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Introduction

When studying the geometric properties of a semi–Riemannian manifold, the starting point
usually comes from some invariants of the metric structure. Among those invariants, the
curvature tensor is perhaps the simplest and most natural one. In the words of R. Osserman
[109]

The notion of curvature is one of the central concepts of differential geometry;
one could argue that it is the central one, distinguishing the geometrical core
of the subject from those aspects that are analytical, algebraic or topological.
In the words of M. Berger, curvature is the “Number 1 Riemannian invariant
and the most natural. Gauss and then Riemann saw it instantly”.

Curvature, however, can be studied from several points of view. On the one hand, an
essential problem in differential geometry is to relate properties of the curvature tensor to
the underlying geometry of the manifold. Another point of view is to consider different
kinds of objects naturally associated with the metric structure of the manifold and relate
the curvature of the manifold to the properties of these natural constructions.
When dealing with a complicated object such as the curvature tensor, it is interest-

ing to decompose it in more elementary constituents. Usually, these smaller parts give
a simplified picture and a deeper insight into the whole problem. In Chapter 2 we show
that the curvature tensor may be decomposed in terms of some simple algebraic curvature
tensors. This is of special importance when considering Osserman–like problems.
Furthermore, the fact that the whole curvature tensor is very difficult to handle derived

the investigation to the consideration of geometric objects naturally associated with the
curvature. Typical examples are the sectional curvature, the Ricci tensor or the scalar
curvature. Part I of this thesis fits into this philosophy. Among the different operators that
can be defined from the curvature tensor, we are specially interested in the Jacobi operator,
which encodes important geometric information and whose properties strongly influence
the underlying geometry of the manifold. The Jacobi operator and Jacobi vector field
theory are important tools in semi–Riemannian geometry. They provide a good description
of curvature, behavior of geodesics and geometry of certain kinds of submanifolds. Thus,
understanding the Jacobi operator of a semi–Riemannian manifold allows us to characterize
the geometry of the manifold in several cases. Chapter 3 of this thesis is devoted to the
investigation of the Jacobi operator in relation to the so–called Osserman problem. In
Chapter 3 we focus on the Osserman problem in dimension four. Our main goal is to
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2 Introduction

show the existence of Osserman metrics whose Jacobi operators are non–nilpotent and
non–diagonalizable. This answers in the negative a conjecture on the non–existence of
such manifolds. Moreover, a complete local description of any such metrics is given.
As it was stated above, another approach is to enlighten our understanding of a manifold

by investigating the relation between curvatures of geometric objects naturally associated
with the metric structure of the manifold and the curvature of the manifold itself. Examples
of these structures are small geodesic spheres, geodesic disks and tubes around significant
submanifolds.
Part II of this thesis is devoted to the study of some of the previously mentioned

objects. In particular we study scalar curvature invariants of geodesic spheres in Chapter
4. Scalar curvature invariants are of main interest and many important geometries can be
characterized in terms of these functions. We consider them in relation to geodesic spheres.
In this chapter, we integrate the scalar curvature invariants of geodesic spheres and disks,
obtaining the first terms in their power series expansions as a function of the radius. This
leads to some characterizations of the two–point homogeneous spaces among Riemannian
manifolds with adapted holonomy.
Inspired by the construction of geodesic disks in Riemannian geometry, we define

geodesic celestial spheres in the Lorentzian setting. It turns out that this family of objects
is adapted to the consideration of volume comparison results in the Lorentzian frame-
work, which suffered from a lack of geometric constructions analogous to the Riemannian
geodesic spheres and tubes. Chapter 5 is devoted to the investigation of volume proper-
ties of geodesic celestial spheres as well as their total scalar curvatures. This allows us to
characterize isotropic Lorentzian manifolds.
Geodesic spheres and tubes are somehow level sets of the Riemannian distance function

and hence they are closely related to the metric structure. Other objects in Riemannian
manifolds which are related to the metric structure are those submanifolds invariant under
the isometries of the ambient manifold. Orbits of cohomogeneity one actions are examples
of this situation. Furthermore, a principal orbit of a cohomogeneity one action is geomet-
rically a tube around a singular orbit of that action. This involves again the Riemannian
distance function and the Jacobi operator, which is the main tool for calculating the ge-
ometry of geodesic spheres and tubes.
The geometry of orbits of cohomogeneity one actions is more interesting from the ex-

trinsic point of view. Thus, it is the second fundamental form what we study in this case.
Part III of this work is devoted to the investigation of real hypersurfaces with constant
principal curvatures in the complex hyperbolic space. Orbits of cohomogeneity one actions
are the main candidates for these hypersurfaces and are the only known examples so far.
In Chapter 6 we study the shape operator of the orbits of cohomogeneity one actions on
the complex hyperbolic space. We take advantage of this study and give in Chapter 7 a
complete classification of real hypersurfaces with three distinct constant principal curva-
tures.



Chapter 1

Preliminaries and conventions

We introduce some of the basic notions in semi–Riemannian geometry. The notations and
conventions described in this chapter are used throughout this monograph unless otherwise
stated. This concepts can be found in most of the introductory books to Riemannian and
semi–Riemannian geometry. Well–known references are for example [108], [114], [116].
In Section 1.1 we introduce the concept of semi–Riemannian manifold and provide our

sign convention for the curvature tensor. In Section 1.2 we briefly state a few properties
of geodesics and the semi–Riemannian exponential map. Section 1.3 is devoted to the
description of some facts about submanifold geometry. We finish this chapter with a brief
overview of some special kinds of manifolds which are used later in this work. This is
accomplished in Section 1.4.

1.1 Semi–Riemannian manifolds

LetM be an n–dimensional differentiable manifold of class C∞. Throughout this thesis all
manifolds are assumed to satisfy the second countability axiom. Thus, all manifolds are
para–compact. For each m ∈ M we denote by TmM the tangent space of M at m. The
tangent bundle is denoted by TM and we write Γ(TM) for the module of sections of TM .
As usual, an element in Γ(TM) is called a smooth vector field.
A symmetric bilinear tensor ω in a vector space is said to be non–degenerate if ω(x, y) =

0 for all y implies x = 0. Any non–degenerate symmetric bilinear tensor in a vector space
is linearly congruent to a diagonal matrix diag(1,

r· · ·, 1,−1, s· · ·,−1). The pair of numbers
(r, s) is called the signature of the tensor.
A semi–Riemannian manifold is a pair (M, g) where M is manifold and g is a non–

degenerate symmetric covariant bilinear tensor field of type (0, 2) and constant signature.
Then, each tangent space is equipped with a non–degenerate symmetric bilinear tensor gm.
If the signature of gm is (r, s), then (M, g) is said to have signature (r, s).
If a semi–Riemannian manifold M has signature (n, 0), then M is called a Riemannian

manifold. If the signature is (n− 1, 1), M is a Lorentzian manifold. Riemannian manifolds
are the direct generalization of Gauss’ theory of surfaces and Lorentzian manifolds appear

3



4 1 Preliminaries and conventions

in relation to the theory of general relativity.

While there is a natural way to differentiate smooth functions on a smooth manifold,
there is no such natural way to differentiate smooth vector fields. The theory of connections
studies the various possibilities for such a differentiation process. In a semi–Riemannian
manifold (M, g) there is a unique torsion–free metric connection which is determined by
the Koszul formula:

2g(∇XY, Z) = Xg(Y, Z) + Y g(X, Z)− Zg(X,Y )

+g([X, Y ], Z)− g([X, Z], Y )− g([Y, Z], X),

for any vector fields X, Y, Z ∈ Γ(TM). This connection is known as the Levi–Civita
connection or covariant derivative. The Levi–Civita connection acts as a tensor derivation
on smooth vector fields in the usual way.

The most important concept of semi–Riemannian geometry is curvature. There are
several kinds of curvature of great interest. All of them can be obtained from the Riemann
curvature tensor which we define with the following sign convention:

RXY = ∇[X,Y ] − [∇X ,∇Y ].

We also define the (0, 4) Riemannian curvature tensor as RXY V W = g(RXY V, W ).
The Riemannian curvature tensor satisfies the following algebraic properties

RXY V W = −RY XV W = −RXY WV = RV WXY ,

RXY V W +RY V XW +RV XY W = 0.

The last equality is known as the algebraic Bianchi identity. The curvature tensor also
satisfies the differential Bianchi identity

(∇XR)(Y, Z)W + (∇Y R)(Z,X)W + (∇ZR)(X, Y )W = 0.

Among all the possible curvatures that can be defined in a semi–Riemannian manifold
we emphasize the Ricci tensor and the scalar curvature. The Ricci tensor, ρXY , is defined
as the trace of the linear map Z �→ RXZY . The algebraic identities of the curvature tensor
show that the Ricci tensor is a self–adjoint bilinear map. The scalar curvature τ is the
smooth function on M obtained by contracting the Ricci tensor.

1.2 Geodesics and the exponential map

Let c : I ⊂ R → M be a smooth curve in a semi–Riemannian manifold. We denote by
c′(t) the tangent vector of c at t. The notion of covariant derivative can be defined along a
curve. Such covariant derivative along curves maps smooth vector fields along c to smooth
vector fields along c. Let X be a vector field along c. We denote by X ′(t) the covariant
derivative of X with respect to c′(t) at c(t).
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A smooth curve c is called a geodesic if it satisfies c′′ = ∇c′c
′ = 0. Geodesics arise in

Riemannian geometry as the curves which minimize distance between two given points.
These curves do not exist in general but if they do (for example when the two points are
sufficiently close), they are the solutions of the above variational problem. Geodesics can
also be seen as curves with zero acceleration. This interpretation makes sense in the general
semi–Riemannian setting.
The condition c′′ = 0, when written in coordinates, translates into a system of second

order differential equations. The basic theory of differential equations implies that, for each
point m ∈ M and each tangent vector v ∈ TmM , there exists a unique maximal geodesic
c : I ⊂ R → M such that c(0) = m and c′(0) = v. This maximal geodesic is often denoted
by cv.

A more general theorem of ordinary differential equations implies that geodesics vary
in a differentiable way with respect to the initial conditions. Namely, there exists an open
set U with M ⊂ U ⊂ TM such that the map

exp : U −→ M
v �→ exp(v) = cv(1),

is well–defined and differentiable. This map is called the exponential map of (M, g). Taking
the fiber at a point we have the exponential map at a point.
Let m ∈ M . The exponential map at m ∈ M is given by expm(v) = cv(1) for any

v ∈ TmM . Such a map is defined in a star–shaped neighborhood of 0 ∈ TmM . The
exponential map is a differentiable map and expm∗0 is the identity map of TmM if we
identify T0TmM with TmM . Therefore, there exist an open neighborhood U of o ∈ TmM
and a neighborhood V of m ∈ M such that expm : U → V is a diffeomorphism. A
neighborhood V as above is called a normal neighborhood of m.
Let x ∈ TmM be a tangent vector. We define Rx : TmM → TmM as Rx(y) = Rxyx.

The algebraic identities of the Riemannian curvature tensor imply that Rx is a self–adjoint
map and Rx(x) = 0. Hence, it can be restricted to Rx : x⊥ → x⊥, where x⊥ denotes
the orthogonal complement of the real span of x. This operator is known as the Jacobi
operator.
The Jacobi operator turns out to be very important in semi–Riemannian geometry. We

present now one of its applications. Let c : I ⊂ R → M be a geodesic parametrized by
arc length. A vector field X along c is called a Jacobi vector field if it satisfies the linear
second order differential equation

X ′′ +Rc′(X) = 0,

which is known as the Jacobi equation. Basic theory of differential equations implies that
Jacobi vector fields are defined in the whole interval I. Moreover, the Jacobi vector fields
along a geodesic form a 2n–dimensional vector space. Thus, any Jacobi vector field is
determined by the initial values X(0) and X ′(0).
There is an interesting interplay between Jacobi vector fields and geodesic variations.

A variation of a curve c : I → M is a differentiable map F : I × (−ε, ε) → M such that
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F (s, 0) = c(s) for all s. For fixed s0 and t0, the curve F (s0, ·) is called transversal and the
curve F (·, t0) longitudinal. A variation is called a geodesic variation if every longitudinal
curve is a geodesic. The variational vector field of F along c is the vector field X such that
X(s) is the velocity of the transversal curve trough c(s).
Jacobi vector fields arise geometrically as the variational vector fields of a geodesic vari-

ation. Hence, a Jacobi vector field measures the infinitesimal behavior of nearby geodesics.
Jacobi vector fields can be also used to describe the differential of the exponential map. If
X is a Jacobi vector field along the geodesic c with X(0) = 0 and X ′(0) = v then

X(s) = expc(0)∗sc′(0)(sv),

for all the values of s along the geodesic c.

