 =Idy v() = Sy(1) © Spi €8 decir, es un camino en
1
2

I(M) que une la identidad con S,(3) © Sp- Por tanto, S,(1) © Sp € un elemento de I°(M)

[N

que lleva p en q. O

A partir de ahora, salvo que indiquemos lo contrario, consideraremos un espacio simétri-
co M como cociente de G = I°(M) por K = G,, siendo p € M. Cabe observar que es
posible que, para un cierto ¢ € M, s, no pertenezca a G.

Algunos ejemplos sencillos de espacios simétricos son los espacios Euclidianos R", las
esferas S™ y los espacios hiperbdlicos reales RH™. Veamos primero que R" es un espacio
simétrico con la métrica usual. Para cada punto p € R", consideremos la aplicacion dada
por s,(p+v) =p—wv, con v € R™. Esta aplicacion es una isometria trivialmente, ya que
(8p)s(pv) = Id. Ademads, s,(p) = p ¥y S4 = —Id, con lo que s, es una reflexién geodésica
respecto del punto p € R™, con lo que R™ es un espacio simétrico.

Ahora veamos que las esferas S™ son espacios simétricos. Sea (-,-) la métrica usual del
espacio Euclidiano R™*!. Estamos considerando S" = {p € R"™ : |p|| = 1} la esfera
de radio uno de dimensién n, la cual se puede dotar de métrica mediante el pull-back
de la métrica de R™*!. Consideramos un punto p € S* € R"*!. Definamos la aplicacién
p: R — R"*1 dada por 5,(¢) = —q+2(q, p)p. La restriccién de esta aplicacién s, a S™,
Sp = §plsn: S — S™ es una reflexion geodésica en S™. En efecto, consideremos una base
ortonormal de R™™ {v,...,v,}, con p = vy. La aplicacién s, que estamos considerando
lleva ¢ = Y1 (g, vi)v; en s,(q) = {(q,v0) — > 1{q,v;)v;; es decir, mantiene la proyeccién
de ¢ en la direccién de p intacta y refleja las otras m componentes de ¢. Veamos que
sp es reflexion geodésica. Lo primero es observar que la aplicacién s, es una aplicacion
lineal, con lo que coincide con su diferencial, (s,)., = s,. Ademas, se puede verificar que
(sp(q),5p(q")) = (q,q'), con lo que se comprueba que s, es isometria. Se tiene ademds que
sp(p) = p, y en el espacio tangente a p, T,S" = {v € R™™ : (v,p) = 0}, se tiene que
(Sp)sq = —1d, con lo que concluimos que S" es un espacio simétrico.

El caso del espacio hiperbélico n-dimensional real es analogo al de la esfera. Este espacio
se define como

RH" = {x = (x0,...,7,) € RY" (z,2) = 1,29 > 0},
donde R'™ denota el espacio Euclidiano dotado con la métrica definida por
<l’, y> = <($0,ZE1, s axn)a (y07y17 s ayn)> = —ZoYo + szyz
i=1
La aplicacién restriccion de s,: RY™ — RY™, definida por s,(q) = —¢ — 2{(q,p)p, a RH"

también es reflexion geodésica para este espacio, y se comprueba exactamente de la misma
forma que en el caso de la esfera. Por lo tanto, se tiene que RH" es un espacio simétrico.

2.2. Descomposiciéon de Cartan

Tras introducir los espacios simétricos, algunas de las propiedades que se siguen de
manera directa de su definicion, y presentar algunos ejemplos, pasamos ahora a estudiar
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ciertos aspectos y herramientas algebraicas relativas a los mismos. En esta seccion nos
centraremos en la conocida como descomposicion de Cartan. De modo informal, obtendre-
mos el algebra de Lie de la componente conexa del grupo de isometrias de cada espacio
simétrico M como la suma del algebra de Lie del grupo de isotropia de un punto p € M
con un espacio vectorial que resultard ser isomorfo a 7, M. De esta descomposicién también
obtendremos la involucion de Cartan 6, de gran importancia en lo que sigue. Recordemos
que de ahora en adelante M = G/K denota un espacio simétrico, donde G = I°(M) y
K = G,, siendo p € M un punto arbitrario pero fijado.

Proposicién 2.3. Sea M = G/K un espacio simétrico. Entonces:

(a) La reflexion geodésica s, induce un automorfismo involutivo

c: G — G
g — 5pgSp.

(b) SiG” ={g€ G:0(g9) =g} es el conjunto de puntos fijos de o y G§ la componente
conexa de la identidad de G?, entonces

Goc K CGe.

Demostracion. Veamos cada uno de los apartados por separado:

(a) Observemos que, por definicién de s,, se tiene que 312) = Id, de lo cual se deduce
que s, !'= s, y que el neutro de G es un punto fijo de la aplicacién o. Dado que o
es composicion de traslaciones, es diferenciable. De esta forma, o es una aplicacion
diferenciable (con lo que lleva componentes conexas en componentes conexas) que
tiene el neutro como punto fijo, y concluimos que o(G) C G, es decir, o estd bien
definida. Podemos ademads ver o como una conjugaciéon de g € G por s, € I(M). Dado
que I(M) es un grupo de Lie, se tiene entonces que o es una aplicacién diferenciable.
Por 1ltimo, dado que 512) = Id, se tiene que 0?(G) = s,5,Gs,s, = G, y con esto se
concluye que o es, en efecto, un automorfismo involutivo.

(b) Primero observemos que G? es un subgrupo de Lie cerrado. Es inmediato comprobar
que G es subgrupo, asi que veamos que es cerrado. Para ello, sea una sucesion de
elementos de G7, { g, }nen, convergente a g € G. Entonces, por una parte, dada la
continuidad de o, se tiene que {o(g,)} — o(g9) y {9»} — ¢; y por otra parte, como
0(gn) = gn para cualquier n € N y G es Hausdorff, se sigue que o(g) = g. Es decir,
g € G, concluyéndose que G es subgrupo cerrado de GG, y por tanto un subgrupo
de Lie embebido de G, por el Teorema de Cartan [31, Theorem 20.12].

Veamos ahora que K C GY. Sea entonces h € K. Por una parte, como K es el
subgrupo de isotropia en p, se tiene que

a(h)(p) = (sphsp)(p) = p = h(p);
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y por otra parte, teniendo en cuenta que s, es reflexion geodésica obtenemos
(0(h)sp = ($phsp)sp = (Sp)up g (Sp)sp = —1d b (=1d) = Dy

Con lo cual, se concluye, usando el Lema 1.4, o(h) = h, y asi h pertenece a G°.

Finalmente, veamos que G C K. Como vimos que G° es un subgrupo de Lie de G,
tendremos que su componente conexa de la identidad, G, también es un subgrupo
de Lie de . Por lo tanto, podemos considerar su algebra de Lie, que denotaremos
por Lie(GY). Consideremos X € Lie(GY). Se tiene entonces que Exp(tX) € G para
todo t € R [31, Proposition 20.9]. Ahora bien, si utilizamos la definicién de G, se
tiene que s,Exp(tX)s, = o(Exp(tX)) = Exp(tX). Aplicando esto a p, deducimos
que

(spExp(tX)s,)(p) = (s,Exp(tX))(p) = Exp(tX)(p).

Como (s,)« = —Id, para cualquier entorno de p suficientemente pequetlo, se tiene que
s, no puede fijar ningtin punto salvo p, con lo que deducimos que Exp(tX)(p) = p
para cualquier t € R. Por lo tanto, Exp(tX) € K. Para terminar, basta tener en
cuenta que, como G es un grupo de Lie conexo, éste esta generado por un entorno
del elemento neutro que es homeomorfo a un abierto de Lie(GY). O

La involucion o inducird otra involuciéon de g en si misma, que es la conocida como
involucion de Cartan que venimos anunciando desde el comienzo de esta seccion. El interés
de esta involucién se ve en la siguiente proposicion.

Proposiciéon 2.4. La involucion o induce otra involucion 0: g — g y se tienen las
siguientes propiedades:

(a) El dlgebra de Lie g de G se puede descomponer como suma directa de ¢ = {X € g :
X =X} yp={X €g:0X =—X}, esto es, g=tDp. Esto quiere decir que g se
descompone en suma directa de los autoespacios asociados a los autovalores +1 y —1
de la involucion 6.

(b) Estos autoespacios satisfacen las siquientes tres reglas de corchete entre ellos:
etce  [Eplcp  [pplct

(¢) La descomposicion g = €@ p es ortogonal con respecto a la forma de Killing B de g.

Demostracion. Lo primero que veremos es que ¢ = o, es una involuciéon inducida por
) | : ‘2 :

0: G — G. Dado que s, = s,', ¢ es un conjugacion por un s, € I(M) fijado, y en

consecuencia ¢ serda un automorfismo que preserva G. Por otra parte, como 812) =1d € G,

se tiene que o?(h) = h para cualquier h € G, y entonces ¢ es una involucién. Asi, también

se tendrd que 02 = 02 = Id; es decir, 6 es involucién.
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(a)

(c)

Ahora veamos que # diagonaliza con autovalores +1 y —1, de forma que podemos
hacer la descomposicion en autoespacios g = € @ p. Supongamos que #.X = A\ X para
algin X € g, con A € R. Como 6 es involucién, se tiene que X = 0°X = I\2X,
y por tanto concluimos que 6 diagonaliza con autovalores A € {+1,—1}. Definimos
entonces los autoespacios asociados a cada uno de estos autovalores:

t={Xecg:0X =X}, p={Xe€g:0X=-X}.
Por lo tanto, g = €@ p.

Dado que 6 es la diferencial de un automorfismo de grupos de Lie, es un isomorfismo
de élgebras de Lie. Por lo tanto, se tiene que 0[X,Y] = [0X,0Y]. Asi, basta con
aplicar la definicién de cada uno de los autoespacios en los corchetes:

e Sean Ki, K, € ¢ Entonces 0K, K] = [0K,0K,] = [Ki, Ks], con lo que
(K1, K] € & es decir, [¢,€] C L

e Sean K € ty P € p. Entonces §[K, P| = [0K,0P] = —|[K, P], de modo que
[K, P] € p; es decir, [¢,p] C p.

e Sean Py, P, € p. Entonces 0[Py, Py| = [0Py, 0P, = [Py, P], asi que [Py, P»] € ¢
es decir, [p,p] C £

Veamos que B(¢,p) = 0. Sean K € ¢y P € p. Entonces, usando el resultado del
apartado anterior,

B(K, P) = tr(ad(K) o ad(P)) = tr (%) ~0.

La segunda igualdad viene de calcular las representaciones matriciales de ad(K) y

ad(P):
x| 0 0] =
ad(K) = s ad(P) = )
= (42). am= (2]
donde las primeras columnas se refieren a la accién en £ y las segundas en p. ]

En adelante, nos referiremos a # como involucion de Cartan y a la descomposicién
g = D p como descomposicion de Cartan. En ciertos textos también se hace referencia
a o como involucion de Cartan, siendo una version a nivel de grupos de Lie. El siguiente
resultado nos da mas informacién acerca de los autoespacios de 6.

Proposicion 2.5. Sea M = G /K un espacio simétrico, donde G es la componente conera
de la identidad de su grupo de isometrias. Se tiene entonces que:

(a) El subespacio € es precisamente el dlgebra de Lie del grupo de isotropia K = I°(M),.

(b) Como espacios vectoriales, p y T,M son isomorfos. Entonces, p se puede dotar de

un producto interior que resulta ser Ad(K)-invariante.



26 2 Espacios simétricos

Demostracion. (a) Veamos primero que el dlgebra de Lie de K, Lie(K), estd contenida
en £. Sea entonces X € Lie(K), lo cual equivale a que Exp(tX) € K para cualquier
t € R. Queremos ver que #X = X, asi que hacemos el cdlculo correspondiente:

o(Bxp(tX)) = 5| Exp(tX) = X.,

t=0 t=0

Exp(tX) = 4

d
<0X)e = Oxe Xe = Oxe 7,
o dt

dt

como queriamos ver. En la segunda igualdad hemos usado que Exp(t.X) es una curva
que pasa por el neutro en t = 0 y con velocidad X, mientras que en la peniltima
hemos usado que Exp(tX) € K C G°. Evaluamos en el neutro porque los campos
de un élgebra de Lie, en particular de Lie(K), estdn determinados por su valor en el
neutro.

Ahora veamos la otra inclusién, ¢ C Lie(K). Consideremos X € ¢, que satisface
06X = X. Podemos entonces hacer el siguiente calculo:

Exp(tX) = Exp(t0X) = Exp(0(tX)) = o(Exp(tX)),

donde hemos utilizado la conmutacion Exp(f.X) = f(Exp(X)), tomando f = o.
Se tiene entonces que Exp(tX) € G7 para cualquier ¢ € R. Ahora bien, dado que
Exp(0) = Id y Exp es una aplicacién diferenciable, se tiene que Exp(tX) € G para
cualquier t € R.

(b) Esta demostracion la haremos en tres etapas:

1. Veamos que p y T,,M son isomorfos como espacios vectoriales. Consideremos la
aplicacion orbita por p, ¢: G — M, definida por ¢(g) = g(p). La aplicacién ¢
es diferenciable de rango constante [31, Theorem 7.25], y como estamos en un
espacio simétrico, se deduce que es, ademas, sobreyectiva. Por lo tanto, es una
submersion.

