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Preface

This volume records the Proceedings of the Workshop on Recent Topics in
Differential Geometry held at the Institute of Mathematics and the Department
of Geometry and Topology of the University of Santiago de Compostela (Spain),
16~19 July 1997.

The aim of this Workshop has been to recuperate the spirit that inspired the
two previous Workshops held in Lancaster University (U.K., 1989) and in the
University of La Laguna (Spain, 1990). That is, to celebrate an informal working
meeting to bring together a number of experts and their research students, and
to give the participants the opportunity of having stimulating discussions in a
friendly atmosphere. We are most thankful to all participants for their contribu-
tion to the success of the meeting; special thanks are due to the invited speakers,
Profs. A. Ferrdndez (University of Murcia, Spain) and O. Kowalski (Charles Uni-
versity, Czech Republic), and to those who chaired sessions. All authors are to
be congratulated on the preparation of excellent papers by the agreed time, so
allowing a speedy publication. In addition, our thanks go also to the Department
of Geometry and Topology for publishing this proceedings volume in its series.

The Workshop woilld not have been possible without the support of the Uni-
versity of Santiago de Compostela, through the Institute of Mathematics and
the Department of Geometry and Topology, and of the D.G.I.C.Y.T. (Project
PB-94-0633-C02-01), to which we heartly thank.

Luis A. Cordero
Eduardo Garcia-Rio
Santiago de Compostela, January 1998
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GEOMETRY OF THE UNIT TANGENT SPHERE BUNDLE

E. Boeckx* and L. Vanhecke

1 Imtroduction

When studying the geometric properties of a Riemannian manifold (M, g), it is
often worthwhile and inspiring to consider geometric objects naturally associated
to (M, g). These can be special hypersurfaces such as small geodesic spheres
and tubes around geodesics (see, e.g., [14], [15] and [20] in these proceedings),
or bundles with (M, g) as base manifold. The tangent bundle TM and the unit
tangent sphere bundle T3 M are particularly interesting. As an example, one can
study the geodesics on (M, g) via the geodesic flow on TM or on T3 M ([2], [3]).
In the same vein, A. L. Besse uses the unit tangent sphere bundle with this flow
as his basic tool in [3].

It is therefore natural to make an in-depth study of these two bundles, equipped
with “natural” metrics and other “natural” structures (such as an almost com-
plex structure on TM and a contact metric structure on 73M). By “natural” we
mean that these structures are canonically determined by the geometric structure
of M (i.e., the metric g and possibly other structural tensors).

One of the best known Riemannian metrics on the tangent bundle TM is
the Sasaki metric gg. Unfortunately, as a metric space, (T'M, gs) is not very
interesting for our purposes. For instance, the fairly weak hypothesis to have
constant scalar curvature already implies that (M, g) must be flat ([26]). Other
natural metrics on T'M have been introduced and studied. We refer to [36] for
some examples. As concerns the Cheeger-Gromoll metric, see [25], [26].

More interesting is the geometric structure of the unit tangent sphere bun-
dle TY M. 1t is well-known that 73 M admits a contact metric structure (€, 7, ¢, 3),
where the metric § is homothetic to the metric induced by the Sasaki metric gs
([5]). Still, several aspects of the Riemannian geometry of (T} M, g), in particular
about the curvature, have received only little attention until recently. In a series

*Postdoctoral Researcher of the Fund for Scientific Research - Flanders (FWO - Viaanderen)

1991 Mathematics Subject Classification, 53B20, 53C15, 53C25.

Key words and phrases. Unit tangent sphere bundles, constant scalar curvature, curvature
homogeneity, reflections with respect to curves.



8 E. Boeckx and L. Vanhecke

of papers ([10], [11], {12}), the present authors focus precisely on this study. This
article aims to give a survey of some of these recent results.

After an introductory section, recalling briefly the basic facts about the tan-
gent bundle and the unit tangent sphere bundle, we investigate which Riemannian
spaces (M, g) have a unit tangent sphere bundle (T3M, §) with constant scalar
curvature, We give several classes of examples and classify all two- and three-
dimensional and all conformally flat manifolds with this property. Constant scalar
curvature is only the first step in the search for curvature homogeneous manifolds
within the class of unit tangent sphere bundles, which continues in Section 4. It
was already known that the unit tangent sphere bundle of a two-point homo-
geneous space is homogeneous ([26], [34]), hence curvature homogeneous. Our
results in this section seem to suggest that, up to local isometries, these might
very well be the only ones. In Section 5, we determine all unit tangent sphere
bundles which are Einstein, Ricci-parallel or (locally) symmetric, reproving in
this way a result of D. Blair ([6]). Finally, in Section 6, we return to the contact
metric structure on Ty M and study the reflections with respect to the integral
curves of the characteristic vector field £.

2 The tangent bundle and the unit tangent sphere bundle

First, we collect the basic facts about the tangent bundle and the unit tangent
sphere bundle of & Riemannian manifold. For more details and further informa-
tion, we refer to [3], [10], [19], [23], [26], [27], [32], [35] and [36].
Let (M, g) be an n-dimensional (n > 2) connected Riemannian manifold and
V its Levi Civita connection. The Riemann curvature tensor R is defined by
R(X,Y)Z = VxVyZ - VyVxZ — Vixy)Z for all vector fields X, Y and Z
on M. The tangent bundle of (M, g), denoted by TM, consists of pairs (z, u)
where 7 is a point in M and © a tangent vector to M at z. The mapping
w: TM — M:(z,u) = z is the natural projection from TM onto M.
- It is well-known that the tangent space to TM at (z,u) splits into the di-
rect sum of the vertical subspace VT M(; 4y = ker my(z,»y and the horizontal sub-
space HT M.y with respect to V: :

Q}x}u)TM = VMg @ HT Mz, ).

The horizontal subspace HT M.y consists of those vectors which are tangent
at (z,u) to a curve ¥(t) = (a(t), V(1)) in TM satisfying ViV (t) = 0.

For X € T,M, there exists a unique vector X" at the point (z,u) € TM
such that X" € HT M) and m.(X") = X. X" is called the horizontal lift of X
to (z,u). There is also a unique vector X” at the point (z,u) such that X° €
VI My and X¥(df) = Xf for all functions f on M. X is called the vertical
lift of X to (z,u). The map X +— X*, respectively X + X?, is an isomorphism -
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between T, M and HT M ), respectively T.M and VT M(, .y. Similarly, one lifts
vector fields on M to horizontal or vertical vector fields on 7M. The expressions
in local coordinates for these lifts are given in [10], for example.

The tangent bundle TM of a Riemannian manifold (M, ¢) can be endowed in a
natural way with a Riemannian metric gg, the so-called Sasaki meiric, depending
only on the Riemannian structure g of the base manifold M. It is uniquely
determined by

gs(XMYM) = gs(X°Y") =g(X,Y)om,  gs(X"Y")=0

for all wector fields X and Y on M. There is also an almost complex structure J
on TM given by
JXt=X7,  JX'=-X"

for all vector fields X on M.
For these structures, we have the following result:

Theorem 2.1 ([19]) The tangent bundle (TM, g5, J) is almost Kihlerian. It is
a Kéhler manifold only when (M, g)-is flat.

As for the metric structure of (T'M, g5), Kowalski proved

Theorem 2.2 ([23]) The tangent bundle (TM, gg) is locally symmetric if and
only if (M, g) is flat.

A stronger result was derived by E. Musso and F. Tricerri:

Theorem 2.3 ([26]) The tangent bundle (T M, gs) has constant scalar curvature
if and only if (M, g) is flat.

This last result shows that, although the Sasaki metric is a very natural
Riemannian metric on TM, it is “extremely rigid” ([26]). There are two ways
out: either we study other interesting metrics on TM (see, e.g., [25], [26], [28],
[36]) or we consider the unit tangent sphere bundle 73 M with the metric induced
from gs. Here, we choose the second option.

The hypersurface T'M of TM consists of the unit tangent vectors to (M, g)
and is given implicitly by the equation g,(u,u) = 1. A unit normal vector N
to TyM at (z,u) € T1M is given by the vertical lift of u to (z,u): Nyzu) = u’.

As the vertical lift of a vector (field) is not tangent to 73 M in general, we
define the fangentiol lift of X € T, M to (z,u) € T'M by

X(tx,u) = (X - Q(Xa u) u)v‘

Clearly, the tangent space to Ty M at (z,u) is spanned by vectors of the form X"
and X* where X € T, M.
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We now describe the natural contact metric structure on T3 M. We refer to [5]
for the basic concepts of contact geometry. We endow T3 M with the metric
induced from the Sasaki metric gs on 7'M, denoted also by gs. Using the almost
complex structure J on T'M, we define a unit vector field £’, a one-form 7’ and a
(1,1)-tensor field ¢' on Ty M by

£ =—JN, JX =¢X+7(X)N.

It is easily checked that (T3M,€',7',¢’, gs) is an almost contact metric mani-
fold. However, §(X, ¢'Y) = 2dn'(X,Y), so (¢,7',¢', gs) is not a contact metric
structure. This defect can be rectified by taking

E = 2611 27’ = 77/, p= (pla 4.6 =gs.
Note that the metric g is obtained from the one induced from the Sasaki
metric on T'M by a homothetic change. So itis given explicitly by

1

G4 Y) = 2(0(XY) — o(X, w)g(¥,u)),

g|(:x:,u)(Xt,Yh) = 0,
1

gl(a:,u)(Xh1Yh) = Zg(Xa Y)

The integral curves of the characteristic vector field £ will be called characteristic
curves in what follows. Note that £, or more precisely, £, also describes the
geodesic flow (see [3]).

Making T3 M into a contact metric manifold is the best we can do in the
context of contact geometry, as follows from the following result by Y. Tashiro:

Theorem 2.4 ([33]) The natural contact metric structure on Ty M is K-contact
if and only if (M, g) has constant curvature 1, in which case the structure on ThM
s Sasakian.

With the metric § on T3 M in place, it is a fairly routine exercise to calculate
the associated Levi Civita connection V, the Riemann curvature tensor R, the
Ricci tensor 7 and the scalar curvature 7. The formulas can be found, e.g., in
[10],_[11] and [35]. Here, we give only the expressions for g and 7. The Ricci
tensor is given explicitly by '

PlemXLYY) = (n—-2)(g(X,Y) - g(X, u)g(¥,u))
+3 2 (R, X)B; Ru, Y)E),
1) AewXYY) = (T - (Vxn)wY)),

1 n
ﬁl(ﬂ:,u)(Xh:Yh) = pI(X’ Y) - 5 Zg(R(ua Ei)X, R(’Ll,, Ei)Y)7
i=1
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and the scalar curvature 7 by
(2) Tlow) = 47 +4(n ~ 1)(n — 2) — &(u, w)

where, as in [3] and [17], &(u,v) = ¥75; 9(R(y, B) E;, R(v, E;)E;). Obviously,
this (0, 2) tensor field £ has nothing to do with the characteristic vector field £ on
an almost contact metric manifold. Note that the natural mapping =: (T\ M, gs) —
(M, g) is a Riemannian submersion, hence these curvature formulas may also be
derived using O’Neill’s formalism. (See, e.g., [4].)

3 Unit tangent sphere bundles with constant scalar curvature
From the formula (2) for the scalar curvature on Ty M it follows easily

Theorem 3.1 The unit tangent sphere bundle (T1M, ) has constant scalar cur-
vature 7 if and only if on (M, g) it holds

(3) £ = %‘—29,
(4) dnt — |R)* = constani.

Remark 1 The algebraic condition (3) has appeared in the literature before (see,
e.g., [3], [17], [22]), but without a clear geornetric meaning. An analytic interpre-
tation is given in [4, p. 134]: an Einstein metric on a compact manifold is critical
for the functional SR(g) = [y, |R,[? dvol restricted to those metrics g such that
vol{M) =1 if and only if £ = (|R|?/n) g. We can now give a nice geometric inter-
pretation for Riemannian manifolds satisfying (4): on such manifolds, (3) holds
if and only if their unit tangent sphere bundle has constant scalar curvature.

The case of (locally) reducible manifolds is easy to deal with:

Corollary 3.2 The unit tangent sphere bundle (Ty M, §) of a (local) product man-
ifold (M, g) = (M7, g1) x (M3?, g2) has constant scalar curvature if and only if
the unit tangent sphere bundles of both (M, ¢1) and (M, g2) have constant scalar
curvature and, additionelly,

IR _ RE

(5) o

As immediate examples of Riemannian spaces whose unit tangent sphere bun-
dles have constant scalar curvature, we have

0. Spaces of constant curvature.

1. Irreducible symmetric spaces and, more generally, isotropy irreducible ho-
IMOZEneous Spaces.
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2. Reducible symmetric spaces (M, g) = (My, 1) X -+ X (M}, g) with irre-
ducible components (M, g;) such that |R;[?/n; = ... = |R¢[*/ns.

3. Super-Einstein spaces ([22]): these are Einstein manifolds satisfying condi-
tion (3) with |R|? constant.

4. Harmonic spaces: as every harmonic space is super-Einstein (see, e.g., [3],
17]).

5. Four-dimensional orientable Einstein manifolds which are self-dual or anti-
self-dual. For this result and more in the same direction, we refer to [11].

In low dimensions, we can give a complete classification.

Proposition 3.3 The unit tangent sphere bundle (T\M, §) of a two-dimensional
manifold (M, g) has constant scalar curvature 7 if and only if (M, g) has constant
curvature.

Proposition 3.4 The unit tangent sphere bundle (TyM,3) of a three-dimen-
sional manifold (M, g) has constant scalar curvature ¥ if and only if (M, g) has
constant curvature or (M, g) is ¢ curvature homogeneous space with constant Ricci
roots py = py = 0 # pa.

The proofs of these propositions use the explicit expressions for the curvature
tensor R in terms of the scalar curvature v and the Ricei tensor p, namely

r
R = —
1 9Dy
in dimension two and -
R=p®g— I 9Dy

in dimension three. Here @ is the Kulkarni-Nomizu product of symmetric two-
tensors defined as follows:

(R@E)X,Y,Z,V) = WX, 2, V)+ MY, V)K(X, Z)
— WX, V)K(Y, Z) — (Y, Z)k(X, V).

There is another class of Riemannian manifolds where a similar curvature
expression exists: for conformally flat manifolds, it holds

1 ) T -
B= 20 e -9 00"

As before, we use this formula for R to express the conditions (3) and (4). Further,
we also use H. Takagi’s classification of conformally flat locally homogeneous
spaces ([30]) which is also valid for curvature homogeneous manifolds ([24]) to
obtain
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Theorem 3.5 Let (M™, g) be conformally flat and n > 4. The unit tangent
sphere bundle (T3 M, §) has constant scalar curvature if and only if (M, g) has
constant curvature or n is even, say n = 2k, and (M, g) is locally isometric to

the product M*(k) x M*(~k), K #0, orn =4, |p|? is constant and T = 0.

4 Curvature homogeneous unit tangent sphere bundles

Based on the results in the previous section, we now lock for curvature homoge-
neous unit tangent sphere bundles. For the definition of curvature homogeneous
spaces, see [29]. An extensive survey about this class of manifolds can be found
in [9, Chapter 12]. We start with a positive result:

Theorem 4.1 ([26], [34]) If (M, g) is a two-point homogeneous space, then its
unit tangen sphere bundle (T\M, §) 4s a homogeneous Riemannian manifold.

Proof. If his an isometry of a Riemannian manifold (M, g), then it can be
lifted to an isometry h of (T1M,§) defined by h{z,u) = (h(z), hu(u)). Clearly,
if (M,g) is two-point homogeneous, then the lifted isometries act transitively
on TlM .

| |

Remark 2 To our knowledge, it is not known whether the converse of this theo-
rem holds, i.e., whether a manifold (M, g} with locally homogeneous unit tangent
sphere bundle (T3 M, §) is necessarily locally isometric to a two-point homoge-
neous space,

Next, we start from the classification results in the previous section. In order
to prove that some classes do not have a curvature homogeneous unit tangent
sphere bundle, we will show that they are not even Ricci-curvature homogeneous.

A Riemannian manifold (M, g) is said to be Ricci-curvature homogeneous if
for every pair of points ,y € M, there exists a linear isometry F: T,M — T, M
such that F*p, = p,. As p is a symmetric (0, 2)-tensor field and as such diag-
onalizable at each point, one can say equivalently that the matrices for p,, re-

-spectively py, with respect to an orthonormal basis of T, M, respectively of T, M,
must have the same eigenvalues (with the same multiplicities), or that their char-
acteristic polynomials are identical. Obviously, every curvature homogeneous
space is Ricci-curvature homogeneous, but the converse does not hold. E.g., ev-
ery Einstein space is Ricci-curvature homogeneous, but not necessarily curvature
homogeneous.

The proofs of the following propositions consist typically in comparing the ma-
trices for p at different points (z,u) € T} M, using the formulas (1), and requiring
that they have the same eigenvalues or the same characteristic polynomial. In
this way, we prove
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Proposition 4.2 Let (M, g) be a two- or three-dimensional Riemannian mani-
fold. Its unit tangent sphere bundle (T1 M, §) is (Ricci-)curvature homogeneous if
and only if (M, g) has constant curvature. In that case, (T1M, g) is even locally
homogeneous.

Proposition 4.3 Let (M, g) be conformally flat. Then (1M, g) is (Ricci-)cur-
vature homogeneous if and only if (M, g) has constant curvature. In that case,
(T1 M, §) is even locally homogeneous.

A final result in this framework deals with harmonic spaces. Up to local
isometries, the only known examples so far, apart from the two-point homoge-
neous spaces, are the so-called Damek-Ricci spaces, that have only been dis-
covered fairly recently. These are solvable Lie groups whose Lie algebras are
solvable extensions of generalized Heisenberg algebras, equipped with a special
left-invariant metric. We refer to [1] for the precise definitions, some geometric
properties of these remarkable spaces and further references. As harmonic spaces,
every Damek-Ricci space has a unit tangent sphere bundle with constant scalar
curvature. Moreover, we have

Proposition 4.4 The unit tangent sphere bundle (115, §) of a Damek-Ricci space
S is (Ricci-)curvature homogeneous if and only if S is a symmetric space. In that
case, S is two-point homogeneous and (115,) is homogeneous.

A final result deals with the case of product manifolds where at least one of
the factors has a Codazzi Ricci tensor (i.e., (Vxp)(Y, Z) = (Vyp)(X, Z) for all
vectors X, Y and Z). In particular, it settles the case of reducible symmetric
manifolds.

Proposition 4.5 Let (M, g) be locally isometric to the Riemannian product of
(M, g1) and (Ma, g2) and suppose that the Ricci tensor py of (M1, ¢1) is a Codazzi
tensor. If (T'M, §) is (Ricci-)curvature homogeneous, then (M, g) is flat.

The case of irreducible symmetric spaces is as yet undecided. Clearly, the
symmetric spaces of rank one have a (Ricci-)curvature homogeneous unit tangent
sphere bundle as they are two-point homogeneous. The authors strongly believe
that these are the only ones. A proof or a refutation of their belief would be very
welcome.

5 The Ricci tensor of the unit tangent sphere bundle

In Section 3, we considered the case of constant scalar curvature for the unit
tangent sphere bundle. Here, we look at some stronger conditions, involving the
Ricci tensor p.

First, we have
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Theorem 5.1 The unit tangent sphere bundle (T M, §) of o Riemannian mani-
fold (M, g) is an Einstein manifold if and only if (M, g) is a.surface of constant
curvature 0 or 1.

More generally, it holds

Theorem 5.2 The unit tangent sphere bundle (TIM ,§) of a Riemannian mani-
fold (M, g) has parallel Ricci tensor if and only if (M, g) is flat or is a surface of
constant curvature 1.

The proofs of these two theorems use curvature invariants. As a consequence
of Theorem 5.2, we have

Corollary 5.3 The unit tangent sphere bundle (Ty M, §) of a Riemannian man-
ifold (M, g) is locally symmetric if and only if (M, g) is flat or is a surface of
constant curvature 1.

Proof. If (M, g) is the n-dimensional Euclidean space, then (T1M,7) is the
Riemannian product of IR™ and S™~! with their standard metrics, hence symmet-
ric. If (M, g) is locally isometric to the two-sphere of radius 1, then (T3 M, g) has
constant curvature 1. The converse follows from Theorem 5.2.

This theorem has already been proved by D. Blair in [6], but he uses the
contact metric structure of T3 M in an essential way. Our method of proof only
involves metric information. )

If we restrict our attention to the case where the manifold (M, g) has constant
curvature ¢, more can be said about the Ricci curvature p (see [10]). As an
example, it is easy to prove that p is cyclic parallel (i.e., (Vxp){X, X) = 0 for all
vectors X ) if and only if n =2 or ¢ € {0,1}. As a consequence, one proves

Proposition 5.4 The universal covering of (TyM™(c), §) is a naturally reductive
hemogeneous space if and only if n =2 orc € {0,1}.

We will come back to this in the next section.

6 Characteristic reflections on unit tangent sphere bundles

Corollary 5.3 shows that requiring a unit tangent sphere bundle (Ti M, ) to be
locally symmetric, i.e., the geodesic reflections with respect to all points (x, u) are
isometries, or, analytically, VR =0, is a very strong condition indeed. Still, on a
unit tangent sphere bundle, as on every (almost) contact metric manifold, there
exists a family of distinguished curves, namely the characteristic curves. It is
natural, therefore, to determine when the reflections with respect to these curves,
the so-called characteristic reflections, are isometries. We give the following
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Definition 6.1 An (almost) contact metric manifold (M, &, n, ¢, g) will be called
a locally p-symmetric space if and only if all characteristic reflections are (local)
isometries. :

We note that the notion of a locally -symmetric space has already been in-
troduced in the context of Sasakian geometry by T. Takahashi ([31]). He defines
a Sasakian locally ¢-symmetric space as a Sasakian manifold satisfying the curva-
ture condition g((VxR)(Y,Z)V,W) = 0 for all vector fields X, Y, Z, V and W
orthogonal to £, and he proves that this is equivalent to having characteristic
reflections which are local automorphisms of the Sasakian structure. In [8], it is
proved that this is also equivalent to the isometry property of the characteristic
reflections. (For a slightly more general result, see [13].)

In [7], the authors generalize the notion of a locally ¢-symmetric space to
the class of contact metric manifolds in a way different from ours above: they
simply take the curvature condition which holds in the Sasakian case as defining
condition. Our (probably stronger) Definition 6.1 in the general almost contact
metric case gives rise to an infinite list of curvature conditions (cf. [18]).

Theorem 6.2 Let (M,&,n,,g) be an almost contact metric manifold. If it is a
locally @-symmetric space, then the following hold:

1)  the characteristic curves are geodesics,
2)  9(V¥-xBIXY)X, 6 =0,

3 9((‘7%?-“-}-‘)1(12}(}(3}/))(’ Z) =0,

4)  g(VERXRX.HX.&=0

for all vectors X, Y and Z orthogonal to £ and k = 0,1,2,.... Moreover, if
(M, g) is analytic, these conditions are also sufficient for the almost contact met-
ric manifold to be a locally p-symmetric space.

As every unit tangent sphere bundle is a contact metric manifold, the charac-
teristic curves are geodesics and we are left with an infinite list of conditions on
the Riemann curvature tensor R and its covariant derivatives.

Theorem 6.3 The unit tangent sphere bundle (T1M, €,n, ¢, ) is locally p-sym-
metric if and only if (M, g) has constant curvature.

Proof. A complete proof can be found in [10]. Here we only outline the major
steps. We use the explicit expressions for the curvature tensor R of (T} M, 3) in
terms of the curvature tensor R of (M, g) and its covariant derivatives.

If we suppose that (T3 M, £, 7, ¢,§) is locally ¢-symmetric, it follows already
from the condition g(R(X,Y)X,£) = 0 for X and ¥ orthogonal to ¢ that
(M, g) has constant curvature (via Cartan’s criterion, see [16]).
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Conversely, for a space of constant curvature, the tangent unit sphere bundle
is analytic. By an induction argument, we show that the infinite list of curvature
conditions holds.

Remark 3 In the previous section, we mentioned that the only spaces of con-
stant curvature for which the universal covering of their unit tangent sphere bun-
dle is naturally reductive, are the fwo-dimensional ones and those with constant
curvature 0 or 1. Yet, for every space of constant curvature, ifs unit tangent
sphere bundle is locally yw-symmetric. To our knowledge, this gives the first
examples of spaces which are not naturally reductive, but which do admit a one-
dimensional foliation of geodesics such that the reflections with respect to these
geodesics are local isometries. Many other naturally reductive examples are given
in the study of flow geometry. See [21] for more details and references.
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VOLUME AND LOCAL HOMOGENEITY

P. Bueken® and L. Vanhecke

1 Introduction

In their search for an alternative proof of Gauss’ theorema egregium, J. Bertrand,
M. Diguet and V. Puiseux [3] discovered that the Gaussian curvature K(m) of
an arbitrary surface M at a point m can be defined in a very geometric way as

327 Sewl(r

where S,,(r) denotes the length of a geodesic circle of radius r centered at the
point m, implying that there exists a close relationship between the Gaussian
curvature of a surface and the length of the geodesic circles contained in it. This
link was later studied in the framework of arbitrary Riemannian manifolds (where
geodesic circles are now replaced by geodesic spheres or balls) by Vermeil [36],
and for other classes of geometric objects, in particular tubes around curves and
arbitrary submanifolds by Hotelling [20] and Weyl [37].

The existence of a relation between the curvature of a Riemannian manifold
and the volume of geodesic spheres and tubes contained in it led some authors
to state the following question: To what extent is the curvature (or geometry)
of a given pseudo-Riemannian manifold (M, g) influenced, or even determined,
by the volume properties of certain naturally defined families of geometric objects
in M? In its full generality, this problem seems to be very difficult to handle.
It is to be expected, however, that families of geometric objects (e.g., geodesic
balls and spheres, cones, tubes and disks) in certain so-called “model spaces”, i.e.,
manifolds with a high degree of symmetry (e.g., locally homogeneous manifolds,
two-point homogeneous manifolds, space forms and g.o. spaces) will have nice
properties and, conversely, that manifolds whose families of geometric objects
satisfy such volume properties will have a highly symmetric geometric structure.
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As a particular approach to the general question stated above, one can therefore
study the following problem: Can we determine, using the volume properties of
certain families of geometric objects, whether a pseudo-Riemannian manifold is
(locally isometric to) a given model space? To study this problem, one generally
starts by investigating the direct problem of determining the volume properties of
families of geometric objects in the model spaces. The next step is then to study
the converse problem of determining if these volume properties are characteristic
for the given model spaces, that is, to investigate whether these model spaces
are (up to local isometry) the only pseudo-Riemannian manifolds having these
properties.

Problems of this type have been investigated by many authors, and these
investigations have led to nice characterizations of special families of model spaces,
as well as to a number of interesting open problems which turn out to be very
difficult to solve. In the rest of this paper we review some of the questions
studied in this framework, we present the results and open problems obtained in
this investigation, and collect a list of references to papers where these problems
have been studied in detail. We omit the proofs but remark, as variations of
geodesics are closely related to the study of the spheres, balls, tubes and disks,
that normal and Fermi coordinates and Jacobi or Fermi vector fields are used
intensively in the treatment.

It should be remarked that, in this paper, we restrict our attention to the
volume properties of families of geometric objects. As it turns out, there also
exists a strong relation between the curvature of a pseudo-Riemannian manifold
and certain other properties of these families of geometric objects, such as their
curvature (intrinsic geometry) and shape operator (extrinsic geometry). The
reader interested in examples of such properties is referred to [17],[5] for more
details and further references.

_In the rest of this paper, we denote by (M,g) an n-dimensional, smooth,
connected pseudo-Riemannian manifold, by V its Levi Civita connection and by
R and p the Riemann and Ricci curvature tensors associated to V, where we
define

Rxy = Vixy) = [Vx, Vy]

for all pairs of tangent vector fields X, Y. 7 denotes the scalar curvature of (M, g).
Also, to avoid problems with the domains of exponential maps we will, whenever
necessary, assume that the geometric objects (geodesic spheres and balls, tubes,
disks) considered here are sufficiently small, i.e., their radius is always smaller -
than the injectivity radius i(m) of the manifold at the center m of the object or
than the distance to the nearest focal point of the central axis of a tube.
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2 Euclidean space and the volume conjecture

As a first example, we start from an n-dimensional Euclidean model space. Then
it is a well-known classical result that the volume V,,,(r) of a ball B,,(r) of radius
r and centered at m is given by

(1 Vin(r) = wor™, W = ((%n)l> - 7n/2).

(For the {(n—1)-dimensional volume S,,(r) of the sphere G,,,(r) of radius r, we have
Sp(r) = &2 = pe,r1) In [18], A. Gray and the second author investigate
whether this volume property for balls (or spheres) in (locally) Euclidean spaces
is characteristic for these model spaces. In particular, they study Riemannian

manifolds such that the volume V,,(r) of every (sufficiently small) geodesic ball
B (1) = {exp,, (su)ju € TpM, llul| =1,0< s <7}

of radius r centered at a point m € M is given by (1). As no non-flat examples
of such manifolds are known, they state the following so-called volume conjecture
(an equivalent version can be stated using the volumes of the geodesic spheres
Gom(r) = {expy,(ru)lu € T M, ||ull = 1} ):

Conjecture 2.1 Let (M, g) be an n-dimensional Riemannian manifold and sup-
pose that the volume of every (sufficiently small) geodesic ball B,(r) is given by
(1). Then (M, g) is locally flat.

One possible approach to the study of this problem is to start from the power
series expansion for the volume of a (small) geodesic ball, which is given for a
general Riemannian manifold by '

Vin(r) = war™{1 + A(m)r® + B(m);;"' +0(r®)},

where
’ T
(2) A = Ol
© 360(n + ;)(’n Ty (3R +8llall* 572 —1847).

Expressing the volume property (1) then yields an infinite set of necessary con-
ditions (in terms of curvature invariants) for the manifold to possess the volume
property under consideration. The first two of these conditions take the form

=0, 3|R|* -8l =0.

Using these necessary conditions, one should then prove that the manifold is
locally flat, ie., R=0.
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In [18] the next term in the power series has been derived and furthermore it
was shown that the volume conjecture is true in a number of special cases, which
are collected in the following

Theorem 2.2 The volume conjecture ts true if any of the following additional
assumptions are made:
e dimM <3;

s M has non-positive or non-negative Ricei curveture; in particular, this con-
dition holds when M is an Einstein manifold;

e M is conformally flot; ‘
M is @ Bochner flat Kéhler manifold;

M is a product of surfaces;

*

.

M is four- or flve-dimensional and its Ricci tensor is parallel;

e M is compact and the Laplacian of M has the same spectrum on functions
as that of a compact flat manifold.

In the special case where the manifold is locally symmetric, the following result
was obtained in [13] (see [18] for some special cases):

Theorem 2.3 Let (M, g) be o locally symmetric space such that the volume of
every sufficiently small geodesic ball of radius v is the same as in Euclidean space.
Then (M, g) is locally flat.

Finally, G. Calvaruso and the second author [7] (see also [9]) were able to gen-
eralize this result to the framework of semi-symmetric spaces, i.e., Riemannian
manifolds satisfying the condition Rxy - B = 0 for all vector fields X, Y

Theorem 2.4 Let (M, g) be a semi-symmetric Riemannian manifold such that
the volume of every sufficiently small geodesic ball of radius r is given by (1).
Then (M, g) is locally flat.

Apart from these special cases, however, the volume conjecture stated above has,
to our knowledge, not been solved and it remains an intriguing open problem.
The volume conjecture is an attempt to characterize locally Euclidean spaces
by means of the volume of their geodesic balls or spheres. A more general class of
Riemannian manifolds with a high degree of symmetry is that of two-point homo-
geneous spaces which, apart from the Euclidean spaces, consists of the rank one
symmetric spaces, i.e., spaces of constant curvature, Kéhler spaces of constant
holomorphic sectional curvature, quaternionic space forms, the Cayley plane and
its non-compact dual. In [18], A. Gray and the second author also investigate
whether the geodesic spheres and balls in these two-point homogeneous spaces
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have volume properties similar to those in Euclidean space, that is, they compute
explicit expressions for the volumes of these geodesic balls and formulate volume
conjectures for the rank one symmetric spaces which are similar to that for Eu-
clidean space. To our knowledge, however, some of these volume conjectures have
again only been solved in a few special cases, the main problems also remaining
open. : :

Another well-known classical result from Buclidean geometry states that the
volume of a (solid) cylinder in an n-dimensional Euclidean space is given by

4) W17 th,

where 7 denotes the radius and h the height of the cylinder. More generally,
it was shown by H. Hotelling [20] that the volume of a (solid) tube around an
arbitrary curve ¢ in an n-dimensional Euclidean space is given by

Wn—17" " L(o),

where L(o) now denotes the length of the curve o, implying that the volume of
such a tube is independent of the embedding of the axial curve. A similar result
was obtained in [20] for tubes around curves in n-dimensional spheres, i.e., spaces
of positive constant curvature, and for tubes around arbitrary submanifolds in
spaces of non-negative constant sectional curvature by H. Weyl [37]. In [19], the
authors define a (solid) tube of radius r around a smooth curve o : [a,b] — M in
an arbitrary Riemannian manifold (M, ¢) as the set

P.(r) = {exp,(sulla <t < b,0< s <mue o (), Jlull = 1)

They compute explicit expressions for the volume of a (solid) tube around a
curve ¢ in a two-point homogeneous space and obtain the following theorem,
which generalizes the results of Hotelling and Wey! mentioned above.

Theorem 2.5 The volume of a tube of radius v around o curve o in a two-point-
homogeneous space is given by

Vo(r) = kL(0)S(r),

where S(r) denotes the volume of an (arbitrary) geodesic sphere of radius v in M,

L{o) is the length of the curve ¢ and k is a constant (depending on the dimension
of M ).

It should be remarked here that the volume of a geodesic sphere or a geodesic
ball in any two-point homogeneous space is independent of its center m. This
can easily be seen from the explicit expressions for these volumes, or from the
fact that a two-point homogeneous space is locally homogeneous, and hence
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ball-homogeneous. (We refer to Section 5 for further details concerning ball-
homogeneous manifolds.)

Starting from the explicit expressions for the volumes of tubes in two-point
homogeneous spaces, A. Gray and the second author [19] then study Riemannian
manifolds such that, for every small radius r and every sufficiently short geodesic
v, the (solid) tube of radius r around 7 has the same volume as in a given
two-point homogeneous space. It turns out that these properties are, indeed,
characteristic for the model spaces under consideration. In particular, they prove
the following

Theorem 2.6 Let (M, g) be a¢ Riemannian manifold and suppose that, for all
small 7 and all sufficiently short geodesics v, the tube of radius v around v has
the same volume as in a spuce of constant curvature. "Then (M, g) is locally
isometric to that space of constant curvature.

Theorem 2.7 Let (M, g,J} be a Kihler manifold (that is, its holonomy group
is contained in U(n)) and suppose that, for all small v and all sufficiently short
geodesics vy, the tube of radius r around v has the same volume as in a Kéhler
manifold of constant holomorphic sectional curvature. Then (M, g,J) has con-
stant holomorphic sectional curvature and is locally isometric to that space.

A similar characterization was obtained for quaternionic space forms, under the
additional assumption that the holonomy group of the manifold under consid-
eration is a subgroup of Sp(n) - Sp(1). It should be remarked here that similar
restrictions on the holonomy group were taken into account in the formulation of
the volume conjectures for geodesic balls and spheres in two-point homogeneous
spaces mentioned above, and that these restrictions cannot be dropped. Indeed,
it was noted in [31] (see also [30],[35]) that there exist examples of so-called
Damek-Ricci spaces (see [2] for further details concerning this class of manifolds)
whose geodesic balls have the same volume as those in a quaternionic space form,
but which are non-symmetric (and hence not locally isometric to the quaternionic
space form). It also follows from a well-known result of Alekseevsky that a sim-
ilar characterization (that is, taking into account holonomy restrictions) for the
Cayley plane would be trivial. Indeed, it was shown in {1} that the manifolds
whose holonomy group is contained in Spin(9) are either locally flat or locally
isometric to the Cayley plane or its non-compact dual. We refer to [19] for the
proofs of the results mentioned above.

Finally, in {23], O. Kowalski and the second author introduce the notion of a
geodesic disk of radius », which generalizes the notion of a two-dimensional disk
in three-dimensional Euclidean space. Given a point m € M and a (unit) vector
¢ € T,,M, the geodesic disk of radius 7, centered at m and orthogonal to £ is
defined as the set

D4(r) = {expu(su)lu € T, full = 1, 9(u ) = 0,0 < s < 7.
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In [25], explicit expressions are computed for the volumes of geodesic disks in two-
point homogeneous spaces. Starting from these expressions, one can then provide
characterizations of two-point homogeneous Riemannian manifolds by means of
the volumes of their small geodesic disks similar to those for tubes. We refer to
[25] for the statements and proofs of these results.

3 Archimedes’ theorem and its generalizations

A classical and well-known result of Archimedes states that, in a three-dimensional
Euclidean space, the ratio of the volumes of a ball and its (solid) circumscribing
tube is equal to 2. It follows immediately from (1) and (4) that in a Euclidean
space of arbitrary dimension this ratio is also a constant but it depends on the
dimension. In [12],[34], M. Djori¢ and the second author investigate whether this
volume property is characteristic for locally Euclidean spaces. To do this, they
generalize the notion of a circumscribing tube to the framework of Riemannian
geometry as follows. Let By, (r) be the geodesic ball of radius r centered at m and
denote by v a unit speed geodesic such that v(0) = m. Then the circumscribing
tube of B,,(r) with axial geodesic +y is defined as the set

P5r) = {expy(swlt € [-r 7l u € (YO} el = 1,0 < s < 7).

Using the power series expansions for the volumes of geodesic balls and tubes,
they are then able to prove the following “converse” of Archimedes’ result:

Theorem 3.1 Let (M, g) be a Riemannian manifold and suppose that, for every
m € M, every axial geodesic v through m and every sufficiently small radius r,
the ratio of the volumes of Bn(r) and P:(r) is constant. Then (M, g)-is locally
flat.

- It follows from Theorem 2.5 that, in any two-point homogeneous space, the
ratio of the volumes of a geodesic ball and its circumscribing tube is independent
of the chosen axial geodesic (and of the center of the ball). Using the explicit
expressions for the volumes of balls and tubes in two-point homogeneous spaces,
these ratios can be computed explicitly. In [12], the authors investigate whether
these ratios are characteristic for the given two-point homogeneous model spaces,
and they obtain the following generalizations of Archimedes’ theorem:

Theorem 3.2 Let (M, g) be an n-dimensional Riemannian manifold such that,
for all m € M, all geodesics v through m and all sufficiently small v, the ratio
of the volumes of a geodesic ball B, (r) of radius v centered at m and its cir-
cumscribing tube (with azial geodesic ) is the same as in a space of constant
curvature (My, go). Then (M, g) is locelly isometric to (My, go).
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Theorem 3.3 Let (M, g, J) be an n-dimensional Kihler manifold such that, for
allm € M, all geodesics v through m and all sufficiently small r, the ratio of the
volumes of a geodesic ball B, (r) and its circumscribing tube (with azial geodesic
v) is the same as in a Kdhler space of constant holomorphic sectional curvature
(Mo, go, Jo). Then (M, g, J) is locally isometric to (Mg, go, Jo).

A similar characterization can be obtained for quaternionic space forms, while
it follows again from the result of Alekseevsky [1] that such an Archimedes-like
characterization for the Cayley plane and its non-compact dual is trivial.

We refer to [12],[34] for similar considerations about the ratios of the (n — 1)-
dimensional volumes of the spheres and circumscribed tubes as well as for the
total (n — 1)-dimensional volumes of these spheres and tubes.

Another consequence of Theorem 2.5 is that, in a two-point homogeneous
space, the volume of a circumscribing tube of a geodesic ball B,,(r) of radius r
and centered at m € M is given by

(5) Vi(r) = arSa(r),

where « is a constant depending on the dimension. In [34], the second author
considers the converse problem, and he states the following

Conjecture 3.4 Let (M, g) be an n-dimensional Riemannian manifold such that
for allm € M, all azial geodesics o and all sufficiently small v, the volume of the
circumscribing tube of a geodesic ball B, (r) is given by VE(r) = arSy,(r). Then
(M, g) is locally isometric to a two-point homogeneous space.

Up to now, the general solution of this problem has, to our knowledge, not been
found, although we have the following partial result (see [34]).

Theorem 3.5 Conjecture 3.4 holds for two- and three-dimensional manifolds. It
also holds when M is reducible.

4 A volume conjecture in Lorentzian geometry

As we have seen above, the results of Bertrand-Diguet-Puiseux and Vermeil give a
nice geometric interpretation of the Gaussian (or scalar) curvature of a surface (or
n-dimensional Riemannian manifold) in terms of volume defects of geodesic circles
(or geodesic spheres and balls). It is well-known that, in Lorentzian geometry,
there exists no notion of a geodesic ball of finite volume, which makes it impossible
to generalize the Riemannian notion of a volume defect to this class of manifolds
in a straightforward way. For this reason, F. and B. Gackstatter introduced, in
[16], the notion of a truncated light cone, which can be defined as follows. Let
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£ € T,,M be a timelike vector of length —1. Then the truncated light cone of
(sufficiently small) height T and with £ as axis vector is the set

Le(T) = {expm (u)|g(u, v) < 0,0 < —g(u,§) < T}

In [16],[14],[15], the authors make a study of volume defects of these truncated
light cones, and they show the existence of a strong link between the curvature of
a Lorentzian manifold and these volume defects. 1t is easily seen that the volume
Ve(T) of a truncated light cone in four-dimensional Minkowski space is given by
[16]
Ve(T) = %T&'T‘i.

In [14], F. Gackstatter then investigates whether this volume property is charac-
teristic for four-dimensional Minkowski space. Using the power series expansion
for the volume of a truncated light cone and a technique similar to the one used
in [18] and [19], he proves the following

Theorem 4.1 Let (M, g) be a four-dimensional Lorentzian manifold such that
every truncated light cone has the same volume as in four-dimensional Minkowski
space. Then (M, g) is locally flat.

This result was later generalized to higher-dimensional Lorentzian manifolds and
completely solved by R. Schimming [28], while a similar problem was studied (and
partially solved) in the more general framework of pseudo-Riemannian geometry
in [29].

5 Locally homogeneous spaces and the volume of geodesic balls

We have already remarked that the volume of a geodesic ball or sphere in a
two-point homogeneous space is independent of its center m. More generally,
let (M,g) be a locally homogeneous Riemannian manifold, i.e., a Riemannian
manifold such that for any pair of points p and ¢ in M there exists a local isometry
of (M, g} mapping p into ¢. It follows immediately from this definition that the
volume of a (small) geodesic ball B,,(r) or sphere G,,,(r) of radius r is independent
of the center m. A Riemannian manifold is said to be ball-homogeneous if it
satisfies this volume property for all geodesic balls or spheres, i.e., if the volume
of every geodesic ball (or sphere) of sufficiently small radius r is independent of
the center m. The problem of determining if this volume property is characteristic
for locally homogeneous spaces, i.e., determining if every ball-homogeneous space
is locally homogeneous, has been investigated extensively in a number of recent
papers ([6],[7],[8]) but, although a number of partial results have again been
obtained, the problem remains, in general, still unsolved. For a summary of
the resunlts concerning ball-homogeneous spaces and local homogeneity and for a
discussion of several remarkable examples, we refer to [9].
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6 Two-point homogeheous spaces and the volume of tubes and disks

One other immediate consequence of Theorem 2.5 is that, in any two-point ho-
mogeneous space, the volume of the circumscribing tube of a geodesic ball B, (r)
is independent of the chosen axial geodesic and of the center m of the ball.

The definition of two-point homogeneity also implies that, for every pair of
points m,m’ in M and every pair of unit vectors £ € T,,,M and & € T, M, there
exists an isometry ¢ of M such that

pm)=m,  pam(§) =¢.

As a consequence we find that, in any two-point homogeneous space, the volume
of a geodesic disk D%, (r) of radius 7 is independent of the chosen normal ¢ and
of the center m.

To study whether these volume properties of geodesic disks and circumscribing
tubes are characteristic for two-point homogeneous Riemannian manifolds, O.
Kowalski and the second author [23],[34] introduced the notions of (strong) disk-
homogeneity and (strong) tube-homogeneity. A Riemannian manifold (M, g)
is said to be disk-homogeneous [23] if the volume of a geodesic disk D& (r) is
independent of the chosen normal £ € T, and strongly disk-homogeneous if
it is disk-homogeneous and, in addition, the volume of D& (r) is independent of
the center m. Similarly, the manifold is said to be tube-homogeneous [34] if the
volume of the circumscribing tube of a geodesic ball B,,(r) is independent of the
chosen axial geodesic and strongly tube-homogeneous if, in addition, this volume
is independent of the center of the ball.

It is easily seen that any two-dimensional Riemannian manifold is (strongly)
disk-homogeneous. However, apart from these manifolds there are no examples
known of disk- or tube-homogeneous manifolds which are not locally isometric to
a two-point-homogeneous space, and we can therefore state the following problem
(see {23],[34]).

Question 6.1 Let (M, g) be a (strongly) tube-homogeneous manifold or a (strong-
ly) disk-homogeneous manifold of dimension n > 3. Is (M, g) locally isometric to
a two-point homogeneous Riemannian manifold ?

To our knowledge, none of these problems has been solved completely, al-
though a number of partial answers were obtained, which we summarize in the
following theorems. For the proofs of these results, and for more detailed infor-
mation, we refer to {23],[24],{33],[34].

Theorem 6.2 Let (M, g) be a strongly disk-homogeneous three- or four-dimen-
sional Riemannian manifold. Then (M,g) is locally isometric to a two-point
homogeneous manifold.
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Theorem 6.3 BEvery three-dimensional disk-homogeneous Riemannien manifold
has constant sectional curvature.

Theorem 6.4 Let (M,g) be a {strongly) tube-homogeneous three-dimensional
Riemannian manifold. Then (M, g) has constant sectional curvature. Further-
more, every twosdimensional strongly tube-homogeneous Riemannian manifold
has constant sectional curvature. Finally, a reducible tube-homogeneous space is
locally Euclidean.

In [24], O. Kowalski and the second author make a study of locally symmetric
disk-homogeneous Riemannian manifolds, and they show that such a manifold is
a so-called 3-stein manifold. (We recall that a Riemannian manifold is said to be
k-steinif, forallm e M, all X € T,,M and all l € {1,2,...,k},

trRy = A(m)g(X, X),

ie., trRYy is independent of the (unit) vector X, where Rx = Rx.X denotes the
Jacobi operator of M.} One can then use the classification of Gray-Carpenter-
Willmore [10] to conclude that, apart from a few undecided cases (which can
be written down explicitly), every locally symmetric disk-homogeneous space is
locally isometric to a two-point homogeneous space. Using similar computations,
M. Djori¢ and the authors were able to prove a similar result for locally symmetric
tube-homogeneous spaces.

7 @G.o. spaces and the volume of tubes and disks

As a final example, we consider the class of so-called g.0. spaces as model spaces.
A Riemannian manifold is said to be a g.o. space if every geodesic «y in M is the
orbit of a one-parameter group of isometries of (M, g). This class of Riemannian
manifolds was studied extensively in [26], where it was shown that every naturally
reductive homogeneous manifold is a g.o. space and that, conversely, every simply
connected g.0. space of dimension < 5 is also naturally reductive, It should be
remarked, however, that there exist examples of six-dimensional g.o. spaces which
are not naturally reductive (see for example [26],[27]).

Now, consider a geodesic v in a g.0. space (M, g). Then it follows immediately
from the definition that the geodesic disks D;’;S) (r) of radius r, orthogonal to the
geodesic v and with center on the geodesic, have the same volume. Using a similar
argument, it can easily be seen that the volume of a circumscribing tube Pg(r)
(with axial geodesic ) of a geodesic ball B,y (r) of radius r does not change if
the center (f) of the ball moves along the axial geodesic y. In [4], the authors
investigated whether these volume properties are characteristic for g.o. spaces.
To this purpose, a Riemannian manifold is said to be weakly disk-homogeneous if
it has the property that, for every geodesic, the volume of a (sufficiently small)
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geodesic disk normal to the geodesic, with center on the geodesic and fixed small
radius, does not change if the center moves along the geodesic, and it is said to be
weakly tube-homogeneous if the same property holds for the circumseribing tubes.
It is easily seen that every two-dimensional Riemannian manifold is weakly disk-
homogeneous. Apart from these trivial examples, however, no other examples
are known of weakly disk- or tube-homogeneous spaces which are not locally
isometric to a g.o. space, and in [4] the authors studied the following

Question 7.1 Let (M, g) be a weakly tube-homogeneous manifold or a weakly
disk-homogeneous manifold of dimension n > 3. Is (M, g) locally isometric to a
g.o. space ?

To study this problem, one uses the power series expansion for the volume of
a geodesic disk (see for example [23],[4]) or circumscribing tube ([12],[34]) to
construct a set of necessary conditions for a Riemannian manifold to be weakly
disk- or tube-homogeneous. Using the first of these conditions, one can then
prove the following

Theorem 7.2 Let (M, g) be a weakly tube-homogeneous manifold or a weakly
disk-homogeneous manifold of dimensionn > 3. Then (M, g) has constant scalar
curvature T and, moreover, its Ricci tensor is cyclic parallel, i.e.,

Vxpxx =0,
Jor all X tangent to M.

This theorem already has the following interesting consequences (see [4] for the
proofs of these results).

Corollary 7.3 A two-dimensional weakly tube-homogeneous Riemannian mani-
fold has constant sectional curvature.

o -

Corollary 7.4 Every semi-symmetric weakly tube-homogeneous manifold and ev-
ery semi-symmetric weakly disk-homogeneous manifold of dimension n > 3 is
locally symmetric. The same result holds when the additional condition of semi-
symmetry is replaced by conformal flatness or, more generally, by the condition
that the Ricci tensor of (M, g) is a Codazzi tensor, i.e.,

Vxpyz = Vypxz,

for all X, Y, Z tangent to M.

