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Resumen
El objetivo principal de este trabajo es el de comenzar el estudio sistemático de las

hipersuperfices homogéneas de curvatura adaptada en el contexto de los espacios simétricos
de tipo no compacto. En este sentido, comenzamos el trabajo con algunos preliminares de
Geometría de Riemann para introducir a continuación los espacios simétri-
cos junto con algunas de sus propiedades fundamentales. Luego, pasamos a centrarnos en
los espacios simétricos de tipo no compacto, y a detallar cómo éstos pueden ser descritos
como grupos de Lie resolubles con una métrica invariante a la izquierda. A continuación,
presentamos las acciones de cohomogeneidad uno en espacios simétricos de tipo no compac-
to, con especial énfasis en las que producen una foliación de Riemann. Probamos finalmente
que, en una amplia clase de espacios simétricos de tipo no compacto, las foliaciones
homogéneas de cohomogeneidad uno son de curvatura adaptada.

Abstract
The main aim of this work is to address the study of curvature adapted homogeneous

hypersurfaces in symmetric spaces of non-compact type. In this line, we start by presenting
some preliminary results concerning Riemannian Geometry in order to bring in symmetric
spaces and analyze some of their fundamental properties. Next, we focus on symmetric
spaces of non-compact type and we show that they can be described as solvable Lie
groups endowed with a left-invariant metric. Finally, we present cohomogeneity one actions
on symmetric spaces of non-compact type, paying special attention to those producing
a Riemannian foliation. We finally proof that, in a wide class of symmetric spaces of
non-compact type, homogeneous foliations of cohomogeneity one are curvature adapted.
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Introducción

La geometría de subvariedades ha resultado ser una de las ramas más fructíferas
y significativas dentro de la Geometría de Riemann, y, de modo más general, dentro
de la Geometría Diferencial. En este sentido, es natural comenzar analizando aquellas
subvariedades con un alto grado de simetría, por ejemplo, las subvariedades (extrínseca-
mente) homogéneas, que son las que pueden describirse como la órbita por un punto de un
subgrupo de Lie del grupo de isometrías del espacio ambiente. Esto convierte a los espacios
simétricos en un marco particularmente interesante y adecuado para estudiar tal clase de
subvariedades, pues son espacios equipados con grupos de isometrías lo suficientemente
grandes para este planteamiento.

Otra clase de hipersuperficies de especial interés es la de las hipersuperficies de curva-
tura adaptada, introducidas por D’Atri [15] en la segunda mitad de la década de 1970, bajo
el nombre de amenable hypersurfaces. Reciben este nombre, curvatura adaptada, porque en
cierto modo puede entenderse que su geometría extrínseca está bien adaptada respecto a su
geometría intrínseca. En términos más precisos, la manera usual de entender la geometría
extrínseca de una hipersuperficie M de una variedad de Riemman M̃ es a través del
operador forma Sξ, con respecto a un vector normal ξ a M en M̃ . Por otra parte, si
R es el operador curvatura de M̃ , el operador de Jacobi Rξ = R(·, ξ)ξ mide la curvatura
intrínseca de M̃ en la dirección de ξ. Pues bien, la hipersuperficie M se dice de curvatura
adaptada si el operador forma y el operador de Jacobi conmutan o, equivalentemente, si
existe una base para la cual diagonalizan simultáneamente.

En los espacios forma, todas las hipersuperficies son de curvatura adaptada. Como cabe
esperar, esto deja de ser así en espacios simétricos en general. De hecho, las hipersuperficies
de curvatura adaptada han sido especialmente estudiadas en espacios simétricos de rango
uno. Así, en los espacios forma complejos, la condición de curvatura adaptada coincide con
la condición de ser Hopf. De forma más concreta, Jξ es una dirección principal del operador
forma, donde J denota la estructura compleja del espacio. Las hipersuperficies Hopf con
curvaturas principales constantes están clasificadas tanto en los espacios proyectivos com-
plejos [27] como en los espacios hiperbólicos complejos [3]. En el primer caso, se recuperan
todos los ejemplos de hipersuperficies homogéneas [40], mientras que en el segundo aparecen
ejemplos de hipersuperficies homogéneas no Hopf [11]: la hipersuperficie de Lohnherr
[32] y los tubos alrededor de las conocidas como subvariedades de Berndt-Brück [5]. Las
hipersuperficies de curvatura adaptada también están clasificadas en: los espacios proyecti-
vos cuaterniónicos [4]; los espacios hiperbólicos cuaterniónicos, con la hipótesis adicional
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8 Introducción

de curvaturas principales constantes [4]; y en el plano proyectivo de Cayley [34].
Con estas consideraciones en mente, nuestro objetivo en este trabajo será estudiar las

subvariedades de curvatura adaptada en espacios simétricos de tipo no compacto. A este
respecto, en [13] se muestran algunos resultados que simplifican la tarea de caracterización
de este tipo de subvariedades. En concreto, se muestra que el estudio de las subvariedades
de curvatura adaptada en espacios simétricos se reduce al estudio de dicha propiedad en
hipersuperficies.

Usando acciones isométricas, podemos obtener subvariedades homogéneas de un espa-
cio simétrico. En particular, cuando las órbitas principales de una acción isométrica sean
hipersuperficies, estaremos hablando de acciones de cohomogeneidad uno. Teniendo estas
consideraciones presentes, es natural estudiar cuándo las órbitas de las acciones de cohomo-
geneidad uno en un espacio simétrico son de curvatura adaptada. En el caso concreto de
los espacios simétricos de tipo no compacto, se tiene que las acciones de cohomogeneidad
uno pueden tener o bien una única órbita singular, o bien ninguna [5]. Las acciones de
cohomogeneidad uno sin órbitas singulares inducen foliaciones de Riemann, y cada órbita
de las mismas es una hoja. Las acciones de cohomogeneidad uno que inducen foliaciones
se estudian y clasifican en [9]. El objetivo final en este trabajo es estudiar la propiedad
de curvatura adaptada en las hojas de una foliación de este tipo. De hecho, obtenemos el
siguiente

Teorema Principal. Sea M ∼= G/K un espacio simétrico irreducible de tipo no compacto
diferente de los siguientes:

SUr,r+n

S(UrUr+n) ,
SO∗

4r+2
U2r+1

,
Spr,r+n

SprSpr+n

,
E−14

6
Spin(10)U1

y F−20
4

Spin(9) .

Entonces, todas las hojas de cualquier foliación de cohomogeneidad uno en M son de
curvatura adaptada.

Con este fin, dedicaremos un primer capítulo a introducir las nociones básicas relacio-
nadas con la Geometría de Riemann, grupos y álgebras de Lie y acciones isométricas
necesarias para el desarrollo del trabajo. El segundo capítulo lo dedicaremos a la introduc-
ción y estudio de las propiedades básicas de un espacio simétrico, así como a la presentación
de los distintos tipos de espacios simétricos que existen. Centrándonos en el caso de los
espacios simétricos de tipo no compacto, estudiaremos también algunas de sus descomposi-
ciones, así como un modelo de estos espacios simétricos que nos permite identificarlos como
grupos de Lie resolubles dotados de una métrica invariante a la izquierda. Finalmente,
presentaremos en el tercer capítulo las acciones de cohomogeneidad uno y algunos resulta-
dos relacionados con las mismas, centrándonos especialmente en aquellos referentes a
foliaciones de Riemann, inducidas por acciones de cohomogeneidad uno sin órbitas singu-
lares. Una vez presentada la clasificación de este tipo de acciones de cohomogeneidad uno,
estudiaremos en cada uno de ellos si las hojas de la foliación son subvariedades de curvatura
adaptada.



Capítulo 1

Preliminares

Dedicamos el presente capítulo del texto a introducir los conceptos, la terminología
y las notaciones relativas esencialmente a la geometría de subvariedades y a la teoría de
acciones isométricas que serán empleadas a lo largo del trabajo.

De un modo más preciso, dedicaremos la Sección 1.1 a introducir algunos de los
aspectos centrales de la Geometría de Riemann, como lo son las nociones de variedad
de Riemann, métrica, conexión de Levi-Civita, isometría y endomorfismo de curvatura. La
Sección 1.2 se centrará en presentar el concepto de subvariedad de Riemann e introducir la
segunda forma fundamental. Además, definimos el concepto central del trabajo: subvarie-
dad de curvatura adaptada. La Sección 1.3 la centraremos en acciones isométricas de
grupos de Lie sobre variedades de Riemann, aunque para ello recordaremos brevemente los
conceptos de grupo de Lie y álgebra de Lie. En la Sección 1.4 desarrollaremos brevemente la
teoría de álgebras de Lie, definiendo principalmente los conceptos de álgebra de Lie simple,
semisimple, resoluble y nilpotente, e introduciendo la forma de Killing de un álgebra de
Lie.

Las primeras dos secciones se confeccionaron usando como referencia [30], así como
[13] a la hora hablar de subvariedades de curvatura adaptada. La tercera sección se basa
principalmente en [28] en su primera mitad, mientras que en la sección de acciones isométri-
cas (Sección 1.3) se utilizó [1]. En la Sección 1.4 se siguió como referencia [28].

1.1. Geometría de Riemann
Una variedad de Riemann (M, g) es una variedad diferenciable M equipada con una

métrica Riemanniana g, es decir, un campo tensorial diferenciable bilineal simétrico definido
positivo de tipo (0, 2). Esto quiere decir que g es una aplicación diferenciable g : M →
T ∗M × T ∗M (con T ∗M el dual del fibrado tangente TM) que a cada punto p ∈ M le
asocia una aplicación bilineal simétrica y definida positiva gp(·, ·), también denotada por
⟨·, ·⟩p. En consonancia con la notación del producto escalar en cada punto, a partir de ahora
denotaremos la métrica como ⟨·, ·⟩.

Una noción que debemos definir en este punto es el concepto de isometría. Un difeo-
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10 1 Preliminares

morfismo f : (M, g) → (N, g′) entre dos variedades de Riemann se dice que es una isometría
si

g′(f∗pv, f∗pw) = g(v, w), para cualesquiera v, w ∈ TpM y cualquier p ∈ M,

donde f∗p denota la aplicación diferencial del difeomorfismo f en el punto p ∈ M . Si
tomamos el caso particular de que M = N y g = g′, f sería una isometría de M en sí
mismo. Denotamos el conjunto de las isometrías de una variedad de Riemann en sí misma
por I(M). Este conjunto es un grupo de Lie (en [35] se puede encontrar una prueba de
este hecho).

Queremos imitar el concepto de derivada covariante que se tiene en superficies, pero no
podemos sumar vectores que están en espacios tangentes distintos. Es por ello que tenemos
que introducir una conexión. Denotaremos por X(M) al conjunto de los campos de vectores
diferenciables en la variedad M y por C∞(M) al conjunto de aplicaciones diferenciables de
M en R. Una conexión lineal ∇ es una aplicación

∇ : X(M) × X(M) −→ X(M)
(X, Y ) 7−→ ∇XY,

tal que, dados X, Y, Z ∈ X(M), f, g ∈ C∞(M) y a, b ∈ R, satisface:

(a) ∇fX+gYZ = f ∇XZ + g∇YZ,

(b) ∇X(aY + bZ) = a∇XY + b∇XZ,

(c) ∇X(fY ) = f ∇XY + (Xf)Y .

Sea (M, g) una variedad de Riemann, y sea ∇ una conexión lineal sobre M . Diremos que
∇ es compatible con la métrica g si ∇Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). La conexión
∇ se dirá simétrica si satisface ∇XY − ∇YX = [X, Y ], donde [·, ·] denota el corchete
de Lie de campos de vectores. Un resultado fundamental en relación con las conexiones
en una variedad de Riemann (M, g) es que existe una única conexión compatible con la
métrica g y que además es simétrica. Esta conexión se conoce como conexión de Levi-Civita
de g o conexión Riemanniana. De ahora en adelante, salvo que se indique lo contrario,
consideraremos que ∇ es la conexión de Levi-Civita. La conexión de Levi-Civita viene
determinada además por la conocida como fórmula de Koszul:

g(∇XY, Z) = 1
2(X g(Y, Z) + Y g(X,Z) − Z g(X, Y )

+ g([X, Y ], Z) + g([Z, Y ], X) + g([Z,X], Y )).
(1.1)

El siguiente paso será usar la conexión para derivar curvas en la variedad M . Sea
γ : I ⊂ R → M una curva diferenciable. Un campo de vectores diferenciable a lo largo de γ
será cualquier aplicación diferenciable V : I ⊂ R → TM de forma que V (t) ∈ Tγ(t)M para
todo t ∈ I. Denotaremos por Xγ

t al conjunto de campos de vectores diferenciables de M a
lo largo de la curva γ. Por [30, Lemma 4.9], si D es una conexión (no necesariamente la de
Levi-Civita), entonces existe un único operador Dt : Xγ

t → Xγ
t tal que:
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(a) Dt(λV +µW ) = λDtV +µDtW , para cualesquiera V,W ∈ X(M) campos de vectores
diferenciables a los largo de γ y λ, µ ∈ R,

(b) Dt(fV ) =
(

d
dt
f
)
V + fDtV , para toda función f : I ⊂ R → R diferenciable,

(c) Si V es la restricción a γ de un campo de vectores Y en M , entonces DtV (t) = Dγ(t)Y .

Diremos entonces que un campo V ∈ Xγ
t es un campo de vectores paralelo a lo largo de γ

si DtV = 0 para todo t en el que esté definido V .
Ahora ya podemos definir el concepto de curva geodésica. Una curva diferenciable

γ : (a, b) ⊂ R → M es geodésica (para la conexión de Levi-Civita, pero se define de forma
análoga para cualquier otra conexión) si se tiene que Dtγ̇(t) = 0 en cualquier instante
t ∈ (a, b). De ahora en adelante, cuando la conexión que estemos utilizando sea la de
Levi-Civita, usaremos la notación ∇γ̇(t) en lugar de Dt. Una variedad de Riemann se dice
geodésicamente completa si toda geodésica maximal (en el sentido de que no se puede
extender su dominio sin perder la propiedad de ser geodésica) está definida para todo
t ∈ R.

Por otra parte, ya podemos también definir el concepto de distancia entre dos puntos
en una variedad de Riemann (M, g). Supondremos que la variedad es conexa, ya que si no
lo fuera basta con reducirse a cada componente conexa para tener los mismos conceptos.
La distancia entre dos puntos p, q ∈ M es el ínfimo de las longitudes de las curvas regulares
a trozos con extremos en p y q. Esto quiere decir que, salvo en un conjunto finito de puntos
{ti}n

i=1 ⊂ (a, b), γ̇(t) ̸= 0, junto con la propiedad de que γ(a) = p y γ(b) = q. La longitud
de una curva regular γ : [a, b] → M se define como

L(γ) =
∫ b

a

√
g(γ̇(t), γ̇(t)) dt ≡

∫ b

a
||γ̇(t)|| dt.

Con esta definición de distancia, se tiene que cualquier variedad de Riemann conexa es un
espacio métrico cuya topología inducida es la misma que la topología de la variedad. Existe
una relación entre las variedades geodésicamente completas y las variedades completas
como espacios métricos.

Teorema 1.1 (Teorema de Hopf-Rinow. [30, Theorem 6.13]). Una variedad de Riemann
conexa es geodésicamente completa si, y sólo si, es completa como espacio métrico.

Corolario 1.2 ([30, Corollary 6.15]). Si (M, g) es una variedad de Riemann conexa y
completa, entonces dos puntos se pueden unir por un segmento de geodésica minimizante.

Ahora que hemos convertido cualquier variedad de Riemann en un espacio métrico, uno
podría centrar su atención en las aplicaciones de la variedad en sí misma que preservan la
distancia. El siguiente resultado nos indica que éstas son exactamente las isometrías de la
variedad de Riemann.

Teorema 1.3 ([23, Theorem 11.1]). Sea M una variedad Riemanniana y φ una aplicación
que preserva distancias de M en sí misma. Entonces M es una isometría.



12 1 Preliminares

Además, las isometrías quedan determinadas por su imagen y diferencial en un único
punto:

Lema 1.4 ([23, Lemma 11.2]). Sean M una variedad Riemanniana, y φ y ψ dos isometrías
de M . Supongamos que existe un punto p ∈ M para el cual φ(p) = ψ(p) y dφp = dψp.
Entonces φ = ψ.

El concepto central de la Geometría de Riemann es el de curvatura. Sea (M, g) una
variedad de Riemann. Definimos el endomorfismo de curvatura (de Riemann) como el
campo tensorial R : X(M) × X(M) × X(M) → X(M) dado por la expresión

R(X, Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z.

Un último concepto que introducimos en esta parte del capítulo es la curvatura seccional.
Dada una variedad de Riemann M y un punto p ∈ M , si Π es un subespacio de dimensión
dos de TpM y V ⊂ TpM es cualquier entorno del 0 de TpM en el cual expp es un
difeomorfismo, SΠ := expp(Π ∩ V) es una subvariedad de dimensión dos de M que contiene
a p, que se denomina sección plana determinada por Π. La curvatura seccional de M
asociada a Π, K(Π), es la curvatura de Gauss de la superficie SΠ en p con la métrica
inducida. Si {X, Y } es una base de Π, también se puede denotar K(Π) por K(X, Y ). Por
[30, Proposition 8.8], se tiene que

K(X, Y ) = ⟨R(X, Y )Y,X⟩
|X|2|Y |2 − ⟨X, Y ⟩2 .

1.2. Subvariedades de Riemann
Si consideramos una variedad de Riemann (M̃, g̃), M una variedad diferenciable, y una

inmersión f : M → M̃ , podemos inducir una métrica de Riemann en M , f ∗g̃, conocida
como el pull-back de g̃ en M . Esta métrica viene definida por

(f ∗g̃)p(X, Y ) := g̃p(f∗pX, f∗pY ), para cualesquiera X, Y ∈ TpM.

De ahora en adelante, salvo que indiquemos lo contrario, supondremos que las subvarieda-
des que consideremos serán embebidas, es decir, que existe un embebimiento ι : M → M̃ .
En este caso, podemos dotar aM con una métrica inducida por el pull-back de ι, g = ι∗g̃. De
esta forma, tenemos que (M, g) es una subvariedad de Riemann embebida en M̃ . Teniendo
esto en cuenta, la dimensión del espacio tangente a M en p ∈ M , TpM , es menor o
igual que la del espacio tangente TpM̃ , siendo TpM subespacio vectorial de TpM̃ . Podemos
entonces considerar el complemento ortogonal de TpM con respecto a la métrica g̃, que
denominaremos conjunto normal y denotaremos por T⊥

p M , de forma que podemos expresar
TpM̃ como suma directa de dos subespacios vectoriales, TpM̃ = TpM ⊕ T⊥

p M .
Nuestro siguiente objetivo es dar una conexión de Levi-Civita en M a partir de la

conexión de Levi-Civita de M̃ , que denotaremos por ∇̃. Para ello, tomemos X, Y ∈ X(M)
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dos campos de vectores, y sean X̃, Ỹ ∈ X(M̃) dos campos de vectores tales que X̃|M = X
e Ỹ |M = Y . Definiremos el operador ∇ como ∇XY = (∇̃

X̃
Ỹ )|M . Se puede comprobar

que esta definición no depende de las extensiones X̃ e Ỹ que hayamos elegido, por lo que
el operador está bien definido, y además es simétrico ([30, Lemma 8.1]). Nótese que, en
principio, (∇̃

X̃
Ỹ )|M ∈ X(M̃) puede tener tanto componente tangencial como normal a M

no nulas. Podemos entonces considerar la descomposición ortogonal ∇XY =
(
∇XY

)⊤
+(

∇XY
)⊥

, con lo que definimos la segunda forma fundamental Π de M como

Π(X, Y ) :=
(
∇XY

)⊥
, para cualesquiera X, Y ∈ X(M).

Si denotamos por ∇ la conexión de Levi-Civita de (M, g), se satisface la fórmula de Gauss
([30, Theorem 8.2])

∇XY = ∇XY +Π(X, Y ),
donde ∇XY coincide con la parte tangencial de ∇XY y Π(X, Y ) acabamos de definirla
como la parte normal.