Si ahora consideramos la aplicacion F': G/K — M, definida mediante gK
F(gK) = g(p), los siguientes dos diagramas son conmutativos:

G—2 M .G —2 5 T,M
7{ / ”*{ Fx
G/K Tx(G/K)

Observemos que, como M es difeomorfo a G/K precisamente por F, se tiene
que F,x es un isomorfismo entre espacios tangentes. Entonces,

ker(gye) = ker(Fux 0 o) = ker(m,) = €,

donde estamos usando justamente el apartado (a) para el isomorfismo final.
Como T,G es isomorfo a g = € @ p, deducimos que ¢uclp: p — T,M es un
isomorfismo.
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De esta forma, podemos definir el producto interior que indicamos en el enun-
ciado como

(X, YY), := (¢ueXe, pucYe), para cualesquiera X,Y € p.

2. Veamos p que es Ad(K)-invariante; es decir, Ad(K)(p) C p. Sea a: G — G
un automorfismo de grupos de Lie, y sea I,: G — G la conjugacion por g. Se
deduce la siguiente igualdad:

(o L,)(h) = a(ghg™) = a(g)a(h)a(g) ™ = (Iag) 0 a)(h);
es decir, v o I, = I,(4) 0 . Podemos entonces aplicar diferenciales y obtener
a*elg*e - (Q{ o Ig)*e - (]a(g) o a)*e = LgxeOse-
Para el caso de la aplicacién adjunta, teniendo en cuenta su definicién, se obtiene
a, 0 Ad(g) = Ad(a(g)) o a.. (2.1)

Ahora vamos a aplicar la involucién de Cartan a Ad(k)(P) parak € Ky P € p
arbitrarios, y veremos que Ad(k)(P) € p:

OAd(E)(P) = 0. Ad(k)(P) = Ad(o(k))o.(P) = Ad(k)0(P) = —Ad(k)(P),

donde en la segunda igualdad hemos usado la ecuacién (2.1), en la tercera
que K C G7 y en la cuarta que 6|, = —Id. Por lo tanto, y como queriamos
ver, Ad(k)(P) pertenece al autoespacio asociado al autovalor —1 de 6, que,
recordemos, es p por la Proposicion 2.4.

3. Nos resta ver que Ad(k) es una isometria, para cualquier k € K = I°(M),, para
el producto interior que acabamos de definir en p. Recordemos que ¢p: G — M
viene definida por ¢(g) = g(p). Observemos que

(¢ o Ii)(g) = o(kgk™") = kgk™'(p) = kg(p) = (k0 9)(p).
Usando esto, podemos realizar la siguiente cadena de igualdades:
<Ad<k)X7 Ad<k)Y>p :<¢*ejk*e Xe; (,b*e[k*e }/;>
(¢ofk)*e ea(@so[k)*e}/e>

(

((ko@)e Xe, (ko d)icYe)
(Kxe@e Xe, kieDue Ye)
(
(

¢* X6a¢*e e>
X, Y),.

(kse es isometria)

Con esto queda probado el resultado. O

Observemos que la descomposicion de Cartan depende del punto considerado; sin
embargo, se tiene que todas las involuciones de Cartan que podamos considerar son conjuga-
das entre si [28, Corollary 6.19].
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2.3. Espacios simétricos irreducibles

El objetivo fundamental de esta secciéon serd, haciendo uso los contenidos introducidos
de la Seccién 2.2, agrupar o clasificar los espacios simétricos irreducibles en tres grandes
clases: de tipo Euclidiano, de tipo compacto y de tipo no compacto. Ademéas de algunas de
sus propiedades, explicaremos brevemente la dualidad existente entre los espacios simétricos
de tipo compacto y los espacios simétricos de tipo no compacto, y mostraremos algunos
ejemplos concretos de dicha dualidad.
~_Sea M = G//K un espacio simétrico. Se tiene entonces que su recubrimiento universal,
M, es también un espacio simétrico. Ademas, por el Teorema de de Rham (ver [16]),
podemos descomponer M como M = My x My x---x M,, donde Mj es un factor Euclidiano
(es decir, es localmente isométrico a un espacio Euclidiano), y los M;, con i € {1,...,n},
son espacios simétricos simplemente conexos irreducibles.

Consideremos la representacion

p: K — O(T,M)
k— p(k) = kyp: T,M — T,M,

donde k(p) = p dado que K = I°(M),. Esta recibe el nombre de representacion de
isotropia del espacio simétrico M = G /K. Una propiedad fundamental de esta representa-
cion la indicamos a continuacion.

Proposicién 2.6 ([41, Corollary 9.8]). Si M = G/K es un espacio simétrico simplemente
conexo irreducible, entonces la representacion de isotropia es irreducible.

Este resultado es la motivacion principal de la definicién de espacio simétrico irreduci-
ble. Un espacio simétrico M = G/K se dice irreducible si Ky (la componente conexa del
subgrupo de isotropia) actia de forma irreducible sobre T,M. En caso contrario, estaremos
hablando de un espacio simétrico reducible. Se tiene que M es irreducible como espacio
simétrico si, y sélo si, M es irreducible y no se puede considerar como producto no trivial
de espacios simétricos, salvo que M sea un espacio Euclidiano. Una condicion suficiente
para que un espacio simétrico sea irreducible es que G sea un grupo simple.

Teniendo en cuenta la Proposicion 2.5, identificamos p en la descomposicion de Cartan
con T, M. Entonces, resulta que las siguientes representaciones son equivalentes

K xT,M — T,M Kxp —p
(k,v) —> kv (k, X) — Ad(k)X.

En efecto, el diagrama

Ad(k)
p——79p

1dx<d¢>>{ J(daﬁ)e
T,M < T,M
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conmuta, ya que
¢*6(Ad(k)X)e = ¢*6[]€*6 Xe - (¢ o ]k)*e Xe = k*e¢*e Xe-

Llegados a este punto, estudiaremos las formas bilineales y veremos la importancia de
la forma de Killing a la hora de clasificar los espacios simétricos irreducibles.

Proposiciéon 2.7. Sean By y By dos formas bilineales simétricas definidas sobre un espacio
vectorial V tales que By es definida positiva. Si un grupo de Lie compacto K actia irreduci-
blemente sobre V' y By, By son invariantes por K, entonces By = ABy para un cierto A € R.

Demostracion. Lo primero que haremos sera definir un endomorfismo ¢: V' — V., dado
por By(u,v) = Bi(¢(u),v), para cualquier u € V' y v € V fijado. Veamos que podemos
hacer esta eleccion. Dado que By es definida positiva por hipétesis, By(V,v) # 0, y entonces
existe un w € V tal que By(w,v) # 0. Podemos entonces seleccionar un p € R tal que
By (pw,v) = Ba(u,v), y esto lo podemos hacer para cualquier u € V. Nos basta definir
p(u) = pw. Nos falta solamente comprobar que esta definicién de ¢ la convierte en una
aplicacion lineal:

By (p(auy + bug),v) =Bs(auy + bug, v) = aBs(uy,v) 4+ bBa(ug,v)
=aBi(p(u1),v) + bBi(p(uz),v) = Bi(ap(ui) + bp(uz), v),

con lo que p(auy +bus) = ap(uy) +bp(us) para cualesquiera a,b € Ry uy, us € V; es decir,
@ es, en efecto, una aplicacion lineal.
Ahora vamos a trabajar con la accién de K sobre V', usando notacién multiplicativa
K xV — V dada por (k,v) — kv. Observemos que para cualesquiera u,v € V se tiene
que
Bl(@(u)ﬂ U) = BQ(U,U) = BQ(“?“) = Bl(@(”)?”) - Bl(ua (p(U)),

con lo que vemos que ¢ es autoadjunta con respecto a B;. Como B; es, por hipétesis,
definida positiva, se tiene entonces que ¢ diagonaliza con autovalores reales. Ahora bien,
como By y B son invariantes bajo la acciéon de K, tenemos que

By (kp(u),v) = Bi(p(u), k'v) = By(u, k'v) = By(ku,v) = Bi(p(ku),v),

con k € Ky u,v € V. Esto tiene como consecuencia que Bj(kp(u) — ¢(ku),v) = 0 para
todo v € V. Como By es definida positiva, se sigue que kp = pk para cualquier k € K.
Finalmente, si consideramos E el autoespacio asociado al autovalor A de ¢, se tiene

p(kE) = ko(E) = AkE,

con lo que kE C E. Por lo tanto, como K actua irreduciblemente sobre V., E =V (A no
puede ser 0 ya que si lo fuera, se tendria que By = 0). Esto quiere decir que ¢ = \1d, y
por tanto se concluye el resultado buscado: By = AB;. [

Una consecuencia importante de este resultado se indica en el siguiente corolario.
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Corolario 2.8. Sea M = G /K un espacio simétrico y sea B la forma de Killing en g. Si
M es irreducible, entonces existe A € R tal que

(X,Y), =AB(X,Y), para cualesquiera X,Y € p.

Demostracion. Como M es irreducible, la acciéon K xp — p, dada por (k, X) — Ad(k)X, es
irreducible. Ahora, consideremos (-, -),, que, por la Proposicién 2.5 es una forma bilineal,
simétrica, definida positiva e invariante bajo Ad(K); y consideremos también Bl,x, (la
forma de Killing restringida), que es no nula, simétrica, bilineal e invariante bajo Ad(K).
Observemos que

ad(aX)Z =[aX,Z] = a[X,a ' Z]) = (acad(X) ca ')(Z). (2.2)

Usando la ecuacién (2.2), podemos comprobar que la forma de Killing restringida a p x p
es invariante por automorfismos de g:

B(aX,aY) =tr(ad(aX) oad(aY)) = tr(ao ad(X) oa 'oaocad(Y)oa™)
=tr(aoad(X)oad(Y)oa™')=tr(a ' oaocad(X)oad(Y))
=tr(ad(X) cad(Y)) = B(X,Y),

siendo a un automorfismo de g.
Tomando (-, -), como B; y la forma de Killing como B; en la Proposicién 2.7, se tiene
que existe una constante A € R tal que (-,), = AB(-,-). O

En el caso de que el espacio simétrico sea reducible, también tenemos algo analogo,
resultado de aplicar el corolario anterior a cada una de las componentes de la descomposi-
cion del espacio simétrico en producto de espacios irreducibles. Dado un espacio simétrico
reducible en la forma M = My, X ... x M,, denotaremos por g; =&, @&p; (i € {1,...,n}) a
la descomposicién de Cartan correspondiente al algebra de Lie g; asociada a cada uno de
los espacios simétricos M; del producto.

Corolario 2.9. Sea M = G/K un espacio simétrico. Si M es reducible, entonces p =
PL@...Opny

(X, YY), = NB(X,Y), para cualesquiera X,Y € p;, ei€ {1,...,n}.

Usando el Corolario 2.8, podemos distinguir tres clases de espacios simétricos irreduci-
bles a partir del signo de la constante de proporcionalidad A. Sea M = G /K un espacio
simétrico irreducible. Por el Corolario 2.8, como (-,-), es definida positiva, se tiene que
Blyxp = A7, *)p. En funcién del signo de este valor A distinguimos tres clases de espacios
simétricos irreducibles, que recogemos en la Tabla 2.1

Veamos mas en detalle algunos aspectos recogidos en la Tabla 2.1.

Proposicién 2.10. Sea M = G/K un espacio simétrico. Se tiene entonces que:



2.3 Espacios simétricos irreducibles 31

Tipo de espacio simétrico M G
A<0 Compacto Compacto y curvatura seccional no negativa Compacto y semisimple
A>0 No compacto No compacto y curvatura seccional no positiva | No compacto y semisimple
A=0 Euclidiano El recubrimiento universal es R™

Tabla 2.1: Clases de espacios simétricos irreducibles.

(a) Si M es de tipo compacto, entonces G es semisimple y G y M son compactos.

(b) Si M es de tipo no compacto, entonces G es semisimple y G y M son no compactos.

(¢) M es de tipo Euclidiano si, y sélo si, [p,p] = 0.

Demostracion.  (a) Se tiene que la involucién de Cartan del dlgebra de Lie g, 0, preserva

la forma de Killing dado que es un automorfismo de g (Proposicién 1.9). Lo primero
que veremos es que Bl es definida negativa. Como K es compacto [41, Proposition
9.14], se tiene que ¢ debe ser compacta, asi que, por la Proposicion 1.8, ¢ admite
un producto escalar, para el cual ad(X) es una transformacién antisimétrica de g
para todo X € £. Se tiene entonces que ad(X) € gl(g) tiene todos sus autovalores
imaginarios puros. Entonces, B(X, X) = tr(ad(X)?) < 0. Ahora veamos que, de
hecho, B(X, X) debe ser negativo si 0 # X € £. Supongamos que B(X, X) = 0; es
decir, tr(ad(X)?) = 0, con lo que deducimos que ad(X) = 0. Por lo tanto, llegamos
a que X € Z(g). Sin embargo, como el grupo de isometrias de un espacio simétrico
actua efectivamente sobre éste, también lo hace de forma casi efectiva, y entonces g
y £ no pueden tener ideales distintos de 0 en comun, llegdndose a una contradiccién,
ya que Z(g) N ¢ es un ideal de g y de .

Ahora, como B, es definida negativa por hipdtesis, B es no degenerada, asi que,
por el criterio de Cartan para la semisimplicidad (Teorema 1.6), g es semisimple.
Ademés, al ser tanto Blexe como Blyx, definidas negativas, B es definida negativa,
lo cual equivale (Proposicién 1.7) a que g sea compacta y Z(g) sea nulo; es decir, G
es compacto como grupo de Lie de g. Finalmente, como M es difeomorfo al cociente
de dos grupos compactos, es compacto, concluyéndose el resultado.