1.3 Submanifold geometry

Let (M̄, g) be a semi–Riemannian manifold andM an embedded submanifold. The restric-
tion of g to M provides a symmetric bilinear tensor field on M . However, this tensor field
can be degenerate. When it is not, that is, when M is itself a semi–Riemannian manifold,
M is called a semi–Riemannian submanifold of M̄ . We follow [13] and [108].
The normal bundle ofM , that is, the bundle of vectors orthogonal to the tangent space

ofM , is denoted by T⊥M . By Γ(T⊥M) we denote the module of all normal vector fields to
M . A canonical isomorphism holds at each point m ∈ M , namely, TmM̄ = TmM ⊕ T⊥

mM .
Given a vector field X of M̄ along M we denote by X� the orthogonal projection of X
onto TM and by X⊥ the orthogonal projection onto T⊥M .
If V is a vector space with inner product g and W ⊂ V is a vector subspace, we denote

by V � W the orthogonal complement of W in the inner product vector space V . For
example, with the above notation we have T⊥

mM = TmM̄ � TmM . If E and F are two
vector subbundles of the tangent bundle of M̄ such that F ⊂ E, we denote by E � F the
vector subbundle such that at each point m we have (E � F )m = Em � Fm. In particular,
T⊥M = TM̄ � TM .
The definition of the Riemannian curvature tensor can be given for any Riemannian

manifold. The curvature tensor is said to be an intrinsic geometric invariant. The intrinsic
geometry of both M̄ andM may be studied. Nonetheless, one can also study the geometry
of M in relation to the geometry of M̄ . This is the extrinsic geometry of M . The extrinsic
geometry of a submanifold is encoded in its second fundamental form.
Let us denote by ∇̄ and R̄ the Levi–Civita connection and the Riemannian curvature

tensor of M̄ , respectively, and by ∇ and R the corresponding objects inM . When studying
submanifolds, this convention is assumed throughout this memory unless otherwise stated.
The second fundamental form of M is defined by the Gauss formula

∇XY = ∇̄XY + II(X, Y )

for any X, Y ∈ Γ(TM). Hence, II(X,Y ) = −(∇̄XY )⊥. Let ξ ∈ Γ(T⊥M) be a unit normal
vector field. The shape operator of M associated with ξ is the self–adjoint operator on M
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defined by g(SξX,Y ) = g(II(X, Y ), ξ), where X, Y ∈ Γ(TM). Moreover, denote by ∇⊥ the
normal connection of M , that is, ∇⊥

Xξ = (∇̄Xξ)⊥ for any X ∈ Γ(TM) and ξ ∈ Γ(T⊥M).
Then we have the Weingarten formula

∇̄Xξ = SξX +∇⊥
Xξ.

The relation between the Riemannian curvature tensors of M̄ and M is given by means of
the second fundamental form. This relation is known as the Gauss equation:

R̄XY V W = RXY V W − g(II(X,V ), II(Y, W )) + g(II(X,W ), II(Y, V )).

The Codazzi equation is also of great important in our work

(R̄XY Z)⊥ = (∇⊥
XII)(Y, Z)− (∇⊥

Y II)(X,Z),

where the covariant derivative of the second fundamental form is given by

(∇⊥
XII)(Y, Z) = ∇⊥

XII(Y, Z)− II(∇XY, Z)− II(Y,∇XZ).

For the sake of completeness we also give the Ricci equation

R̄XY ξη = g(R⊥
XY ξ, η) + g([Sξ, Sη]X, Y ),

where X,Y ∈ Γ(TM), ξ, η ∈ Γ(T⊥M) and R⊥ is the curvature tensor of the normal vector
bundle of M defined by R⊥

XY ξ = ∇⊥
[X,Y ]ξ − [∇⊥

X ,∇⊥
Y ]ξ.

We say that a submanifold is totally geodesic if its second fundamental form vanishes,
II = 0. This is equivalent to saying that every geodesic in M is also a geodesic in M̄ . If
M is complete and totally geodesic we have that M = expm(TmM) for any m ∈ M .
A submanifold is said to be umbilical if there exists a constant λ such that II = λ g.

Clearly, if λ = 0, then M is totally geodesic.
The mean curvature vector H of a semi–Riemannian submanifold is defined as the trace

of the second fundamental form. Hence, with respect to a local orthonormal basis {Ei} of
TM we may write H =

∑
i g(Ei, Ei)II(Ei, Ei).

A submanifold is said to be minimal if and only if its mean curvature vector van-
ishes. Minimal submanifolds appear in a natural way as the critical points of the volume
functional and they are a topic of current interest in differential geometry.
We say that M is a spherical manifold or an extrinsic sphere if M is umbilical and

its mean curvature vector is parallel with respect to the normal connection of M , that is,
II = λ g for some constant λ and ∇̄⊥H = 0.
An umbilical submanifold of a space of constant curvature is also spherical. Umbilical

submanifolds of spaces with constant curvature have been classified. See [13] for a more
detailed discussion.

Assume now that M is a hypersurface of M̄ , that is, an embedded submanifold of
codimension one. Then, up to sign, there exists a unique unit normal vector field ξ ∈ T⊥M .
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We write ε = g(ξ, ξ) ∈ {−1, 1}. Hence the second fundamental form II is a multiple of ξ.
We define the scalar second fundamental form σ ofM by the equality II(X,Y ) = ε σ(X,Y )ξ
for X,Y ∈ Γ(TM), that is, σ(X,Y ) = g(II(X, Y ), ξ).
We denote by S = Sξ the shape operator with respect to ξ. With respect to the

scalar second fundamental form we have g(SX, Y ) = σ(X, Y ). The Gauss formula and the
Weingarten equation can be written as

∇XY = ∇̄XY + ε g(SX, Y )ξ and ∇̄Xξ = SX.

Then, the Gauss and Codazzi equation reduce to

R̄XY V W = RXY V W − ε g(SX, V )g(SY, W ) + ε g(SX,W )g(SY, V ),

(∇XS)Y − (∇Y S)X = −R̄XY ξ,

whereas the Ricci equation does not give further information for hypersurfaces.
The mean curvature vector H is proportional to the vector ξ. We define the scalar

mean curvature h by the equation H = h ξ.

We say that λ :M → R is a principal curvature of M (associated with ξ) if there exists
a vector field X ∈ Γ(TM) such that SX = λX. If M̄ is a Riemannian manifold, the shape
operator S is diagonalizable at every point because it is a self–adjoint map and the metric
is positive definite.
If λ is a principal curvature we denote by Tλ(p) the eigenvector space of λ(p) and call

it the principal curvature space associated with λ(p). If X ∈ Tλ(p), X �= 0 we say that X
is a principal curvature vector of λ at p. We emphasize here that, in general, the principal
curvature spaces associated with a principal curvature λ do not always have the same
dimension.
A connected hypersurface is said to have constant principal curvatures if the shape

operator is diagonalizable and its eigenvalues are the same at every point. In this case
the principal curvature spaces associated with an eigenvalue λ have the same dimension
at any point. We denote by mλ the dimension of any of the vector spaces Tλ(p) and call
this number the multiplicity of λ. By Tλ we denote the distribution on M formed by the
principal curvature spaces of λ and by Γ(Tλ) we denote the set of all sections of Tλ, that
is, the vector fields X ∈ Γ(TM) such that SX = λX.

1.4 Some special classes of semi–Riemannian mani-
folds

We introduce a few kinds of manifolds which will be of special relevance in this thesis.
The description is not intended to be thorough and we restrict ourselves to those types
which are going to be used later. A wider study of structures on manifolds can be found
for example in [134].
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1.4.1 Two–point homogeneous spaces

A connected Riemannian manifold M is called two–point homogeneous if the isometry
group of M acts transitively on equidistant pairs of points. This means that for any
p1, p2, q1, q2 ∈ M with d(p1, q1) = d(p2, q2), where d is the Riemannian distance function
of M , there is an isometry Φ of M such that Φ(p1) = p2 and Φ(q1) = q2. This definition
clearly implies that a two–point homogeneous space is homogeneous and complete.
Let M be a semi–Riemannian manifold and p ∈ M . The manifold M is said to be

isotropic at p if the isotropy group of the isometry group of M at p acts transitively on
the unit pseudo–sphere bundle. The manifold is called isotropic if it is isotropic at every
point, or equivalently, if for each point p ∈ M and any non–null vectors x, y ∈ TmM with
g(x, x) = g(y, y) there exists an isometry Φ of M such that Φ(p) = p and Φ∗p(x) = Φ∗p(y).
The notion of locally isotropic manifold can be defined in an analogous way.
If M is a Riemannian manifold, then M is two–point homogeneous if and only if it is

isotropic. Any two–point homogeneous space is symmetric [122]. Indeed, a simply con-
nected two–point homogeneous space is a flat space, an irreducible symmetric space of rank
one or one of its non–compact duals. Hence, a simply connected two–point homogenous
space is isometric to one of the following manifolds:

(i) The Euclidean space Rn.

(ii) The sphere Sn = SO(n+1)/SO(n), the real projective space RP n = SO(n+1)/O(n)
or the real hyperbolic space RHn = SO0(1, n)/SO(n).

(iii) The complex projective space CP n = SU(n + 1)/U(n) or the complex hyperbolic
space CHn = SU(1, n)/S(U(1)U(n)).

(iv) The quaternionic projective space HP n = Sp(n+1)/Sp(1)Sp(n) or the quaternionic
hyperbolic space HHn = Sp(1, n)/Sp(1)Sp(n).

(v) The Cayley projective plane OP 2 = F4/Spin(9) or the Cayley hyperbolic plane
OH2 = F−20

4 /Spin(9).

The examples in (ii) are called real space forms, the examples in (iii) are called complex
space forms and the examples in (iv) are called quaternionic space forms. These three con-
structions can be generalized to the general semi–Riemannian setting. We briefly describe
them in what follows.

Indefinite real space forms

A semi–Riemannian manifold (Mn, g) of signature (r, s) is called a real space form if (M, g)
has constant sectional curvature. If (M, g) is a real space form of constant curvature λ ∈ R,
the curvature tensor of (M, g) is given by

Rxyz = λ
(
g(x, z)y − g(y, z)x

)
,
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for all x, y, z ∈ TM .
A complete and simply connected real space form is isometric to

RP n
s = SO(s, r + 1)/O(s, r), RHn

s = SO0(s+ 1, r)/SO(s, r) or Rn
s

according to whether the sectional curvature is positive, negative or zero [133].

Indefinite complex space forms

Let (M, J) be an almost complex manifold with almost complex structure J , that is, J
is a (1, 1)–tensor field on M satisfying J2 = − Id. A semi–Riemannian metric tensor g of
signature (2r, 2s) is said to be Hermitian if g(JX, Y )+g(X, JY ) = 0 for all X,Y ∈ Γ(TM).
If the metric tensor is integrable, that is, if [J, J ] = 0 where [J, J ](X, Y ) = [JX, JY ] −
J [JX, Y ]− J [X, JY ]− [X,Y ], then J is said to be a complex structure.
The triple (M2n, g, J) is said to be a Kähler manifold if J is a complex structure and

the 2–form Ω(X,Y ) = g(X, JY ) is closed. This couple of conditions can be equivalently
described by ∇J = 0, where ∇ is the Levi–Civita connection of g.
A plane π is called holomorphic if it remains invariant under the complex structure

(Jπ ⊂ π), and the holomorphic sectional curvature is defined as the restriction of the
sectional curvature to non–degenerate holomorphic planes. A Kähler manifold (M, g, J) is
called a complex space form if (M, g, J) is of constant holomorphic sectional curvature. If
this constant is µ, then the curvature tensor of (M, g, J) is given by,

Rxyz =
µ

4

(
g(x, z)y − g(y, z)x+ g(Jx, z)Jy − g(Jy, z)Jx+ 2g(Jx, y)Jz

)
for all x, y, z ∈ TM . Let z ∈ TM be a unit vector. The Jacobi operator of z is given by

Rz =

{
µ g(z, z) Id, if z ∈ RJz,
µ
4g(z, z) Id , if z ∈ Cz⊥.

The model spaces of non–zero constant holomorphic sectional curvature are given by the
symmetric spaces

CP n
s = SU(s, r + 1)/U(s, r) and CHn

s = SU(s+ 1, r)/S(U(s+ 1)U(r)).

Indefinite quaternionic space forms

An almost quaternionic manifold is a manifold M equipped with a 3–dimensional vector
bundle Q of (1, 1)–tensor fields on M such that there exists a local basis {J1, J2, J3} of
Q satisfying J2i = − Id, i = 1, 2, 3, and JiJj = Jk, where (i, j, k) is a cyclic permutation
of (1, 2, 3). Such a local basis {J1, J2, J3} is called a canonical local basis of Q and Q is
referred to as an almost quaternionic structure on M . A semi–Riemannian metric tensor
g of signature (4r, 4s) is said to be adapted to the almost quaternionic structure Q if
g(φX, Y ) + g(X, φY ) = 0 for all φ ∈ Q and X,Y ∈ Γ(TM).
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Let (M, g, Q) be an almost quaternionic manifold and {J1, J2, J3} be a canonical local
basis of Q. For each i ∈ {1, 2, 3}, we put Φi(X,Y ) = g(X, JiY ), where X,Y ∈ Γ(TM).
Then, Φi is a locally defined 2–form such that Ω = Φ1 ∧ Φ1 + Φ2 ∧ Φ2 + Φ3 ∧ Φ3 gives
rise to a globally defined 4–form on M . A quaternionic metric structure (g, Q) is said to
be Kähler if Ω is parallel (or equivalently, if Q is parallel) with respect to the Levi–Civita
connection ∇ of g.
Let (M, g, Q) be a quaternionic Kähler manifold. Then M has signature (4r, 4s). Any

vector x ∈ TpM determines a 4–dimensional subspace Q(x) = Rx ⊕ RJ1x ⊕ RJ2x ⊕ RJ3x
which remains invariant under the action of the quaternionic structure. We call it the
Q–section determined by x. If the sectional curvature of planes in Q(x) is a constant ν(x),
where x ∈ TM is non–null, we call this constant ν(x) the quaternionic sectional curvature
of (M, g) with respect to x.
A quaternionic Kähler manifold (M, g, Q) is called a quaternionic space form if (M, g, Q)

is of constant quaternionic sectional curvature. Then its curvature tensor is given by

Rxyz =
ν

4

{
g(x, z)y − g(y, z)x+

3∑
i=1

(
g(Jix, z)Jiy − g(Jiy, z)Jix+ 2g(Jix, y)Jiz

)}
,

for all x, y, z ∈ TM , and where {J1, J2, J3} is a canonical local basis of Q.
A non–flat quaternionic space form is isometric to one of the following symmetric spaces

HP n
s = Sp(s, r + 1)/Sp(1)Sp(s, r) or HHn

s = Sp(s+ 1, r)/Sp(1)Sp(s, r).