Ahora introduciremos una pieza fundamental en este trabajo, que es el operador forma
de una variedad de Riemann. Denotemos por X⊥(M) al conjunto de campos de vectores
diferenciables normales en todo punto a M (como subvariedad de M̃). Para cada ξ ∈
X⊥(M), el operador forma Sξ de M asociado al campo normal ξ es una aplicación

Sξ : X(M) −→ X(M)
X 7−→ SξX,

donde SξX es tal que g(SξX, Y ) = g(Π(X, Y ), ξ), para cada Y ∈ X(M). El operador forma
es autoadjunto con respecto a la métrica g, es decir,

⟨X,SξY ⟩ = ⟨SξX, Y ⟩, para cada X, Y ∈ X(M).

Si aplicamos la ecuación de Weingarten,

⟨∇Xξ, Y ⟩ = −⟨ξ,Π(X, Y )⟩, (1.2)

siendo ξ ∈ X⊥(M) y X, Y ∈ X(M) [30, Lemma 8.3], al operador forma, obtenemos

SξX = −
(
∇Xξ

)⊤
, para cualesquiera X ∈ X(M), ξ ∈ X⊥(M). (1.3)

El objetivo final de este trabajo es el estudio de las hipersuperficies de curvatura
adaptada en espacios simétricos de tipo no compacto. Por lo tanto, ahora vamos a introducir
los conceptos que necesitaremos para tratar con éstas.

Sea M una subvariedad de M̃ y sea ξ un campo de vectores normales a M en M̃ ,
podemos considerar el operador de Jacobi, Rξ := R(·, ξ)ξ, donde R denota el endomorfismo
de curvatura de M̃ . Por lo tanto, este operador nos permite medir la curvatura intrínseca
de M̃ . Tanto el operador de Jacobi como el operador forma son autoadjuntos, sus autova-
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lores representan las curvaturas extremas, y sus autoespacios indican las direcciones para
las cuales la curvatura se hace extrema. Decimos entonces que una subvariedad M es de
curvatura adaptada a M̃ si para cada vector normal a M , ξ, en un punto p ∈ M , el
operador de Jacobi deja invariante TpM , Rξ(TpM) ⊂ TpM , y si existe una base de TpM en
la que diagonalizan Sξ y Kξ := Rξ|TpM de forma simultánea. Alternativamente, la segunda
condición se puede formular como:

Sξ ◦Kξ = Kξ ◦ Sξ;

es decir, los operadores conmutan entre sí. Denominaremos operador normal de Jacobi de
M con respecto a ξ al operador Kξ. Para comprobar si una subvariedad es de curvatura
adaptada, es claro que solamente hace falta comprobar estas dos propiedades para vectores
normales unitarios.

1.3. Grupos de Lie, álgebras de Lie y acciones de
grupos

Recordemos que un grupo de Lie G es una variedad diferenciable y un grupo en el que
la aplicación multiplicación m : G × G → G, dada por m(g, h) = gh, es diferenciable, así
como lo es la inversión i : G → G, dada por i(g) = g−1, para cualesquiera g, h ∈ G. Dado un
grupo de Lie G y g ∈ G, denotaremos las aplicaciones multiplicación por la izquierda y por
la derecha como Lg : G → G (dada por Lg(h) = gh) y Rg : G → G (dada por Rg(h) = hg),
respectivamente. Dado un grupo de Lie G, un subgrupo de Lie de G será un subgrupo de G
que también es grupo de Lie. Un hecho importante al respecto es que un subgrupo cerrado
de un grupo de Lie G es un subgrupo de Lie embebido en G [31, Theorem 20.12].

Por otra parte, recordemos también que un álgebra de Lie g real es un espacio vectorial
real dotado de una aplicación bilineal, [·, ·], que se suele denominar corchete, que además
es antisimétrica y verifica la identidad de Jacobi, esto es,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, para cualesquiera X, Y, Z ∈ g.

Cada grupo de Lie lleva asociada una única álgebra de Lie, isomorfa como espacio vectorial
a TeG (denotando por e ∈ G al neutro del grupo de Lie), y conformada por todos los campos
de vectores invariantes por la izquierda de G; es decir, los campos de vectores X ∈ X(G)
tales que X ◦ Lg = Lg∗ ◦X para todo g ∈ G. El corchete del álgebra de Lie asociada a un
grupo de Lie G es precisamente el corchete de los campos de vectores de G.

Entre un grupo de Lie y su álgebra de Lie asociada existe la aplicación exponencial,
Exp: g → G, que a cada X ∈ g le hace corresponder αX(1), siendo αX : R → G la
única curva integral del campo de vectores X en G con α(0) = e y α′

X(t) = XαX(t) para
cualquier t ∈ R. La aplicación exponencial permite establecer un diagrama conmutativo
que involucra homomorfismos de grupos de Lie (homomorfismos de grupos que son además
diferenciables). Sea f : G → H un homomorfismo de grupos de Lie entre G y H (cuyas
álgebras de Lie son g y h, respectivamente), y sea f∗ : g → h su diferencial en el neutro
asociada; entonces el siguiente diagrama conmuta
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g h

G H

f∗

ExpG ExpH

f

Definimos la aplicación adjunta de grupos de Lie como aquella que lleva un elemento
g ∈ G en Ad(g) = (Ig)∗, siendo Ig : G → G la aplicación dada por Ig(h) = ghg−1.
La aplicación adjunta de álgebras de Lie, que denotamos por ad, es la diferencial de la
aplicación diferencial de grupos de Lie, ad = Ad∗, o equivalentemente la aplicación que
asocia a cada X ∈ g la aplicación ad(X), dada por ad(X)(Y ) = [X, Y ], para cada Y ∈ g.

Recordemos también el concepto de centro tanto para grupos como álgebras de Lie. Para
un álgebra de Lie g, Z(g) se define como Z(g) = {X ∈ g : [X, Y ] = 0, para todo Y ∈ g}.
Para un grupo de Lie G, su definición es Z(G) = {g ∈ G : gh = hg, para todo h ∈ G}.
El centro a nivel de grupos resulta coincidir con el núcleo de la aplicación adjunta Ad,
Z(G) = ker(Ad), y Z(g) resulta ser el álgebra de Lie asociada a Z(G) [31, Problems 20-20,
20-22].

Pasemos ahora a tratar con acciones diferenciables. Sean G un grupo de Lie y M una
variedad diferenciable. Se define una acción diferenciable por la izquierda φ de G sobre M
como una aplicación diferenciable

φ : G×M −→ M

(g, p) 7−→ φ(g, p),

tal que

1. φ(e, p) = p, para e ∈ G el elemento neutro y cualquier p ∈ M .

2. φ(g, φ(h, p)) = φ(gh, p), con p ∈ M y g, h ∈ G.

Normalmente usaremos la notación g · p para referirnos a la acción diferenciable φ(g, p).
Una acción diferenciable de G sobre una variedad de Riemann M se dice isométrica para
cada g ∈ G, el difeomorfismo φg : M → M definido como p 7→ g · p es una isometría.

Definimos la órbita de la acción diferenciable φ pasando por un punto p ∈ M como el
conjunto

G · p = {g · p : g ∈ G}.

Definimos también el grupo de isotropía de una acción diferenciable en un punto p ∈ M
como el conjunto

Gp = {g ∈ G : g · p = p}.

Una acción diferenciable se dice libre si g ·p = p para algún p ∈ M , implica que g = e. Una
acción diferenciable se dice efectiva si g · p = p para todo p ∈ M , tiene como consecuencia
que g = e. Si una acción isométrica es efectiva, se tiene que G es isomorfo a un subgrupo
del grupo I(M) de isometrías de M .

Una acción diferenciable se dice transitiva si para cualesquiera p, q ∈ M , existe un
g ∈ G tal que g · p = q. Cuando se tiene una acción transitiva de un grupo G sobre
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una variedad diferenciable M , ésta resulta ser difeomorfa al cociente del grupo G que
actúa transitivamente sobre ella por el grupo de isotropía en un punto cualquiera de la
variedad [31, Theorem 21.18]. En este caso, la variedad M también se puede denominar
G-espacio homogéneo. Como veremos, éste será el tipo de espacios con el que trataremos
en los siguientes capítulos.

Una acción diferenciable se dice propia si la aplicación G × M → M × M , dada por
(g, p) 7→ (p, g · p) es propia; es decir, la preimagen de un compacto por esta aplicación es
compacto.

Si consideramos una acción diferenciable de un grupo G sobre una variedad diferencia-
ble M , decimos que p ∈ M está relacionado con q ∈ M si existe g ∈ G tal que g · p = q.
Esto establece una relación de equivalencia en M , donde cada punto está relacionado con
todos los demás puntos de su órbita. Podemos entonces considerar el espacio de órbitas de
la acción diferenciable, M/G, al cual se le dota de la topología cociente. Las órbitas de una
acción siempre son subvariedades inmersas en M , pero si además la acción es propia, las
órbitas resultan ser subvariedades embebidas [31, Proposition 21.7].

Una subvariedad P de una variedad de Riemann M se dice (extrínsecamente) homogé-
nea si para cualesquiera dos puntos p, q ∈ P , existe una isometría g de M tal que q = g(p)
y g(P ) = P . Equivalentemente, si P es cerrada, P es homogénea si existe un subgrupo
de Lie H del grupo de isometrías de M , I(M), tal que P = H · p, para algún p ∈ P ; o
lo que es lo mismo, P es una órbita de una acción isométrica sobre M . Una subvariedad
homogénea P de M es embebida si H = {g ∈ I(M) : g(P ) = P} es un subgrupo cerrado
(por lo tanto es subgrupo de Lie) de I(M); es decir, la acción es propia.

Proposición 1.5 ([17, Theorem 4]). Sea G un subgrupo de Lie cerrado de I(M). Entonces,
la acción φp : G×M → M , dada por φ(g, p) = g(p), es propia. Es más, G actúa propiamente
sobre M si, y sólo si, G es un subgrupo cerrado de I(M).

1.4. Forma de Killing
En esta sección recogemos algunas de las definiciones básicas relacionadas con las

álgebras de Lie, así como la definición de la forma de Killing, junto con algunos resultados
que utilizaremos en capítulos posteriores.

Sea g un álgebra de Lie de dimensión finita. Definimos la serie derivada de g como

g(0) = g, g(1) =
[
g(0), g(0)

]
, g(2) =

[
g(1), g(1)

]
, . . . , g(n) =

[
g(n−1), g(n−1)

]
, . . .

Por definición de ideal de un álgebra de Lie, se tiene que todos los elementos de la serie
derivada de g son ideales de esta álgebra de Lie. Decimos que el álgebra de Lie g es resoluble
si existe k ∈ N tal que g(k) = 0. En particular, diremos que g es resoluble en k pasos si
g(k) = 0 y g(k−1) ̸= 0.

Por otra parte, también podemos definir la serie descendente del álgebra de Lie g como

g0 = g, g1 = [g, g0], g2 = [g, g1], . . . , gn = [g, gn−1], . . .
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Resulta de nuevo que cada elemento de la serie descendente es un ideal de g. Diremos que
g es nilpotente si existe un k ∈ N tal que gk = 0. Diremos que además es nilpotente en k
pasos si gk = 0 y gk−1 ̸= 0.

Por un argumento inductivo, se comprueba que g(k) = [g(k−1), g(k−1)] ⊂ [g, g(k−1)] = gk,
con lo que toda álgebra de Lie nilpotente es resoluble. El recíproco no es necesariamente
cierto: podemos considerar

g =




0 x y

−x 0 z

0 0 0

 : x, y, z ∈ R

 ,

que es resoluble, pero no nilpotente, con el corchete usual de las álgebras de Lie matriciales,
dado por [A,B] = AB − BA, con A,B ∈ g. También se tiene que si un álgebra de Lie es
abeliana (i.e. [g, g] = 0), es tanto resoluble como nilpotente en un paso.

Definimos el radical de un álgebra de Lie g, rad(g), como el único ideal resoluble
maximal para la inclusión. Un álgebra de Lie g se dice que es simple si tiene dimensión
dim(g) ≥ 2 y si no tiene ideales propios no triviales.

Por su parte, un álgebra de Lie semisimple es aquella cuyos ideales resolubles son
triviales, es decir, rad(g) = 0. De esta definición se sigue que el único ideal abeliano de
g debe ser el 0. El recíproco de esta afirmación también resulta ser cierto. En efecto,
supongamos que rad(g) es no trivial. Como rad(g) es resoluble, existe un k ∈ N tal que
rad(g)(k) =

[
rad(g)(k−1), rad(g)(k−1)

]
= 0, con rad(g)(k−1) ̸= 0. Por lo tanto, rad(g)(k−1)

sería un ideal abeliano de g no nulo, llegando a contradicción. Además, un álgebra de Lie
es semisimple si, y sólo si, es suma directa de álgebras de Lie simples [28, Theorem 1.54].

Definimos la forma de Killing del álgebra de Lie g como la aplicación B : g × g → R
dada por la expresión

B(X, Y ) = tr(ad(X) ◦ ad(Y )), para cualesquiera X, Y ∈ g.

Se puede comprobar que la forma de Killing es una forma bilineal simétrica de g.
Finalmente, enunciamos algunos resultados que utilizaremos en los capítulos siguientes.

Comenzamos por dar un criterio para determinar la semisimplicidad de un álgebra de Lie
a partir de su forma de Killing, conocido como criterio de Cartan para la semisimplicidad.

Teorema 1.6 ([28, Theorem 4.15]). Un álgebra de Lie g es semisimple si, y sólo si, su
forma de Killing es no degenerada.

Decimos que un álgebra de Lie es compacta si existe un grupo de Lie G compacto
cuya álgebra de Lie sea g. Las álgebras de Lie compactas semisimples admiten la siguiente
caracterización.

Proposición 1.7 ([41, Proposition 3.25]). Sea g un álgebra de Lie, y sea B su forma de
Killing. La forma B es definida negativa si, y sólo si, g es compacta con Z(g) = 0.
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Proposición 1.8 ([41, Proposition 3.24]). Si g es un álgebra de Lie compacta, entonces
existe un producto interior en g para el cual ad(X) ∈ gl(g) es antisimétrico para todo
X ∈ g.

El último resultado que presentamos en este capítulo nos indica cuál es el comporta-
miento de la forma de Killing con respecto a automorfismos del álgebra de Lie. Recordemos
que un automorfismo de un grupo (respectivamente álgebra) de Lie es un isomorfismo del
grupo (álgebra) de Lie en sí mismo. Recordemos también que un automorfismo de un grupo
de Lie G tiene por diferencial un automorfismo de su álgebra de Lie g. Denotaremos por
Aut(G) al conjunto de automorfismos de un grupo de Lie G y por Aut(g) al conjunto de
automorfismos de un álgebra de Lie g.

Proposición 1.9 ([41, Proposition 1.37]). Sea g un álgebra de Lie, B su forma de Killing
y A ∈ Aut(g). Entonces

(a) B es invariante por A, es decir, B(AX,AY ) = B(X, Y ) para cualesquiera X, Y ∈ g.

(b) Sean X, Y, Z ∈ g. Entonces B(ad(Z)X, Y ) +B(X, ad(Z)Y ) = 0.



Capítulo 2

Espacios simétricos

Este capítulo lo dedicaremos a la introducción y al estudio de los espacios simétricos, con
especial énfasis en los de tipo no compacto. Comenzamos por dar la definición de espacio
simétrico en la Sección 2.1, en la que también demostramos que son variedades de Riemann
completas y homogéneas. En la Sección 2.2 pasamos a centrarnos en las herramientas
algebraicas relacionadas con los espacios simétricos, y comenzamos por introducir la conoci-
da como descomposición de Cartan. Ésta nos permitirá distinguir entre espacios simétricos
de tipo Euclidiano, de tipo compacto o de tipo no compacto, lo cual detallaremos en la
Sección 2.3. En la Sección 2.4, nos centraremos en la descomposición de Iwasawa asociada a
los espacios simétricos de tipo no compacto, para lo cual tendremos que introducir también
la descomposición en espacios de raíces y la teoría de espacios de raíces. Finalmente, en la
Sección 2.5 veremos que todo lo anterior nos permite identificar cada espacio simétrico de
tipo no compacto con un grupo de Lie resoluble con una métrica invariante a la izquierda.

Este capítulo ha sido escrito tomando como referencias [23] y [41] para la Sección 2.1,
la Sección 2.2 y la Sección 2.3. Para la Sección 2.4, los resultados presentados aparecen
reflejados en [28], pero para su adaptación al capítulo se utilizó [20, Section 3.1]. Para la
elaboración de la Sección 2.5 se siguió [20, Section 3.2].

2.1. Definición y primeras consecuencias
Diremos que una variedad de Riemann conexa, (M, g), es un espacio simétrico (global) si

en cada punto p ∈ M existe una isometría sp : M → M , conocida como reflexión geodésica
en p, con las siguientes propiedades:

1. Fija el punto p, esto es, sp(p) = p.

2. La diferencial de sp en p, (sp)∗p : TpM → TpM , es (sp)∗p = −Id.

Esta definición también se puede dar localmente. Un espacio simétrico local es una variedad
de Riemann conexa, (M, g), tal que para todo punto p ∈ M , existe un r > 0 para el cual
podemos encontrar una isometría sp : Bp(r) → Bp(r) que satisface las dos propiedades
anteriores. Recordemos que Bp(r) = {q ∈ M : d(p, q) < r} se conoce como bola geodésica.

19
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Sea M un espacio simétrico y sea sp la reflexión geodésica por p ∈ M . Observemos la
isometría que estamos considerando es una involución ya que s2

p = Id. En efecto, se tiene
que sp(sp(p)) = sp(p) = p y (sp)2

∗p = (sp)∗p(sp)∗p = −(sp)∗p = Id, con lo que tenemos una
isometría que deja fijo p y con diferencial la identidad, algo que comparte con la aplicación
identidad. Por lo tanto, usando el Lema 1.4, deducimos que s2

p = Id.
Una serie de propiedades que se derivan directamente de la definición de espacio

simétrico se recogen en el siguiente resultado.
Proposición 2.1. Sean M un espacio simétrico, p ∈ M un punto, y sp su reflexión
geodésica. Se tiene que:

(a) Si γ : (−ϵ, ϵ) ⊂ R → M es una geodésica tal que γ(0) = p, entonces sp(γ(t)) = γ(−t)
para cualquier t ∈ (−ϵ, ϵ), donde ϵ ∈ R+.

(b) M es completo.

(c) M es un espacio homogéneo.
Demostración. Demostremos cada uno de los puntos por separado:

(a) Como sp es una isometría, entonces la curva α, que definimos como α := sp ◦ γ es
una geodésica tal que α(0) = (sp ◦ γ)(0) = sp(p) = p y α̇(0) = (sp)∗p(γ̇(0)) = −γ̇(0).
Como dos geodésicas que pasan en un instante t por un mismo punto con la misma
velocidad deben ser la misma, deducimos que α(t) debe ser exactamente γ(−t).

(b) Usando el Teorema 1.1, como M es conexo por definición, basta comprobar que es
geodésicamente completo para tener que es completo como espacio métrico. Consi-
deremos entonces γ : [0, t0) ⊂ R → M una geodésica con γ(0) = p. Lo que haremos
será extenderla mediante reflexiones geodésicas respecto de puntos sobre γ suficiente-
mente cerca del final de la geodésica. Sea ϵ > 0, y veamos que podemos reflejar la
geodésica hasta un instante t0+ϵ siempre que ϵ < t0

2 . En efecto, consideremos la curva
γ̃ : (−ϵ, t0−ϵ] → M dada por γ̃(t) = γ(−t+t0−ϵ). Esta curva verifica γ̃(0) = γ(t0−ϵ)
y γ̃′(0) = −γ′(t0 − ϵ). Ahora vamos a definir la curva β(t) = sγ(t0−ϵ) ◦ γ̃(t) = γ̃(−t);
es decir, β(t) = γ(t + t0 − ϵ), y está definida mientras t + t0 − ϵ < t0. Pero por otra
parte β está definida mientras t0 − ϵ+ t0 − ϵ > t0, de lo que se deduce que podemos
prolongar γ por reflexión hasta un instante t0 + ϵ con ϵ < t0

2 . Repitiendo el proceso
sucesivamente, podemos prolongar tanto como queramos las geodésicas; es decir, las
podemos definir en todo R. Por tanto, M es geodésicamente completo, y entonces
es completo. En la Figura 2.1 se puede ver un esquema del proceso seguido en esta
demostración.