Usando el razonamiento del apartado anterior, llegamos a que Blexe es definida
positiva, por lo que, como Bl,x, es definida positiva por hipétesis, se tiene que g
es semisimple (criterio de Cartan de semisimplicidad, Teorema 1.6). Ahora, como B
ya no es definida negativa, g no es compacta, por lo que G tampoco es compacto.
Finalmente, como M = G/K y K es compacto, se deduce que M no es compacto.

Por hipétesis, se tiene que Blyx, = 0. Ademas, recordemos que B(¢, p) = 0. Como
Blexe es definida negativa (por el razonamiento anterior), el subespacio

ker(B) ={X € g: B(X,Y) =0 para todo Y € g}
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es precisamente p. Ademés, ker(B) es un ideal de g, ya que si tomamos X € ker(B)
e Y € g, entonces dado un Z € g, se tiene que

B([X,Y],Z) == (Y7 [X’ Z]) =0,

con lo que [ker(B), g|] C ker(B). Por ser ker(B) ideal de g, también es dlgebra de Lie,
y se tendrd que [p,p] C pN € =0 (dado que vimos que [p,p] C ).

Reciprocamente, supongamos que [p,p] = 0. Como [£, p] C p, se sigue directamente
que Blpxp = 0. O

Si consideramos un espacio simétrico arbitrario M, su recubrimiento universal, M , se
descompone como producto de espacios simétricos de la forma M = My x M, x M_, siendo
My de tipo Euclidiano, M, de tipo compacto, y M_ es de tipo no compacto.

Un hecho importante es que, considerando espacios simétricos simplemente conexos,
existe una correspondencia entre los de tipo compacto y los de tipo no compacto. A esta
correspondencia se le llama dualidad. Algunos ejemplos de esta dualidad los indicamos en
la siguiente tabla.

Tipo compacto Tipo no compacto
0
Esferas reales S = Sg&:l Espacios hiperbélicos reales RH" = SSO()I;T
Espacios proyectivos complejos CpP" = % Espacios hiperbélicos complejos CH" = S?glli;n)
Espacios proyectivos cuaternionicos | HP™ = Sspi’i‘s*; Espacios hiperbdlicos cuaternionicos | HH" = Si?%;
n =20"
Plano proyectivo de Cayley OoP? = spiFf(g) Plano hiperbdlico de Cayley 0H? = siﬁix(g)

Tabla 2.2: Ejemplos de espacios simétricos simplemente conexos de rango uno. Presentamos
uno de tipo compacto con su correspondiente dual de tipo no compacto.

2.4. Espacios de raices y descomposiciéon de Iwasawa

Dado que el objetivo de este trabajo es el estudio de las hipersuperficies de curvatura
adaptada en espacios simétricos de tipo no compacto, en la parte final del capitulo pasamos
a centrarnos exclusivamente en éstos ultimos. En esta seccién, el objetivo sera obtener la
descomposicién de Iwasawa asociada a un espacio simétrico de tipo no compacto, que
afirma que la componente conexa que contiene a la identidad de su grupo de isometrias es
difeomorfa al producto de un grupo de Lie compacto, por uno abeliano y otro nilpotente.
Para llegar a ello, debemos introducir la teoria de espacios de raices desarrollada por
Cartan.

Sea entonces un espacio simétrico M = G/K de tipo no compacto. Como vimos en la
seccion anterior, esto quiere decir que:

(a) G = I°(M) es un grupo de Lie semisimple no compacto. Ademds, K = G, es un
grupo de Lie compacto, para p € M [41, Proposition 9.14].
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(b) M es una variedad de Riemann no compacta y tiene curvatura seccional no positiva.
(c) Blyxp > 0, siendo B la forma de Killing asociada al algebra de Lie g de G.
(d) Blexe < 0.

Vemos que la forma de Killing no nos proporciona en este caso un producto interior
ya que no es definida positiva. Por lo tanto, requeriremos de la definicién de otra forma
bilineal que si sea definida positiva. Recordemos que denotamos por 6 la involucién de
Cartan de g. Podemos definir en este punto un producto interior en g, que denotaremos
por By y viene dado por

By(X,Y)=—B(0X,Y), para cualesquiera X,Y € g.

Recordemos que ¢ y p se definieron como los autoespacios asociados a los autovalores +1
y —1 de 6, respectivamente. Por lo tanto, tenemos lo siguiente:

B@(ﬁr‘) = _B(Qﬁ}j) = —B(ﬁp) = O’
Bo(e,€) = —B(0t,€) = —B(t,€) > 0,

By(p,p) = —B(0p,p) = B(p,p) > 0.

En particular, comprobamos By es definida positiva, con lo que es, efectivamente, un
producto interior en g, dado que la forma de Killing es simétrica.

En el siguiente resultado recogemos algunas propiedades més acerca del producto
interior By, relacionadas con la aplicacién adjunta de algebras de Lie.

Lema 2.11. Sea M = G/K un espacio simétrico de tipo no compacto. Entonces
(a) Si X € ¢t, entonces ad(X): g — g es antisimétrica respecto de By.
(b) Si X €p, entonces ad(X): g — g es simétrica respecto de By.

Demostracion. (a) Sea X € £ Queremos ver que By(ad(X)(Y),Z) = —By(Y,ad(X)Z2),
para cualesquiera Y, Z € g. En efecto, usando el apartado (b) de la Proposicién 1.9:

By(ad(X)(Y), Z) = By([X, Y], Z) = —B(O|X, Y], Z) = — B(0X,0Y], Z)
= — B([X,0Y],Z) = B(0Y, X, Z]) = —By(Y, [X, Z])
—  By(¥ad(X)(2)).

(b) La demostracién es completamente andloga a la del apartado anterior, pero usando
que si X € p, entonces #X = —X. ]



34 2 Espacios simétricos

Consideremos ahora un subespacio abeliano maximal a de p. Se tiene que cualquier otro
subespacio abeliano maximal de p serd conjugado a a mediante la acciéon adjunta de K (ver
[28, Theorem 6.51]), por lo que los resultados que obtengamos para a solamente diferiran de
los obtenidos para cualquier otro subespacio abeliano maximal a’ de p en una conjugacion
por la acciéon adjunta de K. Este hecho nos permite introducir la definicion del rango de
un espacio simétrico M = GG/ K, que es precisamente la dimensién de cualquiera de estos
subespacios abelianos maximales de p. Por otra parte, decimos que una subvariedad conexa
N de M es geodésica en un punto p € N si toda geodésica de M que pasa por p y es tangente
a IN es una curva en N. La subvariedad N se dird totalmente geodésica si es geodésica en
todo punto p € N. El rango de un espacio simétrico se interpreta geométricamente como la
mayor dimension de una subvariedad plana y totalmente geodésica dentro de tal espacio.

El siguiente resultado nos indica una propiedad interesante acerca de los endomorfis-
mos de un espacio vectorial que conmutan entre si, y que nos permitira considerar la
definicion de los espacios de raices restringidas, imprescindibles a la hora de establecer la
descomposicion de Iwasawa.

Lema 2.12 ([22, Appendix A-8]). Sea V' un espacio vectorial de dimension finita, y A C
End(V') un subconjunto de endomorfismos diagonalizables que conmutan entre si. Entonces,
todos los endomorfismos de A diagonalizan simultdneamente, es decir, existe una base de
V' formada por autovectores de todos los endomorfismos de A.

Sea a un subespacio abeliano maximal de p, y sea H € a. Como H € a C p, se tiene que
0H = —H, con lo que se tiene que ad(H) € gl(g) es autoadjunto con respecto al producto
interior By. Por otra parte, como ad: g — gl(g) es un homomorfismo de algebras de Lie,
se tiene que, dados Hy, Hy € a,

[ad(H1), ad(H,)] = ad([H1, Ha]),

con lo que el conjunto A = {ad(H) : H € a} es un conjunto conmutativo de endomorfismos
de g. Aplicando el Lema 2.12, se sigue que todos estos automorfismos diagonalizan de forma
simultanea.

Teniendo en cuenta este ultimo comentario, podemos plantear la definicion de los
espacios de raices restringidas. Sean M = G/ K un espacio simétrico de tipo no compacto,
g =t P p la descomposicion de Cartan de g, y a un subespacio abeliano maximal de p. Se
denomina espacio de raiz restringida a cada uno de los autoespacios comunes que hay en
A ={ad(H) : H € a}; es decir, a cada uno de los subespacios vectoriales de g definidos,
para cada o € a*, como

g ={X €g:[H X]=a(H)X, para todo H € a},

con g, # 0. Los a # 0 tales que g, # 0 se denominan raices restringidas de g. Denotaremos
por A al conjunto de raices restringidas. Esto es,

A={aeca" :a#0,g9,#0}.



2.4 Espacios de raices y descomposicion de Iwasawa 35

Obtenemos entonces la descomposicion

gzgo@(@ga),

aEA

denominada descomposicion de g en espacios de raices restringidas. El subespacio gg es
go={X €g:[H, X]=0, para todo H € a}.

Este conjunto es no nulo dado que a C go y a # 0, ya que todo subespacio generado
por un unico vector no nulo es abeliano y distinto del subespacio trivial. En lo que sigue,
entenderemos que el término “raiz” hace referencia a raiz restringida.

Observemos que la descomposicion de g en espacios de raices depende del punto p € M
considerado, asi como del subespacio abeliano maximal a que elijamos. Sin embargo, estas
elecciones conducen a descomposiciones que seran conjugadas entre si, ya que, como ya
indicamos anteriormente, las distintas involuciones de Cartan son conjugadas entre si, y
los subespacios abelianos maximales de p también son conjugados entre si. A continuacion,
mostramos algunas propiedades de las descomposiciones en espacios de raices.

Proposicién 2.13. Sea M = G/K un espacio simétrico de tipo no compacto, y sea g el
algebra de Lie de G. Se tiene que:

(a) La descomposicion de g en espacios de raices, § = go ® (Baca 9a), €5 ortogonal con
respecto del producto interior By.

(b) [8a;85] C Gats, para cualesquiera raices o, f € A.
(¢) 090 = g_o para cualquier raiz o € A. Por lo tanto, si a € A, entonces —a € A.
(d) go = a® Z(a), siendo Zy(a) el centralizador de a en &; es decir,

Ze(a) ={X € t:[H,X]=0, para todo H € a}.

Demostracion. (a) Sean o, € A dos raices distintas; es decir, existe H € a tal que
a(H) # B(H). Supongamos que a(H) # 0, sin pérdida de generalidad dado que
alguno de los dos debe ser no nulo para que sean distintos. Como H € a C p, se
tiene que ad(H) es simétrica con respecto del producto interior By. Por lo tanto, si
consideramos X € g, e Y € gg,

1 1 P(H)
By(X)Y)= —=By(ad(H)(X),Y) = —=Bs(X,ad(H)(Y)) = By(X,)Y).
(X.Y) = s BA(H)(X).Y) =~ By(X.ad()(Y) = S i B(X.Y)
Como % # 1, se debe tener que By(X,Y) = 0, siguiéndose la ortogonalidad entre

Ja Y 95-
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(b) Sean X € g, e Y € gp. Queremos ver que [X,Y] € goip. Usando entonces la
identidad de Jacobi,

ad(H)([X,Y]) =[H, [X, Y]] = =[X, [V, H]| = [V, [H, X]]
=[X,ad(H)(Y)] = [Y;ad(H)(X)] = B(H)[X, Y] — a(H)[Y, X]
=(a+ B)[X,Y].

Por tanto, se sigue que [ga, 8s] C ga+s, para cada a, f € A

(c) Sea X € g,, y veamos que X € g_,. Teniendo en cuenta que H € a C p, se tiene
que 0H = —H. Asi,

ad(H)(0X) =[H,0X] = [0(—H),0X] = 6[—H, X]
—0(—ad(H)(X)) = 8(—a(H)X) = —a(H)bX.

con lo que se sigue que Ag, C g_,, para cada a € A. Si aplicamos el mismo
razonamiento a g_,, se tiene que fg_, C g.. Como 6 es involucion, se obtiene que
ambos espacios vectoriales tienen la misma dimension y entonces g, = 0g_,.

(d) Usando el apartado anterior, se tiene que gy = go. Por lo tanto, considerando la
descomposicién de Cartan g = €@p inducida por 6, se tiene que go = (8Ngo) D (pNgo).
Veremos que p N gp es a ya que €N gg = Z(a) por definicién. Usaremos que a es un
subespacio abeliano maximal de p. Como ya indicamos anteriormente, a C gg por
definicién, asi que a C pNgo. Ahora supongamos que existiese algin X € (pNgo) \ a.
Entonces [H, X] = 0 para cualquier H € a, por estar X € g, y por tanto el subespacio
a+ RX C pNgyes un subespacio abeliano de p, contradiciendo la maximalidad de
a. [

Consideremos en el dual de a, a*, el producto escalar
(a, B) := B(H,, Hg), para cualesquiera o, 3 € a”,

siendo Hy, € a tal que B(Hy), H) = A(H) para cualquier H € a, y siendo A € a* un
covector de a. Podemos introducir asi una norma en a* considerando |a| = (@, a)/2. Con
este producto escalar en a*; A constituye un sistema de raices abstracto en a*; es decir, es
un subconjunto finito de vectores no nulos de a* tal que

(a) A genera a*.