1.4.2 Para–complex space forms

In addition to the well–known examples of semi–Riemannian manifolds described above,
there are some other examples which have no Riemannian analog. However, they may be
considered as a kind of real version of complex manifolds.
A para–Kähler manifold is a symplectic manifold locally diffeomorphic to a product of

Lagrangian submanifolds. Such a product induces a decomposition of the tangent bundle
TM into a Whitney sum of Lagrangian subbundles L and L′, that is, TM = L ⊕ L′.
By generalizing this definition, an almost para–Hermitian manifold is defined to be an
almost symplectic manifold (M,Ω) whose tangent bundle splits into a Whitney sum of
Lagrangian subbundles. This implies that the (1, 1)–tensor field J defined by J = σL −σL′

is an almost para–complex structure (J2 = Id) onM such that Ω(JX, JY ) = −Ω(X, Y ) for
all X,Y ∈ Γ(TM), where σL and σ′

L are the projections of TM onto L and L′, respectively.
The 2–form Ω induces a non–degenerate (0, 2)–tensor field g on M defined by g(X, Y ) =
Ω(X, JY ), where X, Y ∈ Γ(TM). Now, by using the relation between the almost para–
complex and the almost symplectic structures on M , it follows that g defines a semi–
Riemannian metric tensor of signature (n, n) on M and g(JX, Y ) + g(X, JY ) = 0, where
X,Y ∈ Γ(TM). The special significance of the para–Kähler condition is equivalently
stated in terms of the parallelizability of the para–complex structure with respect to the
Levi–Civita connection of g, that is, ∇J = 0 [35].
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A plane π is called para–holomorphic if it is left–invariant by the action of the para–
complex structure J , that is, Jπ ⊂ π. The para–holomorphic sectional curvature is defined
by the restriction of the sectional curvature to para–holomorphic non–degenerate planes.
A para–Kähler manifold (M, g, J) is called a para–complex space form if (M, g, J) is of
constant para–holomorphic sectional curvature. Hence, the curvature tensor of (M, g, J)
is determined by

Rxyz =
µ

4

(
g(x, z)y − g(y, z)x − g(Jx, z)Jy + g(Jy, z)Jx − 2g(Jx, y)Jz

)
,

for all x, y, z ∈ TpM and some constant µ ∈ R. Then, the Jacobi operator with respect to
a unit vector z ∈ TM is given by

Rz =

{
µ g(z, z) Id, if z ∈ RJz,
µ
4g(z, z) Id , if z ∈ (Rz ⊕ RJz)⊥.

Non–flat complete and simply connected para–complex space forms are isometric to
the symmetric spaces SL(n, R)/SL(n − 1, R)× R.

1.4.3 Einstein manifolds and k–stein manifolds

A semi–Riemannian manifold (Mn, g) is called an Einstein manifold if the Ricci tensor
is proportional to the metric, that is, if there exists a constant λ ∈ R such that ρ = λ g.
Taking traces we easily see that λ = τ/n and hence the scalar curvature is constant. If n > 2
and there exists a function f : M → R such that ρ = f g then, the Schur lemma implies
that f is constant and thus the manifold is Einstein. If a semi–Riemannian manifold M
has dimension 2 or 3 then, M is Einstein if and only ifM has constant sectional curvature.
A semi–Riemannian manifold is said to be k–stein, for k ≥ 1, if there exists a constant

λ such that trRk
x = λg(x, x)k for all x ∈ TM , where Rk

x is the k–power of the Jacobi
operator. Note that a manifold is 1–stein if and only if it is Einstein.
We are specially interested in the 2–stein condition, which plays an important role in

Part II. With respect to an orthonormal basis {ei} the 2–stein condition may be written
as

n∑
i,j=1

g(ei, ei)g(ej, ej)R
2
xeixej

= λ g(x, x)2.

A manifold M is said to be super–Einstein if

n∑
i,j,k=1

g(ei, ei)g(ej, ej)g(ek, ek)R
2
xeiejek

= µ g(x, x),

for some constant µ. It was shown in [33] that 2–stein manifolds are super–Einstein al-
though the converse is not true. For instance, irreducible symmetric spaces are super–
Einstein but not necessarily 2–stein.
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Geometric consequences of algebraic
properties of the curvature tensor
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A central problem in differential geometry is to relate algebraic properties of the cur-
vature tensor to the underlying geometry of the manifold. From an algebraic point of view
the space of algebraic curvature tensors on an n–dimensional vector space V is a vector
spaceR(V ) of dimension n2(n2−1)/12, which makes it very difficult to manipulate. Hence,
the investigation focused many times on trying to find suitable bases or sets of generators
allowing some simplifications. A typical example is the Singer–Thorpe basis in dimension
four (see also [92] for higher dimensions).
Recently, the work of B. Fiedler [59] and P. Gilkey [68] showed the existence of nice

sets of generators ofR(V ) constructed from symmetric and skew–symmetric bilinear forms,
which seems to be useful in understanding some curvature conditions. Our approach to
this problem, based on the use of the Nash embedding theorem and the possibility of
realizing geometrically any algebraic curvature tensor, has two main advantages. The first
one is that it allows us to obtain some sharper (although not optimal) estimates for the
number of generators of R(V ). Secondly, it shows that each algebraic curvature tensor can
also be seen from an extrinsic point of view as the second fundamental form of a suitable
embedding. All these discussions are carried out in Chapter 2.
Another purpose of this part is to study the influence of algebraic properties of natural

operators associated with the curvature tensor on the manifold geometry. More precisely,
our attention is mainly devoted to the investigation of the Jacobi operator by focusing on
the structure of four–dimensional Osserman metrics.
A semi–Riemannian manifold is said to be Osserman if the eigenvalues of the Jacobi

operators are independent of the direction and the base point. Since the group of local
isometries of an isotropic space acts transitively on the unit pseudo–sphere bundles, it is
clear that any isotropic space is Osserman. No other examples may exist in the Riemannian
(dim �= 16) and Lorentzian settings but there exist non–symmetric and even non–locally
homogeneous Osserman metrics in any signature (p, q) with p, q ≥ 2.
Four–dimensional Osserman metrics are of particular interest. First of all, four is the

first non–trivial dimension to be considered in the investigation of the Osserman problem
(note that any Osserman metric is Einstein, and thus of constant sectional curvature in

15



dimensions 2 and 3), and moreover, four is the lowest possible dimension which supports
metrics of neutral non–Lorentzian signature, where the first non–symmetric Osserman
metrics were discovered.
Due to curvature identities, for any non–null vector x ∈ TM , the Jacobi operator

acts as a self–adjoint operator in x⊥, which has induced metric of Lorentzian signature
in the (2, 2) setting. Osserman metrics with diagonalizable Jacobi operators have been
characterized by N. Blažić, N. Bokan and Z. Rakić [21], who also showed the non–existence
of Osserman metrics in dimension four whose Jacobi operators have complex eigenvalues.
However, the Lorentzian signature of x⊥ supports two other possibilities corresponding
to a double or triple root of the minimal polynomial of the Jacobi operators. The fact
that all known examples in those situations have nilpotent Jacobi operators and that four–
dimensional symmetric Osserman spaces have diagonalizable or two–step nilpotent Jacobi
operators motivated a conjecture that Osserman metrics whose Jacobi operators are not
diagonalizable must have nilpotent Jacobi operators.
Our purpose in Chapter 3 is to answer the above conjecture in the negative by showing

explicit examples of Osserman metrics whose Jacobi operators are neither diagonalizable
nor nilpotent. Finally, a complete description of such metrics is given in Section 3.3.

16



Chapter 2

Algebraic curvature tensors and
natural operators

In this chapter we discuss some algebraic properties of the curvature tensor and its covariant
derivatives. When studying curvature it is sometimes convenient to work in the algebraic
setting. This often simplifies calculations and allows one to distinguish between purely
geometric or topological properties and those properties which are imposed by the linear
nature of most of the objects that can be defined in a manifold.
Section 2.1 is devoted to the study of algebraic curvature tensors. Geometric realiz-

ability turns this concept into a very powerful notion when studying manifolds where the
curvature tensor verifies some algebraic property. Hence, it is interesting to be capable of
decomposing the curvature tensor into more elementary parts which can be studied in an
easier way. Theorems 2.3 and 2.4 contribute to this philosophy giving somehow an upper
bound of the complexity of the curvature tensor. Some other results are given in relation
to this decomposition of the curvature tensor.
Section 2.2 deals with certain natural operators that can be defined from the curvature

tensor of a semi–Riemannian manifold. We give the basic definitions and results that will
be used in the following chapter.

2.1 Algebraic curvature tensors

Let V be an n-dimensional vector space with an inner product g. An algebraic curva-
ture tensor is a tensor F ∈ ⊗4(V ∗) satisfying the algebraic identities of the Riemannian
curvature tensor, that is,

F (x, y, v, w) = −F (y, x, v, w) = −F (x, y, w, v) = F (v, w, x, y),

F (x, y, v, w) + F (y, v, x, w) + F (v, x, y, w) = 0.

Let us denote by R(V ) the vector space of algebraic curvature tensors of V . This vector
space has dimension n2(n2 − 1)/12.

17
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Given a symmetric bilinear form φ in V we define the algebraic curvature tensor F φ by

F φ(x, y, v, w) = φ(x, v)φ(y, w)− φ(y, v)φ(x,w).

Now let ψ be a skew–symmetric bilinear form on V . Then, Fψ defined by

Fψ(x, y, v, w) = ψ(x, v)ψ(y, w)− ψ(y, v)ψ(x,w)− 2ψ(x, y)ψ(v, w)

is an algebraic curvature tensor.
We define S(V ) as the span of all F φ where φ is a symmetric bilinear tensor. Analo-

gously we define A(V ) as the span of all Fψ where ψ is a skew–symmetric bilinear tensor.
The following theorem was proved by B. Fiedler [59] using group representation theory
and by P. Gilkey and R. Ivanova [68], [72] using linear algebra.

Theorem 2.1. Let (V n, g) be an n–dimensional vector space with an inner product g.
Then, R(V ) = S(V ) = A(V ).

Now we turn our attention to the covariant derivative of the Riemannian curvature
tensor. As before, we work in the algebraic setting. Let (V n, g) be an inner product vector
space. An algebraic covariant derivative curvature tensor F1 is a tensor F1 ∈ ⊗5(V ∗)
verifying both the algebraic identities of a Riemannian curvature tensor and the differential
Bianchi identity, namely,

F1(z, x, y, v, w) = −F1(z, y, x, v, w) = −F1(z, x, y, w, v) = F1(z, v, w, x, y),

F1(z, x, y, v, w) + F1(z, y, v, x, w) + F1(z, v, x, y, w) = 0,

F1(z, x, y, v, w) + F1(x, y, z, v, w) + F1(y, z, x, v, w) = 0.

We point out that the first entry of the tensor stands for derivation when considering the
covariant derivative of the Riemannian tensor of a semi–Riemannian manifold. Let R1(V )
be the vector space of algebraic covariant derivative curvature tensors.
Let φ be a symmetric bilinear tensor and φ1 a symmetric 3–linear tensor in V . Then,

the tensor F φ,φ1
1 ∈ ⊗5(V ∗) defined by

F φ,φ1
1 (z, x, y, v, w) = φ1(z, x, v)φ(y, w) + φ(x, v)φ1(z, y, w)

−φ1(z, x, w)φ(y, v)− φ(x,w)φ1(z, y, w)

is an algebraic covariant derivative curvature tensor. If one thinks of φ1 as the symmetrized
covariant derivative of φ, then F φ,φ1

1 can be regarded, at least formally speaking, as the
covariant derivative of F φ.
Again, B. Fiedler used group representation theory to prove the analog of Theorem 2.1

for algebraic covariant derivative curvature tensors [59], [60].