(c) Veamos que M es una variedad homogénea. Sean p, q ∈ M dos puntos, y, usando el
Corolario 1.2 junto con el apartado anterior, sea γ : [−t0, t0] → M un segmento de
geodésica que los una, siendo γ(−t0) = p y γ(t0) = q. Sea m = γ(0) ∈ M el punto
medio del segmento de geodésica. Consideremos la reflexión geodésica en m, sm, así
como la curva β(t) := (sm ◦ γ)(t). Entonces, usando el primer apartado, se tiene que
β(t) = γ(−t), de lo que tenemos que sm(p) = sm(γ(−t0)) = β(−t0) = γ(t0) = q.



2.1 Definición y primeras consecuencias 21

Figura 2.1: Esquema de extensión de geodésicas en un espacio simétrico. Primero solamente
teniendo un arco de la geodésica, luego seleccionando un punto suficientemente cerca del
extremo de la geodésica y finalmente consiguiendo una geodésica prolongada por reflexión
en el punto elegido.

El resultado (c) de la proposición anterior nos da un hecho importante, y es que el
conjunto de isometrías de M , I(M) (que ya indicamos en el capítulo anterior que era un
grupo de Lie), actúa transitivamente sobre el espacio simétrico M . Por lo tanto M será
difeomorfo, como vimos en la Sección 1.3, al cociente de I(M) por el grupo de isotropía de
un punto p ∈ M , M ∼= I(M)

I(M)p
. Este difeomorfismo vendrá dado por

Φ: I(M)
I(M)p

−→ M

σI(M)p 7−→ σ(p).

Además, veremos a continuación que nos podemos restringir a la componente conexa de la
identidad de I(M):

Proposición 2.2. Sea G = I0(M) la componente conexa de la identidad del grupo de
isometrías I(M) de un espacio simétrico M . Entonces G es un grupo de Lie que actúa
transitivamente sobre M .

Demostración. Nótese que la componente conexa de la identidad de un grupo de Lie
también es un grupo de Lie (véase, por ejemplo, [31, Proposition 7.12 y Lemma 7.15]).

Solamente nos resta ver que I0(M) actúa transitivamente sobre M . Para ello, consi-
deremos dos puntos p, q ∈ M y veamos que existe σ ∈ I0(M) tal que σ(p) = q. Ya sabemos,
por el apartado (b) de la Proposición 2.1, que podemos unir p y q por un segmento de
geodésica γ : [0, 1] → M (con γ(0) = p y γ(1) = q). Ahora, usando el apartado (c) de la
Proposición 2.1, tenemos sγ( 1

2)(p) = q. Como sp(p) = p, se tiene que
(
sγ( 1

2) ◦ sp

)
(p) = q.

Consideremos la aplicación continua (se puede comprobar que, en efecto, esta aplicación
es continua en la topología compacto-abierto de I(M), pero no daremos aquí los detalles
de tal prueba)

Ψ: [0, 1] −→ I(M)
t 7−→ sγ( t

2) ◦ sp,
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para la cual se tiene que Ψ(0) = s2
p = Id y Ψ(1) = sγ( 1

2) ◦ sp; es decir, es un camino en
I(M) que une la identidad con sγ( 1

2) ◦ sp. Por tanto, sγ( 1
2) ◦ sp es un elemento de I0(M)

que lleva p en q.

A partir de ahora, salvo que indiquemos lo contrario, consideraremos un espacio simétri-
co M como cociente de G = I0(M) por K = Gp, siendo p ∈ M . Cabe observar que es
posible que, para un cierto q ∈ M , sq no pertenezca a G.

Algunos ejemplos sencillos de espacios simétricos son los espacios Euclidianos Rn, las
esferas Sn y los espacios hiperbólicos reales RHn. Veamos primero que Rn es un espacio
simétrico con la métrica usual. Para cada punto p ∈ Rn, consideremos la aplicación dada
por sp(p + v) = p − v, con v ∈ Rn. Esta aplicación es una isometría trivialmente, ya que
(sp)∗(p+v) = Id. Además, sp(p) = p y s∗p = −Id, con lo que sp es una reflexión geodésica
respecto del punto p ∈ Rn, con lo que Rn es un espacio simétrico.

Ahora veamos que las esferas Sn son espacios simétricos. Sea ⟨·, ·⟩ la métrica usual del
espacio Euclidiano Rn+1. Estamos considerando Sn = {p ∈ Rn+1 : ∥p∥ = 1} la esfera
de radio uno de dimensión n, la cual se puede dotar de métrica mediante el pull-back
de la métrica de Rn+1. Consideramos un punto p ∈ Sn ⊂ Rn+1. Definamos la aplicación
s̃p : Rn+1 → Rn+1, dada por s̃p(q) = −q+2⟨q, p⟩p. La restricción de esta aplicación s̃p a Sn,
sp = s̃p|Sn : Sn → Sn es una reflexión geodésica en Sn. En efecto, consideremos una base
ortonormal de Rn+1, {v0, . . . , vn}, con p = v0. La aplicación sp que estamos considerando
lleva q = ∑n

i=0⟨q, vi⟩vi en sp(q) = ⟨q, v0⟩ − ∑n
i=1⟨q, vi⟩vi; es decir, mantiene la proyección

de q en la dirección de p intacta y refleja las otras n componentes de q. Veamos que
sp es reflexión geodésica. Lo primero es observar que la aplicación sp es una aplicación
lineal, con lo que coincide con su diferencial, (sp)∗q = sp. Además, se puede verificar que
⟨sp(q), sp(q′)⟩ = ⟨q, q′⟩, con lo que se comprueba que sp es isometría. Se tiene además que
sp(p) = p, y en el espacio tangente a p, TpSn = {v ∈ Rn+1 : ⟨v, p⟩ = 0}, se tiene que
(sp)∗q = −Id, con lo que concluimos que Sn es un espacio simétrico.

El caso del espacio hiperbólico n-dimensional real es análogo al de la esfera. Este espacio
se define como

RHn = {x = (x0, . . . , xn) ∈ R1,n, ⟨x, x⟩ = 1, x0 > 0},
donde R1,n denota el espacio Euclidiano dotado con la métrica definida por

⟨x, y⟩ = ⟨(x0, x1, . . . , xn), (y0, y1, . . . , yn)⟩ = −x0y0 +
n∑

i=1
xiyi.

La aplicación restricción de sp : R1,n → R1,n, definida por sp(q) = −q − 2⟨q, p⟩p, a RHn

también es reflexión geodésica para este espacio, y se comprueba exactamente de la misma
forma que en el caso de la esfera. Por lo tanto, se tiene que RHn es un espacio simétrico.

2.2. Descomposición de Cartan
Tras introducir los espacios simétricos, algunas de las propiedades que se siguen de

manera directa de su definición, y presentar algunos ejemplos, pasamos ahora a estudiar
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ciertos aspectos y herramientas algebraicas relativas a los mismos. En esta sección nos
centraremos en la conocida como descomposición de Cartan. De modo informal, obtendre-
mos el álgebra de Lie de la componente conexa del grupo de isometrías de cada espacio
simétrico M como la suma del álgebra de Lie del grupo de isotropía de un punto p ∈ M
con un espacio vectorial que resultará ser isomorfo a TpM . De esta descomposición también
obtendremos la involución de Cartan θ, de gran importancia en lo que sigue. Recordemos
que de ahora en adelante M = G/K denota un espacio simétrico, donde G = I0(M) y
K = Gp, siendo p ∈ M un punto arbitrario pero fijado.

Proposición 2.3. Sea M ∼= G/K un espacio simétrico. Entonces:

(a) La reflexión geodésica sp induce un automorfismo involutivo

σ : G −→ G

g 7−→ spgsp.

(b) Si Gσ = {g ∈ G : σ(g) = g} es el conjunto de puntos fijos de σ y Gσ
0 la componente

conexa de la identidad de Gσ, entonces

Gσ
0 ⊂ K ⊂ Gσ.

Demostración. Veamos cada uno de los apartados por separado:

(a) Observemos que, por definición de sp, se tiene que s2
p = Id, de lo cual se deduce

que s−1
p = sp y que el neutro de G es un punto fijo de la aplicación σ. Dado que σ

es composición de traslaciones, es diferenciable. De esta forma, σ es una aplicación
diferenciable (con lo que lleva componentes conexas en componentes conexas) que
tiene el neutro como punto fijo, y concluimos que σ(G) ⊂ G, es decir, σ está bien
definida. Podemos además ver σ como una conjugación de g ∈ G por sp ∈ I(M). Dado
que I(M) es un grupo de Lie, se tiene entonces que σ es una aplicación diferenciable.
Por último, dado que s2

p = Id, se tiene que σ2(G) = spspGspsp = G, y con esto se
concluye que σ es, en efecto, un automorfismo involutivo.

(b) Primero observemos que Gσ es un subgrupo de Lie cerrado. Es inmediato comprobar
que Gσ es subgrupo, así que veamos que es cerrado. Para ello, sea una sucesión de
elementos de Gσ, {gn}n∈N, convergente a g ∈ G. Entonces, por una parte, dada la
continuidad de σ, se tiene que {σ(gn)} → σ(g) y {gn} → g; y por otra parte, como
σ(gn) = gn para cualquier n ∈ N y G es Hausdorff, se sigue que σ(g) = g. Es decir,
g ∈ Gσ, concluyéndose que Gσ es subgrupo cerrado de G, y por tanto un subgrupo
de Lie embebido de G, por el Teorema de Cartan [31, Theorem 20.12].
Veamos ahora que K ⊂ Gσ. Sea entonces h ∈ K. Por una parte, como K es el
subgrupo de isotropía en p, se tiene que

σ(h)(p) = (sphsp)(p) = p = h(p);
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y por otra parte, teniendo en cuenta que sp es reflexión geodésica obtenemos

(σ(h))∗p = (sphsp)∗p = (sp)∗p h∗p (sp)∗p = −Idh∗p (−Id) = h∗p.

Con lo cual, se concluye, usando el Lema 1.4, σ(h) = h, y así h pertenece a Gσ.
Finalmente, veamos que Gσ

0 ⊂ K. Como vimos que Gσ es un subgrupo de Lie de G,
tendremos que su componente conexa de la identidad, Gσ

0 , también es un subgrupo
de Lie de G. Por lo tanto, podemos considerar su álgebra de Lie, que denotaremos
por Lie(Gσ

0 ). Consideremos X ∈ Lie(Gσ
0 ). Se tiene entonces que Exp(tX) ∈ Gσ

0 para
todo t ∈ R [31, Proposition 20.9]. Ahora bien, si utilizamos la definición de Gσ, se
tiene que spExp(tX)sp = σ(Exp(tX)) = Exp(tX). Aplicando esto a p, deducimos
que

(spExp(tX)sp)(p) = (spExp(tX))(p) = Exp(tX)(p).

Como (sp)∗p = −Id, para cualquier entorno de p suficientemente pequeño, se tiene que
sp no puede fijar ningún punto salvo p, con lo que deducimos que Exp(tX)(p) = p
para cualquier t ∈ R. Por lo tanto, Exp(tX) ∈ K. Para terminar, basta tener en
cuenta que, como Gσ

0 es un grupo de Lie conexo, éste está generado por un entorno
del elemento neutro que es homeomorfo a un abierto de Lie(Gσ

0 ).

La involución σ inducirá otra involución de g en sí misma, que es la conocida como
involución de Cartan que venimos anunciando desde el comienzo de esta sección. El interés
de esta involución se ve en la siguiente proposición.

Proposición 2.4. La involución σ induce otra involución θ : g → g y se tienen las
siguientes propiedades:

(a) El álgebra de Lie g de G se puede descomponer como suma directa de k = {X ∈ g :
θX = X} y p = {X ∈ g : θX = −X}, esto es, g = k ⊕ p. Esto quiere decir que g se
descompone en suma directa de los autoespacios asociados a los autovalores +1 y −1
de la involución θ.

(b) Estos autoespacios satisfacen las siguientes tres reglas de corchete entre ellos:

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

(c) La descomposición g = k ⊕ p es ortogonal con respecto a la forma de Killing B de g.

Demostración. Lo primero que veremos es que θ = σ∗ es una involución inducida por
σ : G → G. Dado que sp = s−1

p , σ es un conjugación por un sp ∈ I(M) fijado, y en
consecuencia σ será un automorfismo que preserva G. Por otra parte, como s2

p = Id ∈ G,
se tiene que σ2(h) = h para cualquier h ∈ G, y entonces σ es una involución. Así, también
se tendrá que θ2 = σ2

∗ = Id; es decir, θ es involución.
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(a) Ahora veamos que θ diagonaliza con autovalores +1 y −1, de forma que podemos
hacer la descomposición en autoespacios g = k ⊕ p. Supongamos que θX = λX para
algún X ∈ g, con λ ∈ R. Como θ es involución, se tiene que X = θ2X = λ2X,
y por tanto concluimos que θ diagonaliza con autovalores λ ∈ {+1,−1}. Definimos
entonces los autoespacios asociados a cada uno de estos autovalores:

k = {X ∈ g : θX = X}, p = {X ∈ g : θX = −X}.

Por lo tanto, g = k ⊕ p.

(b) Dado que θ es la diferencial de un automorfismo de grupos de Lie, es un isomorfismo
de álgebras de Lie. Por lo tanto, se tiene que θ[X, Y ] = [θX, θY ]. Así, basta con
aplicar la definición de cada uno de los autoespacios en los corchetes:

• Sean K1, K2 ∈ k. Entonces θ[K1, K2] = [θK1, θK2] = [K1, K2], con lo que
[K1, K2] ∈ k; es decir, [k, k] ⊂ k.

• Sean K ∈ k y P ∈ p. Entonces θ[K,P ] = [θK, θP ] = −[K,P ], de modo que
[K,P ] ∈ p; es decir, [k, p] ⊂ p.

• Sean P1, P2 ∈ p. Entonces θ[P1, P2] = [θP1, θP2] = [P1, P2], así que [P1, P2] ∈ k;
es decir, [p, p] ⊂ k.

(c) Veamos que B(k, p) = 0. Sean K ∈ k y P ∈ p. Entonces, usando el resultado del
apartado anterior,

B(K,P ) = tr(ad(K) ◦ ad(P )) = tr
 0 ∗

∗ 0

 = 0.

La segunda igualdad viene de calcular las representaciones matriciales de ad(K) y
ad(P ):

ad(K) =
 ∗ 0

0 ∗

 , ad(P ) =
 0 ∗

∗ 0

 ,
donde las primeras columnas se refieren a la acción en k y las segundas en p.

En adelante, nos referiremos a θ como involución de Cartan y a la descomposición
g = k ⊕ p como descomposición de Cartan. En ciertos textos también se hace referencia
a σ como involución de Cartan, siendo una versión a nivel de grupos de Lie. El siguiente
resultado nos da más información acerca de los autoespacios de θ.

Proposición 2.5. Sea M ∼= G/K un espacio simétrico, donde G es la componente conexa
de la identidad de su grupo de isometrías. Se tiene entonces que:

(a) El subespacio k es precisamente el álgebra de Lie del grupo de isotropía K = I0(M)p.

(b) Como espacios vectoriales, p y TpM son isomorfos. Entonces, p se puede dotar de
un producto interior que resulta ser Ad(K)-invariante.
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Demostración. (a) Veamos primero que el álgebra de Lie de K, Lie(K), está contenida
en k. Sea entonces X ∈ Lie(K), lo cual equivale a que Exp(tX) ∈ K para cualquier
t ∈ R. Queremos ver que θX = X, así que hacemos el cálculo correspondiente:

(θX)e = σ∗e Xe = σ∗e
d

dt

∣∣∣∣∣
t=0

Exp(tX) = d

dt

∣∣∣∣∣
t=0
σ(Exp(tX)) = d

dt

∣∣∣∣∣
t=0

Exp(tX) = Xe,

como queríamos ver. En la segunda igualdad hemos usado que Exp(tX) es una curva
que pasa por el neutro en t = 0 y con velocidad X, mientras que en la penúltima
hemos usado que Exp(tX) ∈ K ⊂ Gσ. Evaluamos en el neutro porque los campos
de un álgebra de Lie, en particular de Lie(K), están determinados por su valor en el
neutro.
Ahora veamos la otra inclusión, k ⊂ Lie(K). Consideremos X ∈ k, que satisface
θX = X. Podemos entonces hacer el siguiente cálculo:

Exp(tX) = Exp(t θX) = Exp(θ(tX)) = σ(Exp(tX)),

donde hemos utilizado la conmutación Exp(f∗X) = f(Exp(X)), tomando f = σ.
Se tiene entonces que Exp(tX) ∈ Gσ para cualquier t ∈ R. Ahora bien, dado que
Exp(0) = Id y Exp es una aplicación diferenciable, se tiene que Exp(tX) ∈ Gσ

0 para
cualquier t ∈ R.

(b) Esta demostración la haremos en tres etapas:

1. Veamos que p y TpM son isomorfos como espacios vectoriales. Consideremos la
aplicación órbita por p, ϕ : G → M , definida por ϕ(g) = g(p). La aplicación ϕ
es diferenciable de rango constante [31, Theorem 7.25], y como estamos en un
espacio simétrico, se deduce que es, además, sobreyectiva. Por lo tanto, es una
submersión.
Si ahora consideramos la aplicación F : G/K → M , definida mediante gK 7→
F (gK) = g(p), los siguientes dos diagramas son conmutativos:

G M TeG TpM

G/K TK(G/K)

ϕ

π

ϕ∗e

π∗e
F F∗K

Observemos que, como M es difeomorfo a G/K precisamente por F , se tiene
que F∗K es un isomorfismo entre espacios tangentes. Entonces,

ker(ϕ∗e) = ker(F∗K ◦ π∗e) = ker(π∗e) ∼= k,

donde estamos usando justamente el apartado (a) para el isomorfismo final.
Como TeG es isomorfo a g = k ⊕ p, deducimos que ϕ∗e|p : p → TpM es un
isomorfismo.



2.2 Descomposición de Cartan 27

De esta forma, podemos definir el producto interior que indicamos en el enun-
ciado como

⟨X, Y ⟩p := ⟨ϕ∗eXe, ϕ∗eYe⟩, para cualesquiera X, Y ∈ p.

2. Veamos p que es Ad(K)-invariante; es decir, Ad(K)(p) ⊂ p. Sea α : G → G
un automorfismo de grupos de Lie, y sea Ig : G → G la conjugación por g. Se
deduce la siguiente igualdad:

(α ◦ Ig)(h) = α(ghg−1) = α(g)α(h)α(g)−1 = (Iα(g) ◦ α)(h);

es decir, α ◦ Ig = Iα(g) ◦ α. Podemos entonces aplicar diferenciales y obtener

α∗eIg∗e = (α ◦ Ig)∗e = (Iα(g) ◦ α)∗e = Ig∗eα∗e.

Para el caso de la aplicación adjunta, teniendo en cuenta su definición, se obtiene

α∗ ◦ Ad(g) = Ad(α(g)) ◦ α∗. (2.1)

Ahora vamos a aplicar la involución de Cartan a Ad(k)(P ) para k ∈ K y P ∈ p
arbitrarios, y veremos que Ad(k)(P ) ∈ p:

θAd(k)(P ) = σ∗Ad(k)(P ) = Ad(σ(k))σ∗(P ) = Ad(k)θ(P ) = −Ad(k)(P ),

donde en la segunda igualdad hemos usado la ecuación (2.1), en la tercera
que K ⊂ Gσ y en la cuarta que θ|p = −Id. Por lo tanto, y como queríamos
ver, Ad(k)(P ) pertenece al autoespacio asociado al autovalor −1 de θ, que,
recordemos, es p por la Proposición 2.4.

3. Nos resta ver que Ad(k) es una isometría, para cualquier k ∈ K = I0(M)p, para
el producto interior que acabamos de definir en p. Recordemos que ϕ : G → M
viene definida por ϕ(g) = g(p). Observemos que

(ϕ ◦ Ik)(g) = ϕ(kgk−1) = kgk−1(p) = kg(p) = (k ◦ ϕ)(p).

Usando esto, podemos realizar la siguiente cadena de igualdades:

⟨Ad(k)X,Ad(k)Y ⟩p =⟨ϕ∗eIk∗e Xe, ϕ∗eIk∗e Ye⟩
=⟨(ϕ ◦ Ik)∗e Xe, (ϕ ◦ Ik)∗e Ye⟩
=⟨(k ◦ ϕ)∗e Xe, (k ◦ ϕ)∗eYe⟩
=⟨k∗eϕ∗e Xe, k∗eϕ∗e Ye⟩

(k∗e es isometría) =⟨ϕ∗e Xe, ϕ∗e Ye⟩
=⟨X, Y ⟩p.