(b) Dados a, 5 € A, se tiene que los enteros de Cartan A,z == Hof) ¢ 7.

o
(c) Dados o, B € A, se tiene que § — Aypa € A.
En [28, Corollary 6.53] se puede encontrar una demostracién de que A es, en efecto, un

sistema de raices abstracto en a*. Las principales consecuencias de que A sea un sistema de
raices abstracto en a* son: primeramente, que podemos establecer una nocion de positividad
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en el conjunto de raices; luego, tenemos un conjunto de raices simples; y finalmente,
podemos asociar a cualquier espacio simétrico de tipo no compacto un diagrama de Dynkin.

Para establecer una nocién de positividad, consideremos P un hiperplano lineal en el
espacio vectorial a* (un subespacio de codimensiéon uno) que no interseque a A, algo que
podemos hacer ya que A es un conjunto finito. De esta forma, estamos dividiendo a* en
dos subespacios, P* y P~. Diremos que o € A es positiva si pertenece a PT y negativa
si pertenece a P~. Esto divide A en dos conjuntos finitos, A" y A~, de raices positivas y
negativas, respectivamente. Definimos una raiz simple como aquella que es positiva y que
no podemos expresarla como suma de otras dos raices positivas. El conjunto de las raices
simples lo denotaremos por II.

Utilizando las raices simples es posible construir el conocido como diagrama de Dynkin
asociado a un espacio simétrico de tipo no compacto. Este diagrama se construye asignando
un nodo a cada raiz simple. A continuacién, los nodos correspondientes a las raices simples
a 'y ( se unen mediante A,zAg, aristas no dirigidas. Denotaremos por Aut(DD) el grupo
de simetrias de un diagrama de Dynkin.

Teniendo todo lo anterior presente, podemos definir el subespacio vectorial n mediante

n= EB Ja;

aceAt

que es subalgebra de Lie de g por la propiedad de que los espacios de raices satisfacen
[8a, 98] C 8o+, Para cada o, f € A.

Proposicién 2.14 (Descomposicion de Iwasawa). Todo dlgebra de Lie real semisimple g
admite una descomposicion como suma directa de subespacios vectoriales de la forma

g=tdadn,

siendo € un dlgebra de Lie asociada a un grupo de Lie compacto, a un dlgebra de Lie
abeliana, n un dlgebra de Lie nilpotente, y siendo ademds a & n una subdlgebra de Lie
resoluble de g tal que [a G n,a ® n| = n.

Demostracion. Notese que el hecho de ser a abeliana es simplemente una eleccion en la
descomposicion, siendo una subdalgebra de Lie abeliana maximal. Podemos hacer esta
eleccion dado que n, tal y como lo hemos definido, no interseca a a, ya que vimos que
a C go, ¥ go Nn = {0} Veamos ahora que n es una subdlgebra nilpotente comprobando
que la serie descendente se anula en cierto valor N € N. Usando la propiedad (b) de la
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Proposicién 2.13,

n = [n,n] = [@ go: P ga

acAt acAt

C @ Ja1+az;

a,as€AT

@ Ja; @ Jai+tas

aEAt ag,a2€At

C @ Jai+astas

ag,az,a3€At

ny, = [n,n C

n, = [n,n;_4] C

@ Has @ 922:1 Ak

acAt iy, EAT

< @ 92:;11 ok’

Q1,011 EAT

Como A es finito, la serie descendente anterior se anula a partir de un cierto N € N. Para
verlo, consideremos A\ € a* tal que (\, &) > 0 para todo a € A" (con el producto interior
que indicamos anteriormente en a*). Este A es precisamente el vector normal al hiperplano
P que apunta en la direcciéon de P*. Consideremos el maximo y el minimo del producto
escalar de raices positivas por este A:
a := min (\, o), b := max(\, a).
acAt acAt

Tomemos k£ € N de forma que k > g Se tiene que n; = 0. En efecto, si sumamos k raices
positivas, ay,...,ax, la suma ¥, a; no puede ser raiz. Supongamos que Y.F_, o; fuera
una raiz; entonces, ésta seria positiva, con lo que

k k ab
<)\,Zai> = ZO\,ai) > ka > — =0,
i=1 i=1 a
y llegamos a contradicciéon con la maximalidad de b. Por lo tanto, - | a; no es raiz, asi
que gy, = 0, y se tiene la nilpotencia de n.
i=1 "1

Como n es nilpotente, es resoluble. Usando el apartado (b) de la Proposicién 2.13, se
tiene que [a®n,adn| C n, y como n es resoluble, también lo es entonces a®n. La inclusién
n C [a®n,a®n] se tiene dado que si tomamos un X € g,, con « € AT, y elegimos un
H € a tal que a(H) # 0, el corchete [H, X] es no nulo y proporcional a X.

Ahora veamos que £+ (a®n) es una suma directa. Consideremos entonces X € ¢N(adn).
Se tiene entonces que #X = X (por ser X € £), y por el apartado (c) de la Proposicién
2.13, 0X € a® On. Se deduce también del apartado (c¢) de la Proposicién 2.13 que X € a,
ya que nNOn = {0}. Comoa C pytnp= {0}, deducimos que X = 0 y entonces la suma
t+ (a @ n) resulta ser directa.

Finalmente, veamos que g = £ ® a @ n. En efecto, si consideramos la descomposicién de
g en espacios de raices, g = go ® Dpen go y usamos que go = a ® Zg(a) (por el apartado
(d) de la Proposicién 2.13), dado X € g, existen H € a, Xy € Z¢(a) y X, € g, para cada
a € A de forma que

X=H+Xo+ > Xo= (X0+ > (X_a+9(X_a))) +H+ Y (Xo—0(X_0)),

aEA aEAT acAT
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con lo que X se descompone en suma de elementos de ¢, a y n. O

Con este resultado ya podemos enunciar el teorema fundamental de esta seccién, del cual
puede verse una demostracion en [28, Theorem 6.46]. Este teorema nos da la descomposicién
de Iwasawa a nivel de grupos de Lie.

Teorema 2.15 (Descomposicién de Iwasawa). Sea G un grupo de Lie semisimple, y sea
g = t@adn una descomposicion de Iwasawa de su dlgebra de Lie. Sean A y N los subgrupos
de Lie conexos de G con dlgebras de Lie a y n, respectivamente. Entonces los grupos A y
N son cerrados, simplemente conexos, y la aplicacion

¢: K xAxN —C
(k,a,n) — kan

es un difeomorfismo.

En las condiciones del teorema anterior, se tiene que el subgrupo cerrado {1} x A x N
de K x A x N es difeomorfo a AN = {an : a € A,;n € N} de G. Tenemos entonces que
AN es un subgrupo de Lie cerrado de G. Este grupo serd de gran importancia en lo que
sigue del trabajo.

2.5. Modelo resoluble de espacios simétricos de tipo
no compacto

El objetivo principal de esta ultima seccion del capitulo es utilizar la descomposicion
de Iwasawa asociada a un espacio simétrico de tipo no compacto M, introducida en la
Seccion 2.4, para ver que el grupo de Lie resoluble AN acttia simple y transitivamente
sobre M, y por tanto es difeomorfo a éste. Llevando la métrica de M a AN, resulta
entonces que todo espacio simétrico de tipo no compacto puede identificarse con un grupo
de Lie resoluble equipado con una métrica que resulta ademaés ser invariante a la izquierda.

Empecemos estableciendo el difeomorfismo entre AN y M.

Proposicién 2.16. Sea M = G/K un espacio simétrico de tipo no compacto, siendo
G=I"M), K=G,, ype M. Sea G~ K x Ax N la descomposicién de Iwasawa de G,
dada en el Teorema 2.15. Entonces la aplicacion

p: AN — M
h +— h(p)

es un difeomorfismo.

Demostracion. Veamos primero que @ es inyectiva. Sean entonces g,h € AN tales que
©(g) = p(h), es decir, g(p) = h(p). Aplicando h~! en ambos lados de esta tltima igualdad,
h~'(g(p)) = p. Por lo tanto, h™'g € K = G,, y asi h'g € K N AN. Ahora bien, como



40 2 Espacios simétricos

K N AN = {e} (Teorema 2.15), se sigue que h™' = g=! con lo que g = h, y asi ¢ es
inyectiva.

Ahora veamos que ¢ es sobreyectiva. Sea ¢ € M. Dado que la acciéon de G sobre M
es transitiva, existe g € G tal que g(q) = p, o equivalentemente, ¢ = g~*(p). Usando la
descomposicién de Iwasawa, existen k € K, a € Ay n € N tales que g = kan. Entonces

q=g9 '(p) = (kan)"'(p) = (n"'a 'k ) (p) = (n""a" ") (p).

la=t € AN, con lo que deducimos que ¢ es

Como AN es subgrupo de G, se tiene que n~
sobreyectiva.
Solamente nos resta ver que es un difeomorfismo local. Observemos que estamos consi-

derando ¢ como la restriccion de la aplicacion

o:G— M
g—9(p)

a AN, ¢ = ¢|an, que es una submersién ([31, Theorem 7.25]). Consideremos ahora la
diferencial de ¢, ¢..: €® adn — T,M, que sabemos que es sobreyectiva y ker(¢,.) = €,
por lo que su restriccion a a @ n, . = (Plan)se: a®n — T, M es un isomorfismo. Usando
la homogeneidad de los grupos de Lie, se sigue que .4 = (¢|an)sg: TgAN — Ty M es un
isomorfismo para cualquier g € G.

Asi, hemos probado que ¢ es difeomorfismo local y biyectivo, con lo que concluimos
que es un difeomorfismo. O

Este resultado nos indica precisamente lo que veniamos anunciando, todo espacio simé-
trico (M, g) de tipo no compacto es difeomorfo a un grupo de Lie resoluble, AN. Como
M es una variedad de Riemann, este difeomorfismo nos permite dotar al grupo AN de
una métrica de Riemann mediante el pull-back de g por ¢, ¢*g. Esta métrica es invariante
por la izquierda en AN. En efecto, sea h € AN, y veamos que Ljp*g = ¢*g. Si tomamos
h € AN, entonces

(K™ o Ly)(h') = h™ (p(hh')) = h™ (Al (p)) = I (p) = @(h),

con lo que comprobamos que (h™topo L) (h') = ¢. Como h € AN C G, h es una isometria
de M, asi que

vt =Lro (W) 'g=(h ' opo L) ey,

como queriamos ver.

De ahora en adelante, denotaremos por (-,-)4n tanto a la métrica ¢*g como a su
producto escalar inducido en a & n. En el siguiente lema se prueban dos identidades
del producto escalar (-,-) 4y que permiten calcular tanto (X,Y)ay como (VxY, Z)sn en
funciéon del producto escalar By, evitando asi el tener que obtener el pull-back de la métrica
g para poder hacer este mismo calculo.
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Lema 2.17. Sea M = G/K wun espacio simétrico irreducible de tipo no compacto con
grupo de Lie resoluble asociado AN e involucion de Cartan 6. Sea By el producto escalar
de g, y sea (-, -y an €l producto escalar inducido en AN . Podemos entonces definir un nuevo
producto en M, (-,-)p,, de forma que se tenga, por una parte, que

1
<X7 Y>AN - <Xa7Y;l>Bg + 5( anl)Bm (23)

con X,, X, las proyecciones de X sobre a y n, respectivamente, e Yy, Y, las proyecciones
de Y sobre a y n, respectivamente. Por otra parte

1
(VxY,Z)an = Z<[X’ Y|+ [0X,Y] - [X,0Y),Z)p,, para cualesquiera X,Y,Z € a @ n.
(2.4)

Ademds, este producto también verifica la siguiente propiedad de antisimetria:
(ad(X)(Y), Z) g, = —(Y,ad(0X)(Z)) 5, (2.5)

Demostracion. Por la Proposiciéon 2.7, la métrica de M en p € M es proporcional al
producto escalar By restringido a p; es decir,

gb*gp('v ) = )‘BG('v ')7

para un cierto A > 0, y con ¢ la aplicacién ¢: G — M dada por g — g(p). Definamos
el producto escalar (-,-)p, := ABy, en g x g, y veamos cudl es la relacién entre (-, )an v
(-,)B,- Sean X,Y € a@®n, y sean Xy, Y y X, Y} sus proyecciones respectivas sobre £ y p
respecto de By. Entonces

<X7 Y>AN = (p*gp(Xf + XP? Ye + Y;J) = gp(¢*eXpa ¢*€Y;J)7

dado que X, Y € ker(¢..). Como ¢*g, = ABp, y usando que ¢ = ker(d —Id) y p =
ker(6 4 1d), se tiene que

(X,Y)an =ABy(X,,Y,) = ABy <<m2—9> X, (m—9> Y)

2
A
=T Bo(2X, + X — 0X,,2Y, + Y, — 0%;)
A
:1(4B0(Xa7 Ya) + Bo( X, Ya) + Bo(0X,,0Y3))

A
:)\BG(XM }/Cl) + Z(BQ(XI‘U Yﬂ) + B@(_Xm _}/n»

A 1
:)\BQ<Xaa Yva) + §BQ9<X117 Kl) = <Xa7 }/Cl>Bg + §<Xna K1>Bg'

Ademas, como By satisface By(ad(X)(Y), Z) = —By(Y,ad(0X)(Z)), se sigue que

<ad(X)(Y)7 Z>Be = _<Y> ad(eX)<Z)>B

0"
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Ahora introduzcamos la conexién de Levi-Civita en el producto escalar para llegar a la
relacion indicada en el enunciado del lema. Usando la férmula de Koszul, sean X,Y, Z €
adn,
1
(VxY, Z)an =§(X<Y, Zyan +Y (X, Z)an — Z(X,Y ) an
+ <[X> Y]aZ>AN + <[Zv Y]>X>AN + <[Z>X]>Y>AN)'

(2.6)

Como la métrica (-,-)4n es invariante a la izquierda, para cualesquiera vectores V,W €&
a & n, entendiendo éstos como campos de vectores evaluados en el neutro de AN, se tiene

<‘/;]7 Wg)AN - <Lg*e‘/ea Lg*eWe>AN - LZ<‘/;7 We)AN - <V:37 W6>AN7

para g € G arbitrario. Deducimos de esto que el producto escalar de campos de vectores
invariantes a la izquierda en AN es constante, con lo que los tres primeros términos de
(2.6). Usando la antisimetria del corchete de Lie y que [a@®n, a@n] C n, para cualesquiera
campos de vectores X,Y, Z en a ® n,

<VXY> Z>AN :;(<[X7 Y]7Z>AN - <[Yv Z]’X>AN - <[X> Z]7Y>AN)

= 1([X. Y], Z)m, — IV, 20, X)5, — (X, 2.Y)5,)

= (X, Y], 25, — (ad(Y)(2), X)p, — (ad(X)(2), V)5

= (X Y], 2D, + (ad(0Y)(X), Z) 5, + (ad(0X)(Y), Z) 5,

= (DX Y] 4 ad(8Y)(X) + ad(6X)(V), Z)s,
:le([X,Y]—i—[GX,Y]—[X,HY],Z>B€ O

En el préximo capitulo, usaremos principalmente los productos (-,-)an y (-,*)p, en
lugar de considerar la forma bilineal By. Observemos que el producto (-,-)p, difiere de la
forma By en la multiplicaciéon por una constante positiva, con lo que las propiedades de
ortogonalidad relacionadas con By son las mismas que tendremos con este nuevo producto
escalar en M.