Taking into account the first and second necessary conditions and using the
techniques from [22], one can also prove the following
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Theorem 7.5 Euvery three-dimensional weakly disk-homogeneous or tube-homo-
geneous Riemannian manifold is locally isometric to a naturelly reductive homo-
geneous manifold,

Finally, the authors considered in [4] the special case where (M, ¢) is a four-
dimensional Einstein space. In this case, a well-known result by Jensen [21] states
that every four-dimensional (locally) homogeneous Einstein manifold is (locally)
symmetric, and Question 7.1 can therefore be reformulated (for this special case)
as follows: :

Question 7.6 Let (M, g) be a four-dimensional weakly disk- or tube-homogeneous
Einstein manifold. Is (M, g) locally symmetric ?

In [4] the authors started by studying this question in the case where (M, g) is a
2-gtein space, and obtained the following partial answer to the question.

Theorem 7.7 Let (M, g) be a four-dimensional weakly disk- or tube-homogeneous
2-stein space and suppose that ||V R||? is constant on the manifold. Then (M, g)
18 locally symmetric.

Using this result, one can then prove the following

Theorem 7.8 Let (M, g,J) be a four-dimensional weakly disk- or tube-homoge-
neous Kihler manifold satisfying the condition that ||VR||? is a constant. Then
(M, g) is locally symmetric.

Finally, using the method developed in [11], the following partial answer was
obtained.

Theorem 7.9 Let (M, g) be a four-dimensional weakly disk- or tube-homogeneous
Hermitian Einstein space for which ||VR|[® is constant on M. Then (M, g) is lo-
cally symmetric.
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BALL-HOMOGENEQUS SPACES

G. Calvaruso and L. Vanhecke

1 Introduction

Ball-homogeneous spaces have been introduced in 1982 by O, Kowalski and the
second author as a natural generalization of locally homogeneous spaces [KV1],
[KV2]. A Riemannian manifold (M,g) is said to be ball-homogeneous if the
volume of every sufficiently small geodesic sphere (or ball) does not depend on
the center of the ball but is only a function of the radius. Locally homogeneous
spaces are trivial examples. P. Giinther and F. Pritfer proved. that also D’Atxi
spaces are ball-homogeneous [GP]. A D’Atri space is a Riemannian manifold all
of whose local geodesic symmetries are volume-preserving (up to sign). Many
examples of D’Atri spaces have been discovered and their geometry has been
treated in several papers. See [KPV] for a survey. Up to now, there are no
examples known which are not locally homogeneous and so, it is still an open
problem whether there are D’Atri spaces which are not locally homogeneous.
Even in the broader class of ball-homogeneous spaces, no examples which are not
locally homogeneous spaces are known. Therefore, it is natural to consider the
following

PROBLEM: Is a ball-homogeneous space necessarily locally homogeneous?

The above problem, in its full generality, seems difficult o solve, even in
dimension three. For this reason one looks for partial answers by considering
special classes of ball-homogeneous spaces. Moreover, it is also worthwhile to see
what properties which hold for D’ Atri spaces remain valid for the broader class
‘of ball-homogeneous spaces.

The aim of this note is to give a short survey about some of the results obtained
so far. We refer to [CTV], [CV1], [CV2] for more details.

Before exposing these results, we first note that ball-homogeneity implies con-
ditions on an infinite number of scalar curvature invariants. Let (M, g) be a
smooth, connected Riemannian manifold and V,,,(r) the volume of a geodesic ball
B, (r) of sufficiently small radius r and center m. R denotes the Riemannian
curvature tensor of (M, g) given by

Rxy = Vixy) — [Vx, Vy]

35
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for all smooth vector fields X,Y on M. g is the Ricci tensor of type (0,2), 7 the
scalar curvature and A the Laplacian on (M, g).
If (M, g) is ball-homogeneous, then V,,(r) does not depend on m. So, all the

KVn(r
derivatives &Van(r)
»
these derivatives are functions of the scalar curvature invariants. For arbitrary &,
the explicit expressions are not known in-the general case. Nevertheless, we have
the following (see [GV] for more details):

, k € IN, evaluated at m, have to be globally constant and

Proposition 1.1 Let (M,g) be an n-dimensional Riemannian menifold, m a
point of M and v > 0. Then

V(1) = wr™(1 + A(m)r? -+ B(m)r* 4+ C(m)r® + O(+%))

where
.
A= Ty
5 - BRI +8llol]® + 57" ~ 18747
- 360(n + 2)(n + 4) ’
= ! _§ 3 _ § 2
¢ = 720(n+2)(n+4)(n+6)( g7 — 57l +
64 _
+rl|I BRI + =8 - -—g(g@ o R)+ 22 ? 2 0 B) -
— .]ﬂv — 200 = “ st 2 9
BT wmh “\7 II* + 4E1V@Ii +

45 45 )
+=a(o) = VR +67 A7 + T,- > o(de, o) +

54 30 45
+-§,~§(v2f,—, e — Fg(AR, R) - —,;A"‘T) (m).

Here, we have with respect to an orthonormal basis,

ol =% | IRIE= 3 B,

ig.k,d
g= Z 035055 0ki » gle® o, R) = Z 0ij Ot it
idk ey
R= > RijuiRupgRogii » R= > RujiRiptgRpigs
i,7.k,Lp.g Likdpg
g(o,R) = }: 0 Ripgr Rjpgr » a(o) = Z Vioi Vi .

i,4,p,9,7 i,7.k
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2 Ball-homogeneous Riemannian products

Let (M,g) be an n-dimensional Riemannian manifold, m € M and denote by
exp,, the exponential map centered at m. For r < i(m), the injectivity radius
at m, we denote by G..(r) = exp,,S(r) the geodesic sphere with center m and
radius r. Sy,(r) is the sphere with center 0 and radius r in T,, M.

The following extension of an analogous result for D’Atri spaces holds [CV2].

Theorem 2.1 Let (M,g) = (My, 1) x .. x (M,,g.) be an analytic Riemann-
ian product. Then (M, g) is ball-homogeneous if and only if each factor (M, g;),
i =1,..,r, is ball-homogeneous.

Proof. Obviously, it is enough to restrict to the case where r = 2. Let A® be
the Euclidean Laplacian of order k defined for a function ¢ by

1
k k
A( )[(P] m’) = (2]\.) Z 1zcr:{(sla(l)la(z) la(zk 1)10(2k)V?1..:i2k(p}(m)'
. dpp=
Here {ei,...,e,} is an arbitrary local orthonormal basis, V5 , = '\7“;1 veiyr Oif

denotes the Kronecker symbol and the summation is made over all permutations
o of the set {1, ..,2k}. These Euclidean Laplacians are globally defined differential
operators of order 2k. By using the generalized Pizetti formula for mean-value

dV(r

o ) of Gin(r) by means of these

operators, we may express the volume m, =

Euclidean Laplacians. Explicitly, we have

= 27T27‘n‘1 2(2)2kmD ( )

where
- D3f(m) = AB[G,.](m) .

Here, D}/(m) = 1. Hence, (M, g) is ball-homogeneous if and only if D% is
globally constant for each k € IN.
Next, let (M, g) = (M1, 1) x (My, g2). Then we have

k
Xk _ kY xR (-
A _Q(QA At
and

Ort = Ont, - O, -

So, for m = (my, ms), we have
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k
k -
Difm) = 3= ( § ) D3 m) D).
The theorem follows now easily from this formula. Indeed, let {M;, 1) and
(Ma, g2) be ball-homogeneous. Then Dﬁf}l and Di,‘}z are globally constant for all
2, ¢, € IN. Hence, Dﬁ,’} is also globally constant.
Conversely, let (M, g) be a ball-homogeneous space. For s > 1 we have

s—1
3 & 3 S 5 -
D3 (m) = D, (my) + D&, (ma) + 3° ( : ) D) () D ().
Azl
An induction procedure yields
D% (my) + Djj,(my) = const.

and hence, D¥ and D‘ﬁf,’2 are constant for all p € IN, which proves the required
result.

Clearly, because of Theorem 2.1, to decide whether a locally reducible analytic
Riemannian manifold is ball-homogeneous or not, it suffices to investigate if the
spaces in the local decomposition of such a manifold are ball-homogeneous or not.

3 Ball-homogeneous semi-symmetric spaces and a volume conjecture

A semi-symmetric space is a Riemannian manifold (M, g) whose curvature tensor
R satisfies Ryy R = 0 for all vector fields X, Y. This is equivalent to saying that
R, foreach p € M, is the same as the curvature tensor of a symmetric space. This
last space may vary with p. This class of manifolds extends that of the locally
symmetric spaces. We refer to [BKV2] for an extensive treatment and further
references. In [B], it is proved that semi-symmetric locally homogeneous spaces
and semi-symmetric D’Atri spaces are locally symmetric. Therefore, it is worth-
while to investigate whether this also holds for semi-symmetric ball-homogeneous
spaces. In [CV2], we provided a positive answer, obtaining in this way that any
semi-symmetric ball-homogeneous space is indeed locally homogeneous. Here, we
give a brief sketch of the proof.

First, the following proposition of Z. I. Szabé describes the local structure of
a semi-symmetric space (M, g).

Proposition 3.1 There ezrists an open dense subset U of M such that around
every point of U the manifold is locally isometric to the direct product of sym-
metric spaces, two-dimensional manifolds, spaces foliated by Fuclidean leaves of
codimension two, elliptic cones, hyperbolic cones, Euclidean cones and Kihlerian
cones.



Ball-homogeneous spaces 39

Further, we have (since the spaces of “cone type” do not have constant scalar
curvature)

Proposition 3.2 If 7 is constant, then on U the semi-symmetric space (M, g)
is locally isometric to ¢ Riemannian product

(Ms)gs) X (Mlagl) X oo X (Mr:gr)

where (M, g;) is a symmetric space and (M;, g;), 1 = 1,..,7, are locally irreducible
Riemannian spaces foliated by totally geodesic Fuclidean leaves of codimension
two having constant scalar curvature. ’

Note that a semi-symmetric space (M, g) has constant scalar curvature on U if
and only if (M, g) is curvature homogeneous on U, that is, for each pair of points
D, q € U, there exists a linear isometry ¢ : T,U — T,U such that ¢*R, =R, .

Further, the following result concerning the explicit description of the metric
of an (M;, g;) has been given in [BKV1] (see also [BKV2]).

Proposition 3.3 Let (M, g) be an (n+2)-dimensional locally irreducible semi-
symmetric space foliated by n-dimensional Euclidean leaves and such that its
scalar curvature is constant along each leaf. Then there exists a dense open sub-
set U of M such that in a neighborhood of every point'p € U there exist local
coordinates (w, z?, .., ™) and an orthonormal coframe of the form

W = flw, z")dw,
- . n+1 . .
W' =det+ ) Di(w)didw, i=1,.,n+1,
=

where D}(w) + Di(w) = 0. The scalar curvature of this metric is given by

T=-2f1fha#0.

- Tlgl

Conversely, any local metric of this form is semi-symmetric and foliated by Eu-
clidean leaves of codimension two with constant scalar curvature along the leaves.

Now, let (M, g) be a semi-symmetric ball-homogeneous space. From Propo-
sition 1.1 we have that A, and hence 7, must be constant on M. So, (M, g) is
curvature homogeneous on U. This implies that all scalar curvature invariants
which do not involve the components of VR are globally constant on M. This
fact, together with the constancy of B and C, leads to the following

Lemma 3.4 Let (M, g) be a semi-symmetric ball-homogeneous space. Then the
invariants T and 5||VR|[* — 17]|V||? + 30a(e) are globally constant. Moreover,
(M, g) is curvature homogeneous on U.
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We are now in a position to prove the main result of this section.
Theorem 3.5 A semi-symmetric ball-homogeneous space 1s locally symmetric.

Proof. Since T is constant on M, the manifold may be described locally as in
Proposition 3.2. The curvature invariants 7 and 5||VR||? — 17||Vel|[? + 30a(e)
are additive. So, since they are globally constant on A4, they are also constant
on each factor of the local decomposition of M. In the following lemma we shall
prove that this implies that each of the factors is locally symmetric. Since M is
connected, it then follows from Proposition 3.2 that (M, g) is locally symmetric.

|

So, we are left with

Lemma 3.6 Let (M, g) be o locally irreducible curvature homogeneous semi-
symmetric space foliated by totally geodesic Buclidean leaves of codimension two
and such that the invariant 5||V R||* — 17||Vg||*+30a(p) is constant on M. Then
(M, g) 13 locally symmetric.

Proof. We use the local coordinates and the orthonormal coframe given in
Proposition 3.3. For the connection forms w! we then have

w) =00,
w=0, i=2,
Wi = fDiw)?, i1,

where wj +w! = 0. So, the Riemann curvature tensor and the Ricci tensor of
(M, g) are given by

R=21(’ Auw'@w’ Aw'),
gzg(w°®w0+wl®w1).

Next, let {eg,..,ens1} be the local orthonormal frame dual to {w?,..,w™*}

and let X be a smooth vector field on M. Since

waiz—Zw;(X)wj, i=1,.,n+1,
b
we obtain that the only possible non-vanishing components of VR are

1
VQijo = “‘in“ID;' for J > 2,
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and those obtained from these ones by using the symmetry properties of VE.
We then derive for Vg

Voor; = Voo = ~5f 1D} for j > 2,
Vigj =0 in all the other cases.

This yields

Wm%wﬂrwiww,

,,.2 n+l
Vel = T S0y,
=2
n-1
alg)= > ViejxVioum =0,
i,3,k==1

So, we finally get
2 2 3 5p pmiy2 vy 1y2
SIIVEI]® ~ 17][Vell” + 30a(e) = 57(f ) ;(Dj) .-

Since D; depends only on w and f depends on z!, the constancy of this invariant
implies that D} = 0 for all j = 2,..,n+ 1. So, ||VR||* = 0, which implies the
required result.

1

Using this result, we are now able o provide for semi-symmetric spaces a pos-
itive answer to the following problem stated in [GV]: Let (M, g) be ¢ Riemannian
manifold such that the volume of each geodesic ball of sufficiently small radius is
the same as in o Euclidean space. Is (M, g) locally flat ? Only partial answers
are known and the general case is still an intriguing open problem. It should
be noted that an (M, g) satisfying the hypothesis in the above problem is nec-
essarily ball-homogeneous. M. Ferrarotti and the second author proved that the
conjecture holds for locally symmetric spaces [FV]. It now follows at once from
this result and Theorem 3.5 that the conjecture is also true for the broader class
of semi-symmetric spaces. Hence, we have

Theorem 3.7 Let (M, g) be a semi-symmetric space such that the volume of all
sufficiently small geodesic spheres or balls is the same as in a Euclidean space.
Then (M, g) is locally flat.
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4 Three-dimensional ball-homogeneous spaces

Now we turn to consideration of ball-homogeneous spaces of low dimensions.
From Proposition 1.1 it is clear that a ball-homogeneous space (M, g) has constant
curvature if dimM = 2. Further, for dimM = 3, we have the following relations
for the scalar curvature invariants {GV]:

IR = 4llell* — 72,
9(e® o, R) = §7llolf* — 37° - 24,
9(e, R) = 4r|lolf* — 7° - 25.

(4.1) R =127]|0]]? — 37% - 85,
R=3rlolf? - i7* - 26,
IVR|? = 4|[Vel? ~ ||VII%,
9(AR, R) =4g9(Ap, p) — TAT.

We also note that we always have

{ $AlIRIP = (AR, R) +||[VR][*,
(4.2)

LA|lel]? = g(De, ) +1[Valf?.

Using these formulas and Proposition 1.1, we then get at once

Proposition 4.1 Let (M,g) be a three-dimensional ball-homogeneous space.
Then, 7, ||ol]* and 2565 + 9|V ol|* + 90a(g) are constant on M.

Now, we prove
Theorem 4.2 A three-dimensional ball-homogeneous space (M, g) with at most
two distinct Ricei eigenvalues is locally homogeneous.

Proof. Let W be the dense open subset of M on which the multiplicities of the
eigenvalues g;, g2 and p; of the Ricci operator are locally constant. Let p € W and
consider a neighborhood U of p where these multiplicities are constant. In what
follows we shall show that all the scalar curvature invariants are constant on U.
A continuity argument then shows that these invariants are constant on' M. Then
it follows from a criterion proved in [PTV] that (M, ¢) is locally homogeneous.
So, in what follows we concentrate on U and consider the following two cases:
g1 = gz = p3 and Py = ps # p3. For the first case we have at once that
U is Einsteinian and hence, locally symmetric. For the second case and since
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200+ 03 =T, 200 + 02 = |]el}%, it follows from Proposition 4.1 that g; and g3 are
constant on U. We consider the cases g3 # 0 and g3 = 0. ’

a) Case g3 # 0
This case has been treated in [K2]. There it is shown that there exists a local
orthonormal frame {Ey, Ey, E3} with dual coframe {w?, w? w3} such that

Vo= (03— o) {(aw' +b0*) @ (W' @’ +u’ @uwl) +
F(ew +ewt) @ (W W+ euw’) }.

This yields
IW@IF =2(01 — Qs)z(dz +0P 4+ ez) ,
a(e) = (o1 — 05)*(a® + €* + 2bc) .
Further, since Vg7 = 0, we have ¢ + ¢ = 0. Moreover, it follows from a result in
[K2] that
IV all> = 2(o1 — 03)*(h* — 03)
where A =b—c. So h? — g3 = 2a® + b% + 2, that is, —g3 = 2a® -+ 2bc. Hence, we
have

IVell? = 2(e1 — 03)*(R* — 03),

a(o) = —(o1 — 93)293-

Using Proposition 4.1 and the last formulas, we obtain that h is constant and this
implies that U is locally homogeneous [K2| from which it follows that all scalar
curvature invariants are constant on U.

(4.3)

b) Case p3 =0
The condition gz = 0 implies that (U, g) is semi-symmetric. So, using Theorem
3.5, we may conclude that (U, ¢) is locally symmetric. In particular, it is locally
homogeneous.

n

It seems to be difficult to decide in full generality whether a three-dimensional
ball-homogeneous space is necessarily locally homogeneous. Theorem 4.2 provides
a positive answer when there are at most two distinct eigenvalues for the Riccl
operator. This contrasts to the case of D' Atri spaces where it has been shown that
every three-dimensional D’Afri space is locally isometric to a naturally reductive
space and hence, is locally homogeneous [K1]. This leads to the consideration of
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special three-dimensional ball-homogeneous spaces, namely those equipped with
Einstein-like metrics. So, we now consider (M3, g) such that the Ricci tensor g is
a Codazzi tensor, that is, (Vxo)(Y, Z) = (Vyo)(X, Z), or is cyclic-parallel, that
is, (Vxo)(Y, 2} + (Vyo)(Z,X) + (Vz0)(X,Y) = 0. This last condition means
that p is a Killing tensor. Note that in both cases 7 is necessarily constant.

As it is well-known that when T is constant, (M?,g) has a Codazzi Ricci
tensor if and only if it is conformally flat, we first state a useful theorem about
conformally flat spaces. H. Takagi [T] has proved that any conformally flat locally
homogeneous space is locally symmetric. Using the same proof, this result can
be extended to the broader class of curvature homogeneous spaces. So, we have

Proposition 4.3 A curvature homogeneous conformally flat Riemannian mans-
fold is locally symmetric.

Clearly, a three-dimensional Riemannian manifold is curvature homogeneous if
and only if the eigenvalues of the Ricci operator are constant.

Theorem 4.4 (M3, g) is locally symmetric if and only if it is ball-homogencous
and its Ricci tensor is a Codazzi tensor.

Proof. The *only if” part is trivial. So, we consider the “if” part. Since

3 (Vioje — View) = 2(||Vall* — (),

i3,k

we get that g is a Codazzi tensor if and only if

(4.4) IVell? = a(o).
Moreover, we have
_ 1 : o 7
(4.5) Zk o Vion = 59(V'r,0)+ 8- g(e® o, R).
z‘!Jl .

Next, since g is of Codazzi type, we get at once

1
(4.6) Y oipVion = 5*’—\‘3%9“2 ~ Vel

4k

Using now that 7 and ||g||* are constant, we get

(47 IVelP = Srlol ~ £ 3.

Hence, (4.4), (4.7) and Proposition 4.1 yield that § is constant. From this, to-
gether with 7 = const. and |[g|[? = const., we obtain that the eigenvalues of the



Ball-homogeneous spaces 45

Ricci operator are constant. So, (M3, g) is curvature homogeneous. Then the
result follows from Proposition 4.3.
n

Using an argument similar to the one used in the proof of Theorem 4.4, to-
gether with the well-known formulas about the scalar curvature invariants of a
" conformally flat manifold, it is possible to extend the result in Theorem 4.4. We
have

Theorem 4.5 An n-dimensional conformally flat ball-homogeneous space with
at most three distinct Ricei roots is locally symmetric.

Next, we turn to the case of a cyclic-parallel Ricci tensor and prove

Theorem 4.6 (M3, g) is locally isometric to a naturally reductive homogeneous
space if and only if it is ball-homogeneous and has cyclic-parallel Ricci tensor.

Proof. First, let (M3, g) be locally isometric to a naturally reductive homoge-
neous space. Then it is a D'Atri space and so, it is clearly ball-homogeneous and
¢ i8 cyclic-parallel.

To prove the converse, we shall first show that (M3, g) is a curvature homo-
geneous space. Since p is cyclic-parallel, we have

(4.8) 2a(0) = -||Vell*

and moreover,

(4.9 > enVhen = —7Allel + 51Vl
idk

Since ||V o]}? is constant, we get

(4:10) I Voll? = 6 — 5r|lo|}* + 7°.

Hence, the constancy of T and |]¢]|%, together with (4.8), (4.10) and Proposition
4.1, imply that § is constant. So, the eigenvalues of p are constant and (M3, g)
is curvature homogeneous.

If p has less than three distinct eigenvalues, the required result then follows
from Theorem 4.2. If p has three distinct eigenvalues, we have, since it is ¢yclic-
parallel,

1
2 Z Oab Vb 0ia = — Z 0ab Vilap = _'?:Vi”QH? =0.
a,b a,b

Then, a theorem of K. Yamato [Y] implies that (M, g) is locally homogeneous and
the conclusion follows from the fact that a three-dimensional locally homogeneous
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space with cyclic-parallel Ricci tensor is locally isometric to a naturally reductive
homogeneous space [AGV].
n

5 Four-dimensional ball-homogeneous Einstein spaces

Jensen’s result about locally homogeneous Einstein spaces of dimension four
shows that those spaces are locally symmetric. The same result holds for the
broader class of four-dimensional curvature homogeneous Einstein spaces (see for
example [SV]). Recently, K.P. Tod proved that the same property holds for four-
dimensional Einstein D’Atri spaces [To]. We investigated whether it is possible
to extend these results to the broader class of ball-homogeneous spaces. We now
describe our results [CTV].

Let (M, g) be an Einstein manifold of dimension four which we suppose to
be connected. As it is well-known, at each point m € AM there exists a Singer-
Thorpe basis {ey, €3, €3, ¢4} for the tangent space T,, M, that is, an orthonormal
basis such that the components of R are given by

Rz = Raga = @, Risiz = Ryapa = b, Ry = Rasas =,
(5.1) Ry = @, Rz = B, Riazz =17,

Rijri = 0 whenever three of the indices 4, 7, &, [ are distinct.
With respect to a Singer-Thorpe basis, we have the following formulas for the
scalar curvature invariants 7, ||R||%, R and R:

=4(a+bd+c), |
HRI? = 8(a? + 82 + 2 +a? + 5% +47),
R =16(a® +b° + ¢ + 3aa® + 3b62 + 3¢v?)
R= 24(abe + afy -+ bay + caf) .

(5.2)

An Einstein manifold (M, g) is called a 2-stein space if F(z) = TopRequ 15
independent of the unit vector z € T}, M, for all m € M. For a four-dimensional
Einstein manifold we have

Lemma 5.1 Let (M, g) be a four-dimensional Einstein manifold. Then (M, g)
18 a Z-stein space if and only if

(5.3) ta=a~71/12, £f=b-7/12 , ty=c—7/12
for each me M.

Moreover, a four-dimensional manifold is 2-stein if and omly if it is a point-
wise Osserman space. We recall that a Riemannian manifold is called a globally
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Osseérman space if the eigenvalues of the Jacobi operator R, = R(z,-)z are in-
dependent of m € M and of the unit vector ¢ € T, M. It is called a pointwise
Osserman space i the eigenvalues of R, only depend on m and not on z. A four-
dimensional globally Osserman space is flat or locally isometric to a rank-one
symmetric space. See [GSV], [BTV] for more details and references.

Using Proposition 1.1 and some well-known formulas about the scalar curva-
ture invariants of an Finstein manifold, we have

Lemma 5.2 Let (M, g) be a four-dimensional ball-homogeneous Einstein space.
Then || R]|? and ||VR||? are constant on M.

We are now ready to prove

Theorem 5.3 Let (M, g) be a four-dimensional 2-stein space. If (M, g) is ball-
homogeneous, then (M, g) is flat or locally isometric to o rank-one symmetric
space,

Proof. With respect to a Singer-Thorpe basis, we have

atb+e=r1/4,
(5.4) { ab +be+ ca = ~ (1/32)||R||* + (5/192)72,

96abe = 7°/12 — (1/6)7||R||* + (1/6)||VR]}%.
Since 7, ||R||? and ||V R||? are constant (Lemma 5.2), it follows that «, b and ¢ are
constant on M. So, since (M, g) is pointwise Osserman, it is a globally Osserman
space and this completes the proof.
|

We note that the hypothesis of ball-homogeneity can be replaced by the con-
dition “||VR||? is constant’.

We consider now four-dimensional Kéhler-Einstein spaces. If (M, g, J) is such
a space and m € M, then there exists an adapted Singer-Thorpe basis at m, that
is, a Singer-Thorpe basis {e3, €q, €3, €4} of T, M such that e; = Je; and ey = Jes.
We have ’

Theorem 5.4 Let (M, g) be a four-dimensional Kihler-Einstein space. If (M, g)
is ball-homogeneous, then (M, g) is locally symmetric.

Proof. Using an adapted Singer-Thorpe basis, we obtain

{ T=4{e+b+¢),

(5.5) |}_}2||2 = 8(a® + 3b* + 3c? + 2bc),

R=48bcla—b—c).

Further, expressing & by means of 72, 7||R||? and ||V R||?, we have
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[|RI? = 8(a® + 3b? + 3¢* + 2bc)
73748 — (r/20)||R|PP + (1/6)]|VR||?* = 48bc{a — b —¢).

Now, we substitute a from the first equation into the other equations to get

r=4{a+b+c),
o0

(5.7)

{ (b+c)? ~ (T/B)(b +¢) — be = const.,
be(r/8 — b — ¢) = const.

since 7, ||R]|® and ||V R||? are constant on M. It follows that bc and b + c are
constant, that is, b and ¢, and hence also a, are constant on M. Then, (M, g) is
curvature homogenecus and so, it is locally symmetric.

Finally, using Theorem 5.3 and Theorem 5.4, we obtain

Theorem 5.5 Let (M, g,J) be a connected four-dimensional Hermitian Einstein
space. If (M, g) is ball-homogeneous, then (M, g) is locally symmetric. '

Proof. The proof follows essentially the same method as in [CSV] where a
similar result is proved for D’Atri spaces. Let 7* denote the x-scalar curvature
of (M,g,J), that is, 7" = trQ* where ¢(Q*z,v) = ¢*(z,y) = —(1/2)tr(z
R(z, Jy)Jz, and let H{z) be the holomorphic sectional curvature of the holomor-
phic plane determined by x. The form w = 6§ o J, Q being the Kdhler form of
(M, g, J), is related to 7 and 7* by the formula
(5.8) 7 — 7% = 26w+ [|w|]* .
Note that 7 = 7* for the Kahlerian case. In {CTV], we proved that on any
four-dimensional ball-homogeneous Hermitian-Einstein space we have
(5.9) (1 =37+ 3"w(z) =0.

Now, put

My, = {mEM/(T—B?*)(f+3T*)7é0at m},
M, = {mEM/T+3T*=Oatm},
M, = {mGM/T—ST*=Oatm}.

If My # @, then, since w(z) = 0 on My, (My, ¢, J) is Kihlerian and hence locally
symmetric {Theorem 5.4). Then T = 7* = const. . So, My = My and hence
My=M.
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Next, if My = &, we have M = M, U M, . First, we consider the case 17 5 Q.
Then, M;N M, = @ and hence M = M; or M = M,, since M is connected. Now,
assume M = M,. Then from the formula [CSV]

(5.10) IR|*9(z,z)g(z,z) = 16 F(z)+2(r —3r*)H(z) +
+ (1/8) (37 — ))g(z, 2)g(z, z),

for all m € M and z € T,,M, we may conclude that (M, g) is a 2-stein space and
hence, it is locally symmetric (Theorem 5.3). Next, let M = M;. In this case we
can construct an adapted Singer-Thorpe basis {ey, es, €3, ¢4} of T, M and with
respect to such a basis we may prove, since 7, ||R||* and ||V R]||* are constant,
that a, b and ¢ are constant. So, (M,g) is curvature homogeneous and hence
locally symmetric.
Finally, if 7 = 0, from (5.9) we get 7* = 0. Then (5.10) implies that (M, g) is
2-stein and thus locally symmetric.
| |
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CONSTANT MEAN CURVATURE SURFACES IN THE
EUCLIDEAN SPACE

Elena Colazingari*

Abstract.~ We give an introduction to the subject of constant mean
curvature surfaces; we first introduce them from the variational prob-
lem which they solve and prove Hopf theorem, then via the sinh-
Gordon equation, we study periodic constant mean curvature surfaces
showing the ideas which brought to the disproof of Hopf conjecture.

1 Introduction

This paper is intended as a brief review of the main recent results in the vast
subject of constant mean curvature surfaces. Such surfaces can be introduced as
solutions of a variational problem: if we look for closed surfaces, whose area is
critical under deformations that keep the enclosed volume constant, we find that
the differential equation which characterizes locally those surfaces is H =constant.
Such surfaces are known as soap bubbles, since a soap film in equilibrium between
two regions of different pressure, and subject only to the forces induced by the
pressure and the surface tension, has critical area for deformations that mantain
the enclosed volume fixed.

The problem of the existence of constant mean curvature immersions has
been a crucial one in differential geometry for a long time. A constant mean
curvature immersion in fact is the most appealing among all the immersions of
a closed surface in I3, since such a surface cannot have a minimal immersion.
Let us follow the generally adopted notation, and indicate by CMC surface a
non-zero constant mean curvature, immersed, closed, smooth surface in E®, and
by CMC immersion the corresponding immersion. We want to mention in this
context the old result by Jellet ([Jel]) who in 1853 showed that star-shaped CMC
surfaces are round spheres; Hopf demonstrated the same for topological CMC
spheres, and Alexandrov for embedded CMC surfaces. More recently Barbosa
and do Carmo ([B-dC]) proved that local minimizers of the variational problem
are round spheres. Because of those results, it was concievable to believe that
round spheres are the only CMC surfaces: this is what has been known as Hopf

* This work has been partially supported by GNSAGA of CNR.
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conjecture. This conjecture has been disproved, in higher dimension, by Hsiang
([Hs]) who constructed a counterexample in E*, and then by Wente ([Wel]) who,
surprisingly, produced a CMC immersion of a compact oriented surface of genus 1
in B®. Finally Kapouleas ([K1, K2]) achieved the construction of CMC surfaces of
every genus g > 2. The genus 1 case has been deeply analized, and we now have a
classification of CMC tori ([P-S, Bo, Abl, Ab2, We2]). In another direction, the
author recently proved the existence of CMC surfaces embedded in R® endowed
with a conformally flat metric, which are not spheres ([Co]).

2 First variation formula
Let us consider the general case of an immersed manifold:

P M® — N
Assuming N endowed with a riemannian metric A, we can introduce two main
geometric invariants of the immersion:

(1) the first fundamental form g which is the restriction of the metric A to M:
g=1h

(2) the second fundamental form A which involves first order differentiations.

To define A we need to introduce on M the connection V induced by the Levi-
Civita connection V' of the ambient space N. A priori there are two different
connections on M:

(1) V=Levi-Civita connection induced by the first fundamental form g of M
(2) (V') =projection of V' on TM.

Those two connections agree, because both are symmetric and compatible
with the metric of M, so both are the Levi-Civita connection a,ssocxated to g on
M, and by uniqueness they need to be the same. Hence

VX,Y €TM  VyV = (V, V).

Using the orthogonal decomposition of the tangent space to A as the direct
sum of the spaces tangent and normal to M

TN =T,M& N,M,
V' gets decomposed as

LY = (Vi +(ViY), X, YeTM.
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We define the second fundamental form of the immersion as the symmetric
bilinear map A: TM x TM —» NM given by

A(X,Y)= (V'XY)"', forall X, Y eTAM.
50 that
WY =VxY + AX,Y).

Using z!,...,z" an orthonormal coordinate system around p, and &y,...,3, the
corresponding orthonormal frame for T,M, we write:

Aij = A0;, 0))
and define the mean curvature vector field
1 1 ..
= —{1ac g AL
H ntraceg(A) =g Ay

(the convention to sum over repeated indeces is always assumed). H is a smooth
vector field of vectors normal to M.

By a smooth variation of ¢ we mean a C* mapping: ¥ : R x M — N such
that each ¢, = ¥(¢,-) : M — N is an immersion, and ¥(0, x) = ¥(z). We will
consider each 9, defined only locally in a neighbourhood of a point p of M (for
z outside this neighbourhood, we will set 9.(z) = ¥(z)).

If (M, g) is a Riemannian manifold, we have a notion of volume on it:

vol(gh(M)) = / det gydzt ... dz®
where z1,...,z" are local coordinates around p, 8; = 8/0z%,1 =1,...,nisa (not
necessarily orthonormal) basis for the tanget space T,M and dei,i=1...,nis

the dual basis for the cotangent space T,M*. Calling dV, the volume element of
the immersion 1), we have:

dV, = y/det gi;(t)dz! .. . dz"
vol(t(M)) = f Jdet g (t)dat .. dz”

where ¢(t) is the first fundamental form of the immersion ;.

hence

First Variation Formula The volume of ¥;(M) and the mean curvature H of
Y(M) = Po(M) are related by the following formula:

d
(vl (Mo = = [ < H,V > Vi
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where V = 1,(&)|i=0, Vo is the volume element of 1(M) and < -,- > denotes
the inner product of the riemannian structure of N.
Proof. To simplify the notation let us abbreviate vol(y,(M)) = vol(¢).

/Bﬂldet 95 (D)e=odz? . . . da™
1
= [ 3(det gi; (1)) rmodz? . . . do™.
/ 2:/det(g:;(0)) ’

de(det g;;(t))i=0 = traced;gi;(t)]e=o _
= g7(0)(8eg:()) =0 det g;;(0)

o
5(‘/01(%/%)) le=0

so that

2] vy
2 wollleo = 3 [ 69(0)(@us(0)lecoy/Aot g0 ... da”
1 "
- 5./ 9781955 (1))ls=0dV.
So we need to compute 8;9;;(t)]e=o:

atgij(t)lﬂ = 0 < ('th)*ai, (’(/)t)*aj >0
= (Pe)u0|t=0 < 83, 0; >
= V< 8,-, 8]' >
= <Vy0,0; >+ < 9;,Vyd; >
where V' is the Levi-Civita connection on the manifold N, and the last equality

holds because of the compatibility of V' with the metric of N.
We can interchange the order of covariant differentiation:

v =V, V
because
) 'VB, - VglV = [‘/, 81] = 1/)*[&, 8,] — 0
This yields ’
Btgij(t)ltﬂ =9; < ‘/,6_7 >—-<V, v%‘,,aj > —I—Bj < 6i,V > —-< ngc')i,V > .
To simplify the computation, we will assume that V is a normal variation,
that is < V,8; >= 0, but the formula does hold for any variation field. This
gives:
atgij(t)lt:() = —-<V, V:',‘.aj > - nga,-,V >
-2 < Vy,0;,V >= -2 < (Vy,0,)"V >
= —2<A(0:,8;),V >=-2<A4;,V>.
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We are able to eliminate the tangent component of Vj,0; since the vector field
V is assumed to be orthogonal to T, M.
All of this finally gives:

1 g4
volgoleo = 5 [——
2 1}detg,-3-(0)

- -/<g*‘fA,-j,V>m
- ——n/<H,V>dI/2).

(=2 < A;;, V >)det g;;(0)da?t . .. da™

. 0

An immersion is critical for the volume if 8;vol(v)|i=0 = 0 for all variations ;.

This is equivalent o the system of non-linear elliptic partial differential equations
H = 0. Any immersion satisfying H = 0 is called minimal.

Proposttion 2.1 If X : M™ — E™ is an tmmersion in the Euclidean m-space,
the mean curvature vector H of this immersion satisfies

nH = A X
where A, is the Laplace-Beltrami operator for the melric g on M.

Proof. We consider the immersion X = (z!,...,2™) as a vector X € T,E"=E™.
Then the Laplace-Beltrami operator on X is defined by

DX = g7(8:8;X ~ (Va,05) X).
Now
(Vo.05)X = Xi(Va,9;)
8,;an = {7()‘.83’

with V the Levi-Civita connection of M and V the Euclidean connection. So we
find (60 — X.(Vad)
gij(va;aj)i' = S?iinj =nH
since X*(Vaiaj) = ({7&87')3‘. ' ‘ O

Corollary 2.1 An immersion X : M — E™ is minimal if and only if A, X = 0,
that is to say the coordinate functions are harmonic.

A X

I

Corollary 2.2 There is no minimal immersion of M” (n > 1) into B™ if M
is closed (compact with empty boundary).

Proof. By Hopf maximun principle 2 harmonic map on a closed set has to be
constant. But if the coordinate functions of M are constant, A4 is mapped into
a single point, hence it is not immersed. 0
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3 Hopf Theorem

In codimension 1, we want to study a more general problem: find the condition
under which 80 = M has critical area, subject to variations that keep the volume
of §2 C A constant. Consider the unit vector v normal to 852, oriented by having
it pointing ouside 2. Since the codimension is 1, the dimension of the normal
vector space N,M is 1, hence v is a basis, and the curvature vector field is a
multiple of v

H = hy, with 2 a smooth function.

Consider a normal variation V of & then also V can be written as a O
multiple of v
V=fv

50 that by the first variation formula

d .
EMm@mmﬂx~¢&fw%.

We look for a variation V that is a eritical point for the area and keeps the
volume constant, i.e. that satisfies:

d
&Areaw&?t)kzg = —n fM fhdV, =0

d
amm%ﬂ=kﬂm=&

Assuming 9 closed, or taking compactly supported variations, the condition
to have critical area with fixed volume is then H =constant, meaning that the
function h is coustant.

We will now study the case of surfaces immersed in the Euclidean space with
constant mean curvature H, i.e. we are going to restrict our attention to immer-
sions:

X M? B
CH=1

(the choice of the constant as value for H is non restrictive, as a change of
orientation changes the sign of H, and any non-zero value is obtainable via a
homothetic expansion).

Let us fix a Riemann surface structure on M2, with z = u -+ iv the local
coordinate. We may define the Hopf differential

X \
(I’-—<'€—£;2—,V>dz
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ith
W d 1.d d

PR\
.and v the unit normal vector to M, which is fixed by the orientation (M has to
be oriented because H +# 0). It turns out that:

b = .1_<32X__32X_2_32X
- Lll ou?  9v? “Dudv
= 1 < ?a“au - ‘—73“39 - 2:"573“8,,, v>d2?

= 1 (A(0,0) ~ A2, 8,) ~ 26A(,,8.)) d

1 .
= E(All - .«"122 - 21:412)422

v > dz?

using V the connection on E°. Notice that, being the unit normal vector v fixed,
the coefficients 4;; of the second fundamental form of the immersion are functions
“on M. They are real-valued functions, while ® is a complex differential:

Red = %(Au i Agg), Imd = ”%Alg.

The crucial observation of Hopf is that when H is constant, holomorphicity
of ® is equivalent to the Codazzi equations for the immersion. & is holomorphic
if it satisfies Cauchy-Riemann equations:

O (A — Ap) = —20:A5

0x(An — Ap) = 2014:.
We may replace the usual derivatives with covariant derivatives, since the
Christoffel symbols cancel. We are going to use the notation X ; to mean covariant

derivative of X with respect to d;, so Cauchy- Riemann equations for ® can be

written
(A — Ag)y = —2410, (A1 — Am)p = 24123,

On the other hand, recall Codazzi equations:
< R(X,Y)Z,§{ >=< VxA(Y, Z)-VvA(X, Z),¢ >, XY, ZeTM, € NM
which in the Euclidean (flat) space read as the full symmetry of A:
Aije = Aigj

In the case of a 2-dimensional immersion, there are only 2 indeces, so Codazzi
equations are:
All;? = AIQ;} AQQ;I = A21;2-
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Now from the constancy of H one has (Ay; + Ag); = 0 which gives
(A1 = Am)a = (An — Aze)yn — (A + Ag)y = =240,
This, together with the first Cauchy-Riemann equation, finally shows
Aggq = Agpo = A21;2

that is the second Codazzi equation, and the first one is obtained in an analogous
way.

Hopf Theorem An immersed C* sphere in E* with H=constant has to be the
round sphere ([Ho]).

Proof. The steps in this proof are the following:

(1) An immersed surface has to satisfy Codazzi equations, and, as already no-
ticed, since H is constant this equals to the holomorphicity of Hopf differ-
ential . Moreover, a holomorphic quadratic differential on AM? is zero.

(2) From & = 0 we will establish the relation 4;; = hg;; (with A the mean
curvature function): this is the strong part, since this property is enjoyed
only by spheres (we will invoke the fundamental theorem of surface theory
of Bonnet to show it).

Proof of 1. The Riemann surface structure of M? is like that of the unit sphere
S%(1), having two charts with two coordinate functions z,w satisfying, in the
intersection of the charts, w = 1/z. Then Hopf differential can be written, in the
intersection of the two charts

® = ¢(2)d2? = P(w)duw?

with ¢, 9 holomorphic functions.
Since dw = -z%dz, is

- $(2)dz* = P(1/2)(1/2%)d2’

and ¢(2) = 1(1/2)(%) is an entire function on C, bounded at co since
| lim ¢(2) = lim $(1/2)(1/#) = 4(0) -0=0

being 1 well defined at 0. But then ¢ : € — C an entire function bounded at
infinity is, by Liouville theorem, a constant. Moreover this constant has to be 0
since this is the value ¢ assumes at co.
Proof of 2.

We actually proved that every holomorphic guadratic differential on M is
zero. Now let us restrict to Hopf differential

b= (An — A22 o ZiAlg)dzz.
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$ = 0 means
Ap —Ap =0, Ap=0
that is _
Aij = C&i}' = C’gij.

C is just the mean curvature function h (so it is a constant):
1 1, 1
h= -itmcegA =59 Ay = §C’tracegg =C .

since trace,g == 2.

Hence

Aij = hgi;.

This property specifies the surface M to be the standard unit sphere S*(1), as it
can be seen by applying the following
Fundamental Theorem of Surface Theory (Bonnet) Given gy; and A
two forms on an open simply connected set V C R which satisfy Gauss and
Codazzi equations, then there exists o (unique up to Euclidean motion) immersion
¢ : V — E? such that g;; and Ay are the coefficients of the first and second
fundamental forms, respectively (JDoC1, pag.236]).

In fact, Ai; = hyg;; gives det A = A® det g, so Gauss equation is

_detA

= h? a positive constant.
det g P

This establishes the intrinsic geometry of M2: it has to be isometric to the sphere
S2%(r) of radius 7. But by uniqueness in Bonnet theorem, the immersion of M?
and that of S%(r) are the same up to Euclidean motion, so M? = S%(r). It is
now enough to rescale to obtain H =1=K andsor=1. O

_ Notice that Hopf Theorem is essentially 2-dimensional, since to define Hopf
differential is not possible in higher dimension. An analogous result valid in any
dimension is
Alexandrov Theorem The only compact embedded hypersurfaces M™ of con-
stant mean curvature in E**! are the standard round spheres S™ (JAl]).

Let us observe that the generalization to higher dimension requires the extra

hypothesis of embeddedness which replaces that of immersed.

4 CMC Tori

Let us consider a torus T2 = C/lattice, where C is equipped with the standard
complex structure for which z = u + 4v is a coordinate. Hopf differential can be
written ® = @dz?, with ¢ a doubly periodic function (since it is defined on the
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torus). Now, if the mean curvature is constant, ¢ is holomorphic and hence it
is a constant by Liouville theorem. Moreover'we may assume ¢ # 0, otherwise
we would have a sphere instead of a torus, since we saw that from the condition
@ = 0 specifies the intrinsic geometry of spheres. So without loss of generality

1
O = —=dz?.
3 2
Consider the immersion T? — E* with first and second fundamental forms

1
g= Zez“’(dug + dv?),

A= (e = du? + (e + Db,

where (u,v) are the standard coordinates of R?, w : B — R a smooth function.
The mean curvature for this immersion is constant:

1 1
H = §tracefi = 5 (gnAn -+ 922.{422)

) 1/e2*—14 ™41 4
(e 4 e + )21,

il

2 4 e 4 v

so the hypothesis ® = —dz? is consistent, and gives
1
D = (A ~ Agy — 2iAs)d2* = .hidzz

hence

AII_A% = _%

Am:O

so that the matrix A is diagonal, with Ay = Agy — 1/2. This is satisfied by the
given A:

1 w41 1
Ay —— = -
272 K 2
e — 1
= = Az,
So we found A and g so that we can have the expression ® = —1/2d2? for

the Hopf differential. We now want to find conditions on the unknown function
w in such a way to be able to integrate to get the immersion. Since C is simply
connected, given g and A on C it exists a (unique up to rigid motions) immersion
X : C — E? that has them as first and second fundamental forms if and only if
they satisfy Gauss and Codazzi equations. Codazzi equations holds since, being
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H constant, its validity is equivalent to the holomorphicity of ®. Let us the
examine Gauss equation:

det 4
= ditg (ambient space is flat).
Being:
1
det A= A11A22 = i_é(e2w - 1)(62w + 1)
1
det g = — W 2w'
€0 § = 11992 166 €
(Gauss equation reads
K _ e4w -1 1 e
- edw =i—e N

On the other hand, in terms of isothermal parameters g;; = )\2&5 it is valid
the formula

Alog A
K=~ 2
which in our case becomes
4Aw
K=——-
e rir)

Confronting the two expressions for the Gauss curvature K we get
eZw - e«—Zw
2

Hence Gauss equation becomes the sinh-Gordon equation

= —A(2w).

A(2w) + sinh(2w) =0

which is equivalent to
Aw -+ sinhw coshw = 0.

What we obtain is the following
Proposition 4.1 Given a smooth function w : B® — R which solves
Aw + sinhwcoshw = 0

there is a unique up to Euclidean motion immersion X : R% — E® with first and
second fundamental forms given by

= L™ (du? + dv?)

(1) f
A = e — 1)du® + He* + 1)dv?
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Moreover, if v : R? — S*(1) denotes the Gauss map of the immersion, we

have
v, = —(l—-e )X,

Vv, = —(1+€ﬂ2w)Xv
(see [K2, Prop.1.1}).

Notice that this proposition implies
H=1
v*g = sinh® wdu? + cosh? wdv?,
The simplest case is when as solution to
Aw + sinhwcoshw =0

we take the function w = 0. This gives

_du? + do? dv?
- 4 2

and hence corresponds to a cylinder.

5 The Delaunay surfaces

These are a continuous family of rotationally invariant surfaces, parametrized by
a parameter 7. They correspond to solutions of the sinh-Gordon equation which
are translationally invariant, so the two possible cases arise considering either
w = w(u) or w= w(v). In those cases, the sinh-Gordon equation reduces to the
ordinary differential equation

w' + %sinth =0

which has first integral w” +  cosh 2w. The solutions are parametrized by E €
{%, o¢0), where wg is the solution corresponding to £, and it satisfies

1
wi + 5 cosh2ug = B, wp(0) = wp(0) > 0.

From standard ODE theory we know that wg is smooth, depends smoothly
on E, and is periodic with period 44,, for 7 = (4E + 2)71. Let us consider
w(u,v) = wg(u). Then by the proposition in the previous section there exists an
immersion X, : R? — E? with fundamental forms given by (1).

Let us now try to visualize this immersion, looking at the Gauss map v :
R? — S2(1). Along vertical lines in the uv-plane one has w=constant; because
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of periodicity, vertical lines go to circles under the Gauss map v. Moreover, v
respects orthogonality
< 1, 0[0u,v,0/0v >=0

so the image under v of lines in R? which are vertical and horizontal, are lines in
S? that are still orthogonal. The equality

v.g = sinh® wdu® 4 cosh? wdv?®

implies
[18/8u? = < 1.0/3u,1.8/0u >= sinh®w
/0| = < v,5td/dv,1,.0/8v >= cosh® w.

The vector v,0/0u measures horizontal velocity; when sinh® w = 0 its lenght is
zero, and this happens when w = 0. The sign of w is the same as the sign of the
Gauss curvature K of the immersion, since K = 1 — ™%, so0 when w > 0 the
horizontal velocity and the Gauss curvature are positive, at w = @ both velocity
and curvature are zero, and then for w < 0 both velocity and curvature are
negative. The lenght of a circle image under v of a vertical line is L = cosh®w - 1
where { is the period along the v direction. This lenght never becomes zero, so in
52 the circles images of vertical lines of R? never reach the (east and west) poles.
All of this gives an embedded Delaunay surface D, 7 > 0,

Define now 7 = —{4E~2)"}, and consider w(u, v) = wg(v). Then w=constant
are horizontal lines, which again go to circle applying v, but this time their lenght
does go to zero, since it is L = sinh? w -1 which is zero for w = 0. Hence in S? the
circles images of horizontal lines of R? reach the (north and south) poles. The
relation between the signs of w and the Gauss curvature K is the same as before,
so the difference is that in this case we obtain an immersed Delaunay surface
D, 7 < 0 (see[K1] or the original work by Delaunay [De]).

In the embedded case, if we let 7 — 0, the positively curved regions tend to
spheres, while the negatively curved regions tend to points connecting them. If
we enlarge those negatively curved regions by a factor of the order of 771, we can
see that those regions will tend to minimal surfaces which do keep the rotational
invariance of the Delaunay, that is to say to catenoids (the only rotationally
invariant minimal surfaces).