Con esto queda probado el resultado.

Observemos que la descomposición de Cartan depende del punto considerado; sin
embargo, se tiene que todas las involuciones de Cartan que podamos considerar son conjuga-
das entre sí [28, Corollary 6.19].
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2.3. Espacios simétricos irreducibles
El objetivo fundamental de esta sección será, haciendo uso los contenidos introducidos

de la Sección 2.2, agrupar o clasificar los espacios simétricos irreducibles en tres grandes
clases: de tipo Euclidiano, de tipo compacto y de tipo no compacto. Además de algunas de
sus propiedades, explicaremos brevemente la dualidad existente entre los espacios simétricos
de tipo compacto y los espacios simétricos de tipo no compacto, y mostraremos algunos
ejemplos concretos de dicha dualidad.

Sea M ∼= G/K un espacio simétrico. Se tiene entonces que su recubrimiento universal,
M̃ , es también un espacio simétrico. Además, por el Teorema de de Rham (ver [16]),
podemos descomponer M̃ como M̃ = M̃0×M̃1×· · ·×M̃n, donde M̃0 es un factor Euclidiano
(es decir, es localmente isométrico a un espacio Euclidiano), y los M̃i, con i ∈ {1, . . . , n},
son espacios simétricos simplemente conexos irreducibles.

Consideremos la representación

ρ : K −→ O(TpM)
k 7−→ ρ(k) = k∗p : TpM −→ TpM,

donde k(p) = p dado que K = I0(M)p. Ésta recibe el nombre de representación de
isotropía del espacio simétrico M ∼= G/K. Una propiedad fundamental de esta representa-
ción la indicamos a continuación.

Proposición 2.6 ([41, Corollary 9.8]). Si M ∼= G/K es un espacio simétrico simplemente
conexo irreducible, entonces la representación de isotropía es irreducible.

Este resultado es la motivación principal de la definición de espacio simétrico irreduci-
ble. Un espacio simétrico M ∼= G/K se dice irreducible si K0 (la componente conexa del
subgrupo de isotropía) actúa de forma irreducible sobre TpM . En caso contrario, estaremos
hablando de un espacio simétrico reducible. Se tiene que M es irreducible como espacio
simétrico si, y sólo si, M̃ es irreducible y no se puede considerar como producto no trivial
de espacios simétricos, salvo que M̃ sea un espacio Euclidiano. Una condición suficiente
para que un espacio simétrico sea irreducible es que G sea un grupo simple.

Teniendo en cuenta la Proposición 2.5, identificamos p en la descomposición de Cartan
con TpM . Entonces, resulta que las siguientes representaciones son equivalentes

K × TpM −→ TpM K × p −→ p

(k, v) 7−→ k∗pv (k,X) 7−→ Ad(k)X.

En efecto, el diagrama

p p

TpM TpM

Ad(k)

Id×(dϕ)e (dϕ)e

k∗e
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conmuta, ya que

ϕ∗e(Ad(k)X)e = ϕ∗eIk∗e Xe = (ϕ ◦ Ik)∗e Xe = k∗eϕ∗e Xe.

Llegados a este punto, estudiaremos las formas bilineales y veremos la importancia de
la forma de Killing a la hora de clasificar los espacios simétricos irreducibles.

Proposición 2.7. Sean B1 y B2 dos formas bilineales simétricas definidas sobre un espacio
vectorial V tales que B1 es definida positiva. Si un grupo de Lie compacto K actúa irreduci-
blemente sobre V y B1, B2 son invariantes por K, entonces B2 = λB1 para un cierto λ ∈ R.

Demostración. Lo primero que haremos será definir un endomorfismo φ : V → V , dado
por B2(u, v) = B1(φ(u), v), para cualquier u ∈ V y v ∈ V fijado. Veamos que podemos
hacer esta elección. Dado que B1 es definida positiva por hipótesis, B1(V, v) ̸= 0, y entonces
existe un w ∈ V tal que B1(w, v) ̸= 0. Podemos entonces seleccionar un µ ∈ R tal que
B1(µw, v) = B2(u, v), y esto lo podemos hacer para cualquier u ∈ V . Nos basta definir
φ(u) = µw. Nos falta solamente comprobar que esta definición de φ la convierte en una
aplicación lineal:

B1(φ(au1 + bu2), v) =B2(au1 + bu2, v) = aB2(u1, v) + bB2(u2, v)
=aB1(φ(u1), v) + bB1(φ(u2), v) = B1(aφ(u1) + bφ(u2), v),

con lo que φ(au1 +bu2) = aφ(u1)+bφ(u2) para cualesquiera a, b ∈ R y u1, u2 ∈ V ; es decir,
φ es, en efecto, una aplicación lineal.

Ahora vamos a trabajar con la acción de K sobre V , usando notación multiplicativa
K × V → V dada por (k, v) 7→ kv. Observemos que para cualesquiera u, v ∈ V se tiene
que

B1(φ(u), v) = B2(u, v) = B2(v, u) = B1(φ(v), u) = B1(u, φ(v)),
con lo que vemos que φ es autoadjunta con respecto a B1. Como B1 es, por hipótesis,
definida positiva, se tiene entonces que φ diagonaliza con autovalores reales. Ahora bien,
como B1 y B2 son invariantes bajo la acción de K, tenemos que

B1(kφ(u), v) = B1(φ(u), k−1v) = B2(u, k−1v) = B2(ku, v) = B1(φ(ku), v),

con k ∈ K y u, v ∈ V . Esto tiene como consecuencia que B1(kφ(u) − φ(ku), v) = 0 para
todo v ∈ V . Como B1 es definida positiva, se sigue que kφ = φk para cualquier k ∈ K.

Finalmente, si consideramos E el autoespacio asociado al autovalor λ de φ, se tiene

φ(kE) = kφ(E) = λkE,

con lo que kE ⊂ E. Por lo tanto, como K actúa irreduciblemente sobre V , E = V (λ no
puede ser 0 ya que si lo fuera, se tendría que B2 = 0). Esto quiere decir que φ = λ Id, y
por tanto se concluye el resultado buscado: B2 = λB1.

Una consecuencia importante de este resultado se indica en el siguiente corolario.
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Corolario 2.8. Sea M ∼= G/K un espacio simétrico y sea B la forma de Killing en g. Si
M es irreducible, entonces existe λ ∈ R tal que

⟨X, Y ⟩p = λB(X, Y ), para cualesquiera X, Y ∈ p.

Demostración. Como M es irreducible, la acción K×p → p, dada por (k,X) 7→ Ad(k)X, es
irreducible. Ahora, consideremos ⟨·, ·⟩p, que, por la Proposición 2.5 es una forma bilineal,
simétrica, definida positiva e invariante bajo Ad(K); y consideremos también B|p×p (la
forma de Killing restringida), que es no nula, simétrica, bilineal e invariante bajo Ad(K).
Observemos que

ad(aX)Z = [aX,Z] = a[X, a−1Z] = (a ◦ ad(X) ◦ a−1)(Z). (2.2)

Usando la ecuación (2.2), podemos comprobar que la forma de Killing restringida a p × p
es invariante por automorfismos de g:

B(aX, aY ) =tr(ad(aX) ◦ ad(aY )) = tr(a ◦ ad(X) ◦ a−1 ◦ a ◦ ad(Y ) ◦ a−1)
=tr(a ◦ ad(X) ◦ ad(Y ) ◦ a−1) = tr(a−1 ◦ a ◦ ad(X) ◦ ad(Y ))
=tr(ad(X) ◦ ad(Y )) = B(X, Y ),

siendo a un automorfismo de g.
Tomando ⟨·, ·⟩p como B1 y la forma de Killing como B2 en la Proposición 2.7, se tiene

que existe una constante λ ∈ R tal que ⟨·, ·⟩p = λB(·, ·).

En el caso de que el espacio simétrico sea reducible, también tenemos algo análogo,
resultado de aplicar el corolario anterior a cada una de las componentes de la descomposi-
ción del espacio simétrico en producto de espacios irreducibles. Dado un espacio simétrico
reducible en la forma M = M1,× . . .×Mn, denotaremos por gi = ki ⊕ pi (i ∈ {1, . . . , n}) a
la descomposición de Cartan correspondiente al álgebra de Lie gi asociada a cada uno de
los espacios simétricos Mi del producto.

Corolario 2.9. Sea M ∼= G/K un espacio simétrico. Si M es reducible, entonces p =
p1 ⊕ . . .⊕ pn y

⟨X, Y ⟩pi
= λiB(X, Y ), para cualesquiera X, Y ∈ pi, e i ∈ {1, . . . , n}.

Usando el Corolario 2.8, podemos distinguir tres clases de espacios simétricos irreduci-
bles a partir del signo de la constante de proporcionalidad λ. Sea M ∼= G/K un espacio
simétrico irreducible. Por el Corolario 2.8, como ⟨·, ·⟩p es definida positiva, se tiene que
B|p×p = λ−1⟨·, ·⟩p. En función del signo de este valor λ distinguimos tres clases de espacios
simétricos irreducibles, que recogemos en la Tabla 2.1

Veamos más en detalle algunos aspectos recogidos en la Tabla 2.1.

Proposición 2.10. Sea M ∼= G/K un espacio simétrico. Se tiene entonces que:
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Tipo de espacio simétrico M G

λ < 0 Compacto Compacto y curvatura seccional no negativa Compacto y semisimple
λ > 0 No compacto No compacto y curvatura seccional no positiva No compacto y semisimple
λ = 0 Euclidiano El recubrimiento universal es Rn

Tabla 2.1: Clases de espacios simétricos irreducibles.

(a) Si M es de tipo compacto, entonces G es semisimple y G y M son compactos.

(b) Si M es de tipo no compacto, entonces G es semisimple y G y M son no compactos.

(c) M es de tipo Euclidiano si, y sólo si, [p, p] = 0.

Demostración. (a) Se tiene que la involución de Cartan del álgebra de Lie g, θ, preserva
la forma de Killing dado que es un automorfismo de g (Proposición 1.9). Lo primero
que veremos es que B|k×k es definida negativa. Como K es compacto [41, Proposition
9.14], se tiene que k debe ser compacta, así que, por la Proposición 1.8, k admite
un producto escalar, para el cual ad(X) es una transformación antisimétrica de g
para todo X ∈ k. Se tiene entonces que ad(X) ∈ gl(g) tiene todos sus autovalores
imaginarios puros. Entonces, B(X,X) = tr(ad(X)2) ≤ 0. Ahora veamos que, de
hecho, B(X,X) debe ser negativo si 0 ̸= X ∈ k. Supongamos que B(X,X) = 0; es
decir, tr(ad(X)2) = 0, con lo que deducimos que ad(X) = 0. Por lo tanto, llegamos
a que X ∈ Z(g). Sin embargo, como el grupo de isometrías de un espacio simétrico
actúa efectivamente sobre éste, también lo hace de forma casi efectiva, y entonces g
y k no pueden tener ideales distintos de 0 en común, llegándose a una contradicción,
ya que Z(g) ∩ k es un ideal de g y de k.

Ahora, como B|p×p es definida negativa por hipótesis, B es no degenerada, así que,
por el criterio de Cartan para la semisimplicidad (Teorema 1.6), g es semisimple.
Además, al ser tanto B|k×k como B|p×p definidas negativas, B es definida negativa,
lo cual equivale (Proposición 1.7) a que g sea compacta y Z(g) sea nulo; es decir, G
es compacto como grupo de Lie de g. Finalmente, como M es difeomorfo al cociente
de dos grupos compactos, es compacto, concluyéndose el resultado.

(b) Usando el razonamiento del apartado anterior, llegamos a que B|k×k es definida
positiva, por lo que, como B|p×p es definida positiva por hipótesis, se tiene que g
es semisimple (criterio de Cartan de semisimplicidad, Teorema 1.6). Ahora, como B
ya no es definida negativa, g no es compacta, por lo que G tampoco es compacto.
Finalmente, como M ∼= G/K y K es compacto, se deduce que M no es compacto.

(c) Por hipótesis, se tiene que B|p×p = 0. Además, recordemos que B(k, p) = 0. Como
B|k×k es definida negativa (por el razonamiento anterior), el subespacio

ker(B) = {X ∈ g : B(X, Y ) = 0 para todo Y ∈ g}
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es precisamente p. Además, ker(B) es un ideal de g, ya que si tomamos X ∈ ker(B)
e Y ∈ g, entonces dado un Z ∈ g, se tiene que

B([X, Y ], Z) = −B(Y, [X,Z]) = 0,

con lo que [ker(B), g] ⊂ ker(B). Por ser ker(B) ideal de g, también es álgebra de Lie,
y se tendrá que [p, p] ⊂ p ∩ k = 0 (dado que vimos que [p, p] ⊂ k).
Recíprocamente, supongamos que [p, p] = 0. Como [k, p] ⊂ p, se sigue directamente
que B|p×p = 0.

Si consideramos un espacio simétrico arbitrario M , su recubrimiento universal, M̃ , se
descompone como producto de espacios simétricos de la forma M̃ = M0 ×M+ ×M−, siendo
M0 de tipo Euclidiano, M+ de tipo compacto, y M− es de tipo no compacto.

Un hecho importante es que, considerando espacios simétricos simplemente conexos,
existe una correspondencia entre los de tipo compacto y los de tipo no compacto. A esta
correspondencia se le llama dualidad. Algunos ejemplos de esta dualidad los indicamos en
la siguiente tabla.

Tipo compacto Tipo no compacto
Esferas reales Sn = SOn+1

SOn
Espacios hiperbólicos reales RHn = SO0

1,n

SOn

Espacios proyectivos complejos CP n = SUn+1
S(U1Un) Espacios hiperbólicos complejos CHn = SU1,n

S(U1Un)

Espacios proyectivos cuaterniónicos HP n = Spn+1
Sp1Spn

Espacios hiperbólicos cuaterniónicos HHn = Sp1,n

Sp1Spn

Plano proyectivo de Cayley OP 2 = F4
Spin(9) Plano hiperbólico de Cayley OH2 = F−20

4
Spin(9)

Tabla 2.2: Ejemplos de espacios simétricos simplemente conexos de rango uno. Presentamos
uno de tipo compacto con su correspondiente dual de tipo no compacto.

2.4. Espacios de raíces y descomposición de Iwasawa
Dado que el objetivo de este trabajo es el estudio de las hipersuperficies de curvatura

adaptada en espacios simétricos de tipo no compacto, en la parte final del capítulo pasamos
a centrarnos exclusivamente en éstos últimos. En esta sección, el objetivo será obtener la
descomposición de Iwasawa asociada a un espacio simétrico de tipo no compacto, que
afirma que la componente conexa que contiene a la identidad de su grupo de isometrías es
difeomorfa al producto de un grupo de Lie compacto, por uno abeliano y otro nilpotente.
Para llegar a ello, debemos introducir la teoría de espacios de raíces desarrollada por
Cartan.

Sea entonces un espacio simétrico M ∼= G/K de tipo no compacto. Como vimos en la
sección anterior, esto quiere decir que:

(a) G = I0(M) es un grupo de Lie semisimple no compacto. Además, K = Gp es un
grupo de Lie compacto, para p ∈ M [41, Proposition 9.14].
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(b) M es una variedad de Riemann no compacta y tiene curvatura seccional no positiva.

(c) B|p×p > 0, siendo B la forma de Killing asociada al álgebra de Lie g de G.

(d) B|k×k < 0.

Vemos que la forma de Killing no nos proporciona en este caso un producto interior
ya que no es definida positiva. Por lo tanto, requeriremos de la definición de otra forma
bilineal que sí sea definida positiva. Recordemos que denotamos por θ la involución de
Cartan de g. Podemos definir en este punto un producto interior en g, que denotaremos
por Bθ y viene dado por

Bθ(X, Y ) = −B(θX, Y ), para cualesquiera X, Y ∈ g.

Recordemos que k y p se definieron como los autoespacios asociados a los autovalores +1
y −1 de θ, respectivamente. Por lo tanto, tenemos lo siguiente:

Bθ(k, p) = −B(θk, p) = −B(k, p) = 0,

Bθ(k, k) = −B(θk, k) = −B(k, k) > 0,

Bθ(p, p) = −B(θp, p) = B(p, p) > 0.

En particular, comprobamos Bθ es definida positiva, con lo que es, efectivamente, un
producto interior en g, dado que la forma de Killing es simétrica.

En el siguiente resultado recogemos algunas propiedades más acerca del producto
interior Bθ, relacionadas con la aplicación adjunta de álgebras de Lie.

Lema 2.11. Sea M ∼= G/K un espacio simétrico de tipo no compacto. Entonces

(a) Si X ∈ k, entonces ad(X) : g → g es antisimétrica respecto de Bθ.

(b) Si X ∈ p, entonces ad(X) : g → g es simétrica respecto de Bθ.

Demostración. (a) Sea X ∈ k. Queremos ver que Bθ(ad(X)(Y ), Z) = −Bθ(Y, ad(X)Z),
para cualesquiera Y, Z ∈ g. En efecto, usando el apartado (b) de la Proposición 1.9:

Bθ(ad(X)(Y ), Z) =Bθ([X, Y ], Z) = −B(θ[X, Y ], Z) = −B([θX, θY ], Z)
= −B([X, θY ], Z) = B(θY, [X,Z]) = −Bθ(Y, [X,Z])
= −Bθ(Y, ad(X)(Z)).

(b) La demostración es completamente análoga a la del apartado anterior, pero usando
que si X ∈ p, entonces θX = −X.
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Consideremos ahora un subespacio abeliano maximal a de p. Se tiene que cualquier otro
subespacio abeliano maximal de p será conjugado a a mediante la acción adjunta de K (ver
[28, Theorem 6.51]), por lo que los resultados que obtengamos para a solamente diferirán de
los obtenidos para cualquier otro subespacio abeliano maximal a′ de p en una conjugación
por la acción adjunta de K. Este hecho nos permite introducir la definición del rango de
un espacio simétrico M ∼= G/K, que es precisamente la dimensión de cualquiera de estos
subespacios abelianos maximales de p. Por otra parte, decimos que una subvariedad conexa
N de M es geodésica en un punto p ∈ N si toda geodésica de M que pasa por p y es tangente
a N es una curva en N . La subvariedad N se dirá totalmente geodésica si es geodésica en
todo punto p ∈ N . El rango de un espacio simétrico se interpreta geométricamente como la
mayor dimensión de una subvariedad plana y totalmente geodésica dentro de tal espacio.

El siguiente resultado nos indica una propiedad interesante acerca de los endomorfis-
mos de un espacio vectorial que conmutan entre sí, y que nos permitirá considerar la
definición de los espacios de raíces restringidas, imprescindibles a la hora de establecer la
descomposición de Iwasawa.

Lema 2.12 ([22, Appendix A-8]). Sea V un espacio vectorial de dimensión finita, y A ⊂
End(V ) un subconjunto de endomorfismos diagonalizables que conmutan entre sí. Entonces,
todos los endomorfismos de A diagonalizan simultáneamente, es decir, existe una base de
V formada por autovectores de todos los endomorfismos de A.

Sea a un subespacio abeliano maximal de p, y sea H ∈ a. Como H ∈ a ⊂ p, se tiene que
θH = −H, con lo que se tiene que ad(H) ∈ gl(g) es autoadjunto con respecto al producto
interior Bθ. Por otra parte, como ad: g → gl(g) es un homomorfismo de álgebras de Lie,
se tiene que, dados H1, H2 ∈ a,

[ad(H1), ad(H2)] = ad([H1, H2]),

con lo que el conjunto A = {ad(H) : H ∈ a} es un conjunto conmutativo de endomorfismos
de g. Aplicando el Lema 2.12, se sigue que todos estos automorfismos diagonalizan de forma
simultánea.