Theorem 2.2. Let (V n, g) be an inner product vector space. Then the linear span of the
tensors F φ,φ1

1 coincides with the vector space of algebraic covariant derivative curvature
tensors R1(V ).
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Theorem 2.1 (resp. Theorem 2.2) shows that algebraic curvature tensors (resp. al-
gebraic covariant derivative curvature tensors) can be written as a linear combination of
simple algebraic curvature tensors (resp. algebraic covariant derivative curvature tensors).
In order to simplify the latter linear combinations further, it is interesting to find the
minimum number of addends. We partially respond to the question.
Let us take F ∈ R(V ) and F1 ∈ R1(V ). We denote by µ(F ) and µ1(F1) the minimum

integer number so that there exist symmetric bilinear tensors φi and ψj, symmetric 3–linear
tensors ψ1,j and constants λi, λ1,j such that

F =
µ(F )∑
i=1

λiF
φi and F1 =

µ1(F1)∑
j=1

λ1,jF
ψj ,ψ1,j
1 .

We define the following constants depending on the dimension

µ(n) = sup
F∈R(V )

µ(F ) and µ1(n) = sup
F1∈R1(V )

µ(F1),

where V is any inner product vector space of dimension n.
We give upper and lower bounds for these quantities in the following section.

2.1.1 Decomposition of algebraic curvature tensors

The proof of Theorem 2.1 as given in [68] or [72] is constructive and relies on basic linear
algebra. By following that proof one may estimate the number of the distinct symmetric
tensors needed to express a given algebraic curvature tensor. Let F be an algebraic cur-
vature tensor and decompose it as F =

∑µ
r=1 λrF

φr . Choose an orthonormal basis {ei}.
Then φr belongs to one of the following:

(i) For i < j we define φ(ei, ej) = φ(ej, ei) = 1, φ(ea, eb) = 0 otherwise.

(ii) For j �= i �= k, j < k one defines φ(ei, ej) = φ(ej, ei) = φ(ei, ek) = φ(ek, ei) = 1,
φ(ea, eb) = 0 otherwise.

(iii) For distinct i, j, k, l, one considers φ(ei, ek) = φ(ek, ei) = φ(ej, el) = φ(el, ej) = 1,
φ(ea, eb) = 0 otherwise.

A simple calculation shows that the number of different symmetric tensors φ needed
to express any given algebraic curvature tensor is at most n(n − 1)(n2 − n+ 2)/8. Our
purpose is to provide an alternative proof of R(V ) = S(V ) that gives a better (although
not optimal) estimate [40].

Theorem 2.3. Let (V n, g) be an n–dimensional vector space with an inner product g.
Then, for each algebraic curvature tensor F ∈ ⊗4(V ∗) there exist at most n(n + 1)/2
symmetric tensors φ on V such that F is a linear combination of the associated algebraic
curvature tensors F φ.
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Proof. Any algebraic curvature tensor F is geometrically realizable, that is, there exists a
smooth manifold M and a metric g on M such that the curvature tensor of (M, g) at some
point m ∈ M is exactly F . More explicitly, there exists a linear isometry of inner product
vector spaces Φ : (V, g) → (TmM, gm) such that F = Φ∗Rm, where R is the curvature
tensor of (M, g). This can be achieved, for example, by defining the following metric in
a neighborhood of the origin of Rn, gij(x1, . . . , xn) = δij − (1/3)

∑n
α,β=1 Fiαjβxαxβ, where

Fijkl = F (ei, ej, ek, el), {ei} is an orthonormal basis of Rn and δ denotes the Kronecker
delta. Then, using the previous basis to identify V = Rn, we get Rm = F at the origin.
It follows from the Nash embedding theorem [102] that M can be isometrically embed-

ded in Rn+κ for sufficiently large κ. As usual, let us denote by II the second fundamental
form of the embedding. Let {e1, . . . , eκ} be an orthonormal basis of the normal space
T⊥

mM . We define the symmetric bilinear tensors φi by φi(x, y) = g(II(x, y), ei) for all
i ∈ {1, . . . , κ}. Then, for any x, y ∈ TmM we have II(x, y) =

∑κ
i=1 φi(x, y)ei. Using the

Gauss equation (note that R̄ = 0) and the above expression for the second fundamental
form II we get

F (x, y, v, w) = Rm(x, y, v, w) = g (II(x, v), II(y, w))− g (II(x,w), II(y, v))

=
κ∑

i=1

{φi(x, v)φi(y, w)− φi(x,w)φi(y, v)} =
κ∑

i=1

F φi(x, y, v, w).

In order to obtain the bound κ = n(n+1)/2, we note that the dimension in the Nash em-
bedding theorem can be reduced provided that the manifold is analytic and the embedding
is local [84].

We have a similar result for covariant derivative curvature tensors. See also [41].

Theorem 2.4. Let (V n, g) be an n–dimensional vector space with an inner product g.
For any covariant derivative algebraic curvature tensor F1 ∈ R1(V ) there exist at most
n(n + 1)/2 symmetric tensors φi ∈ ⊗2(V ∗) and φ1,i ∈ ⊗3(V ∗) such that F1 is a linear
combination of the associated algebraic curvature tensors F φi,φ1,i.

Proof. Again, we assume that F1 is the covariant derivative of the Riemannian curvature
tensor of certain Riemannian manifold M at some point m. For example this can be
achieved by defining the metric in Rn

gij(x
1, . . . , xn) = δij −

1
6

n∑
α,β,γ=1

F1(eα, eβ, ei, eγ, ej)x
αxβxγ,

with respect to some basis {ei} at the origin. By virtue of the Nash embedding theorem
[102] we may assume that M is isometrically embedded in Rn+κ for some κ. Taking
covariant derivatives in the Gauss equation, using the definition of the covariant derivative
of the second fundamental form and the fact that R̄ = 0 we get

F1(z, x, y, v, w) = (∇zR)m(x, y, v, w)

= g
(
(∇⊥

z II)(x, v), II(y, w)
)
+ g
(
II(x, v), (∇⊥

z II)(y, w)
)

−g
(
(∇⊥

z II)(x,w), II(y, v)
)
− g
(
II(x,w), (∇⊥

z II)(y, v)
)
,
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for any tangent vectors z, x, y, v, w ∈ V = TmM . Let {e1, . . . , eκ} be an orthonor-
mal basis of T⊥

mM . We define the tensors φi ∈ ⊗2(T ∗
mM) and φ1,i ∈ ⊗3(T ∗

mM) by
φi(x, y) = g(II(x, y), ei) and φ1,i(z, x, y) = g((∇⊥

z II)(x, y), ei) for all i ∈ {1, . . . , κ}. As
in the previous theorem, φi is symmetric and II(x, y) =

∑
i φi(x, y)ei. For all x, y, z ∈

TmM , φ1,i(z, x, y) = φ1,i(z, y, x) by the symmetry of II. Moreover, the Codazzi equa-
tion in Rn reads (∇⊥

z II)(x, y) − (∇⊥
x II)(z, y) = 0. Hence φ1,i(z, x, y) = φ1,i(x, z, y) for all

x, y, z ∈ TmM . Altogether, this means that φ1,i is a symmetric tensor for all i ∈ {1, . . . , κ}
and (∇⊥

z II)(x, y) =
∑

i φ1,i(z, x, y)ei. Therefore, the above expression becomes

F1(z, x, y, v, w) =
κ∑

i=1

F
φi,φ1,i
1 (z, x, y, v, w).

The bound κ = n(n + 1)/2 can be obtained by taking a local embedding of M in a
neighborhood of m as M may be supposed analytic [84].

Now, we turn our attention to the lower bounds of µ(n) and µ1(n).
Let (V n, g) be an n–dimensional inner product vector space, F ∈ R(V ) and F1 ∈

R1(V ). We define the curvature operators KF and KF1 associated with F and F1 by the
identities

g(KF (x, y)v, w) = F (x, y, v, w),

g(KF1(z, x, y)v, w) = F1(z, x, y, v, w),

for arbitrary z, x, y, v, w ∈ V . Thus, once we fix z, x, y ∈ V , both KF (x, y) and KF1(z, x, y)
are endomorphisms of V .

Lemma 2.5. Let (V n, g) be an inner product vector space. Let φ ∈ ⊗2(V ∗) and φ1 ∈
⊗3(V ∗) be symmetric tensors and z, x, y ∈ V arbitrary vectors. Then rank{KF φ(x, y)} ≤ 2
and rank{K

F
φ,φ1
1
(z, x, y)} ≤ 2.

Proof. Let Φ and Φ1 be the associated self–adjoint endomorphism characterized by the
identities g(Φx, y) = φ(x, y) and g(Φ1(z)x, y) = φ1(z, x, y). Then

KF φ(x, y)v =
{
φ(x, v) Φ}y − {φ(y, v) Φ

}
x,

Kφ,φ1
F1
(z, x, y)v =

{
φ1(z, x, v)Φ + φ(x, v)Φ1(z)

}
y −
{
φ(y, v)Φ1(z) + φ1(z, y, v)φ

}
x,

for any z, x, y, v ∈ V and the result follows.

Corollary 2.6. Let (V n, g) be an inner product vector space. Let F ∈ R(V ) and F1 ∈
R1(V ). Then, for any z, x, y ∈ V we have the relation rank{KF (x, y)} ≤ 2µ(F ) and
rank{KF1(z, x, y)} ≤ 2µ1(F1).
Proof. By definition of µ(F ) and µ1(F1), we may write

F =
µ(F )∑
i=1

αiF
φi and F1 =

µ1(F1)∑
j=1

βjF
ψj ,ψ1,j
1
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for certain symmetric tensors φi, ψj ∈ ⊗2(V ∗), ψ1,j ∈ ⊗3(V ∗) and constants αi, βj ∈ R.
Clearly, we have KF =

∑
i αi KF φi and KF1 =

∑
j βj K

F
ψj,ψ1,j
1

. Then Lemma 2.5 implies

rank KF = rank

{µ(F )∑
i=1

αiKF φi

}
≤

µ(F )∑
i=1

rank KF φi ≤ 2µ(F ),

rank KF1 = rank

{µ1(F1)∑
j=1

βjK
F

ψj,ψ1,j
1

}
≤

µ1(F1)∑
j=1

rank K
F

ψj,ψ1,j
1

≤ 2µ1(F1),

which proves the result.

Lemma 2.7. Let V be a vector space of dimension n = 2ñ or n = 2ñ + 1. There exist
F ∈ R(V ), F1 ∈ R1(V ) and vectors z, x, y ∈ V such that

rank{KF (x, y)} = 2ñ and rank{KF1(z, x, y)} = 2ñ.

Proof. If n = 2ñ, let {e1, . . . , eñ, f1, . . . , fñ} be an orthonormal basis of V ; if n is odd, the
argument is similar and we simply extend F and F1 to be trivial on the additional basis
vector. Define φi ∈ ⊗2(V ∗) and φ1,i ∈ ⊗3(V ∗) by

φi(ej, ek) = φi(fj, fk) = δij δik, φi(ej, fk) = 0,

φ1,i(ej, ek, el) = φ1,i(fj, fk, fl) = δij δik δil, φ1,i(ej, ek, fk) = φ1,i(ej, fj, fk) = 0,

for i ∈ {1, . . . , ñ}. We consider the following algebraic curvature tensors

F =
ñ∑

i=1

F φi and F1 =
ñ∑

i=1

F
φi,φ1,i
1 .

We also define the vectors x = e1 + · · ·+ eñ, y = f1 + · · ·+ fñ and z = x+ y. We have

KF (x, y)ei = KF φi (ei, fi)ei = −fi,

KF (x, y)fi = Ki(ei, fi)fi = ei,

KF1(z, x, y)ei = R
F

φi,φ1,i
1

(ei, fi, ei + fi)ei = −2fi

KF1(z, x, y)fi = R
F

φi,φ1,i
1

(ei, fi, ei + fi)fi = 2ei.

The statement now follows.

We can now prove the main theorem of this section [41].

Theorem 2.8. Let n ≥ 2. Then

n

2
≤ µ(n) ≤ n(n+ 1)

2
and

n

2
≤ µ1(n) ≤

n(n+ 1)
2

.
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Proof. The upper bounds for µ(n) and µ1(n) follow immediately from Theorems 2.3 and
2.4. On the other hand, Corollary 2.6 shows that for any F ∈ R(V ) (resp. F1 ∈ R1(V )),
µ(F ) ≥ 1

2 rank{KF (x, y)} (resp. µ1(F1) ≥ 1
2 rank{KF1(z, x, y)}). But Lemma 2.7 shows

that the value n/2 is attained for certain F (resp. F1). Thus µ(n) ≥ n/2 and µ1(n) ≥
n/2.

For low dimension we provide the exact value of µ [40].

Proposition 2.9. Let F be an algebraic curvature tensor in a 3–dimensional vector space.
One of the following two possibilities holds:

(a) There exists exactly one symmetric tensor φ ∈ ⊗3(V ∗) such that F = F φ.

(b) There exist exactly two distinct symmetric tensors φ1, φ2 ∈ ⊗2(V ∗) and constants κ1
and κ2 such that F = κ1F

φ1 + κ2F
φ2.

The second case occurs if and only if the Ricci tensor has eigenvalues λ1 �= 0 �= λ2 and
λ3 = λ1 + λ2.