6 Wente Tori

In this section we will give an idea of the construction of Wente tori, the first
example of non-spherical CMC surfaces in E®, which provides a counterexample
{o the conjecture of Hopf. Wente tori are a l-parameter family of rotationally
invariant, periodic CMC cylinders, which, for a countable dense set of values of
the parameter, close up to CMC tori. We have seen that 5 CMC immersion arises
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starting from a solution w of the sinh-Gordon equation Aw + sinhw coshw = 0.
The idea is to construct a doubly periodic solution, which we may obtain by
solving the sinh-Gordon equation on a rectangle with identically zero boundary
data. In [Wel] Wente examined the case of w defined on a torus T? = C/A
with A a lattice generated by orthogonal vectors. In the subsequent paper [We2]
examine more general lattices are studied.

Let us define the function w : B2 — R by

14 U(u)V(v)

w(u, ’U) = lOg m—m}-

where U{u) and V(v) are functions of one variable, defined as multiples of the
Jacobian elliptic function cny(t) (see [Ch, Chp.VII]). U ahd V are periodic, with
periods that we denote by dup and 4 respectively. U is positive on (—ug, 1g)
with a maximum at » = 0 and negative on (g, 3%p) with a minimum at u = 2ug
(a similar statement holds for V). w = w(u, v) satisfies the sinh-Gordon equation,
and is doubly periodic, with periods (4ug, 0) and (0, 4vg).

The fundamental domain of w is the rectangle (—ug, 3ug) X (—vp, 3vy); the ver-
tical lines u = ug, £=3ug, +5uy, - - - and the horizontal ones v = v, +3vy, =5vg, -+
are lines along which is w = 0, and are called nodal lines. The function w is odd
symmetric under reflection with respect to those lines and even symmetric with
respect to the lines {u = 2kuy} and {v = 2kv,}, for any integer k. The solution
w depends on two parameters, which represent the lenghts of the two sides of the
rectangle on which w itself is defined. It can be shown that one of them is not a
free parameter, so the fundamental rectangle is Q(7), with 7 > 0. The immersion
X : R’ — F? induced by w is periodic with period (4ug,0) (see [K2, Prop.1.7]).
Periodicity implies that X factors through a cylinder, which will be the Wente
cylinder of parameter 7, defined on the fundamental rectangle Q(r).

Let us try to visualize the Wente cylinder, by looking at the Gauss map
v: € — S%(1) restricted to the fundamental domain of w. The three horizontal
nodal lines v = —vg, v = 1, ¥ = 3vy in the fundamental domains are mapped to
points, in fact their lenght in the image is

vol,g(8/0u, 8/0u) = sinh? w

which is zero when w = 0. Call A and B the points which are the image under »
of the two nodal lines that bound the fundamental domain v = —vy and v = 3v,.
The vertical lines go to curves on S? joining A and B. Among them, the nodal
lines u = —ugy and u = 3uy go to "short” curves, while the other nodal line u = uy
goes to one of the two parts of the great circle that joins A and B. Since this
vertical nodal line is a line of symmetry for w, the plane which cuts 52 along
this great circle is a plane of symmetry. We can see that not all of 52 is covered
by the image of v: we are then interested in surfaces where A and B are very
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close, so at least most of 52 will be covered by v(fundamental domain). This is
obtained by sending to zero the parameter 7, so that the fundamental domain will
shrink to a point. If we call Q*(r) a rectangular domain where w(u, v) is positive
(respectively negative), we can see that the Gauss curvature of the immersion is
positive on Q% and negative on ~. Moreover as 7 — 0

(1) the area of the image surface X (Q¥(r)) approaches 47
(2) the area of the image surface X (27 (r)) approaches zero

(see [Wel, Theorem5.1]). This suggests that the surface X(Q*(r)) converges
towards a sphere of radius 1, while the surface X(Q27(r)) has negative Gauss
curvature and connects the positively curved regions. It has small area and, if
appropriately enlarged by a factor of order 77! it will closely follow an Enneper
minimal surface.
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Abstract.— Following the Dolbeault homotopy theory introduced by
Neisendorfer and Taylor in [22], we consider a minimal model for the
Dolbeault complex of a compact nilmanifold T\G with a nilpotent
complex structure and show that this model is formal if and only if
I'\G is a complex torus; thus a non-toral I'\G has no (positive defi-
nite) Kéhler metrics. Furthermore, we prove that (complex) tori are
the only compact complex parallelizable nilmanifolds with indefinite
Kiéhler metric.

1 Introduction

Let ¢ be a simply-connected connected nilpotent Lie group. A well known theo-
rem of Mal'¢ev [20] states that if there exists a basis of left invariant 1-forms for
which the coeflicients in the structure equations of G are rational numbers then
there exists a lattice I' C G of maximal rank, and hence the quotient manifold
I\G is compact. We call such a manifold compact nilmanifold. _

Let us suppose the nilpotent Lie group G endowed with a left invariant al-
most complex structure J; then, the compact nilmanifold I'\G inherits an almost
complex structure by passing to the quotient. If the almost complex structure
J on G is integrable, then the induced almost complex structure on I'\G is also
integrable; in this case we call T\G compact complex nilmanifold.

Compact complex nilmanifolds have deserved special attention from many
authors during the last years, because they provide examples of compact complex
manifolds possessing interesting unusual properties (see the papers listed in the
bibliography).

In a series of recent papers we have characterized and studied a special class
of compact complex nilmanifolds, namely compact nilmanifolds with o nilpotent
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complex structure (see [10, 9, 8]). The simplest nontrivial examples of such
manifolds are the compact complex pamﬂehz&ble nilmanifolds in the sense of
Wang [29].

For a compact nilmanifold I'\G with a nilpotent complex structure it has been
proved in [10] that the computation of the Dolbeault cohomology H**(I'\G) can
be reduced to the level of the Lie algebra g of G; in fact, we have proved that
there is a canonical isomorphism

HP(T\G) = H¥(g°),

where we denote by H**(g€) the cohomology of the differential bigraded alge-
bra (A**(gC)*,8), and J being the operator arising in the canonical decomposi-
tion d = 8 + 8 of the Chevalley-FEilenberg differential d in A*(g®)*. Moreover,
(A**(g©)*, ) is in fact a minimal model in the sense of Neisendorfer-Taylor [22]
for the Dolbeault complex (A**(T'\G), J) associated to the complex structure on
MG.

Our main goal in this paperis to give a survey of some results on the formality
of the above Dolbeault minimal model (A**(g€)*,8) of a compact nilmanifold
I'\G with a nilpotent complex structure.

The paper is structured as follows. In Section 2 we recall the definition and
some basic results-about nilpotent complex structures. In Section 3 we show that
a compact nilmanifold I'\G with a nilpotent complex structure is Dolbeault for-
mal if and only if I'\G is a complex torus (Theorem 3.2); then, as a consequence
of a result of Neisendorfer and Taylor [22], it follows that a compact nilmani-
fold with a nilpotent complex structure does not-admit (positive definite) Kéhler
metric unless it is a torus (Corollary 3.3). Let us emphasize that our proof of
this fact for this particular class of compact nilmanifolds with nilpotent complex
structures makes use exclusively of their Dolbeault cohomology. It is well known
so far that the same result holds for an arbitrary even-dimensional compact nil-
manifold (see Benson-Gordon [3] and Hasegawa [18]); but Benson-Gordon’s proof
holds from the failure of the Hard Lefschetz Theorem for any symplectic structure
on a non-toral nilmanifold, and Hasegawa’s is based on the study of the formality
of a minimal model for the de Rham complex of 4 compact nilmanifold.

It is known that the Iwasawa manifold I3 with its natural complex structure I
is & compact complex parallelizable nilmanifold with no indefinite Kihler metric,
because there does not exist a symplectic form on I compatible with I [14].
This property of (I, I) is extended in Proposition 3.8 to any non-toral compact
complex parallelizable nilmanifold. As a consequence, complex tori are the only
compact complex parallelizable nilmanifolds with compatible indefinite Kihler
metric (Corollary 3.9).

Nevertheless, other nilpotent complex structures Jy on I3 that possess indef-
inite K&hler metrics are constructed in Section 4. A natural question comes up:
is it possible to define a nilpotent complex structure on any compact complex
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parallelizable nilmanifold that admits an indefinite K&hler metric? In Section 4
we remark that the answer to this question is negative.

2  Compact nilmanifolds with nilpotent complex structure

We are interested in a particular class of compact complex nilmanifolds which has
been introduced in [10], namely compact nilmanifolds with a nilpotent complex
structure. '

Let G be a real nilpotent Lie group endowed with a left invariant complex
structure J. Then, there exists an ascending series {a;(J)}izo of the Lie algebra
g of G, associated to J in a natural way, this series is defined inductively by

a(J) = {0},

1

M a()={Xeg | X, g Ca(J) and [JX,g] Ca(S)}, 121

Bach a;(J) is a J-invariant ideal in g, and a,(J) C g; for [ > 0, where g; denotes
the term in the usual ascending central series {gi}i>o of g.

Remark that {a;(J)};>0 depends on the complex structure J. In fact, in [10] it
is exhibited a nilpotent Lie group G admitting two complex structures J and J* for
which a;(J) # a,(J') for all { > 0. Moreover, this ascending series can degenerate
at a step t with a,(J) # g, that is, it may occur that a,(J)} = a,(J) # g for some
t>0andforalll >t

Definition 2.1 A left invariant complex structure J on G is called nilpotent if
the series {a;(J)}i>o given by (1) satisfies a,(J) = g for some integer ¢ > 0.

In particular, if G is a complex nilpotent Lie group, J being the left invariant
integrable almost complex structure on it, then each g in its ascending central
series is a complex Lie subalgebra of g and hence J(g;) = g; for { > 0. Therefore,
o (J) = g for all [ > 0, which implies a,(J) = g; = g, and the complex structure
J on G is nilpotent.

"Nilpotent complex structures can be characterized in terms of the structure
equations of the Lie group as follows. Let J be a left invariant complex structure
on a npilpotent Lie group G of real dimension 2n. Then there exists a basis
{w;, @51 <4 < n} satisfying

dw,-:ZAijkwjf\wk%—ZB,-jkwj/\wk, 1<i<n,
i<k Hk

where w; is of type (1,0) and @; of type (0,1) with respect to J, for 1 <i < n.
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Theorem 2.2 [10] Let G be a nilpotent Lie group (of real dimension 2n) with a
left invariant complex structure J. Then J is nilpotent if and only if there exists
a basis {w;,W;; 1 < < n} for which the structure equations of G have the form

(2) dw; = Z Aijk wj Nwg + Z B,‘jk w; AWy,

F<k<i ki
forl<i<n.

A necessary condition for a s-step nilpotent Lie group G to have a nilpotent
complex structure is the following: dim g; > 2[, for all 0 <1 < s. Other necessary
conditions are proved in [10].

Corollary 2.3 Let G be a nilpotent Lie group endowed with a nilpotent left in-
variant complez structure. Then the structure equations of G have the form (2).
Conversely, the structure equations (2) define o nilpotent Lie group G with a
nilpotent left invariant complex structure. Hence quotients of G have complex
structures.

Definition 2.4 A compact nilmanifold with o nilpotent complex structure is a
complex manifold of the form I'\G whose complex structure is inherited from a
nilpotent left invariant complex structure on G by passing to the quotient.

If G is indeed a complex Lie group then I'\G is a compact complex paralleliz-
able nilmanifold in the sense of Wang [29]. The compact complex parallelizable
nilmanifolds are precisely those for which the coefficients B;j;, in (2) vanish. But
there are many compact nilmanifolds with a nilpotent complex structure which
are not complex parallelizable but real parallelizable only (see [6, 7, 8, 15, 19, 27]
and the examples in Section 4).

3 Dolbeault minimal models and formality

First, let us recall some definitions of the Dolbeault homotopy theory as developed
by Neisendorfer and Taylor in [22].

A differential bigraded algebra (dba) M = (M**,d) is a bigraded commutative
algebra M** over C with a differential d of type (0,1) which is a derivation.
It is further required that it be augmented over C. Morphisms between dba’s
are required to be bidegree preserving algebra maps which commute with the
differentials. .

One immediate example of a dba is the Dolbeault complex of a complex man-
ifold M. If API(M) denotes the space of complex valued differential forms of
type (p,q) on M then (A**(M ),0) is a dba, where A**(M) = Dy g0 API(M)
and O is the differential in the usual decomposition d = 8 + & of the exterior
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differential d of M. The cohomology of (A**(M), §), denoted by H**(M), is the
Dolbeault cohomology of M. Notice that H**(M) with the differential 8 = 0,
that is (H**(M),Q), is again a dba.

A dba M = (M**,8) is a model for the Dolbeault complex of a complex man-
ifold M if there is a morphism of dba’s ¢ : (M**,8) — (A®*(M),d) inducing
an isomorphism on cohomology.

A model M = (M**,§) is said to be minimal if the algebra M** is free and
the differential 8 is decomposable; it is said to be formal if there is a morphism
of dba’s ¥ : (M**,9) — (H**(M),0) inducing the identity on cohomology.
One can define Massey products for H**{M) in a standard way. Then, nonzero
Massey products are obstructions to the formality of a model M.

We shall say that a complex manifold M is Dolbeault formal if there exists a
minimal model M = (M**,8) for (A**(M), ) which is formal.

Another immediate example of a dba is the following. Let g be the Lie algebra
of a nilpotent Lie group G with a left invariant complex structure J. Since J is
left invariant on G, the complexifications of g and its dual g* admit the following
decompositions:

g% = g10 ® go,1, (0% =g @ g

Since (g%)* & (g*)%, there is a natural bigraduation on the exterior algebra

A*(BC)xz
A6 = @ A1(g%),
P20
where AP7(gC)* = AP(g™°) ® A?(g"'). Since J is complex, the natural extension
to A*(g®)* of the Chevalley-Filenberg differential d : A*(g®) — A1 (g®)*
decomposes as d = 8 + 3 where

8 APA(gEY — ATTR(GEY, B API(g) — AP (g,

and 8% = 85 +88 = 52 = 0. Therefore, (A**(g€)*, 8) is a dba which is canonically
identified to the dbe of complex valued left invariant differential forms on G.
Suppose that the Lie group G has compact quotients of the form I'\G, I" being
a-lattice in G of maximal rank. Then each left invariant form on G descends to
the quotient manifold I'\G, and its differential satisfies on '\ the same relations
as it does on the Lie group G; therefore, there is a canonical morphism of dba’s

(3) i: (A(g9),8) — (A™"(T\G), ).

Theorem 3.1 {10] Let T\G be a compact nilmanifold with a nilpotent complex
structure, and let g be the Lie algebra of G. Then, the morphism (3) induces an
isomorphism on cohomology. Therefore, (A**(g©)*, d) is @ minimal model for the
Dolbeault complex of T\G.
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Therefore, if the structure equations of G are given by (2) then a minimal
model for the Dolbeault complex of the compact nilmanifold I'\G (of real dimen-
sion 2n) with a nilpotent complex structure is the dba

() M = (A (1, 3T 0, T s - - 2p41); 9),

where the generators have total degree 1 and bidegree as indexed, and J is given
by
(5) g}mi,a = Z Biji W{,o' xg,l: éxé,l = Z Aiﬂc 55%,1' 35’5,1: 1€i<n.
Sk<i j<k<i
Let g be again the Lie algebra of a Lie group G endowed with a left invariant
complex structure J, and let (A**(gC)*, 8) be the associated dba. Let %, and ko
be the integer numbers

ky = dim HY*(g%) = dim (g1,0/m1,0([g10, go,1]))
ky = dim H%(g®) = dim(go,1/{g0,1, 80,1]);

where 710 ¢ gc — g1, denotes the canonical projection.

If the complex structure J is nilpotent then, from Theorem 2.2 and the equa-
tions in (2), it follows easily that n > ky > 1 and n > kp > 2. If, moreover, g is a~
compler Lie algebra then [g19, go,1] = 0, and therefore k; = n. Hence, a compact
~ nilmanifold I'\G with nilpotent complex structure is complex parallelizable if and
only if the Lie algebra g of G satisfies k; = n. Moreover, g is Abelian if and only
if fi?l - kg = 7.

(6)

Theorem 3.2 Let T\G be a compact nilmanifold with a nilpotent complez struc-
ture, and let M denote the minimal model for the Dolbeault complex of T\G given
by (4) and (5). Then, M is formal if and only if ING is'a compler torus.

Proof : A compact nilmanifold I'\G is a torus if and only if the Lie algebra
g of G is Abelian. In [11] the authors prove that the model M is formal if
and only if k; = ky = n, where k; = dim HYY(M) = dim H*°(T'\G) and k; =
dim H%(M) = dim H*}(T'\G) are given by (6).

According to Neisendorfer and Taylor [22], a minimal model for the Dolbeault
complex of a compact Kéhler manifold is formal. Therefore:

Corollary 3.3 A compact nilmanifold with o nilpotent complex structure does
not admit Kéhler structure unless it is a complex torus.

Neisendorfer and Taylor have also introduced the notion of strict formality.
Compact Kihler manifolds are strictly formal, and strictly formal complex mani-
folds are, in particular, de Rham formal and Dolbeault formal. (In [22], examples
of Dolbeault formal manifolds which are not de Rham formal and of Dolbeault
formal manifolds which are not strictly formal are given.) In this context, a new
consequence of Theorem 3.2 is the following:
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Corollary 3.4 A compact nilmanifold with a nilpotent complex structure is strictly
formal if and only if it is a complex torus.

Therefore, recalling that a compact nilmanifold is de Rham formal if and only
if it is a torus [18], we obtain:

Corollary 3.5 Let I'\G be a comnpact nilmanifold with a nilpotent complex struc-
ture. The following conditions are equivalent:

(i) T\G is de Rham formal,
(i) T\G is Dolbeault formal,
(i1) I\G is strictly formal,
{iv) I'\G s a complex torus.

Remark 3.6 In a recent survey about rational homotopy theory and geometry,
A. Tralle (see the last Remark in page 458, or Problem 8, page 469, in {28])
asked the following question: are there complex symplectic manifolds whose non-
Kéhlerness follows from the Dolbeault homotopy theory?

Reading Tralle’s question as such, Theorem 3.2 and the examples that are
described in Section 4, namely the Iwasawa manifold and the Kodaira-Thurston
manifold, show that the answer to this question is affirmative. But in a private
conversation A. Tralle told us that his question should be read as follows: are there
complex symplectic (de Rham) formal manifolds whose non-Kéhlerness follows
from the Dolbeault homotopy theory? With this rewording, Theorem 3.2 and
Corollary 3.5 show that the family of compact nilmanifolds with a nilpotent
complex structure will not provide an answer to Tralle’s question.

Let M be a complex manifold. Frolicher’s spectral sequence {E,(M)}r»1,
constructed in [16], relates the Dolbeault cohomology H**(M) to the de Rham
cohomology H*(M) of M. An interesting problem in complex manifold theory is
to understand which compact complex manifolds M have E,(M) 2 Eo(M).

It is known that the Frilicher spectral sequence associated to the canoni-
cal complex structure of Iwasawa's manifold (see Example 1 in Section 4) sat-
isfies B) 2 E, & E, (see [17]). More in general, in {6] it is proved that
Ey(M) =2 E.(M) for any compact complex parallelizable nilmanifold M. More-
over, examples of compact complex manifolds such that their associated Frolicher
spectral sequences degenerate at higher levels have been constructed using com-
pact nilmanifolds with nilpotent complex structure [6, 7, 9].

On the other hand, Tanré [26] proved that if G is a compact connected
semisimple Lie group such that T — G — G/T is a holomorphic principal
bundle, T being a maximal torus of G, then E3(Q) 2 Fo(G) if and only if G
is not Dolbeault formal. These conditions are satisfied by Pittie’s example [24],
where G = SO(9).

In contrast to Tanré’s result, for compact nilmanifolds we have:
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Corollary 3.7 Let I'\G be a compact nilmanifold with a nilpotent complez struc-
ture. If B1(T\G) % Eo{T'\G) then I'\G is not Dolbeault formal.

Proof : It follows immediately from Theorem 3.2, taking into acconnt that a com-
pact Kéhler manifold M satisfies £y (M) & E (M) by Hodge theory (see [16]).
:

However, the converse of this result does not hold in general. Kodaira—
Thurston’s manifold KT is an example whose Dolbeault minimal model is not
formal but with degenerate Frolicher spectral sequence (see Example 1 in Sec-
tion 4).

Recall that Benson and Gordon [3] and Hasegawa [18] have proved that an
even—dimensional compact nilmanifold has no Kéhler structure unless it is a torus.
The following is significant in this context.

Proposition 3.8 Let M =T\G be a compact complex parallelizable nilmanifold
of (complex) dimension n. If M is not a complez torus then M does not admit
symplectic structure compatible with its complez parallelizable structure.

Proof : Since M = I'\G is complex parallelizable the coefficients B;j in (2) van-
ish or, equivalently, [g1,0, go1] = 0. Since the Frolicher spectral sequence degener-
ates at Eo(M), in particular the second de Rham cohomology group decomposes
as H*(M) & E;°(M)® By (M) @ By (M), where Ep' (M) = H(g1,0)® H(go,1)-
Put k = dlmH1(91 o), and let {{ag g, ..., [af o]} be a basis of H'(g10)- Then
{lagals- -+, [og,]} is a basis of H'(gy, D, o bemg the conjugate of o g, 1 <4 < k.
Therefore any cohomology class [] of type (1,1) must be a linear ‘combination
of [of g A a{m] for 1 <i4,7 <k If M is not a complex torus then k£ < » and we
conclude that [Q]* = 0, that is, no closed form of bidegree (1,1) on M can have
maximal rank.

Corollary 3.9 Complex tori are the only compact complex parallelizable nilman-
ifolds which admit indefinite Kdhler metric compatible with its natural complex
structure.
3

However, there may exist other nilpotent complex structures on a compact
complex parallelizable nilmanifold that do possess (compatible) indefinite Kéhler
metric as the discussion on Iwasawa’s manifold in the next section will illustrate.
(See {1] for a description of all invariant complex and symplectic structures on
I3 compatible with a standard positive definite metric and orientation on it.)
Moreover, Kodaira-Thurston’s manifold shows that there may also exist com-
pact nilmanifolds with nilpotent complex structure admitting indefinite K&hler
structure.
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4 Examples

In this section two classical examples of compact nilmanifolds with nilpotent com-
plex structure and indefinite Kéhler metric are described. Therefore, Dolbeault
formality provides a difference between indefinite Kihler metrics and (positive
definite) Kahler metrics.

Example 1: The Kodaira—Thurston manifold

This manifold is the simplest example of a compact nilmanifold with nilpotent

complex structure which is real parallelizable but not complex parallelizable.
Let G be the uilpotent Lie group of complex matrices of the form

o

1
6
0

< o R
- &

Remark that G is not a complex Lie group because right translations are not
holemorphie.

Kodaira-Thurston’s manifold KT is the compact nilmanifold with nilpotent
complex structure obtained as KT = I'\G, where T is the subgroup of G consist-
ing of those matrices whose entries {z,y} are Gaussian integers. The functions
z, y are natural complex coordinates on . Sincethe complex 1-forms dz, dy—Tdx
are left invariant on G, they descend to 1-forms wy,w; on KT such that

dw1 :0, (&UQ = (1 A Ws.

This manifold has been the first known example of a compact symplectic manifold
which is also a complex manifold with no (positive definite) Kéhler metric [19,
27, 5]. In fact, {wy,w;, @) defines a nonzero triple Massey product on K7T.

However, KT possesses indefinite Kihler metrics [15]. Moreover, if ds? is
an. indefinite K#hler metric on KT which stems from a left invariant indefinite
Kihler metric on the Lie group G with respect to its natural complex structure,
then the Kihler form corresponding to ds? is given by

F=+-1 dSQ(Zb ZQ) (w; Ay + iy A wz) + /1 d82(Zl, Zl)wl Ay,

where {Z), Z1, 22, Z»} is the basis dual to {w;, @1, ws, @} (see [2]).

Also, it must be remarked that, since KT has complex dimension 2, its associ-
ated Frolicher spectral sequence is degenerate (see [19, 4]). In fact, dim By (KT) =
dim Eo(KT) = 12. From Theorem 3.2 we conclude that the converse of Corol-
lary 3.7 is not true.
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Example 2: The Iwasawa manifold
The Iwasawa manifold [; can be realized as the compact quotient manifold I; =
I'\G of the complex nilpotent Lie group G of all complex matrices of the form

1 = 2
0 1 vy
0 0 1

by the subgroup I' of G consisting of those matrices whose entries {z,y, z} are
Gaussian integers. The functions x,y, z are natural complex coordinates on G,
and the complex differential forms dz, dy and dz — zdy on G are left invariant.
Hence, they descend to holomorphic 1-forms w;, we and ws on I3 such that
dw1 = de = 0,
{dwg = —wj A Wws.

We shall denote this complex structure on I3 by I and refer to it as the natural
complex structure on I3.

The compact complex nilmanifold (I3,I) is, apart from a torus, the sim-
plest example of a complex parallelizable nilmanifold. It is easy to check that
(@1, @1, @q) defines a nonzero triple Massey product on (I3, I). Therefore, accord-
ing with Proposition 3.8, no symplectic structure compatible with I can exist
on I 3. v

However, there exist other nilpotent structures on I3 that do posses (compat-
ible) indefinite Kihler metric.

Let {X1,Y;, X», Y2, X3,Y3} be the basis dual to {a1, B1, s, B2, a3, B2}, where
a; = Re (w;), f; = Im(w;), for ¢ = 1,2,3. In [14] it is proved that the almost
complex structure Jp given by ‘

JoXi =cos0 Xy +sinfYy, JpYi=—sin0X,+cos8Ys, JyX3=VYi,
is ints:grable for each § € R. The 1-forms 7,72, T3 given by
7 = a3 +v/—1(cos Oz +sin 8 fy),
Ty = B +v/—1(—sinb oy + cos 6 By),
s = 2(a3 +vV—1 ),

is a basis of complex forms of type (1,0) with respect to Jy. In terms of 7, 79, T
and their conjugates the structure equations become

(7)

where A = cosf + +/—1sind and g = sinf — /-1 cosd. These equations
prove that Jg is a nilpotent complex structure on I3 for each § € R. Since

{dTl-——dT2=0, .
dT3=/\(T1/\’_f2+T2/\’?_'1)+[L(T1 /\fl—’?'g/\'f_'g),
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dim HY0(I3, Jg) = 2 < 3, we conclude that (I3, J) is not a complex parallelizable
manifold.
Let

1< 1 ‘ _
dst = §(’\ TR+ AT FET i o dER — R dTy) — Zme (A+p)V =1 (n#7—T1#72),

where # denotes the symmetric product. Then ds? is an indefinite K&hler metric
compatible with Jy, and its corresponding Kéhler form Fj is the symplectic form
given by

1,- 1
Fy= Z()\?‘g ATa+ AT A3+ ATs+pT /\T3)+Zme {A+;L)(T1A’?g +’T’1/\’f’2).

It is easy to check that {m, 71 A1y, 47+ AT) defines a nonzero triple Massey
product on (I3, Jy}, for each 6 € R.

Integrating the structure equations (7) it is easy to see that (I3, Jp) can be
viewed as the quotient of the nilpotent Lie group

1 AZ—ud uZ+Xo w
0 1 0 U

Gy = 0 0 1 | z,v,w e C
0 0 0 1

by the subgroup T'g of Gy consisting of those matrices whose entries {z,v,w} are
Gaussian integers.

Finally, a direct computation shows that the Frolicher spectral sequence as-
sociated to Jp satisfies By 2 Fy & E.,. More precisely,

dim El(I;;, JQ) = 48 > dim Eg(lg, Jg) = dim Em(f;;, Jg) = 36,
for each § € R.

Remark 4.1 In [12] a family of compact complex parallelizable nilmanifolds
Ng(r, 1), 7 > 1 have been constructed as quotients of the generalized complex
Heisenberg group. Although Ng(1,1) = I3, the compact nilmanifolds Ng(r, 1)
for 7 > 2 do not admit symplectic forms. Therefore, on the compact nilmani-
folds Ng(r, 1), r > 2, there do not exist complex structures, neither nilpotent nor
non-nilpotent, which admit compatible indefinite Kéhler metrics.
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GAMMA MANIFOLDS AND STOCHASTIC GEOMETRY
C.T.J. Dodson”

Abstract.— Families of gamma and gamma-related distributions yield
parametric statistical models in the form of Riemannian statistical
2-manifolds which are topologically Bt x R*. These constitute a rep-
resentation of certain stochastic line, rectangle and cylinder processes
having the random or chaotic case as a 1-dimensional submanifold
and a 2-parameter family of of departures from the random state. A
source of statistically natural metrics on statistical manifolds is the
Fisher information matrix, based on the expectation of products of
gradients of the log-likelihood function, that is the statistical covari-
ance matrix of the derivatives of log-likelihood. In this preliminary
report we collect some of the geometrical features of such manifolds
and juxtapose them with physical features of stochastic processes for
which they provide models.

Statistical Manifolds

The geometric representation of statistical models by Riemannian manifolds seems
to have its origin in the work of C.R. Rao [16] who introduced the metric tensor
in terms of the Fisher information matrix [10]. The thesis of Rao’s student M.
Deng [5] contains a summimary of the developments and a number of results that
we shall use below. For a collection of formulae for commonly occurring statistical
distributions see Kokoska and Nevison [13].

Following Amari [1] (cf. also [7]), let M be the parameter space of a statistical
model S, that is an n-dimensional smooth family of probability deusity functions
defined on some fixed event space ) of unit measure,

fgpgzl for allf e M.

For each sequence X = {X1,Xa,..., X}, of independent identically distributed
observed values, the likelihood function liky on M which measures the likelihood
of the sequence arising from different py € S is defined by

likx : M — [0,1] : 6 — [] po(X5)-

i=1

* Partially supported by NATO Research Grant 0741/88
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Statisticians use the likelihood function, or log-likelihood its logarithm [ = log lik,
in the evaluation of goodness of fit of statistical models. The so-called ‘method
of maximum likelihood’ is used to obtain optimal fitting of the parameters in
a distribution to observed data. We illustrate this for the particular case of a
gamma distribution in the next section.

We denote by £ the expectation operator (measure) for functions defined on
§2; in particular, the mean £(z) = Z, and variance £(z?) —22 = Var(z), which will
be functions of 8. Then, at each point § € M, the covariance of partial derivatives
of the log-likelihood function is a matrix with entries the expections

2
g;;=¢ (%%) =-£ (5921519—]) (for coordinates (6%) about 6 € M)

which gives rise to a positive definite matrix. It induces a Riemannian metric g on

M, called the expected information metric for the parametric statistical model

S, which has statistical significance [10, 16, 1]. Families of connections which

contain the Levi-Civita connection of g turn out to have importance also [1],

and are actually part of larger systems of connections for which stability results

follow [7]. Deng in her thesis [5] used the same coordinates but took the metric .
hij = gij + 6i;.

Gamma Manifolds

The family of gamma distributions has event space Q = R* and probability
density functions given by

S = {p(z; u, )i, 6 € R*}

so here M = R* x R* and the random variable is z € = Rt with

, (3; ﬁ) = (ﬁ)ﬁ ff.:ie—mﬂ/ﬂ (*)

p ) ljﬂ lj, I‘\(ﬂ)

Then Z = p and Var(z) = p?/8 and we see that p controls the mean of the
distribution while § controls its variance and hence the shape.

To see the role of the log-likelihood function here, consider the case that we
have a set X = {X3,Xs,...,X,} of measurements, which we consider to be
a sample drawn from independent identically distributed random variables, to
which we wish to fit the best (ie maximum likelihood) gamma distribution. So
we need a procedure to optimize the choice of y, 8. For independent events Xj,
with identical distribution p(z; y, §), their joint probability density is the product
of the marginal densities so a measure of the ‘likelihood’ of finding such a set of
events is

likx (u, B) = ﬁP(Xﬁﬂa B).

i=1
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We seek a choice of y, # to maximize this product and since the log function is
monotonic increasing it is simpler to maximize the logarithm

Ix(p, B) = loglikx(u, B) = 10g§fI p(Xi; 1, B)-

i=1
Substitution gives us

n

(i f) = 3[A(ogf —logp)+ (6 —1)log X; - éxi ~logT{A)]

i=1

= nflogf ~logp)+ (8 ~1)> log X — %ZA& —nlog'(8).
i1 i=1
Then, solving for dulx (i, 8) = slx (i, 8) = 0 in terms of properties of the X;,
we obtain the maximum likelihood estimates f, F of p, f in terms of the mean
and mean logarithm of the X;

n:’:l
s
logﬂmw = logX —logX

T(A)

where log X = + T2, log X;.
The usunal information metric g, used by Lauritzen [14], is given by

B

ds? = =
g4 ‘u'g

1
i+ (V@) - ) 45" for R
where ¥(8) = %'(%1 is the digamma function, the logarithmic derivative of the
gamma function. Deng’s metric {5] h yields

ds? = (1+ ;fz“) dy* + (1 +9'() - “15) df* for p,f € RY.

Lauritzen [14} and Deng [5] have computed some geometrical properties of
statistical 2-manifolds based on the family of gamma distributions, among other
commonly occurring distributions, using their respective metrics. In particular,
Lauritzen computed the l-parameter family of a-connections of Amari {1} and
obtained the following expression for their corresponding sectional curvatures

k(o) :
1—a? ¢'(B) + By"(B)
4 prrs)

k(a) = —Ri), g™ =
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Using the Brioschi intrinsic formula for surfaces (cf. Gray [9] page 393, wherein
also can be found the Mathematica functions for various geometric objects) we
have for a metric ds® = E du? + G df3? the Gaussian curvature

- D )

Then the Gaussian curvature of our gamma manifold (M, g) can be computed
using Gray's Mathematica code to yield:

3—489/(8) — 24"(B)
28(-1+ B9 (B) .

We note that Ky(u,8) — —1 as § — 0. Further geometric features of gamma
manifolds will be presented elsewhere.

Using Deng’s metric and the Brioschi formula, the manifold (M, &) has Gaus-
sian curvature

Ky (1, ) = for i1, 8 € R*.

B+ 02+ B2 (B) + B (u* + B) ¥"(B)
4(p2 + Y (~1+ B+ B9'(B))°

and Kj(st,8) — 0 as § — 0 for g > 0. This is certainly more interesting geomet-
rically than the previous case K, but differs from the following expression for
Gaussian curvature of (M, h) reported by Deng on page 63 of [5]:

1 0%(B)
(128 + B* + pu*(8)) (1 + B)(B + ¥(85))
Further families of gamma distributions arise in the multivariate case, for example

see Johnson and Kotz [12], which can accommodate correlation among the event
space variables and introduce higher dimensional parameter spaces.

Kin(u, 8) = for u, B € RY,

Ki(e,8) =

Stochastic Geometry

For some background to stochastic geometry see Baddeley [2] and Stoyan et
al. [17] and for stochastic processes in general see Cox and Hall [4] and Pa-
poulis [15], for example. The simplest stochastic geometric structure is perhaps
a ‘random’ distribution of points along a line—which serves as a model for a
queuing process. However, this begs the question of what is meant by ‘random’
and the usual model is that of a Poisson point process [4, 11], then the successive
gaps between points are drawn independently from an exponential distribution,
p(w; ¢, 1) in (). In higher dimensions, a Poisson point process in a bounded region
arises when the locations of points are independently assigned with the expected
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number in a zone proportional to the measure of the zone. Then the probability
that a zone of measure A containg n points is

—pa (PAS
Pn)=e ”A(—%%

where p is the density of the underlying peoint process. In the case of dimension
1, the Poisson process on a line yields the exponential distribution for gaps by
substitution of n = 0.

By a planar network of random line segments (‘fibres’) we mean the realisation
of a Poisson point process [4, 11] in a (large) bounded region U C R2, together
with a uniform distribution of angles to a fixed direction for lines drawn through
the points. Such a structure partitions I/ into polygons in the case of segments
of infinite length and it turns out that the mean number of sides per polygon
is four and on each line we have a 1-dimensional Poisson process. Corte and
Lloyd [3] approximated the distribution of areas of the polygons so formed as
the product of two exponential distributions, which are known to give a good
approximation to the inter-crossing lengths in a random network [6]. In fact,
practical applications to flow of fluids through stochastic fibrous networks require
rather a high density of fibres and so the fact that they are not of infinite length
is rather unimportant. We repeated the analysis using the gamma distribution as
a generalisation of inter-crossing length distributions for more general stochastic
fibre networks [8]; then the exponential distribution is a special case. We note also
that the gamma distribution has the Chi-square distribution as another special
case, it corresponds to an Erlang distribution and a Beta distribution, and has
as limiting case a Normal distribution (cf. [13]).

The gamma distribution has a probability density function given by (x) above.
The exponential distribution is a gamma distribution with § = 1 and hence also
Var(z) = p®. Thus, u and 8 are the parameters in the family and represent
possible departures in S from the random case 3 = 1; such departures arise from
clumping of fibres (larger variance than random) or dispersion of fibres (smaller
variance than random). For clumped or ‘flocculated’ stochastic fibre networks,
we expect § < 1 and so {f; > u? and the variance to increase with increasing fibre
clumping. For dispersed stochastic fibre networks, we expect # > 1 and -‘;3—2 < p?
and the variance to decrease with increasing uniformity.

We consider the product of two independent identical gamma distributions
p(z) and p(y) such that xy = a where a is the area of a rectangular pore. The
probability density of a will be given by:

ma) = [ 2p@n(2)d.
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Evaluation of this integral gives us,

_ 2a%71 528 Ko (26+/a/ )
©2PT(B)*

and Ky is the zeroth order modified Bessel function of the second kind. The

distribution given by equation (x*) has mean, @ = p? and variance Var(a) =
(1+28)p
7 .

Following Corte and Lloyd, we define an equivalent pore radius r which is given

by a = 7r?. The probability of finding an equivalent pore radius 71 < r < 79, is
given by:

h(a) ()

/ " pla)de = /m p(nr®) 2nr dr .
2 -

ATy

So the probability density function for equivalent pore radii is:
q(r) =27 p(ar?)

which gives us;

5
- (3 4

where z = 2fr/r/p and f;° ¢(r)dr = 1. The mean and variance of ¢(r) are

given by:
T 132 2 4
Ll i U Cha 2)2 and Var(r) = #* NG F('Bl) +—1].
B \/7—" r (;6) F(ﬁ + 5)
For a random network, § = 1 and the distribution of pore radii has mean, ¥ == p/x

ig
and variance, Var(r) = (§)? (% - ll'g) in agreement with Corte and Lloyd {3].
Departures from randomness, in the form of dispersion or clumping, will be
representable as curves in the gamma manifold (M, ¢) and can be quantified by
their length. This will be taken up elsewhere,
Acknowledgement The author wishes to thank NATO for support in at-

tending this Workshop.
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RECENT RESULTS ON THE COHOMOLOGY AND HOMOLOGY
OF POISSON MANIFOLDS

Marisa Ferndndez, Ratl Ibdfiez and Manuel de Leén

Abstract.— We give a survey concerning recent developments on the
homology and cohomology of Poisson manifolds.

1 Introduction

Since its introduction by Lichnerowicz, Poisson manifolds have gained an increas-
ing interest in geometry and physics. - Indeed, they are the natural setting for
hamiltonian dynamics, and at the same time they present interesting geometrical
properties. .

The existence of a Poisson structure on a manifold M provides a natural co-
homology and homology. The Lichnerowicz-Poisson cohomology is obtained by
considering the complex of p-vectors endowed with the natural operator o(P) =
—[A, P}, where A is the Poisson tensor and [, ] is the Schouten-Nijenhuis bracket.
This cohomology provides a good framework for deformation and guantization.
The LP-cohomology is similar to the de Rham cohomology on forms, but it de-
pends on the existence of the Poisson structure. In fact, for symplectic manifolds,
they are isomorphic, but the result does not hold for arbitrary non-symplectic
Poisson manifolds. Its computation is far to be a trivial matter, and in Section 3
we collect a huge number of results in this direction.

The Poisson or canonical homology is obtained by defining the Koszul ope-
rator § = [i{(A),d] on forms. For symplectic manifolds, it is isomorphic to the
de Rham cohomology of M, but the result fails for arbitrary Poisson manifolds.
The canonical homology was extensively studied by Brylinski who introduced
the so-called double canonical complex. Also, Brylinski proposed the study of
a symplectic harmonic theory which led to discuss very interesting problems on
symplectic manifolds. The spectral sequences associated to the double canonical
complex was also extensively studied in recent years. Canonical homology and

Presented by R. Ibdfiez.
Acknowledgements.- This work has been partially supported through grants UPV 127.310-
EA043/97 and DGICYT, Projects PB94-0633-C02-02 and PB94-0106.
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LP-cohomology are related by a natural pairing as was remarked by Bhaskara
and Viswanath. All these problems are discussed in Section 4.

Finally, we remark that these concepts were recently extended in two dirvec-
tions: for Jacobi manifolds [10, 11, 12, 31, 32, 33, 34], and for multibrackets
- [24, 25, 26, 27, 28].

2 Poisson structures

In this section we shall describe several ways of defining a Poisson structure on a
differentiable manifold. Also, we shall show several outstanding examples of this
structure, as well as properties and related topics. ’

Let M be an m-dimensional manifold and denote by X(M) the Lie algebra
of smooth vector fields and by C°°(M) the algebra of smooth functions on M.
A Poisson bracket on M is a bilinear mapping {, } on C®(M) satisfying the
following properties: ‘

i} skew-symmetry: {f,g9} = ;{9, Ih
il) Leibniz rule: {f,gh} = {f, g} + g{f, 1},

iif) Jacobi identity: {{f,g},h} + {{h, f}, 9} + {{g,h}, F} =0,

for f,g,h € C®(M). A Poisson manifold is a smooth manifold equipped with a
Poisson bracket.

e From ) and i) we observe that the algebra C°°(M) of smooth functions
on M is a Lie algebra with respect to the Poisson bracket. Indeed, it is
a Poisson algebra (i.e. a Lie algebra with an associative multiplication
satisfying the Leibniz rule).

e Property i) is equivalent to the vanishing of the Poisson bracket {f, f} for
any f € C*(M) (i.e. the conservation law of energy).

e Taking into account the Leibniz rule, the mapping f — X;(¢9) = {f, ¢}
defines a vector field Xy on M, called the Hamiltonian vector field associated

to f.

o The Jacobi identity is equivalent to the property Xy; 4 = [X;, X,], which
means that the mapping f € C*(M) — X; € X(M) is a Lie algebra ho-
momorphism. The kernel of this mapping consists of the Casimir functions.
Also, the Jacobi identity is equivalent to the fact that X is a derivation of
(CW(M)a {1 })3 Le. Xf{gs h} = {XI§$ h} + {ga th}

Another way of defining a Poisson structure is by considering a skew-symmetric
tensor field A of type (2,0) satisfying [A,A] = 0, where [, ] is the Schouten-
Nijenhuis bracket [3, 43]. We say that A is the Poisson tensor,
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¢ The relation between the Poisson tensor with the Poisson bracket is given
by the following formula:

{f,9} = Adf,dg), [, g€ C™(M).
The property [A, A] = 0 is equivalent to the Jacobi identity.

¢ We can consider the associated mapping # : AY(M) — X(M) defined by
- ) = i(a)A (ie. #(a)(B) = Ala, B), for § € AY(M)). For zy € M, we
define the rank of A at zy as rank A, = rank#,,. :

Next, we shall describe several examples. ‘
Symplectic manifolds. Let (M,w) be a symplectic manifold of dimension 2n,
that is, w € A2(M) is closed (dw = 0) and non-degenerate everywhere (w” # 0).
For a smooth function f € C®(M), the associated Hamiltonian vector field is
defined by
'Z(X ;)w = (ff .

Therefore, the Poisson bracket is

{9} = ~w(X5, X,).

For symplectic manifolds, the associated mapping # is an isomorphism and
- the Casimir functions are the constants (that is, the Poisson bracket is non-
degenerate) (see {1, 36}).

Structures on R™. Let M be a Poisson manifold and take local coordinates
(%1, -+, Tm), then the Poisson tensor A is locally represented as

1, & 8
A=5Mi00 " oy
where the coeflicients Ay; = {=;, z;} satisfy certain conditions: A;; = —Aj; and
* mof O | Ohg L, OAG)
; (Al] 611'}1 +Alz 337[ +A~!k 8513[ - 0)

fori, 7,k =1,---,m. Assume now that M = R™ and that zy,..., Z,, are the stan-
dard coordinates. There exists an special interest (with mathematical and phys-
ical motivations) in the study and classification of polynomial Poisson structures
(i.e. Ay; are polynomial). Special attention is given to homogeneous structures
(see [42]):

i) If each Ay is a constant, then the Poisson structure A is said to be constant.

it} If each A;; is a homogeneous linear polynomial, then the Poisson structure
A is said to be linear {52] (see Lie-Poisson structures).
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iii) If each A;; is a homogeneous quadratic polynomial, then the Poisson struc-
ture A is said to be quadratic [2, 14, 39]. Each quadratic Poisson structure
corresponds to a solution of the classical Yang-Baxter equation on Frd(R*)
and viceversa.

Lie-Poisson structures. Let g be a Lie algebra of finite dimension, then the
dual space g* has a natural Poissomstructure defined by

{0, ¥}(7) = {dyp, d9)),

where v € g* and ¢, 9% € C*(g*), therefore d,p,d, ¥ € g since one can look them
as linear mappings from T,g* = g* to R. This bracket is called the Lie-Poisson
structure on g*. ‘

Let 1, +,vm be a basis for g with structure constants ¢, that is, [v, 1] =
csz/k, and let gy, - -, ttm be the corresponding coordinate functions on g*. The
above bracket is then defined by

k

{Ju'h @3} = cfj}“’k;
that is, it is a linear Poisson structure. This is the well-known example due to
Lie [38] and studied by Kirillov, Kostant, Soriau and others.
Some constructions of Poisson structures.

o Let (M;, A;) (i = 1,2) be two Poisson manifolds, then the product manifold
~ My x M, is a Poisson manifold with the structure A; + As.

e Let (M, A) be a Poisson manifold, then the tangent space TM is a Poisson
manifold with the complete lift A® of A to TM.

e Given two Poisson tensors Ay and A; on a manifold M, then the tensor field
A; + Ay is a Poisson tensor if and only if [A;, Ay] = 0, and in this case we
- say that the two Poisson structures are compatible.

Poisson-Lie groups. Let G be a Lie group, endowed with a Poisson structure
A. Then, (G, A) is a Poisson-Lie group if the multiplication G X G — G is a
Poisson mapping. A necesary and sufficient condition for a pair (G,A) to be a
Poisson-Lie group is that '

AQI.‘]B = LguAQz + Rgz*Agl y Vo, g €G.

In particular, we must have A, = 0, for e the unit of G (see [41]).

A mapping ¢ : (My, A1) — (M, Ag) between two Poisson manifolds is called
a Poisson morphism if

{fofzf’sgofp}l = {f’g}ﬁoqba Vf,g@ Cm(MZ)s
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or, equivalently, ¢* : C°(M;) — C(M,) is a Poisson-algebra homomorphism.

It can be seen that the Hamiltonian vector fields are infinitesimal automor-
phisms of the Poisson tensor, that is, Lx, A = 0. As a consequence, the flow &,
associated to Xy consists of Poisson morphisms.

The local structure of Poisson manifolds is described by the splitting theorem
due to Weinstein [52]: let (M,A) be a Poisson manifold of dimension m and
xg € M such that rank A,, = 2r, then there exists an open neighborhood U of zg
such that (U, Ajy) is " Poisson-isomorphic” to a product manifold S x N, where
S is a 2r-dimensional symplectic manifold and NV a Poisson manifold of rank 0 in
the image of ;. .

We can interpret this result as follows: there exists a coordinate neighborhood
(Usq¢t,psyz2) (fori=1,---,rand a=1,-++,m — 2r) of z such that

{@.éY=1App}=0, {¢,p}=6, {d,2°}={ps,2"}=0,
and {z°,2%} is a function of 2*,---,2™ %" that vanishes at z9. Notice that for
constant rank Poisson structures Ay = 0 or equivalently, {22, 2t} = 0.
Poisson manifolds are foliated by symplectic leaves {50, 52]. Given a Pois-
son manifold (M, A), it can be defined a distribution §(M) on M (called the
characteristic distribution) by means of the Hamiltonian vector fields:

S (M) = {v € Toy (M) | 3f € (M) = Xy(z0) = v}.

It is known that the characteristic distribution is completely integrable, so it
defines a foliation on M, and the Poisson structure induces symplectic structures
on the leaves of the foliation (each leaf has dimension equal to the rank of A at
the points of the leaf).

In particular, the symplectic leaves of the Lie-Poisson structure of the dual
space g* of a Lie algebra g are the orbits of the coadjoint representation of any
connected Lie group G whose Lie algebra is g [52].

3 Lichnerowicz-Poisson cohomology

Denote by V?(M) the space of tensor fields of type (p, 0) (in particular, V} (M) =
X(M)). We define the contravariant exterior derivative 8 : V(M) — VP M)
by
8P = —[\,P], for P e€VP(M)
Koszul [30] has proved that 8% *= 0. Thus, it defines a differential complex
(V*(M),8) and its cohomology is called the LP (Lichnerowicz-Poisson)-coho-
mology [37]. We denote by HEp(M) (or, in case of confusion, Hfp(M;A)) the
cohomology group of order p. The LP-cohomology can also be defined for Poisson
algebras (see [21]).
We have the following results:
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e H. (M) = {f € C°(M)|X;(g) = 0,Yg € C®(M)} = the space of
Casimir functions. Then, it is clear that for a (connected) symplectic ma-
nifold HYp(M) =R

o Hl(M) = {X € X(M)|LxA = 0}/{Xs|f € C®(M)}, that is, it is
the quotient space of the infinitesimal antomorphisms by the Hamiltonian
vector fields.

o OA = 0, so the Poisson tensor defines a fundamental class [A] € HZp(M).
If [A] = 0 (that is, there exists a vector field A such that L4A = —A), then
it is said that (M, A} is a homogeneous Poisson manifold or also an exact
Poisson manifold [13]. For instance, the Lie-Poisson structure of a coadjoint
Lie algebra g* is exact. This kind of Poisson manifolds play an important
role in the study of Jacobi manifolds [13].

e I(PAQ)=8P)ANQ+(-1)?P A(Q), so we can define a LP-cup product
in the LP-cohomology algebra.