Teniendo en cuenta este último comentario, podemos plantear la definición de los
espacios de raíces restringidas. Sean M ∼= G/K un espacio simétrico de tipo no compacto,
g = k ⊕ p la descomposición de Cartan de g, y a un subespacio abeliano maximal de p. Se
denomina espacio de raíz restringida a cada uno de los autoespacios comunes que hay en
A = {ad(H) : H ∈ a}; es decir, a cada uno de los subespacios vectoriales de g definidos,
para cada α ∈ a∗, como

gα = {X ∈ g : [H,X] = α(H)X, para todo H ∈ a},

con gα ̸= 0. Los α ̸= 0 tales que gα ̸= 0 se denominan raíces restringidas de g. Denotaremos
por ∆ al conjunto de raíces restringidas. Esto es,

∆ = {α ∈ a∗ : α ̸= 0, gα ̸= 0}.
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Obtenemos entonces la descomposición

g = g0 ⊕

⊕
α∈∆

gα

 ,
denominada descomposición de g en espacios de raíces restringidas. El subespacio g0 es

g0 = {X ∈ g : [H,X] = 0, para todo H ∈ a}.

Este conjunto es no nulo dado que a ⊂ g0 y a ̸= 0, ya que todo subespacio generado
por un único vector no nulo es abeliano y distinto del subespacio trivial. En lo que sigue,
entenderemos que el término “raíz” hace referencia a raíz restringida.

Observemos que la descomposición de g en espacios de raíces depende del punto p ∈ M
considerado, así como del subespacio abeliano maximal a que elijamos. Sin embargo, estas
elecciones conducen a descomposiciones que serán conjugadas entre sí, ya que, como ya
indicamos anteriormente, las distintas involuciones de Cartan son conjugadas entre sí, y
los subespacios abelianos maximales de p también son conjugados entre sí. A continuación,
mostramos algunas propiedades de las descomposiciones en espacios de raíces.

Proposición 2.13. Sea M ∼= G/K un espacio simétrico de tipo no compacto, y sea g el
álgebra de Lie de G. Se tiene que:

(a) La descomposición de g en espacios de raíces, g = g0 ⊕ (⊕α∈∆ gα), es ortogonal con
respecto del producto interior Bθ.

(b) [gα, gβ] ⊂ gα+β, para cualesquiera raíces α, β ∈ ∆.

(c) θgα = g−α para cualquier raíz α ∈ ∆. Por lo tanto, si α ∈ ∆, entonces −α ∈ ∆.

(d) g0 = a ⊕ Zk(a), siendo Zk(a) el centralizador de a en k; es decir,

Zk(a) = {X ∈ k : [H,X] = 0, para todo H ∈ a}.

Demostración. (a) Sean α, β ∈ ∆ dos raíces distintas; es decir, existe H ∈ a tal que
α(H) ̸= β(H). Supongamos que α(H) ̸= 0, sin pérdida de generalidad dado que
alguno de los dos debe ser no nulo para que sean distintos. Como H ∈ a ⊂ p, se
tiene que ad(H) es simétrica con respecto del producto interior Bθ. Por lo tanto, si
consideramos X ∈ gα e Y ∈ gβ,

Bθ(X, Y ) = 1
α(H)Bθ(ad(H)(X), Y ) = 1

α(H)Bθ(X, ad(H)(Y )) = β(H)
α(H)Bθ(X, Y ).

Como β(H)
α(H) ̸= 1, se debe tener que Bθ(X, Y ) = 0, siguiéndose la ortogonalidad entre

gα y gβ.
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(b) Sean X ∈ gα e Y ∈ gβ. Queremos ver que [X, Y ] ∈ gα+β. Usando entonces la
identidad de Jacobi,

ad(H)([X, Y ]) =[H, [X, Y ]] = −[X, [Y,H]] − [Y, [H,X]]
=[X, ad(H)(Y )] − [Y, ad(H)(X)] = β(H)[X, Y ] − α(H)[Y,X]
=(α + β)[X, Y ].

Por tanto, se sigue que [gα, gβ] ⊂ gα+β, para cada α, β ∈ ∆

(c) Sea X ∈ gα, y veamos que θX ∈ g−α. Teniendo en cuenta que H ∈ a ⊂ p, se tiene
que θH = −H. Así,

ad(H)(θX) =[H, θX] = [θ(−H), θX] = θ[−H,X]
=θ(−ad(H)(X)) = θ(−α(H)X) = −α(H)θX,

con lo que se sigue que θgα ⊂ g−α, para cada α ∈ ∆. Si aplicamos el mismo
razonamiento a g−α, se tiene que θg−α ⊂ gα. Como θ es involución, se obtiene que
ambos espacios vectoriales tienen la misma dimensión y entonces gα = θg−α.

(d) Usando el apartado anterior, se tiene que θg0 = g0. Por lo tanto, considerando la
descomposición de Cartan g = k⊕p inducida por θ, se tiene que g0 = (k∩g0)⊕(p∩g0).
Veremos que p ∩ g0 es a ya que k ∩ g0 = Zk(a) por definición. Usaremos que a es un
subespacio abeliano maximal de p. Como ya indicamos anteriormente, a ⊂ g0 por
definición, así que a ⊂ p∩g0. Ahora supongamos que existiese algún X ∈ (p∩g0)\a.
Entonces [H,X] = 0 para cualquierH ∈ a, por estarX ∈ g0, y por tanto el subespacio
a + RX ⊊ p ∩ g0 es un subespacio abeliano de p, contradiciendo la maximalidad de
a.

Consideremos en el dual de a, a∗, el producto escalar

⟨α, β⟩ := B(Hα, Hβ), para cualesquiera α, β ∈ a∗,

siendo Hλ ∈ a tal que B(Hλ, H) = λ(H) para cualquier H ∈ a, y siendo λ ∈ a∗ un
covector de a. Podemos introducir así una norma en a∗ considerando |α| = ⟨α, α⟩1/2. Con
este producto escalar en a∗, ∆ constituye un sistema de raíces abstracto en a∗; es decir, es
un subconjunto finito de vectores no nulos de a∗ tal que

(a) ∆ genera a∗.

(b) Dados α, β ∈ ∆, se tiene que los enteros de Cartan Aαβ := 2⟨α,β⟩
|α|2 ∈ Z.

(c) Dados α, β ∈ ∆, se tiene que β − Aαβα ∈ ∆.

En [28, Corollary 6.53] se puede encontrar una demostración de que ∆ es, en efecto, un
sistema de raíces abstracto en a∗. Las principales consecuencias de que ∆ sea un sistema de
raíces abstracto en a∗ son: primeramente, que podemos establecer una noción de positividad
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en el conjunto de raíces; luego, tenemos un conjunto de raíces simples; y finalmente,
podemos asociar a cualquier espacio simétrico de tipo no compacto un diagrama de Dynkin.

Para establecer una noción de positividad, consideremos P un hiperplano lineal en el
espacio vectorial a∗ (un subespacio de codimensión uno) que no interseque a ∆, algo que
podemos hacer ya que ∆ es un conjunto finito. De esta forma, estamos dividiendo a∗ en
dos subespacios, P+ y P−. Diremos que α ∈ ∆ es positiva si pertenece a P+ y negativa
si pertenece a P−. Esto divide ∆ en dos conjuntos finitos, ∆+ y ∆−, de raíces positivas y
negativas, respectivamente. Definimos una raíz simple como aquella que es positiva y que
no podemos expresarla como suma de otras dos raíces positivas. El conjunto de las raíces
simples lo denotaremos por Π.

Utilizando las raíces simples es posible construír el conocido como diagrama de Dynkin
asociado a un espacio simétrico de tipo no compacto. Este diagrama se construye asignando
un nodo a cada raíz simple. A continuación, los nodos correspondientes a las raíces simples
α y β se unen mediante AαβAβα aristas no dirigidas. Denotaremos por Aut(DD) el grupo
de simetrías de un diagrama de Dynkin.

Teniendo todo lo anterior presente, podemos definir el subespacio vectorial n mediante

n =
⊕

α∈∆+

gα,

que es subálgebra de Lie de g por la propiedad de que los espacios de raíces satisfacen
[gα, gβ] ⊂ gα+β, para cada α, β ∈ ∆.

Proposición 2.14 (Descomposición de Iwasawa). Todo álgebra de Lie real semisimple g
admite una descomposición como suma directa de subespacios vectoriales de la forma

g = k ⊕ a ⊕ n,

siendo k un álgebra de Lie asociada a un grupo de Lie compacto, a un álgebra de Lie
abeliana, n un álgebra de Lie nilpotente, y siendo además a ⊕ n una subálgebra de Lie
resoluble de g tal que [a ⊕ n, a ⊕ n] = n.

Demostración. Nótese que el hecho de ser a abeliana es simplemente una elección en la
descomposición, siendo una subálgebra de Lie abeliana maximal. Podemos hacer esta
elección dado que n, tal y como lo hemos definido, no interseca a a, ya que vimos que
a ⊂ g0, y g0 ∩ n = {0}. Veamos ahora que n es una subálgebra nilpotente comprobando
que la serie descendente se anula en cierto valor N ∈ N. Usando la propiedad (b) de la
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Proposición 2.13,

n1 = [n, n] =
 ⊕

α∈∆+

gα,
⊕

α∈∆+

gα

 ⊂
⊕

α1,α2∈∆+

gα1+α2 ,

n2 = [n, n1] ⊂

 ⊕
α∈∆+

gα,
⊕

α1,α2∈∆+

gα1+α2

 ⊂
⊕

α1,α2,α3∈∆+

gα1+α2+α3

...

ni = [n, ni−1] ⊂

 ⊕
α∈∆+

gα,
⊕

α1,...,αi∈∆+

g∑i

k=1 αk

 ⊂
⊕

α1,...,αi+1∈∆+

g∑i+1
k=1 αk

.

Como ∆ es finito, la serie descendente anterior se anula a partir de un cierto N ∈ N. Para
verlo, consideremos λ ∈ a∗ tal que ⟨λ, α⟩ > 0 para todo α ∈ ∆+ (con el producto interior
que indicamos anteriormente en a∗). Este λ es precisamente el vector normal al hiperplano
P que apunta en la dirección de P+. Consideremos el máximo y el mínimo del producto
escalar de raíces positivas por este λ:

a := mı́n
α∈∆+

⟨λ, α⟩, b := máx
α∈∆+

⟨λ, α⟩.

Tomemos k ∈ N de forma que k > b
a
. Se tiene que nk = 0. En efecto, si sumamos k raíces

positivas, α1, . . . , αk, la suma ∑k
i=1 αi no puede ser raíz. Supongamos que ∑k

i=1 αi fuera
una raíz; entonces, ésta sería positiva, con lo que〈

λ,
k∑

i=1
αi

〉
=

k∑
i=1

⟨λ, αi⟩ ≥ ka >
ab

a
= b,

y llegamos a contradicción con la maximalidad de b. Por lo tanto, ∑k
i=1 αi no es raíz, así

que g∑k

i=1 αi
= 0, y se tiene la nilpotencia de n.

Como n es nilpotente, es resoluble. Usando el apartado (b) de la Proposición 2.13, se
tiene que [a⊕n, a⊕n] ⊂ n, y como n es resoluble, también lo es entonces a⊕n. La inclusión
n ⊂ [a ⊕ n, a ⊕ n] se tiene dado que si tomamos un X ∈ gα, con α ∈ ∆+, y elegimos un
H ∈ a tal que α(H) ̸= 0, el corchete [H,X] es no nulo y proporcional a X.

Ahora veamos que k+(a⊕n) es una suma directa. Consideremos entonces X ∈ k∩(a⊕n).
Se tiene entonces que θX = X (por ser X ∈ k), y por el apartado (c) de la Proposición
2.13, θX ∈ a ⊕ θn. Se deduce también del apartado (c) de la Proposición 2.13 que X ∈ a,
ya que n ∩ θn = {0}. Como a ⊂ p y k ∩ p = {0}, deducimos que X = 0 y entonces la suma
k + (a ⊕ n) resulta ser directa.

Finalmente, veamos que g = k⊕ a⊕ n. En efecto, si consideramos la descomposición de
g en espacios de raíces, g = g0 ⊕ ⊕

α∈∆ gα y usamos que g0 = a ⊕ Zk(a) (por el apartado
(d) de la Proposición 2.13), dado X ∈ g, existen H ∈ a, X0 ∈ Zk(a) y Xα ∈ gα para cada
α ∈ ∆ de forma que

X = H +X0 +
∑
α∈∆

Xα =
X0 +

∑
α∈∆+

(X−α + θ(X−α))
+H +

∑
α∈∆+

(Xα − θ(X−α)),
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con lo que X se descompone en suma de elementos de k, a y n.

Con este resultado ya podemos enunciar el teorema fundamental de esta sección, del cual
puede verse una demostración en [28, Theorem 6.46]. Este teorema nos da la descomposición
de Iwasawa a nivel de grupos de Lie.

Teorema 2.15 (Descomposición de Iwasawa). Sea G un grupo de Lie semisimple, y sea
g = k⊕a⊕n una descomposición de Iwasawa de su álgebra de Lie. Sean A y N los subgrupos
de Lie conexos de G con álgebras de Lie a y n, respectivamente. Entonces los grupos A y
N son cerrados, simplemente conexos, y la aplicación

Φ: K × A×N −→ G

(k, a, n) 7−→ kan

es un difeomorfismo.

En las condiciones del teorema anterior, se tiene que el subgrupo cerrado {1} ×A×N
de K × A × N es difeomorfo a AN = {an : a ∈ A, n ∈ N} de G. Tenemos entonces que
AN es un subgrupo de Lie cerrado de G. Este grupo será de gran importancia en lo que
sigue del trabajo.

2.5. Modelo resoluble de espacios simétricos de tipo
no compacto

El objetivo principal de esta última sección del capítulo es utilizar la descomposición
de Iwasawa asociada a un espacio simétrico de tipo no compacto M , introducida en la
Sección 2.4, para ver que el grupo de Lie resoluble AN actúa simple y transitivamente
sobre M , y por tanto es difeomorfo a éste. Llevando la métrica de M a AN , resulta
entonces que todo espacio simétrico de tipo no compacto puede identificarse con un grupo
de Lie resoluble equipado con una métrica que resulta además ser invariante a la izquierda.

Empecemos estableciendo el difeomorfismo entre AN y M .

Proposición 2.16. Sea M ∼= G/K un espacio simétrico de tipo no compacto, siendo
G = I0(M), K = Gp, y p ∈ M . Sea G ≃ K ×A×N la descomposición de Iwasawa de G,
dada en el Teorema 2.15. Entonces la aplicación

φ : AN −→ M

h 7−→ h(p)

es un difeomorfismo.

Demostración. Veamos primero que φ es inyectiva. Sean entonces g, h ∈ AN tales que
φ(g) = φ(h), es decir, g(p) = h(p). Aplicando h−1 en ambos lados de esta última igualdad,
h−1(g(p)) = p. Por lo tanto, h−1g ∈ K = Gp, y así h−1g ∈ K ∩ AN . Ahora bien, como
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K ∩ AN = {e} (Teorema 2.15), se sigue que h−1 = g−1, con lo que g = h, y así φ es
inyectiva.

Ahora veamos que φ es sobreyectiva. Sea q ∈ M . Dado que la acción de G sobre M
es transitiva, existe g ∈ G tal que g(q) = p, o equivalentemente, q = g−1(p). Usando la
descomposición de Iwasawa, existen k ∈ K, a ∈ A y n ∈ N tales que g = kan. Entonces

q = g−1(p) = (kan)−1(p) = (n−1a−1k−1)(p) = (n−1a−1)(p).

Como AN es subgrupo de G, se tiene que n−1a−1 ∈ AN , con lo que deducimos que φ es
sobreyectiva.

Solamente nos resta ver que es un difeomorfismo local. Observemos que estamos consi-
derando φ como la restricción de la aplicación

ϕ : G −→ M

g 7−→ g(p)

a AN , φ = ϕ|AN , que es una submersión ([31, Theorem 7.25]). Consideremos ahora la
diferencial de ϕ, ϕ∗e : k ⊕ a ⊕ n → TpM , que sabemos que es sobreyectiva y ker(ϕ∗e) = k,
por lo que su restricción a a⊕ n, φ∗e = (ϕ|AN)∗e : a⊕ n → TpM es un isomorfismo. Usando
la homogeneidad de los grupos de Lie, se sigue que φ∗g = (ϕ|AN)∗g : TgAN → Tg(p)M es un
isomorfismo para cualquier g ∈ G.

Así, hemos probado que φ es difeomorfismo local y biyectivo, con lo que concluimos
que es un difeomorfismo.

Este resultado nos indica precisamente lo que veníamos anunciando, todo espacio simé-
trico (M, g) de tipo no compacto es difeomorfo a un grupo de Lie resoluble, AN . Como
M es una variedad de Riemann, este difeomorfismo nos permite dotar al grupo AN de
una métrica de Riemann mediante el pull-back de g por φ, φ∗g. Esta métrica es invariante
por la izquierda en AN . En efecto, sea h ∈ AN , y veamos que L∗

hφ
∗g = φ∗g. Si tomamos

h′ ∈ AN , entonces

(h−1φ ◦ Lh)(h′) = h−1(φ(hh′)) = h−1(hh′(p)) = h′(p) = φ(h),

con lo que comprobamos que (h−1 ◦φ◦Lh)(h′) = φ. Como h ∈ AN ⊂ G, h es una isometría
de M , así que

L∗
hφ

∗ = L∗
hφ

∗(h−1)∗g = (h−1 ◦ φ ◦ Lh)∗φ∗g,

como queríamos ver.
De ahora en adelante, denotaremos por ⟨·, ·⟩AN tanto a la métrica φ∗g como a su

producto escalar inducido en a ⊕ n. En el siguiente lema se prueban dos identidades
del producto escalar ⟨·, ·⟩AN que permiten calcular tanto ⟨X, Y ⟩AN como ⟨∇XY, Z⟩AN en
función del producto escalar Bθ, evitando así el tener que obtener el pull-back de la métrica
g para poder hacer este mismo cálculo.
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Lema 2.17. Sea M ∼= G/K un espacio simétrico irreducible de tipo no compacto con
grupo de Lie resoluble asociado AN e involución de Cartan θ. Sea Bθ el producto escalar
de g, y sea ⟨·, ·⟩AN el producto escalar inducido en AN . Podemos entonces definir un nuevo
producto en M , ⟨·, ·⟩Bθ

, de forma que se tenga, por una parte, que

⟨X, Y ⟩AN = ⟨Xa, Ya⟩Bθ
+ 1

2⟨Xn, Yn⟩Bθ
, (2.3)

con Xa, Xn las proyecciones de X sobre a y n, respectivamente, e Ya, Yn las proyecciones
de Y sobre a y n, respectivamente. Por otra parte

⟨∇XY, Z⟩AN = 1
4⟨[X, Y ] + [θX, Y ] − [X, θY ], Z⟩Bθ

, para cualesquiera X, Y, Z ∈ a ⊕ n.

(2.4)
Además, este producto también verifica la siguiente propiedad de antisimetría:

⟨ad(X)(Y ), Z⟩Bθ
= −⟨Y, ad(θX)(Z)⟩Bθ

. (2.5)

Demostración. Por la Proposición 2.7, la métrica de M en p ∈ M es proporcional al
producto escalar Bθ restringido a p; es decir,

ϕ∗gp(·, ·) = λBθ(·, ·),

para un cierto λ > 0, y con ϕ la aplicación ϕ : G → M dada por g 7→ g(p). Definamos
el producto escalar ⟨·, ·⟩Bθ

:= λBθ, en g × g, y veamos cuál es la relación entre ⟨·, ·⟩AN y
⟨·, ·⟩Bθ

. Sean X, Y ∈ a ⊕ n, y sean Xk, Yk y Xp, Yp sus proyecciones respectivas sobre k y p
respecto de Bθ. Entonces

⟨X, Y ⟩AN = φ∗gp(Xk +Xp, Yk + Yp) = gp(ϕ∗eXp, ϕ∗eYp),

dado que Xk, Yk ∈ ker(ϕ∗e). Como ϕ∗gp = λBθ, y usando que k = ker(θ − Id) y p =
ker(θ + Id), se tiene que

⟨X, Y ⟩AN =λBθ(Xp, Yp) = λBθ

((
Id − θ

2

)
X,

(
Id − θ

2

)
Y

)

=λ4Bθ(2Xa +Xn − θXn, 2Ya + Yn − θYn)

=λ4 (4Bθ(Xa, Ya) +Bθ(Xn, Yn) +Bθ(θXn, θYn))

=λBθ(Xa, Ya) + λ

4 (Bθ(Xn, Yn) +Bθ(−Xn,−Yn))

=λBθ(Xa, Ya) + λ

2Bθ(Xn, Yn) = ⟨Xa, Ya⟩Bθ
+ 1

2⟨Xn, Yn⟩Bθ
.