Proof. Let F be an algebraic curvature tensor in a 3–dimensional vector space V with
inner product g. Let ρF denote the Ricci tensor and τF the scalar curvature of F . Then
F can be written as

F (x, y, v, w) =
τF

2

(
g(x, v)g(y, w)− g(x,w)g(y, v)

)
−
(
ρF (x, v)g(y, w) + ρF (y, w)g(x, v)− ρF (x,w)g(y, v)− ρF (y, v)g(x,w)

)
.

Let {e1, e2, e3} be an orthonormal basis diagonalizing ρF and put ρF (ei, ei) = λi. Then we
have

F (ei, ej, ek, el) =

(
λ1 + λ2 + λ3

2
− λi − λj

)
F δ(ei, ej, ek, el),

where F δ(ei, ej, ek, el) = δikδjl − δilδjk and δ is the Kronecker delta. Define

α1 = λ1 − λ2 − λ3 = 2F (e2, e3, e2, e3),
α2 = −λ1 + λ2 − λ3 = 2F (e1, e3, e1, e3),
α3 = −λ1 − λ2 + λ3 = 2F (e1, e2, e1, e2).

We consider several possibilities.
Assume α1, α2 and α3 are different from zero. Let εi = ±1 denote the sign of αi, put

ε = ε1ε2ε3 and β =
√

ε α1α2α3/2. We define the symmetric tensor φ with respect to the
above basis by φij = (β/αi)δij. Then F = ε F φ.
Assume α1 �= 0 and α2 = α3 = 0. We define the symmetric tensor φ by the trivial

bilinear extension of φ(e2, e2) = 1 and φ(e3, e3) = α1/2. It is straightforward to check that
F = F φ.
Assume α1 = α2 = α3 = 0. Then F = 0.
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Finally assume α1, α2 �= 0 and α3 = 0. We show that it is not possible to express the
given algebraic curvature tensor as F = γF φ. On the contrary, assume this can be achieved
for certain γ and φ. Since α1, α2 �= 0 we have F �= 0 and hence γ �= 0. Then F = γF φ

implies

φ11φ22 − φ212 = 0, φ11φ33 − φ213 =
α2
2γ

, φ22φ33 =
α1
2γ

,

φ11φ23 = φ13φ12, φ12φ33 = φ13φ23, φ12φ23 = φ13φ22.

Straightforward calculations show that the above system of equations has no solution.
Nevertheless, it is possible to write F = F φ1 + F φ2 . For example take

φ1 =

 0 0 0
0 1 0
0 0 α1

2

 , φ2 =

 1 0 0
0 0 0
0 0 α2

2


and the equality follows after a simple calculation.

Corollary 2.10. We have µ(2) = 1 and µ(3) = 2.

Proof. First, we observe that for any two–dimensional manifold, the curvature tensor is
expressed in terms of the Ricci tensor and thus, any algebraic curvature tensor on a two–
dimensional vector space is completely determined by exactly one F φ. The second assertion
is an immediate consequence of Proposition 2.9.

Remark 2.11. Theorem 2.3 provides a criteria for the non–existence of embeddings of a
given manifold into a Euclidean space. For instance, no Riemannian 3–dimensional mani-
fold whose curvature tensor is as in Proposition 2.9 (b) at some point can be isometrically
embedded as a hypersurface in a flat space.

2.2 Natural curvature operators

When investigating algebraic properties of the curvature tensor, one usually focus on dif-
ferent kinds of natural operators defined from the curvature, with special attention to their
spectrum. Among those operators, the Jacobi operator is probably the most natural and
widely investigated. Nevertheless, many interesting information is encoded by other oper-
ators such as the Szabó operator or the skew–symmetric curvature operator. We recall the
definitions and some relevant results related to the associated Osserman–like problems.

2.2.1 The Jacobi operator

Let M be a semi–Riemannian manifold of signature (p, q) and dimension n = p + q.
Let S+(M) be the bundle of unit spacelike tangent vectors and S−(M) the bundle of unit
timelike tangent vectors. Also, S(M) is defined by Sp(M) = S+p (M)∪S−

p (M) for all p ∈ M .
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We recall that the Jacobi operator Rx for x ∈ TM is the self-adjoint endomorphism of x⊥

characterized by the identity

g(Rx(y), z) = R(x, y, x, z).

One says that M is spacelike Osserman (resp. timelike Osserman) if the eigenvalues of
the Jacobi operator are constant on S+(M) (resp. S−(M)). It turns out that these two
notions are equivalent and such a manifold is simply said to be Osserman. A manifold M
is said to be pointwise Osserman if the eigenvalues of the Jacobi operator are independent
of the direction, although they may change from point to point.
A manifold is pointwise Osserman if and only if it is k–stein for all k ≥ 1. In particular,

every Osserman manifold is Einstein.
The local isometries of any isotropic space act transitively on the unit pseudo–sphere

bundles and thus the eigenvalues of the Jacobi operator are constant on S(M), which
shows thatM is Osserman. R. Osserman [109] wondered whether the converse holds. This
question has been called the Osserman conjecture by subsequent authors. This conjecture
has been answered in the affirmative in the Riemannian setting if n �= 16 by the work of
Q. S. Chi [34] and Y. Nikolayevsky [104], [105], [106].
In the Lorentzian setting (p = 1), an Osserman manifold has constant sectional curva-

ture [19], [61]. In the higher signature setting (p > 1, q > 1) the situation is much more
complicated since many non–symmetric examples exist [64]. See for example [62], [68] and
the references therein for more information. Moreover, the fact that the spectrum does not
completely determine a self–adjoint operator in the indefinite setting suggested the con-
sideration of the Jordan normal form rather than just the eigenvalue structure. Then, one
says that (M, g) is spacelike Jordan–Osserman (resp. timelike Jordan–Osserman) if the
Jordan normal form of the Jacobi operator is constant on S+(M) (resp. S−(M)). These
two notions are not equivalent if n ≥ 5. The structure of a Jordan–Osserman algebraic
curvature tensor strongly depends on the signature (p, q) of the metric tensor. Indeed, it
has been shown in [71] that the spacelike Jacobi operators of a spacelike Jordan–Osserman
algebraic curvature tensor are necessarily diagonalizable whenever p < q, but they can be
arbitrarily complicated in the neutral case (p = q) [70].

Example 2.12. [41] Let (�x, �y) for �x = (x1, ..., xp) and �y = (y1, ..., yp) be coordinates on R2p

where p ≥ 3. Let f : Rp → R be a differentiable function. We define a semi–Riemannian
metric gf of signature (p, p) on R2p by

gf

(
∂

∂xi
,

∂

∂xj

)
=

∂f

∂xi
· ∂f

∂xi
, gf

(
∂

∂yi
,

∂

∂yj

)
= 0 and gf

(
∂

∂xi
,

∂

∂yj

)
= δij .

Let φ be the Euclidean Hessian

φ

(
∂

∂xi
,

∂

∂xj

)
=

∂2f

∂xi∂xj
, φ

(
∂

∂yi
,

∂

∂yj

)
= 0 and φ

(
∂

∂xi
,

∂

∂yj

)
= φ

(
∂

∂yj
,

∂

∂xi

)
= 0.

Then, the curvature tensor of gf is R = F φ. We assume that the restriction of φ to
span{∂/∂xi} is positive definite henceforth. Then M is a complete semi–Riemannian
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manifold that is spacelike and timelike Jordan–Osserman. Similarly define φ1 by the trivial
bilinear extension of

φ1

(
∂

∂xi
,

∂

∂xj
,

∂

∂xk

)
=

∂3f

∂xi∂xj∂xk
.

One has ∇R = F φ,φ1 . Thus if f is not quadratic,M is not a locally symmetric space. With
a bit more work one can show that for such a generic f , M is curvature homogeneous but
not locally affine homogeneous. We refer to [52], [75] for further details.

2.2.2 The higher order Jacobi operator

Let (M, g) be a semi–Riemannian manifold and let Grr,s(TpM) be the Grassmannian of all
subspaces E ⊂ TpM such that the restriction of g to E is a non–degenerate inner product
of signature (r, s). Let {ei} be an orthonormal basis of E ∈ Grr,s(TpM). We define the
higher order Jacobi operator by

J (E) =
r+s∑

i,j=1

εei
Rei

.

where εi = g(ei, ei). A semi–Riemannian manifold (M, g) is said to be (r, s)–Osserman
at p ∈ M if the coefficients of the characteristic polynomial of J (E) are independent of
E ∈ Grr,s(TpM) (see [68], [78], [120] and the references therein). An interesting observation
is that only the value r + s is important in the previous definition. Moreover, any k–
Osserman manifold is of constant sectional curvature in the Riemannian (for k > 1) and
Lorentzian settings (see [69], [79]). Again, the situation is more complex in the higher
signature case, where many non–symmetric k–Osserman metrics exist (see for example
[22], [68]).

2.2.3 The Szabó operator

There is an analogous operator to the Jacobi operator which is defined for ∇R. The Szabó
operator J1(x) is the self–adjoint endomorphism of TM characterized by

g(J1(x)y, z) = (∇R)(x, x, y, x, z) = (∇xR)(x, y, x, z).

One says that M is spacelike Szabó (resp. timelike Szabó) if the eigenvalues of J1(·) are
constant on S+(M) (resp. S−(M)). These notions are equivalent and such a manifold is
simply said to be Szabó. The notion spacelike Jordan–Szabó (resp. timelike Jordan–Szabó)
is defined similarly.
In his study of 2–point homogeneous spaces, Z. I. Szabó [122] gave a topological ar-

gument showing that any Riemannian Szabó manifold is necessarily a locally symmetric
space, that is, ∇R = 0. This result was subsequently extended to the Lorentzian case [79].
In the higher signature setting, the situation is unclear again. The metric gf described in
Example 2.12 defines a Szabó semi–Riemannian manifold of signature (p, p).
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Even in the algebraic setting, there are no known non–zero elements F1 ∈ R1(V ) which
are spacelike Jordan–Szabó. It has been shown in [73] that if F1 is a spacelike Jordan–
Szabó algebraic covariant derivative curvature tensor on a vector space of signature (p, q),
where q ≡ 1 (mod 2) and p < q or where q ≡ 2 (mod 4) and p < q − 1, then F1 = 0.
This algebraic result yields an elementary proof of the geometrical fact that any pointwise
totally isotropic semi–Riemannian manifold with such a signature is locally symmetric.
The general question of finding non–trivial spacelike Jordan Szabó covariant algebraic
curvature tensors or showing non–existence remains open.

2.2.4 The skew-symmetric curvature operator

Let {e1, e2} be an orthonormal basis for an oriented spacelike (resp. timelike) 2–plane π.
The skew–symmetric curvature operator R̃(π) is characterized by the identity

g(R̃(π)y, z) = R(e1, e2, y, z).

This definition is independent of the particular choice of orthonormal basis. One says that
M is spacelike Ivanov–Petrova (resp. timelike Ivanov–Petrova) if the eigenvalues of R̃(·)
are constant on the Grassmannian of oriented spacelike (resp. timelike) 2–planes. These
two notions are equivalent and such a manifold is simply said to be Ivanov–Petrova. The
notions spacelike Jordan–Ivanov–Petrova and timelike Jordan Ivanov–Petrova are defined
similarly and are not equivalent.
The Riemannian Ivanov–Petrova manifolds have been classified in [74], [107]. They

have also been classified in the Lorentzian setting [135] if n ≥ 10. For all these manifolds,
the curvature tensors have the form R = Fφ where φ is an idempotent isometry and
R̃(π) has rank 2. Conversely, in the algebraic setting, if R is a spacelike Jordan–Ivanov–
Petrova algebraic curvature tensor on a vector space of signature (p, q) where q ≥ 5 and
where rank R̃(·) = 2, then there exist λ and φ such that R = λF φ. The situation in the
indefinite setting is again quite different. There exist spacelike Ivanov–Petrova manifolds
of signature (p, 2p) where R̃(π) has rank 4 and where the curvature tensor does not have
the form R = F φ. We refer to [76] for further details.
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Chapter 3

Four–dimensional Osserman metrics

Any Osserman metric is Einstein and thus of constant sectional curvature in dimension two
and three. Therefore, dimension four is the lowest dimensional non–trivial case to study
Osserman metrics. Moreover, it supports metrics of neutral signature (2, 2) where the Ja-
cobi operator exhibits a completely different behavior with respect to both the Riemannian
and Lorentzian settings and enjoys some special features of four–dimensional geometry.
Considering the curvature tensor R as an endomorphism of Λ2(M), we have the follow-

ing O(2, 2)–decomposition for (2, 2)–metrics

R =
τ

12
IdΛ2 +ρ0 +W : Λ2 → Λ2

where ρ0 denotes the traceless Ricci tensor, ρ0(X,Y ) = ρ(X,Y ) − (τ/4) g(X, Y ) and W
denotes the Weyl conformal curvature tensor given by

W (X, Y, V,W ) = R(X, Y, V, W ) +
τ

(n − 1)(n − 2)
{

g(X,V )g(Y, W )− g(Y, V )g(X, W )
}

− 1
n − 2
{

ρ(X, V )g(Y, W )− ρ(Y, V )g(X,W )

+ ρ(Y, W )g(X, V )− ρ(X, W )g(Y, V )
}

.