¢ The LP-cohomology satisfies the Mayer-Vietoris exact sequence property
[49, 50], i.e. if U, V are open subsets of M, there is an exact sequence of
the form

cor = Hip(UUV) — HEp(UYoH}p(V) — HEp(UNV) — HEFHUUV) — - -

Unlike for the de Rham cohomology, the LP-cohomology has no functorial
character. The best assertion we can make is that for (M;, A;) (@ = 1,2) Poisson
manifolds and ¢ : M; — M, a Poisson morphism which is a local diffeomor-
phism, then one has an induced homomorphism

¢ : Hip(M) — Hip(My).

Moreover, if ¢ is a diffeomorphism, then ¢* is an isomorphism.
If we extend the mapping # associated to a Poisson tensor A to a mapping
# : A¥(M) — V*(M) by putting

#()\)(O{l, tty ak) = (ml)k’)‘(#(al)l Tt #(sz)),

for A € A¥(M) and aq,---,x € A'(M), then it can be proved [37, 3] that
0 o # = —# od. Therefore, we have induced homomorphisms in cohomology

#: Hpp(M) — Hpp(M),

which is an isomorphism if the Poisson structure comes from a symplectic struc-
ture of M [37]. However, the above result does not hold for non-symplectic
Poisson manifolds as the following examples show.
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o The compact manifold M(k,n). In [18] we have considered the completely
solvable four-dimensonal manifold M(k,n) defined by the 1-forms {ay, as,
03, a4} such that

dog = —kog Ay, das =kasAas, doz=0, dag=na Ao,

where k is a real number such that ¢* ++e~* is different from 2 and n a non-
zero real number. M(k,n) is a compact quotient of a completely solvable
Lie group G(k, n) by a discrete and uniform subgroup. Let {X;, X3, X3, X4}
be the dual basis of vector fields, then

[X].:XQI = —'an;, [-Xh X3} = th [X21 XS] = "ngm

all the other brackets being zero. Hence, G = X3 A X is a Poisson tensor
coming from a left invariant Poisson structure on G(k,n). It can be seen

that Hyp(M(k,n)) = 0, however dim H2p(M (k,n)) > 2.

s Vaisman {50] considered the quadratic Poisson structure

) a
2 2
A={(z*+y )-~—~8ac /\——ay,

on the noncompact ’?; he proved that H} 5(R?) # 0, however Hpp(R?) = 0.

Nevertheless, it was not clear what H:p(M(k,n)) and H}p(R?) are in the

above examples. In general, the computation of LP-cohomology is a difficult
problem, because of the lack of a powerful method., Now, we shall comment some
results in this direction.

For a regular Poisson manifold (M, A) (that is, the rank of A is constant

everywhere), the computation of the LP-cohomology was started by Lichnerowicz
[37]. Later Vaisman and Xu have obtained new results.

¢ Vaisman studied in [49] the LP-cohomology for regular Poisson manifolds by

observing that there is a Serre-Hochschild spectral sequence that converges
to the LP-cohomology. By using a distribution S’ transverse to the symplec-
tic foliation S of (M, A), he obtains new expressions for this cohomology.
In particular, some simple expressions are obtained when the symplectic fo-
liation is either transversally Riemannian or transversally symplectic. For
example, in the simple case where M is a symplectic manifold of finite type
and N is a smooth manifold with the zero Poisson structure, we have for
the Poisson product manifold M x N the following result:

k
HEp(M x N) = @ [Hbp(M) ® A*9(N)]

g=0
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o P. Xu computes in [54] the LP-cohomology by means of symplectic grou-
poids. For an integrable Poisson manifold (i.e. Poisson manifolds admitting
a global symplectic groupoid) the LP-cohomology is naturally isomorphic
to the de Rham cohomology of the left invariant forms on the symplectic
groupoid. Such idea was suggested by Vorob’ev and Karasev in [51], where
they computed the LP-cohomology groups of degrees 1,2 or 3 for certain
classes of Poisson manifolds. )

If {M, A) is not regular the situation becomes more involved. Some results in
the linear case and for Lie-Poisson structures have been obtained in [20, 40, 486].
And for quadratic structures in [47].

e For a Poisson-Lie group G with Lie algebra g, its dual g* becomes a Lie
algebra and its associated Lie group G* is also a Poisson-Lie group. In
[40] and [20], it has been studied the LP-cohomology for (dual) Poisson-Lie
groups, and from these results follows that

HE (%) = H*(g) ® { Casimir functions},
where H'(g} denotes the cohomology of the Lie algebra g.

e Nakanishi considers in [46] some particular Lie-Poisson structures, as for
instance g = sl(2, R), and using the Chevalley-Eilenberg complex, he deter-
mines the first cohomology space and relates that space with the space of
Casimir functions which are flat at the origin.

e In a recent article of Nakanishi [47], the LP-cohomology of the quadratic
Poisson structures on the plane R? is computed (including the above ex-
ample of Vaisman). He proves that if A is exact, then H}p(R?) = R and

- for degrees 1,2 the LP-cohomology groups are infinite dimensional; but, if
A is not exact, then HY,(R?) =R and Hfp(R?) =R R, for k = 1,2. For
quadratic Poisson structures in R™ (m > 2) the problem is still open.

o Recently, Ginzburg has studied the behaviour of the Poisson cohomology
respect to momentum mappings and reduction [19].

4 Canonical homology

For a Poisson manifold (M, A), Koszul [30] introduced the differential operator
§ 1 AF(M) — A*(M) defined by

§ = [i(A),d] = i(A) o d = d o i(A),
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where i(A) denotes the contraction by A. Alternatively, Brylinski [5] gave the
following expression for &

S(fodfi Ao Adfi)= 3 (=1 {fo, £} dfi Ae - Adfi A+ Adfi

1<i<k

+ 5 (CV™ fed{fi YN A A A A A A

1<i<i<k

Using the Jacobi identity it can be proved that §* = 0, so we obtain the canonical
complex (A'{M),§) whose homology H*"(M) is called the canonical homology
(or also the Poisson homology). As for the LP-cohomology, the canonical homo-
logy can be considered for Poisson algebras {21].

In contrast with the LP-cohomology, canonical homology has a functorial
character, that is, if ¢ : (My, A;) — (M, A) is a Poisson morphism, we have
induced homomorphism in homology

¢": H"(My) — HE™ (M),

However, the canonical complex is not multiplicative.
For a symplectic manifold (M, w) of dimension 2n, the symplectic st&r opera-
tor can be defined [5] by

£ 5(2) = AHG)(B, o),
for o, B € A*(M) (see also [35]). Brylinski proved that
(1) = —Id, Sa=(-1"sdx(a), forae A*(M).

An immediate consequence of these properties is that for symplectic manifolds
the canonical homology is isomorphic to the de Rham cohomology:

(2) HE™ (M) 2 HE(M).

Now, taking into account properties (1} and the Riemann-Hodge theory,
Brylinski asked about the possibility of a symplectic Hogde theory. More pre-
cisely, he made the following conjecture [5]: if M is a compact symplectic mani-
fold, any de Rham cohomology class has a symplectically harmonic representative
v (i.e. dv = v = 0). More generally, he considered the problem for arbitrary
Poisson manifolds:

Problem A: Give conditions on a compact Poisson manifold M which ensure
that any de Rham cohomology class in H% (M) has a harmonic (with respect to
the Poisson structure) representative v, that is, dv = fv = 0.
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¢ Compact Kihler manifolds. The first evidence of the above conjecture was

proved by Brylinski himself [5], that is, Problem A is satisfied for compact
Kahler manifolds. First, it is proved a relation between the Hodge and
symplectic star operators, then the result follows from the decomposition
Hodge theorem for compact Kéahler manifolds (i.e. each harmonic k-form
can be decomposed as a sum of harmonic forms of pure type (p, ¢), with
respect to the bigraduation induced by the complex structure) and the
Riemann-Hodge theory (about the existence of a -Riemannian- harmonic
representative for each de Rham cohomology class).

Compact symplectic manifolds. The conjecture is not true in general as
it was shown in [15, 45, 55]. In [15] we have shown a counterexample
in dimension 4, the Kodaira-Thurston manifold. The Kodaira-Thurston
manifold is a 4-dimensional compact nilmanifold T\G (that is, the quotient
space of right cosets of a connected, simply-connected nilpotent Lie group
G by a lattice I'), determined by a basis of left invariant 1-forms {a}%,; such
that doy = dag = doy = 0 and dog = —a; A . By topological reasons
this manifold has no Kéhler structures [8], but it is symplectic. Consider
the symplectic form w = oy A a3 -+ ag A . Using the symplectic relations
[15] [L,d] =0, [L, 6] = —d, i(A) = — % Lx and %(B) = —(n — 1)IL*"1(B), for
a l-form §, we have shown that there exists a de Rham cohomology class
of degree 3 [as A a3 A au] € H},(KT) without symplectically harmonic
representative. Independently, Mathieu [45] (and also Yan [55]) obtained
the following result: A compact symplectic manifold satisfies the Brylinski
conjecture if and only if it satisfies thie Hard Lefschetz theorem. Mathieu’s
proof involves the representation theory of quivers and Lie superalgebras,
and Yan studies a special type of infinite dimensional s!(2)-representation
(called an si(2, C)-module of finite H-spectrum); then, both apply these
results to study the space of differential forms on M and its subspace of
symplectically harmonic forms.

Compact almost cosymplectic manifolds. Let us recall that an almost
cosymplectic manifold [4] is a (2n + 1)-dimensional manifold with a closed
2-form @ and a closed 1-form # such that ®* A 5 # 0. Roughly speaking,
almost cosymplectic manifolds may be considered as the odd-dimensional
counterpart of the symplectic manifolds, and as for them there exists a
natural Poisson structure associted to it (see [6, 16]). Moreover, cosymplec-
tic manifolds appear to be the closest odd-dimensional analogous of Kihler
manifolds [9]. In [22] it has been proved that Problem A is satisfied for com-
pact cosymplectic manifolds, After defining the almost cosymplectic star
operator, it is considered an homological operator 8, related to the Koszul
operator (but different to it, also the homology of both complexes is dif-
ferent). Moreover, a cosymplectic decomposition Hodge theorem is proved
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(by using some results of [9]). Then, comparing almost cosymplectic and
Hodge star operators and using the Riemann-Hodge theory, the Problem A
is solved for the operator §;. Finally, Problem A is obtained by comparing §
and 6,. Also in [22] it is proved that Problem A is not satisfied for compact
almost cosymplectic manifolds by showing a counterexample.

Imitating Connes {7], Brylinski introduced the double complex C..(M) defined
by Cpi(M) = AF(M), for k,1 > 0. This double complex has d for horizontal
diferential and & for vertical differential (both of degree -1). Notice that dé+8d =
0. This doyble complex is concentrated in the first quadrant and we can consider
the periodic double complex CP*" (M) such that Cpy (M) = A'*(M), for k,1 € Z.

Therefore, there are two spectral sequences (of homological type) associated
with this periodic double complex: {E7,4.}, {'ET./ 6.} (called the first and se-
cond spectral sequences). Both of these spectral sequences converge to the total
homology HP(M), that is, the homology of the complex (C.(M),D = d + §),
where Cp(M) = @p1g=kCh (M). The canonical homology is the first term of the
first spectral sequence, Eg’q (M) = He2 (M), and the de Rham cohomology is the
first term of the second spectral sequence, 'E} (M) 2 HE, P (M) (for more details
see [5, 16, 17, 18]).

By using the relation [16]

Ei(A)di(AY™ = (A + (k — 1)di(A)F, fork € N,

we have shown [16] that the second spectral sequence degenerates at the first
term 'EY(M) for any Poisson manifold, therefore 'E*}(M) = 'E?(M) = ... &
'E=(M). As a consequence, the total homology is a topological invariant, and
finite dimensional.

Moreover, Brylinski asked [5] about the degeneration of the first spectral se-
quence:
Problem B. Give conditions on a compact Poisson manifold which ensure the
degeneracy at E*(M) of the first spectral sequence.

e Symplectic manifolds. It was proved in [5] that Problem B is satisfied
for compact symplectic manifolds. More generally, we have shown [16]
that, by means of the symplectic star operator, both spectral sequences
are isomorphic for symplectic manifolds. Then, by the degeneration of the
second spectral sequence at the first term for any Poisson manifold (in
particular, for symplectic manifolds), we recover Brylinski’s result.

o Almost cosymplectic manifolds. In [16] it is shown an example of almost
cosymplectic manifold for which the first spectral sequence doss not dege-
nerate at the first term. Moreover, we study in such paper the canonical
homology of almost cosymplectic manifolds.
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Also in [5] it was suggested a relation between the answers of the two problems.
In [17] we observed that both problems are completely independent.

e Problem A # Problem B. In [17] we consider the Kodaira-Thurston ma-
nifold with a degenerate Poisson structure (of constant rank 2) satisfying
that any de Rham cohomology class has a harmonic (respect to the Poisson
structure) representative (i.e. Problem A), but the first spectral sequence
does not degenerate at the first term.

¢ Problem B s Problem A. As we have shown the Kodaira-Thurston manifold
with a symplectic structure does not satisfy Brylinski conjecture, but (as
for any symplectic manifold) its first spectral sequence degenerates at the
first term.

As for the LP-cohomology, there is no an isomorphism between the canonical
homology and the de Rham cohomology (2). Indeed, for an arbitrary Poisson
manifold we have

H{™(M) 2 Hpp*(M).

Some counterexamples have been shown in [16] (a compact almost cosymplectic
manifold) and in [18] (a compact Poisson manifold). In [50] it can be seen that the
above quadratic Poisson structure considered by Vaisman is again a counterex-
ample for the isomorphism (2), in fact, we have H§**(R?) = 0 # HY(R?) =R
Finally, although for compact symplectic and almost cosymplectic manifolds [16]
the canonical homology and the LP-cohomology are isomorphic, again the Vais-
man example gives a couterexample to this 1somorphxsm for arbitrary Poisson
manifolds (remember that H? ,(R?) = R).

o Vaisman [50], using the same technique as for the LP-cohomology has ob-
tained some results about the canonical homology of regular Poisson mani-
folds. In particular, for a 2n-dimensional symplectic manifold M of finite

“type and N a smooth manifold with the zero Poisson structure, we ha,ve
the following result: : - .

g=0

HEY(M x N) = é [HER (M) ® A(N)] .

» In [3] it has been proved that for o € A*(M) and Q € V*~'(M) one has:
(8Q)a = i(Q)(8a) + (~1)*5(i(Q)a).

Therefore the natural pairing i(P)a, for a € A*(M) and P € V*(M), yields
a pairing »
Hip(M) x HE™(M) — Hg™(M).
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RIEMANNIAN VERSUS LORENTZIAN SUBMANIFOLDS.
SOME OPEN PROBLEMS

A. Ferrdndez

Al results contained in this paper have been made in collaboration with my
colleagues Manuel Barros, Pascual Lucas and Miguel A. Meroiio.

Contents

1. Indefinite Hopf cylinders

2. Lorentzian Hopf tori

3. Willmore tori in HE(—1)

4. Betchov-Da Rios equation in H2(—1)

5. General helices in 3-dimensional Lorentzian space forms

6. Willmore tori and Willmore-Chen submanifolds in H

This is a survey of the following three subjects: B-scrolls, r-elastic curves and
Willmore-Chen submanifolds. B-scrolls arose as the first important example of
indefinite submanifolds having no Riemannian counterpart. They have played an
essential role in a series of classification results of indefinite submanifolds which
point out substantial differences between indefinite and Riemannian submani-
folds (see [1], [2], [3], [4], [5], [15] and [16]). Then, following Pinkall, [24], we
define indefinite Hopf cylinders and find a nice characterization of B-scrolls with
constant mean curvature in HE(—1) in terms of them (see [12] and [9]). Now
two remarkable facts should be noticed. On one hand, looking at parametriza-
tions of indefinite Hopf cylinders, we bring to mind the Betchov-Da Rios soliton
equation (see [18], [25], [26], [27], [28] and [29]). Then we find solutions of this
equation lying on B-scrolls: they are helices. Furthermore, we give a rational
one-parameter family of closed solutions and show that the only soliton solutions
are the null geodesics of the corresponding B-scroll (see [9]). On the other hand,
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we see that Hopf surfaces in HE (—1) shaped on closed curves in the hyperbolic
plane H?(—1/4) are Lorentzian Hopf tori. Then we first determine the isometry
group of Lorentzian Hopf tori and, secondly, we try to get solutions of the Will-
more problem in HS(—1). The latter will be solved, following again Pinkall, by
means of the Langer and Singer viewpoint on elastic curves ([19], [20] and [21])
and the symmetric criticality principle of Palais [23].

As far as helices is concerned, we start by recalling that a general helix in
a Buclidean 3-space is defined by the property that its tangent indicatrix is a
planar curve. The straight line perpendicular to this plane is called the axis
of the general helix. First of all we need a good definition appropriate for the
new ambient spaces. Moreover, we have to consider both degenerate and non-
degenerate general helices in L3, according to the causal character of its axis.
Therefore, to define general helices in 3-dimensional De Sitter S and anti De
Sitter H3 spaces we follow the idea of Langer and Singer, [21], and use Killing
vector fields along curves. Namely, let M be a non flat 3-dimensional Lorentzian
space form. A curve v in M is said to be a general helix if there exists a Killing
vector field V along -+ with constant lergth and orthogonal to the acceleration
vector field of v. V will be the axis of 4. The helix is said to be degenerate
or non-degenerate according to V is, respectively. In [6] Barros has shown that
general helices are geodesics either of right general cylinders or of Hopf cylinders,
according to the curve lies in R® or S® respectively. Now, general helices in
L} are geodesics in right general cylinders or in flat B-scrolls, according to the
helix is non-degenerate or degenerate, respectively. In non flat 3-dimensional
Lorentzian space forms the Lancret thorem underlines deep differences between
psendo-spherical and pseudo-hyperbolic spaces. The former has no non trivial
general helices, the latter being nicely similar to L. Whence roles played by H
and S} correspond with those played by S® and H®, respectively (see [10]).

The Willmore-Chen variational problem is the natural extension of the Will-
more one. The first non trivial examples of Willmore-Chen submanifolds were
given by Barros and Garay in {13]. We aim to find Willmore-Chen submanifolds
in a pseudo-hyperbolic space H. That will be done in several steps. After writ-
ing H" as a warped product, we characterize SO(r -+ 1)-invariant submanifolds of
. Then we extend the concept of elastic curves to r-elastic curves and apply
the symmetric criticality principle. As a consequence Willmore-Chen submani-
folds in H' are characterized in terms of r-generalized free elaticae in the once
punctured unit sphere ™" (see [11]). Furthermore, following the classification
of closed free elasticae in the standard 2-sphere obtained by Langer and Singer,
[21}, we show that there exist infinitely many Lorentzian Willmore tori in the
3-dimensional anti De Sitter space. Examples of Willmore tori in non-standard
3-spheres have been recently given by Barros in [7]. The same author has also
found wide families of Willmore tori in warped product manifolds (see [8]).
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1 Indefinite Hopf cylinders ([9,12])
Following Pinkall [24], we look for pseudo-Riemannian submersions
Tyt H (~1) — HE(-1/4), s =0,1.

Idea:
identify HE(~1) with an appropriate subset of maps R} — R}.
How to do that: »
P be a 2-dimensional subspace in R} and {z,y} an orthonormal basis of P,

Define maps
f:P_")P: f(:z:)zy, f(y)=_xa
gP =P glm)=y, gly) =gz,
h:P— P, h{z)=-y, h(y)= -z,
which will be called rotation, first reflection and second reflection on P,
respectively.
Let {ey, ez, €3, €4} be the usual basis of R} equipped with (g:;) = diag[—1, —-1,1,1].
Set P; = span{e;, e;}, i = 2,3, 4 such that R} = P, ® P
Consider the following maps '

p=fxf:P®P — PP
c=gXh:P®P— PoP,
t=gx g:P,® P} — P,® P}

- Then F = span{l,p,o,i} is a 4-dimensional vector space over R and the
following identities hold

PP==1, op=~1, p=o,
po=1, o*=1 w=p,
pr=—0, or=—p, #=1,

Let ¢ : F — R} be the isomorphism given by
p(1) = e1, p(p) = ez, (o) = €3, (1) = eq.

Then ¢ becomes an isometry when F is endowed with the ‘metric ¢*(gs), 9o
being the standard scalar product on Ri.
Both metrics will be denoted by ().
Write w = a + bp + co + di € F, a standing for ¢- 1, a, b, ¢ and d being real
numbers.
Define
W= —a-+bp+co+de.
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Then
(w,w) = Wi = Tw.

In general
(w1, w2) = py(w1@2),

py denoting the projection over the subspace spanned by the identity map.
Hence

PR

Wiws = —ij; Wy
and
(wxw‘z,wwz) = (wluwl) (w’z,wz) .

Now set
H(—7?) = {we Fiwb=-r2},

B (—7?) = span{l,0,:} C H(~r?),
H2(~72) = span{l,p,0} C H(—r2).
Define 7, : H}(—1) — H2(—1/4) by

1
'/Ts(w) = ’Z'ww»
where w — & denote the antiautomorphism of F given by
@ =qa-bp+ co+di, or w=a+bp+co—di, -

according to the base manifold is H?(—1/4) or HZ(—1/4), respectively.
As usual, we define e, 8 € F, by

cos(z) +sin(x)f, i 6= -1,
cosh(z) +sinh(z)8, if 2 =1.

That means that the fibers are topologically S! and H!, respectively.
Remark Writing ¢ = f X f and ¢ = f X f, then we obtain in the Euclidean space
R? the standard quaternionic structure, which was already used by U. Pinkall to
describe the usual Hopf fibration $%(1) — S%(1).

Let V and V be the semi-Riemannian connections of H (—1) and HZ(—1/4),
respectively, and denote by overbars the lifts of corresponding objects on the base
Hy (-1/4).

Then

,V-j(? = VxY +(-1)*((JX,Y)om)V,
VoV = Ty X =6%,

VvV = 0,
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where J denotes the standard complex structure of H2(—~1/4) and 8 = p when
s=0orf=¢whens=1.

Let B:1 — H2(—1/4) be a unit speed curve with Frenet frame {T,&} and
curvature .

Consider a horizontal lift 8 : I — H(—1) of 8 with Frenet frame {'T', &, ﬁ;}
and curvatures £* and 7%

Now, from the Frenet equations, we can deduce that & = & and K = K o .
In particular € lies in the horizontal distribution along f and it has the same
causal character as &. Also it is not difficult to see that v* = %1 and & = £V,
that is, the binormal & of 7 coincides with the unit tangent to the fibers through
each point of F.
Proposition

(1) The horizontal lifts of unit speed curves in H?(—1/4) are spacelike curves
in HE (—1) with torsion 1.

(2) The horizontal lifts of unit speed timelike curves in HZ(—1/4) are timelike
curves in HE (—1) with torsion +1.

By pulling back via 7, a non-null curve g ili')IHEf (—1/4) we get the total hori-
zontal lift of 3, which is a flat immersed surface My in Hi (—1), that will be called
the indefinite Hopf cylinder associated to

Notice that if s = 0, My is a Lorentzian surface, whereas if s = 1, Mj is
Riemannian or Lorentzian, according to § be spacelike or timelike, respectively.
Theorem

 Let M be a Lorenizian surface immersed into H3(—1). Then M is the semi-
Riemannian Hopf cylinder in 3 (—1) associated to a unit speed curve § in 2 (—1/4)
if and only if M is the B-scroll over any horizontal lift B of 3.

Let 8:1 — H2(—1/4) be a unit speed curve with Frenet frame {T,£,} and
curvature function .

_ Let 7 be a horizontal lift of # to HE(—1) with Frenet frame {T,&,,£;} and
curvature ¥ = ko 7, and 7 = 1. Recall that £; is nothing but the unit tangent
vector field to the fibers along 5.

Then the Hopf cylinder M3 can be orthogonally parametrized as

_ [ cos(2)B(t) +sin(2)€5(t), ifs=0
Xt2) = { cosh(2)B(t) +sinh(;)§§(t), fs=1

Setting, as usual X, = -—— X and X, = BX , then {X;, X} is an orthonormal frame
of Tx(,-)Mp along X and a direct computatxon shows that the shape operator S
of My in this frame can be written as

S(X) = FX:+eX.,
S(Xz) = Xt,
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where £ == +1 if Mj is Riemannian and € = —1 if Mp is Lorentzian.

Notice that a unit normal vector field to My into HE(—1) is obtained from the
complete horizontal lift of & and it is, of course, &, along each horizontal lift of
8.

As a consequence we have that Mjp is a flat surface, as we said before, and its
mean curvature function « is given by « = %/2.

According to the description of curves with constant curvature in H2 (~1/4) we
can give the following description of Hopf cylinders of constant mean curvature.

Proposition

Let 8 be a unit speed curve in H2(—1/4) with constant curvature k. Then one
of the following statements holds:

(1) Mg is a minimal complez circle (k = 0).

(2) M is a non-minimal complez circle (0 < k% < 4).

(3) Mp is the Hopf cylinder over the horocycle (s = 0, k? = 4) or over the
pseudo-horocycle (s =1, k? = 4).

(4) Mp is one of the following semi-Riemannian products

(1) H(-r*)xSYr?—1) ifs=0 and s* >4,
(4.2) H(—r?) xSi(r? —1) ifs=land x® > 4.

(5) My is the Riemannian product H! (—r?) x H(—1 + 72) with v satisfying

1 2r2

iot

K.

1t should be noticed that the above cases (1) through (4) correspond to the
Lorentzian character of My and so, according to the above theorem, it can be con-
sidered as the classification of B-scrolls with constant mean curvature in Hg (—1).
The Temainder case corresponds with the Riemannian character of Mjg.

2 Lorentzian Hopf tori ([9])

Hopf surfaces in HZ(—1) shaped on closed curves in H?(~1/4) are Lorentzian flat
tori. Now we want to determine the isometry group of these surfaces.

We use standard computations involving the structure equations of the in-
duced connection and [17] to get a similar result to that of Pinkall:

Theorem

Let 3 be a closed embedded curve in HE(—1/4) of length L enclosing an area
A. Then Mpg is isometric to L? /A, A being the lattice in the Lorentzian plane 1.2
generated by the vectors (2w, 0) and (24, L).
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Remark It is worth noting that (24, L) is only constrained by the isoperimetric
inequality in HZ(—1/4)

L > 47 A +44%
Hence the vector (24, L) must be spacelike. Therefore (24, L) lies in the shaded
region R

N

s
.

0 2
T

3  Willmore tori in H}(~1) ([9])

Inspired again by Pinkall’s paper, we look for Willmore tori in H2 (—1) associated
to elastic curves in HZ(—1/4).

A unit-speed curve v in M)’ is said to be an elastica {or elastic curve) if it
is an extremal point of the functional

L 1
Baly) = /0 (V2T VaT) + N)ds = /0 ((V4T, VoT) + \odt,

for some A, where ds and L stand for the arclength on ¥ and the length of -,
respectively. It is called a free elastica if A = 0 (see [21]).
The Euler-Lagrange equation associated to this variational problem is

2VET + &3V r{(3e26? — NT) — 2R(VoT, TYT = 0.
Frenet equations for v:
VT = eréy,

Vb = —exT — €37€3,

Vrés = erés+6,

where § € span{T, &, &}, (&,&) = &; and 7 is the torsion function (the second
curvature if n > 3). Assume now that M7 is of constant curvature ¢. Then the
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Euler-Lagrange equation can be rewritten as follows

269" +€16° — 263577 + £162(2c — Nk = 0,
AT + kT =0,

kTé = 0.

Taking u = x? these equations can be solved by standard techniques in terms
of elliptic functions. Q,

For instance, a qualitative description of elasticae in the Lorentz-Minkowski
plane 12 is given as follows. In general, the elasticae in L? are curves which
oscillates around a geodesic, so that the parameter A, in some sense, could be
viewed as the wavelength. That length increases or decreases according to g1
does. In the following we skecht some of these curves.

£1A>0 A=0 e1A <0

As for the pseudo-hyperbolic plane HZ(—1) the behaviour of the elastic curves
is essentially the same as in L2, they also oscillate around geodesics. In particular,
we can draw a free elastica oscillating around the central circle in HZ(—1).

Free elastica Projection on zy-plane

Let M? be a surface in an indefinite 3-space M;’; of constant curvature c.

We define the operator W over sections of the normal bundle of M2 into M A
as follows

WM — NM, W) =(AP+2(H,H)I - A),
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A standing for Simons operator.
A cross section & will be called a Willmore section if W(£) = 0. Suppose that
M is compact and consider the Willmore functional

W) = /M((H, H)Y+ c)dv.

Then the operator W naturally appears provided that one computes the first
variation formula for W.

Now Willmore surfaces are nothing but the extremal points of the Willmore
functional and they are characterized from the fact that their mean curvature
vector fields are Willmore fields.

Proposition

Let wy : HB(—1) — H2(—1/4) and 5 : I — H2(—1/4) be as before. Then the
Hopf cylinder Mg satisfies WH = pH, p € R, if and only if B is an elastica in
HZ(—1/4). o2

We know that the fibers of mg : B (—1) — HZ(~1/4) are circles, and so com-
pact, whereas the fibers of my : HE (—1) — HZ(—1/4) are not compact. Therefore
to find compact Hopf surfaces we have to consider Hopf torus shaped on closed
curves in H?(~1/4)

In the anti-De Sitter world we have known that a Hopf torus My is a Willmore
surface in HE(—1) if and only if B is an elastica in HZ(—1/4) with A = —4.
However we have recently known from D. Singer (private communication) that
cannot be hold. Thus we have to say that there is no (Lorentzian) Willmore Hopf
torus in HE(-1).

4 The Betchov-Da Rios equation ([9])

The Betchov-Da Rios (BDR) equation u' Auw” = %, also called localized induction
equation in 3-dimensional hydrodynamics, is a soliton equatxon for space curves
u{t, 8}, where v’ = Ou/8t and & = Ou/fs.
It is a straigthforward computation that, in general, the standard parametriza-
tion X (2, z) of Mp is not a solution of BDR.
We ask for the classification of A € Diff(R?) in order to Y = X o h be a
solution of BDR equation in H3(—1).
We completely solve this problem.
Let n be a unit normal vector field to Mg in H3(—1). Then 7 can be written
as follows: »
_ { —sin(z)T(t) + €1 cos(z)E3(t), s=0,
71 —sinh(2)T(t) +e; cosh(2)€3(t), s=1.
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A straightforward computation yields Y (u,v) is a solution of BDR equation
if and only if the following PDE system holds:

ty = (—1)ertuz,(tuE + 22,),
z, = (LR +2z,),

0 = {u2uu — Zulyu.

Solving we get
Theorem

Let f be an arc length parametrized curve in W2 (~1/4) and My its Hopf
cylinder in HE (—1). For any h € Diff{R?), take Y = X oh : R2 — Mg, X
being the standard covering of R? over Mg. ThenY is a solution of BDR soliton
equation in HE(—1) if and only if the following statements hold:

(i) B has constant curvature, say k, in HZ(—1/4);

(i) Ay, v) = (t(u,v), 2(u, v)) is given by

ttu,v) = au-+(-1)’agpv + ¢y,
z(v,v) = agu-+eapy+ o,

where (g7 — (—1)°¢%)a? = ¢, e being the causal character of 3, € the causal
character of the u-curves, g € R — {—£/2}, p = e1(x + 2g)a? is the curvature of
the u-curves in HB(—1) and a,c;,ce are arbitrary constants.

Corollary 1 '

Let Mg be o Lorentzian Hopf cylinder in B} (—1) of constant mean curvature.
Then the only soliton solutions of BDR equation in H: (—1) lying in Mg are the
null geodesics of Mg.

Corollary 2

Let 3 be a closed curve of constant curvature in HE(—1/4) with length L

enclosing an oriented area A. Then for any rational number q, the slope

_2 (1 4

defines a unique closed heliz in HE(—1) and therefore a closed solution of BDR
equation in I (—1) living in the Hopf torus Mp. Furthermore, the closed solution
is either spacelike, or timelike or null according to ¢ € (q1,¢2), ¢ € R — (g1, ¢2),
q € {q1,q:}, respectively, where g = —4 — L and gy = -4 + L.

5 General helices in 3-dimensional Lorentzian space forms ([10])

Helices got as solutions of BDR brought us to mind a Barros’ idea: look out
general helices.
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A curve of constant slope or general helix in Euclidean space R® is defined
by the property that its tangent indicatrix is a planar curve. The straight line
perpendicular to this plane is called the axis of the general helix.

A classical result stated by M.A. Lancret in 1802 and first proved by B. de
Saint Venant in 1845 is: “A necessary and suflicient condition in order to a curve
be a general helix is that the ratio of curvature to torsion be constant”.

For a given couple of one variable functions (eventually curvature and torsion
parametrized by arclength) one might like to get an arclength parametrized curve
for which the couple works as the curvature and torsion functions. This problem
is usually referred as “the solving natural equations problem”

The natural equations for general helices can be integrated, not only in R?,
but also in the 3-sphere §? (the hyperbolic space is poor in this kind of curves and
only helices are general helices). Indeed Barros, [6], has shown that general helices
are geodesics either of right general cylinders or of Hopf cylinders, according to
the curve lies in R® or §%

What about general helices in the 8-dimensional Lorentzian space forms?

A non-null curve v immersed in L3 is called a general helix if its tangent indi-
catrix is contained in some plane, say m, of L?. Since 7 can be either degenerate
or non-degenerate, then both cases are distinguished by calling degenerate and
non-degenerate general helices, respectively.

We will point out a remarquable and deep difference between the behaviour
of general helices in Euclidean and Lorentzian geometries:

* While in R® general helices are geodesics in right general cylinders, as classi-
cally is shown, we will prove that general helices in L} are geodesics in either right
general cylinders or flat B-scrolls, according to the general helix is non-degenerate
or degenerate.

This nice difference between Euclidean and Lorentzian geometries (from the
point of view of the behaviour of general helices) confirms once more the impor-
tant role of the notion of B-scroll in Loren{zian geometries.

General helices in 3-dimensional De Sitter S% and anti De Sitter HE spaces are
considered with the help of the idea of Langer and Singer (see [21]): use Killing
vector field along a curve in a 3-dimensional real space form.

The Lancret theorem in S} and HE underlines deep differences between the
pseudospherical and pseudohyperbolic spaces. The pseudohyperbolic case is nicely
analogous to the Lorentz-Minkowskian case, whereas in the pseudospherical case
there are no nontrivial general helices. From this point of view, the roles played
by the non flat Lorentzian space forms HE and S3 correspond with those played
by the non flat Riemannian space forms S® and H®, respectively.

Let () be a non-null immersed curve in a 3-dimensional Lorentzian space
form M with sectional curvature c and let v(t) = |¥/(¢)| be the speed of ~.
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Let us consider a variation of v, I' = (¢, 2): I X (~¢,£) — M with I'(¢,0) =
7(t). In particular one can choose € > 0 in such a way that all t-curves of the
variation have the same causal character as that of y. Associated with I there are
two vector fields along T, V(¢,2) = Z5(2,2) and W(¢, 2z) = &-(2, 2). In particular
V(t) = V(t,0) is the variational vector field along v and W (¢, 2) is the tangent
vector fields of the i-curves. We will use the notation V = V(¢,2), v = v(¢, 2),
% = r(t,z), etc. with the obvious meanings. Also, if s denotes the arclength
parameter of the f-curves, we will write v(s,2), V{(s,2), x(s,2), etc. for the
corresponding reparametrizations.

A s‘sraightforward buzt long computation allows us to obtain formulas for
%%(t,()), %-(t,0) and Z-(t,0) which we collect, along with another standard
identity, in the following lemma.

Lemma

1) [V,W]=0;

2) .z_z(t, 0) = —~&19v, with g = (VrV, T);
2
(3) %(t, 0) = 265(V3V, VrT) + desgr® + 22 (R(V, T)T, Vo T;
572 T3 K 2 C\= K’
(4) *5-2--(& 0) = *2€2<;VTV - EEVTV +eileak + ;)VTV - 51';5%“’;’ 7B),

7
where {,) denotes the Lorentzian metric of M and k' = «é;(t, 0).

Without loss of generality we can assume 7 to be arclength parametrized.

A vector field V{(s) along -, which infinitesimally preserves unit speed para-
metrization (that means 22(¢,0) = 0 for a V-variation of ) is said to be a Killing
vector field along + if this evolves in the direction of V whithout changing shape,
only position. In other words, the curvature and torsion functions of v remain
unchanged as the curve evolves.

Hence Killing vector fields along 7 are characterized by the equations

v K? ar?

5-(60) = 5~(,0) = 5~(t,0) = 0.
Then V is a Killing vector field along «y if and only if it satisfies the following
conditions:

a) (VoV,T) =0,
b) (VaV, N +eic(V,N) =0,

j K w2 Co= I ;
C) (EVTV - EQ‘VTV + 51(525 + E‘)VTV - 81(’,‘}?% ?‘B) e O,
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Now when M is simply connected, since the restriction to v of any Killing
field V of M is a Killing vector field along <, one concludes from a well known
dimension argument, the following lemma.

Lemma

Let M be a complete, simply connected, Lorentzian space form and v a non-
null immersed curve in M. A vector field V on v is a Killing vector field along
~ if and only if it extends to o Killing field Von M.

The Lancret theorem in L2

Let v be a non-null immersed curve in 1 with curvature and torsion functions
x and 7, respectively. Then the following statements are equivalent:

(a) v is @ general heliz in L®;

(b) There exists a constant length Killing vector field V along v which is
orthogonal to the acceleration vector field of vy;

(¢) There exists a constant v such that T = k.

Moreover a general helix vy is degenerate if and only if r = 1 and its normal
vector field is spacelike. The Killing vector fleld V in (b) is not uniquely deter-
mined if v is @ heliz (k and T both are constant); however, in this case, V' can
be uniquely determined, up to constants, once it is chosen parallel along v (say
otherwise, its extended Killing vector field in 12 is a translation vector field).

Solving natural equation for non-degenerate general helices

Let 8 be a non-null immersed curve in 1.2. Then B is a non-degenerate general
heliz if and only if it is a geodesic in some right cylinder whose directriz and
generatriz are both non-null.

Solving natural equation for degenerate general helices
Let B be a non-null immersed curve in L?. Then B is a degenerate general
heliz if and only if it is a geodesic in some flat B-scroll in 1.3,

How to define general helices in non-flat 3-dimensional Lorentzian spaces forms?-

Definition ‘

A curve v in M is said to be a general helix if there exists a Killing vector
field V along v with constant length and orthogonal to the acceleration vector
field of v.

We will say that V is an axis of the general helix 7.

Obvious examples of general helices in M are the following. Curves with
torsion vanishing anywhere, where the unit binormal works as an axis. Helices
are also general helices, where any vector field chosen in the rectifying plane
having constant coordinates relative to T and B runs as an axis.

We can follow notation and terminology used in L? to say that zero torsion
curves are non-degenerate general helices, because the axis B is obviously non-
null. As for curves with both constant curvature and torsion we know that for
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any pair of constants ¢ and b the vector field along -y given by V(s) = aT +bB is
always a Killing vector field. Of course, when gy = —~1, i.e., the rectifying plane
is positive definite at any point, all Killing vector fields V(s) are non-null and
we will say that the general helix is non-degenerate. However, if €5 = 1, Le., the
rectifying plane is Lorentzian, we have Killing vector fields along - being either
spacelike, or timelike, or null. It does not allow us to decide if such a general
helix is degenerate or not. However, we can determine a unique Killing vector
field along the helix by forcing it to be parallel along «. The helix is said to be
degenerate or non-degenerate according to V is null or non-null, respectively.

The Lancret theorem in the De Sitter space
A non-null immersed curve v in S3 is a general heliz if and only if either
(1) 7 =0 and vy is a curve in some totally geodesic surface of S3; or
(2) v 1s a heliz in S? (i.e. curvature k and torsion T constants).

The Lancret theorem in the anti De Sitter space

A non-null immersed curve «v in HE is a general heliz if and only if either

(1) 7 =0 and v is a curve in some totally geodesic surface of HE. The curve
admits only one azis which agrees with its binormal, being parallel along the curve
and non-null. The general helix is non-degenerate; or

(2) 7 is a heliz in 1. It admits a plane (the rectifying plane) of azes but only
one is parallel along v. This parallel axis is null, and so <y is degenerate, if and
only if €5 = +1 and 7 = kk. Otherwise v 1s non-degenerate; or

(3) there exists a certain constant b such that the curvature k and the torsion
7 functions of v are related by T = b £ 1. The curve admits a unique axis which
can not be parallel along . It is null, and so v is degenerate, if and only if b = £1
and -y has spacelike normal vector (&3 = +1).

Solving natural equation for non-degenerate general helices in H(—1)
Let B a non-null immersed curve in . Then 8 is a non-degenerate general
heliz if and only if it is a geodesic in some Hopf cylinder M,.

Solving natural equation for degenerate general helices in H(-1)
Let 8 a non-null immersed curve in H}. Then 8 is a degenerate general heliz
if and only if it is a geodesic in some flat B-scroll over a null curve.

6 Willmore tori and Willmore-Chen submanifolds into pseudo-Rie-
mannian spaces ([11])

Two problems

(i) Find examples of Willmore surfaces in the anti De Sitter space.

(i) Find examples of Willmore-Chen submanifolds in pseudo-Riemannian
spaces (with non zero index).
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6.1 Willmore tori in non standard anti de Sitter 3-space

Let m: (M, g) — (B, h) be a pseudo-Riemannian submersion.

A very interesting deformation of the metric g by changing the relative scales
of B and the fibres (see [14]).

The canonical variation g, ¢t > 0, of g by setting

aly = tgly,
gli'H = §[Hs
g:(V,’H) = Os

where V and H stand for vertical and horizontal distributions, respectively, asso-
¢iated with the submersion. Thus we obtain a one-parameter family of pseudo-
Riemannian submersions m,: (M, g;} — (B, h) with the same horizontal distribu-
tion H, for all ¢t > 0.

Let us consider the canonical variation of the indefinite Hopf fibration

T = me: Hy — HP(—-1/2)
to get a one-parameter family of pseudo-Riemannian submersions
7 (B, ge) — (B (=1/2), g0)-

Let v be a unit speed curve immersed in H?(~1/2). Set 7,. = =7 ‘(7).
Then 7., is a Lorentzian flat surface immersed in HE, that will be called the
Lorentzian Hopf cylinder over 7. ,

As the fibres of m, are H}, which topologically are circles, then 7., is a Hopf
torus in (H2, g;), provided that 7 is a closed curve.

Proposition

Let S be an immersed surface into (HE, g,). Then S is G-invariant if and only
if S is a Lorentzian Hopf cylinder T, = m(7y) over a certain curve vy immersed
in the hyperbolic 2-plane (H?(—1/2), go)-

Theorem

Let my: (HB, g} — (H2(~1/2), go), t > O, be the canonical variation of the pseu-
do-Riemannian Hopf fibration. Lety be a closed immersed curve in (H?(—1/2), gq)
and T,y = 7 1('}') its Lorentzian Hopf torus. Then 1. is a Willmore surface in
(B3, g;) if and only if v is an elastica in (H2(—1/2), go) with Lagrange multiplier
A= —4t?.

Proof
The Willmore functional on M = {¢: T — (I, g;) : ¢ is an immersion} is

¢) = [ (H,H) + R)dv,
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H and R' standing for the mean curvature vector field of T' and the sectional
curvature of (H}, g;), measured with respect to the tangent plane to (T, ¢), re-
spectively. It is clear that, for any €” € S, we have that Q(¢) = Q(e” - ¢). Now
let us denote by C the set of critical points of Q in M, i.e., C is the set of genus one
Willmore surfaces. Let Mg be the submanifold of M made up by those immer-
sions of T which are (G = S!)-invariant and let Ce be the set of critical points of
€ restricted to Mg. The principle of symmetric criticality of Palais, [23], can be
used here to find that € N Mg == Cg. Now from the above Proposition we obtain
that Cg = {7+ = 77 }(7) : v is an immersed closed curve in (H?(—1/2), go)}. To
compute Q(7.,), i.e., the Willmore functional on Cg, we first notice that o = %n,
& being the curvature function of v in (H*(—1/2), go)-
On the other hand
Rt = —g,(#iX ,tiX) = —

Let L be the length of . As the fibres of g, are circles of radii ¢, we have

L pent g1 at L
e 2 t — — 2 v 2 E—g— -2 o 2
NT,) = Lz’(v}(a + R%Ydv = /0 fo (4n t ) dsdr 1 /0 (k* — 4t*)ds

and the proof finishes.
Then we give, for t € (0,1), infinitely many Willmore tori in (HE, g,).

6.2 Willmore-Chen submanifolds in the hyperbolic space

We give a new method to construct critical points of the Willmore-Chen func-
tional in the pseudo-hyperbolic space H = HZI(—1).

First step: write H as a warped product with base space the standard hyw
perbolic space H'™.

Second step: use the conformal invariance of the Willmore-Chen variational
problem to make a conformal change of the canonical metric of H.

Third step: use the principle of symmetric criticality of R. Palais to reduce
the pfoblem to a variational one for closed curves in the once punctured standard
(n — r)-sphere.

Given 0 < r < n, let

T = {(zxg,x) E R X R"™" : ~z} + (z,2) = ~1 and x5 > 0}
the hyperbolic (n — r)-space and
H = {(&n) € R xR ~(§,&) + (n,n) = —1}

the pseudo-hyperbolic n-space. They are hypersurfaces in RF~"*1 and Rr“ , re-
spectively. The induced metrics on these spaces, from those in the corresponding
pseudo-Euclidean spaces, define standard metrics hy on EP and gg on H*™", both
with constant curvature —1.
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Let §” be the standard unit 7-sphere endowed with its canonical metric do?.
Consider the mapping
O:H'T x ST H
defined by
(I’((xg,ﬂ,"),’ll,} = (Wo’u: x)‘

It is not difficult to see that & defines a diﬁ'eomorphism'whose inverse is
@& m) = (], m), &/1€]). For any curve B(¢) = ((zo(t), z(2)), u(t)) in H*™" x §7

we have ) v
Id%w (ﬁ’(i))[ = —ay () + |2 (&) — zo(8)* ]’ (1) .

Let f : H*" — R be the positive function given by f(zg,z) = ¢ and
consider the metric g = g5 — f2do® on H*™™ x S8". The pseudo-Riemannian
manifold (H*™ x S7,g) is called the warped product of base (H*", go) and
fibre (87, —do?) with warping function f.

1t is usually denoted by (H'™", go) X (8", —do?) or H* ™" x; (—S") when the
metrics on the base and fibre are understood (see {14} and [22]).

® is an isometry between H*~" x; (—S7) and (H}, ho).

A new metric b on H is defined by

1 1
h= }'ghe =739~ da?,

with the obvious meaning by removing the pulling back via @.

Thus (H', ) is the pseudo-Riemannian product of (H* ™", 4;90) and (87, —do?).

Finally it is not difficult to see that (H*™™, }17 ¢o) has constant sectional cur-
vature 1, so that it can be identified, up to isometries, with the once punctured
standard (n — r)-sphere (7, do?).

Consequently, (HP, h) is nothing but (X", do?)x (S, —do?), up to isometries.

SO(r + 1)-invariant submanifolds in H!

For any immersed curve 7 : [0,L] — H*", we define the semi-Riemannian
(r + 1)-submanifold T, = ®(y x 87). It is clear that T, has index 7 and we will
refer to T, as the cylinder over «.

Now let G = SO(r + 1) be the group of isometries of (S”, —~do?).

Then G acts transitively on (87, —do?).

So we define an action of G on H as follows

a- (& m) = 2(a 27 (&) = (al§). M),

forany a € G.

This action is realized through isometries of (H', hg). The following statement
characterizes the cylinders over curves in HP™" as symmetric points of the above
mentioned G-action.



126 A. Ferrdndez

Proposition
Let M be an (r + 1)-dimensionel submanifold in H. Then M is G-invariant
if and only if M is a cylinder Y., over a certain curve vy in H* ™.

Critical points of 77(y) = fv(nz)%‘lds
Now we deal with the functional

szg&%@

defined on the manifold of regular closed curves (or curves satisfying given first
order boundary data) in a given pseudo-Riemannian manifold, where r stands
for any natural number (even though all computations also hold if r is a real
number). Notice that we write the integrand in that form to point out that it is
an even function of the curvature k. Also F! agrees with G, which is the elastic
energy functional for free elasticae.

Let v: I € R — 8™ be a unit speed curve in the unit m-sphere with cur-
vatures {x,7,...} and Frenet frame {T = v, &,...,én}. Given a variation
[:=T(s,t): I x (—¢,e) — S™of v, with I'(s, 0) = y(s), we have the associated
variation vector field W(s) = Z2(s,0) along 7. We will use the notation and
terminology of Langer-Singer. Set V(s,t) = &5, W(s,t) = &, v(s,t) = [V(s,1)],
T(s,t) = 1V (s,t), 6(s,t) = |VoT|?, V being the Levi-Civita connection of S™.
The following lemma collects some basic facts which we will use to find the Euler-
Lagrange equations relative to F".

Langer and Singer Lemma ([21])
With the above notation, the following assertions hold:

v.w] = ¢
v
5 - (VTW,T)U;
WT] = —(VeW,T)T;
(W, T),T] = T(VeW,T))T;
OK? ‘

S = AVIW, V) - VW, T)&* + 2{R(W, T)T, VrT),

R being the Riemann curvature tensor of S™.

Now & o’ ™(I'(s, 1)) = 0 allows us to get the following Euler equation, which
characterizes the critical points of 7" on the quoted manifolds of curves:

-(K;Z)(r-l)/ZVg.T
+zdis((x2)<’—1>/2)V§T
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a2 Y 2r+1
Nr-1)/2 G rp n@-1)/2 N (r+1)/2
() ()Y 4+ (YT
2?" 4 1 d 25( +1)/2
e e T T = 0.
741 ds((’g ) )

PFrom here and the Frenet equations for <, we find the following characterization
of the critical points of F~.
Proposition
Let v be a regular curve in 8™ with curvatures {&,7,6,...}. Then v is a
cretical point of
f"(fy) — /{Kz2)(r+l)/2d8
.

if and only if the following equations hold:

r{r—1
P!+ —— P — k7?4 K+ rr=1) )(fc’)z = 0,
T4 1 K
(T = 0,
6 = 0.