Capitulo 3

Acciones de cohomogeneidad uno y
curvatura adaptada en foliaciones

En el presente capitulo comenzamos recordando la definicién de accion de cohomoge-
neidad uno, e indicamos los espacios en los que éstas han sido clasificadas, enunciando
ademas algunos de los correspondientes resultados de clasificacién. A continuacién, proba-
mos que en espacios simétricos de tipo no compacto, las acciones de cohomogeneidad uno
tienen a lo sumo una oOrbita singular. En estos mismos espacios, pasamos luego a presentar
en detalle las foliaciones de Riemann, es decir, las acciones de cohomogeneidad uno sin
orbitas singulares.

El objetivo de este capitulo es presentar la contribucién original de este trabajo: la
determinacion de una amplia serie de foliaciones homogéneas de codimensiéon uno con hojas
de curvatura adaptada en espacios simétricos de tipo no compacto. Para ello, presentaremos
una serie de resultados relacionados con los distintos tipos de foliaciones de Riemann que
inducen las acciones de cohomogeneidad uno sin érbitas singulares.

Para la elaboracion de la Seccion 3.2 se siguié [5] como referencia principal. Por su
parte, los resultados de las secciones 3.3 y 3.4 relacionados con las foliaciones de Riemann
se han tomado de [9]. Ademads, algunos resultados utilizados en la determinacion de las
hojas de curvatura adaptada en las distintas foliaciones aparecen en [20, Section 5] y [21].

3.1. Algunos resultados conocidos

Como se introdujo en la Seccién 1.3, dada una accién isométrica de un grupo de Lie GG
sobre una variedad de Riemann M, denotaremos por G - p la 6rbita por p € M y por G,
el grupo de isotropia en el punto p.

Sea G un grupo de Lie que actia por isometrias sobre una variedad de Riemann (M, g).
Consideraremos también p € M un punto de la variedad y recordemos que G - p es la o6rbita
de la acciéon de G sobre M pasando por el punto p y G), es el subgrupo de isotropia de
la accién en el punto p. Denotaremos por M /G el conjunto de 6rbitas por la accién de G
sobre M.

43
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Dado otro punto ¢ € M, diremos que las érbitas G - p y G - ¢ son equivalentes, y lo
denotaremos por G - p ~ G - g, si los grupos de isotropia G, y G, son conjugados. Esto
define una relacién de equivalencia en el conjunto de 6rbitas. Denotaremos mediante [G - p]
la clase de equivalencia de la érbita de G por p. El conjunto cociente correspondiente lo
denotaremos por O = (M/G)/ ~. En O es posible definir un orden parcial, <, de la
siguiente manera:

G -p] <G -q] si G4 es conjugado a un subgrupo de G).

Una érbita G - p se dice principal si su clase [G - p| es maximal para el orden que acabamos
de introducir. Observemos que las orbitas principales tienen, por construccién, la misma
dimension. Las dérbitas que tengan dimensiéon menor que una oOrbita principal se llaman
orbitas singulares. La accién isométrica de GG sobre M se dice de cohomogeneidad uno
si las 6rbitas principales tienen codimensiéon uno en M, es decir, si son hipersuperficies
homogéneas de M. Recordemos que, por la Proposicion 1.5, para que las érbitas sean
embebidas en la variedad ambiente, hace falta que las acciones sean propias; por lo tanto,
salvo que indiquemos lo contrario, trabajaremos con acciones propias. Como menciondba-
mos, el objetivo principal del capitulo sera el de analizar las acciones de cohomogeneidad
uno en los espacios simétricos de tipo no compacto, con especial atencion en aquellas cuyas
orbitas son todas principales.

En los espacios Euclidianos, las acciones de cohomogeneidad uno fueron clasificadas por
Segre [38], teniéndose el siguiente resultado de clasificacién.

Teorema 3.1. Una drbita principal de una accion de cohomogeneidad uno en un espacio
FEuclidiano R™, con n € N, tiene g € {1,2} curvaturas principales y es congruente a una
de las siguientes hipersuperficies:

(a) un hiperplano afin R"™1 de R",
(b) una esfera S*™' en R,
(c) un cilindro generalizado S* x R"*=1 con k € {1,...,n—2}.

Por su parte, Cartan [14] clasific6 las acciones de cohomogeneidad uno en espacios
hiperbodlicos reales RH™, teniéndose el resultado siguiente.

Teorema 3.2. Una orbita principal de una accion de cohomogeneidad uno en un espacio
hiperbolico real RH™, n € N, tiene g € {1,2} curvaturas principales y es congruente a una
de las stquientes hipersuperficies:

(a) un hiperespacio hiperbélico real totalmente geodésico RH™™ en RH™ o una de sus
hipersuperficies equidistantes,

(b) un tubo en torno a un subespacio hiperbélico real totalmente geodésico RH* en RH™,
conke{l,...,n—2},

(c) una esfera geodésica en RH™,
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(d) una horoesfera en RH™.

En este resultado, cuando hablamos de tubos en torno a una subvariedad N de una
variedad de Riemann M, nos estamos refiriendo a las subvariedades cuyos puntos estan a
una misma distancia de N todos ellos. Por otra parte, una horoesfera es el limite de una
sucesion de esferas de radio creciente que comparten un hiperplano tangente y su punto de
tangencia, o alternativamente, una orbita de la accion de N sobre R", siendo N el grupo
de Lie correspondiente a la subalgebra n de la descomposicion de Iwasawa de RH". En la
Figura 3.1 se muestran las acciones de cohomogeneidad uno en el caso del plano hiperbdlico
RH?.

Figura 3.1: Accién de K, Ay N en RH?, respectivamente.

Como ultimo ejemplo, para las esferas S™, se tiene el siguiente resultado.

Teorema 3.3 ([25]). Cada accion de cohomogeneidad uno en una esfera S™ tiene orbitas
equivalentes a la representacion de isotropia de un espacio simétrico de rango dos. Cualquier
accion de este tipo tiene exactamente dos orbitas singulares, mientras que las otras orbitas
son principales y son tubos en torno a cada una de las dos orbitas singulares.

En el ano 2002, Kollross [29] publica una clasificacién de acciones de cohomogeneidad
uno en espacios simétricos irreducibles de tipo compacto. Posteriormente, Berndt y Tamaru
empezaron el estudio en los espacios simétricos de tipo no compacto, consiguiendo en [12]
clasificar las acciones de cohomogeneidad uno en cada espacio simétrico de rango uno salvo
en los espacios hiperbélicos cuaterniénicos. Esta tarea se completa en [19], consiguiéndose
una clasificacion completa de las acciones de cohomogeneidad uno en espacios hiperbélicos
cuaternionicos salvo equivalencia de orbitas. En el caso de algunos espacios simétricos
de rango dos, se han clasificado también este tipo de acciones, como puede verse en [7,
39]. Ademas, también se han clasificado las acciones de cohomogeneidad uno en espacios
simétricos de la forma %}lfi) en [18].

Sea (M, g) una variedad de Riemann y G un subgrupo de Lie cerrado del grupo de
isometrias de M. Mostert [33] y Bérard Bergery [2] probaron que el espacio de érbitas

M /G con la topologia cociente es homeomorfo a R, S!, [0,1] o [0, ), siendo las topologias
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de estos tltimos las usuales. Si M/G es homeomorfo a R 0 a S, entonces cada érbita es
principal y éstas conforman una foliacion de Riemann de M, concepto que definiremos
mas adelante. Como todas las érbitas principales son difeomorfas entre si, en caso de ser
M /G homeomorfo a R o S, la proyeccién 7: M — M/G es un fibrado. En el caso de ser
M simplemente conexo, considerando la sucesion exacta de homotopia de un fibrado con
fibras conexas y espacio base S*, M /G no podra ser homeomorfo a S*.

3.2. Acciones de cohomogeneidad uno en los espacios
simétricos de tipo no compacto

Sea M = GG/ K un espacio simétrico de tipo no compacto y H un subgrupo de Lie de G
que actia sobre M con cohomogeneidad uno. El siguiente resultado es fundamental para
clasificar este tipo de acciones en espacio simétricos de tipo no compacto.

Teorema 3.4. Sea M = G/K un espacio simétrico de tipo no compacto y sea H un
subgrupo de G que actia sobre M con cohomogeneidad uno. Entonces estamos en uno de
los dos casos siguientes:

(i) La accion no tiene drbitas singulares.
(ii) La accion tiene exactamente una drbita singular.

Demostracion. Hemos indicado en el dltimo parrafo de la Seccion 3.1 que el espacio de
orbitas M/H es homeomorfo a R, S', [0,1] o [0,00), lo cual se seguia de [2, 33]. Veremos
que en el caso de un espacio simétrico de tipo no compacto estos casos se reducen a dos: R y
[0, 00), que se asocian con los casos de no tener ninguna érbita singular o tener exactamente
una, respectivamente. Recordemos que un espacio simétrico de tipo no compacto es una
variedad de Hadamard. Ya observamos anteriormente que M /H no podra ser homeomorfo
a S! por ser simplemente conexo, asi que nos quedan tres posibilidades.

Dado cualquier p € M, el subgrupo de isotropia, H,, de la H-accién en p es un subgrupo
cerrado de H. Recordemos que estamos considerando acciones que sean propias, con lo que
deducimos que H, serd un subgrupo compacto del grupo de isometrias de M (ver [31,
Corollary 21.8]). Sea entonces L un subgrupo compacto maximal de H, el cual también
serd un compacto en I(M). Se sigue del teorema del punto fijo de Cartan [36] que L tiene
un punto fijo, ¢, en M. Dado que L C H, y H, es compacto en H, se sigue que L = H,.
Hemos probado entonces que existe una Orbita de la accién de H tal que el grupo de
isotropia en cada uno de sus puntos es un subgrupo compacto maximal de H.

Supongamos que M/H es homeomorfo a R, lo cual quiere decir que H,, es un subgrupo
compacto maximal de H para cualquier p € M y todas las 6rbitas son principales, lo que
nos conduce a (i) (ver [33]). Si, por otra parte, suponemos que M/H no es homeomorfo
a R, entonces se tiene que la érbita F' = H - ¢ es una Orbita singular de la accién de H
con la propiedad de que H), es un subgrupo compacto maximal de H para todo p € F.
Veamos que F' es la Unica érbita singular de la acciéon de H. Para ello, supongamos que
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existe otra érbita singular F”, y sea ¢ € F'. Como H, es un subgrupo compacto de H,
existe un h € H tal que Hy C hLh™ = hH,h™' = Hy(,. Por el Corolario 1.2, existe
una geodésica, 7, conectando ¢’ y h(q), que ademds es unica, dado que en variedades de
Hadamard la aplicacién exponencial de Riemann es un difeomorfismo [23, Theorem 13.3].
Una isometria en H, fija v punto a punto, ya que fija los puntos ¢’ y h(q) y existe una
tnica geodésica conectando ¢' y h(q); por lo cual, H, C H,, para todo p sobre 7. Pero como
v interseca Orbitas principales, llegamos a una contradicciéon. Por tanto, deducimos que no
puede haber dos 6rbitas singulares distintas, con lo que M/H es homeomorfo a [0, 00), y
estamos en el caso (ii). O

De ahora en adelante, trabajaremos con acciones de cohomogeneidad uno que inducen
folia-
ciones en un espacio simétrico, asi que sera conveniente introducir el concepto de foliacion
de Riemann. Sea § una descomposicion de una variedad de Riemann M en subvariedades
conexas inyectivamente inmersas, que llamaremos hojas, que pueden tener distintas dimen-
siones. Decimos que § es una foliacion singular de Riemann si se satisfacen las siguientes
dos condiciones:

(i) § es un sistema transnormal, esto es, toda geodésica ortogonal a una hoja de § sigue
siendo ortogonal a todas las demas hojas de § que interseque.