The Hodge star operator ∗ : Λ2 → Λ2 associated with any (2, 2) metric induces a further
splitting Λ2 = Λ2+⊕Λ2−, where Λ2± denotes the ±1–eigenspaces of the Hodge star operator,
that is, Λ2± = {α ∈ Λ2(M) : ∗α = ±α}. Then, the curvature tensor decomposes as

R =
τ

12
IdΛ2 +ρ0 +W+ +W−,

where W± = (W ± ∗W )/2. Recall that a semi–Riemannian four–dimensional manifold is
called self–dual (resp. anti–self–dual) if W− = 0 (resp. W+ = 0).
An interesting feature of four–dimensional Osserman metrics comes from the fact that

an algebraic curvature tensor in a four–dimensional vector space is Osserman if and only
if it is Einstein and self-dual for an appropriate orientation of the underlying vector space.

29
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Therefore, pointwise Osserman metrics in dimension four are those which are Einstein and
self–dual or anti–self–dual.
Let {e1, e2, e3, e4} be an orthonormal basis with e1 and e2 spacelike vectors and e3 and

e4 timelike vectors. Local bases of the spaces of self–dual and anti–self–dual two–forms
may be constructed as

Λ2± = span
{
E±
1 , E±

2 , E±
3

}
,

where

E±
1 =

e1 ∧ e2 ± e3 ∧ e4√
2

, E±
2 =

e1 ∧ e3 ± e2 ∧ e4√
2

, E±
3 =

e1 ∧ e4 ∓ e2 ∧ e3√
2

.

We observe that the Hodge star operator satisfies

ei ∧ ej ∧ �(ek ∧ el) =
(
δi
kδ

j
l − δi

lδ
j
k

)
εiεj e1 ∧ e2 ∧ e3 ∧ e4,

where εi = g(ei, ei). Note that 〈E±
1 , E±

1 〉 = 1, 〈E±
2 , E±

2 〉 = 〈E±
3 , E±

3 〉 = −1. Then, with
respect to the above bases the self–dual and the anti–self–dual Weyl curvature operators
W± : Λ2± → Λ2± have the matrix representation

W± =

 W±
11 W±

12 W±
13

−W±
12 −W±

22 −W±
23

−W±
13 −W±

23 −W±
33

 ,

where W±
ij = W (E±

i , E±
j ) and W (ei ∧ ej, ek ∧ el) = W (ei, ej, ek, el).

For any non–null vector x in the (2, 2) setting, the induced metric on Rx⊥ is of
Lorentzian signature, and hence, the eigenvalue structure does not completely characterize
the Jacobi operator Rx. The consideration of the Jordan normal form led to introduce
the so–called Jordan–Osserman metrics (see Subsection 2.2.1). Four–dimensional Jordan–
Osserman metrics were initially investigated by N. Blažić, N. Bokan and Z. Rakić [21] who
considered four different possibilities according to the behavior of the Jordan normal form
of the Jacobi operators. These four types are:

(Ia) The Jacobi operator is diagonalizable, Rx =

α
β

γ

.

(Ib) The Jacobi operator has a complex eigenvalue, Rx =

α −β
β α

γ

.

(II) The minimal polynomial of the Jacobi operator has a double root, Rx =

α
β
1 β

.
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(III) The minimal polynomial of the Jacobi operator has a triple root, Rx =

α
1 α
1 α

.
Moreover, there is a one to one correspondence between the different possibilities of the

Jacobi operators of Types Ia, Ib, II, III and the Jordan normal form of the (anti–)self–dual
part of the Weyl conformal curvature tensor [62].
It has been shown in [21] that four–dimensional Osserman metrics with diagonalizable

Jacobi operators are locally isometric to a real, complex or para–complex space form and
that Type Ib metrics cannot occur. Moreover, a locally symmetric Osserman (2, 2) metric
has diagonalizable Jacobi operators or it is isometric with some Type II metric to nilpotent
Jacobi operators [65].
The fact that all known examples of non–symmetric Osserman metrics had 2–step or

3–step nilpotent Jacobi operators suggested that no other examples exist [62], [68]. This
was conjectured by several authors. Our purpose is to show the existence of such metrics
(Section 3.1) and to give a complete description of them (Sections 3.2 and 3.3).

3.1 New examples of Osserman metrics with non–
diagonalizable Jacobi operators

Let us take the usual coordinates (x1, x2, x3, x4) in M = R4. For any arbitrary real–valued
function f and any non–zero constant k we define the metric [48]

g = dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2 +

(
4kx21 −

1
4k

f(x4)
2

)
dx3 ⊗ dx3

+4kx22dx4 ⊗ dx4 +

(
4kx1x2 + x2f(x4)−

1
4k

f ′(x4)
)
(dx3 ⊗ dx4 + dx4 ⊗ dx3).

The following two lemmas can be obtained after some tedious but straightforward
calculations from the definition of the metric g.

Lemma 3.1. The Christoffel symbols associated with g are

Γ113 = −Γ333 = 4kx1, Γ213 = Γ
1
14 = −Γ334 =

1
2
Γ224 = −1

2
Γ444 = 2kx2,

Γ223 = Γ
1
24 = −Γ434 =

1
2

(
4kx1 + f(x4)

)
, Γ133 = 16k

2x31 − x1f(x4)
2,

Γ233 = x1
(
16k2x1x2 − f ′(x4)

)
+ f(x4)

(
4kx1x2 +

f ′(x4)
4k

)
,

Γ134 = 16k
2x21x2 + 4kx1x2f(x4)−

1
2
x1f

′(x4)−
3f(x4)f ′(x4)

8k
,

Γ234 =
1
2

x2
(
32k2x1x2 + 8kx2f(x4)− f ′(x4)

)
,

Γ144 = 16k
2x1x

2
2 + 4kx22f(x4)−

f ′′(x4)
4k

, Γ244 = 16k
2x32.
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From the previous lemma we get

Lemma 3.2. The curvature tensor of g is determined by

R1313 = R2424 = −4k, R1324 = R1423 = −2k,

R1334 = kx2
(
4kx1 + f(x4)

)
, R1434 = 4k2x22,

R2334 =
f(x4)2

4
− 4k2x21, R2434 =

f ′(x4)
2

− kx2
(
4kx1 + f(x4)

)
,

R3434 =
f ′(x4)2

4k
+ 2kx1x2f

′(x4)− 2kx22f(x4)
2 − x1f

′′(x4)

−f(x4)

(
8k2x1x

2
2 −
5
2
x2f

′(x4)−
f ′′(x4)
4k

)
.

Now, we calculate the Jacobi operator associated with g. We have the following theo-
rem [48].

Theorem 3.3. For any function f , the metric g is Osserman of signature (2, 2) with
eigenvalues {0, 4k, k, k}. Moreover, the Jacobi operators are diagonalizable if and only if

24kf(x4)f
′(x4)x2 − 12kf ′′(x4)x1 + 3f(x4)f ′′(x4) + 4f ′(x4)2 = 0.

Otherwise, k is a double root of the minimal polynomial of the Jacobi operators and (M, g)
is Jordan–Osserman on the open set where the above equation does not hold.

Proof. The eigenvalues of the Jacobi operator of an Osserman metric change sign when
passing from timelike to spacelike directions. Thus, for the purpose of studying the Os-
serman property, it is convenient to consider the normalized Jacobi operator JR(X) =
g(X, X)−1RX associated with each non–null vectorX, whose eigenvalues are constant if and
only if (M, g) is Osserman. Let X =

∑4
i=1 αi∂i be a non–null vector, where {∂i = ∂/∂xi}

denotes the coordinate basis. The associated Jacobi operator RX = R(X, · )X can be
expressed with respect to the coordinate basis {∂i} as

(3.1) RX =


a11 a12 a13 a14

a21 a22 a23 a24

−4kα23 −4kα3α4 a33 a34

−4kα3α4 −4kα24 a43 a44

 ,

with

a11 = 5kx2f(x4)α3α4 − f(x4)
2α23 + 2k

(
2α1α3 + α2α4

+2k(4x21α
2
3 + 5x1x2α3α4 + x22α

2
4)
)
− α3α4f

′(x4),

a12 =
1
4
α4
(
12kx2f(x4)α4 − 3f(x4)2α3 + 8k(α1 + 6kx1(x1α3 + x2α4))− 2α4f ′(x4)

)
,
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a13 =
1
16k

(
f(x4)

2α3(16kα1 + α4f
′(x4)) + 4f(x4)α4(7kx2α4f

′(x4)− 16k2x2α1

+α4f
′′(x4))− 2(4kα4(2kx1(x1α3 + x2α4)− α1)f

′(x4)

−3α24f ′(x4)2 + 8k(4kα1(α1 + 4kx1(x1α3 + x2α4)) + x1α
2
4f

′′(x4)))
)
,

a14 = − 1
16k

(
f(x4)

2α3(α3f
′(x4)− 12kα2) + 4f(x4)(4k

2x2(α1α3 + 3α2α4)

+7kx2α3α4f
′(x4) + α3α4f

′′(x4)) + 2(−4k(α1α3 + α2α4

+2kx1α3(x1α3 + x2α4))f
′(x4) + 3α3α4f ′(x4)2 + 8k(4k(3kx1α2(x1α3 + x2α4)

+α1(α2 + kx2(x1α3 + x2α4)))− x1α3α4f
′′(x4)))

)
,

a21 = α3
(
3kx2f(x4)α3 + 2k(α2 + 6kx2(x1α3 + x2α4))− α3f

′(x4)
)
,

a22 = 2kα1α3 −
1
4
f(x4)

2α23 + 4k
2x21α

2
3 + 4kα2α4 + 5kf(x4)x2α3α4

+20k2x1x2α3α4 + 16k
2x22α

2
4 −
3
2
α3α4f

′(x4),

a23 = − 1
4k

(
4k(kx2α4(x1α3 + x2α4)− α1α3)f

′(x4)− kf(x4)
2α2α3 + α3α4f

′(x4)2

+f(x4)(4k
2x2(3α1α3 + α2α4) + 9kx2α3α4f

′(x4) + α3α4f
′′(x4))

+4k(4k(kx1α2(x1α3 + x2α4) + α1(α2 + 3kx2(x1α3 + x2α4)))− x1α3α4f
′′(x4)),

a24 =
1
4k

(
2kα3(3α2 + 2kx2(x1α3 + x2α4))f

′(x4) + α23f
′(x4)2 + f(x4)α3(−16k2x2α2

+9kx2α3f
′(x4) + α3f

′′(x4))− 4k(4kα2(α2 + 4kx2(x1α3 + x2α4)) + x1α
2
3f

′′(x4))
)
,

a33 = k
(
4α1α3 + x2f(x4)α3α4 + 2α4(α2 + 2kx2(x1α3 + x2α4))

)
,

a34 = −kα3
(
−2α2 + x2f(x4)α3 + 4kx2(x1α3 + x2α4)

)
,

a43 =
1
4
α4
(
f(x4)

2α3 − 4kx2f(x4)α4 + 2(4k(α1−2kx1(x1α3 + x2α4)) + α4f
′(x4))
)
,

a44 = kx2f(x4)α3α4 −
1
4
f(x4)

2α23 + 2k(α1α3 + 2(α2α4 + kx1α3(x1α3 + x2α4)))

−1
2
α3α4f

′(x4).

Using the above expressions we get that the characteristic polynomial of JR(X) is given
by pJR(X)(λ) = λ(λ − 4k)(λ − k)2, and thus the metric g is Osserman with eigenvalues
{0, 4k, k, k}. In order to analyze the diagonalizability of the Jacobi operators, we consider
the minimal polynomials mJR(X)(λ). It follows after some calculations that

JR(X) · (JR(X)− 4kId) · (JR(X)− kId) =
k

4
g(X,X)−1 Ξ


0 0 −α24 α3α4
0 0 α3α4 −α23
0 0 0 0
0 0 0 0

 ,
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where Ξ = 3f(x4)(8kx2f
′(x4)+f ′′(x4))+4(f ′(x4)2−3kx1f

′′(x4)). This shows that Ξ = 0 is
the necessary and sufficient condition for diagonalizability of the Jacobi operators. Finally,
in the open set where Ξ does not vanish (M, g) is Jordan–Osserman and k is a double root
of the minimal polynomials mJR(X)(λ).

Remark 3.4. It was shown in [65] that the Jacobi operators of a locally symmetric four–
dimensional Osserman metric are either diagonalizable or two–step nilpotent. Therefore,
the metric g cannot be locally symmetric unless their Jacobi operators diagonalize. It
follows after some calculations that the covariant derivative of the curvature tensor vanishes
at a point (x1, . . . , x4) if and only if

f ′′(x4) = 0, f(x4)f ′(x4) = 0,

f ′(x4)2x1 = 0, 24kx2f
′(x4)2 + f ′′′(x4)(f(x4)− 4kx1) = 0.