In particular, v lies in some $? or S totally geodesic in S™.
From now on we will call r-generalized elasticae to the critical points of
F7. In particular, free elasticae are nothing but 1-generalized elasticae.

A key result
Characterize the cylinders in (H?, ko) which are Willmore-Chen submanifolds.

Theorem :

Let v be o fully immersed closed curve in the hyperbolic space 7. The
cylinder Ty = ®(y x 87} in (H, ho) is a Willmore-Chen submanifold if and only
if v is a generalized free elastica in the once punctured unit sphere (X*°7, do?).
In particular, n —r < 3.

The proof is mainly based on the symmetric criticality principle of Palais.

Some examples :
To find examples of non trivial Willmore-Chen submanifolds in the pseudo-
hyperbolic space (HZ, hy) we apply the latter Theorem.

Example 1.1 .

Let v be an immersed closed curve in the hyperbolic 2-plane. The Lorentzian
eylinder Y., = ®{y X 8') is @ Willmore torus in the 3-dimensional anti De Sitier
space (HB, ho) if and only if v is a free elastica in the once punctured unit 2-sphere
(£2,do?).

The complete classification of closed free elasticae in the standard 2-sphere was
achieved by J.L. Langer and D.A. Singer, which can be briefly and geometrically
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described as follows ([21]): Up to rigid motions in the unit 2-sphere, the family
of closed free elasticae consists of a geodesic 7, say the equator, and an integer
two parameter family {ymn.:0 < m <n, m,n € Z}, where 7, » means that it
closes up after n periods and mn trips around the equator .

As a consequence we have

Example 1.2

There exist infinitely many Lorentzian Willmore tori in the 3-dimensional anti
De Sitter space. This family includes {YX,, . :0 <m <n, m,n € Z} and L.,.

A second case we will consider is n — v = 3. Then we look for critical points
of F7(v) inside the family of helices in the standard once punctured 3-sphere
(23, do?).

Let -y be a helix in (Z3, do?) with curvature x and torsion 7. Assume that -y
is a not a geodesic; otherwise, it is a trivial solution. Then v is an r-generalized
free elastica if and only if

Ym,n

T
r+1

A long and messy computation leads to

RE—r4+1=0.

Theorem
For any natural number r, there exists a one parameter family {7V, }eeo\t0) of
closed helices in (I°,do?) which are r-generalized free elastica.

As a consequence we obfain

Example 2

Let r be any natural number. For any non zere rational number g, there exists
an (r+1)-dimensional Willmore-Chen submanifold T, = ®(yxS") in the pseudo-
hyperbolic space (HI+3, hq), «v being an r-generalized free elastic closed heliz in the
once punctured unit 3-sphere (L3, do?) whose slope £ is computed as above.
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DIVERGENCE THEOREMS IN SEMI-RIEMANNIAN
GEOMETRY

B, Garcia-Rio* and Demir N. Kupeli

Abstract.— A survey of divergence theorems in semi-Riemannian
geometry is made by including their proofs.

1 Introduction

In Riemannian geometry, integral formulas have been in vogue since Gauss, and
through their use many beautiful global results have been obtained. Perhaps
the divergence theorem is the most well-known integral formula in Riemannian
geometry as well as a very powerful tool for obtaining global results. However,
a divergence theorem in semi-Riemannian geometry has not been available until
recent years, perhaps because of not many people were working on integral formu-
las in semi-Riemannian geometry. Duggal was the first one who questioned the
validity of a divergence theorem in semi-Riemannian geometry in one of his works
on integral formulas in semi-Riemannian geometry [D]. The main difficulty in
stating a divergence theorem for a semi-Riemannian manifold with boundary is
that the boundary may become degenerate at some of its points and hence there
exists no well-defined unit outward normal at such points. Unal overcame this
difficulty by assuming several conditions on the degenerate part of the boundary
and stated two semi~Riemannian divergence theorems [U]. Also, recently the
authors defined divergence of a vector field along a map between Riemannian
manifolds and generalized the Riemannian divergence theorem to a divergence
theorem for the vector field along a map between Riemannian manifolds [G-RK].

The purpose of this review is to collect the results of Unal and the authors
in semi-Riemannian geometry. Here we will provide a more general proof to a
lemma of Unal [U, Lemma 3.3] which shows the nondegenerate part of the bound-
ary must be an open subset of the boundary and reprove his semi~Riemannian
divergence theorems. Then we will adapt the proof of divergence theorem for
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a vector field along a map between Riemannian manifolds [G-RK, Theorem 10]
o semi-Riemannian setting and obtain the generalized semi-Riemannian diver-
gence theorem. Finally we will make an application of this theorem to harmonic
maps.

2 Semi-Riemannian Divergence Theorem

The most important step in the proof of semi~Riemannian divergence theorem
is to show that the nondegenerate part of the boundary of a semi-~Riemannian
manifold is an open subset of the boundary. In fact this makes the integration
over the nondegenerate boundary of a semi-Riemannian manifold meaningful.
For this, we will prove a lemma which also has certain applications in semi-
Riemannian geometry.

A symmetric (0, 2)~tensor field ¢ on a manifold M is called nondegenerate of
indez v at p € M if g, is a nondegenerate bilinear form of index v on T, M, that
is, gp is an inner product of index v on T, M.

Lemma 2.1 Let M be an n—dimensional manifold and g be a symmetric (0,2)~
tensor field on M. Then the set of points where ¢ is nondegenerate of index v is
an open subset of M, where0 < v £ n.

Proof. If the set of points where g is nondegenerate of index v is empty, then the
claim follows trivially. Suppose the set of points where g is nondegenerate of index
v is not empty. We will show that, any point p in this set has a neighborhood
such that g is nondegenerate of index v at every point of this neighborhood. For,
let ¢ be nondegenerate of index v at p € M, Then there exists an orthonormal
basis {®1, ..., Tu, Tvt1,- - -, Ta} for (T, M, g,) such that

(s, ) = {

Extend {z1,...,%0, Tui1, -, %n} to a local basis frame {X, ..., X, Xog1, -+ o
Xy} for TM on a neighborhood U of p and let g;; be functions on U defined by

gi; = 9(X:, X;3), 1<4,5<n.

-1 for 1<i<vyp
1 for v+1<i<n

First note that, since det {g:;(p)] = (—1)”, det [g:;] # 0 on a neigborhood of p in
[/. Hence by reducing U to this neighborhood if necessary, we may assume that
gq is nondegenerate of some index v, at each point ¢ € U. Also since

Bijs 1<4,j<m,

are continuous functions on U, for ey = ?:1171'2" there exists a neighborhood Uy,
of p in U such that

lgi(g)—1|<es, for v+1<i<n
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~and
l9i5(q) <&y, for i#j, v+1<i<n
whenever ¢ € U,. Now let
Wy, = span {Xonlg), ..., Xa(0)}
at each ¢ € Uy. We will show that g(z,x) > 0 for every 0 # x € W, at each
g € U,. Indeed, for any 0 £ z = 55 MiXi(q) € Wiy,

el
glz,z) = 3 Ndjoile)
i, fumir-b1
n
= > Ma(@+2 X Ndgule)
izpdl v+lgi<isn
> oMl -er)-2 30 [Nl Ales
=yl ‘ vH1LI<isn
n n
= Z A?—-'E.;. Z )\?’“25-{- Z i‘)\t “’X.?[
=l =l r41Li<i<n
> Y AM-e 3 Mo D (4D
izl =41 p1<i<i<n
= Y AN @A +3X L+ (n— v+ 1)A) > 0.
tampd-1

Similarly it can be shown that there exists a neighborhood U_ of p in U such
that g(z, ) < 0 for every z € W._, at each ¢ € U_., where

W_, = span {X1(q),..., Xu(q)}-

Hence on U" = Uy NU, gg is positive definite on W, and negative definite
on W_, ateach g € U". Thenn—vy > n—vand vy > vat each ¢ € U'. Thusy,
= v for every q € U’, that is, g is nondegenerate of index v at every ¢ € U’. O

Corollary 2.1 Let M be a manifold and g be a symmetric (0, 2)-tensor field on
M. Then the set of points where g is nondegenerate is an open subset of M.

Proof. Immediate from Lemma 2.1. £l

Recall that a symmetric nondegenerate (0, 2)-tensor field ¢ of constant index
v on a manifold M is called a metric tensor on M. In fact, if A is connected
then the assumption of constant index is redundant.

Corollary 2.2 Let M be a connected manifold. If g is a symmetric nondegener-
ate (0,2)~tensor field on M then g is a metric tensor on M.
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Proof. Let g be of index v, at p € M. Then by Lemma 2.1, the set of points
where g¢ is of index », is open in M. Again by Lemma 2.1, the complement of
this set is also open. Thus by the connectedness of M, g is of constant index v,
= . a

A semi-Riemannian manifold (M, ¢) with boundary M (possibly OM = @)
is a manifold with boundary M (possibly M = @) with a metric tensor g. Note
that if (M, g) is a semi-Riemannian manifold with boundary 8M, where ¢ is of
index v, then the induced (0, 2)-tensor field ggpr on M is also symmetric. But
gan may not be a metric tensor on the connected components of M because it
may fail to be nondegenerate at some points of the connected components of M.
The points of OM where ggp; fails to be nondegenerate can also be characterized
by the causal characters of the vectors orthogonal to M. Note that, if p € M
then T,0M is a hyperspace in T, M with orthogonal space (T,0M)* of dimension
1. Thus, T,0M is a degenerate in T,M if and only if (T,0M)* is a degenerate
in T, M if and only if every nonzero vector orthogonal to T,0M is null. Hence,
T,0M is nondegenerate if and only if the vectors orthogonal to 7,00 are nonnull.
In fact, if T,0M is nondegenerate then, nonzero vectors orthogonal to T,0M are
spacelike if and only if (gan), is of index v and, nonzero vectors orthogonal to
T,0M are timelike if and only if (gapr), is of index v — 1.

Definition 2.1 Let (M, g) be a semi-Riemannian manifold with boundary OM.
Define the subsets M, and 8M_ of 8M to be the sets of points in &M where
the nonzero vectors orthogonal to M are spacelike and timelike, respectively.
Also define the subset My of M to be the set of points in M where the nonzero
vectors orthogonal to M are null.

Remark 2.1 Note that M = M, U OM_ U 8M0 and M, OM_ and dM,
are pairwise disjoint.

Lermama 2.2 Let (M,g) be a semi-Riemannian manifold with boundary 8M.
Then OM,. and OM_ are open subsets of OM.

Proof. Since M, and M.. are the points of M where gpys is nondegenerate
of index v and v — 1, respectively, it follows from Lemma 2.1 that 8M.,. and M.
are open subsets of M. {1

Remark 2.2 Let (M, g) be a semi-Riemannian manifold with boundary OM.
Then since M, and OM_ are open submanifolds of 8M by Lemma 2.2, 8M’ =
OM, U OM_ is also an open submanifold of M, which we call the nondegenerate
boundary of (M, g).

Let (M, g) be an oriented semi-Riemannian manifold with boundary M. Let
¢ be the semi-Riemannian volume form on (M, g) (see [AMR, p. 456]) and let NV
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be the unit outward normal vector field to M defined on 8M’: Then note that,
the exterior form papr defined on M’ by

Uamr = iNjL,

where i is the interior product, is the induced semi~Riemannian volume form on
the semi-Riemannian manifolds (M., gon, ) and (OM_, goas_) when restricted
to OM, and OM.., respectively.

Theorem 2.1 [U] (Semi-Riemannian Divergence Theorem) Let (M, g)
be an oriented semi-Riemannian manifold with boundary OM (possibly M =
&) and semi-Riemannian volume form u. Let Z be a vector field on M with
compact support. If @My has measure zero in OM (see [BJ, p. 57]) then,

/M(dw Z)p = /«S‘M+ 9(Z, N)parr — /<;‘M.~ 9(Z, N)pane-

Proof. Recall from the Gauss’ Theorem ([AMR, p. 483]} that,

fM(diV Z)p= ./eM iz,

where £ is the interior product. Then since M, has measure zero in M,

d’Z=/‘:['+ s
fM( v Z)n oM bzt oM, el oM. bakt

Now let p € M’ and let {N(p),e1,... ,€n-1} be an orthonormal basis for
T, M, where n = dim M, Then at p, since

n-1
Z= g(N: N)Q(N, Z’—)N"*- Zg(ei,e,')g(Z, 85)81':

- f=]

(izli)(ez, seey en—l) = [‘L(Z) €1y ey en-l)

n—1

= u(g(N,N)g(N, Z)N + 3" g(e;, e)9(Z, es)es, 1, . -, €n1)

=1
= u(g(N,N)g(N,Z)N,ey,.. ., en1)
= g(N, N)Q(NaZ)ﬂ(N’ €1, )€n1)
= g(N, N)g(N, Z)(inpt) (ess .- -, n1)
= g(N, N)g(N, Z)posr (€1, - -, ni)-
Hence,
. { 9(Z, N)uorr on M,
—g(Z,N)pgpr on OM_.
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Thus it follows that

i = 7 r - J e
fM(dlv Z)p fam 9(Z, N)pam faM 9(Z, N)pom

O

The assumption of vanishing measure of OM, in M may be replaced by
another condition in the semi~Riemannian divergence theorem.

~

Theorem 2.2 [U] Let (M,g) be an oriented semi-Riemannian manifold with
boundary OM (possibly OM = &) and semi-Riemannian volumne form p. Let Z
be a vector field on M with compact support. If Z is tangent to OM at the points
of OMy then

/M(afw D= /aM+ 9(Z, N)porr — /é*M. 9(Z, N)zom:.

Proof. Since Z is tangent to M at the points of OMy, iz = 0 at the points of
8M,. Hence by the Gauss’ Theorem,

div Z =f . =/ . L
fM( iv Z)u aM,'izlt aM+Zz#+ ot izt

Then as in Theorem 2.1, we obtain

i = - r (2
]M(dlv VAT /a " 9(Z, N)pon /a oy 9@ Npors.

tl

For some applications of Theorems 2.1 and 2.2 in 2-dimensional Minkowski
space, see [U].

3 Generalized semi—-Riemannian Divergence Theorem

Let f : (My,q) — (M, ¢2) be a map between semi-Riemannian manifolds
(M1, ¢1) and (My, g2) and let pp = f(py) for each p; € M;. Then the aedjoint
of the tangent map fu,, : T, My — Tp,, M3 of f at p; is defined to be the unique
linear map * fyp, 1 Ip, Mz — T, M; by

glp] ('!L') *f*Pl y) = ggpg (f*Plx’ 19')

forall w € Ty, My and y € T, M),
Let f: (My, ;) — (Ms,g2) be a map between semi-Riemannian manifolds
1 2 -
(Mi, 3) and (Mg, g2). Let V and V be the Levi Civita connections of (M, ¢)
and (Mo, g2), respectively, and let \2? also denote the pullback of %’ along f. Now,
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if Z is a vector field along f, that is, Z : My — TM, is a map with Z(p,) €
Tp,(Mz) for each p; € Mj, then define a bundle homomorphism

s %” Z:TM; — TM;
by
Cf Y 2)(@) = fup (Ve 2),
where z € T, M.
Definition 3.1 Let f: (M1, ;1) — (Ma, g2) be a map between semi~Riemannian

manifolds (Mj, g1) and (Mz, g2), and let Z be a vector field along f. Then the
divergence of Z is defined by

7 div Z = trace ”'f,.,%f’Z.
Remark 3.1 Note that, if n; = dim M, then,

divZ = trace*f, % zZ
ny 5
= Y (X X)a((fe V 2)X:, X3)

z;ll \
= Y (X X)n(Vx, Z, £.X5),
i=1
where {Xi,..., Xy, } is an orthonormal local basis frame for TM;. Here also note
that, if we set (My, 91) = (Ms, g2) = (M, g) and f = id, then a vector field along
[ can be considered as a vector field on M and hence, divergence of a vector field
along f reduces to the usual divergence of a vector field on M.

Definition 3.2 Let f: (M, g1) — (Ma, g2) be a map between semi-Riemannian
manifolds (M1, g1} and (Ms, g2). The second fundamental form V f. of f is defined
by
2 i
- (Vf*)(X, Y) =Vx Y — f*(Vx Y)’
where X and Y are vector fields on M.

Remark 3.2 Note that (V£)(X,Y) is a vector field along f. Also it can be
easily shown that Vf, is C®°(M;)-linear in its arguments and symmetric.

Definition 3.3 Let f: (My, 1) — (Ma, g2) be a map between semi-Riemannian
manifolds (M, g1) and (Mp, g2). Then the tension field 7(f) of f is defined to be
the trace of V f. with respect to gy, that is,

() =3 910X X) (VL) (X X2,

i=1
where 7y = dim Ay and {Xj,..., X,,} is an orthonormal local basis frame for
TM;. Also f is called harmonic if 7(f) = 0.
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Remark 3.3 Note that the tension field of a map f : (My, g1) — (Mz,g2) be-
tween semi-Riemannian manifolds (Mj, ;) and (Ma,g,) is also a vector field
along f by Remark 3.2.

Now by using the notation and terminology of section 2, we will state the
generalized semi-Riemannian divergence theorem as follows.

Theorem 3.1 (Generalized semi—Riemannian Divergence Theorem)
Let (M, g1) be an oriented semi-Riemannian manifold with boundary OM, (pos-
sibly, OMy = @) and semi-Riemannian volume form py, and let (M, g;) be a
semi-Riemannian manifold. Let f : (My,g1) — (Ma, g2) be a map and Z be a
vector field along f with compact support. If 8(My)e has measure zero in OM,
then

/Ml(div Z)m + /M1 92(Z, ()

= Z, *N ;—
6(M1)+92( feND) o) ./a(M,

where Ny is the unit outward normal to OM; defined on 8(M;)'.
Proof. Let *f,Z be a vector field on M, defined by
(“£:2)(p1) =" fipy (Z(p1))
at each p; € M;. Now let {Xj,... ,X,,l} be an adapted moving frame near p;,

1
that is, {X1,..., X, } is an orthonormal local basis frame for TM; with (V X3),,
=0fori=1,...,n;, where n; = dim M; (see [P, p. 152]). Then

) 9:(Z, f*Nl),Ula(M,)u

(div *f.Z)(p1) = "zl gl(Xi,Xi)gl(%X; (*f*Z)aXi)] (p1)

Li==1 .

= igl(Xi,Xi)Xigl(*f*Z, Xz)] (pl)

_ é 0 (X, X Xig2(2, f*Xz-)] (p1)
= [ 0texnthx 2,1.50] o)
+ [ a9, 1.50] 00
- ; (X X)02(Tx 7, £.9)| (02)
+ [0 X)oa2, (V2056 X0 02

= [div Z+g:(Z,7(f))] (p0)-
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Thus ‘
div*f,Z = div Z + ,(Z, 7(f)).

Now by applying the semi-Riemannian divergence theorem (Theorem 2.1} to
*f.Z on (My, ¢1), we obtain

il

X A * 7, ,— * Z, Y ,
fMl( div *f. 2} /a(Ml),Lgl( 5z Nx)ﬁzagM,) fawl)_. 90"+ 2, M)t ogany

= Z, J+lV T s Jx ‘e
/6‘(Mx)+ 92(Z, feN1)kao () /63(1\41)_ 922, feN1) (0,
Thus, since div *f,Z = div Z + g2(Z,7(f)), we have .

[ (@ 2+ [ a2 ()

= 92(Z, fuNDaanyy — fa

Z) *N s
B(M1)y ) g2( f 1);’516(1\/[1)

(M
0

Finally we will make an application of generalized semi-Riemannian diver-
gence theorem to harmonic maps. Note that the following proposition generalizes

[Y1, Proposition 2.5] where %" 7(f) = 0 is assumed.

Proposition 3.1 Let (M;,q,) be an oriented compact semi~Riemannian man-
ifold with semi-Riemannian volume form p; and let (M,, g») be a Riemannian

manifold. If f : (M1, ;1) — (Ma, g2) is a map with /M (div 7(f))ita = O then f
1

is harmonic.
Proof, Since 0M; = @, by Theorem 3.1,

Joy @ 7D+ [ anCr (DD =0,

Thus, since fM (div 7(f))p1 = 0 and g4 is a Riemannian metric tensor, it follows
1
that go(7(f), 7(f)) = 0, and hence 7(f) = 0. O
Note here that Proposition 3.1 fails to hold if (M, g1} is not compact. Indeed,
the map f: (R, dt ® dt) — (R, dt @ dt) given by f(t) = 142 has div 7(f) = 0 but
[ is not harmonic.
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SOME RESULTS ON OSSERMAN SEMI-RIEMANNIAN SPACES

E. Garcla-Rio* and R. Véazquez-Lorenzo*

1 Introduction

One of the central topics in Differential Geometry is the study of the curvature
of the space. Following Osserman [22, pag. 731}

“The notion of curvature is one of the central concepts of differential geometry;
one could argue that it is the central one, distinguishing the geometrical core of
the subject from those aspects that are analytic, algebraic, or topological. In the
words of Marcel Berger, curvature is the N 1 Riemannian invarient and the most
naturel. Gauss and then Riemann saw ¢ instantly.

Curvature also plays a key role in physics. The magnitude of a force required to
move an object at constant speed along a curved path is, according to Newton’s
laws, a constant multiple of the curvature of the trajectory. The motion of a body
in a gravitational field is determined, according to Einstein, by the curvature of
the space-time.”

If (M, g) is a manifold equipped with a (definite or indefinite) metric tensor,
the associated Levi Civita connection V allows us to define the curvature of (M, g)
by means of the tensor fleld R given by

R(X,Y) = [Vx,Vy] = Vixy)

An important component of the curvature tensor is the one given by the
Jacobi operators. They arise in a natural way in the study of geodesic variations
as a measure of the geodesic deviation. Given a geodesic v, the second order
differential equation along 7,

X"+ R, X =0,

* Supported by project XUGA 20702B96 (Spain)

1991 Mathematics Subject Classification. 53B30, 53C15, 53C50, 53C55.

Key words end phrases. Jacobi operator, Osserman space, indefinite Kihler, para~Kihler,
indefinite quaternionic Kéhler and paraguaternionic Kihler metrics.
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is called the Jacobi differential equation and its solutions are the Jacobi vector
fields along v. R,X = R(X,v')Y is called the Jacobi operator along the geodesic
7. The investigation of the properties of the Jacobi vector fields is basic in a
number of geometrical problems, specially due to their relation with coordinated
vector fields in system of normal and Fermi coordinates, which allow to describe
the local geometry of the manifold from the knowledge of the Jacobi vector fields.
However, it is rather difficult to determine explicitly the general solution of the
Jacobi differential equation, except in those cases of manifolds with a simple cur-
vature tensor. Even this way, many properties can be derived from the knowledge
of the Jacobi operators.

Considering the Jacobi operator R, associated to a tangent vector z € T, M,
as the endomorphism of the tangent space to M at p defined by R,y = R(y, z)z,
for y € T,M, the identities of the curvature tensor show that R, is self-adjoint,
that is, g{(R»y, z) = g(y, Re2), for all y, z € T, M. Therefore, we will pay special
attention to the study of the spectrum of those operators. In general, the eigen-
values of the Jacobi operators depend on both, the basepoint and the direction:
Xi(p, z). However, they take a simpler form for special classes of Riemannian or
semi-Riemannian manifolds: it is well known that those eigenvalues are constant
on the unit sphere bundle for two—point homogeneous Riemannian manifolds.
Naturally arises the question of whether those are the only Riemannian spaces
satisfying such condition on the eigenvalues of the Jacobi operators. Spaces satis-
fying such condition are called Osserman spaces and we will refer to the problem
of classifying them as the Osserman problem.

Next we will review some of the most interesting known results on the study of
the Osserman problem in Riemannian and Lorentzian geometry, before treating
the more general case of semi-Riemannian manifolds.

1.1  Osserman Riemannian spaces

For positive definite metrics, Osserman [22] made the following conjecture:

Conjecture If the eigenvalues of the Jacobi operators of e Riemannian manifold
(M, g) are constant on the unit sphere bundle, then M is flat or locally isometric
to a rank-one symmeltric space.

Chi has solved this conjecture in many cases. In particular, he has proved the
following result.

Theorem 1.1 [9, Th.0] Let (M™, g) be a connected Osserman Riemannian space.
Ifn s 4k, k > 1, then M has constent sectional curvature or it is a Kdhler
manifold of constant holomorphic sectional curvature.

The essential lines of the proof are as follows. For each point p € M let S,M
denote the unit sphere in T,M. Each eigenvalue X of the Jacobi operators induces
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a smooth distribution on the sphere S,M given by
Dy 1z € S;M — Dy(z) = Ker(R, — Al d),

whose dimension is indicated by the multiplicity of the eigenvalue A.

Now, if the dimension of M is odd, then S,M is even-dimensional, and the
nonexistence of continuous distributions on such spheres shows that, in this case,
the Jacobi operators may have only one constant eigenvalue. Next, by using the
Schur lemma, it follows that (M, g) is a space of constant curvature.

In an analogous way, if dim M = 4k + 2, then again topological restrictions
show that the number of distinct eigenvalues of the Jacobi operators is one or
two, in the later case one of them necessarily having multiplicity one. From this,
one constructs a complex structure on M which gives to the manifold a structure
of generalized complex space. Finally, the second Bianchi identity shows that
(M, g) has constant sectional curvature or it is a Kéhler manifold of constant
holomorphic sectional curvature. (See also [17] for a more recent proof of the last
cage discussed above).

Chi has also studied the Osserman cendition on manifolds equipped with some
additional structures. In this sense we point out & result for Osserman- Kihler
spaces.

Theorem 1.2 [9, Th.0] Let (M, g,J) be a Kéhler manifold with nonnegative or
nonpositive sectional curvature. If M is Osserman, then the holomorphic sec-
tional curvaiure is constant.

The key argument in the proof of this result is the following one. First of
all we recall that, when dealing with Riemannian metrics, the eigenvalues of the
Jacobi operator point out the extreme values of the sectional curvature, while
the corresponding eigenspaces show the directions where those extreme values
are reached. Now, in the particular case of Kahler metrics of nonpositive or
nonnegative sectional curvature, an eigenspace corresponding to the maximal
(resp., minimal) value of the sectional curvature must be holomorphic (cf. [8, p.
362]), and therefore the constancy of the holomorphic sectional curvature follows
from the constancy of the eigenvalues of the Jacobi operators for Kihler manifolds
of nonpositive or nonnegative sectional curvature,

The existence of distinguished eigenspaces of the Jacobi operators also influ-
ences on the geometry of the manifold. (See, for example [19], where it is shown
that a Kahler manifold (M, g, J) is a complex space form if and only if for each
unit vector x, Jr is an eigenvector of the Jacobi operator R,, ie., R{Jz, z)z
~ Jz). Therefore, in solving the Osserman problem is natural to impose some
additional conditions on the behaviour of the eigenspaces of the Jacobi opera-
tors. This idea was developed by Chi who characterized the rank-one symmetric
spaces by using the Osserman property with some natural additional conditions:
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Theorem 1.3 [11, Th.1] The locally rank-one symmetric spaces of nonconstant
sectional curvature are determined by the following two azioms:

Axiom 1. The manifold is an Osserman space in which the Jacobi operators have
two distinct eigenvolues A and p.

Axiom 2. Ify € (z)® Ker(R.—AId), then (y)® Ker(R,—AId) = (z) D Ker(R,—
M d). -

In view of all known results, the solution of the Osserman conjecture could
arise in a two step proof. The first step consisting in the determination of all the
possible Osserman curvature tensors which may be realized at a single point of
a manifold. The second one, by making use of the second Bianchi identity, will
allow to show that such spaces are locally symmetric. This approach has been
initially considered by Gilkey, who constructed the first examples of curvature
tensors which are Osserman but not corresponding to any rank-one symmetric
spaces [16]. This construction makes use of the existence of certain Clifford-
module structures and, the theory of normal coordinates shows the existence of
Riemannian manifolds where such curvature tensors are realized at a point.

These examples motivated the study of those Riemannian manifolds which are
Osserman at each point but where the eigenvalues of the Jacobi operators may
change from point to point: pointwise Osserman manifolds [17]. They are triv-
ially Osserman in dimension three but there is a large number of four-dimensional
pointwise Osserman manifolds which are not (globally) Osserman, like the gen-
eralized complex space forms [20]. (We refer to [17] for more results about the
relation between the pointwise and the global Osserman conditions).

A related problem to the Osserman one is the determination of those Rie-
mannian manifolds all of whose geodesic spheres are isoparametric [27]. Since
any isoparametric geodesic sphere has constant mean curvature, such spaces are
necessarily harmonic and it has been shown in [17] that they are also globally
Osserman. In spite of the known results about harmonic and Osserman spaces,
the problem of determinig those Riemannian manifolds whose geodesic spheres
are isoparametric is still open.

1.2 Osserman Lorentzian spaces

When considering indefinite metrics, a unit vector may be spacelike or timelike.
This fact motivates the study of the Osserman problem in a separate way as
corresponding to timelike or spacelike geodesics. Thus, we have;

Definition 1.1 A semi-Riemannian manifold (M, g) is said to be an spacelike
(resp., timelike) Osserman space if the (posibly complez) eigenvalues of the Jacobi
operators R, are constant for all unit spacelike (resp., timelike) vectors z. (M, g)
will be called an Osserman space if it is spacelike and timelike Osserman at the
same lime.
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Note that when we consider an Osserman semi-Riemannian space, the eigen-
values of the Jacobi operators are not constant, since the sign of such eigenvalues
changes depending on the causal character of the direction.

The analysis of the Osserman condition in Lorentzian geometry becomes sim-
pler than in the Riemannian case. First of all, note that indefinite complex or

- quaternionic structures are allowed in Lorentzian signature. Secondly, note that
the sectional curvature of indefinite metrics presents certain pathologies as con-
cerns boundedness when comparing to the Riemannian case [21]. This facts led
to a complete answer to the Osserman problem for Lorentzian manifolds. Indeed,
it has been shown in [13] that a timelike Osserman Lorentzian manifold is of
constant curvature and that the same holds for spacelike Osserman Lorentzian
manifolds of dimension < 4. Later on, Blazié, Bokan and Gilkey [2] completed
the spacelike case and provided the following result:

Theorem 1.4 Let (M, g) be a Lorentzian manifold. The following conditions are
equivalent:

(1) The sectional curvature is constant et p € M.
(ii) (M, g) is spacelike Osserman at p.

(i) (M, g) is timelike Osserman at p.

Note that, as a consequence of previous theorem, the pointwise and the global
Osserman conditions become equivalent in the Lorentzian setting.

2 Indefinite Kihler Osserman spaces

The study of the Osserman condition for semi~Riemannian manifolds with metric
of non-Lorentzian signature presents significant differences with respect to both
the Riemannian and Lorentzian cases. It was shown in [15] the existence of
Osserman semi-~Riemannian spaces with metric of any signature (p,¢), p,¢ > 2,
which are not locally symmetric (even not locally homogeneous).

The purpose of this section is to study the Osserman condition under the
additional assumption of the existence of an indefinite Kéhler structure. We
will show that, even in this case, the situation presents important differences
again with respect to the Riemannian case (cf. Theorem 1.2). Indeed, a semi-
Riemannian manifold is of nonpositive or nonnegative sectional curvature if and
only if the sectional curvature is constant. Further, if the manifold is assumed to
be Kihler, it must be necessarily flat. Therefore, in investigating the Osserman
problem, other kind of boundedness conditions should be considered in the semi-
Riemannian setting.

At this point, it is worthwhile to recall that the holomorphic sectional curva-
ture of a positive definite almost Hermitian manifold is a real function defined on
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the unit sphere bundle. Therefore, it is bounded at each point p € M. However,
for indefinite almost Hermitian metrics, the holomorphic sectional curvature is a
real function defined on the unit pseudosphere bundle. Since the pseudosphere
is noncompact, the existence of bounds for the holomorphic sectional curvature
is not guaranteed in the indefinite case. It has been shown in [1], [4] that the
holomorphic sectional curvature is bounded from above and from below on space-
like or timelike holomorphic planes if and only if it is constant. Other kind of
bounded conditions was investigated in [5], where it is shown that the holomor-
phic sectional curvature of an indefinite almost Hermitian manifold is bounded
from above (resp., from below) on holomorphic planes of signature (++) and from
below (resp., from above) on holomorphic planes of signature (——) if and only
if the manifold is null holomorphically flat. This last condition, when coupled
with the Osserman one, immediately implies the constancy of the holomorphic
sectional curvature for indefinite Kéhler manifolds.

However, one side bounds do not suffice to have constant holomorphic sec-
tional curvature, even if the manifold is assumed to be Osserman. Indeed, in what
follows we will point out the existence of locally symmetric, not locally symmetric
and even not locally homogeneous examples of Osserman indefinite Kéhler man-
tfolds with nonpositive or nonnegative holomorphic sectional curvature but not of
constant holomorphic sectional curvature. We refer to [6] for more details.

Let R* denote the 4-dimensional real Euclidean space, with usual coordinates
(=1, 2%, 7%, 2). We define on R* the metric g, given by

2
(2.1) 9p =dr' @dr® +do’ @ dz* + ) ¢yda’ @ da?,
i,fe=1

where ¢ = (¢;;) is any symmetric (0, 2)~tensor field on K.
The Levi Civita connection is then given by

d _ [lo¢u} 0O _10¢1 |, 041 | O
vb‘ﬁ"’@xl B {2 ozt } x3 +{ 5922 | 9ot | Bzt
3] _ 19¢y;) 8 10¢ypn) 9
@2 Vaga = {2 922 } 9o +{z'5;,r pr
o _ 10¢p  Oda)| & 18¢ ) 0
Virgs = {"55;?*'55;? 328 T332 | 3’

and, therefore, the only nonvanishing components of the curvature tensor are



Some results on Osserman semi-Riemannian spaces 147

those given by
R(a a) o {1 B | 1 8y 6%2} 9

07’ 9x2 ) 8zt |207%0x | 20s10xr 0219z | 0z

2.3) «
( o a ) g _{1 O 1 8% 1z } o

55 ) o T 2072022 ' 20z'0s'  0x'dz? | 83
The above expressions allow us to obtain the following,.

Theorem 2.1 [6] (R, g;) is an Osserman semi-Riemannian space with metric
of signature (+,+, —,—). The characteristic polynomial of the Jacobi operators
is always pa(R.) = M, while the minimal polynomial my(R,) is determined by
the function

1 3%y | 1 8¢ pra

2.4 1) == - -
(24) Fa,a%) 20728z ' 20x6xr Ozxidz?’

in the following way:

(1) (R*, g4) has zero sectional curvature (i.e., my(Ry) = X) at any point where
F vanishes,

(i) the minimal polynomial is my(R,) = A? at those points where F is different
from zero.

Moreover, (R, g4) is locally symmetric if and only if the function F is constant.

In what follows we will endow the space (R?, g4) with a Kahler structure. Note
that the tensor field ¢ is said to be Hermifian with respect to a complex structure
K on R? if it satisfies the condition ¢(KX,KY) = ¢(X,Y) for all vector fields
X,Y € R?. Next consider on (R, g4) the complex structure, J, defined by

d 5} 0 a

T =57 a3 = o

Then we have

Theorem 2.2 [6] (R%, g4, J) is an Osserman indefinite Kéhler space if and only
if ¢ is Hermitian with respect to the usual complez structure on R® (J 5% =
5’2—2 ). Moreover, the sign of the holomorphic sectional curvature of (R, gg, J) is
determined at each point by the sign of Adiy, where A denotes the Laplacian on
R2.

Remark 2.1 1. Note that if (R*, g4, J) is a locally symmetric Osserman in-
definite K&hler manifold, then its holomorphic sectional curvature is non-
positive or nonnegative but nonconstant unless be flat.
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2. The product of the manifolds (R*, g4, J) and the Euclidean spaces R% allows
us to extend the previous examples to higher dimensions. In particular, we
obtain examples of indefinite Kéhler manifolds of any signature (2p, 2¢),
for p,q > 1, with nonnegative or nonpositive holomorphic sectional curva-
ture, which are Osserman but not locally symmetric (or even not locally
homogeneous).

Remark 2.2 1. The semi-Riemannian metric g, on.R* can be interpreted
as the deformed complete lift of the usual Riemannian metric on R? to its
tangent bundle R* = TR? with respect to the symmetric tensor field ¢, [6].

2. Note that the deformed complete lift of the usnal Minkowskian metric on
R? to its tangent bundle R* = TIR? leads to similar results in the framework
of para~Kéhler geometry, [6].

3 Special Osserman manifolds

In this last section we will present some results in the study of semi-Riemannian
manifolds with simple Jacobi operators. More precisely, we define the class of
special Osserman manifolds as follows:

Definition 3.1 A semi-Riemannian manifold (M, g) is called an special Osser-
man manifold if it satisfies the following two azioms:

Axiom I. For each unit vector x, the Jacobi operator R, is diagonalizable with
exactly two distinct eigenvalues: e, A and eqp1, where £, = g(z,%) and ), p € R.
Axiom II. If z is a unit vector in E\(x), then E\(z) = Ex(z) and, moreover, if
y € Ker(R, — expld), then x € Ker(Ry — e, pld), where for any unit vector z,
E\(z) = (z) ® Ker(R, — ;M 1d).

First of all, we will briefly explain the motivation for the two conditions in
the above definition. Since all known examples of nonsymmetric Osserman semi-
-Riemannian spaces have nondiagonalizable Jacobi operators (cf. [6], [14]), it
seems natural to assume such condition in order to approach the general prob-
lem. Moreover, note that in [3], four-dimensional Osserman manifolds with diag-
onalizable Jacobi operators are characterized, by showing that they are indefinite
real, complex or paracomplex space forms. In all this cases, only two distinct
eigenvalues occur.

Now, it is clear that if the Jacobi operators of a semi~Riemannian manifold
are diagonalizable with only one eigenvalue, it is a space of constant sectional
curvature. {Note that, even in this case, the diagonalizability of the Jacobi op-
erators is a necessary condition, because of the nonsymmetric examples in the
previous section). Therefore, the first nontrivial case is the one corresponding to
two distinct eigenvalues.
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On the other hand, Axiom II allows us to decompose the tangent space at
any point of an special Osserman manifold as direct sum of subspaces E,(-).
For a better understanding of this axiom, note that indefinite Kihler manifolds
of constant holomorphic sectional curvature, para-Kihler manifolds of constant
paraholomorphic sectional curvature, indefinite quaternionic Kihler manifolds
of constant guaternionic sectional curvature and paraguaternionic Kihler man-
ifolds of constant paraquaternionic sectional curvature are examples of special
Osserman manifolds. A further look at indefinite Kéhler manifolds of constant
holomorphic sectional curvature ¢, shows that the Jacobi operator R, associated
to a unit vector z is diagonalizable with two distinct eigenvalues, e ¢ and £,(c/4),
&z of multiplicity one. Thus, Axiom I holds. With respect to Axiom II, if we
denote by J the complex structure, then the c—eigenspace of R, coincides with
the span of Jz and, therefore, E,(z) = (z, Jz). Thus, we see that if y is a unit
vector in F.(z) then {y,Jy) = {(z, Jz}, because E.(z) is a complex subspace.
Similarly, we have that the (¢/4)-eigenspace of R, is J-invariant and is given by
{x, Jz)*. This shows that if y € (z, Jz)* then z € (y, Jy)*. Therefore, Axiom II
can be interpreted as the fact that E.(z) is a J-invariant subspace of the tangent
space. A similar interpretation can be given in the other three classes of special
Osserman manifolds.

In what follows we will show a classification of the special Osserman manifolds.
This problem is approached in two steps, as suggested in {17]. In the first one,
we determine the form of the curvature tensors which may occur at an arbitrary
point of an special Osserman manifold. In the second step, by making use of the
second Bianchi identity, we classify the special Osserman manifolds of dimension
different from 16 and 32.

3.1 Pointwise description of the curvature tensor

As we have pointed out before, the significance of Axiom II is the possibility of
decomposing the tangent space T, M at a point p of an special Osserman manifold
in the form

T,M = Ex\(z) © Ex(y) @ Ex(2) ® - -

Now, let E)(€) be one of the subspaces in the decomposition above and
{¢,&,...,&} an orthonormal basis of F)(£), where 7 denotes the multiplicity
of A. Define on E)(¢)* the structures ¢,, ..., ¢, given by

(35) b0 = grresRE G, 1€ B

Note that ¢; leaves invariant each one of the subspaces F,(-) contained in
E)\(€)*. Thus, on any subspace E\(-) we have the structures ¢, ..., ¢, defined
before. A long calculation shows that these structures anticommute with each
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other and moreover that they are complex or paracomplex structures on each
E(-). More precisely, all of them are necessarily complex or there are exactly
(1 —1)/2 complex structures and (7 +1)/2 paracomplex structures on each F,(-)
contained in Ey(¢)t. Now, the anticommutative complex structures determine a
Clifford module structure on Ex(-). At this point we recall the following result
from Steenrod on the existence of Clifford module structures.

Theorem 3.1 [26] Let m = 27 - mg, with my odd.

(1) V™ admiis a Cliff(v)-module structure if and only if v < v(r),
(il) TS™ ! admits a g-dimensional distribution, for 2¢ < m — 1, if and only if
gsv (T)r

where v is given by v(i +4) = v(i) +8 and v(i) =2 — 1 fori=0,1,2,3.

By making use of previous theorem, it follows that the multiplicity of the
eigenvalue A must be 1, 3, 7 or 15, with the following restrictions on the dimension
of the manifold and on the signature of the metric:

Theorem 3.2 [7] Let (M, g) be an special Osserman manifold. Then one of the
following conditions holds:

(i) 7 =1 and M is a 2n-dimensional manifold with metric of signature (n,n)
or (2p,2q), for some p,q >0,

(ii} 7 = 3 and M is a 4n-dimensional manifold with metric of signature (2n, 2n)
or (4p,4q), for some p,q > 0,

(ili) 7 =7 and M is a 16-dimensionel manifold with metric of signature (8,8),
(16,0) or (0,16), or

(iv) * = 15 and M is o 32-dimensional manifold with metric of signature
{16,16),

where T denotes the multiplicity of the distinguished eigenvalue A.

In the cases (i) and (ii) in the previous theorem, we explicitly determine the
form of the curvature tensors which may occur at a point of the manifold. To
do this, we recall that a curvaturelike function F on a vector space V is a (0, 4)-
tensor field on V satisfying the following properties:

ﬁ(xy U, 2, w) = “1*:’(?}, z,z, ‘{8) = —F(x: Y, w&z)a
F(x, Y, 2, w) = F’(za W, T, Z)),

F(w,y,z,w)—i—ﬁ’(y,z,m,w)+F(z,a:,y,w}=(},
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for all vectors z, v, z, w € V. Moreover, if {, ) denotes an inner product on V,
then there exists an unique tensor field of type (1,3) on V, which we denote by
F, satisfying F'(z,y, z,w) = (F(z, y)z,w) for all vectors z, y, z, w € V.

In particular, associated with the inner product {, }, the curvaturelike tensor
RY is defined by -

Ro(z,y)z = (ya Z).’E - (55', 2)3},

and if J is a complex (resp., paracomplex) structure such that (V,{, ),J) is a
Hermitian (resp., para-Hermitian) vector space, then the curvaturelike tensor R’
is defined by

Rz, v)z = (Jz, 2)Jy — {Jy, 2)Jz + 2{Jz,y) J 2.

The following theorem shows that when the dimension is different from 16
and 32, the curvature tensor of an special Osserman manifold can be written, at
each point, as a linear combination of R® and the tensors R” associated with
certain structures defined on the tangent space to the manifold at that point.

Theorem 3.3 Let (M, g} be an special Osserman manifold with dimension dif-
ferent from 16 and 32. Then, at each point p of the manifold one of the following
conditions holds:

(1) There exists o complex structure J such that (g9,J) defines a Hermitian
structure on T, M and the curvature tensor R takes the form

A—p
R=puR— 2_ER7
# 3

(1) There exists a paracomplez structure J such that (g,J) defines a para-
Hermitian structure on T,M and the curvature tensor R takes the form

R=puR"+ i—g—-ﬁﬁf.

(i) There exists a quaternionic structure V such that (9, V') defines a Hermitian
- quaternionic structure on T,M and the curvature tensor R takes the form

- 3
R=pR'— %‘i SR,
i=1

where {J1, J2, J3} is an adapted basis for V.

(iv) There exists a paraquaternionic structure V such that (g, V) defines a Her-
mitian paraquaternionic structure on T,M and the curvature tensor R takes
the form

.3
Rzmwf‘-—é—f‘?zm&*,
i=]1
where {Ji, Jo, J3} is an adapted basis for V and J? = o;1d, i = 1,2,3,
(0’1 = '—1, Fg = (3 = 1}
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3.2 Local classification

By means of the repeated use of the second Bianchi identity, we have obtained
in [7] the local classification of those special Osserman manifolds of dimension
different from 16 and 32. More precisely, one has the following

Theorem 3.4 [7] Let (M, g) be an special Osserman manifold. If the dimension
of M is different from 16 and 32, then (M, g) is locally isometric to one of the
following

(a) an indefinite Kdhler manifold of constant holomorphic sectional curvature
with metric of signature (2p,2q), p,q = 0,

(b) a para-Kahler manifold of constant paraholomorphic sectional curvature
with metric of signature (n,n),

(¢) an indefinite quaternionic Kdhler manifold of constant quaternionic sec-
tional curvature with metric of signature (4p,4q), p,¢ > 0, or

{(d) a paraquaternionic Kihler manifold of constant paraquaternionic sectional
curvature with metric of signature (2n, 2n).

The remaining dimensions correspond to the cases of multiplicity 7 = 7 and
7 = 15, In these cases, we have only two subspaces Ey(-) in the local decomposi-
tion of TM, Ex(Xo) and Ex(Yp). On any of these subspaces, for example E,(Y),
we define a product in the following way:

YO'K:K'Y{]:}/‘; ?:‘:0:1)"-;7'3
(3.6)

}fi'y}=¢i¢j%3 'i,j=1,-..,?',
where {¥p,Y4,...,Y;} is the basis of Ex(Yy) determined by ¥; = ¢;Y4, ¢; being
the structures defined in (3.5). This product equips Ey(Xp) with an structure
of algebra, which is isomorphic to the octaves @ or the split octaves @, if 7 =
7, and to the product of the octaves and the paracomplex numbers O ® €', if
7 = 15. After constructing an standard basis for any of these three algebras, and
determining the components of the curvature of the manifold in that basis, we
obtain the following.

Theorem 3.5 Let (M, g) be an special Osserman manifold and suppose that the
multiplicity of the distinguished eigenvalue A is 7 =7 or v = 15. Then, M 1is
locally symmetric.
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ON THE VOLUME FUNCTIONAL IN THE MANIFOLD OF
UNIT VECTOR FIELDS

0. Gil-Medrano

Abstract.— The paper contains a description of the manifold of unit
vector fields and of some functionals on it, with special emphasis on
the first variation of the volume and on the notion of ¢ritical vec-
tor field. It also includes some results of the author’s work with E.
Llinares-Fuster [5], concerning the case of spaces of constant curvature
and that of Killing vector fields on a general manifold.

1 Introduction

The contents of this paper correspond roughly to a talk given at the Workshop
on Recent Topics on Differential Geometry. It is devoted to report some results
concerning unit vector fields in a Riemannian manifold, specially those that are
critical for the volume functional. Let us start by a brief survey of some previous
results that motivated our interest in the subjet.

Let M be a Riemannian manifold such that the set (M) of unit vector
fields is not empty. In [8], where M is also assumed to be compact, oriented and
boundaryless, the volume of an element V € X} (M) was defined to be the volume
of the submanifold V(M) of the unit tangent bundle equipped with the restriction

-of the Sasaki metric. There is a trivial absolute minimum of the volume functional
when unit parallel vector fields exist, but that will usually not be possible, since
such a vector field will determine two mutually orthogonal complementary totally
geodesic foliations. .

On a round unit odd-dimensional sphere, Gluck and Ziller ([8]) considered
Hopf vector fields as the candidates for this absolute minimum.and showed that
it is the case for the 3-sphere, Their method of calibrated geometries cannot be
applied to higher dimensional spheres and in fact, Johnson ([11]) showed that
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the Hopf vector fields on S5 are not local minima of the volume. He used direct
methods to show that for every deformation of a Hopf vector field the first vari-
ation vanishes but that there are deformations on which the second variation is
negative. In both papers the results are derived using the specific properties of
Hopf vector fields and spheres.

In the author’s work with E. Llinares-Fuster [5] the volume has been consid-
ered as a functional on the manifold of unit vector fields on a general M. The
study of the first variation has suggested a notion of critical unit vector field valid
for a general manifold not assumed to be neither compact nor boundaryless.

That the study of geometrical properties defined by this variational procedure
deserves some attention is an idea deeply established on the basis of remarkable
examples: Ricci-flat or Eintein metrics, harmonic maps, minimal or constant
mean curvature immersions, among others can be described in this way. More-
over, it is worth noting that as suggested by results in [15], [12] and [13] the
minimun volume of vector fields in a compact manifold is very likely attained by
singular vector fields and so properly defined in an open submanifold.

This paper is divided into four sections. In the second one, we describe the
manifold of unit vector fields and some functionals on it; we put special emphasis
on the study of the first variation of the volume. Section Three contains some
examples of critical unit vector field on manifolds of constant curvature and we
discuss the case of Killing vector fields in the last section. The material of these
two sections is included in [5] where the reader will find explicit computations
and proofs.