(ii) § es una foliacion singular, esto es, T,L = {X, : X € A5} para cada hoja L en §
y cada p € L, donde X; es el médulo de campos de vectores diferenciables en la
variedad ambiente que son tangentes en todo punto a las hojas de §.

Una accién isométrica sobre un espacio simétrico sin érbitas singulares induce una
foliacién de Riemann. Diremos que dos foliaciones, § y &, de una variedad de Riemann M,
son isométricamente congruentes si existe una isometria f: M — M que lleva las hojas de
$ en hojas de &. Salvo congruencia isométrica, las foliaciones de Riemann homogéneas en
un espacio simétrico irreducible de tipo no compacto y rango r pueden ser de dos clases
9, Theorem 5.5]:

(a) Foliaciones tipo §¢, con £ € RP™™1 (el espacio proyectivo real r — 1-dimensional),
siendo r el rango del espacio M.

(b) Foliaciones tipo §;, con i € {1,...,r}.

Las foliaciones de tipo §, se describen en la Seccién 3.3, mientras que las foliaciones de
tipo §;, con i € {1,...,r}, se detallan en la Seccién 3.4.

3.3. Foliaciones tipo §/

Recordemos que M = G/ K es un espacio simétrico de tipo no compacto. Consideremos
II ={a,...,a,} un conjunto de raices simples para el espacio de raices A asociado a M
(véase Seccién 2.4). Sea ¢ un subespacio vectorial unidimensional de a. En el dlgebra de Lie
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a®n asociada a AN = M podemos considerar el complemento ortogonal s, de £. Entonces,
el algebra de Lie
sp=(adn)ol=(ac/l) dn,

es una subalgebra de a @ n de codimensiéon uno. Sea Sy el subgrupo de Lie conexo de AN
cuya algebra de Lie es s,. Las 6rbitas de la accion de Sy sobre AN = M forman entonces
una foliaciéon de Riemann de codimensién uno. En efecto, dado que AN actua libremente
en M, S, también lo hace y entonces los grupos de isotropia son todos triviales. Por tanto,
las érbitas tienen la misma dimension que el grupo Sy, es decir, codimensiéon uno en M.
Dado que S, es cerrado, y la acciéon es propia, las érbitas son subvariedades embebidas.

3.3.1. Resultados conocidos para foliaciones tipo 3§/

A continuaciéon veremos algunos resultados relacionados con este tipos de foliaciones,
estudiadas en detalle en [9, Section 3]. El primer resultado que indicamos muestra algunas
propiedades basicas de este tipo de foliaciones.

Proposicién 3.5. Sean p € M y H, € a un vector unitario normal a Sy - p. Denotaremos
por Sy, al operador forma de Sy -p en p con respecto de Hy. Entonces:

(a) Todas las hojas de §; son isométricamente congruentes entre si.
(b) El operador forma Sy, de la hoja Sy -p de §; por p viene dado por Sg, = ad(Hy)|s,-

Demostracion. Sea H, € a un vector unitario tal que { = RH,. Usando la féormula de
Koszul (1.1) y teniendo en cuenta que la métrica en AN vimos que era invariante por la
izquierda, tenemos que

2<VXY7 Z>AN = <[X> Y]’Z>AN - <[Y7 ZLX>AN + <[Zv X}7Y>AN- (31)

De esta expresion llegamos a que Vi, Hy = 0. De este hecho, deducimos que las curvas
integrales de Hy, son geodésicas en AN, y de la definicién de foliaciéon de Riemann, sabemos
que éstas intersecan cada hoja de §, perpendicularmente. Sea v: R — AN la geodésica en
AN con vy(0) =py 4(0) = Hy. Entonces v(R) C A, y v interseca cada una de las hojas de
S¢. Ademas, como A es un grupo abeliano, N C Sy y AN = NA, con lo que tenemos que
v(t)Se = Sez,7(t), de lo que se sigue que

Se-y(t) =) ()" Sey(t)) -p =(t)Se - p  para todo t € R.

Esto nos muestra que cada hoja de §, se obtiene mediante una traslaciéon por la izquierda
adecuada de Sy - p en AN, probando (a). Por lo tanto, para estudiar la geometria de
cualquier hoja, es suficiente estudiarla en la hoja Sy - p.

El vector H, es un vector unitario normal a Sy - p en p. Como estamos trabajando con
subvariedades homogéneas, con obtener el operador forma en un tnico punto es suficiente
para obtenerlo en cualquier otro punto. Denotamos por Sy, al operador forma de S, - p en
p con respecto de H, y por II a la segunda forma fundamental de Sy - p. Como ad(Hy) es
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un endomorfismo autoadjunto en g con respecto de (-, -), la expresién que obtuvimos para
la conexién de Levi-Civita (3.1) y la férmula de Weingarten (1.2) implican que

(II(X,Y),Hy) = (Sp,X,Y) = (ad(H,)X,Y), para cualesquiera X,Y € s, = T,,(S; - p).
Con lo cual, concluimos que Sy, = ad(Hy)|s, O]

El siguiente resultado indica cudando dos foliaciones de tipo §,, con ¢ un subespacio de
dimension uno en a, son isométricamente congruentes. Para ello, se usan las simetrias del
diagrama de Dynkin asociadas al espacio simétrico introducido en la Seccion 2.4.

Teorema 3.6 ([9, Theorem 3.5]). Dos foliaciones o y o son isométricamente congruen
tes si, y sdlo si, existe una simetria en el diagrama de Dynkin, P € Aut(DD), con P({) =

0.

Tenemos, de esta forma, una manera de clasificar las distintas foliaciones de tipo §,; que
aparecen en espacios simétricos de tipo no compacto mediante los distintos automorfismos
del diagrama de Dynkin del espacio simétrico.

Ejemplo. Podemos construir un ejemplo de accién de tipo §, en el plano hiperbélico
real, RH?, el cual se puede describir como el cociente SO%(2,1)/SO(2) y se puede compro
bar que su descomposicién en espacios de raices es de la forma

0 0 0 0 —a a 0 a a
50(2,1)=(0 0 w|®|a 0 0|®|—-a 0 0| =0g0®gr®Dg_s=adgrdg_y,
0 w 0 a 0 O a 00

donde f € a* es el funcional lineal que lleva un elemento

o o o
S o o
o & ©
m
o

en el correspondiente w € R. Esta descomposicion nos permite llegar a la correspondiente
descomposicion de Iwasawa

50(2,1) = (5052) 8) ©ad gy,

s0(2) 0
0 O

las correspondientes a £ en la descomposiciéon de Iwasawa. Como hemos indicado, a es
unidimensional, con lo que solamente podemos considerar un tnico ¢ C a de dimension

siendo las matrices
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uno, y es el propio a. Nuestra accién de cohomogeneidad uno sobre RH? es la asociada a
la que da exp(n) = N sobre AN.

En la Figura 3.1 se puede ver la accién de los grupos K, Ay N sobre RH?, representado
con el modelo de la béla de Poincaré, que ademaés son las tinicas tres acciones de cohomoge-
neidad uno en este espacio simétrico salvo equivalencia de drbitas (ver 3.2). La accién de N
precisamente nos da las horoesferas que vemos en la imagen mas a la derecha de la Figura
3.1.

3.3.2. Curvatura adaptada en foliaciones tipo 3§/

En esta seccion nos dedicaremos a comprobar que todas las hojas de foliaciones de tipo
¢ son de curvatura adaptada a su espacio ambiente. Sea M = AN un espacio simétrico
de tipo no compacto y sea a & n su algebra de Lie. Comenzamos con un resultado auxiliar
para manejar de forma mas eficiente la conexion de Levi-Civita.

Lema 3.7. Tenemos las siguientes propiedades:
(a) VgX =0, para todo H € a y todo X € a® n.
(b) VxH = —a(H)X, para todo H € a y todo X € g,, con a € A.

Demostracion. Tomemos H € ay X,Z € a @ n. Entonces, usando la ecuacién (2.4) del
Lema 2.17, tenemos,

(VuX,Z)an = qu, X+ [0H, X] — [H,0X], Z)p, = i([H, X| - [H,X] - [H,0X], Z)5,

_ i(—[H, 6Xs +0X.], Z) 5, = O,
donde 0X, y X, denotan las proyecciones de X a a y a n, respectivamente. Observemos
que, como X € a @ n, se tiene que #.X no tiene componentes en n, asi que #.X, = 0. Por
otra parte, como a es una subalgebra de Lie abeliana de g, se tiene que [a,a] = 0. Con
esto, deducimos (a).
Ademas usando de nuevo la ecuacién (2.4) del Lema 2.17, tenemos, para X € g, v
H € q,

(VxH, Z)ax = 3{[X, H] + [6X, H] ~ [X,0H), Z)5, = { (X, H] + [X, H], Z),

= — {21H, X], Z)p, = o)X, Z)5, = ~(a(H)X, Z)ax.

donde en la segunda igualdad hemos razonado de la misma forma que en el caso anterior,
mientras que en la tltima igualdad hemos usado la ecuacién (2.3) del Lema 2.17. Ademas,
hemos usado que AH = H por ser H € a. Dada la eleccién arbitraria de Z € a & n,
deducimos (b). O
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Consideremos un cierto vector (unitario) H € a. Dado que estamos trabajando con
foliaciones tipo §, estamos trabajando con édlgebras de Lie de la forma (a © RH) & n.

Corolario 3.8. Sea s = (a©RH)®n y consideremos la drbita S-p, donde S es el subgrupo
de Lie conexo de AN cuya dlgebra de Lie es s. Sean ademds Sy el operador forma respecto
del vector H, Ry el operador de Jacobi asociado a H, o € A, X, un vector en g, y L € a.
Entonces

(a) SpXa = a(H)X,.
(b) SyL = 0.
(¢) RyL = 0.
(d) RyXa = —a(H)SyX..

Demostracion. Las afirmaciones (a) y (b) se siguen directamente de la afirmacion (b) de
la Proposicion 3.5. Probemos entonces las otras dos afirmaciones.

(¢) Usando la afirmacion (a) del Lema 3.7 junto con el hecho de que H € a (y esta
subélgebra es abeliana), se tiene que

RyL =V, VyH —VyV,H -V mH=0.

(d) Usando la afirmacién (b) del Lema 3.7, junto con la ortogonalidad de la descomposi-
cién en espacios de raices y (a), llegamos a que

RHXQ = VXQVHH — VHVXQH — V[XQ’H}H = CK(H)VXaH = —CK(H)SHXa. D

Habiendo probado estas propiedades, estamos en condiciones de demostrar el siguiente
teorema, que precisamente nos da el resultado que veniamos buscando, las hojas de las
foliaciones tipo §, son de curvatura adaptada a su espacio ambiente.

Teorema 3.9. Sea M un espacio simétrico irreducible de tipo no compacto. Si § es una
foliacion de Riemann de M de tipo §¢, entonces todas sus hojas son hipersuperficies de
curvatura adaptada.

Demostracion. Por el apartado (a) de la Proposicién 3.5, todas las hojas de una foliacion
de tipo §¢ son isométricamente congruentes entre si, asi que nos centraremos en la hoja
que contiene a un cierto punto p € M.

Por una parte, usando las afirmaciones (b) y (c) del Corolario 3.8, tenemos

RySp(A) =0=S8yRy(A), paratodo A€ aoRH.
Por otra parte, usando los puntos (i) y (iv) del corolario anterior, seguimos que
RuSuX, = Ry(a(H)X,) = a(H)Ry Xy = —a(H)*Sp X, = —a(H)*X,

¥y que
SuRpXo = —a(H)S;H X, = —a(H)*X,,

lo cual concluye la demostracion. O
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3.4. Foliaciones tipo §;

Recordemos que, dado un espacio simétrico de tipo no compacto, podemos considerar

un conjunto de raices simples IT = {ay, ..., @, } asociado. En esta seccién nos centraremos
en el segundo tipo de foliaciones que indicamos anteriormente. Sea { € g,, un vector
unitario, para un cierto ¢ € {1,...,n}, y definamos

se=a®nmeRE) Cadn

Del apartado (b) de la Proposicién 2.13, se sigue que el subespacio s¢ es una subalgebra
de Lie de a & n, con lo que podemos también considerar su subgrupo de Lie asociado,
S¢ C AN. Dado que estamos tomando & € g,,, denotaremos las foliaciones §¢ como §;.

3.4.1. Resultados conocidos acerca de foliaciones de tipo §;

Veremos a continuacion algunos resultados interesantes acerca de las foliaciones tipo
§i, estudiadas en [9, Section 4]. Lo primero que debemos observar es que este tipo de
foliaciones estan bien definidas.

Lema 3.10. Sea o € 11 una raiz simple. Si & yn son dos vectores unitarios en g, entonces
existe una isometria k en el centralizador Zi(a) tal que Ad(k)(s¢) = s,).