Hence (R4, g) is locally symmetric if and only if the function f is constant, and thus the
Jacobi operators are diagonalizable by Theorem 3.3. Furthermore, it follows from the
work in [20] that any four–dimensional Jordan–Osserman manifold has isotropic covariant
derivative of the curvature tensor, that is, ‖∇R‖ = 0, although ∇R may be non–zero.

The existence of timelike, spacelike and null vectors on any indefinite inner product
vector space suggested the consideration of the Osserman problem separately. However,
it was shown in [62] that the spacelike and timelike Osserman conditions are equivalent
and moreover, any of them implies the null Osserman condition (since eigenvalues of the
Jacobi operators change sign from spacelike to timelike directions). On the other hand it
is known that the spacelike and timelike Jordan–Osserman conditions are not equivalent
[68] and even both of them do not imply the null Jordan–Osserman condition as shown in
the following

Theorem 3.5. For any function f , the metric g is null Osserman with two–step nilpotent
null Jacobi operators.

Proof. First of all, observe that a vector U =
∑4

i=1 αi∂i is null if and only if

2α1α3+2α2α4+α23

(
4kx21 −

f(x4)2

4k

)
+α3α4

(
2f(x4)x2 + 8kx1x2 −

f ′(x4)
2k

)
+4kx22α

2
4 = 0.

A tedious but straightforward calculation from (3.1) shows that

R2U = g(U,U)


b11 b12 b13 b14
b21 b22 b23 b24

−16k2α23 −16k2α3α4 b33 b34
−16k2α3α4 −16k2α24 b43 b44

 ,
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where

b11 = k
(
16kα1α3 − 4f(x4)2α23 + 17kf(x4)x2α3α4

+2k(α2α4 + 2k(x1α3 + x2α4)(16x1α3 + x2α4))− 3α3α4f ′(x4)
)
,

b12 =
k

4
α4(56kα1 − 15(f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4)− 10α4f ′(x4)),

b13 = −16k2α21 +
k

2
α1(8(f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4) + 3α4f

′(x4))

+
1
16

α4
(
f ′(x4)(5f(x4)2α3 + 44kf(x4)x2α4 − 80k2x1(x1α3 + x2α4)

+14α4f
′(x4)) + 8(f(x4)− 4kx1)α4f

′′(x4)
)
,

b14 =
1
16

(
−960k3x21α2α3 − 960k3x1x2α2α4 + 80k2x21α23f ′(x4) + 40kα2α4f

′(x4)

+80k2x1x2α3α4f
′(x4)− 14α3α4f ′(x4)2 − 5f(x4)2α3(−12kα2 + α3f

′(x4))

+8kα1(−32kα2 − 2kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 3α3f
′(x4))

+32kx1α3α4f
′′(x4) + 4f(x4)α4(−kx2(60kα2 + 11α3f

′(x4))− 2α3f ′′(x4))
)
,

b21 = kα3
(
14kα2 + 15kx2((f(x4) + 4kx1)α3 + 4kx2α4)− 5α3f ′(x4)

)
,

b22 =
k

4
(8kα1α3 − f(x4)

2α23 + 68kf(x4)x2α3α4

+16k(4α2α4 + k(x1α3 + x2α4)(x1α3 + 16x2α4))− 22α3α4f ′(x4)),

b23 =
1
4

(
kf(x4)

2α2α3 − 16k3x21α2α3 − 16k3x1x2α2α4 − 4kα2α4f
′(x4)

−20k2x1x2α3α4f ′(x4)− 20k2x22α24f ′(x4)− α3α4f
′(x4)2 + 4kα1(−16kα2

−15kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 5α3f
′(x4)) + 8kx1α3α4f

′′(x4)

+f(x4)α4(−kx2(4kα2 + 21α3f
′(x4))− 2α3f ′′(x4))

)
,

b24 =
1
4

(
−64k2α22 + 2kα2(−32kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 13α3f

′(x4))

+α3(f
′(x4)(kx2(21f(x4)α3 + 20k(x1α3 + x2α4)) + α3f

′(x4))

+2(f(x4)− 4kx1)α3f
′′(x4))
)
,

b33 = k
(
16kα1α3 + α4(2kα2 + kx2((f(x4) + 4kx1)α3 + 4kx2α4) + α3f

′(x4))
)
,

b34 = −kα3
(
−14kα2 + kx2((f(x4) + 4kx1)α3 + 4kx2α4) + α3f

′(x4)
)
,

b43 = −k

4
α4
(
−56kα1 − (f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4)− 6α4f ′(x4)

)
,

b44 =
k

4

(
8kα1α3 − f(x4)

2α23 + 4kf(x4)x2α3α4

+16k(4α2α4 + kx1α3(x1α3 + x2α4))− 6α3α4f ′(x4)
)
.
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Since U is a null vector we clearly have R2U = 0. Moreover, it follows from (3.1) that if
RU = 0 then α3 = α4 = 0 and the Jacobi operator reduces to

RU = −4k


0 0 α21 α1α2
0 0 α1α2 α22
0 0 0 0
0 0 0 0


which shows that RU vanishes if and only if U = 0. This proves that (M, g) is null Osserman
with two–step nilpotent null Jacobi operators.

Remark 3.6. Although the null Jacobi operators are two–step nilpotent, their Jordan nor-
mal form is not necessarily constant on the null cone since the corresponding minimal
polynomials may admit one or two double roots. For instance, U = α1∂1 + α2∂2 is a null
vector whose associated Jacobi operator is

RU = −4k


0 0 α21 α1α2
0 0 α1α2 α22
0 0 0 0
0 0 0 0

 , with Jordan normal form


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 .

On the other hand, for any function f with f(0) = 0, V = ∂3 is a null vector at (0, x2, x3, 0).
Moreover, in such a case the associated Jacobi operator satisfies

(RV )(0,x2,x3,0) =


0 0 0 0

−f ′(0) 0 0 f ′(0)2
4k

−4k 0 0 0
0 0 0 0

 , with Jordan normal form


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


whenever f ′(0) �= 0. Hence the null Osserman and the null Jordan–Osserman conditions
are not equivalent for (2, 2) metrics at the algebraic level, in contrast to the non–null
Osserman conditions. The above example shows that, although the algebraic Osserman
condition implies the null Osserman condition, there exist Jordan–Osserman algebraic
curvature tensors which are not null Jordan–Osserman.

3.1.1 Some geometrical properties

Next, we show that there exist four–dimensional Szabó metrics such that the degree of
nilpotency of the associated Szabó operators changes depending on the direction. In con-
trast to what happens with the Jacobi operator, the Szabó and the Jordan–Szabó algebraic
conditions are not equivalent in dimension four.

Theorem 3.7. For any function f , the metric g is Szabó of signature (2, 2) with zero
eigenvalues. The minimal polynomial of the Szabó operators J1(X) depends on the direction
X at each point and hence the metric g is not pointwise Jordan–Szabó.
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Proof. Let X =
∑4

i=1 αi∂i be a non–null vector. The associated Szabó operator, when
expressed in the coordinate basis has the form

J1(X) =
(

A B
0 tA

)
, A = Ψ

(
α3α4 α24
−α23 −α3α4

)
,

where Ψ = 2α3f(x4)f ′(x4) + α4f
′′(x4). Hence, the characteristic polynomial of the Szabó

operators is pJ1(X)(λ) = λ4, independently of the 2× 2–matrix B.
Since the degree of nilpotency depends on B, in order to show that the Szabó and Jordan

Szabó algebraic conditions are not equivalent, we make the special choice f(x4) = x4. If
X and Y are the unit vectors in the direction of ∂1 + ∂3 and ∂2 + ∂4, respectively, one has

J1(X) =


0 0 0 2(εX − 1)x4

−2x4 0 2x4 4(x1 − x4
8k + x2x4(8kx1 + x4))

0 0 0 −2x4
0 0 0 0

 ,

and

J1(Y ) =


0 0 6x2 + 2(3εY − 5)x4 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

where εZ = g(Z, Z) = ±1. This shows that J1(X) is three–step nilpotent at most points
while J1(Y ) is two–step nilpotent.

Remark 3.8. It follows from the work in [22] that a four–dimensional metric is 1-Osserman
and 2-Osserman if and only if it is either of constant curvature or the Jacobi operators are
two–step nilpotent. Therefore, the metric g is not Osserman of higher order.

Jordan–Osserman metrics which are also Ivanov–Petrova but not of constant sectional
curvature have been constructed by P. Gilkey and S. Nikčević by using the so–called
generalized wave metrics in neutral signature (2, 2) [77]. All such examples have nilpotent
Jacobi operators which seems to be a specific feature of the intersection between Ivanov–
Petrova and Jordan–Osserman metrics.

Theorem 3.9. For any function f , the metric g is Osserman but not Ivanov–Petrova.

Proof. Note that π = span{∂1, ∂3} is a non–degenerate plane whose skew-symmetric oper-
ator satisfies

R̃(π) =


4k 0 16k2x21 − f(x4)2 3kx2(4kx1 + f(x4))− 1

2f
′(x4)

0 2k 3kx2(4kx1 + f(x4))− f ′(x4) 8k2x22
0 0 −4k 0
0 0 0 −2k
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and hence, it has constant eigenvalues {2k, 4k,−2k,−4k} independently of the function f .
On the other hand, for any function f with f ′(0) �= 0, it follows that π = span{∂3, ∂4} is a
non–degenerate plane at the origin whose skew–symmetric operator satisfies

R̃(π) =
∣∣∣∣ k

f ′(0)

∣∣∣∣

0 f(0)2 −f(0)2f ′(0)

4k −3f ′(0)2+2f(0)f ′′(0)
2k

0 2f ′(0) f ′(0)2+f(0)f ′′(0)
k

0

0 0 0 0

0 0 −f(0)2 −2f ′(0)


and has eigenvalues {0, 0, 2k,−2k}. This shows that for any function f with f ′(0) �= 0, the
metric g is not Ivanov–Petrova on planes of signature (−+) at the origin.
The eigenspace corresponding to the double eigenvalue k of the Jacobi operator is of

Lorentzian signature (see Remark 3.11), and thus the curvature tensor at each point is
completely determined by the diagonalizability of the Jacobi operator, independently of
the function f . In fact, at any point where the Jacobi operators diagonalize (resp. are
not diagonalizable) there exist orthonormal bases where the (algebraic) curvature tensor is
expressed in terms of the eigenvalues of the Jacobi operators, independently of the function
f (see [21], [62, Thm. 4.2.2]).
Next, observe that it is possible to give functions f satisfying f ′(0) �= 0 and 3f(0)f ′′(0)+

4f ′(0)2 = 0 (see Theorem 3.3) and therefore the Jacobi operators are diagonalizable at the
origin. Also, there exist functions with f ′(0) �= 0 and 3f(0)f ′′(0) + 4f ′(0)2 �= 0 and hence
the corresponding metric g has non–diagonalizable Jacobi operators at the origin. From
the eigenvalue structure of the skew–symmetric curvature operators corresponding to the
planes discussed above, it follows that none of the corresponding (algebraic) curvature
tensors can be Ivanov–Petrova, which shows that the metric g is not Ivanov–Petrova at
any point.

Remark 3.10. It was proved in [21] that any four–dimensional Osserman algebraic curva-
ture tensor is Jordan–Osserman. The existence of Osserman metrics that are not Jordan–
Osserman was already pointed out in [64]. Indeed, the Jordan normal form of the Ja-
cobi operators (3.1) corresponding to the metric g changes from diagonalizable to non–
diagonalizable according to the statement of Theorem 3.3. Since 24kf(x4)f ′(x4)x2 −
12kf ′′(x4)x1 + 3f(x4)f ′′(x4) + 4f ′(x4)2 defines a polynomial on x1, x2, the metric g, when
considered as globally defined in R4, changes its Jordan normal form, and hence, it is Os-
serman but not Jordan–Osserman. However, it restricts to Jordan–Osserman metrics on
suitable open sets.
Since the metric g is not Jordan–Osserman in general, it is not curvature homogeneous,

and thus it cannot be locally homogeneous. Even when we restrict to open sets where
g defines a Jordan–Osserman metric (and hence 0-curvature homogeneous), the metric is
not necessarily locally homogeneous. Indeed, for the special choice of f(x4) = x4, (R4, g)
is Jordan–Osserman in the open set defined by 6kx2x4 �= −1. However, it is not locally
homogeneous, since ∇R vanishes at any point (0, 0, x3, 0) and it is different from zero at
those points (0, 0, x3, x4) with x4 �= 0. This shows that it is not 1-curvature homogeneous.
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Remark 3.11. Different kinds of Osserman manifolds may share the same eigenvalue struc-
ture. Indeed, the Jacobi operators of indefinite complex and para–complex space forms
have the same spectrum as those of the metric g. A straightforward calculation shows that
g has exactly the same second, fourth and sixth degree scalar curvature invariants as the
symmetric models. The main difference between complex and para–complex space forms
from the point of view of their Jacobi operators, is that the restriction of the metric to the
subspace E4k(X) = RX ⊕ ker(RX − 4k Id) is definite in the complex case and indefinite in
the para–complex setting [23]. The metric g induces a Lorentzian inner product on E4k,
because the Jacobi operators are non–diagonalizable. It follows from the expression of the
Jacobi operator associated with any non–null vector X =

∑
αi∂i that −α4∂1 + α3∂2 is a

null eigenvector of RX corresponding to the double eigenvalue k.