2 First variation of the volume functional

If (M, g) is a smooth, connected, closed Riemannian manifold the set X*(M) of
all smooth unitary vector fields, if nonempty, can be endowed with a structure of
Fréchet manifold, compatible with its C™-topology, such that each V € X'(M)
is contained in a chart modelled in 7Y, the space of smooth vector fields in the
horizontal distribution determined by V and the metric. Namely we have

Proposition 1 If M is closed X1(M) is a Fréchet submanifold of the Fréchet
space X(M). If M is noncompact X1(M) is a LF-submanifold of the LF-manifold
X(M). :

Proof. Let us assume that M is closed, then adapted charts can be constructed
as follows: for each V € X'(M) take the decomposition X' (M) = HY @ V where
V is the 1-dimensional distribution spanned by V, with projection maps k and v,
respectively. It is easy to see that the map ¢y (X) = hX + (1 - g(X, X))V, when
resticted to the open neighbourhood of V Uy = {X € X(M) ; g¢(X,V) >0}, is
injective and verifies that X € X'(M)NUy if and only if oy (X) € HY Nney (Uy).
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Tf M is noncompact, by a procedure similar to that described in [6] for spaces
of smooth covariant tensor fields, X'(M) admits a structure of manifold modelled
on the space of vector fields with compact support, X.(M), with a topology
obtained as the inductive limit of Fréchet spaces. A(M) is a complete LF-
space and consequently a convenient vector space in the sense of [14] pg. 297.
For each V € A*(M) the decomposition X.(M) = HY & V. holds and, since
X.(M) is the disjoint union of subsets of the form X + A (M), with X € X.(M),
the chart @y described above, when resticted to the open neighbourhood of V
Uy ={X e V+ X (M) ; ¢(X,V) > 0}, has the properties needed to provide
an adapted chart. Therefore, the subset X*(M) is an LF-submanifold of X' (A1).

For a ¢losed M, the volume F(V) of an element V' € X}(M) (see [8]) is defined
to be the volume of V(M) when in T*M the usual metric g%, defined by Sasaki,
is considered. It can be described as follows: A

For a given vector field V its covariant derivative, VV, is a (1, 1)-tensor field
and we can construct the symmetric (1,1)-tensor field Ly = Id + (VV)! o VV;
here (VV)! =g~ o (VV)* 0 g and then for X,Y € X(M)

9(Lv(X),Y) = g(X,Y) + g(VxV,VyV).

A map f: XY (M) — C®°(M) can so be defined as f(V) = /detLy and then
the volume functional F : X(M) — R is given by F(V) = [, f(V)dv where dv
is the density on M defined by g.

Since the metric on M induced by the immersion V : M — (T'M, ¢°) is given
by h(X,Y) = g(Ly(X),Y),the volume of V is the volume of the Riemannian
manifold (M, h}, that is to say the volume of the immersion V.

By developping the determinant of Ly, one can see that for every vector field
F(V) > vol(M, g) with equality only if V is parallel or, equivalently, if and only
if the map V : (M, g) — (T*M, ¢%) is an isometric embedding.

The first variation of F' has been computed in [5].

Proposition 2 ([8]) Let V € XY M) be a unitary vector field and let A €
Ty XY M) = HY be a tangent vector. The tangent map to F at V acting on
A is given by

@R = [ N
and (Ty f)(A) = tr(Ky o VA), where Ky = f(V)Lj* o (VY.
Now, it is easy to see that
tr(Ky o VA) = —wy (A4) — dava,

where wy = (C}VKy), § represents the divergence operator of g and aya =
g{Ky(A4)). Then
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Proposition 3 ([5]) Let V € XNM) be a unitary vector field and let A €
Ty XY (M) = HY be a tangent vector. The tangent map to F at V acting on
A can be written as

(Ty F)(A) = — /M wy(A)dv.

This result suggest the following definition valid for a general M, not assumed to
be neither compact nor boundaryless.

Definition 1 ([5]) 4 unitary vector field V € X' (M) isseid to be critical if and
only if the 1-form wy annihilates HY, or equivalently, if and only if the vector
field Xv, given by wy = g(Xy), is in the distribution V determined by V.

The condition above means that (Ty f)(A) = —Say 4 and so, if M is closed it
is equivalent to V being a critical point of F and if M is compact with nonempty
boundary then V is a critical vector field if and only if for each A € HY

(@F)A) = [ f(V)a(A (VV 0 L) (m))dv.

If M is noncompact but V € A'(M) has finite volume, the funcional F' can
be defined in X1(M) NV + X.(M) and then the tangent map (TvF) : HY — IR
vanishes if and only if V' is a critical vector field.

The energy E(V) of a unit vector field V, in a closed manifold, can be defined
as the energy of the map V : (M, g) — (T*M, ¢%). In [17], Wood has shown that
the corresponding functional is given by

2EWV) = /M |VV2dv + nvol(M, g).

The energy of V is, up to constants, also known as the bending B(V) of V
(see [2] and [16]) that is given by

(n — 1)vol(S")B(V) = /M [VV|2dv.

A critical point of F is called a harmonic section of the unit tangent bundle
and can be characterized as follows:

Proposition 4 ([17]) The unit vector field V is a harmonic section of the unit
tangent bundle if and only if V*VV = |VV[*V, where V* represents the formal
adjoint of V.

It is worth noting that harmonic sections of the unit tangent bundle are sub-
stantially different from vector fields associated by the metric fo harmonic one
forms.
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3 The case of constant curvature spaces

1t will be useful for the sequel to write the condition for a unit vector field to be
critical using adapted orthonormal references.

For V € XY M), let {E; },_1 be a local orthonormal reference such that E, =
Vand B; € HY forie {1,...,n—1}. '

If we denote G¥; = g(Vg,E. Ek) then (VV)! = GY,, using the fact that G =
—~G4,, we obtain that (VV)? = 0 and for the nonvanishing components of VV we
will use the notation (VV)’ =~HI (VV)Y = A/, withi,5 € {1,...,n—1}; the
symmetric part of H is the second fundamental form of the distribution HY and
VyV =Y ; AE;. It is easy to see that if R denotes the curvature tensor then

Lemma 1 ([5])For any unit vector field in a Riemannian manifold
Ei(G%) = Ei(G) + Riger + )_{G3 Gl — GuGhy — GGl + GGR}
{=1

and in particular for‘lii, hke{l,...,n—1}
n-~1
E;(HE) = Ey(HF) + Ryjin + A*(HI — Hi)+ > _{G4H} — G5 H! - GLH} + G% Hf ).
i=1
Now, the components of Ly are L} = 6§ + u(VV)E(VV)E and those of Ky
are K = fS(VV)i(Ly1)L, in particular K3 = 0. Since the 1-form wy can be

computed as
‘ wy(X) = Zg((VE,Kv)(X) Ej),

it is easy to see that w; = X, {E;(K7)+ k(G LK’“ G;?,-Ki)} and we have proved

Proposition 5 ([5]) A unitary vector field is critical if and only if

Z{E (K7) +Z( kKk fzKi)} =0,

forallie {1,...,n—1}.

First example is that of a vector field defined only on the non complete man-
ifold M = S™ — {~ps}. In [15], Pedersen has constructed for any dimension
unit vector fields, of exceptionally small volume, defined on the sphere minus one
point. In particular, for S+ with m > 2 their volume is lower than the vol-
ume of Hopf vector fields and she conjectured that this value is the not attained
infimum of the volume of unit vector fields in this case.

For vy € T,,,S™, a vector field V on M is defined in [15] by taking V(p) as the
element of 7,5 obtained by parallel translating vp along the great circle of S*
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passing through pp and p. To compute the tensor field involved in the condition
for a vector field to be critical it will be useful to have the explicit expression of
V; to do so, we can assume, without lost of generality, that po = N = (0,...,1)
and so M = 5™ — {S} with S = (0,...,~1).

Lemma 2 ([5]) Let vq € TyS™ be a unit vector, the corresponding vector field V
in M is given by

i)
V(p) =< Up, P > (}L('p);ﬁ - W;p) + vy,

where p = Z}c‘,ﬂpka—fﬂp and h(p) = —(1 + pns1) "

Using this expression it is possible to compute explicitly all the terms involved
in the condition of Proposition 5 in order to obtain

Theorem 1 ([5]) Any vector field defined as above is critical.

The proof is long and thecnical and show us that, although the condition for a
vector field to be critical is easy to state, the 1-form wy is difficult to compute, in
practice, if no additional assumptions on V are made. Since it is known that Hopf
vector fields on spheres are critical (see [11}), in order to decide which conditions
on V are the most convenient, it would be useful to have them as a model. We can
remember, for instance, that they are unit Killing vector fields or, equivalently,
that they define a totally geodesic foliation with bundle-like metric. For that kind
of vector fields the map f(V) is completely determined by the curvature:

Proposition 6 ([5]) If V is a unit Killing vector field then (VV)! o VV =
R(V's sV)‘

In particular, if M has constant curvature the only relevant components of K are
equal, up to a constant factor, to those of H and then one can use Lemma 1 and
Proposition 5 to obtain the following result

Proposition 7 ([5]) Let M be a manifold of constant sectional curvature k.
Every unit Killing vector field is critical. Moreover, f(V) = (k+ 1)"T and
F(V) = (k+ 1) vol(M). :

It is worth noting that if a Riemannian manifold of constant curvature k ad-

mits a distribution V such that V and H have both vanishing second fundamental
- form, then k¥ > 0 and k = 0 would implie both distributions being involutive;
therefore the manifold would be, locally, a Riemannian product ([3], [7]). On the
other hand, the existence of a unit Killing vector field in a manifold of positive
curvature implies that the dimension must be odd (see [9]). Consequently, apart
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from the trivial cage of parallel vector fields, the hypotheses of proposition above
imply £ > 0 and n = 2m + 1. ‘

In view of the corresponding results in [8] and [11], Proposition 7 provides
essentially new information only in the case where the manifold is not complete.
In fact, if we assume, moreover, M to be complete then M should be a quotient
of $¥™*! and, accordingly to [10], the lift of the vector field must be a Hopf vec-
tor field. Since it was known that the Hopf vector fields on S*™*+! have volume
2myol(S?™+1) ([8]) and that they are critical ([11]), proposition above could be
seen as a slight generalization and an extremely simple new proof of these re-
sults. The merit is, however, that as the method is purely local, no completeness
assumption is needed. '

4 The case of Killing vector fields

In a general manifold not every unit Killing vector field is critical but the following
result provides an equivalent condition where only first order derivatives of V
appear.

Theorem 2 ([5]) Let V be a unit Killing vector field then V is critical if and
only if the 1-form py annihilates HY where py(X) is defined as the trace of the
(1,1)-tensor field that maps each Z to

R((L7* o VV)(X), (L7t o VV)(2), V) + R((VV 0 L7* o VV + Id)(X), L7*(Z), V).

It is commonly said concerning this problem that best organized vector fields
are rewarded by small volume; we can see now that even for a well organized
vector field it is necessary, at least, to be well adapted to the ambient.

This curvature condition is trivially satified when VV = 0 and when M
has constant curvature. It is known that if V is the characteristic vector field
of a Sasakian manifold it is a unit Killing vector field and that for all vector
fields X, Y the curvature satisfies R(X,Y,V) = g(¥, V)X — g(X, V)Y in fact,
every unit Killing vector field on an odd-dimensional manifold with this curvature
property is the characteristic vector field of a Sasakian manifold (see [1], pg.75).
Consequently we have the following

Corollary 1 ([5]) The characteristic vector field of a Sasakian manifold is crit-
ical.

In the three cases mentioned above, the vector field V satisfies the curvature
condition R(X,Y,V)=0forall X,Y € HY; examples of unit Killing vector fields
with this property, and therefore critical, can be found (see [9]) on a compact
quotient of the generalized Heisenberg group where no Sasakian structures exists

(14D
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The curvature condition jy (") = {0} is, of course, more general and, unlike
the constant curvature case, the existence of such a vector field, in general, does
not implie any restriction on the dimension and, only sectional curvatures of
planes containing V have to be nonnegative.

For three and four dimensional manifolds it is shown in [5] that the condition
is equivalent to py (H") = {0} where py is the 1-form related to the Ricci tensor p
by pv(X) = p(X, V). The proof makes use of the hypothesis on the dimension in
a very specific form, so one does not necessarily expect to obtain the same result
in other dimensions. A better understanding of the condition fy(H") = {0}, of
the theorem, is by the moment an open question.

References

[1] D. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in
Math. 509, Springer-Verlag, Berlin, 1976.

[2] F.G.B. Brito, Total bending of flows with mean curvature correction,
Preprint, 1997.

[3] F.J. Carreras, Linear invariants of Riemannian almost-product manifolds,
Math. Proc. Camb. Phil. Soc. 91 (1982), 99-106.

[4] L.A. Cordero, M. Fernindez, M. de Ledn, Examples of compact almost con-
tact manifolds admitting neither Sasakian nor Cosymplectic structures, Att:
~ Sem. Mat. Fis. Univ. Modena XXXIV (1985-86), 43-54.

[5] O. Gil-Medrano, E. Llinares-Fuster, Critical unit vector fields, Preprint,
1997.

[6] ©. Gil-Medrano, A. Montesinos Amilibia, About a decomposition of the
space of symmetric tensors of compact support on a Riemannian manifold,
New York J. of Math. 1 (1994), 10-25.

[7] O. Gil-Medrano, A.M. Naveira, Some remarks about the Riemannian cur-
vature operator of a Riemannian almost-product manifold, Rev. Roumaine
Mat. Pures Appl. 30 (1985), 647-658.

[8] H. Gluck, W. Ziller, On the volume of a unit vector field on the three sphere,
Comment. Math. Helv. 61 (1986), 177-192.

[9] J.C. Gonzélez-D4vila, M.C. Gonzdlez-Dévila, L. Vanhecke, Reflections and
isometric flows, Kyungpook Math. J. 35 (1995), 113-144.



On the volume functional in kthe manifold of unit vector fields 163

[10] D. Gromoll, K. Grove, One dimensional metric foliations in constant curva-
ture spaces, in Diff. Geom. and Complex Analysis, Rauch Memorial Volume,
165-168, Springer, Berlin, 1985.

[11] D.L. Johnson, Volume of flows, Proc. Amer. Math. Soc. 104 (1988), 923-932.

{12] D.L. Johnson, P. Smith, Regularity of Volume-Minimizing Graphs, Indianc
Univ. Math. J. 44 (1995), 45-85.

{13] D.L. Johnson, P Smith, Regularity of Mass-Minimizing one-dimensional foli-
ations, in Analysis and Geometry in Foliated Manifolds, X. Masa, E. Macias-
Virgds and A. Alvarez-Ldpez (eds.}, 81-98, World Scientific, Singapore, 1995,

[14] A. Kriegl, P. Michor, The Convenient Setting of Global Analysis, M.S.M.
vol. 53, Amer. Math. Soc., Providence, 1997.

[15] S.L. Pedersen, Volumes of vector fields on spheres, Trans. Amer. Math. Soc.
336 (1993), 69-78.

[16] G. Wiegmink, Total bending of vector fields on the sphere S®, Differential
Geom. Appl. 6 (1996), 219-236.

[17] C.M. Wood, On the Energy of Unit Vector Fields, Geom. Dedicata 64 (1997),
319-330.

Departamento de Geometria y Topologia, Universidad de Valencia
¢/ Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain

E-mail address:
Oiga.GilQuv.es






Proceedings of the Workshop on Public. Depto. Geometria y Topologia
Recent Topics in Differential Geometry Univ. Santiage de Compostela {Spain)
Santiago de Compostela (Spain) n® 89 (1998}, 165-176

GEODESIC SPHERES, TUBES AND SPACE FORMS

J. Gillard and L. Vanhecke

1 Introduction

It is well-known (see }13]) that for a Riemannian manifold (M™, g) of dimension
n > 3, the small geodesic spheres are (locally) symmetric if and only if the man-
ifold M is a real space form. Since local symmetry is a rather strong geometric
property, it is natural to look for the class of manifolds all of whose small geodesic
spheres satisfy some weaker condition. In fact, this problem fits within the fol-
lowing more general project: suppose we have a Riemannian manifold (M, g)
considered as the ambient space of a family of geometrical objects. Study the
mutual influence between the geometry of the ambient space and the geometry of
the family of objects in that space. (See also [10] and [11] in these proceedings.)
Here, we will take as objects either small geodesic spheres or small geodesic tubes
(i.e., tubes about geodesics). With respect to the geometry, we will mainly focus
on curvature properties. ‘

- Now, taking locel homogeneity instead of local symmetry, we could try to
clagsify the Riemannian manifolds all of whose geodesic spheres are locally ho-
mogeneous. From [2, Proposition 3] we know that if the sufficiently small geodesic
spheres are locally homogeneous, the ambient manifold is a harmonic globally Os-
serman space. Recall that harmonic spaces are characterized for example by the
property that their small geodesic spheres have constant scalar curvature (when
dim M > 3), whereas a space is called globally Osserman if the Jacobi operators
R, = R(.,v)v (with v an arbitrary unit vector) have globally constant eigenval-
ues. The Osserman conjecture now states that every globally Osserman space is
locally isometric to a two-point homogeneous space. So, if this conjecture really
holds, it would already imply that the manifolds with locally homogeneous small
geodesic spheres are the two-point homogeneous spaces (up to local isometry).
Furthermore, there was also the conjecture of Lichnerowicz which said that every
harmonic space is locally isometric to a two-point homogeneous space. This is
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Key words ond phreses. Geodesic spheres, tubes about geodesics, space forms, semi-
parallel and Ricci-semi-symmetric hypersurfaces, Kihler manifolds, quaternionic Kihler mani-
folds, Sasakian manifolds.
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true for dim M < 4 and for compact manifolds with finite fundamental group
[26]. On the other hand, counterexamples in the non-compact case are given by
the Damek-Ricci spaces [14]. These are the only known counterexamples and
they are globally Osserman spaces if and only if they are symmetric [4]. So,
it is worthwhile to determine which of the globally Osserman spaces are har-
monic. Because of the results about the Osserman conjecture, only the cases
where dim M = 4k, k > 1 remain open. For all the other cases we obtain, up to
local isometry, the two-point homogeneous spaces. See [15] for more details. Con-
versely, it is clear that two-point homogeneous spaces have homogeneous geodesic
spheres. Finally, we remark that all this remains true when local homogeneity is
replaced by the weaker condition of curvature homogeneity [2].

The next obvious step is to consider geometrical properties that are stronger
than local homogeneity but still weaker than local symmetry.

Ready candidates are in the first place the weak symmetry and the g.o. prop-
erty, the latter being weaker than the first (see [1] and [3] for a proof of this).
Recall that a space is weakly symmetric [6] if for any two points there exists an
isometry of the space interchanging the two points. A g.0. space [23] is defined as
a Riemannian manifold such that every geodesic is an orbit of a one-parameter
group of isometries. G.o. spaces and weakly symmetric spaces are homogeneous.

Other candidates are spaces having the C-property [5] (that is, for every
geodesic v, the eigenvalues of the Jacobi operator R, are constant along ) and
D’Atri spaces, that is, the local geodesic symmetries are volume-preserving up to
sign (see [22] for a survey). The C-spaces, and also the D’Atri spaces, form a class
which is strictly broader than that of the g.o. spaces [4]. But, in contrast, it is
still an intriguing open problem whether they are in general locally homogeneous
or not. We refer to {22}, [29] for a survey on this and other related problems.

Nevertheless, prescribing one of those four properties to all small geodesic
spheres makes that the ambient space has to be locally isometric to a two-point
homogeneous space. The converse also holds: all small geodesic spheres in a two-
point homogeneous space are weakly-symmetric, g.o., C- and D’Atri spaces. See
{1], [2] and [6] for details and further references. Since all of these spaces have
a cyclic-parallel Ricci tensor, it is interesting to mention the following unifying
fundamental result [13, Theorem 12.8}:

Proposition 1.1 A Riemannian manifold (M™,g) (with n > 3) is locally iso-
metric to a two-point homogeneous space if and only if the Ricci tensor of any
small geodesic sphere is cyclic-parallel (or equivalently, is a Killing tensor).

Another property weaker than local symmetry is that of semi-symmetry. This
is a pointwise algebraic condition saying that at each point of the manifold, the
curvature tensor is the same as that of some symmetric space. This “model”
space may vary with the point. See [9] for a comprehensive treatment. So, it is
natural to ask
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Question 1.2 Which are the Riemannian manifolds all of whose small geodesic
spheres are semi-symmetric ?

Obviously, this class of manifolds must contain the real space forms, but
it is not clear in advance whether it is larger or not. In [8], this question is
solved by considering the notion of Ricci-semi-symmetry, that is, the condition
Ryy « p = 0 holds for arbitrary vectors X,Y, the curvature operator acting
as a derivation. This last condition is a consequence of Rxy - B = 0 which
defines semi-symmetric spaces in an analytic way, Hence, semi-symmetry implies
Ricci-semi-symmetry. The extrinsic analogon of this notion is provided by that
of semi-parallelity [12], which is defined analytically by Rxy - & = 0, where &
denotes the second fundamental form of the hypersurface.

Taking into account the geodesic tubes as well, we now have the following

Question 1.3 Which are the Riemannian manifolds all of whose geodesic spheres
or geodesic tubes are Ricci-semi-symmetric or semi-parallel ?

The aim of this short survey is to summarize the answers to this question
(Section 3). Furthermore, we consider related problems, in the sense that we
add some structure to the Riemannian manifold and then study conditions of
Ricci-semi-symmetric or semi-parallel type adapted to the geometry determined
by that additional structure. More specifically, in Sections 4, 5, 6, we look at
Kihler, quaternionic Kihler and Sasakian spaces. In all these cases we find
characterizations for the corresponding space forms.

2 Preliminaries

Let (M™, g) be an n-dimensional, smooth, connected Riemannian manifold. De-
note by V its Levi Civita connection and by R and p the corresponding Riemann
curvature and Ricci tensor, respectively. We use the following sign convention for
R:

Rxy = Vixy; — [Vx, Vvl

for all tangent vector fields X, Y on M.
We denote by G,(r) the geodesic sphere with center m and radius r, that is,

Gm(r) ={p € M|d(m,p) =r}.

It is always supposed that r < i(m), the injectivity radius at the point m € M.
Because of this, G,,(r) is a hypersurface of M and these geodesic spheres are
frequently called small geodesic spheres. Note also that G,,(r) = exp,,(S*1(r)),
where 5"~}(r) = {x € T,,M |||z]| = r} is the sphere of radius r in the tangent
space to M at m. So, for any point p € G,,(r), there exists a unique unit
vector u € T, M such that p = exp,,{ru). This vector determines a unique unit
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speed geodesic « defined by y(t) = exp,,(tu). This geodesic connects the point
p on the sphere with the center m and is called a geodesic ray. Because of the
Gauss Lemma, tangent vectors to G, (r) at p are just tangent vectors to M at p,
orthogonal to the geodesic ray +.

A geodesic tube of radius r, denoted by P,(r), is a tube about a geodesic o :
[a,8] — M (the axial curve of the tube). The geodesic tubes we consider are
also frequently referred to as small geodesic tubes since the radius 7 is always
supposed to be smaller than the distance from ¢ to its nearest focal point. For any
point p € P,(r), there exists a unique point m on the axial curve o and a unique
unit tangent vector u to M orthogonal to ¢ at m such that p = exp,,(ru). As
above, this vector v determines a geodesic ray -y and this ray cuts the axial curve
o orthogonally at m. Also here, tangent vectors to the tube P,(r) are tangent
vectors to the manifold M at p which are orthogonal to the geodesic ray v. We
refer to [13], [19], [28] for a detailed treatment of the geometry of geodesic spheres
and geodesic tubes and also for further references.

3 General Riemannian manifolds

As already mentioned, a Riemannian manifold is said to be Ricci-semi-symmetric
if the contracted semi-symmetry condition Rxy - p = 0 is satisfied for arbi-
trary vectors X,Y. Here, R acts as a derivation, that is, (Rxy - T)HZ, W) =
~T(RxyZ,W) — T(Z,RxyW) where T is a (0,2)-tensor. A hypersurface M
of a Riemannian manifold is semi-parallel if it satisfies Rxy + & = 0 for arbi-
trary tangent vectors to M. Here, & denotes the second fundamental form of the
hypersurface.

Prescribing one of these conditions to the geodesic spheres or tubes of a Rie-
mannian manifold influences the geometry of the ambient manifold in a consider-
able way, except for some low-dimensions where they become meaningless. This
is obviously so for both notions when the ambient manifold is two-dimensional. If
it has dimension three, the hypersurfaces are two-dimensional and hence, always
semi-symmetric. So, in this case alsa Ricci-semi-symmetry becomes irrelevant.

A summary of the results, proved in [8], is given by

Theorem 3.1 Let (M",g) be an n-dimensional Riemannian manifold. Then the
following statements are equivalent:

{a) oll geodesic spheres are locally symmetric (n > 3);

(b) all geodesic spheres are semi-symmetric (n > 4);

(c) all geodesic spheres are Ricci-semi-symmetric (n > 4);

(d) all geodesic spheres are semi-parallel (n > 3);

(e) (M, g) is a real space form.
This also holds for geodesic tubes.
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Moreover, we remark that for geodesic tubes and n > 4, it is sufficient to take
X,V in the defining conditions above as so-called horizontal tangent vectors to
the tubes, that is, in addition to being orthogonal to the geodesic ray v, they are
also orthogonal to the parallel translate along + of the velocity vector of the axial
curve o at the point where it cuts . In terms of the notations in Section 2, this
means that the vector X € T,P,(r) has to be orthogonal to the parallel translate
along v of &(m).

Complete proofs of these tesults can be found in [8]. Here, we will only sketch
the general idea of the method and techniques. Modulo some adaptations specific
to the additional geometric structure, this idea of proof is also relevant for the
next sections where we consider the space forms in the framework of Kéhler,
quaternionic and Sasakian geometry.

Proof.  Suppose that the properties of the geodesic spheres are imposed dnd
that we want to derive curvature information about the ambient manifold. A
way to do this, is by letting the geodesic spheres shrink towards their center
point. As such, the information given by the properties at points of the sphere is
transferred to information about the manifold at the center point of the sphere.
More specifically, we know that R-j = 0 = R-& at arbitrary points p €

G (r). Considering m as the limit point of G,.(r) for r — 0, we want to obtain
information on R at m. This limiting process is expressed analytically by using
series expansions of R, p, & in terms of the radius r, with coefficients related to
the curvature of the ambient manifold at m. In fact, the expansions are given
in [13] for the components Rupea(p), fas(p), Gas(p) with respect to a suitable
parallel orthonormal frame field {F,(r)|a = 1,...,n} along the geodesic ray vy
connecting m with p. Suitable in this context means that we take Ey = v,
because in this way T, Gm(fr) is simply spanned by {Ej, ..., E,}{r). By means of
this, we compute the series expansions of (R - §)ea and (R b 0 )ed UP tO some
order. Then, we know that the terms of this expansion vanish and from this
we obtaln curvature information about the ambient manifold at the point m.
Making specific choices for @,b,¢,d and manipulating the obtained expressions
(e.g., polarizing, contracting) simplifies them and makes it possible to use known
characterizations of space forms to prove the required results.

For the geodesic tube case, the idea of proof is similar. The main difference
is that here the direction of the axial curve plays an important role. Indeed, the
parallel orthonormal frame field along the geodesic ray v between m and p {see
Section 2 for the notations) is taken with F; =+’ and E; = the parallel translate
of 6(m) along y. Clearly, this gives rise to the notion of horizontal tangent vectors
to the tubes. These are spanned by {Fs, ..., E,}(r).

Conversely, suppose that we know that the ambient manifold is some kind of
space form. Then we have complete expressions for the curvature tensor R of the
manifold and we can compute the Jacobi vector fields along geodesics. From this
we calculate the second fundamental form & of the spheres and tubes (see [28]).
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‘The Gauss equation then yields an explicit expression for R and contracting this,
for §. So, combining these, we obtain explicit expressions for R . j and R-& and
then we just verify the Ricci-semi-symmetry and semi-parallelity conditions.

4 Kahler manifolds

Let (M", g, J) be a Kéhler manifold, that is, J is a (1, 1)-tensor field on M such
that
Q) =1, g(JX,JY) = g(X,Y), VJ =0

for all tangent vector fields X, Y on M. A Kihler manifold is said to be a complex
space form if it has constant holomorphic sectional curvature K (u, Ju). (See [30,
Chapter I} for more details.)

As indicated in the Introduction, the project is to investigate also the meaning
of the Ricci-semi-symmmetry and semi-parallelity conditions for this type of mani-
folds. First of all, we state: which are the Kihier manifolds all of whose geodesic
spheres or tubes are Ricci-semi-symmetric or semi-parallel 7 But, in view of the
results in the previous section, these must have constant sectional curvature and
then it is known [30, Proposition 4.3] that they are flat. This means that Ricci-
semi-symmetry and semi-parallelity as such are too strong conditions for Kéhler
manifolds. So, we look for slightly modified versions. A natural way to do this,
is to consider the expressions

(2) Ryy - b,
(3) Ryy -6

for specific directions of the vectors X, Y, possibly at special points of the sphere
or tube.

To get an idea of the modifications we shall make, we compute (2) and (3) for
complex space forms, This is done as explained in the second part of the proof
in Section 3. First, we obtain that the second fundamental form of a geodesic
sphere in a complex space form looks like

g=Agtun®mn,

where A, p are radial functions and 7 is a one-form on the sphere, metrically
related to the Kéhler structure by n(X) = ¢(X, Jv])) for tangent vectors X at p
and v the geodesic ray leading to p. Moreover, for geodesic fubes, this formula
holds at so-called special points. These are points for which the geodesic ray v is
“J-related” to the axial curve 0. More specifically and with the notations of Sec-
tion 2, this means that ’y![m = J& . Furthermore and both for geodesic spheres
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and tubes, (2) and (3) vanish if the vectors X,Y, tangent to the sphere or tube
(at special points), belong to the kernel of 7, that is, they are orthogonal to 'y’]p
and its J-related vector Jv),. We call them horizontal tangent vectors. Remark
that for tubes at special points, this notion corresponds to the one introduced in
Section 3 for general Riemannian manifolds.

Summarizing, we have that for geodesic spheres in a complex space form
the expressions (2) and (3) vanish for horizontal tangent vectors X,Y to the
spheres. Geodesic spheres having these properties are called respectively hori-
zontally Ricci-semi-symmetric and horizontally semi-parallel. For geodesic tubes,
this is true at special points.

The converse is answered by the following (see [16])

Theorem 4.1 Let (M™,g,J), n > 4, be a Kdhler meanifold. Then the following
statements are all equivalent:

(a) oll geodesic spheres are horizontally Ricci-semi-symmetric;
(b) all geodesic spheres are horizontally semi-parallel;

(c) (M,yg) is a complex space form.

This also holds for geodesic tubes at special points.

For detailed proofs, we refer to [16]. Concerning the frame field {E,(r)}2.,
mentioned in the sketch of proof in Section 3, this is chosen such that the notions
of herizontality and special points can be expressed in a natural way with respect
to if.

5 Quaternionic Kdhler manifolds

Now, suppose that (A, g} is a quaternionic Kihler manifold [21], that is, there
exists a three-dimensional bundle V' of tensors of type (1,1) over M such that
locally the bundle V has a basis of almost Hermitian structures {Jy, Jy, Jo} sat-
isfying
(4) JiJj = —=J;J; = Jy,

VxJo = r(X)Jr —¢(X)Js,
() VxJi = —r(X)Jo+p(X)Jz,

Vxdo = ¢(X)Jo—p(X)1,
where (2, 7, k) is a cyclic permutation of (1,2,3) and p, ¢, 7 are local one-forms.
Such a basis is called adapted. 1t follows that dim M = 4m. As is well-known,

for n > 8, M is an Finstein manifold {21]. A quaternionic Kéhler manifold
is a quaternionic space form if it has constant Q-sectional curvature, that is,



172 J. Gillard and L. Vanhecke

the sectional curvature K(Y,Z) with ¥, Z € Q(X) = span{X, X, h X, Lo X}
is constant for all tangent vectors X,Y,Z. For more details, we refer to [30,
Chapter III].

Because of similar reasons as in the previous Section, the notions of Ricci-
semi-symmetry and semi-parallelity are too strong and need to be modified. In
fact, we introduce analogous notions of horizontal vectors and special points.

First, for quaternionic space forms, the second fundamental form for geodesic
spheres may be written as

2
(6) F=Ag+ ) Vi ®m,

=0

where A, v (¢ = 0,1,2) are radial functions and the 7; are one-forms on the
spheres, defined by 7;(X) = g(X, Ji'y’lp) for tangent vectors X at p and v the
geodesic ray leading towards p. For geodesic tubes, all of this also holds at special
points. The definition here is quite similar to that in the Kéhler case; it are are
points for which the geodesic ray 7 is J-related to the axial carve ¢ for some
J € V(m). A tangent vector to a sphere or tube is called horizontal if it belongs
to the kernel of y, 1, and 1, that is, the tangent vector has to be orthogonal to
Jv), for all J € V(p).
With these definitions, we have (see {17])

Theorem 5.1 Let (M™,¢,V), n > 8, be a quaternionic Kdhler manifold. Then
the following statements are oll equivalent:

(a) all geodesic spheres are horizontally Ricci-semi-symmetric;
(b) all geodesic spheres are horizontally semi-parallel;
(c) (M,g) is a quaternionic space form.
The coefficients v; in the formula of the second fundamental form for geodesic

spheres are in fact equal to one another. Since this is not the case for geodesic
tubes, the theorem becomes more technical. Here, we have

Theorem 5.2 Let (M™,g,V), n > 8, be & quaternionic Kdahler manifold. Then
M s a quaternionic space form if and only if its geodesic tubes satisfy one of the
conditions

(Bxy -8)zw =0 or (Bxy-plzw=0

for all horizontal tangent vectors X,Y, Z and every tangent vector W to the tubes
at any special point,
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6 Sasakian manifolds

Let (M™,g,0,&,7n) be a Sasakian manifold. A characteristic property for this
type of manifolds is that they admit a unit Killing vector fleld £ such that the
Riemann curvature tensor satisfies the condition

Rxy€ =n(X)Y —9(Y)X

for all vectors tangent to M. Here, n denotes the metric dual one-form of ¢
defined by 7(X) = g(X,£). The (1, 1)-structure tensor ¢ is defined by ¢ = —V¢.
In the Sasakian context, a vector is called horizontal if it belongs to the kernel of
7. So, they are orthogonal to the characteristic vector field £. Since this vector
field is Killing, its integral curves are geodesics, called £-geodesics. They also
determine the fibers of a local fibration of the Sasakian manifold over Kihlerian
base spaces [24]. Further, a geodesic which is orthogonal to ¢ at one of its points,
stays orthogonal to £ at all of its points. Such geodesics are called p-geodesics or
horizontal geodesics. A Sasakian manifold is said to be a Sasakian space form if
it has constant @-sectional curvature K(u, @u), u being a horizontal unit vector.
For more details and background, we refer to [7], [30, Chapter V].

It is known {25], [27] that a locally symmetric Sasakian manifold has constant
sectional curvature 1. So, if a Sasakian manifold has constant sectional curvature,
then it is automatically equal to 1. Therefore, also here the notions of Ricci-semi-
symmetry and semi-parallelity in their criginal form are too strong.

First, we introduce the special points at which the conditions will be con-
sidered. (See [18].) For geodesic spheres, these are the intersection points with
@-geodesic rays, called ¢-geodesic points. Depending on the direction of the axial
curve o of the geodesic tube, we have the following: if ¢ is a (-geodesic, then the
tube is called a @-geodesic tube and for these tubes we consider so-called w-special
points. This notion is defined analogously to that of special points in the Kéhler
case, in the sense that here the geodesic ray leading to the @-special point, has to
be “p-related” to the axial curve. If the axial curve is a §-geodesic, then the tube
is called a &-geodesic tube and here arbitrary points are considered. But, since in
this case any geodesic ray is a p-geodesic, they are in fact @-geodesic points.

Now, if the ambient manifold is a Sasakian space form of dimension n > 5,
the second fundamental form of geodesic spheres or tubes at the respective points
as introduced above, is explicitly known and can be written in the form

(7) F=ag+Bn®n+év@rv+an@r+earern,

where v is the (0, 1)-tensor on the sphere or tube defined by v(X) = g(X, (1))
and @, 3, 6, €1, €, depend only on the radius r.

By means of this, it is straightforward to compute (2) and (3) explicitly and
then it follows easily that these expressions vanish for horizontal vectors X, Y that
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belong also to the kernel of v. These tangent vectors to the sphere or tube are
called strictly horizontal. Geometrically, they are tangent vectors of the manifold
orthogonal to {7, ¢, £} at the point considered on the sphere or tube.

The results in the Sasakian case are now summarized by the following

Theorem 6.1 Let (M™,g,0,£,7), n > 5, be a Sasakian mam’fold.. Then the
following statements are equivalent:

(a) all geodesic spheres are strictly horizontally Ricci-semi-symmetric at -
geodesic points;
(b) all geodesic spheres are strictly horizontally semi-parallel at p-geodesic points;

(¢) all p-geodesic tubes are strictly horizontally Ricci-semi-symmetric at -
special points;

(d) all p-geodesic tubes are strictly horizontally semi-parallel at -special points;
(e) all &-geodesic tubes are strictly horizontally Ricci-semi-symmetric;
(f) all &-geodesic tubes are strictly horizontally semi-parallel;

(g) (M,g) is a Sasakian space form.

Complete proofs are given in [18].
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LOCAL HOMOGENEITY IN FLOW GEOMETRY

J. C. Gonzédlez-Dévila* and L. Vanhecke

1 Introduction

Riemannian manifolds equipped with a transitive pseudogroup of local isometries
are called locally homogeneous spaces. Clearly, such spaces have the property that
the volumes of sufficiently small geodesic spheres or balls only depend on the ra-
dius. Riemannian manifolds having this property are called ball-homogeneous
spaces [25]. It is still an intriguing open problem whether, in general, ball-
homogeneous Riemannian manifolds are locally homogeneous or not. We refer to
[36] for a survey and to [9], [10], [11], [16] for a list of partial results, obtained
recently, about this natural but difficult problem.

A Riemannian manifold is said to be harmonic if all sufficiently small geodesic
spheres are hypersurfaces of constant mean curvature [5], [12], [29], [34] and a
D’Atri space if its local geodesic symmetries are volume-preserving (up to sign)
(see [24] for a survey). All harmonic spaces are D’Atri manifolds and all D’ Atri
spaces are ball-homogeneous [21]. The known examples of these classes of spaces
are all locally homogeneous. Nevertheless, the converse problems have been for-
mulated but also only partial results are known. We refer to [23] where it is shown
that three-dimensional D’Atri spaces are indeed locally homogeneous and to [13],
[16] where partial answers are given for the four- and five-dimensional cases.

Ancther class of Riemannian manifolds where local homogeneity is also an
open problem it is that of the C-spaces. The C-spaces are introduced in [2]
(see also [1]) as Riemannian manifolds such that the eigenvalues of the Jacobi
operator are constant along each geodesic. Although their geometry shares some
properties with that of the D’Atri spaces (in particular, both classes coincide in
dimension two and three) they do not coincide in general. We note that the so-
called Damek-Ricci spaces [14] provide examples of D’Atri spaces which are not
C-spaces (see [1]). For more details and references about C-spaces we refer to [1],
21, {3].

The classification of C-, D’Atri and ball-homogeneous spaces in the framework
of Sasakian geometry has been treated in [16] where in all the cases considered one
obtained again local homogeneity. Moreover, the authors proved that Sasakian
harmonic manifolds are spaces of constant curvature 1.

* Supported by the Consejerfa de Educacién del Gobierno de Canarias
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Sasalkian manifolds are endowed with a unit Killing vector field. In a series
of papers, M. C. Gonzdlez-Ddvila and the authors have studied the geometry of
Riemannian manifolds equipped with such a vector field, generalizing in this way
many aspects of Sasakian geometry to what they called flow geometry. See [17],
[18] for the basic material, for some local and global classification results and for
a lot of examples.

The aim of this note is to give a brief survey of some aspects of the work done
by the authors relating to local homogeneify of the ball-homogeneous, harmonic,
C- and D’Atri spaces in the framework of flow geometry. We refer to {19}, [20] for
the complete details. First, in Section 2, we collect some needed definitions and
basic material about flow geometry. In Section 3, we sketch a proof of the fact
that any harmonic (M, g) equipped with a unit Killing vector field whose flow
is normal (see Section 2 for the definition) is a space of non-negative constant
sectional curvature. In the subsequent sections we consider the ball-homogeneity,
C- and D’Atri conditions in this framework and in particular for dimensions not
greater than five. It turns out that also here we find only locally homogeneous-
examples.

2 Preliminaries

Let (M, g) be an n-dimensional, connected, smooth Riemannian manifold with
n > 2. Furthermore, let V denote the Levi Civita connection of (M, g) and R the
corresponding Riemannian curvabure tensor with the sign convention

Ryy =V, v)~ V. Vvl

for U,V € X(M), the Lie algebra of smooth vector fields on M. p and 7 denote
the Ricci tensor and the scalar curvature, respectively.

A tangentially oriented foliation of dimension one on (M, g) is called a flow.
The leaves of this foliation are the integral curves of a non-singular vector field
on M and hence, after normalization, a flow is also given by a unit vector field.
In particular, a non-singular Killing vector field defines a Riemannian flow and
such a flow is said to be an isometric flow. See [32] for more information.

In this paper, we consider and denote by 8’,5 an isometric flow generated by
a unit Killing vector field £ The flow lines of 3& are geodesics and moreover, a
geodesic which is orthogonal to £ at one of its points, is orthogonal tc it at all of
its points. Such geodesics are called transversal or horizontal geodesics.

3’5 determines locally a Riemannian submersion. For each m € (M, g), let U
be a small open neighborhood of m such that £ is regular on Z4. Then the mapping
w:U — U =UJE is a submersion. Furthermore, let § denote the induced metric
on U given by

(s65,7)) = g, 7)
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for X,V € %({1) and where X*, ¥* denote the horizontal lifts of X, ¥ with respect
to the (n — 1)-dimensional horizontal distribution on U determined by 5 = 0, 7
being the dual one-form of £ with respect to g. Then 7 : (U, gp) — (U, ) is a
Riemannian submersion. Now, we shall use O’Neill’s integrability tensor A [28].
(See also [5].) Then we have

AxY =(VxY) =-AyX , g(AdxY.§) = —9(Ax¢.Y)

for U € (M), and {or horizontal vector fields X, Y. Here, V denotes the vertical
component.

Next, put HU = —Ap¢ and define the (0,2)-tensor field & by (U, V) =
g(HU, V), for all U,V € X(M). Then h is skew-symmetric because £ is a Killing
vector field. Moreover, we have

AXY = h(GY)E = sa(lX,YDE

So, we obtain h = —dn. Note that A = 0, or equivalently A = 0, if and only
if the horizontal distribution is integrable. In this case, since the flow lines are
geodesics, (M, g) is locally a product of an (n — 1)-dimensional manifold and a
curve.

The Levi Civita connection ¥V on (I, §) is determined by

(2.1) V.V = (Vg¥) +h(X", ¥*)¢
for X,V € X(1) and the curvature tensor R of (M, g) satisfies
(2.2) R(X,£,Y,6) = g(HX,HY) = —g(H*X,Y)

for all horizontal vector fields X, Y. Here we use the notation R(X,Y, Z,W) =
g(RxyZ,W). It follows that the &-sectional curvature K (X, £) of the two-plane
spanned by X and ¢ is non-negative for all horizontal X and since H{ = 0,
K(X,£) =0 holds for all horizontal X if and only if h = 0. Moreover, K (X, §) is
strictly positive for all X if and only if H is of maximal rank n — 1 in which case
7 is necessarily odd. Then 7 is a contact form and the flow {S"E is called a contact
Slow.

In what follows, we shall consider a special kind of flow Sf which appears
naturally in this framework. &5 is said to be a normel flow [17] if, for all horizontal
XY, the curvature transformations Rxy leave the horizontal subspaces invariant,
or equivalently, R(X,Y, X,£) = 0. Here, we note that a Sasakian manifold is a
Riemannian manifold equipped with a normal flow %ﬁ such that K(X,£) =1 for
all horizontal X (see [6] for more details). Moreover, if the £-sectional curvature
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is a non-vanishing constant k = ¢?, then H2X = —kX for horizontal vectors and
(M, c?g,c tH,c ¢, cn) is a Sasakian manifold.

{?5 is normal if and only if
(2.3) (VyH)Y = g(HU,HV)¢ +n(V)H*U

for all U,V € X(M). In this case the curvature tensor satisfies the following
identities [17]:

Ryv¢ = n(V)H?U —n(U)H?Y,
(2.4)

RyV = g¢(HU,HV)¢ +n(V)HXU
and
(2.5) RuyvW + RygyW = g(HV,W)H?U — g(HU,W)H*V
—g(H*U,W)HV + g(H*V,W)HU
+1(V)RpryeW = a(U)Rppy ¢ W

for all U, V,W € X(M). Hence, using also (2.1), it follows that the curvature
tensors of V and V are related by

(2.6) (Rgy2) = Rgupl*— g(HY*,Z*)HX*

+g(HX* Z*)HY* + 29(HX*, Y*)H Z*
for all X,¥,Z € X(U). This yields
(2.7) BX. V) = p(X*,Y")+29(HX* HY),
(2.8) o= 1+p(8)

Moreover, p(X, &) = 0 for each horizontal X. Using (2.7), we get
(29) (AT 2)) = (¥ gn)7", 2.

p is said to be 77-parallel if it satisfies the condition (Vxp)(Y, Z) = 0 for all
horizontal X,Y, Z. It follows from (2.9) that p is n-parallel if and only if 5 is
parallel on each base space (U, §). _ o B

Now, on U we consider the (11 lz—tensor field H defined by HX = 7w, HX*.
Then, %’6 is normal if and only if VH = 0. Furthermore, in that case, from (2.5)
and (2.6), we have on U : ) 5
(2.10) Rpgy = Rgypx-

Hence, it follows that
(2.11) PHzy + PHys =0
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for all tangent vectors z, y of M, or equivalently, by using (2.7), that fgz;+55.: =

0 for all tangent vectors Z,§ on each base space U.
Furthermore, we have

Proposition 2.1 [20] If (M, g) is a Riemannian manifold equipped with a normal
flow §g, then tr H 2k is a constant for each k > 1.

From this it follows (see [20]):

Corollary 2.2 Let (M, g) be a Riemannian manifold equipped with a normal flow
{y"é. If the €-sectional curvature is pointwise constant, then it is globally constant.

Corollary 2.3 On a Riemannian manifold (M, g) equipped with a normal flow
"3”,5 the rank of H is constant.

Now, we collect some facts about locally Killing-transversally symmetric spa~
ces. Let m € (M, g) and let 0 = 0,, : [-6, 8] — M be a geodesic flow line through
m = ¢(0) where § is sufficiently small. A local diffeomorphism s,, of M defined
in a neighborhood U of m is said to be a (local) reflection with respect to o if for
every transversal geodesic 7(s), where y(0) lies in the intersection of i and o,
we have (sp,07)(s) = v(—s) for all s with y(£s) € U, s being the arc length of
9. A Riemannian manifold (M, g) equipped with a flow 8¢ such that each local
reflection s, is an isometry, is called a locally Killing-transversolly symmetric
space (briefly, a locally KTS-space). In that case, (3”5 is necessarily normal. These
spaces may be characterized as follows,

Proposition 2.4 [17} (M, g,{?g) s a locally KTS-space if and only if the flow
35 s normal and moreover,

- (VxR)(X,Y, X,Y)=0
Jor all horizontal X, Y.

Proposition 2.5 [17] Let ¢ be a normal flow on (M, g). Then (M"g} S¢)isa

locally KTS-space if and only if each base space U of a local Riemannian submer-
sion m:U —U=U[E is a locally symmetric space.

Hence, (M, g, &f} is a locally K'TS-space if and only if S& is a normal flow which
is transversally modelled on a locally symmetric space or equivalently, according
to the terminology used in [33], 36 is a normal transversally symmetric foliation.

An important class of locally KTS-spaces, which have motived the study of
these spaces, 1s that of the locally p-symmetric spaces [31]. A locally ¢-symmetric
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space is a Sasakian manifold which is a locally KTS-space with respect to the
characteristic vector field of the contact metric structure (see [7] and [8] for more
details and references).

Furthermore, when the isometric flow ,’5’5 of a locally KTS-space (M, g, 3{) is
complete and the local reflections with respect to the flow lines can be extended
to global isometries, (M, g, 36) is said to be a (globally) Killing-transversally
symmetric space (briefly, a KTS-space). A complete, simply connected locally
KTS-space is a KTS-space. Moreover, any simply connected KTS-space is a
naturally reductive homogeneous space. (See [18] for more information about
these spaces.)

3 2-stein spaces and harmonicity

An Einstein manifold, that is, p = Ag, A = ,-7,%, is said to be a 2-stein space if

(3.1) " }: 2 b = 19(x, T)?

a,b=1

for-any tangent vector z at m and all m € M. Here, R o = g(Rzez,b) and

{es,@a = 1,...,n} is an arbitrary orthonormal basis of the tangent space T,, M.
In this cdse we have )

3.2 _..___( RI? + )

(3.2) b= T o\3 EI® + 1ol

(see for example [4], [12]).

As mentioned already, an (M, g) is said to be a harmonic manifold if all
geodesic spheres of sufficiently small radius are constant mean curvature hyper-
surfaces. Any harmonic manifold is a 2-stein space [4], [12]. We start with the
following theorem.

Theorem 3.1 [19] Let (M, g), dim M > 3, be a 2-stein space equipped with a
non-vanishing vector field & such that the sectional curvature of the two-planes
containing ¢ is pointwise constant. Then (M, g) is a space of constant curvature.

Since a 2-dimensional harmonic space has constant curvature (see, for exam-
ple, [4], [12], [35]), we get at once

Corollary 3.2 A harmonic space equipped with a non-vanishing vector field £
such that the {-sectional curvature is pointwise constant, is a space of constant

curvature.

Now, we state the following result. We always suppose dim M > 3.
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Theorem 3.3 [19] Let (M, g) be ¢ Riemannian manifold equipped with @ normal
flow. If (M,g) is a 2-stein space, then it is a space of (non-negative) constant
sectionel curvature.

From this result we then get at once

Corollary 3.4 A harmonic manifold which is equipped with a normal flow is a
space of (non-negative) constent sectional curvature.

Before giving a sketch of the proof of Theorem 3.3 we first mention

Lemma 3.5 [19] Let (M, g) be an Einstein manifold equipped with a normal flow
%'g and let # : U — U = U[E be a local Riemannian submersion determined by

,"5“{:. If U is locally irreducible, then U is an Einstein manifold and the &-sectional
curvature is constant on U.