Además, como Bθ satisface Bθ(ad(X)(Y ), Z) = −Bθ(Y, ad(θX)(Z)), se sigue que

⟨ad(X)(Y ), Z⟩Bθ
= −⟨Y, ad(θX)(Z)⟩Bθ

.
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Ahora introduzcamos la conexión de Levi-Civita en el producto escalar para llegar a la
relación indicada en el enunciado del lema. Usando la fórmula de Koszul, sean X, Y, Z ∈
a ⊕ n,

⟨∇XY, Z⟩AN =1
2(X⟨Y, Z⟩AN + Y ⟨X,Z⟩AN − Z⟨X, Y ⟩AN

+ ⟨[X, Y ], Z⟩AN + ⟨[Z, Y ], X⟩AN + ⟨[Z,X], Y ⟩AN).
(2.6)

Como la métrica ⟨·, ·⟩AN es invariante a la izquierda, para cualesquiera vectores V,W ∈
a ⊕ n, entendiendo éstos como campos de vectores evaluados en el neutro de AN , se tiene

⟨Vg,Wg⟩AN = ⟨Lg∗eVe, Lg∗eWe⟩AN = L∗
g⟨Ve,We⟩AN = ⟨Ve,We⟩AN ,

para g ∈ G arbitrario. Deducimos de esto que el producto escalar de campos de vectores
invariantes a la izquierda en AN es constante, con lo que los tres primeros términos de
(2.6). Usando la antisimetría del corchete de Lie y que [a⊕n, a⊕n] ⊂ n, para cualesquiera
campos de vectores X, Y, Z en a ⊕ n,

⟨∇XY, Z⟩AN =1
2(⟨[X, Y ], Z⟩AN − ⟨[Y, Z], X⟩AN − ⟨[X,Z], Y ⟩AN)

=1
4(⟨[X, Y ], Z⟩Bθ

− ⟨[Y, Z], X⟩Bθ
− ⟨[X,Z], Y ⟩Bθ

)

=1
4(⟨[X, Y ], Z⟩Bθ

− ⟨ad(Y )(Z), X⟩Bθ
− ⟨ad(X)(Z), Y ⟩Bθ

)

=1
4(⟨[X, Y ], Z⟩Bθ

+ ⟨ad(θY )(X), Z⟩Bθ
+ ⟨ad(θX)(Y ), Z⟩Bθ

)

=1
4⟨[X, Y ] + ad(θY )(X) + ad(θX)(Y ), Z⟩Bθ

=1
4⟨[X, Y ] + [θX, Y ] − [X, θY ], Z⟩Bθ

En el próximo capítulo, usaremos principalmente los productos ⟨·, ·⟩AN y ⟨·, ·⟩Bθ
en

lugar de considerar la forma bilineal Bθ. Observemos que el producto ⟨·, ·⟩Bθ
difiere de la

forma Bθ en la multiplicación por una constante positiva, con lo que las propiedades de
ortogonalidad relacionadas con Bθ son las mismas que tendremos con este nuevo producto
escalar en M .



Capítulo 3

Acciones de cohomogeneidad uno y
curvatura adaptada en foliaciones

En el presente capítulo comenzamos recordando la definición de acción de cohomoge-
neidad uno, e indicamos los espacios en los que éstas han sido clasificadas, enunciando
además algunos de los correspondientes resultados de clasificación. A continuación, proba-
mos que en espacios simétricos de tipo no compacto, las acciones de cohomogeneidad uno
tienen a lo sumo una órbita singular. En estos mismos espacios, pasamos luego a presentar
en detalle las foliaciones de Riemann, es decir, las acciones de cohomogeneidad uno sin
órbitas singulares.

El objetivo de este capítulo es presentar la contribución original de este trabajo: la
determinación de una amplia serie de foliaciones homogéneas de codimensión uno con hojas
de curvatura adaptada en espacios simétricos de tipo no compacto. Para ello, presentaremos
una serie de resultados relacionados con los distintos tipos de foliaciones de Riemann que
inducen las acciones de cohomogeneidad uno sin órbitas singulares.

Para la elaboración de la Sección 3.2 se siguió [5] como referencia principal. Por su
parte, los resultados de las secciones 3.3 y 3.4 relacionados con las foliaciones de Riemann
se han tomado de [9]. Además, algunos resultados utilizados en la determinación de las
hojas de curvatura adaptada en las distintas foliaciones aparecen en [20, Section 5] y [21].

3.1. Algunos resultados conocidos
Como se introdujo en la Sección 1.3, dada una acción isométrica de un grupo de Lie G

sobre una variedad de Riemann M , denotaremos por G · p la órbita por p ∈ M y por Gp

el grupo de isotropía en el punto p.
Sea G un grupo de Lie que actúa por isometrías sobre una variedad de Riemann (M, g).

Consideraremos también p ∈ M un punto de la variedad y recordemos que G ·p es la órbita
de la acción de G sobre M pasando por el punto p y Gp es el subgrupo de isotropía de
la acción en el punto p. Denotaremos por M/G el conjunto de órbitas por la acción de G
sobre M .

43
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Dado otro punto q ∈ M , diremos que las órbitas G · p y G · q son equivalentes, y lo
denotaremos por G · p ∼ G · q, si los grupos de isotropía Gp y Gq son conjugados. Esto
define una relación de equivalencia en el conjunto de órbitas. Denotaremos mediante [G ·p]
la clase de equivalencia de la órbita de G por p. El conjunto cociente correspondiente lo
denotaremos por O = (M/G)/ ∼. En O es posible definir un orden parcial, ≤, de la
siguiente manera:

[G · p] ≤ [G · q] si Gq es conjugado a un subgrupo de Gp.

Una órbita G · p se dice principal si su clase [G · p] es maximal para el orden que acabamos
de introducir. Observemos que las órbitas principales tienen, por construcción, la misma
dimensión. Las órbitas que tengan dimensión menor que una órbita principal se llaman
órbitas singulares. La acción isométrica de G sobre M se dice de cohomogeneidad uno
si las órbitas principales tienen codimensión uno en M , es decir, si son hipersuperficies
homogéneas de M . Recordemos que, por la Proposición 1.5, para que las órbitas sean
embebidas en la variedad ambiente, hace falta que las acciones sean propias; por lo tanto,
salvo que indiquemos lo contrario, trabajaremos con acciones propias. Como mencionába-
mos, el objetivo principal del capítulo será el de analizar las acciones de cohomogeneidad
uno en los espacios simétricos de tipo no compacto, con especial atención en aquellas cuyas
órbitas son todas principales.

En los espacios Euclidianos, las acciones de cohomogeneidad uno fueron clasificadas por
Segre [38], teniéndose el siguiente resultado de clasificación.

Teorema 3.1. Una órbita principal de una acción de cohomogeneidad uno en un espacio
Euclidiano Rn, con n ∈ N, tiene g ∈ {1, 2} curvaturas principales y es congruente a una
de las siguientes hipersuperficies:

(a) un hiperplano afín Rn−1 de Rn,

(b) una esfera Sn−1 en Rn,

(c) un cilindro generalizado Sk × Rn−k−1, con k ∈ {1, . . . , n− 2}.

Por su parte, Cartan [14] clasificó las acciones de cohomogeneidad uno en espacios
hiperbólicos reales RHn, teniéndose el resultado siguiente.

Teorema 3.2. Una órbita principal de una acción de cohomogeneidad uno en un espacio
hiperbólico real RHn, n ∈ N, tiene g ∈ {1, 2} curvaturas principales y es congruente a una
de las siguientes hipersuperficies:

(a) un hiperespacio hiperbólico real totalmente geodésico RHn−1 en RHn o una de sus
hipersuperficies equidistantes,

(b) un tubo en torno a un subespacio hiperbólico real totalmente geodésico RHk en RHn,
con k ∈ {1, . . . , n− 2},

(c) una esfera geodésica en RHn,
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(d) una horoesfera en RHn.

En este resultado, cuando hablamos de tubos en torno a una subvariedad N de una
variedad de Riemann M , nos estamos refiriendo a las subvariedades cuyos puntos están a
una misma distancia de N todos ellos. Por otra parte, una horoesfera es el límite de una
sucesión de esferas de radio creciente que comparten un hiperplano tangente y su punto de
tangencia, o alternativamente, una órbita de la acción de N sobre Rn, siendo N el grupo
de Lie correspondiente a la subálgebra n de la descomposición de Iwasawa de RHn. En la
Figura 3.1 se muestran las acciones de cohomogeneidad uno en el caso del plano hiperbólico
RH2.

Figura 3.1: Acción de K, A y N en RH2, respectivamente.

Como último ejemplo, para las esferas Sn, se tiene el siguiente resultado.

Teorema 3.3 ([25]). Cada acción de cohomogeneidad uno en una esfera Sn tiene órbitas
equivalentes a la representación de isotropía de un espacio simétrico de rango dos. Cualquier
acción de este tipo tiene exactamente dos órbitas singulares, mientras que las otras órbitas
son principales y son tubos en torno a cada una de las dos órbitas singulares.

En el año 2002, Kollross [29] publica una clasificación de acciones de cohomogeneidad
uno en espacios simétricos irreducibles de tipo compacto. Posteriormente, Berndt y Tamaru
empezaron el estudio en los espacios simétricos de tipo no compacto, consiguiendo en [12]
clasificar las acciones de cohomogeneidad uno en cada espacio simétrico de rango uno salvo
en los espacios hiperbólicos cuaterniónicos. Esta tarea se completa en [19], consiguiéndose
una clasificación completa de las acciones de cohomogeneidad uno en espacios hiperbólicos
cuaterniónicos salvo equivalencia de órbitas. En el caso de algunos espacios simétricos
de rango dos, se han clasificado también este tipo de acciones, como puede verse en [7,
39]. Además, también se han clasificado las acciones de cohomogeneidad uno en espacios
simétricos de la forma SL(n,R)

SO(n) en [18].
Sea (M, g) una variedad de Riemann y G un subgrupo de Lie cerrado del grupo de

isometrías de M . Mostert [33] y Bérard Bergery [2] probaron que el espacio de órbitas
M/G con la topología cociente es homeomorfo a R, S1, [0, 1] o [0,∞), siendo las topologías
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de estos últimos las usuales. Si M/G es homeomorfo a R o a S1, entonces cada órbita es
principal y éstas conforman una foliación de Riemann de M , concepto que definiremos
más adelante. Como todas las órbitas principales son difeomorfas entre sí, en caso de ser
M/G homeomorfo a R o S1, la proyección π : M → M/G es un fibrado. En el caso de ser
M simplemente conexo, considerando la sucesión exacta de homotopía de un fibrado con
fibras conexas y espacio base S1, M/G no podrá ser homeomorfo a S1.

3.2. Acciones de cohomogeneidad uno en los espacios
simétricos de tipo no compacto

Sea M ∼= G/K un espacio simétrico de tipo no compacto y H un subgrupo de Lie de G
que actúa sobre M con cohomogeneidad uno. El siguiente resultado es fundamental para
clasificar este tipo de acciones en espacio simétricos de tipo no compacto.

Teorema 3.4. Sea M ∼= G/K un espacio simétrico de tipo no compacto y sea H un
subgrupo de G que actúa sobre M con cohomogeneidad uno. Entonces estamos en uno de
los dos casos siguientes:

(i) La acción no tiene órbitas singulares.

(ii) La acción tiene exactamente una órbita singular.

Demostración. Hemos indicado en el último párrafo de la Sección 3.1 que el espacio de
órbitas M/H es homeomorfo a R, S1, [0, 1] o [0,∞), lo cual se seguía de [2, 33]. Veremos
que en el caso de un espacio simétrico de tipo no compacto estos casos se reducen a dos: R y
[0,∞), que se asocian con los casos de no tener ninguna órbita singular o tener exactamente
una, respectivamente. Recordemos que un espacio simétrico de tipo no compacto es una
variedad de Hadamard. Ya observamos anteriormente que M/H no podrá ser homeomorfo
a S1 por ser simplemente conexo, así que nos quedan tres posibilidades.

Dado cualquier p ∈ M , el subgrupo de isotropía, Hp, de la H-acción en p es un subgrupo
cerrado de H. Recordemos que estamos considerando acciones que sean propias, con lo que
deducimos que Hp será un subgrupo compacto del grupo de isometrías de M (ver [31,
Corollary 21.8]). Sea entonces L un subgrupo compacto maximal de H, el cual también
será un compacto en I(M). Se sigue del teorema del punto fijo de Cartan [36] que L tiene
un punto fijo, q, en M . Dado que L ⊂ Hq y Hq es compacto en H, se sigue que L = Hq.
Hemos probado entonces que existe una órbita de la acción de H tal que el grupo de
isotropía en cada uno de sus puntos es un subgrupo compacto maximal de H.

Supongamos que M/H es homeomorfo a R, lo cual quiere decir que Hp es un subgrupo
compacto maximal de H para cualquier p ∈ M y todas las órbitas son principales, lo que
nos conduce a (i) (ver [33]). Si, por otra parte, suponemos que M/H no es homeomorfo
a R, entonces se tiene que la órbita F = H · q es una órbita singular de la acción de H
con la propiedad de que Hp es un subgrupo compacto maximal de H para todo p ∈ F .
Veamos que F es la única órbita singular de la acción de H. Para ello, supongamos que
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existe otra órbita singular F ′, y sea q′ ∈ F ′. Como Hq′ es un subgrupo compacto de H,
existe un h ∈ H tal que Hq′ ⊂ hLh−1 = hHqh

−1 = Hh(q). Por el Corolario 1.2, existe
una geodésica, γ, conectando q′ y h(q), que además es única, dado que en variedades de
Hadamard la aplicación exponencial de Riemann es un difeomorfismo [23, Theorem 13.3].
Una isometría en Hq′ fija γ punto a punto, ya que fija los puntos q′ y h(q) y existe una
única geodésica conectando q′ y h(q); por lo cual, Hq′ ⊂ Hp para todo p sobre γ. Pero como
γ interseca órbitas principales, llegamos a una contradicción. Por tanto, deducimos que no
puede haber dos órbitas singulares distintas, con lo que M/H es homeomorfo a [0,∞), y
estamos en el caso (ii).

De ahora en adelante, trabajaremos con acciones de cohomogeneidad uno que inducen
folia-
ciones en un espacio simétrico, así que será conveniente introducir el concepto de foliación
de Riemann. Sea F una descomposición de una variedad de Riemann M en subvariedades
conexas inyectivamente inmersas, que llamaremos hojas, que pueden tener distintas dimen-
siones. Decimos que F es una foliación singular de Riemann si se satisfacen las siguientes
dos condiciones:

(i) F es un sistema transnormal, esto es, toda geodésica ortogonal a una hoja de F sigue
siendo ortogonal a todas las demás hojas de F que interseque.

(ii) F es una foliación singular, esto es, TpL = {Xp : X ∈ XF} para cada hoja L en F
y cada p ∈ L, donde XF es el módulo de campos de vectores diferenciables en la
variedad ambiente que son tangentes en todo punto a las hojas de F.

Una acción isométrica sobre un espacio simétrico sin órbitas singulares induce una
foliación de Riemann. Diremos que dos foliaciones, F y G, de una variedad de Riemann M ,
son isométricamente congruentes si existe una isometría f : M → M que lleva las hojas de
F en hojas de G. Salvo congruencia isométrica, las foliaciones de Riemann homogéneas en
un espacio simétrico irreducible de tipo no compacto y rango r pueden ser de dos clases
[9, Theorem 5.5]:

(a) Foliaciones tipo Fℓ, con ℓ ∈ RP r−1 (el espacio proyectivo real r − 1-dimensional),
siendo r el rango del espacio M .

(b) Foliaciones tipo Fi, con i ∈ {1, . . . , r}.

Las foliaciones de tipo Fℓ se describen en la Sección 3.3, mientras que las foliaciones de
tipo Fi, con i ∈ {1, . . . , r}, se detallan en la Sección 3.4.

3.3. Foliaciones tipo Fℓ

Recordemos que M ∼= G/K es un espacio simétrico de tipo no compacto. Consideremos
Π = {α1, . . . , αr} un conjunto de raíces simples para el espacio de raíces ∆ asociado a M
(véase Sección 2.4). Sea ℓ un subespacio vectorial unidimensional de a. En el álgebra de Lie
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a⊕n asociada a AN ∼= M podemos considerar el complemento ortogonal sℓ de ℓ. Entonces,
el álgebra de Lie

sℓ = (a ⊕ n) ⊖ ℓ = (a ⊖ ℓ) ⊕ n,

es una subálgebra de a ⊕ n de codimensión uno. Sea Sℓ el subgrupo de Lie conexo de AN
cuya álgebra de Lie es sℓ. Las órbitas de la acción de Sℓ sobre AN ∼= M forman entonces
una foliación de Riemann de codimensión uno. En efecto, dado que AN actúa libremente
en M , Sℓ también lo hace y entonces los grupos de isotropía son todos triviales. Por tanto,
las órbitas tienen la misma dimensión que el grupo Sℓ, es decir, codimensión uno en M .
Dado que Sℓ es cerrado, y la acción es propia, las órbitas son subvariedades embebidas.

3.3.1. Resultados conocidos para foliaciones tipo Fℓ

A continuación veremos algunos resultados relacionados con este tipos de foliaciones,
estudiadas en detalle en [9, Section 3]. El primer resultado que indicamos muestra algunas
propiedades básicas de este tipo de foliaciones.

Proposición 3.5. Sean p ∈ M y Hℓ ∈ a un vector unitario normal a Sℓ · p. Denotaremos
por SHℓ

al operador forma de Sℓ · p en p con respecto de Hℓ. Entonces:

(a) Todas las hojas de Fℓ son isométricamente congruentes entre sí.

(b) El operador forma SHℓ
de la hoja Sℓ · p de Fℓ por p viene dado por SHℓ

= ad(Hℓ)|sℓ
.

Demostración. Sea Hℓ ∈ a un vector unitario tal que ℓ = RHℓ. Usando la fórmula de
Koszul (1.1) y teniendo en cuenta que la métrica en AN vimos que era invariante por la
izquierda, tenemos que

2⟨∇XY, Z⟩AN = ⟨[X, Y ], Z⟩AN − ⟨[Y, Z], X⟩AN + ⟨[Z,X], Y ⟩AN . (3.1)

De esta expresión llegamos a que ∇Hℓ
Hℓ = 0. De este hecho, deducimos que las curvas

integrales de Hℓ son geodésicas en AN , y de la definición de foliación de Riemann, sabemos
que éstas intersecan cada hoja de Fℓ perpendicularmente. Sea γ : R → AN la geodésica en
AN con γ(0) = p y γ̇(0) = Hℓ. Entonces γ(R) ⊂ A, y γ interseca cada una de las hojas de
Fℓ. Además, como A es un grupo abeliano, N ⊂ Sℓ y AN = NA, con lo que tenemos que
γ(t)Sℓ = Sℓž, γ(t), de lo que se sigue que

Sℓ · γ(t) = γ(t)(γ(t)−1Sℓ γ(t)) · p = γ(t)Sℓ · p para todo t ∈ R.

Esto nos muestra que cada hoja de Fℓ se obtiene mediante una traslación por la izquierda
adecuada de Sℓ · p en AN , probando (a). Por lo tanto, para estudiar la geometría de
cualquier hoja, es suficiente estudiarla en la hoja Sℓ · p.

El vector Hℓ es un vector unitario normal a Sℓ · p en p. Como estamos trabajando con
subvariedades homogéneas, con obtener el operador forma en un único punto es suficiente
para obtenerlo en cualquier otro punto. Denotamos por SHℓ

al operador forma de Sℓ · p en
p con respecto de Hℓ y por Π a la segunda forma fundamental de Sℓ · p. Como ad(Hℓ) es
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un endomorfismo autoadjunto en g con respecto de ⟨·, ·⟩, la expresión que obtuvimos para
la conexión de Levi-Civita (3.1) y la fórmula de Weingarten (1.2) implican que

⟨Π(X, Y ), Hℓ⟩ = ⟨SHℓ
X, Y ⟩ = ⟨ad(Hℓ)X, Y ⟩, para cualesquiera X, Y ∈ sℓ = Tp(Sℓ · p).