Demostracion. Si tenemos que g, es de dimension uno, el resultado es directo. En el caso
de que g, tenga dimensién mayor que uno, precisamente tenemos que el grupo Ad(Zx (a))
actia transitivamente en la esfera unidad de g, respecto de By (ver [24, p. 556]), con lo
que concluimos el resultado. O

En lo que sigue, como en la seccion anterior, también enunciaremos resultados relacio-
nados con la congruencia isométrica entre distintas foliaciones del tipo §;, pero antes
de llegar a éstos, nos dedicaremos a tratar con una serie de cuestiones referentes a las
curvaturas principales y medias de las distintas hojas de una foliacion del tipo §;. De
ahora en adelante, cuando hablemos de distancia orientada en foliaciones, nos referiremos
a la distancia de una hoja respecto a otra teniendo en cuenta la direccién del vector normal
considerado. El primer resultado que mostramos nos indica la relacion entre dos hojas de
una foliacién de tipo §;, en términos de congruencia isométrica.

Lema 3.11. Sea §; = §¢, para un cierto vector unitario § € gq,, con «; € II. Entonces la
hoja de §; a distancia orientada t € R en la direccion de & es isométricamente congruente
a la orbita Se, - p, con

1

1
— ¢ — — tanh At)H .
cosh(|ai|t)£ anh(jas|t) Ho,

||
con S, el subgrupo de Lie conexo de AN con dlgebra de Lie (a & n) & RE,.

& =
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Demostracion. Sea «; € A una raiz simple y £ € g,, un vector unitario tal que §; = §e.

Consideremos H; = ﬁ = ﬁ Los vectores £ y H; generan una subalgebra de Lie de
a; i

a @ n que satisface la siguiente propiedad de corchete:

[H;, §] = ai(H;)§ = |aul€.

Ademaés, usando (3.1) y el Lema 3.7, se tienen las siguientes identidades para la conexién
de Levi-Civita entre £ y H;:

V§£ = ‘Oéi|Hi, V§HZ = —|OéZ’€

De esta forma, si consideramos & y H; como campos de vectores invariantes por la izquierda,
generan un subfibrado (autoparalelo) del fibrado tangente de AN, y se sigue que la 6rbita
del correspondiente subgrupo conexo de AN por p es un plano hiperbodlico real totalmente
geodésico RH? C AN = M. Sea v: R — M la geodésica en M con v(0) = p y 4(0) = &.
Dado que RH? es totalmente geodésico, v permanece en RH? para todo ¢t € R. Usando la
férmula de Koszul (1.1) para la conexién de Levi-Civita de AN, se puede ver que el campo
de vectores  de v satisface

1
cosh(|ay|t)

A(t) = & — tanh(Jag|t)(H;)y), para todo t € R,
considerando & y H; como campos de vectores invariantes por la izquierda en AN.

Sean t € R, g = y(t) € AN, y denotemos por I,-1 la conjugacién en G, por g~'. El
homomorfismo I,-1 deja AN invariante, y entonces I,-1(S¢) es también un subgrupo de

AN. Como
I,1(Se) - p=g 'Seqg-p=~(t)""Se - (t),

comprobamos que la 6rbita de la accién de I,-1(Se¢) por p es la traslacion por la izquierda
de ¥(t) a p de la 6rbita de la accién de S¢ por ¥(t). Como #(¢) es un vector normal unitario
de S¢ - (t) en ¥(t), y la traslacién por la izquierda L,-1 es una isometria, el vector

& = Lg-1,7(t) o — tanh(|ay|t)(H;),

- cosh(|a;|t)

es un vector unitario normal de I,-1(Sg)-p en p. Se sigue que Ad(g~!)se = s¢,, 0 equivalente-
mente,

Ad(g)ﬁgt = S¢,
siendo s¢, = (a & n) © RE,. O

Para finalizar la seccion, veremos un par de resultados que tratan con la congruencia
isométrica de las distintas foliaciones tipo §; de un espacio simétrico de tipo no compacto.
El primer resultado es similar al Teorema 3.6 en el caso de foliaciones del tipo §¢, pero
para foliaciones §;.
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Teorema 3.12 ([9, Theorem 4.8]). Dos foliaciones §; y §; son isométricamente congruen-
tes si, y sélo si, existe una simetria del diagrama de Dynkin del espacio, p € Aut(DD) con
P(Oéz) = Q5.

Ejemplo. Un ejemplo de foliaciéon de tipo §; lo tenemos en el plano hiperbdlico real
RH? = AN, donde esta vez elegimos la accién de

0 a —a
A=expla 0 0
a 0 0

sobre el plano hiperbdlico. En efecto, si de a®n eliminamos un subespacio de dimensiéon uno
contenido en n, eliminamos todo el propio n, queddndonos una subalgebra de Lie asociada
al grupo de la accién s, = a. Esta accién se corresponde con la imagen central mostrada
en la Figura 3.1.

3.4.2. Curvatura adaptada en foliaciones tipo F;

En esta seccion, el objetivo principal, que completa ademas el objetivo de la memoria,
sera, fijada una foliacion de tipo §;, para algin i € {1,...,n} donde IT = {ay,...,a,}
denota el conjunto de raices simples, analizar en qué casos las 6rbitas de dicha foliacion son
de curvatura adaptada. Recordemos que la érbita de la foliacion de §; por p se obtiene como
S,-p, donde S, es el subgrupo de Lie conexo de AN cuya algebra de Lie es 5, = a®(noRn),
con 7 € gq,. Ahora bien, del Lema 3.11 se sigue que cualquiera de las otras orbitas de esta
foliacion §; es congruente a una de la forma S - p, donde S es el subgrupo de Lie conexo
de AN cuya algebra de Lie es

s = (a®n) ORE,

donde £ = aH,,+bX,, es un vector unitario, para ciertos a y b # 0 reales tales que a?|a;|*+
b* = 1, cierto X,, € g,,. Para simplificar la notaciéon de aqui en adelante, escribiremos
simplemente o = «; para la foliacién de tipo §;, y evitar asi arrastrar el subindide durante
las demostraciones.

Sea entonces s = (a ®n) S RE, con &€ = aH, + bX, un vector unitario, siendo o € II
una raiz simple, X, € g, un vector unitario y a,b € R. De esta forma, es claro que
a*|al? 4+ b* = 1. Estudiaremos si la érbita S - p es de curvatura adaptada, donde S denota
el subgrupo de Lie conexo de AN cuya &algebra de Lie es s. Notese que podemos reescribir

s=(aoRH,) & (noRX,) ®RU, (3.2)

donde definimos U como
U = bla| *H, — a|a| X,

que satisface (U, U)ay = 1y (U, &) an = 0. De esta forma, en (3.2) tenemos una descompo-
sicion ortogonal del algebra de Lie s.

Indicamos a continuacién cuatro lemas que nos permitiran trabajar con esta descompo-
sicién en lo que sigue.



3.4.2 Curvatura adaptada en foliaciones tipo §; 55

Lema 3.13. Sean A € A* y X,Y € gy ortogonales. Entonces
(a) [GX,X]:2<X,X>ANH)\:<X,X>BOH)\.
(b) [0X,Y] € ty=goSa.

Demostracion. Primero, de la Proposicion 2.13, tenemos que [gx, 8,] C Gr+y ¥ 081 = 9.
Ademas, se tiene que 0[0X, X] = —[0X, X]. Por tanto, deducimos que [#X, X]| € a, con lo
que basta obtener la proyeccion de [#.X, X| sobre Hy y sobre cualquier otro vector H € a
para comprobar el resultado. Usando la relacién (2.5) del Lema 2.17, la definicién de espacio
de raiz y que B(H,, H) = A(H) para cualquier H € a, deducimos

([0X, X], Hy)p, = (X, [Hx, X]) g, = (X, MHN)X) 5, = [MNHX, X) 5, = 2[A*(X, X) an.

Por otra parte, sea H € a ortogonal a Hy, en el célculo anterior, se anula A(H), con lo que
([0X,X],H)p, = 0, probandose asi la afirmacién (a).

Para probar (b), consideremos H € a. Usando el apartado (b) de la Proposicién 2.13,
tenemos que [#X,Y] € go. Por otra parte, usando de nuevo la relacion (2.5) del Lema 2.17,
se tiene que

<[9X’ Y]>H>Be = )‘(H)<Yv X>Be =0,
lo cual quiere decir que [X,Y] € £, = go © a. ]

Lema 3.14. Sea £ = aH, + bX, un vector unitario, donde o € Il es una raiz simple,
Xao € 8o, ya,b e R. Entonces

(a) [0€,€] = —abla]? X, + ablal?0X, + 20°H,,.
(b) V& = b H, — ablaf’X,.

Demostracion. Para probar (a), usando que 60|, = —Id, que 0g, = g_, para cualquier
a € A, la definicién de espacio de raiz y la primera afirmaciéon del Lema 3.13, deducimos
que

(0¢,€] =[0(aH, +bX,),aH, +bX,] = —ab[H,, Xo] + abl0 X, Hy] + 0*[0X 4, X4
= —aba(Hy) Xo + aba(H,) + 20*H, = —ab|a|* X, + abla*0X, + 2b°H,,.

Para demostrar (b), consideremos Z € a @ n. Usando las ecuaciones (2.3) y (2.4) del
Lema 2.17, junto con la afirmacién (a), tenemos que

(Vet. Z)ax = 16 €] + 0.6 — [€.06), 2)5, = 5{106.€). 2},
_ ;<_ab|a\2xa + abla?6X, + 20°H,, Z) 5,
_ ;ab\alz(Xa, Z) 5, + V*(Ha, Z)5,
= — abla|*(Xa, Z)an + 0*(Ha, Z) an,

con lo que llegamos a la expresién (b). O
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Lema 3.15. Sean dos vectores de a@n, X = Xq+ > ca+ Xo e Y =Y+ > ca+ Y, tales
que Xo, Yy € a y X\, Yy € gy para toda A € AT. Si (X, Y)\)an = 0, para cualquier X € AT,
entonces

1
donde (), denota la proyeccion ortogonal en la subdlgebra de Lie n.

Demostracion. Primeramente, usando la relacién (2.5) del Lema 2.17, y la hipotesis de
ortogonalidad entre los X, y los Y), tenemos

(X, 0V, H)p, = (X, [Y, H)p, = —(X,[H,Ya+ Y Yil)p, =— > MH)(X,YA)p

AEAT AEAT
== MHNXaY s, — Y. > MH)X,,Y\)p, =0,
AeAt AEAT neAT+

para cualquier H € a. Esto quiere decir que [X,0Y] es ortogonal con respecto a By al
subespacio a. De la misma manera, probamos que [#.X,Y] es ortogonal a a con respecto
de By. Ahora bien, como [X,Y] € [a @ n,a @ n] = n, tenemos que la suma [X,Y] +
[0X,Y]—[X,0Y] también sera ortogonal a a respecto de By. Usando este hecho junto con
las ecuaciones (2.3) y (2.4) del Lema 2.17, llegamos a que

(VY. Z)aw = 11X, Y]+ 0X, Y] = [X,0¥, 21,

1
= (X YT+ [0X. Y] = [X, 0 ])a, Zu) s,
1
= §<([X7 Y] + [er Y] - [Xv HY])H’ Z>AN7
para cualquier Z € a @ n, siguiéndose asi el resultado. O

Lema 3.16. Sea { = aH,+bX,, donde o € 11, X, € g, y a,b € R. Sea Y3 € gz un vector
ortogonal a £ para algin 3 € AT. Entonces:

(a) ([0Y3,€], Z)B, = ([0Y3, Xu], Z) B, = 0, para cualquier Z € a & n.
(b) ([0]Ys,£],€], Z) B, = 0 para todo Z € a @ n.
(¢) Si B # «, entonces [Yz,0¢],[[Ys,E], 0], [Y3,0Xa] €n

Demostracion. Para probar (a), comencemos por observar que, por las propiedades de la
descomposiciéon en espacios de raices, tenemos que

[0Y5, €] = al0Yp, Ha] + b[0Y3, Xo] € g5 @ ga—sp-

Tenemos, por hipétesis, que 5 es una raiz positiva, con lo que —f es una raiz negativa,
de lo que concluimos que (g_g,a @ n)p, = 0. Ademdas como « € II es una raiz simple y
p € AT, entonces o — 3 ¢ AT, y tenemos entonces que o f = & 0 go—5 = 0. En caso de que
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= a, por la segunda afirmacion del Lema 3.13 se tiene que [6Y3, X, ] € &. En cualquier
caso, [#Y}3, X, resulta ser ortogonal a a@n con respecto a By, con lo que tenemos probado
(a).

Veamos ahora (b). Tenemos que
01Y5,¢], €] = [01Ys, aHao + 0Xa],§] = —ala, B)[0Y5, ] + (0[5, Xal, £].

Usando el apartado (a) que acabamos de probar, [#Y}3,¢] es ortogonal a a @ n con respecto
de By. Usando ahora las propiedades de la descomposicion en espacios de raices, deducimos
que
0]Ys, Xo|,6] €E9-p-a®g_p, con —f—a,—p¢ATU{0}.
Hemos comprobado entonces que se cumple (b).
Finalmente, probemos (c¢). Usando de nuevo las propiedades de la descomposicién en
espacios de raices, tenemos que

V5,0 €95 @ 90 v [[V5,8],05] €05 Dgpa® 9pta-

Como estamos asumiendo por hipétesis que S € A1\ {a}, tenemos que  + o € AT
of+a¢ AU{0},y f—a € AT o —a ¢ AU{0}. En ambos casos, tenemos que
[[Y3,£],606] € n, y tomando a = 0y b = 1 en el primer corchete, tenemos también que
[Y5,0X,] € a, de lo que seguimos (c). O

En la siguiente proposicién mostramos una forma de relacionar los operadores forma y

de Jacobi.