Proof of Theorem 3.3. We shall prove that the 2-stein space (M, g), equipped with
a normal flow 36, has pointwise constant £-sectional curvature. Then the result
follows at once from Theorem 3.1.

So, assume the contrary, that is, suppose that the £-sectional curvature is not
pointwise constant. Then there exists a point m in M such that the &-sectional
curvature at m is not constant. In this case it follows from Lemma 3.5 that there
exists a small open neighborhood U/ of m such that U =U/¢ is reducible and we
may write f = U; X ... x U, where 4; is an Einstein space for each i=1,...,n
Put dimif; = n; and denote by 7, i = 1 ., 1, the scalar curvature of ;. Theu

an, =n — 1 and Zri = ¥, Moreover, we may assume that w‘— # 5 —f’— for i 7.
PES ) i=1
Applying (2.7), we get

(3.3) 2f= L= i=1,...,71

where ¢? is the &-sectional curvature K (X7, £) for all X7 € U;. Note that, because
of our assumption, we have ¢? # ,EF T

Next, let ¢ be an arbitrary umt horizontal vector at m € U and denote its
projection on If also by u. Let {ei;i=1,...,n} be an orthonormal basis of T, M
such that e, = £. From (2.6) we get

a,b=1

n--l » . .
(3.4) p= 3 R —6R, gu.q, + 10l Hull*.

Since this expression is independent of u, we can take u tangent to U; and also
tangent to U, for 4,5 € {1,...,7}, i # j, to obtain
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(3.5) u=10c}c.

From this it follows, since the &-sectional curvature is not constant at m, that I/
has exactly two factors. So, put & = Uy x U, and let Ry, respectively Rg, denote
the Riemann curvature tensor of 4y, respectively Uy, At i = w(m) € U we choose
an orthonormal basis {e;,i = 1,...,n — 1} such that e;,...,e,, span Ty Uy and
€nytls- s a1 SPAR Ty Uy Now, let uy be a unit vector of Ty, Then we have
from 1 2] [22], using the first Bldn(:hl identity and (2.10), that

f i R? du;, = Gt ( R + )
Sm1-11) abm1 luzau; b1 731(?11 +2) 1
fsm-xm By frugs o 1 = Tl +2)

- Coi1 B _
4  _Zmml 242 4 _ 4
/; sy sl = nl(n1+2){(trﬂl) +2trH1} 4Cu

where C,, -1 denotes the volume of the unit sphere $*~(1) in R™. We can do the
same for a unit vector u € Tjlfy. Then, summing up the expressions obtained by
the integration of (3.4) for u = u; and # = uy and making some straightforward
calculations, we get

@9 A+ e (T) -2+ ) = 07 - 20

Next, we express || B||? in terms of || R]|?. Using (2.6), the first Bianchi identity
and (2.10), it follows

. 2
VI = RIP +12(c7 + ¢7) — 6(Z) 105
From this we see that (3.6) may be written as

(3.7) 3+ (L) - 2(dn+dm) =0

Since, from (2.2), we have that tr H? = —7/n and tr H* = p, it follows using
also (3.3) that :

s
= (ny +2)c} +nacd —Ti- =ny¢} + (ny + 2)c5

and with this, (3.7) yields nyny(c — ¢3)* = 0. Hence, we have that ¢ = c2 which
contradicts the hypothesis that the £-sectional curvature is not constant at m.
This completes the proof of the theorem. =
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4 C- and D’Atri spaces

A Riemannian manifold is said to be a D’Atri space if all local geodesic symmetries

are volume-preserving (up to sign), or equivalently, are divergence-preserving.
1/2

Let 6, = (det .Qij) be the volume density function of exp,, with respect to

normal coordinates centered at m. Then, (M,¢) is a D’Atri space if and only

if 0,,(exp,,(ru)) = Om(exp,,(—ru)) for any unit vector v € T,,, M, all sufficiently

small 7 > 0 and all m € M. Since

O (X (r1) =1 = = ) T (Tup)m) + O

(see, for example, [22]) it follows that for a D’Atri space Vi pu, = 0 always holds,

‘that is, p is a Killing tensor or equivalently, p is cyclic-parallel. This implies that
the scalar curvature 7 is constant and furthermore, (M, ¢) is analytic in normal
coordinates. For further information, see [24].

Next, (M, g) is said to be a C—space if for any geodesic v the eigenvalues of
the Jacobi operator R, := R, ' are constant along . This is equivalent to the
condition that tr RJ'c is constant along v for all £ € N, For £ = 1, this yields that,
again, p is cychc—pa,rallel

Returning to flow geometry, we have

Proposition 4.1 [20] Let (M, g) be a Riemannian manifold equipped with a nor-
mal contact flow &E such that Vi, pe, =0 for allx € T, M and all m € M. Then
p 18 n-parallel.

Hence, we have

Corollary 4.2 Any D’Atri or C-space (M, g) equipped with a normal contact
Aow 35 has n-parallel Ricci tensor.

Furthermore, when the contact condition is deleted in Proposition 4.1, we get
(4‘1) @gﬁﬂﬁ{é =0

for all vectors 4, ¥, @ on U.

Next, it follows easily from the definitions of a D’Atri and a C-space that,
if (M, g) is locally a Riemannian product (Mi, g1) X ... x (M,, g,), then it is a
D’Atri or a C-space if and only if each factor (M;, ¢;) is such a space. From this
remark it then follows at once:

Proposition 4.3 Let (M, g) be an n-dimensional Riemannian manifold equip-
ped with a normal flow 8:5 such that rank H = 0. Then (M, g) is a D’Atri space
(respectively, a C-space) if and only if (M, g) is locally o product of an (n — 1)-
dimensional D’Atri space {respectively, a C-gpace) and o curve.
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We note that a locally KTS-space is locally homogeneous and moreover, it
is equipped with a naturally reductive structure [17]. Manifolds endowed with
such a structure are necessarily D’Atri spaces [15], [24] and C-spaces [2]. Hence,
locally K'T'S-spaces are automatically D’Atri spaces and C-spaces. Next, we shall
treat, for dimensions < 5, D’Atri and C-spaces which are equipped with a normal
flow and in particular, we will be interested in the question whether such spaces
are locally KTS-spaces or not. This question has been studied in [16] for the class
of Sasakian manifolds.

Since a two-dimensional manifold is equipped with a normal flow if and only
if it is locally flat, we shall restrict to the cases where dim M € {3,4,5}.

4.1 The three-dimensional case

We may restrict to the class of D’Atri spaces since the class of three-dimen-
sional C-spaces coincides with that formed by the D’Atri spaces [2]. First, we
have ‘

Proposition 4.4 A three-dimensional manifold equipped with a normal flow is
either homothetic to a Sasakian manifold or locally a product of o two-dimensional
manifold and o curve.

Taking into account Proposition 4.3, Proposition 4.4 and Watanabe’s result [37]
for Sasakian spaces (or (2.7) and Proposition 2.5), we get

Theorem 4.5 [20] A three-dimensional manifold equipped with a normal flow is
a locally KTS-space if and only if it has constant scalar curvature.

Hence, we have

Corollary 4.6 Any three-dimensional manifold equipped with o normal flow is o
D’Atri space if and only if it is a locally KTS-space.

Using the classification result of [17], we get

Proposition 4.7 A three-dimensional complete, simply connected (M, g9) equip-
ped with o normal flow is o D’Atri space if and only if it is one of the following
spaces:

(i) the Riemannian symmetric spaces S*, E®, S* x B} H* x E*;

(i) SU(2) and the universal covering of SL(2,R), both with suitable left invari-
ant melrics;

(iil) the three-dimensional Heisenberg group with any left-invariant metric.

If (M, g) is not complete or not simply connected, then it is locally isometric to
one of these spaces.
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The classification of three-dimensional D’Atri spaces is given in [23] and it -
turns out (see also [17]) that all non-symmetric examples are equipped with a
normal contact flow. These are the examples given in (ii) and (iii) of Proposition
4.7.

4.2 The four-dimensional case

First, we note that we do not yet know a complete classification of four-
dimensional D’Atri and C-spaces and even we do not know if all these spaces are
locally homogeneous. Nevertheless, for manifolds equipped with a normal flow,
we have a complete and positive answer.

Theorem 4.8 Any four-dimensional D’Atri space (respectively, C-space) eguip-
ped with a normal flow is a locally KTS-space or locally a product of a three-
dimensional D’Atri space (respectively, C-space) and a curve.

Proof. Corollary 2.3 implies that we have only to consider the two following cases:
rank H = 0 or rank H = 2.

First, when rank H = 0, then the result follows from Proposition 4.3.

Next, let rank H = 2, that is, Ker H is a one-dimensional subspace at each
point of any base space . Then (4.1), the cyclic-parallel condition on Z{ and
(2.11) yield that p is parallel. Hence, each base space (Z/? ,§) is locally symmetric.
The required result now follows from Proposition 2.5. L]

From this, we have

Corollary 4.9 Let (M, g) be a simply connected, complete four-dimensional man-
ifold equipped with a normal flow. Then (M, g) is e naturally reductive Riemann-
ian manifold if and only if it is a D’Atri space or o C-space, respectively.

Using the classification given in [26], we then obtain

Corollary 4.10 Any four-dimensional complete and simply connected Riemann-
ian manifold equipped with a normal flow is a D’Atri or C-space if and only if it
is one of the following spaces:

(i) the Riemannian symmetric spaces E*, S®x E', S? x E?, H*x E*, H? x E?;

(ii) the product of E* with one of the spaces given in Proposition 4.7, (ii) and
(ii).
If (M, g) is not complete or not simply connected, then it is locally isometric to
one of these spaces.

4.3 The five-dimensional case

In this case we have weaker results. Also here, we do not yet have a com-
plete classification of D’Atri and C-spaces but we have a classification of five-
dimensional naturally reductive spaces [24], [27]. Furthermore, in the Sasakian
case, we have [16]
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Proposition 4.11 Let (M, g,¢,£,7m) be o five-dimensional Sasakian manifold.
Then the following statements are eguivalent:

(i) (M,g,9,€,n) is a locally p-symmetric space;
(1) (M,g) is a D’Atri space;
(iii) (M,g) is a C-space.

This result is useful in the proof of

Theorem 4.12 [20] Let (M, g) be o five-dimensional D’Atri space (respectively,
C-space) equipped with a normal flow ’{3’&. Then it is a locally K'T'S-space or locally

a product of a four-dimensional D’Atri space (respectively, C-space) and a curve.

Proof. First, if rank H = 0, then the result follows from Proposition 4.3. When
rank H = 2, we obtain from (2.10), using the normality of the flow, (2.11) and
(4.1) that (4, 9) is Ricci-parallel. Also, when rank H = 4, that is, {?6 is a contact
flow, it follows from Corollary 4.2 that each (I, 3) is Ricci-parallel. Then, in both
cases, if ({4, §) is locally reducible, it is locally symmetric and if (i, §) is locally
irreducible, it is an Einstein space.

Now, taking into account that on four-dimensional Einstein manifolds the
sectional curvature of a two-plane is equal to that of the orthogonal plane and
using Proposition 4.11, we have that (U, §) is a curvature-homogeneous Einstein
space. It then follows that (U/,§) is again locally symmetric [30]. Finally, we
have, from Proposition 2.5 that (M, g) is a locally KTS-space. =

From this result, we then get

Corollary 4.13 Let (M, g) be a five-dimensional Riemannian manifold equipped
with a normal flow § ¢ such that rank H # 0 (in particular, &g is a contact flow).
Then (M,g) is a D’Atri space or o C-space, respectively, if and only if it is a
locally KTS-space.

Corollary 4.14 Let (M, g) be o five-dimensional complete, simply connected Rie-
mannian manifold equipped with a normal flow ¢ such that rank H # 0. If (M, g)
is a D’Atri space ar a C-space, then (M, g) is a naturally reductive space and con-
versely.

5 Ball-homogeneous spaces

We recall that a Riemannian manifold (M, g) is said to be ball-homogeneous if
the volumes of small geodesic spheres or balls are independent of the center, that
is, only depend on the radius. Since no examples are known which are not locally
homogeneous, it is natural to study the question whether all ball-homogeneous
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are locally homogeneous or not. We shall now give a positive answer for some
cases in flow geometry.

First, we note that ball-homogeneity implies that the scalar curvature must
be constant on the connected manifold (M, g) [22]. From this we deduce, using
Theorem 4.5,

Theorem 5.1 Let (M, g) be a three-dimensional manifold equipped with a normal
flow. Then (M, g) s ball-homogeneous if and only if it is a locally KTS-space.

This result extends a similar one in Sasakian geometry. (See, for example,
[37].) Also, in [16], the following result is derived:

Proposition 5.2 Let (M, g,¢,€,m) be a five-dimensional Sasakian space. Then
it is Locally w-symmetric if and only if it is ball-homogeneous and n-parallel.

Using this, the results of Section 4, the proof of Theorem 4.12 and the fact that
any D’Atri space is ball-homogeneous [21], we now have the following extension:

Theorem 5.3 Let (M, g) be a five-dimensional Riemannian manifold equipped
with a normal flow §¢ such that rank H # 0 (in particular, %E is a contact flow).
Then the following statements are equivalent:
1 (M, g, S¢) is a locally KTS-space;
(if) (M, g) is a ball-homogeneous space with n-parallel Ricci tensor;
(iii) (M, g) is a D’Atri space;
(iv) {M,g) is a C-space.
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ON CURVATURE HOMOGENEQUS SPACES
Oldfich Kowalski

Abstract.— We give a short survey about the theory of curvature
homogeneous spaces (of arbitrary order) which was initiated by I. M.
Singer in 1960.

We start with the basic definitions.
Definition 1 Let (M,g), (M,7) be two Riemannian manifolds (of the same
dimension 7 and of class C*) and let p € M, T € M be two points. We say that
these manifolds have contact of order s (> 0) at the pair of points (p, P} if there are
two systems of local coordinates (u!,...,u"), (@,...,%") in the neighborhoods
of the points p and 7 respectively such that

(1) w(p) =T (p) =0 for i=1,...,n
and
) (07g/0u™ - - Bu™)(p) = (07gy /O™ - - 8T ) (P)

hold for all r € {0,1,...,s} and all 4,j,41,...,%- € {1,...,n}.

Let now V, V, R, R denote the corresponding Levi-Civita connections and
the corresponding Riemanniau curvature tensors, respectively. For the sake of
simplicity, the components of the tensors V"R and V' R respectively with respect
to some vector basis will be marked only by the corresponding indices.
Definition 2 We say that two Riemannian manifolds (M, g} and (M, 7), have the
same curvature up to order s at the pair of points (p,p) if there is an orthonormal
basis (ey, ..., e,) for g in T,M and an orthonormal basis (&1, . ..,€,) for 7 in TM
such that

(3) (Va,‘..,i,R) bk (Vi:,m,i,_g) ikt

hold for all r € {0,1,...,s} and all 4,5,k,0,4,...,4- € {1,...,n}. Using the
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classical formulas in Riemannian geometry and the power-series expansions for
the metric tensor in normal coordinates (see {7], [8], [9], [15]), we can prove that
the definitions 1 and 2 are equivalent in some sense:

Proposition 1 Two Riemannian manifolds (M, g), (M,g) have contact of order
s+ 2 at the pair of points (p,P) if and only if they have the same curvature up to
order s at (p,P).

In particular, for s = 0, we can use the well-known formula

(4) Gij = 6ij — %E(&kﬁ)p:pkx‘ + (higher order terms),
Y] ‘
where (z!,...,2") is a system of normal coordinates centered at p.

We continue with the homogeneity concepts:

Definition 3 A Riemannian manifold (M, g) is said to be contact homogeneous
of order s if, for every two points p,q € M, the manifold (M, ¢) has contact of
order s with itself at the pair of points (p, ¢).

The following definition is essentially due to I. M. Singer (see [31], [25] and
21). '
Definition 4 A Riemannian manifold (M, g) is said to be curvature homogeneous

up to order s if, for every two points p, ¢ € M, there is a linear isometry ¢: T,M —
ToM such that

(5) ©*Ry=Ry, ..., ¢ (V'R);=(V'R),.

As a direct consequence of Proposition 1, we have now the following

Proposition 2 A Riemannian manifold (M, g) is curvature homogeneous up to
order s if and only if it is contact homogeneous of order s + 2.

Obviously, a locally homogeneous Riemannian manifold (M, g) is curvature
homogeneous, and also contact homogeneous, in each finite order. We also see
that every Riemannian manifold is contact homogeneous of order 1. (One can
just use normal coordinate systems at two different points and the formula (4).)
The contact homogeneous spaces of order 2 are the same as curvature homo-
geneous spaces in the sense of I. M. Singer. One of the basic problems in [31}
was the question if there are any curvafure homogeneous spaces which are not
locally homogeneous. The first example was constructed in 1973 by K. Sekigawa
([27], see also [28]). Presently, the theory of curvature homogeneous spaces is
well-developed: see [21], [22], [36], [1] and especially the survey article in [2].
A complete classification is known in dimension n = 3 {see [12], [18], [23] and the
next pages).

The main result of [31] can be now presented in the following way: let (M, g)
be a connected Riemannian manifold of dimension n (and class C*). For each



On curvature homogeneous spaces 195

pé& M and s=0,1,2,... define the Lie algebra
6) oms)={Adeg(LM)|A-g=A -R,=...=A4.(V'R), =0},

where A acts as a derivation on the tensor algebra of T,M. Now, denote by
k(M,p) the least integer for which the sequence

(7) gm0 29(m1)2...29(ms) 2.

stabilizes. Obviously k(M,p) < ﬁ”f—l)— Let us denote by kp the maximum of
all numbers k(M,p), p € M, and by k, the maximum of all numbers kj; for all
manifolds (M, g) of dimension n. We usually call %, the Singer number for the
dimension n.

By translating the main theorem from [31] (see also [25]) in our language we
obtain

Theorem 1 Let (M,g) be a Riemannian manifold of dimension n which is
contact homogeneous up to order k, +3. Then (M, g) is locally homogeneous.

In [29] and [30] the following results have been (in fact) proved:

Theorem 2 Let (M, g) be a Riemannian manifold of dimension 3 or4. If (M, g)
is contact homogeneous of order 3, then it is locally homogeneous.

The existence of contact homogeneous Riemannian manifolds of order 3 which
are not locally homogeneous (for the dimensions n > 5) remains an interesting
and rather difficult open problem.

_ Recently, P. Bueken and L. Vanhecke [3] have proved that the situation is com-
pletely different in the Lorentzian case. They found a 3-dimensional Lorentzian
space which is contact homogeneous of order 3 but not locally homogeneous.
(Here the concept of contact can be easily generalized.)

B. Opozda [26] studied the curvature homogeneity in the affine differential
geometry. She gave the first example of a 2-dimensional affine manifold which is
¢urvature homogeneous up to order 1 but not locally homogeneous. (Of course,
our definition of contact homogeneity does not work in the affine geometry.)

For more result about the Riemannian “contact” geometry see [17].

In the next part we shall concentrate on the main classification results about
curvature homogeneous Riemannian manifolds (of order 0). But before, we start
with one more definition and examples.

Definition 5 Let (M,7) be a homogeneous Riemannian manifold and (MM, g)
a Riemannian manifold. We say that (M, ) is a homogeneous model of (M, g)
(or, that (M, g) has the same curvature as (M,7)) if, for a fixed o € M and
each point p € M, the manifolds (M,g) and (M, g) have the same curvature (of
order 0) at the pair of points (o, p).
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Obviously, each Riemannian manifold possessing a homogeneous model is cur-
vature homogeneous. The converse does not hold, as we shall see later.

The first example of curvature homogeneous space which is not locally ho-
mogeneous was constructed, as already mentioned, by K. Sekigawa in 1973. In
a more convenient local coordinate system, it can be written in the following
form:

The underlying Riemannian manifold M is the Cartesian space R*[w,z,y].
The Riemannian metric ¢ on R? is given by

g= i(w‘}z,

el
where the orthonormal coframe (w!, w?, w®) of Pfaffian forms is given by
w! = (ae™ +beM)dw, w?=dz-ydw, o*=dy+azdw, ab#0.

It can be shown that (R3, g) is locally nonhomogeneous, locally irreducible and if
a, b are positive, then it is complete. Moreover, (M, g) has the symmetric space
H?(—X?) x R as a homogeneous model. Hence it is curvature homogeneous.

F. Tricerri, L. Vanhecke and the present author constructed in [18] the follow-
ing generalization of the Sekigawa’s example: Let U C R*w,z%,... 2", n > 3,
be an open subset. On U we define 3 Riemannian metric

n~1

9=y (W)

i=0
where

-1
W' = f(w,z")dw, W =da’ + (Z D;(w)xj)dw t=1,...,n~1).

i=1
Here Di(w) are arbitrary smooth functions such that
D;(w) +Di(w)=0  foralli,j.

The function f{w,z) is specified as follows:

A If flw,z) = a(w)e*® + blw)e™, a(w), b(w) arbitrary, f(w,z) # O,
then (U,g) is curvature homogeneous with the homogeneous model
H*(-)*) x R~2,

B) If f(w,z) = a{w)cos Az + b{w)sin Az, a(w), b(w) arbitrary, f(w,z) # 0,
then (U,g) is curvature homogeneous with the homogeneous model
S%(A?) x B2,

If a(w)b(w) # 0 and D}{w) 5# 0, the space (U, g) is not locally homogeneous.

In [21] the authors also prove that, in the case A, if U = R, a(w) > a > 0,



On curvature homogeneous spaces 197

b(w) > b > 0 and Dj(w) are bounded, then the metric g is complete. To the

contrary, a metric of type B is never complete. For a “generic” choice of the

functions Dj(w), the space is locally irreducible (see [21] for more details).
These examples give rise to the following natural problems:

Problemn 1 Characterize all Riemannian symmetric spaces (connected and sim-

ply connected) which are homogeneous models of locally nonhomogeneous curva-

ture homogeneous spaces.

Problem 2 Calculate all locally nonhomogeneous curvature homogeneous spaces
having the same curvature as a given Riemannian symmetric space.

Problem 1 was first attacked by F. Tricerri and L. Vanhecke in [35], [36]. They
eliminated most of the symmetric spaces:
Theorem 3 Let (M,g) be a (curvature homogeneous) Riemannian manifold
whose homogeneous model is a simply connected Riemannian symmelric space
(M,73) without Euclidean factor. Then (M,g) is locally symmetric and locally
isometric to (M, 7).

The final solution of Problem 1 was found later by F. Tricersi, L. Vanhecke
and the present author in [21].

Theorem 4 Let (M,7) be a simply connected ‘Riemannian-symmetric space
with the de Rham decomposition M = Mg x My X --- x M,. Then (M,3g) is
a homogeneous model of o locally nonhomogeneous Rzemannzan manifold if and
only if the de Rham decomposition contains a product of the form H*(—\%) x R¥,
or of the form S*(A?) x R¥, where k > 1.
Corollary 5 Let (M,g) be a locally nonhomogeneous and locally irreducible
curvature homogeneous manifold with a simply connected symmetric model space
(M, ). Then (M,7) is either H2(~)?) x R* or S*(A\?) x R, where k > 1.
Let us remark that, for deriving Theorem 4, one needs some structural formulas
by Z. Szabé [33].

Now, E. Boeckx, L. Vanhecke and the present author gave the definitive so-
lution of Problem 2. The method used here is to find an exphmt general solution
of a system of nonlinear PDE of the second order.

Theorem 6 ([1]) Let (M, g) be a curvature homogeneous space with a symmetric
model H2(—)2?) x R¥, or S*(\?) x R¥ (k > 1), respectively. Then, in a neigh-
borhood of each generic point p € M, (M, g) is locally isometric to a generalized
Sekigawa example of type A), or B), respectively.

Next, we shall concentrate ourselves on 3-dimensional curvature homogeneous
Riemannian manifolds. Here a satisfactory classification has been also found. As
well-known, in dimension three the curvature tensor is uniquely determined by
the Ricci tensor. Hence we obtaln easily
Proposition 7 A 3-dimensional Riemannian manifold (M, g) is curvature ho-
mogeneous if and only if the principal Ricci curvatures of (M, g) are constant.
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Now, if all principal Riccl curvatures are equal, one obtains a space of constant
curvature. Thus, only the following cases are of interest (and of very different
nature):

Type I. Two of the Ricci eigenvalues are equal; g1 = g # g3
Type II. All three Ricci eigenvalues g1, g2, ga are distinct.

‘We shall now give more details about the solution in case I and IL

I. Let (M, g) be a 3-dimensional curvature homogeneons manifold of type I. One
can derive a system of nine nonlinear partial differential equations of 2nd order
(see [11] and [12] for more details). If g5 = 0, we obtain just generalized Sekigawa
examples in dimension 3. If g3 < 0, say g3 = —2A2, then we obtain the following
reduction of the problem: each space (M, g) has locally the form (U, g), where
U C R*[w,=,y] is an open subset and g = Y i, (w')?, where

1 ;
wt= ;e"‘ydw, w? = peMdz + (re’ + seM)dw,  w* =dy+ Hdw,

and p, 1, s, H are functions of w, z only satisfying the following system of PDE:

1 ?
(A1) [p-z + si ~0,
(A2) H! = 2)\ps,
(43) Pl — 75— ApH =0,
(A4) ~(psy)w + (155)z = —01.

The following interesting explicit examples are known:
Ezample 1 p = p(w), s = s(w), H = 2Xp(w)s(w)z+ep(w), 7 = —A2p?(w)s(w)z?+
(p’(w) - Ap(w)p(w) )z + P(w), where p(w), s(w),p(w) and 3(w) are arbitrary
smooth functions. The corresponding Ricci eigenvalues are p; = gy = 0,03 =
—2X%.

Ezample 2 p=+1+1% s= ﬂ%f, H = \2? + %), re= H;;:L.(l +3:2)352.
The corresponding Ricci eigenvalues are gy = gy = -})&2, o3 = —2)\%,
Ezample 3 p=+1+2%, s= \/1_"‘:_:?, H=3%)% r=-1)(1+21)32
The corresponding Ricci eigenvalues are g; = g5 = EN%, 3= —2X%,

These are the only known explicit examples! Example 1 is of special interest
because these spaces appear in other parts of differential geometry:

a) The spaces from Example 1 have the property that the eigenvalues of some
specific curvature operator (which is different from the Jacobi operator) are
constant along curves with unit curvature and zero torsion (see [10]).
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b) E. Boeckx and L. Vanhecke [3] proved that the unit sphere bundle of a 3-
dimensional Riemannian manifold (M, ¢) (equipped with the induced Sasaki
metric) has constant scalar curvature if and only if either (M, g) is a space
of constant curvature or (M, g) is curvature homogeneous and g; = g» = 0.
Hence the spaces from Example 1 are explicit and locally nonhomogeneous
examples of such a situation.

Examples 2 and 3 are interesting for a different reason: these are the first
explicit examples of 3-dimensional curvature homogenecus manifolds without ho-
maogeneous models. Indeed, according to [24], the signature of the Ricci tensor of
a 3-dimensional homogeneous Riemannian manifold cannot be (+, +, —) which is
the case in our examples. (See also more details later.)

As concerns the case gy = g3 3# g3 > 0, here the processing of the basic system
of PDE is much more difficult and no explicit examples are known. Yet, for all
three possibilities (g3 = 0, g3 < 0 and g3 > 0) we have the following existence
theorem:

Theorem 8 The local isometry classes of curvature homogeneous manifolds of
type I always depend on two arbitrary functions of one variable.

An analogous classification in the three-dimensional Lorentzian geometry be-
longs to P. Bueken [4].

I1. The first examples of locally nonhomogeneous spaces of Type Il were given
by K. Yamato [39].

Example. Let g1, 09, 03 be distinct constants and put

— - — )2
A=ato & p=4 Qa’ C,:___(Ql'i'm)(é’s 292) ‘
2 s — 02 (02— 01)

IfA>0 C>0 A+ BC > 0, then a complete metric g can be given on
R3[z,y,w] in the following way: we choose the metric in the form g = Y23, (w')?,
where

wh=dz + P(z,y,w)dw, w? = dy + Q(z, y, w)dw, w? = dw.
Define functions a(w), f(w), y{w) as follows:

a(w) = V(e — 1)/(62(7(‘”) +1), where G(w) =vC(B+1)w, and
B(w) = /A + Ba2(w), ylw) = m—g%g(—;)—ng

Then we put

P = —a(w)z + [B(w) +1(w)y, Q= [fw)~1(w)|z ~ Ba(w)y.
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The corresponding Riemannian manifold (R, ¢) has constant principal Ricci cur-
vatures gp, g9, g3 and it is not locally homogeneous. Moreover, it is complete.
The present author and F. Priifer [18] extended this example to all prescribed
constant Ricci eigenvalues without limitation. (Nevertheless, if the inequalities
above are not satisfied for some numeration of the Ricci eigenvalues, then one
cannot prove completeness. We even conjecture that, in such a case, a complete
metric does not exist on any underlying 3-manifold.) For the construction in the
general case, we menticn first an easy modification of the Yamato example [13]
which covers “almost all” cases. Here the function a(w) is given by \/— [tg(G(w))
for C < 0 and by 1/((B + 1)w) for C = 0; the rest of the formulas remain
unchanged. Yet, passing from “almost all” to all possibilities is nontrivial and
requires a detailed analysis of the basic system of partial differential equations
for the problem. We shall not write down this rather complicated system here.
Instead we describe a simple explicit solution (see [18] and [2]).
Theorem 9 For every choice of real numbers g; > ¢, > g3 there exist an explicit
Riemannian metric g on R*[w, z,y] with the constant Ricci eigenvalues g1, 02, 03
and not locally homogeneous.

Construction

Define fist A= (a1 +eteos) - (i=1,23), B=.._._~Zl“93¢g,
3 — 02

Then B+ 1= Cilc} < 0.
g~ 02
Define smooth functions ¢1(w), wa(w), ps(w) on R as follows:

a} ¢y (w) is an arbitrary smooth function such that

¢ (w) #0 and ({pl(w))z > max {O, A2, i?i‘g}ﬁi*‘zl)’\__.i'tézl},
b) @2(w) > 0 is calculated from the algebraic equation (B+1)(¢02)? +(i01)? = Ag,

¢) pa(w) is calculated from the algebraic equation —Biypz = (B + 1)A3 + Ag.
Then define the metric ¢ = Y3, (w')? on R*w,z,y,] by

W= Adw+dz, w?=Cdw, w®=dy+Gdw,
where

C = —gi(w)/[ea(Bor+ (B +2)ps)] 0, A= Clgs — @1}y ~ Copp,
= (B +1)Cpzy — Ce1 + 3.

The correctness of this construction is easily checked. To check that the Ricci
eigenvalues of (R?, g) are equal to the prescribed constants is more delicate and
the reader is advised to see the paper [18]. The motivation by the Yamato example
is obvious.
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In {19] the authors have classified all Riemannian manifolds of type II sat-
isfying some additional geometric conditions. One part of this classification is
formed by “generalized Yamato examples”, a broader family containing the ex-
amples described above. A new family of explicit solutions was also found which
is not of Yamato type.

The following problem remained open up to recently: “how many” local isom-
etry classes exists of curvature homogeneous manifolds of type 117 First A. Sphro
and F. Tricerri [32] have proved that these local isometry classes depend on a in-
finite number of parameters. Finally, the present author and Z. V1dsek (23] gave
a definitive answer in the following theorem (which is analogous to Theorem 8):

Theorem 10 The local isometry classes of curvature homogeneous manifolds of
type II always depend on three arbitrary functions of two variables.

The method of the proof is a computer-aided manipulation with a complicated
gystem of 18 nonlinear PDE for 12 unknown functions of 3 variables and some
specific modification of the Cauchy-Kowalewski theorem.

We see that the family of Riemannian metrics with prescribed distinet con-
stant Riccl eigenvalues is much bigger than that in the case when the prescribed
Ricci eigenvalues are not distinct. This explains why explicit solutions always
exist in case II whereas only exceptionally in case L

One can aJso solve the following problem: in which cases the corresponding
curvature homogeneous Riemannian manifold possesses a homogeneous model?
The following result belongs to the present author and S. Nikéevié [16]:

Theorem 11 Let (M, g) be a curvature homogeneous Riemannian manifold of
dimension 8. Then (M, g) has a homogeneous model if and only if the principal
Ricei curvatures g1 > o2 2 03 of (M, g) satisfy the following conditions:

(a) The Ricci form does not have the signature (+,+,—) or (+,0,-),
(b) for the Ricci signature (+,+,0) one has gy = g,

(¢) for the Ricci signature (—, —, —) or {0,—, —) one has either p; = g2 = 03

£m22+§9322 1+
or Mt < g < &,

The proof is based on the paper by J. Milnor [24] and one result by K. Sekigawa
[29]. In particular, one can see that the original Yamato examples with complete
metrics always have a homogenecus model (see [22]). Hence the following open
problem may be of interest:

Problem 3 Decide if there exists a complete 3-dimensional curvature homoge-
neous Riemannian manifold without a homogeneous model.

(In dimension four, such an example was, in fact, constructed by K. Tsukada,
see [38] and also [22].)
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The most important open question for the 3-dimensionial case seems to be the
following:

Problem 4 Decide if there exists a compect 3-dimensional curvature homoge-
neous Riemannian manifold which is locally nonhomogeneous.

If the answer to this problem is negative, then the so-called Gromov conjecture
holds in dimension 3. (The Gromov conjecture, in the most general setting, says
the following: if M is a compact manifold, then the global isometry classes of
all curvature homogeneous Riemannian metrics on M depend on at most finite
number of parameters.) Up to now, only special negative results are known, for
example that by K. Yamato [39]:

Theorem 12 Suppose thet g, = g9 # g3 are constent on a connected compact
Riemannian manifold (M,g). If o1 > 0 or g3 € 0, then M is locally homoge-
neous.

For another partial answer to the Gromov conjecture see [37].

Finally, let us remark that Problem 4 has a positive answer in specific higher
dimensions; yet the corresponding examples are rather isolated (see [6]). Thus
the Gromov conjecture in higher dimensions remains undecided, tooc.

We can summarize the existence results about 3-dimensional curvature homo-
geneous spaces in the following alternative form: let (V, <,>) be a vector space
with a (positive) scalar product. Let K be an algebraic curvature tensor of Rie-
mannian type on V, ie., an element K € A?V* ® A’V* where K satisfies the
usual algebraic identities of a Riemannian curvature tensor, including the first
Bianchi identity. We have

Theorem 13 For each algebraic curvature tensor K on a 3-dimensional vector
space (V,<,>) there is a curvature homogeneous Riemannian manifold (M, g)
with the typical curvature tensor K. If K is not of constant sectional curvature,
then a locally nonhomogeneous {M, g} always exists.

More precisely, for each m € M there is a linear isometry o, T,,M — V which
maps the curvature tensor R, into the given algebraic curvature tensor K. This
result follows immediately from the previous results and from the fact that, in
dimension three, an algebraic curvature tensor is uniquely determined, up to an
isomorphismus, by the Ricci eigenvalues.

Let us remark, that due to Theorem 11, the first statement of Theorem 13 is
not more valid if we replace the words “curvature homogeneous” by the words
“locally homogeneous”.

Theorem 13 is not more true in dimension four (see [20]). A new open direction

in the theory of curvature homogeneous spaces is the study of so-called isocurved
deformations. See [34] and [14] for more details.
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k-HAMILTONIAN SYSTEMS

M. de Ledn, E. Merino, J.A. Qubiiia, P.R. Rodrigues and M.R. Salgado

Abstract.— We introduce a geometrical formalism which extends the
symplectic and cosymplectic ones, and permits to derive in a global
setting the field equations for order one classical field theories.

1 Introduction

As is well known, symplectic manifolds are the natural setting for classical me-
chanics. In its time-dependent version, cosymplectic manifolds provide a natural
arena to derive the equations of motior in a geometrical way {1, 6, 25].

In the last four decades there have been many attempts to extend this sym-
plectic setting for classical field theories. There was very succesfull a geometrical
formalism in terms of jet manifolds by using the so-called multisymplectic struc-
ture (see [9, 10, 11, 16, 17, 18, 33], and more recently [4, 5, 7, 8, 12, 13, 15,
19, 20, 27, 28, 31, 32), see also [3, 26]). A different approach were also suggested
[2, 14, 21, 22, 29, 30] taking into account the geometry of the tangent bundles of -
covelocities. This led to the development of the so-called k-symplectic structures.
This structure provides in fact a natural framework for classical field theories,
however this formalism does not include the case of theories which depend ex-
plicitly on the independent parameters. In order to extent the theory for this
case we have recently introduced the notion of k-cosymplectic structure [23]. The
purpose of the present paper is to give a succint account of our recent results on
this direction contained in our papers [23, 24].

Presented by E. Merino.
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2 Almost k-cosymplectic structures

In [23] we have introduced the following definition.

Definition 2.1 Let M be a differentiable manifold of dimension k(rn+1)+n. A
family (m;,w;, V31 <14 < k) where each ; is a 1-form, each w; is a 2-form and V
is an nk-dimensional distribution on M such that:

1. m A A #0,

2. dim(kerwy N...Nkerwy) =k

3. kermpy ... Nkermg Nkerwy N ... Nkerwg = {0},

4. My = 0, Wiprey = 0, (1 <i<k)

will be called an almost k-cosymplectic structure, and the manifold M an almost
k-cosymplectic manifold.

From the conditions of Definition 2.1 we deduce that there exist k vector fields
&1y..., & on M satisfying

1) n; =0y tew; =0,
with 1 € ¢,7 < k, and wich will be called the Reeb vector, fields associated to the
almost k-cosymplectic structure.

In particular, if £ = 1, then dim M = 2n + 1, and {9, w) is an almost cosym-
plectic structure on M [1, 6], and (n,w, V) is an almost stable cotangent structure
on M {25]. ,

The above definition was motivated by the existence of a canonical k-almost
cosymplectic structure on the jet bundle JY{(Q,R). Let 7 : R* x @ — @ be a
trivial fibred manifold and denote by J'r the manifold of 1-jets of local sections
of w; J w is a vector bundle over @ with standard fibre RF x R, where dim Q =
n. We have a canonical identification J'r & RF x (T})*Q. If (z%) are local
coordinates on Q, then (#,z%,2%), 1 <i < k,1 < a < n, is a local coordinate
system on R¥ x (T2)*@. The family ((n);, (wo),, V) of I-forms (ng):, 2-forms (wyq);
and-a distribution ¥ given by

i o 3 a 0 ‘
(7]0)2- = (t , (w{))i = da* A dx;, Vo =< 'é—;ci;, BN é—x'g >
is an almost k-cosymplectic structure on J*(@, R).
In [23] we have proved that a manifold M of dimension k(n+1)+n admits an
almost k-cosymplectic structure if and only if the structure group of its tangent

bundle is reducible to the group G of matrices of the form

Ir 0 0 ... 0
0 A 0 ... 0
0 B, C ... 0

0 B, 0 ... C
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with BfA= A'B;and C = (A ) forall 1 <i < k.

Definition 2.2 Let M be a k(n + 1) + n-dimensional manifold with an almost
k-cosymplectic structure (n;, w;, V). We say that (m;,w;, V) is integrable if the cor-
responding G-structure is integrable, and in such a case it is called k-cosymplectic.

Therefore, an almost k-cosymplectic structure (7;,w;, V') on a manifold M is
integrable if around each point of M there exist local coordinates (s*, z%, z%;
1<i<k, 1< a<n)such that

i o i 0 0
(2) = ds s wi = dz% A d:l,'a, V=< '5':12'7 vees '5;? Zaml,am

©@

Such a coordinate functions will be called Darbouz or canonical coordingtes.
In Darboux coordinates, the Reeb vector fields are written as &; = —.

z

The integrability of a k-cosymplectic structure is characterized in the following

Theorem 2.3 [{23] An almost k-cosymplectic structure (n;,w;, V) on a manifold
M is integreble if and only if the following conditions are satisfied:

(3) dp; =0, dwi=0, [V\V]cV, (1<i<k).

Remark 2.4 When k£ = 1 the condition [£,V] C V is a necessary condition
for the integrability of the almost stable cotangent structure (n,w, V), and it is
an independent condition of the other ones (see [25]). For k > 1, we have the
following

Proposition 2.5 [23] If M is an almost k-cosymplectic manifold with k > 1,
and &y,...,& are the Reeb vector fields associated io the almost k-cosymplectic
structure, then:

{dn; = 0,dw; =0, V4, 1<j<k)=[&V]CV, Vi 1<j <k

3 k-vector fields

Let M be an arbitrary manifold and 7% : TAM — M its tangent bundle of k-
velocities. Let us recall that T2 M is the manifold of 1-jets at 0 € R* of mappings
from RF into M.

Definition 3.1 A section s : M — T} M of the projection 7* will be called a
k-vector field on M.
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Obviously, T{M may be canonically identified with the Whitney sum of k&
copies of TM, say
TIM=TM®...oTM.

Hence, a k-vector field s defines k vector fields Xj,..., X on M, so that, in what
follows, we will use the notation (X, ..., Xj) for s.

Definition 3.2 A mapping 0 : U C R* — M defined on some open neighbor-
hood of 0 € R* will be called an integral section of a k-vector fleld (Xy,..., Xx)
passing through a point £ € M if and only if

8—2;) = Xi(c@)) forallt € U.
We say that a k-vector field (X, ..., Xk) on M is integrable if there is an integral
section passing trough each point of M.

c(0) =z, a ()

Let us remark that if o is an integral section of a k-vector fleld (Xi,..., Xx)
then each curve on M defined by o; = ¢ o J; where J; : R — RF is the natural
inclusion Ji{t) = (0,...,t,...,0), is an integral curve of the vector field X; on M,
with1 <i<k.

4 Hamiltonian systems on k-cosymplectic manifolds

Now, we introduce the dynamics on a k-cosymplectic manifold M with k-co-
symplectic structure (m1, ..., Mk, Wy, ..., Wi, V). We define two vector bundle
morphisms £ and O as follows:
O TM — (TH)*M
X — QX) = (exwr+m{X)m,. .., exwe + 06X )m)

and _ ;
QF TiM s T*M

(X1, Xi) — (X, Xy)
such that

Xy, ..., X )(Y) = trace ((2°(X))(Y))
= 2 (@X)N(Y)

= }; (Wi X:, V) + (X )ms(Y)),

for all Y € TM. The above morphisms induce two morphism of C*(M)-modules
between the corresponding spaces of sections.
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If (5, %, 283 1 €4 <k 1 < a < n) are Darboux coordinates for the

k-cosymplectic structure (m;,w;, V), and if the k-vector field (X;,..., X)) is ex-
pressed with respect to this system by

(X}’ -HX)“a = +(X)a8 T
theﬁ
(4) Xy, e, Xp) = Z(Xi)ids‘ - Z(Xi);dx“ + Z(Xi)“dxf,.

Let H : M — R be a function on M. If (Xi,...,X,) is a k-vector field on
M, the equations:

- mi(X5) = by, Vi, j
k
(5) QR(XI,.,Xk) =dH+z(1—€,(H))Q,,
=1
would imply
(6) Xy =65, §H = Byee Vo SH = (e
i=1

From these local conditions we can define, in a neighourhood of each point x € M,
a k-vector field satisfying (6). For example we can put

(‘X)} bizs (Xl)a"" (X>0"0forz;él%‘7’ (X)“—gf

Now one can construct a global k-vector field which is a solution of (6) by using
a partition of the unity.

Remark 4.1 Equations (6) have not, in general, a unique solution. In fact, if
we denote by M (C®(M)) the space of matrices of order k& whose entries are
functions on M, and we define the map

7 TiM — M (C™(M))
(X, X)) — (m(Xy),

the solutions of (6) are given by (X, ..., Xi)+(ker & nker n*), where (X1, ..., Xi)
is a particular solution,
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Definition 4.2 Any k-vector field (X, ..., X;) on M such that
m(X;) = by,
k
‘Qﬁ(Xl, ey Xk) =dH - Z(I - (f,'(H))??,'?

i=1
for all 1 <€ 4,7 < k, will be called an evolution k-vector field on M associated
with the hamiltonian function H.

Let (X;,..., Xx) be an evolution k-vector field associated to H, and assume
that it is integrable. Let

o: R s M
() — (o7t 0%(), di(t)),
be an integral section of (X, ..., X}); then, we have

8ol 3o« ?.f.j_

e == b — = (XY™ a . ()
atz §tj> atg (X‘) H 8tz (X")&3
forall 1 <4, <k and 1 € a < n. Therefore, Equations (6) give
0H _ _ 5~ 9%
oz = = a1’
OH _ 00*
dr:, o’

with 1 <1<k and 1 € a < n, which are the field equations for H.

Remark 4.3 Let (Xy,..., X;) be an evolution k-vector field. Since 7;(X;) = 6,
it follows that the vector fields Xi,..., Xy on M are linearly independent.

5 Lagrangian systems on k-cosymplectic manifolds

In this section we will apply the precedent results to give a geometrical description

for the generalized Euler-Lagrange equations. )
A Lagrangian L = L(#,¢%,v%), 1 €i < k,1 < a < n can be interpreted as a

function L : JY(R¥, Q) — R, defined on the vector bundle JY(R, Q) = R* x TEQ, -

where Q has dimension n. Indeed, (£, ¢*,v{*) are bundle coordinates on J* (R, Q).
Given L, one constructs the Legendre transformation ‘

FL:RF x TIQ — RE x (T1)*Q
locally defined by

oL

ti o o ti, 0‘,..........,...
(aQ1vz)_——){ q 511;")
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Definition 5.1 A Lagrangian function L : R* x T3Q — R is said to be reqular
(resp. hiperregular) if the corresponding Legendre mapping FL is a local (resp.
global} diffeomorphism.

Given a Lagrangian L : R® x T}Q — R we put
(WL)i = ’fL*(wo)i, 1< i < k.
We obtain the following characterization of the regularity of a Lagrangian L:

Proposition 5.2 [24] L: R* x T}Q — R is a regular Lagrangian if and onfy if
(dts, (wi)i, Wa) is a k-cosymplectic structure on R* x TEQ, where Wy is the vertical
distribution corresponding to the canonical fibration R* x T1Q — RF x Q.

Assume that L : R¥ x T}Q — R is regular, and let {€1)1,...,(ér)r be the
Reeb vector fields associated with the k-cosymplectic structure (dt;, (wg):, Wo).
We denote by

QL THRE x TLQ) — T*(R* x T}Q)

the corresponding morphism, and we consider the following equations:
m(X;) = 8ijs

k
O (X1, Xi) = dBL + 3 (1= (&) EL))m,

d==]1

(7

where B = C(L) — L, being C the canonical vector field of the vector bundle
RE x TIQ — RF x Q.
We deduce that

: o a0 2
(8) Xl(th 7'0:') 5§+?}: 8 P (X)Ja 0"

where the functions (X;) satisfy the following equations:

&L

(9) Z“: 8?3:3?} Z( ﬂ

a e PL 0L L,

—— ]
33% Tax ==

Since L is regular, these equations leads us to construct local solutions of (7)
in a neigborhood of each point in R* x T}Q. Using a partition of the unity one
can easily obtain a global solution of (7).

Now, let (X3,...,X,) be a solution of (7), that is, an evolution k—vector field
associated to Ej, and let us assume that it is integrable, If

o: RY — RFXTIQ
#) — (9(t), 0%(t), 05(tY)),
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is an integrable section, from Definition 3.2 and (8) we deduce that

do? 9o d%a
T2 Oy — 2 ?, —_— = Xi ":‘,
of "% =W e~
Replacing in (9) we obtain
&L do® 3L 8*? L oL
B N S T ———— s———mmmr—s | T2 Ty 1 < < ¥
(19 . 5rae + 4 57 oo 2 57a0 sufoer) G LS OST

Therefore, the projection of ¢ onto @ is a soiution of the generalized Euler-

Lagrange equations

an e ar =" T

Therefore, (7) may be considered as an geometric version of the Euler-Lagrange
field equations.

Example 5.3 Let us consider the equation of a scalar field 9 (gravitacional field,
for instance) [3}:

2
VTIF) = Vg ~ T (),
43

where m is the mass of the particle, g is a metric of signature {—+-++) and F(¢))
is a scalar function such that F(¢) — (1/2) m?¢? is the potential energy of the
particle.

We shall use the above formalism to obtain an geometric version for these
equations. To do this, we consider the manifold R* x T}R with coordinates
(#,q,v;51 < i < 4) and the Lagrangian L(t*, ¢, v;) given by

) 1 1,
L=+=g¢g(F(q) - §m2q2 + 59 Tu;v;5).

Since L is regular we have a 4-cosymplectic structure (n;, (wr);, Wo; 1 < i < 4)
on R* x T}R determined by L. Then we consider the equations:

(qi(Xj) = 6_ij>

4
O (X1, Xo, X, Xa) = dEL + Y (1 = (&0):(EL))mi,

i=]
where ((£,)i; 1 < i < 4) are the corresponding Reeb vector fields and (Xi, Xo,
- X3,X4) is a 4-vector field on R* x T{R. Let ¢ : R* — R! x TIR, o(t) =
(2, ¥(t), ¥:(t)), be an integral section of (X3, Xa, X3, X4). Then () is a solution
of the scalar field equation.

(12)
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ISOTHERMIC SURFACES IN EUCLIDEAN SPACE
BEmilio Musso*

Abstract.— The aim of this paper is to give a brief survey of some as-
pects of the theory of isothermic surfaces in Euclidean space. We shall

~  be particularly concerned with the Christoffel transforms and with the
deformation problem of surfaces with respect to the pseudogroup of
all orientation-preserving conformal transformations.