Con lo cual, concluimos que SHℓ
= ad(Hℓ)|sℓ

.

El siguiente resultado indica cuándo dos foliaciones de tipo Fℓ, con ℓ un subespacio de
dimension uno en a, son isométricamente congruentes. Para ello, se usan las simetrías del
diagrama de Dynkin asociadas al espacio simétrico introducido en la Sección 2.4.

Teorema 3.6 ([9, Theorem 3.5]). Dos foliaciones Fℓ y Fℓ′ son isométricamente congruen
tes si, y sólo si, existe una simetría en el diagrama de Dynkin, P ∈ Aut(DD), con P (ℓ) =
ℓ′.

Tenemos, de esta forma, una manera de clasificar las distintas foliaciones de tipo Fℓ que
aparecen en espacios simétricos de tipo no compacto mediante los distintos automorfismos
del diagrama de Dynkin del espacio simétrico.

Ejemplo. Podemos construir un ejemplo de acción de tipo Fℓ en el plano hiperbólico
real, RH2, el cual se puede describir como el cociente SO0(2, 1)/SO(2) y se puede compro
bar que su descomposición en espacios de raíces es de la forma

so(2, 1) =


0 0 0
0 0 w

0 w 0

⊕


0 −a a

a 0 0
a 0 0

⊕


0 a a

−a 0 0
a 0 0

 = g0 ⊕ gf ⊕ g−f = a ⊕ gf ⊕ g−f ,

donde f ∈ a∗ es el funcional lineal que lleva un elemento
0 0 0
0 0 w

0 w 0

 ∈ a

en el correspondiente w ∈ R. Esta descomposición nos permite llegar a la correspondiente
descomposición de Iwasawa

so(2, 1) =
so(2) 0

0 0

⊕ a ⊕ gf ,

siendo las matrices so(2) 0
0 0


las correspondientes a k en la descomposición de Iwasawa. Como hemos indicado, a es
unidimensional, con lo que solamente podemos considerar un único ℓ ⊂ a de dimensión
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uno, y es el propio a. Nuestra acción de cohomogeneidad uno sobre RH2 es la asociada a
la que da exp(n) = N sobre AN .

En la Figura 3.1 se puede ver la acción de los grupos K, A y N sobre RH2, representado
con el modelo de la bóla de Poincaré, que además son las únicas tres acciones de cohomoge-
neidad uno en este espacio simétrico salvo equivalencia de órbitas (ver 3.2). La acción de N
precisamente nos da las horoesferas que vemos en la imagen más a la derecha de la Figura
3.1.

3.3.2. Curvatura adaptada en foliaciones tipo Fℓ

En esta sección nos dedicaremos a comprobar que todas las hojas de foliaciones de tipo
Fℓ son de curvatura adaptada a su espacio ambiente. Sea M ∼= AN un espacio simétrico
de tipo no compacto y sea a⊕ n su álgebra de Lie. Comenzamos con un resultado auxiliar
para manejar de forma más eficiente la conexión de Levi-Civita.

Lema 3.7. Tenemos las siguientes propiedades:

(a) ∇HX = 0, para todo H ∈ a y todo X ∈ a ⊕ n.

(b) ∇XH = −α(H)X, para todo H ∈ a y todo X ∈ gα, con α ∈ ∆.

Demostración. Tomemos H ∈ a y X,Z ∈ a ⊕ n. Entonces, usando la ecuación (2.4) del
Lema 2.17, tenemos,

⟨∇HX,Z⟩AN = 1
4⟨[H,X] + [θH,X] − [H, θX], Z⟩Bθ

= 1
4⟨[H,X] − [H,X] − [H, θX], Z⟩Bθ

= 1
4⟨−[H, θXa + θXn], Z⟩Bθ

= 0,

donde θXa y θXn denotan las proyecciones de θX a a y a n, respectivamente. Observemos
que, como X ∈ a ⊕ n, se tiene que θX no tiene componentes en n, así que θXn = 0. Por
otra parte, como a es una subalgebra de Lie abeliana de g, se tiene que [a, a] = 0. Con
esto, deducimos (a).

Además usando de nuevo la ecuación (2.4) del Lema 2.17, tenemos, para X ∈ gα y
H ∈ a,

⟨∇XH,Z⟩AN = 1
4⟨[X,H] + [θX,H] − [X, θH], Z⟩Bθ

= 1
4⟨[X,H] + [X,H], Z⟩Bθ

= − 1
4⟨2[H,X], Z⟩Bθ

= −1
2⟨α(H)X,Z⟩Bθ

= −⟨α(H)X,Z⟩AN ,

donde en la segunda igualdad hemos razonado de la misma forma que en el caso anterior,
mientras que en la última igualdad hemos usado la ecuación (2.3) del Lema 2.17. Además,
hemos usado que θH = H por ser H ∈ a. Dada la elección arbitraria de Z ∈ a ⊕ n,
deducimos (b).



3.3.2 Curvatura adaptada en foliaciones tipo Fℓ 51

Consideremos un cierto vector (unitario) H ∈ a. Dado que estamos trabajando con
foliaciones tipo Fℓ, estamos trabajando con álgebras de Lie de la forma (a ⊖ RH) ⊕ n.
Corolario 3.8. Sea s = (a⊖RH)⊕n y consideremos la órbita S ·p, donde S es el subgrupo
de Lie conexo de AN cuya álgebra de Lie es s. Sean además SH el operador forma respecto
del vector H, RH el operador de Jacobi asociado a H, α ∈ ∆, Xα un vector en gα y L ∈ a.
Entonces

(a) SHXα = α(H)Xα.

(b) SHL = 0.

(c) RHL = 0.

(d) RHXα = −α(H)SHXα.
Demostración. Las afirmaciones (a) y (b) se siguen directamente de la afirmación (b) de
la Proposición 3.5. Probemos entonces las otras dos afirmaciones.

(c) Usando la afirmación (a) del Lema 3.7 junto con el hecho de que H ∈ a (y esta
subálgebra es abeliana), se tiene que

RHL = ∇L∇HH − ∇H∇LH − ∇[L,H]H = 0.

(d) Usando la afirmación (b) del Lema 3.7, junto con la ortogonalidad de la descomposi-
ción en espacios de raíces y (a), llegamos a que

RHXα = ∇Xα∇HH − ∇H∇XαH − ∇[Xα,H]H = α(H)∇XαH = −α(H)SHXα.

Habiendo probado estas propiedades, estamos en condiciones de demostrar el siguiente
teorema, que precisamente nos da el resultado que veníamos buscando, las hojas de las
foliaciones tipo Fℓ son de curvatura adaptada a su espacio ambiente.
Teorema 3.9. Sea M un espacio simétrico irreducible de tipo no compacto. Si F es una
foliación de Riemann de M de tipo Fℓ, entonces todas sus hojas son hipersuperficies de
curvatura adaptada.
Demostración. Por el apartado (a) de la Proposición 3.5, todas las hojas de una foliación
de tipo Fℓ son isométricamente congruentes entre sí, así que nos centraremos en la hoja
que contiene a un cierto punto p ∈ M .

Por una parte, usando las afirmaciones (b) y (c) del Corolario 3.8, tenemos

RHSH(A) = 0 = SHRH(A), para todo A ∈ a ⊖ RH.

Por otra parte, usando los puntos (i) y (iv) del corolario anterior, seguimos que

RHSHXα = RH(α(H)Xα) = α(H)RHXα = −α(H)2SHXα = −α(H)3Xα

y que
SHRHXα = −α(H)S2

HXα = −α(H)3Xα,

lo cual concluye la demostración.
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3.4. Foliaciones tipo Fi

Recordemos que, dado un espacio simétrico de tipo no compacto, podemos considerar
un conjunto de raíces simples Π = {α1, . . . , αn} asociado. En esta sección nos centraremos
en el segundo tipo de foliaciones que indicamos anteriormente. Sea ξ ∈ gαi

un vector
unitario, para un cierto i ∈ {1, . . . , n}, y definamos

sξ = a ⊕ (n ⊖ Rξ) ⊂ a ⊕ n.

Del apartado (b) de la Proposición 2.13, se sigue que el subespacio sξ es una subálgebra
de Lie de a ⊕ n, con lo que podemos también considerar su subgrupo de Lie asociado,
Sξ ⊂ AN . Dado que estamos tomando ξ ∈ gαi

, denotaremos las foliaciones Fξ como Fi.

3.4.1. Resultados conocidos acerca de foliaciones de tipo Fi

Veremos a continuación algunos resultados interesantes acerca de las foliaciones tipo
Fi, estudiadas en [9, Section 4]. Lo primero que debemos observar es que este tipo de
foliaciones están bien definidas.

Lema 3.10. Sea α ∈ Π una raíz simple. Si ξ y η son dos vectores unitarios en gα, entonces
existe una isometría k en el centralizador ZK(a) tal que Ad(k)(sξ) = sη.

Demostración. Si tenemos que gα es de dimensión uno, el resultado es directo. En el caso
de que gα tenga dimensión mayor que uno, precisamente tenemos que el grupo Ad(ZK(a))
actúa transitivamente en la esfera unidad de gα respecto de Bθ (ver [24, p. 556]), con lo
que concluimos el resultado.

En lo que sigue, como en la sección anterior, también enunciaremos resultados relacio-
nados con la congruencia isométrica entre distintas foliaciones del tipo Fi, pero antes
de llegar a éstos, nos dedicaremos a tratar con una serie de cuestiones referentes a las
curvaturas principales y medias de las distintas hojas de una foliación del tipo Fi. De
ahora en adelante, cuando hablemos de distancia orientada en foliaciones, nos referiremos
a la distancia de una hoja respecto a otra teniendo en cuenta la dirección del vector normal
considerado. El primer resultado que mostramos nos indica la relación entre dos hojas de
una foliación de tipo Fi, en términos de congruencia isométrica.

Lema 3.11. Sea Fi = Fξ, para un cierto vector unitario ξ ∈ gαi
, con αi ∈ Π. Entonces la

hoja de Fi a distancia orientada t ∈ R en la dirección de ξ es isométricamente congruente
a la órbita Sξt · p, con

ξt = 1
cosh(|αi|t)

ξ − 1
|αi|

tanh(|αi|t)Hαi
,

con Sξt el subgrupo de Lie conexo de AN con álgebra de Lie (a ⊕ n) ⊖ Rξt.
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Demostración. Sea αi ∈ ∆ una raíz simple y ξ ∈ gαi
un vector unitario tal que Fi = Fξ.

Consideremos Hi = Hαi

|Hαi | = Hαi

|αi| . Los vectores ξ y Hi generan una subálgebra de Lie de
a ⊕ n que satisface la siguiente propiedad de corchete:

[Hi, ξ] = αi(Hi)ξ = |αi|ξ.

Además, usando (3.1) y el Lema 3.7, se tienen las siguientes identidades para la conexión
de Levi-Civita entre ξ y Hi:

∇ξξ = |αi|Hi, ∇ξHi = −|αi|ξ.

De esta forma, si consideramos ξ y Hi como campos de vectores invariantes por la izquierda,
generan un subfibrado (autoparalelo) del fibrado tangente de AN , y se sigue que la órbita
del correspondiente subgrupo conexo de AN por p es un plano hiperbólico real totalmente
geodésico RH2 ⊂ AN ∼= M . Sea γ : R → M la geodésica en M con γ(0) = p y γ̇(0) = ξ.
Dado que RH2 es totalmente geodésico, γ permanece en RH2 para todo t ∈ R. Usando la
fórmula de Koszul (1.1) para la conexión de Levi-Civita de AN , se puede ver que el campo
de vectores γ̇ de γ satisface

γ̇(t) = 1
cosh(|αi|t)

ξγ(t) − tanh(|αi|t)(Hi)γ(t), para todo t ∈ R,

considerando ξ y Hi como campos de vectores invariantes por la izquierda en AN .
Sean t ∈ R, g = γ(t) ∈ AN , y denotemos por Ig−1 la conjugación en Gp por g−1. El

homomorfismo Ig−1 deja AN invariante, y entonces Ig−1(Sξ) es también un subgrupo de
AN . Como

Ig−1(Sξ) · p = g−1Sξg · p = γ(t)−1Sξ · γ(t),

comprobamos que la órbita de la acción de Ig−1(Sξ) por p es la traslación por la izquierda
de γ(t) a p de la órbita de la acción de Sξ por γ(t). Como γ̇(t) es un vector normal unitario
de Sξ · γ(t) en γ(t), y la traslación por la izquierda Lg−1 es una isometría, el vector

ξt = Lg−1∗γ̇(t) = 1
cosh(|αi|t)

ξ0 − tanh(|αi|t)(Hi)p

es un vector unitario normal de Ig−1(Sξ)·p en p. Se sigue que Ad(g−1)sξ = sξt , o equivalente-
mente,

Ad(g)sξt = sξ,

siendo sξt = (a ⊕ n) ⊖ Rξt.

Para finalizar la sección, veremos un par de resultados que tratan con la congruencia
isométrica de las distintas foliaciones tipo Fi de un espacio simétrico de tipo no compacto.
El primer resultado es similar al Teorema 3.6 en el caso de foliaciones del tipo Fℓ, pero
para foliaciones Fi.
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Teorema 3.12 ([9, Theorem 4.8]). Dos foliaciones Fi y Fj son isométricamente congruen-
tes si, y sólo si, existe una simetría del diagrama de Dynkin del espacio, p ∈ Aut(DD) con
P (αi) = αj.

Ejemplo. Un ejemplo de foliación de tipo Fi lo tenemos en el plano hiperbólico real
RH2 ∼= AN , donde esta vez elegimos la acción de

A = exp


0 a −a
a 0 0
a 0 0


sobre el plano hiperbólico. En efecto, si de a⊕n eliminamos un subespacio de dimensión uno
contenido en n, eliminamos todo el propio n, quedándonos una subálgebra de Lie asociada
al grupo de la acción sξ = a. Esta acción se corresponde con la imagen central mostrada
en la Figura 3.1.

3.4.2. Curvatura adaptada en foliaciones tipo Fi

En esta sección, el objetivo principal, que completa además el objetivo de la memoria,
será, fijada una foliación de tipo Fi, para algún i ∈ {1, . . . , n} donde Π = {α1, . . . , αn}
denota el conjunto de raíces simples, analizar en qué casos las órbitas de dicha foliación son
de curvatura adaptada. Recordemos que la órbita de la foliación de Fi por p se obtiene como
Sη ·p, donde Sη es el subgrupo de Lie conexo de AN cuya álgebra de Lie es sη = a⊕(n⊖Rη),
con η ∈ gαi

. Ahora bien, del Lema 3.11 se sigue que cualquiera de las otras órbitas de esta
foliación Fi es congruente a una de la forma S · p, donde S es el subgrupo de Lie conexo
de AN cuya álgebra de Lie es

s = (a ⊕ n) ⊖ Rξ,
donde ξ = aHαi

+bXαi
es un vector unitario, para ciertos a y b ̸= 0 reales tales que a2|αi|2+

b2 = 1, cierto Xαi
∈ gαi

. Para simplificar la notación de aquí en adelante, escribiremos
simplemente α = αi para la foliación de tipo Fi, y evitar así arrastrar el subíndide durante
las demostraciones.

Sea entonces s = (a ⊕ n) ⊖ Rξ, con ξ = aHα + bXα un vector unitario, siendo α ∈ Π
una raíz simple, Xα ∈ gα un vector unitario y a, b ∈ R. De esta forma, es claro que
a2|α|2 + b2 = 1. Estudiaremos si la órbita S · p es de curvatura adaptada, donde S denota
el subgrupo de Lie conexo de AN cuya álgebra de Lie es s. Nótese que podemos reescribir

s = (a ⊖ RHα) ⊕ (n ⊖ RXα) ⊕ RU, (3.2)

donde definimos U como
U = b|α|−1Hα − a|α|Xα,

que satisface ⟨U,U⟩AN = 1 y ⟨U, ξ⟩AN = 0. De esta forma, en (3.2) tenemos una descompo-
sición ortogonal del álgebra de Lie s.

Indicamos a continuación cuatro lemas que nos permitirán trabajar con esta descompo-
sición en lo que sigue.
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Lema 3.13. Sean λ ∈ ∆+ y X, Y ∈ gλ ortogonales. Entonces

(a) [θX,X] = 2⟨X,X⟩ANHλ = ⟨X,X⟩Bθ
Hλ.

(b) [θX, Y ] ∈ k0 = g0 ⊖ a.

Demostración. Primero, de la Proposición 2.13, tenemos que [gλ, gη] ⊂ gλ+η y θgλ = g−λ.
Además, se tiene que θ[θX,X] = −[θX,X]. Por tanto, deducimos que [θX,X] ∈ a, con lo
que basta obtener la proyección de [θX,X] sobre Hλ y sobre cualquier otro vector H ∈ a
para comprobar el resultado. Usando la relación (2.5) del Lema 2.17, la definición de espacio
de raíz y que B(Hλ, H) = λ(H) para cualquier H ∈ a, deducimos

⟨[θX,X], Hλ⟩Bθ
= ⟨X, [Hλ, X]⟩Bθ

= ⟨X,λ(Hλ)X⟩Bθ
= |λ|2⟨X,X⟩Bθ

= 2|λ|2⟨X,X⟩AN .

Por otra parte, sea H ∈ a ortogonal a Hλ, en el cálculo anterior, se anula λ(H), con lo que
⟨[θX,X], H⟩Bθ

= 0, probándose así la afirmación (a).
Para probar (b), consideremos H ∈ a. Usando el apartado (b) de la Proposición 2.13,

tenemos que [θX, Y ] ∈ g0. Por otra parte, usando de nuevo la relación (2.5) del Lema 2.17,
se tiene que

⟨[θX, Y ], H⟩Bθ
= λ(H)⟨Y,X⟩Bθ

= 0,
lo cual quiere decir que [θX, Y ] ∈ k0 = g0 ⊖ a.

Lema 3.14. Sea ξ = aHα + bXα un vector unitario, donde α ∈ Π es una raíz simple,
Xα ∈ gα, y a, b ∈ R. Entonces

(a) [θξ, ξ] = −ab|α|2Xα + ab|α|2θXα + 2b2Hα.

(b) ∇ξξ = b2Hα − ab|α|2Xα.

Demostración. Para probar (a), usando que θ|a = −Id, que θgα = g−α para cualquier
α ∈ ∆, la definición de espacio de raíz y la primera afirmación del Lema 3.13, deducimos
que

[θξ, ξ] =[θ(aHα + bXα), aHα + bXα] = −ab[Hα, Xα] + ab[θXα, Hα] + b2[θXα, Xα]
= − ab α(Hα)Xα + ab α(Hα) + 2b2Hα = −ab|α|2Xα + ab|α|2θXα + 2b2Hα.

Para demostrar (b), consideremos Z ∈ a ⊕ n. Usando las ecuaciones (2.3) y (2.4) del
Lema 2.17, junto con la afirmación (a), tenemos que

⟨∇ξξ, Z⟩AN = 1
4⟨[ξ, ξ] + [θξ, ξ] − [ξ, θξ], Z⟩Bθ

= 1
2⟨[θξ, ξ], Z⟩Bθ

= 1
2⟨−ab|α|2Xα + ab|α|2θXα + 2b2Hα, Z⟩Bθ

= − 1
2ab|α|2⟨Xα, Z⟩Bθ

+ b2⟨Hα, Z⟩Bθ

= − ab|α|2⟨Xα, Z⟩AN + b2⟨Hα, Z⟩AN ,

con lo que llegamos a la expresión (b).
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Lema 3.15. Sean dos vectores de a⊕ n, X = Xa +∑
λ∈∆+ Xλ e Y = Ya +∑

λ∈∆+ Yλ, tales
que Xa, Ya ∈ a y Xλ, Yλ ∈ gλ para toda λ ∈ ∆+. Si ⟨Xλ, Yλ⟩AN = 0, para cualquier λ ∈ ∆+,
entonces

∇XY = 1
2([X, Y ] + [θX, Y ] − [X, θY ])n,

donde (·)n denota la proyección ortogonal en la subálgebra de Lie n.