Proposiciéon 3.17. Sea £ = aH, + bX, un vector unitario, con o € Il una raiz simple,
Xo € ga un vector unitario, y a,b € R. Sea Y3 € gg C 5 = (adn)ORE, donde f € AT\{a}.
Entonces

(Re +82) Vs =0.

Demostracion. Dado que « € 11 es raiz simple y § € AT, se tiene que a — 8 ¢ A™. Ahora,
usando las afirmaciones del Lema 3.14, tenemos que

Vel €adga,  Ve§—0VeE =06,
Asi, usando el Lema 3.15, junto con el hecho de que (Y3, go) = 0 (por ser 5 # «), tenemos

1

1
Vy, Vel = 5(%, Vel] + [0V, V€] — [Y3,0VeE])n = 5[3/6» [0¢,€]].

Observemos que el segundo sumando del término intermedio de la igualdad es ortogonal a
a @ n, segin se puede ver en la primera afirmacion del Lema 3.16, con lo que su proyeccion
ortogonal sobre n es nula. Si volvemos a utilizar el Lema 3.15 junto con las tres afirmaciones
del Lema 3.16 y la simetria de la conexion de Levi-Civita,

1 1 1
VeV, € = Ve[V, ] + [0Y5, €] = [Vs, 06])n = 5 Ve[V5, €] — S Ve[Y5, 0¢]

1 1

1
=56 Vs, ]l + 5 Vivs 06 — 5 VelYs, 0¢].
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Dado que g € A*\ {a}, tenemos [Y3,] € 95 D gatp ¥ £ € a D g, con lo que podemos
volver a aplicar el Lema 3.15 y los puntos (b) y (¢) del Lema 3.16 para llegar a

Viragt = 55,6+ 01¥5, €1, €] — [[¥5, 6,660 = 5[¥5, 81,6 - 5¥5,€],06).

Podemos volver a usar el Lema 3.15 junto con todos los puntos del Lema 3.16 para tener,
por tultimo,

1 1 1
S¢Vi =Vvy,el = Vs ariovse-vsomaé = 5Vmsaé — 5 Vieal

1 1 1
:gv[Yg,E]f + 5[57 [V, 0€]] — ivE[Yﬂa 0¢]

1

1 1 1
=5 Vivpas — 5[ 3, [0€,&]] — 5[957 €, Y5]] — §V£[Yﬁ795]-

Juntando todas las expresiones que acabamos de obtener, llegamos a que
(Re + 82)Y5 = Vy, Vel — VeV, & — Viy, g€ + SEVp

1 1 1 1 1
= 7[Yﬁv [96’ S]] - 5[57 [Y/J” SH - §V[Yﬁ,g}f + §v§[Yﬂ7 96] - 5[[Yf375]>€]

2
1 1 1 1 1
+ Y5, €], 0€] + 5 Vivpa€ — 5[5, [0€, €]] = 5106, [€, V5[] — 5 Ve[V, 0]
=0. O]

Usando este resultado, tenemos que Rely, = —SZ|q, para cada § € AT\ {a}. De esta
forma, para Xz € gg C s (siendo § € AT\ {a}) obtenemos que

(Sg O R&)Xﬁ = Sg(—Sng) = —SgXB = —(852 (¢] Sg)Xﬁ = (Rf (6] Sf)Xﬁ. (33)

Veamos la tltima igualdad. Para ello, consideremos S¢ X3 y veremos para qué 3’s es posible
aplicar la Proposicion 3.17. Considerando la relacion (2.4) del Lema 2.17, la relacion (1.3),
y dado Z € g,, tenemos

1
<VX@5’ Z)aN = Z<[XB’ aH, +bX,| + [0Xs,aH, + bX,| — [Xp,a0H, + b0X,], Z) B,
1 1
= §<[X,37QHO¢]’ Z>Be - Z<[X’B’ ngaL Z>Ba'

Para obtener la ultima igualdad, hemos usado las propiedades de la descomposicion en
espacios de raices y la ortogonalidad de tal descomposiciéon. Hemos llegado entonces a una
restriccién para la validez de la tltima igualdad de la ecuacion (3.3). Si = a, 0 8 = 2«
entonces tenemos que [Xg, Hy] € ga, 0 [X5,0X,] € ga, respectivamente. Por tanto, S¢ Xg
pertenecera a g, para estas dos elecciones de 3, y entonces la Proposiciéon 3.17 no es
aplicable. Podemos, sin embargo, concluir un resultado parcial, valido en el caso de que 2«
no sea raiz.
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Proposicion 3.18. Si « € 11 es una raiz simple tal que 2a ¢ A*, entonces

(Re 0 S¢)lnega = (St 0 Re)lnoga-

Con los resultados que hemos visto hasta ahora, respecto a la descomposicion de s vista
en la ecuacién (3.2), hemos visto que, asumiendo que 2ac ¢ A™, el operador forma S; y
el operador de Jacobi Re conmutan, siendo £ = aH, + bX,. Ahora bien, esto lo hemos
hecho para vectores distintos del vector U = b|a|™'H, — a|a|X,. Por lo tanto, en lo que
sigue, trabajaremos con resultados referentes al vector U, comenzando por dar una serie
de identidades tutiles para trabajar con este vector.

Lema 3.19. Dado un vector unitario & = aH, + bX,, siendo o € Il una raiz simple,
Xo € go unitario y a,b € R, y siendo U = b|a|" H, — a|a| X, asociado, se tienen las
siguientes identidades:

(i) Vx.§ = |alU, (iii) VyU = alal?, (v) [U,¢] = |afXa,

(i) Vo€ = —alalU, (iv) VeU = —blale, (i) Vet = blalU.

Demostracion. En toda la demostracién estaremos considerando un vector Z € a @ n
arbitrario. Veamos cada una de las identidades por separado.

(i) Usando las relaciones (2.3) y (2.4) del Lema 2.17 junto con el punto (a) del Lema 3.13,
llegamos a que

1
(Vx., &, Z)an = Z<[XO“ aH, +bX,] + [0 X, aH, + X, — [Xa,0(aH, +0X,)], Z) B

1
= “(a[Xa, Ha] + a0 X0, Ho] + 00X, Xo]

6

4
— a[Xa, 0H,] — b[X4,0X,), Z) 5,
1
- §<_G[Hou Xa] =+ b[(gXa’ Xa]’ Z>39

1
=5 (=alo’Xa, Z) 5, + (b Xa, Xa) anHa, Z) 5,

:a'|a|2<Xa7 Zn>Bg _l_ b<Ha7 Za>Bga|a|2<Xom Z>AN + b<Ha7 Z>AN
=(|a|U, Z) an-

Observemos que en la tercera igualdad hemos usado las propiedades de la descompo-
sicion en espacios de raices para eliminar el sumando a[0X,, H,).

(ii) Usando el apartado (i) que acabamos de probar junto con el apartado (i) del Lema 3.7,
obtenemos

Vi€ =bla| 'V & —a|la|Vx. & = —ala|*U.
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(iii) Usando otra vez las relaciones (2.3) y (2.4) del Lema 2.17 junto con el punto (a) del
Lema 3.13, se obtiene que

(V.U Z)an = (X, U] + [0X0, U] ~ [Xe 001, Z)5,
= {=bla] ! [Ha, X,] — ala][X,, X
— bla M [He, X + ala|[Xa, 60X, Z) 5, (34)
= —ala|(Hy, Z) 5, — ;b!aKXa, Z) B,
= —ala|(Ha, Z) an — bla|{Xa, Z) an-

De esta identidad deducimos que Vx U = —|«a|¢. Si usamos entonces la identidad
(i) del Lema 3.7, tenemos

ViU =bla| 'V, U —bla|Vx, U = ala*¢.

(iv) Usando también que Vx U = —|a|€ y el apartado (i) del Lema 3.7, deducimos que

VgU =aVy U+bVx U= —b|04|€

(v) Si tenemos en cuenta que ¢ es unitario, tenemos que a*|al? + b* = 1, con lo cual

U,€] = [bla]™ Hy — ala|Xa, aHy + bX,] = V|alXo + o]’ X, = |a] Xa.

(vi) Se sigue directamente del punto (ii) del Lema 3.14. O
Proposiciéon 3.20. Sean & = aH, + bX, y U = bla| ' H, — a|a|X,. Entonces
(i) S¢U = ala|*U.
(ii) Re(U) = —|a]PU.
Demostracion. Usando el Lema 3.19, obtenemos
U = (~Vu&)" = (alaV)" = alof’U.
junto con

RgU :R(U, §)§ = VUV5§ - V§VU§ - V[U{]f = VUb|a|U + V£G|OC|QU - vla\Xa§
=ablal’¢ — abla’s = —|al*U,

concluyéndose asi la demostracion. ]

Como consecuencia de la anterior proposicion, tenemos el siguiente resultado.
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Corolario 3.21. Sean ¢ = aH, +bX, y U = bla| ' H, — a|a|X,. Entonces
(Re 0 8c)(U) = (8¢ o Re)(U).

Tomemos o € AT, pero con 2a ¢ AT, Entonces, dados Y, € g, © Xo y Z € a @ n,
tenemos

1
(Vv.&, Z) an :Z<[Ya’ aH, +bX,] + [0Ys,aHy + 0X,| — [Ya, —aH, +00X,], Z) g

:i<—a[Ha,Ya] —a[H,, Y.), Z) B, = —;a([Ha,Ya], Z)p, (3.5)

0

1
=— §a|a|2<Ya, Z)p, = —a|a|2(Ya, Z)AN-

En la segunda igualdad, como 2« ¢ AT y la suma de raices positivas o es una raiz positiva o
no es raiz porque su subespacio de raiz asociado es trivial, deducimos que [Y,, X,| € g2 =
0. Ademés, los corchetes [0Y,, X,] v [Ya, Xo| se anulan al hacer el producto con Z € a@n
por ser elementos de €Ngg. Asi, dados £ = aH,+bY,, Y, € g.ORX, vy a € AT 20 ¢ AT

Se(Ya) = = (V)" = alal*Y,. (3.6)

Ahora, tenemos que calcular también R¢(Y,). Para hacer esto, hay algunos célculos
previos que tenemos que llevar a cabo. Sean Y, € g, ©RX, vy Z € ad n.

1
<V£Ya7 Z>AN :1<[£7 Ya] + {957 Ya] - [57 QYQ], Z>Be
:i([aHa b bX o, Yo + [—aHo + b0Xo, Ve — [aHa + bXo, 0Ya], Z) 5,
1
:Z<a‘a|2Ya - a|a’2Yaa Z)p, = 0.

Como sucedia en (3.5), todos los corchetes que involucran a X, junto con Y, se anulan de
por si o lo hacen al considerar el producto escalar con Z. Por otra parte, [H,, 0Y,] € g_a,
con lo que el producto por Z también se hace nulo. Por otra parte, si calculamos el corchete
de Y, con &, tenemos del hecho de que 2a no sea raiz

Yo, €] = [Ya,aH, + bX,] = —a[H,, Y,] = —ala|*Y,,. (3.7)

Para calcular R¢(Y,) necesitaremos también de la siguiente identidad:

1
(Vy, U, Z) = Z<[Ya, bla| ' H, — ala| X, + [0Y,, U] — [Ya, —bla| " H, — alal0X,), Z) 5,
1
= 1<_[b|a|_1HmYa] - [b|a’_1Ha’YaL Z) B,

1
== §b|a|(Ya,Z)Bg = —bla|(Ya, Z) an-
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El término [0Y,,, U] no se ha desarrollado ya que su producto escalar con cualquier elemento
Z € a®n es nulo. Teniendo presentes las ecuaciones (3.7) y (3.8), podemos calcular Re(Yy,):

Rg(Ya) = VYQV5€ — V§Vyaf — V[ymg]f = b‘Oé‘VyaU -+ a\a|2V5Ya + G‘OCPVyag

3.9
=b|a|Vy, U — a®|a|'Y, = (—b2|oz|2 - a2|oz|4) Ya, (3.9)

Tomando las ecuaciones (3.6) y (3.9), tenemos
(Re 0 S¢)(Ya) = Relala’Ys) = ala*(=b*|a|* — a’|al")Ya,
(S 0 Re)(Ya) = Se(=b*|af” — a®|al)Ys = alaf(=b*|af” - a®|al")Y..
Con todo, hemos probado el siguiente resultado.

Teorema 3.22. Sea M un espacio simétrico irreducible de tipo no compacto y 11 =
{ai,...,a,} un conjunto de raices simples para el sistema de raices A asociado a M.
Sea § una foliacion de M de tipo §;, coni € {1,...,r}, tal que 2c;; ¢ A. Entonces todas
las hojas de la foliacion §; son de curvatura adaptada.

Ahora estamos en disposicién de demostrar el resultado principal de esta memoria.

Demostracion del Teorema Principal. Los espacios simétricos irreducibles de tipo no com-
pacto que tienen una raiz simple a tal que 2« es también raiz son [6, p. 340):

SUr,rJrn SOZH—Q Spr,H—n E(;M FZQO
S(U,Ursn)  Uspi ' Sp.Spr,,’  Spin(10)U; °  Spin(9)

Por tanto, teniendo en cuenta el Teorema 3.9, el Teorema 3.22 y la clasificacion de foliaciones
homogéneas de cohomogeneidad uno en espacios simétricos irreducibles de tipo no compacto
[9, Theorem 5.5] obtenemos el resultado principal de esta memoria. O
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