1 Introduction

The purpose of the present paper is to give an introduction to the theory of
isothermic surfaces. The subject was considered in the latter part of the 19th
century as is evidenced by the works of Christoffel, Darboux, Bianchi, Calapso,
Blaschke, Thomsen and Vessiot [Chr], [D1], [D2], [B1], [B2], [B3], [B4], [Cal],
[Ca2], [BY, [T], [V1], [V2]. It was A.Bobenko [Bob] in 1992 who considered
again isothermic surfaces in the contest of integrable systems (see also [Cil]-
[Cie6] and [CGS]). In recent years;new ideas, such as the notion of a curved
flat introduced by Ferus and Pedit [FP1], [FP2], have become available and have
led to a rapid development of the subject. Quite recently, isothermic surfaces
and the quaternionic calculus [Ka], [W], [HJ2] have been used by Kamberov,
Pedit and Pinkall [KPP] to show the existence of new Bonnet pairs (see also
the original paper of O. Bonnet [Bon] and references [Car},[{Che},[S]). Since we
have a restricted amount of space, we shall consider only two topics: Christoffel
transforms and deformation of surfaces in conformal geometry. In the §2 we
start with the definitions and with a description of the basic examples. The
definition of isothermic surface that we use in this paper is a generalization of the
clagsical one and it is essentially due to Kamberov, Pedit, Pinkall and Hertrich-
Jeromin. In §3 we examine Christoffel transforms of isothermic surfaces and, in
the last section, we give a brief survey of some results of the work done by the

*Partially supported by CNR contract n.93.00554.CT0O1,Short-term mobility of CNR, MPI
40 % progetto " geometria reale e complessa”.

1991 Mathematics Subject Classification. 51B15, 58E40, 53A40, 58A17.

Key words and phrases. Isothermic surfaces, Calapso potential, Christoffel transforms and
conformal deformation.
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author relating the geometry of isothermic surfaces with the general theory of
the deformation of submanifolds in homogenous spaces. We refer to [M] for the
complete details, we also refer to [G], [J1] and [J2] for more information on the
theory of the deformation.

2  Isothermic Surfaces

2.1 Basic Definitions

Let (M, g) be a 3-dimensional oriented Riemannian manifold and S be an ori-
ented surface and suppose we are given a smooth immersion f : S — (M, g). We
denote by I the first fundamental form and by II the second fundamental form.
It follows from the existence theorem of isothermal coordinates [CHW] that S
possesses a unique complex structure compatible with the given orientation and
with the conformal structure defined by the first fundamental form. The defin-
ing property of this complex structure is that, given any positive orthonormal
coframig (o, &?), defined on an open subset U C S, the complex-valued exterior
differential one form o! + ia? is of type (1,0). We then regard S as a Riemann
surfaces with this complex structure and we will denote by S the same surface
but with the opposite complex structure. We decompose the second fundamental
form into the (2,0), (1,1) and (0, 2) parts :

(2.1) I = 7730 4 7 o 7702,

If { = o’ +ia? is a complex coframing of type (1,0) on the open subset U C S
and if

(22) I = hn(&’l)2 “+ 2iL12a1a2 + hgz(&z)z,

we then have ]

(2.3) 1739 = z[(hn — haa) — 2ihy2)(¢)?,
1. -

(2.4) I = §(h11 + ha2)(C.

The (0,2) part 112 is the complex coniugate of 779,

Definition 2.1 The (2,0) part 71?9 of the second fundamental form is called
the Hopf differential of the isometric immersion f : (S,I) —» (M, g).

Definition 2.2 The oriented surface f : S — (M, g) is called isothermic if there
exist a non-zero holomorphic quadratic differential @ and a smooth real-valued
function m : S — R such that JI?9 = mQ. We say that Q is a polarization of

(S, ).
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Remark 2.1 If the isothermic immersion is not totally umbilic, then the po-
larization is uniquely determined, up to a non-zero constant multiple. If the
immersion is totally umbilic and if there exist a non-zerc holomorphic quadratic
differential Q on S, then (S, f) is isothermic and @ is a polarization.

" Definition 2.3 Let (S, f) be an isothermic surface in (M, g) and let Q be a
polarization. Denote by {Q} the zero set of @ and let S, = S — {@}. A complex

parameter z : U C S, — C is said to be a principal isothermic chart if Qly =
(dz)°.

Remark 2.2 Around each point of S, there exists a principal isothermic chart
(U,z). If we write z = x + iy, where z and y are real functions, then

I = B(d)*+ G(dy),

(2:5) II = e(dz)®+ g(dy)®.

This means that (z,y) is a principal coordinate system which is isothermic for
the first fundamental form.

Given a polarization Q we write JI®" = mQ, where m is a real valued
function. If (U,z) is any principal isothermic chart, then I|y = A2dzdz, where
X is a positive function. Since 2mA~! does not depend on the choice of the
principal isothermic chart, there exist a global smooth function ® : X, — R such
that ®|y = 2mA~L. '

Definition 2.4 The real-valued function ® is called the Calapso potential of the
isothermic surface f: S — (M, g) with respect to the polarization Q.

Remark 2.3 If we replace @ by another polarization @' = ¢@, ¢ € R, then
P’ = ¢®. It follows from the definition that the Calapso potential of a totally
umbilical isothermic surface vanishes identically.

2.2 Conformal Invariance

Replacing g by g, = r?g,where r is a positive function, then the first and second
fundamental forms I, and I1, of f: S — (M, g,) are

(2.6) L= (f*(r)*L,
(2.7) II, = f*(r)II + sI.

The complex structure on S is compatible with Z. and

(28) 111(.2’0) = f*(,,..)]}(?,(}).
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This implies that, if f : S — (M,g) is isothermic and'if @ is a polarization,
then f : S — (M,g,) is isothermic and it is polarized by the same quadratic
differential. Thus, the notion of isothermic surface is invariant for the action of
the conformal group of (M,g). This is relevant if (M, g) has a large group of
conformal transformations, as in the case of a 3-dimensional Riemannian space
form. We shall breafly discuss the case of the Fuclidean space and we will refer
the reader to [Ko] and [Ce] for more details.
We embed R® into the 4-dimensional real projective space P*

1
T = (581:332; 33) - [(17 ml,x2, 553: 5[3312)]

If 4°,...,y* are homogeneous coordinates on P4,then the image of R? in P* is

the guadric *
-2+ @' + (%) + (¥°)* =0

minus the “point at infinity” [(1,0,0,0,0)]. Let G be the connected component of
the identity of the pseudo-orthogonal Lie group of linear transformations leaving
the quadratic form —23%*+ (y')?+(3?)*>+(3*)? invariant. Then G can be viewed
as a transitive pseudogroup of transformations acting on R®. Since it is generated
by rigid motions, dilations and inversions, G is the conformal pseudogroup of the
Euclidean space. We can state the following

Proposition 2.1 If f : § — R® is an isothermic immersion and ifA e G is
an orientation-preserving conformal transformation, then Lyo f : S — R® is an
isothermic immersion. '

Consider the embedding

) _ lz2 -1 2z 3
(2.9) F.:UER:‘—»<I$P+1,I:L_P+1 € 5°.

This is the inverse of the stereographic projection from the north pole N =

(1,0,0,0) € S3. Denote by gss and by ggs the standard Riemannian metrics on
5% and on R® respectively. Then

. 4
Flo9) = T epp o=
At this point we can assert the following

Proposition 2.2 Suppose that f : S — 8 is an isothermic immersion such that
N ¢ f(S). Then F~lof : S — R® is an isothermic surface in Euclidean space.
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Let H? ¢ R* be the hyperbolic space
WY+ + @) - =-1 1<y
endowed with the Riemannian metric
w = (dy') + (")’ + (d°)* - (ay*)?

of constant sectional curvature -1. Weset B = {z € R*/|z|? < 2} and we consider
the diffeomorphism

‘(2.10) Gr':a;eB-->(2\/im 2+lez)e}§i{3

2~ 2|2’ 2~ |z]?
We then have

G*(QME*) = é":%‘ﬂggw-

Proposition 2.3 Let f : S — H® be an isothermic surface in Hyperbolic space.
Then G~ Yof : § — B C R® is an isothermic surface in Euclidean space.

2.3 Examples

We give a brief review of the fundamental examples of isothermic surfaces in
Huclidean space.

2.3.1 Surfaces of revolution

Let 7 be a smooth parametrized curve in the (z,z) plane of R®

7(8) = “(a(t), 0, 5(2)),

where ¢ € (—¢,¢€) and a(t) > 0. The surface obtained by revolving y around the
z-axis is parametrized by f : (—e,e) x R — R?

F(z,9) = "(a(x) cos(y), a(a) siny), b(z)).
We then have
I = w*{dz)* + a®(dy)?,
a'nd ( =4 Hbf)
1= 8L e ¢ Doy,
w

where w® = (a')? + (b')%.

The complex parameter z : (—¢’e) x R — C is defined by dz = ¢ 'wdz + idy
and the Hopf differential is given by

al b" . allbf 1}1
110D = (= o) e’
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This shows that surfaces of revolution are isothermic and that (dz)? is a
polarization. Note that any other surface obtained from a surface of revolution
by a M&bius transformation is isothermic.

2.3.2 Cones

Let v : (—¢,£) — S? be a smooth curve in the unit sphere S* C R® parametrized
by the arclength and let S be the positive cone with vertex in the origin and
directrix curve <. The surface is parametrized by

fi(s,m)€ (—&,6) xRt — ry(s) € B3,
If we denote by k(s) the curvature of vy, we get
I = (dr)* +7*(ds)?

and
I = rk(ds)®.

Then, z = log(r) + is is a complex parameter and the Hopf differential is
1139 = —%I:(dz)g.

This shows that S is an isothermic and that (dz)? is & polarization.
2.3.3 Cylinders
Let v : (~g,6) — R® be a curve in the (z,y) plane and assume that v is
parametrized by the arclength. Let S C R® be the cylinder with directrix curve
- and generating lines perpendicular to the (z,y) plane. Then, S is parametrized
by

fi(s,t) € (~e,8) x R— v(s) +teg € R
Thus, z = s — it is a complex parameter and I7?% = k(dz)?, where k is the

curvature of the directrix curve. We then conclude that S is an isothermic surface
polarized by (dz)?%.

2.8.4 Burfaces with constant mean curvature in 3-dimensional space
forms

We will denote by M., £ = —1,0,1 the simply connected space of constant sec-
tional curvature 6(M_1 =1, My=R, M; = .5‘3) and we denote by G. the

group of orientation-preserving isometries of M, (Ghl = 50(3,1), G, = S0(4),
Go =K(3)).

Proposition 2.4 [Ho] The Hopf differential of an oriented surface f : S — M,
s holomorphic if and only if (S, f) has constant mean curvature.
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Proof. Since the arguments are local we will assume the existence of a global
first order frame field A : S — G, and we will denote by 57 = A™1dA the Maurer-
Cartan form of this frame field. We then have

0 —emp —emy O

w0 onf
om0 -n3 |’
0 7 om0

7=

where (n3,n2) is a positive-oriented orthonormal coframing. Thus ¢ = 13 + 7 is
a nowhere vanishing form of type (1,0). We then write

75 = haytg + haatl,

77% = hlgﬁé -+ h?an:
so that 1
1730 = ;;{(hn ~ hga) — 2ihaa](()*.

Set C = (hy; — hay) — 2ihy; and observe that (cfr.[Br]) 7739 is holomorphic
quadratic differential if and only if

(dC = 2iC2) A = 0.

‘We have 1
a=1;—in = 5C¢+HC,

where H denote the mean curvature. By the structure equations we get d{ =
—in? A ¢ and da = in? A «. We then obtain

%(dC— 2iICn}) A +dH A =0.

Therefore dH = 0 if and only if £(dC — 2iCn) A¢ = 0. O

Proposition 2.5 Every non totally umbilic constant mean curvature surface in a
3-dimensional space form is isothermic and its Hopf differential is a polarization.

From Proposition 2.2 and Proposition 2.3 we get

Corollary 2.1 Consider a constant mean curvature surface f : S — S° and
assume that (S, f) is not totally umbilic and that N ¢ f(S). Then F~of: 5 —
R® is an isothermic surface polarized by the Hopf differential of (S, f).

and

Corollary 2.2 Let f : S — HP be a constant mean curvature surface and assume
that (S, f) is not totally umbilic. Then G™lof : § — B C R® is an isothermic
surface polarized by the Hopf differential of (S, f).
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3 Christoffel transforms of isothermic surfaces in Euclidean space

3.1 Christoffel transforms

Consider an isothermic surface f : S — R® endowed with a polarization Q and
let (f;e1,e2,e3) be any field of orthonormal frames so that e; is the unit normal
vector compatible with the orientation on S and (e, e,) is a positive oriented
orthonormal frame field along the surface. We denote by 7?, n} the Maurer-Cartan
forms of this framing. We have then

df = njes +1des,
and
dey = +77%62 + 7]?63,
(3.1) des = —nier+njes,
des = —nier —nies.

Thus, (72,73) is a positive-oriented orthonormal coframing and ¢ = n} + ina
is a nowhere vanishing (1,0) form on U. We set Q = w(({)?, where w: U — C is
a complex valued function such that

(3.2) : (dw — 2iwn?) A ¢ = 0.

We set { = w( and we define real-valued 1-forms 7% and 7% by ¢ = 7} + i75.
Since izer + figez is independent on the choice of the first order framing, there
exists a R%-valued 1-form ¢ on S such that

dlu = Tier + fices.

Definition 3.1 We say that ¢~S is the infinitesimal Christoffel transform of the
isothermic surface (S, f) with respect to the polarization Q.

Remark 3.1 If we replace @ by cQ,c € R, then the infinitesimal Christoffel
transform of the isothermic surface with respect to ¢Q is c¢.

Proposition 3.1 The infinitesimal Christoffel transform of an isothermic sur-
face is closed.

Proof. Without loss of generality we may assume the existence of a global first
order frame field (f;e;, ez, e3) and that the polarization Q is nowhere vanishing.
We then have @ = w(¢)? and w = pe'’, where p and 8 are real-valued functions.
By the structure equations we get d¢ = —in? A  and, by (3.2), we obtain

dig = +n AT,

(3.3) . s
dig = —n} Nij.
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We put
o= hutng+ g,
7 = hiang + hoanl,
so that
41130 = [(hyy — hag) — 2ihag} ()%

Since the surface is isothermic, there exists r : S -— R such that
[(h11 = hgg) — 2ihys] = rw.

Then
}Lu - hzg == ?‘pCOS{?,

and
2h1s = rpsiné.

On the other hand we have

75 = pcosfni + psinfng,
72 = psinfnp — pcosdng.

We then obtain
(3.4) i AT+ A} = 0.

Combining (3.1) with (3.3) and (3.4) we get the required result. 0

Definition 3.2 Let f : S — R® be an isothermic surface endowed with a po-
larization Q). We say that f: S — R® is a Christoffel transform of (S, f, Q) if
df = ¢.

- When we consider the Christoffel transform it is convenient to put on S the
opposite complex structure and hence we adopt the notation f: 5 — R3. If we
assume 3 simply connected, then the Christoffel transform does exist and it is
uniquely determined (up to translations) by the polarization. The polarization
Q, the Hopf differentials, the mean curvatures of f: S, — R3 and f: S, — R®
are related by

21719 = HQ,

3.5) i -
( 2[1™” = HQ.

This implies

Proposition 3.2 The Christoffel transform f i3 — R® of a polarized isothermic
immersion f : S — R® is isothermic and Q is a polarization.
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3.2 Examples

3.2.1 Christoffel transforms of minimal and totally umbilical surfaces

Proposition 3.3 Let f : S — R® be a minimal surface and assume that S is
simply connected and that 1139 £ 0. The Christoffel transform f: 5 — R® with
respect to the polarization Q = ~2II%% is (up to translations) the Gauss map of
(S, f) and the orientation of S is given by the outward unit normals to S°.

Proof. Let (f;e;) be a first order frame field along (S, f). Then the polarization
@ is given by
1 . . 2
Q = ~5 (b = haz) = i) (€ = = (har — ihas) (¢) -
We thus have 7jg = —n? and 72 = —»3. This implies
?“5‘—‘ —7ie; — ez = des.
Which gives the required result, ( ]

Proposition 3.4 Let f : S — R® be a simply connected totally umbilical im-
mersion. and let Q be a holomorphic quadratic differential. Then, the Christoffel
transform f : S — R® is a conformal, branched minimal immersion with Hopf
differential —1Q and (S, f) is the Gauss map of (S, f).

Proof. Let (f;e;) be a first order frame field along f and let 7, 7% be the Maurer-
Cartan forms. If { = 7 + ing and if Q = w(()?, then

(3.6 df = fiser + fizes,

where 7 + i = G(n§ — in5). On S, we can write w = re® for some real-valued
functions r and 8. Thus, (f;e;) is a first order frame field along (S, f) and the
Maurer-Cartan forms of this framing are given by

cos@ , sinf
W=+ S0y
g _ o sinb., cosd ,
o e U] r o

and by
ﬁg = Oa ﬁ? = "'77[]}-: ﬁg = "7?3
We then deduce that

cosf _, sinf ,

i o+ ="

o= -

- sinf _, cos@_
o= i+ =

r
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Then (S,, f) is a minimal immersion with Hopf differential

(2 0 _ 1 cos 9 .sin @ . _- T
7% = 20 B 4 i) = (0 = -0

We also have dez = df and this implies that f is the Gauss map of (S, f). ]

Remark 3.2 Consider the parametric equation of the unit sphere
B7) 7= (w,v) R — Iﬁ-ﬁ(zu, 20, o]’ — 1) € 5% — {(0,0,1)} C K.

We put on S? the orientation determined by the cutward unit normals so
that the induced complex structure is defined by the complex parameter Zz =
@ — iv. A holomorphic quadratic differential on the surface is then given by
F(dz)?, where F is a holomorphic funtion of the complex variable z = u + iv.
Then, the Christoffel transform of (3.7) with respect to the polarization F(dz)? is
the Enneper-Weiesrtrass representation of a minimal surface determined by the
holomorphic funciion F, that is

flz) = 2—9{ (/F(z)(l - z?‘)dz,—i/F(z)(l +zz)dz,2/F(z)zdz> .

3.2.2 Christoffel transform of constant mean curvature surfaces in
Euclidean space

Let f : S — R® be surface of constant mean curvature H # 0let n: S — S? be

the field of unit normals compatible with the orientation on S and assume that

S is simply connected.

Proposition 3.5 The Christoffel transform of (S, f) with respect to the polar—
ization Q = —4 11 @9 45 (up to translations) the parallel surface f = f + ;;n,
Notice that f : S — B is a surface of constant mean curvature H = —H.

Proof. Since the arguments are local, we assume the existence of a principal first
order frame field (f;e;), so that e3 = n. We then have

hay — hao
¢ i1 + hzz( s
This implies that
=1 _hn o h22 1
hy + hzﬁnﬁ,
o hu— Ry
™ +h11 + }BQQ T’D

Therefore,the Christoffel transform of (S, f) satisfies

P ~ Ry 4 hi — hay
of == m +h22’7° ”‘h + ha oer = (f+““)

"This gives the required result. 0
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3.3 Conformal transformations by parallel planes

Let f:5 — R and f': S’ — R® be two oriented surfaces and let n and n’ be
the corresponding unit normal vector fields.

Definition 3.3 A conformal transformation by parallel planes is a conformal
diffeomorphism C : S — 5" such that n(p) = »'[C(p)], for every p € S.

Remark 3.3 If (S, f) is an isothermic surface endowed with a nowhere vanishing
polarization @, then the corresponding Christoffel transform (S, f) is a conformal
tansformation by parallel planes. In this case C = idg : S — § is orientation-
reversing. :

Remark 3.4 (S, f) admits a non trivial orientation-preserving conformal trans-
form by parallel planes if and only if it is minimal [D1].

Proposition 3.6 Let C: (S, f) — (', f') be an orientation-reversing conformal
transformation by parallel planes. Then, (S, f) is an isothermic surface and there
“egists a nowhere vanishing polarization Q such that (S, f'oC) is a Christoffel
transform of (S, f) with respect to Q.

Proof. Without loss of generality we may assume S’ = S and C = ids. Take a
first order frame field (f;e¢;) along (S, f). Then, (f';¢;) is a first order framing
along (S, f) and

df = myey +mges,
df' = fger + fgea.

We have that ¢ = 73 +in? is a (1,0) coframing on S and that ¢ = 7} -+ 72 is
a coframing of type (0, 1).Thus, there exist a nowhere vanishing complex-valued
function w such taht { = w(. Since the quadratic differential w(¢)? does not
depend on the choice of the framing there exists a nowhere vanishing quadratic
differential @ of type (2,0) on S such that Qly = w(()?, for every first order
framing (f;e;). Using the structure equations it follows that @ is holomorphic
and that (S, /') is a Christoffel transform of (S, f) with respect to Q. O

4 Conformal deformation of surfaces in Euclidean space

In this section we will state some results relating isothermic surfaces with the
general theory of deformation of submanifolds in homogeneous spaces.
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4.1 Deformation of submanifolds

Definition 4.1 Assume that the Lie group H acts as a pseudogroup of transfor-
mations on M and let f: N — M and f: N — M be two submanifolds of the
same dimension. We say that (N, f) and ( f.N) are kth order H-deformations
each of the other if there exists a diffeomorphism F' : N — N and a smooth map
B : N — H such that, (N, f) and (N, L) foF) have the same k-th order jets
at p, for every p € N. We then say that F': (N, f) — (N , f) is a k-th order
H-deformation. The deformation F is trivial if B : N — H can be chosen to be
constant.

Definition 4.2 A submanifold (N, f) is H-deformable of order k if it admits
non-trivial k-th order deformations with respect to H. Otherwise we say that
(N, f) is H-rigid at order k.

4.1.1 Example

Two submanifolds of the same dimension in the Euclidean space B® are first order
deformations each of the other with respect o the action of the group of rigid
motions if and only if they are isometric. Each submanifold in R* is rigid at the
second order.

4.2 Conformal deformation of surfaces in Euclidean space

On the Euclidean space R® we consider the pseudogroup G of all orientation-
preserving conformal transformations, this is a 10-dimensional connected Lie
group isomorphic to the connected componenet of the identity of SO(4,1) (see
section 2.2). From now on we shall refer to deformation with respect to G as
conformal deformation. The essential results are as follows (see ref.[M]):

Proposition 4.1 Two oriented surfaces (S, f) and (S, f) in B® are first order
conformal deformations each of the other if and only if S and S are biholomorphic
each to the other and every biholomorphic map S — S 15 a first order deformation.

Proposition 4.2 Let S be.a simply connected, oriented, 2-dimensional manifold
and let f: S — R® be a smooth immersion without umbilical points. Then (S, f)
possesses not trivial second order conformal deformations if and only if (S, f)
is isothermic. Moreover, (S, f) and (S, f) are second order conformal deforma-
tions each of the other if and only if they are polarized by the same holomorphic
guadratic differential and the corresponding Calapso potentials coincide.

Remark 4.1 Given an umbilic free simply conected isothermic surface (S, f) in
Euclidean space then the second order conformal deformations of the surface de-
pend (up to reparametrizations and conformal transformations) on one arbitrary
real parameter m € R.
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Proposition 4.3 Fach oriented surface in Euclidean space is rigid with respect
to third order conformal deformations.
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THE GEOMETRY OF L-ISOTHERMIC SURFACES

Lorenzo Nicolodi*

Abstract.— The subject of Laguerre invariants of surfaces in Eu-
clidean space is considered. Some aspects of the theory of L-isothermic
surfaces in relation with the problem of deformation are reviewed, and
some examples are discussed.

1 Introduction

While the subject of conformal invariants of submanifolds has received much
attention since the latter part of the 19th century, the subject of Lie and Laguerre
invariants of submanifolds has been less studied. Considerable progress on the
subject was made by Blaschke and Thomsen [Bl1], [Bl2], {B13], [Bl4] in the 1920s.
In recent years, researchers such as Cecil, Chern, Pinkall, Thorbergsson et al.,
tock up Lie geometry again in connection with the study of Dupin hypersurfaces
[Ce]. We became interested in Laguerre geometry when studying the variational
problem Laguerre invariant area element

(H? - K) K~'d4,

where H and K are the mean and Gaussian curvatures of the immersion, and
dA is the induced area element (¢f. [MN2]). This is the analogue in Laguerre
geometry of the so-called Willmore variational problem.

In this expository article, we review the basic concepts of surface theory in
Laguerre geometry and report on the class of L-isothermic surfaces focusing in
particular on their relation with the theory of deformation in homogeneous spaces.
We shall discuss some examples such as surfaces with plane lines of curvature,
molding surfaces and L-minimal surfaces with plane lines of curvature. For more
information on the analogous circle of ideas in conformal geometry, we refer to
the article of E. Musso in these proceedings.

The results presented here were obtained in collaboration with E. Musso. The
detailed proofs will appear elsewhere.
* Partially supported by MURST 40%.
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2 Generalized surfaces and Legendre surfaces in T1E?

Let F — E?® be the SO(3)-bundle of oriented orthonormal frames of Euclidean
space E® with canonical forms 6, and Levi-Civita forms 6§ = -8 1<, 8,7 <
3, defining a parallelization of F. The structure equations are

o™ = 93 A6, dO% = —0° A6

Let TYE® & F/SO(2) be the unit tangent bundle of E® and 7 : F — T1E® be
the projection 7(p; e1, €z, €3) = (p;€;). The forms 6%, d*, and 6% A % descend to
TyE3.

If f : M+ E? is any immersed oriented surface, then there is a lift (the Gauss
lift) F : M — TE? given by F(p) = (f(p),n(p)), where n(p) is the oriented unit
normal to f at p. If (f;n,eq,e3) = (f;€) : E® — F is a local Darboux frame field
along f, then F = 7o (f;e). Thus

F*6' = (f;e)*6* =0,
F*(02 A 6%) = (f;e)*(6> A 63) = dA, area element of the induced metric.

Conversely, an immersion F : M — TiE* is the Gauss lift of an immersion
f:M—-Eif
F*¢* =0, F*®AG)#0.

If F satisfies only F*6' = 0, it is called a generalized surface, because the Fu-
clidean projection f may have singularities.
On T1E3,
6 A (d8*)? #0
at every point. Thus ! defines a contact structure. Integral submanifolds of the
. contact distribution have maximal dimension 2, and immersed 2-dimensional sub-

manifolds are called Legendre surfaces of the Lonta,ct structure. Thus generalized
surfaces are Legendre surfaces.

3 T,E? as a homogeneous space of the Poincaré group

Let R} denote Minkowski 4-space with its structure of affine vector space and a
translation invariant Lorentz scalar product {, ) which takes the form

(v, w) = —(v'w* + v'w') + v*w? + P = g, g = g5
with respect to the standard basis ei,...,es. We use the index ranges 1 <

4,5,k <4,1< @, f <3, and the summation convention. We fix a space orien-
tation by requiring that the standard basis is positive, and fix a time orientation
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by saying that a timelike or lightlike vector v is positive if (v, e; +e4) < 0. The
corresponding positive lightcone is given by

[f*’:{véR’% D (v, vy =0, {v,e1 +e4) <0}.

The (restricted) Poincaré group L is the group of isometries of R which preserve
the given space and time orientations. It is isomorphic to the semidirect product
L =R* x G, where G consists of elements a = (a}) € GL(4, R) such that

det ¢ =1, ghkafaf = G, (ae; + aeq €1 + es) > 0.

Any time-oriented isotropic line in R may be realized as z-+tv where z € R,
v € L% and ¢ ranges over R, and will be denoted by [z,v]. The set of all time-
oriented isotropic lines in R} forms a five-dimensional smooth manifold, which we
denote by :
A= {[a:,sv] reRi,ve L'"‘}.

The group L induces an action on A which is transitive:
LxA— A, ((z,0),[y,v]) — [z + ay, ).

We establish a bijective correspondence between the points of T3E? and A by the
map

(1) (p,n) € iE - [x(p), v(n,p)] € A,

where

1+nl n? n 1~—n1)

1 1
T :t'?—s 2: 35:2_7 wn, =£—_"'>"""a_:
4 Laguerre geometry in Fuclidean space

The points in R} are in bijective correspondence with the set of all oriented
spheres and point spheres in E®. The orientation of a sphere is designated by
giving a sign to its radius, while point spheres have no orientation. The oriented
sphere o(p, r) with center p = (p!, p?, p®) and signed radius r € R corresponds to
the point in R} given by

r+p! T — p
t( \/i :Pz,?g) "’%—)a

and the point sphere {p} corresponds to the point

pl i
x(?) = t("\7—‘2‘! pQ, pS, —\75)
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Instead, the oriented plane 7(n, p) through p and orthogonal to n = (n!,n%,2%) €
S? C E? is identified with the hyperplane (isotropic hyperplane) through the point
z(p) € R} with isotropic normal vector

b
v(n,p)—- ( 9 3 \/@: ‘/éz 2 )

Oriented contact of spheres and planes corresponds to incidence of points and
isotropic hyperplanes in Rf. Two oriented spheres corresponding to z and y in R}
are in oriented contact if and only if (z —y,z — y) = 0. The isotropic hyperplane
with normal vector v == £ — y corresponds to the common tangent plane to the
spheres x,y in E®. Geometrically, this means that the points on a time-oriented
isotropic line in R} correspond to a parabolic pencil of oriented spheres in oriented
contact at a certain point (p,n) in the unit tangent bundle of E?.

A Laguerre transformation is a contact transformation induced by a transfor-
mation in the group L. In terms of E?, a Laguerre transformation is a map on
the space of oriented spheres (including point spheres) and oriented planes which
preserves oriented contact and takes plane to planes.

5 Moving frames in Laguerre geometry

We now introduce the method of moving frames in the context of Laguerre ge-
ometry.

By a Laguerre frame (z;ay,...,a4) is meant a position vector z € R} and an
oriented basis (ay,...,a4) of R}, such that

(a:,05) = gij, @1,04 € LT,

L acts simply transitively on Laguerre frames and the manifold of all such frames
may be identified, up to the choice of a reference frame, with L. For any {z,«) €
L, we regard z and a; = ae; as R*-valued functions. There are unique 1-forms w*
and w} such that ’

(2) dz = wia,-, (la,» = w}aj.
Exterior differentiation of (2) yields
(3) dw'=—-wi N, dw} = —wj Awl.

(3) are the structure equations of L.
The transitive action of L on A defines a principal Ly-bundle

L L—A= L/LQ,A = A{O,(’,l] = [:23, ai].

Definition. A Laguerre frame field in A is a local smooth section 4 = (z, a) of
r.
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Remark. By the structure equations of L, the 1-form —{dw,q;) defines a L-
invariant contact distribution on A. By (1), this contact structure coincides with
the contact structure on TiE® defined by 6%

Definition. A (local) Laguerre frame field along a Legendre surface F: M — A
is a smooth map A = (z,a) : U — L defined on an open subset I/ C M, such
that w(z,a) = [, a1] = F.

For any Laguerre frame field A : If — L we let a = (¢, j) = (A*(wi), A* (w;))
be its connection form. We then have

- a*=0, 1A1#0.

Any other Laguerre frame field A on U is given by A = AX(d;b;z), where
X = X{d;b;z) : U — Ly is a smooth map, and & and o are related by & =
X laX + X" MX.

Definition. Two Legendre surfaces (M, F') and (M', F') are said to be L-
equivalent if there exists a diffeornorphism ¢ : M — M’ and A € L such that
F'oyp = AF. In particular, two oriented immersed surfaces in E® are L-equivalent
if their Gauss lifts are L-equivalent. In the case of Lagunerre equivalent immer-
sions, there is no loss of generality in replacing F” by F' oy, so that M = M’ and
F’' = AF. If B is a Laguerre frame alonf F, then AB is a Laguerre frame along
F' with no change in the pull-back of the Maurer-Cartan forms,

Remark. The method of moving frames.

The idea of the method of moving frames [Car],[Gr],[Je] is to associate to an
immersion in a homogeneous space L/Lg a lift of the immersion to L. One
expects the pullback of the left-invariant Maurer-Cartan form on L to give a
complete set of differential invariants for the immersion. These generalize velocity,
curvature, and torsion for curves in Euclidean space E°, which are differential
invariants of order 1, 2 and 3 respectively. The problem is that the lifts are not
unique. One uses algebraic or geometric criteria to reduce the choices of these
Iifts to something unique or invariant in some sense. If the reduction is made
in terms of conditions imposed on the components of the Maurer-Cartan form,
then the same -conditions hold for any L-equivalent (congruent) surface, namely
for the frame obtained by the congruence. The principal difficulty in the general
theory lies in the phenomenon of degeneracy, exemplified by the undefinability
of torsion of curves in Fuclidean space at points where the curvature vanishes.
Some restriction on the class of immersions to be considered is thus necessary.
In our situation, the natural class turns out to be that of immersions with nor
parabolic nor umbilic points.

Proposition 5.1 [MN2] Let f : M — E? be an oriented immersion with nor
parabolic nor umbilic points. Then there exists a canonical frame (normal frame)
A:U CM — L along the Gauss lift of f such that 1 A1 3 0 and such that
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0 2qal+ 2{;;&1 P18 — 20} paad — pyd 0
|1 Gf1 0 —q10} + oi prod - pead
=1 _1: _ 3 0 s 3 1>
01 1110’1 151421 P20y — P3cy
0 0 ol ol 0

where p1, P2, p3 and qu, g2 are real-valued smooth functions.

Remark.
1. p1,P2, 03, 01, @2 are the fnvarient functions and (1,1) the normal coframing
of the Legendre surface F = (f,n) with respect to the normal frame field A.
The Maurer-Cartan compatibility condition yields the structure equations of the
surface:
dl=—qinl, d0=-—glAl,

dyAl—dp Al = (m—-ps+a’+@M)1AL

dqlA1+dQ2/\1 = “1)21/\1,

dpi A1 —dps Al (8qip1 +4gop2 — ips)1 A 1,

dpp Al—dps Al = (3gps+4aipy — i)l AL
2. The normal frame A is defined up to the action of a subgroup of Ly Whaeh is
isomorphic to Zs.

i

6 Buclidean geometry as a subgeometry of Laguerre geometry

Euclidean space E® is identified with the hyperplane {z,e; + e4) = 0 (Euclidean
hyperplane) in R}, and Euclidean motions correspond to the elements of L which
leave the Euclidean hyperplane invariant. Explicitly, for any (p,a) = (p, (¢3)) €
E(3) = R® x SO(3), we define the corresponding element in L by

1
I
V2
. p2
@ .
-
NG

%ﬁffl—‘*f

Let f : M — E?® be an oriented immersion in Euclidean space with no
parabolic points and let » be a unit normal field on the immersion. If (f;n, e, €3) :
U — E(3) is a local Darboux frame along f, we have

df = 0%ep +6%es, dn=fley+ 0Pe3, dey = O3¢5 — &n, des= ~03ey — @3n,
where (67,6°) is the dual coframe of (ez,e3) on M and 67 = hy16% + hyp8® and

03 = hy362+hye6? with hyyhop — k2, > 0. Then the MaurermCartan form (¢, (%))
of the Laguerre frame corresponding to (f;n, e, e3) is
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7 L-isothermic surfaces

Let f : M — E® be an immersion of a surface M in Euclidean space with no
parabolic points. Let consider on M the unique complex structure compatible
with the given orientation and the conformal structure defined by the third funda-
mental form III = dn - dn of the immersion. Accordingly, the second fundamental
form I decomposes into bidegrees:

1 = 1139 4 1l 4 e,

1139 is a globally defined (2,0) symmetric bilinear form on M. If (f;n, es, €3)
is a Darboux frame on U C M along f, the complex structure induced on M is
defined on U by ¢ = 82 + i63, and

ne” = :1‘ [(h11 — haz) — 2ih1ofiop.

Definition. f : M - E? is said to be L-isothermic if there exists a non-zero
holomorphic differential Q and a smooth real-valued function g : M — R such
that I®? = Q. Q is said to be a polarization of f.

Remark.

1. The notion of an L-isothermic surface is invariant under Laguerre transforma-
tions. By (5), an easy calculation shows that under a Laguerre transformation II
is taken into the conformal class of 11 modulo I11.

2. The classical notion of an L-isothermic surface is that f : M — E?® admits
local curvature line coordinates which are conformal for the third fundamental
form away from umbilic points.

3. If the isothermic immersion is not totally umbilic, the polarization is unique-
ly defined up to a non-zero constant. If the immersion is totally umbilic and
there is a non-zero holomorphic quadratic differential Q@ on M, then (f, M) is
L-isothermic and Q is a polarization.

Definition. Let f : M — E® be an L-isothermic surface in E® and let Q be
a polarization. Let {Q} denote the zero set of Q and My = M — {Q}. A local
complex coordinate z : i C My — C is said to be an adapted chart if Qus = (dz)*.
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If (U, z) is an adapted chart, then IIIy, = (A)2dzdZ, where A is a positive function.
We can then define a global smooth function & : My — R such that &y, = 221
& is called the Blaschke potential of the L-isothermic surface with respect to the
polarization Q.

Around each point of My we can write z = w <+ v and consider a local
parametrization x = 27! : & — M, for some open connected domain L. The
Maurer-Cartan form (6%, (65)) of the Gaussian framing of z can be written as

6 6t =0, 6 = Edu, 6% = Gdv,
() @ =Ldu, 6 = Ndv,

where E, G, L and N are nonvanishing smooth functions and

1 1
7 B e ol
) s NLvdu—i— LNudv.

It is easy to prove

(8) An immersed surface M C E? is L-isothermic if and only if, for any adapted
chart (U, z)

L
(log ‘N‘)uv =0

on Mj.

An L-isothermic surface can locally be parametrized by two-parameter maps
z: 5 C R? — E?, such that ¥ is a connected, simply connected open subset with
coordinates (u,v), that the tangent vector fields z, and z, are along principal
directions, and that the Gauss map

Ty NIy

=20 Y- S B
lww A x|

n
is holomorphic. Let (z,e1,ez,€3) : & — E(3) be the Darboux frame field along
x defined by ¢; = n, ey = B—j—ﬁ—, ey = ﬁf—” The corresponding connection form
(6%,(85)) can be written as

o =0, 0 =Edu, 6 =Gdo,
2 =eVdu, 6 =eYdv, 03 =-U,du+U,dv,

where U, £ and G are smooth functions and EG # 0 at each point. We then have

dz = Edues 4 Gdves,
dn = eV (dues + dvey),
dey = —€Vdun + (—U,du + U,dv)e;,
des = —eYdvn — (~U,du + U,dv)es,
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and hence A :

9) AU = -,

(10) E,=GU,, G,=EU,.
The Blaschke potential of (¥, x) takes the form

(11) b= %(E e
Equations (9) and (10) imply

(12) O,y =~ (Uy, - UU,),

(13) A (Um) - Uqu) = 0:

from which we deduce that the Blaschke potential is a solution of the fourth order
nonlinear PDE!

(14) A (@(;”) =0 (Blaschke differential equation).

Conversely, let ® = ¢¥ : & — R be a Blaschke potential, and m be a harmonic
conjugate to &,,9~1; Define p; and p; by

p=—e Puu + %(¢u}2 - %(T;bv)z - m) ’
P = ’“6”2’& v T %(,wu)Z + %({d)ﬂ)z + m) .

The exterior differential form « given by

0 dlog ®? p1®du p3®dv 0
odu bdu 0 —~(®ydu — ,dv) /P  p1Pdu
—-Odv’  ®dv. (D,du— D,dv)/P 0 p3@dv
0 0 Bdu Ddy —dlog ®?

takes values in the Lie algebra of L and satisfies the Maurer-Cartan equation
do = —a A a. This implies that there exists a Legendre surface F' : ¥ — A
whose normal frame field A : & — L satisfies dA = Ax. The map F is unique
up to the action of L. Moreover, the Euclidean projection  : & — E® of F
is an L-isothermic parametrization away from the singular locus with Blaschke
potential ®.

Remark. Observe that local L-isothermic surfaces can be obtained from an

infinite dimenional integrable system. They depend on four functions in one
variables (cf. [MN3], [MN4]).

! In the classical terminology, this is an equation with equal invariants. They were exten-
sively studied by Darboux [Da]; see also Bianchi [Bi].
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8 L-isothermic surfaces and the deformation problem

The notion of an L-isothermic surface is related to the defermation theory of
submanifolds in homogeneous spaces [Gr], [Je].

Definition. Two immersions F, F' : N — G/K of a smooth manifold N into
a homogeneous space G/K are G-deformations of each other of order k if there
is a smooth map A : N — @G such that F anf A(z)F’ agree up to order k at z,
for each ¢ € N, ie., they have the same jets of order k'at . An immersion is
deformable of order k if it admits non-trivial deformations of order k; otherwise
is said rigid of order k.

Proposition 8.1 [MN2], [MN3] A Legendre surface F : M — A is deformable
{of order two) if and only if the invariant function p, = 0. Moreover, non-trivial
~ deformations of F' arise in a I-parameter family.

Remark.
1. Any Legendre surface in A is deformable of order 1 and rigid of order 3.
2. The Gauss lift of an L-isothermic surface has p, = 0.

The latter condition is characteristic for L-isothermic surfaces. In fact,

Proposition 8.2 [MN2], [MN3] A Legendre immersion F : M — A is de-
formable if and only if it is the lift of an L-isothermic surface in B3, The lifts of
two isothermic surfaces are deformations of each other if and only if they have
the same potential ®. Hence, from a solution of the Blaschke equation we can
construct an invariant frame of an L-isothermic surface and all its deformations.

9 Example 1: surfaces with plane lines of curvature

A remarkable class of L-isothermic surfaces is provided by the surfaces with plane
lines of curvature in both systems.

Proposition 9.1 [Bl4], [MN5] An immersed surface M C E* with nor umbilic
nor parabolic points and plane lines of curvature in both systems is L-isothermic.
Moreover, the Blaschke potential with respect to a polarization Q is a solution of
the one dimensional wave equation

(15) By, =0,
where z = 4 + iv is an adapted chart,
Proof. Let z = z7! : % — M be a principal parametrization of M. Define the

mapping
m= ey X (eg)y : & — E*.



The geometry of L-isothermic surfaces 247

The curvature lines v = const. are plane if and only if m x m, = 0. This reduces
to
(16) LNLyy, —~ LN Ly — NL,L, =0.

Similarly, ¢ = const. is plane if and only if
(17) LNN,, — NN, L, — LN,N, = 0.

We then obtain L
(log F)uv =0,

and hence M is L-isothermic by (8). Next, if z : & — E? is a local parametrization
for M, L = N = eV. Thus (16) and (17) reduce to U,, = U,U,. By (12), equation
(15) follows. ’ 0
Remark.

1. For a polarized surface with plane lines of curvature m is a constant which
depends on the polarization ). The conditions m # 0 and m = 0 are independent
of the polarization.

2. Two surfaces with plane lines of curvature are Laguerre equivalent if and only
if they have the same Blaschke potential ¢ and the same m.

3. If &, = 0, or else &, = 0, then the surface is L-equivalent to a canal surface,
i.e., an envelope of a l-parameter family of spheres. In this case m # 0 if and
only if the surface is L-equivalent to a surface of revolution.

4. ® = const. 0 if and only if the surface is L-equivalent to a Dupin surface.
5. For more details on surfaces with plane lines of curvature we refer to [MN5].

10 Example 2: molding surfaces [B], [BCG], [Da], [Ei]

A special class of surfaces with plane lines of curvature and hence of L-isothermic
surfaces is given by molding surfaces, which we shall discuss in this paragraph. A
molding surface is described as follows: take a plane curve b (directrix curve) and
a curve ¢ on one of its normal planes (the profile). Then, the surface is generated
by the curve a as its plane moves remaining normal to b. We shall denote by X,
the molding surface with directrix curve b and profile .

Assume that b is a curve in the (z, z) plane represented by means of

(18) zp:vel CR+ (2][3(1:) cos(v)dw, 0, -Q/ﬁ(v) sin(v)dv) € E?,

where § : I’ — R is a smooth function. Although zz is not necessarily an
immersion, we may define tangent and normal vector fields

(19) tg: v € I' > (cos(v), 0, —sin(v)),
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(20) ng:v € I' = (sin(v), 0, cos(v))

Remark. If 8(v) # 0, for each v € I, then b is an immersed curve; the measure
of the arc of the curve is dsg = 2|8(v)|dv, and the curvature of b at zg(v) is

Kg (’l}) = —"2-3%;)‘.
Let (e, €2, €3) denote the standard basis of R® and let

(21) Zo i u € I+ (0, pta(u), va(u))
be an analytic representation of the profile. Then
Zap: (0,0) €U > 3p(v) + va(w)np(v) + Ha(w)ez

is a parametric equation of the molding surface X,;. The mapping z.p is an
immersion away from

o= {(wv) € I x I's va(u) +26(v) = 0}.
Let consider the curve b’ defined by
22) - zp(v) = 2p(v) — 2B(v)np(v).

Since

we see that z'g(v) — z5(v) is always normal to b at the point z5(v) and is tangent
to b’ at zj(v), for each v € I'. Thus ¥ is the evolute of &.
Let ¢ the unit tangent vector field along &'. Then

(23) _ Tap : (u,0) € U = 2p(v) + (Valwr) + 28(0))ty + pa(u)er.

This implies that X, is the surface generated by the profile « whose plane rolls
without slipping over a cylinder having ¥’ as right section.

Proposition 10.1 [B], [Ei] Molding surfaces have plane lines of curvature in
both systems.

Let z, be the arclenght parametric representation of the profile. Then the
Gaussian curvature K, of X, ; vanishes at z, g{u,v) if and only if

dita
24 =0,
( ) : du Ju 0
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Thus if K, 5 is nowhere vanishing, we may assume that p, is a decreasing function,
and the parametric equations of the surface can be recast in the following form:

T 5(u, v) = va(u)sin(v) + 2 f f(v) cos(v)dw,
(25) Y p(t,0) = — [ /1~ (%) au,

Za (1, ) = velu) cos(v) — 2 [ f(v) sin(v)dv.
This is the classical analytic representation of a molding surface with nor wmbilic
nor parabolic points ([Ei],[B]) and is referred to as the Bour parametric equation

of Xa,b- )
With the above assumptions, we have

dita dv,

du < [*1,0), ‘ZZ_'l: S (*1, l).
Therefore there exists a smooth function r, : 7 — R such that

dv,
(26) T tanh r,(u),
forall w € I. Then
dity 1 dr,

2 B R T—— a1 .
@1 dute  coste(u) du a(u) coshra(u)

Let I, denote the image of r, and consider the parametrization z,g(u,v) =
Ta,5(Ta (1), v). The profile is then parametrized by

To iU € Iy (07 Au*a(u): V&(u))x
where po(u) = pa(ra™ (W), val(u) = va(roa " (u)). We then set xo(u) = ko(ra"1{u)).
From (26) and (27) we have
(28) dv, = sinh(u)dp,.

By (27), we have

ditg 1
(29) du " K(1) cosh (u)”

Combining (28) and (29) we obtain
(30) -(}% (cosh(u)v,) = —2sinh(w)a(u)

where « is the function defined by

1

(31) 20(0) = ok (@)

— Va(u).
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We then have
ta(u) = —E_(Ehz(?). (cosh(u) / a(u) cosh(u)du ~ sinh(u) / a(u) sinh(u)du) .

and 5
Valu) = ook (@) /a(u) sinh(u)du.

Consequently, zq g(u,v) has the following expféssion in terms of the two func-
tion @ and f:

Tap(u,v) = —z‘;‘ggzg o(w) sinh(u)du + 2 / () cos(v)dw,
Yap(u,v) = —E-gé%@—)- (cosh(u) / a(u) cosh(u)du — sinh(u) / a(u) sinh(u)du) ,

_ 2cos(v)
Zap(¥: ) = " cosh(u)

a(u) sinh(u)du — 2 / B(v) sin(v)dv.

This will be referred to as the Blaschke parametric equation of the molding surface
Xop- o and  are said the potential functions of the surface.
We have

Proposition 10.2 [MN5] The Blaschke representation Tap : Io X I' = E3 of a
molding surface with nor umbilic nor parabolic points is an L-isothermic immer-
sion. The Euclidean invariants of the map are given by

Eop(u,v) = vo(u)+ 2a(u),
(32) Gop(u,v) = va(u)+26(v),
' U(u,v) = -logcosh(u).

The Blaschke potential of the immersion is
D4 p5(u,v) = afu) — B(v).
Proof. Consider the Gauss framing (z.g; e1, €2, €3) of z, g, where

dv,
du |u

dite
du

du, dpse
= — 4 —_— , = V) — =1 .
er Iunﬂ(v) T © ng(v) T © s(v)

The Gauss framing (zq,s; €], €3, €3) of 4 is such that

e = c—os%@jnﬁ(v) — tanh(u)e,,
(33) ef? = — tanh(u)nﬁ(v) - -c_(_)ghl_(ﬂjez’

ey = tg(v).
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For the corresponding Maurer-Cartan form (6'“, (8'3)) we compute, by (33),

o =0, 0320(u) + va)du, 03 = (ve+ 26(0))dv,
2 __ 1 3 1
0 = coshiuidu’ 0 = cosh (u du,
and this gives the required result. 0l
Remark.

1. Note that the spherical representation of z, g is given by

sin(v)  sinh(u) cos(v) ) |

’I’L(u) 'U) = (COSh (’L{-)} —COSh (’{1,)’ cosh (‘2},)

for each (u,v) € I, X I'.

2. It is clear that, if we assign two functions a(w) : I — Rand 8(v) : I' = R
and define z, g by means of the corresponding Blaschke parametric equations, we
obtain an isothermic representation of a molding surface with potential functions
« and 3.

3. Any surface with plane lines of curvature and m # 0 is Laguerre equivalent to
a molding surface [MN5}.

4." As a limiting case of the molding surfaces we obtain surfaces of revolution.

11. Other examples: minimal surfaces and L-minimal surfaces with
plane curvature lines '

Examples of L-isothermic surfaces clearly include minimal surfaces. These form
a special class of Laguerre minimal surfaces (L-minimal surfaces) which are also
L-isothermic. These surfaces are defined by a family of integrable nonlinear
second-order PDE’s:

Alog® = ed7?,

¢ a constant, whose solutions are automatically solutions of the Blaschke equation
(14) and the Fuler-Lagrange equation

m H,
A(3) =0

of the variational problem for the invariant area element (H? — K) K~1dA. Here
AT genotes the Laplace-Beltrami operator with respect to the third fundamen-
tal form of the surface. Only the sign of the constant is relevant and the study
of L-minimal isothermic surfaces is reduced to the study of the three cases cor-
responding to ¢ = 1, —1,0. The case ¢ = 1 defines minimal surfaces in Euclidean
space. Geometrically, these solution surfaces are characterized by having degen-
erate central sphere congruences {(cf. [Me], [MN2], [MN4]).

We refer to [MN5] for an explicit description of L-minimal surfaces with plane
lines of curvature.
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