Demostración. Primeramente, usando la relación (2.5) del Lema 2.17, y la hipótesis de
ortogonalidad entre los Xλ y los Yλ, tenemos

⟨[X, θY ], H⟩Bθ
= ⟨X, [Y,H]⟩Bθ

= −⟨X, [H, Ya +
∑

λ∈∆+

Yλ]⟩Bθ
= −

∑
λ∈∆+

λ(H)⟨X, Yλ⟩Bθ

= −
∑

λ∈∆+

λ(H)⟨Xa, Yλ⟩Bθ
−

∑
λ∈∆+

∑
η∈∆+

λ(H)⟨Xη, Yλ⟩Bθ
= 0,

para cualquier H ∈ a. Esto quiere decir que [X, θY ] es ortogonal con respecto a Bθ al
subespacio a. De la misma manera, probamos que [θX, Y ] es ortogonal a a con respecto
de Bθ. Ahora bien, como [X, Y ] ∈ [a ⊕ n, a ⊕ n] = n, tenemos que la suma [X, Y ] +
[θX, Y ] − [X, θY ] también será ortogonal a a respecto de Bθ. Usando este hecho junto con
las ecuaciones (2.3) y (2.4) del Lema 2.17, llegamos a que

⟨∇XY, Z⟩AN = 1
4⟨[X, Y ] + [θX, Y ] − [X, θY ], Z⟩Bθ

= 1
4⟨([X, Y ] + [θX, Y ] − [X, θY ])n, Zn⟩Bθ

= 1
2⟨([X, Y ] + [θX, Y ] − [X, θY ])n, Z⟩AN ,

para cualquier Z ∈ a ⊕ n, siguiéndose así el resultado.

Lema 3.16. Sea ξ = aHα + bXα, donde α ∈ Π, Xα ∈ gα y a, b ∈ R. Sea Yβ ∈ gβ un vector
ortogonal a ξ para algún β ∈ ∆+. Entonces:

(a) ⟨[θYβ, ξ], Z⟩Bθ
= ⟨[θYβ, Xα], Z⟩Bθ

= 0, para cualquier Z ∈ a ⊕ n.

(b) ⟨[θ[Yβ, ξ], ξ], Z⟩Bθ
= 0 para todo Z ∈ a ⊕ n.

(c) Si β ̸= α, entonces [Yβ, θξ], [[Yβ, ξ], θξ], [Yβ, θXα] ∈ n.

Demostración. Para probar (a), comencemos por observar que, por las propiedades de la
descomposición en espacios de raíces, tenemos que

[θYβ, ξ] = a[θYβ, Hα] + b[θYβ, Xα] ∈ g−β ⊕ gα−β.

Tenemos, por hipótesis, que β es una raíz positiva, con lo que −β es una raíz negativa,
de lo que concluimos que ⟨g−β, a ⊕ n⟩Bθ

= 0. Además como α ∈ Π es una raíz simple y
β ∈ ∆+, entonces α−β /∈ ∆+, y tenemos entonces que o β = α o gα−β = 0. En caso de que
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β = α, por la segunda afirmación del Lema 3.13 se tiene que [θYβ, Xα] ∈ k0. En cualquier
caso, [θYβ, Xα] resulta ser ortogonal a a⊕n con respecto a Bθ, con lo que tenemos probado
(a).

Veamos ahora (b). Tenemos que

[θ[Yβ, ξ], ξ] = [θ[Yβ, aHα + bXα], ξ] = −a⟨α, β⟩[θYβ, ξ] + [θ[Yβ, Xα], ξ].

Usando el apartado (a) que acabamos de probar, [θYβ, ξ] es ortogonal a a⊕ n con respecto
de Bθ. Usando ahora las propiedades de la descomposición en espacios de raíces, deducimos
que

[θ[Yβ, Xα], ξ] ∈ g−β−α ⊕ g−β, con − β − α,−β /∈ ∆+ ∪ {0}.
Hemos comprobado entonces que se cumple (b).

Finalmente, probemos (c). Usando de nuevo las propiedades de la descomposición en
espacios de raíces, tenemos que

[Yβ, θξ] ∈ gβ ⊕ gβ−α y [[Yβ, ξ] , θξ] ∈ gβ ⊕ gβ−α ⊕ gβ+α.

Como estamos asumiendo por hipótesis que β ∈ ∆+ \ {α}, tenemos que β + α ∈ ∆+

o β + α /∈ ∆ ∪ {0}, y β − α ∈ ∆+ o β − α /∈ ∆ ∪ {0}. En ambos casos, tenemos que
[[Yβ, ξ], θξ] ∈ n, y tomando a = 0 y b = 1 en el primer corchete, tenemos también que
[Yβ, θXα] ∈ a, de lo que seguimos (c).

En la siguiente proposición mostramos una forma de relacionar los operadores forma y
de Jacobi.

Proposición 3.17. Sea ξ = aHα + bXα un vector unitario, con α ∈ Π una raíz simple,
Xα ∈ gα un vector unitario, y a, b ∈ R. Sea Yβ ∈ gβ ⊂ s = (a⊕n)⊖Rξ, donde β ∈ ∆+\{α}.
Entonces (

Rξ + S2
ξ

)
Yβ = 0.

Demostración. Dado que α ∈ Π es raíz simple y β ∈ ∆+, se tiene que α− β /∈ ∆+. Ahora,
usando las afirmaciones del Lema 3.14, tenemos que

∇ξξ ∈ a ⊕ gα, ∇ξξ − θ∇ξξ = [θξ, ξ].

Así, usando el Lema 3.15, junto con el hecho de que ⟨Yβ, gα⟩ = 0 (por ser β ̸= α), tenemos

∇Yβ
∇ξξ = 1

2([Yβ,∇ξξ] + [θYβ,∇ξξ] − [Yβ, θ∇ξξ])n = 1
2[Yβ, [θξ, ξ]].

Observemos que el segundo sumando del término intermedio de la igualdad es ortogonal a
a⊕n, según se puede ver en la primera afirmación del Lema 3.16, con lo que su proyección
ortogonal sobre n es nula. Si volvemos a utilizar el Lema 3.15 junto con las tres afirmaciones
del Lema 3.16 y la simetría de la conexión de Levi-Civita,

∇ξ∇Yβ
ξ =1

2∇ξ([Yβ, ξ] + [θYβ, ξ] − [Yβ, θξ])n = 1
2∇ξ[Yβ, ξ] − 1

2∇ξ[Yβ, θξ]

=1
2[ξ, [Yβ, ξ]] + 1

2∇[Yβ ,ξ]ξ − 1
2∇ξ[Yβ, θξ].
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Dado que β ∈ ∆+ \ {α}, tenemos [Yβ, ξ] ∈ gβ ⊕ gα+β y ξ ∈ a ⊕ gα, con lo que podemos
volver a aplicar el Lema 3.15 y los puntos (b) y (c) del Lema 3.16 para llegar a

∇[Yβ ,ξ]ξ = 1
2([[Yβ, ξ], ξ] + [θ[Yβ, ξ], ξ] − [[Yβ, ξ], θξ])n = 1

2[[Yβ, ξ], ξ] − 1
2[[Yβ, ξ], θξ].

Podemos volver a usar el Lema 3.15 junto con todos los puntos del Lema 3.16 para tener,
por último,

S2
ξYβ =∇∇Yβ

ξξ = 1
2∇([Yβ ,ξ]+[θYβ ,ξ]−[Yβ ,θξ])nξ = 1

2∇[Yβ ,ξ]ξ − 1
2∇[Yβ ,θξ]ξ

=1
2∇[Yβ ,ξ]ξ + 1

2[ξ, [Yβ, θξ]] − 1
2∇ξ[Yβ, θξ]

=1
2∇[Yβ ,ξ]ξ − 1

2[Yβ, [θξ, ξ]] − 1
2[θξ, [ξ, Yβ]] − 1

2∇ξ[Yβ, θξ].

Juntando todas las expresiones que acabamos de obtener, llegamos a que

(Rξ + S2
ξ )Yβ = ∇Yβ

∇ξξ − ∇ξ∇Yβ
ξ − ∇[Yβ ,ξ]ξ + S2

ξYβ

= 1
2[Yβ, [θξ, ξ]] − 1

2[ξ, [Yβ, ξ]] − 1
2∇[Yβ ,ξ]ξ + 1

2∇ξ[Yβ, θξ] − 1
2[[Yβ, ξ], ξ]

+ 1
2[[Yβ, ξ], θξ] + 1

2∇[Yβ ,ξ]ξ − 1
2[Yβ, [θξ, ξ]] − 1

2[θξ, [ξ, Yβ]] − 1
2∇ξ[Yβ, θξ]

= 0.

Usando este resultado, tenemos que Rξ|gβ
= −S2

ξ |gβ
para cada β ∈ ∆+ \ {α}. De esta

forma, para Xβ ∈ gβ ⊂ s (siendo β ∈ ∆+ \ {α}) obtenemos que

(Sξ ◦Rξ)Xβ = Sξ(−S2
ξXβ) = −S3

ξXβ = −(S2
ξ ◦ Sξ)Xβ = (Rξ ◦ Sξ)Xβ. (3.3)

Veamos la última igualdad. Para ello, consideremos SξXβ y veremos para qué β’s es posible
aplicar la Proposición 3.17. Considerando la relación (2.4) del Lema 2.17, la relación (1.3),
y dado Z ∈ gα, tenemos

⟨∇Xβ
ξ, Z⟩AN = 1

4⟨[Xβ, aHα + bXα] + [θXβ, aHα + bXα] − [Xβ, aθHα + bθXα], Z⟩Bθ

= 1
2⟨[Xβ, aHα], Z⟩Bθ

− 1
4⟨[Xβ, bθXα], Z⟩Bθ

.

Para obtener la última igualdad, hemos usado las propiedades de la descomposición en
espacios de raíces y la ortogonalidad de tal descomposición. Hemos llegado entonces a una
restricción para la validez de la última igualdad de la ecuación (3.3). Si β = α, o β = 2α,
entonces tenemos que [Xβ, Hα] ∈ gα, o [Xβ, θXα] ∈ gα, respectivamente. Por tanto, SξXβ

pertenecerá a gα para estas dos elecciones de β, y entonces la Proposición 3.17 no es
aplicable. Podemos, sin embargo, concluir un resultado parcial, válido en el caso de que 2α
no sea raíz.
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Proposición 3.18. Si α ∈ Π es una raíz simple tal que 2α /∈ ∆+, entonces

(Rξ ◦ Sξ)|n⊖gα = (Sξ ◦Rξ)|n⊖gα .

Con los resultados que hemos visto hasta ahora, respecto a la descomposición de s vista
en la ecuación (3.2), hemos visto que, asumiendo que 2α /∈ ∆+, el operador forma Sξ y
el operador de Jacobi Rξ conmutan, siendo ξ = aHα + bXα. Ahora bien, esto lo hemos
hecho para vectores distintos del vector U = b|α|−1Hα − a|α|Xα. Por lo tanto, en lo que
sigue, trabajaremos con resultados referentes al vector U , comenzando por dar una serie
de identidades útiles para trabajar con este vector.

Lema 3.19. Dado un vector unitario ξ = aHα + bXα, siendo α ∈ Π una raíz simple,
Xα ∈ gα unitario y a, b ∈ R, y siendo U = b|α|−1Hα − a|α|Xα asociado, se tienen las
siguientes identidades:

(i) ∇Xαξ = |α|U ,

(ii) ∇Uξ = −a|α|2U ,

(iii) ∇UU = a|α|2ξ,

(iv) ∇ξU = −b|α|ξ,

(v) [U, ξ] = |α|Xα,

(vi) ∇ξξ = b|α|U .

Demostración. En toda la demostración estaremos considerando un vector Z ∈ a ⊕ n
arbitrario. Veamos cada una de las identidades por separado.

(i) Usando las relaciones (2.3) y (2.4) del Lema 2.17 junto con el punto (a) del Lema 3.13,
llegamos a que

⟨∇Xαξ, Z⟩AN = 1
4⟨[Xα, aHα + bXα] + [θXα, aHα + bXα] − [Xα, θ(aHα + bXα)], Z⟩Bθ

= 1
4⟨a[Xα, Hα] + a[θXα, Hα] + b[θXα, Xα]

− a[Xα, θHα] − b[Xα, θXα], Z⟩Bθ

= 1
2⟨−a[Hα, Xα] + b[θXα, Xα], Z⟩Bθ

= 1
2⟨−a|α|2Xα, Z⟩Bθ

+ ⟨b⟨Xα, Xα⟩ANHα, Z⟩Bθ

=a|α|2⟨Xα, Zn⟩Bθ
+ b⟨Hα, Za⟩Bθ

a|α|2⟨Xα, Z⟩AN + b⟨Hα, Z⟩AN

= ⟨|α|U,Z⟩AN .

Observemos que en la tercera igualdad hemos usado las propiedades de la descompo-
sición en espacios de raíces para eliminar el sumando a[θXα, Hα].

(ii) Usando el apartado (i) que acabamos de probar junto con el apartado (i) del Lema 3.7,
obtenemos

∇Uξ = b|α|−1∇Hαξ − a|α|∇Xαξ = −a|α|2U.
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(iii) Usando otra vez las relaciones (2.3) y (2.4) del Lema 2.17 junto con el punto (a) del
Lema 3.13, se obtiene que

⟨∇XαU,Z⟩AN =1
4⟨[Xα, U ] + [θXα, U ] − [Xα, θU ], Z⟩Bθ

=1
4⟨−b|α|−1[Hα, Xα] − a|α|[θXα, Xα]

− b|α|−1[Hα, Xα] + a|α|[Xα, θXα], Z⟩Bθ

= − a|α|⟨Hα, Z⟩Bθ
− 1

2b|α|⟨Xα, Z⟩Bθ

= − a|α|⟨Hα, Z⟩AN − b|α|⟨Xα, Z⟩AN .

(3.4)

De esta identidad deducimos que ∇XαU = −|α|ξ. Si usamos entonces la identidad
(i) del Lema 3.7, tenemos

∇UU = b|α|−1∇HαU − b|α|∇XαU = a|α|2ξ.

(iv) Usando también que ∇XαU = −|α|ξ y el apartado (i) del Lema 3.7, deducimos que

∇ξU = a∇HαU + b∇XαU = −b|α|ξ.

(v) Si tenemos en cuenta que ξ es unitario, tenemos que a2|α|2 + b2 = 1, con lo cual

[U, ξ] = [b|α|−1Hα − a|α|Xα, aHα + bXα] = b2|α|Xα + a2|α|3Xα = |α|Xα.

(vi) Se sigue directamente del punto (ii) del Lema 3.14.

Proposición 3.20. Sean ξ = aHα + bXα y U = b|α|−1Hα − a|α|Xα. Entonces

(i) SξU = a|α|2U .

(ii) Rξ(U) = −|α|2U .

Demostración. Usando el Lema 3.19, obtenemos

SξU = (−∇Uξ)⊤ =
(
a|α|2U

)⊤
= a|α|2U,

junto con

RξU =R(U, ξ)ξ = ∇U∇ξξ − ∇ξ∇Uξ − ∇[U,ξ]ξ = ∇Ub|α|U + ∇ξa|α|2U − ∇|α|Xαξ

= ab|α|2ξ − ab|α|3ξ = −|α|2U,

concluyéndose así la demostración.

Como consecuencia de la anterior proposición, tenemos el siguiente resultado.
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Corolario 3.21. Sean ξ = aHα + bXα y U = b|α|−1Hα − a|α|Xα. Entonces

(Rξ ◦ Sξ)(U) = (Sξ ◦Rξ)(U).

Tomemos α ∈ ∆+, pero con 2α /∈ ∆+. Entonces, dados Yα ∈ gα ⊖ Xα y Z ∈ a ⊕ n,
tenemos

⟨∇Yαξ, Z⟩AN =1
4⟨[Yα, aHα + bXα] + [θYα, aHα + bXα] − [Yα,−aHα + bθXα], Z⟩Bθ

=1
4⟨−a[Hα, Yα] − a[Hα, Yα], Z⟩Bθ

= −1
2a⟨[Hα, Yα], Z⟩Bθ

= − 1
2a|α|2⟨Yα, Z⟩Bθ

= −a|α|2⟨Yα, Z⟩AN .

(3.5)

En la segunda igualdad, como 2α /∈ ∆+ y la suma de raíces positivas o es una raíz positiva o
no es raíz porque su subespacio de raíz asociado es trivial, deducimos que [Yα, Xα] ∈ g2α =
0. Además, los corchetes [θYα, Xα] y [Yα, Xα] se anulan al hacer el producto con Z ∈ a⊕ n
por ser elementos de k∩g0. Así, dados ξ = aHα +bYα, Yα ∈ gα ⊖RXα y α ∈ ∆+, 2α /∈ ∆+,

Sξ(Yα) = − (∇Yαξ)
⊤ = a|α|2Yα. (3.6)

Ahora, tenemos que calcular también Rξ(Yα). Para hacer esto, hay algunos cálculos
previos que tenemos que llevar a cabo. Sean Yα ∈ gα ⊖ RXα y Z ∈ a ⊕ n.

⟨∇ξYα, Z⟩AN =1
4⟨[ξ, Yα] + [θξ, Yα] − [ξ, θYα], Z⟩Bθ

=1
4⟨[aHα + bXα, Yα] + [−aHα + bθXα, Yα] − [aHα + bXα, θYα], Z⟩Bθ

=1
4⟨a|α|2Yα − a|α|2Yα, Z⟩Bθ

= 0.

Como sucedía en (3.5), todos los corchetes que involucran a Xα junto con Yα se anulan de
por sí o lo hacen al considerar el producto escalar con Z. Por otra parte, [Hα, θYα] ∈ g−α,
con lo que el producto por Z también se hace nulo. Por otra parte, si calculamos el corchete
de Yα con ξ, tenemos del hecho de que 2α no sea raíz

[Yα, ξ] = [Yα, aHα + bXα] = −a[Hα, Yα] = −a|α|2Yα. (3.7)

Para calcular Rξ(Yα) necesitaremos también de la siguiente identidad:

⟨∇YαU,Z⟩ = 1
4⟨[Yα, b|α|−1Hα − a|α|Xα] + [θYα, U ] − [Yα,−b|α|−1Hα − a|α|θXα], Z⟩Bθ

= 1
4⟨−[b|α|−1Hα, Yα] − [b|α|−1Hα, Yα], Z⟩Bθ

= − 1
2b|α|⟨Yα, Z⟩Bθ

= −b|α|⟨Yα, Z⟩AN .

(3.8)
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El término [θYα, U ] no se ha desarrollado ya que su producto escalar con cualquier elemento
Z ∈ a⊕n es nulo. Teniendo presentes las ecuaciones (3.7) y (3.8), podemos calcular Rξ(Yα):

Rξ(Yα) = ∇Yα∇ξξ − ∇ξ∇Yαξ − ∇[Yα,ξ]ξ = b|α|∇YαU + a|α|2∇ξYα + a|α|2∇Yαξ

= b|α|∇YαU − a2|α|4Yα =
(
−b2|α|2 − a2|α|4

)
Yα,

(3.9)

Tomando las ecuaciones (3.6) y (3.9), tenemos

(Rξ ◦ Sξ)(Yα) = Rξ(a|α|2Yα) = a|α|2(−b2|α|2 − a2|α|4)Yα,

(Sξ ◦Rξ)(Yα) = Sξ(−b2|α|2 − a2|α|4)Yα = a|α|2(−b2|α|2 − a2|α|4)Yα.

Con todo, hemos probado el siguiente resultado.

Teorema 3.22. Sea M un espacio simétrico irreducible de tipo no compacto y Π =
{α1, . . . , αr} un conjunto de raíces simples para el sistema de raíces ∆ asociado a M .
Sea F una foliación de M de tipo Fi, con i ∈ {1, . . . , r}, tal que 2αi /∈ ∆. Entonces todas
las hojas de la foliación Fi son de curvatura adaptada.

Ahora estamos en disposición de demostrar el resultado principal de esta memoria.

Demostración del Teorema Principal. Los espacios simétricos irreducibles de tipo no com-
pacto que tienen una raíz simple α tal que 2α es también raíz son [6, p. 340]:

SUr,r+n

S(UrUr+n) ,
SO∗

4r+2
U2r+1

,
Spr,r+n

SprSpr+n

,
E−14

6
Spin(10)U1

y F−20
4

Spin(9) .

Por tanto, teniendo en cuenta el Teorema 3.9, el Teorema 3.22 y la clasificación de foliaciones
homogéneas de cohomogeneidad uno en espacios simétricos irreducibles de tipo no compacto
[9, Theorem 5.5] obtenemos el resultado principal de esta memoria.
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