3.2 Osserman para-Hermitian metrics

In order to give some motivation for the metrics g discussed in the previous section we
show that they appear naturally in the study of Walker para–Hermitian structures [49],
[50].
A starting point in the search of Osserman spaces with non–diagonalizable Jacobi opera-

tors is the known fact that in the case of two different eigenvalues α and β (α with multiplic-
ity two) we have β = 4α (see [21]). As it was discussed in Remark 3.11, an important differ-
ence between complex and para–complex space forms from the point of view of their Jacobi
operators is that the restriction of the metric to the subspace Eβ = RX ⊕ ker(RX − β Id)
is definite in the complex case and indefinite in the para–complex setting [23]. In the case
of two distinct eigenvalues, the non–diagonalizability of the Jacobi operators implies that
the metric induces a Lorentzian inner product on Eβ. This fact turns our attention to
para–Kähler structures and, by extension, to Walker manifolds.
A Walker manifold is a triple (M, g,D) where M is an n–dimensional manifold, g an

indefinite metric and D an r–dimensional parallel null distribution. Of special interest are
those manifolds admitting a field of null planes of maximum dimension (r = n/2). Since
the dimension of a null plane is r ≤ n/2, the lowest dimensional case of a Walker metric
is that of (2, 2)–manifolds admitting a field of parallel null two–planes. For such metrics a
canonical form was obtained by A. G. Walker [129]. He showed the existence of suitable
coordinates (x1, . . . , x4) where the metric is expressed as

g(x1,x2,x3,x4) =


0 0 1 0
0 0 0 1
1 0 a c
0 1 c b


for some functions a, b and c depending on the variables (x1, . . . , x4).
If a four–dimensional Walker manifold is assumed to be Osserman para–Kähler, then it

is a Ricci flat manifold or a para–complex space form, and hence this kind of manifolds does
not provide the new desired examples of Osserman manifolds whose Jacobi operators are
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neither diagonalizable nor nilpotent. This motivates the study of a more general situation:
Walker four–dimensional manifolds equipped with a para–Hermitian structure, which we
tackle in the following section.

3.2.1 Einstein para-Hermitian structures on Walker manifolds

Let g be a Walker metric expressed in the above coordinates (x1, . . . , x4). There is a natural
almost para–Hermitian structure J defined by

J∂1 = −∂1, J∂2 = ∂2,

J∂3 = −a∂1 + ∂3, J∂4 = b∂2 − ∂4,

where as usual, ∂i = ∂/∂xi. Throughout this section we use subscripts to denote partial
derivatives of functions, that is, for each function h depending on (x1, . . . , x4) we write
hi = ∂h/∂xi.
After doing some straightforward calculations we determine the Levi–Civita connection

of a Walker metric.

Lemma 3.12. The non–vanishing components of the Levi–Civita connection are

∇∂1∂3 =
1
2
a1∂1 +

1
2
c1∂2, ∇∂1∂4 =

1
2
c1∂1 +

1
2
b1∂2,

∇∂2∂3 =
1
2
a2∂1 +

1
2
c2∂2, ∇∂2∂4 =

1
2
c2∂1 +

1
2
b2∂2,

∇∂3∂3 =
1
2
(aa1 + ca2 + a3)∂1 +

1
2
(ca1 + ba2 − a4 + 2c3)∂2 −

a1
2

∂3 −
a2
2

∂4,

∇∂3∂4 =
1
2
(a4 + ac1 + cc2)∂1 +

1
2
(b3 + cc1 + bc2)∂2 −

c1
2

∂3 −
c2
2

∂4,

∇∂4∂4 =
1
2
(ab1 + cb2 − b3 + 2c4)∂1 +

1
2
(cb1 + bb2 + b4)∂2 −

b1
2

∂3 −
b2
2

∂4.

By analyzing the almost para–Hermitian structure J we obtain the following

Theorem 3.13. The Walker metric g equipped with the almost para–Hermitian structure J
is para–Hermitian if and only if a2 = b1 = 0. Moreover, the almost para–Kähler condition
holds if and only if c1 = c2 = 0 and hence the para–Kähler condition is equivalent to
a2 = b1 = c1 = c2 = 0.

Proof. We write J∂i =
∑

j J j
i ∂j. The components of the Nijenhuis tensor are determined

by

N i
jk = 2

4∑
l=1

(
J l

j

∂J i
k

∂xl

− J l
k

∂J i
j

∂xl

− J i
l

∂J l
k

∂xj

+ J l
j

∂J l
j

∂xk

)
.

The non–zero components are

N214 = 4b1, N123 = 4a2, N143 = −2ba2, N243 = 2ab1.
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Hence, the integrability of J is characterized by a2 = b1 = 0. On the other hand, the
second part of the result is obtained after a direct and straightforward calculation from
Lemma 3.12.

In the rest of this section we study four–dimensional Walker metrics equipped with the
para–Hermitian structure J . We obtain a classification of Einstein para–Hermitian Walker
metrics as a first step to analyze the Osserman condition for Walker manifolds.
Using Lemma 3.12, we calculate the Riemannian curvature tensor after some tedious

calculations:

Lemma 3.14. The curvature tensor of the Walker metric g is given by

R1313 = −1
2
a11, R1314 = −1

2
c11, R1323 = −1

2
a12, R1324 = −1

2
c12,

R1414 = −1
2
b11, R1423 = −1

2
c12, R1424 = −1

2
b12, R2424 = −1

2
b22,

R2323 = −1
2
a22, R2324 = −1

2
c22, R2434 =

1
4
(a2b1 − c1c2 − 2b23 + 2c24) ,

R1334 =
1
4
(−a2b1 + c1c2 + 2a14 − 2c13) ,

R1434 =
1
4

(
−c21 + a1b1 − b1c2 + b2c1 − 2b13 + 2c14

)
,

R2334 =
1
4

(
c22 − a2b2 − a1c2 + a2c1 + 2a24 − 2c23

)
,

R3434 =
1
4

(
−ac21 − bc22 + aa1b1 + ca1b2 − a1b3 + 2a1c4 + ca2b1 + ba2b2 + a2b4

+ a3b1 − a4b2 − 2a4c1 + 2b2c3 − 2b3c2 − 2cc1c2 − 2a44 − 2b33 + 4c34
)
.

Using the previous result we calculate the Ricci tensor and the scalar curvature.

Lemma 3.15. The Ricci tensor of the four–dimensional Walker metric g is given by

ρ13 =
1
2
(a11 + c12) , ρ14 =

1
2
(b12 + c11) ,

ρ23 =
1
2
(a12 + c22) , ρ24 =

1
2
(b22 + c12) ,

ρ33 =
1
2

(
−c22 + a1c2 + a2b2 − a2c1 + aa11 + 2ca12 + ba22 + 2c23 − 2a24

)
,

ρ34 =
1
2
(−a2b1 + c1c2 + a14 + b23 + ac11 + 2cc12 − c13 + bc22 − c24) ,

ρ44 =
1
2

(
−c21 + a1b1 − b1c2 + b2c1 + ab11 + 2cb12 − 2b13 + bb22 + 2c14

)
.

As a consequence, the scalar curvature is τ = a11 + b22 + 2c12.
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Corollary 3.16. The traceless Ricci tensor ρ0 = ρ − (τ/4)g of the Walker metric g is
determined by

ρ013 = −ρ024 =
1
4
(a11 − b22) , ρ014 =

1
2
(b12 + c11) , ρ023 =

1
2
(a12 + c22) ,

ρ033 =
1
4

(
2a1c2 + 2a2b2 − 2a2c1 − 2c22 + a(a11− b22) + 4ca12 + 2ba22 − 4a24 − 2ac12 + 4c23

)
,

ρ044 =
1
4

(
2a1b1 − 2b1c2 + 2b2c1 − 2c21 − b(a11 − b22) + 2ab11 + 4cb12 − 4b13 − 2bc12 + 4c14

)
,

ρ034 =
1
4
(−2a2b1 + 2c1c2 − c(a11 − 2c12 + b22) + 2a14 + 2b23 + 2ac11 − 2c13 + 2bc22 − 2c24) .

We are now ready to characterize Einstein para–Hermitian Walker metrics.

Theorem 3.17. The four dimensional Walker metric g equipped with the almost para–
Hermitian structure J is Einstein para-Hermitian if and only if the defining functions a, b
and c are any of the following types:

(A) The scalar curvature τ vanishes and a, b and c can be written as

a = a(x1, x3, x4) = x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) = x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) = x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4),

where ξ, η and γ are arbitrary smooth functions, and P , Q, S, T are smooth functions
satisfying

PT − T 2 + 2T3 = 0, QS − S2 + 2S4 = 0, ST +Q3 − S3 + P4 − T4 = 0.

(B) The scalar curvature τ is non–zero and a, b and c satisfy

a = a(x1, x3, x4) =
τ

4
x21 + x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) =
τ

4
x22 + x2Q(x3, x4) + η(x3, x4),

c = c(x3, x4) =
2
τ
(P4(x3, x4) +Q3(x3, x4)) ,

where P , Q, ξ and η are arbitrary smooth functions.

(C) The scalar curvature τ is non–zero and a, b and c can be written as

a = a(x1, x3, x4) =
τ

6
x21 + x1P +

6
τ

(
PT − T 2 + 2T3

)
,

b = b(x2, x3, x4) =
τ

6
x22 + x2Q+

6
τ

(
QS − S2 + 2S4

)
,

c = c(x1, x2, x3, x4) =
τ

6
x1x2 + x1S + x2T +

6
τ
(ST +Q3 − S3 + P4 − T4) ,

for any smooth functions P , Q, S and T depending on (x3, x4).
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Proof. Since J is para–Hermitian, we have a2 = b1 = 0 by Theorem 3.13. Hence, a =
a(x1, x3, x4) and b = b(x2, x3, x4). Since g is Einstein, we have ρ0 = 0. Using the previous
fact for the functions a and b and Corollary 3.16 we get

(3.2)

a11 − b22 = c11 = c22 = 0,

2a1c2 − 2c22 − 2ac12 + 4c23 = 2b2c1 − 2c21 − 2bc12 + 4c14 = 0,
2c1c2 − ca11 + 2a14 − cb22 + 2b23 + 2cc12 − 2c13 − 2c24 = 0.

We separate the proof of this theorem in three steps.

Claim 3.18. The functions a, b and c defining the metric g satisfy

a = a(x1, x3, x4) = x21κ(x3, x4) + x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) = x22κ(x3, x4) + x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) = x1x2α(x3, x4) + x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4)

where κ(x3, x4), P (x3, x4), Q(x3, x4), ξ(x3, x4), η(x3, x4), α(x3, x4), S(x3, x4), T (x3, x4)
and γ(x3, x4) are arbitrary functions.

The first equation in (3.2) and a2 = b1 = 0 implies a111 = b222 = 0 and hence a (resp. b)
is a quadratic function of x1 (resp. x2) with parameters x3 and x4. Then, we can express
a and b as stated in the first two equations of Claim 3.18. On the other hand, the last two
equalities of the first equation in (3.2) imply that c is a linear function with respect to x1
and x2, taking the form of the third equation of Claim 3.18.

Claim 3.19. The functions a, b and c can be written as

a = a(x1, x3, x4) = κx21 + x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) = κx22 + x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) =
(τ
2
− 2κ
)

x1x2 + x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4),

where κ is a constant and P (x3, x4), Q(x3, x4), ξ(x3, x4), η(x3, x4), S(x3, x4), T (x3, x4)
and γ(x3, x4) are arbitrary functions. Moreover, one of the following three possibilities can
occur: κ = τ = 0 or, in case τ �= 0, either κ = τ

4 or κ = τ
6 .

Lemma 3.15 combined with Claim 3.18 implies τ = 4κ(x3, x4) + 2α(x3, x4). Hence,
α(x3, x4) = τ/2 − 2κ(x3, x4). We recall that, since g is Einstein, the scalar curvature τ is
constant. Differentiating the second equation in (3.2) twice with respect to x1, we get

τ 2 − 10τκ(x3, x4) + 24κ(x3, x4)
2 = 0.

Thus, κ(x3, x4) must be constant and Claim 3.19 follows.

We are now ready to finish the proof of Theorem 3.17. We analyze the three different
possibilities which arise in Claim 3.19 separately.
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Assume κ = τ = 0. This is the simplest case, because the expression in Claim 3.19
reduces to

a = a(x1, x3, x4) = x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) = x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) = x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4).

Furthermore, for such functions the last two equations in (3.2) transform into

PT − T 2 + 2T3 = 0, QS − S2 + 2S4 = 0, ST +Q3 − S3 + P4 − T4 = 0,

which is exactly case (A) of Theorem 3.17.
Assume κ = τ/4 �= 0. In this case, the expression of Claim 3.19 transforms into

a = a(x1, x3, x4) =
τ

4
x21 + x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) =
τ

4
x22 + x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) = x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4).

The second equation in (3.2) reduces to(
τx1 + 2P (x3, x4)

)
T (x3, x4)− 2T (x3, x4)2 + 4T3(x3, x4) = 0,(

τx2 + 2Q(x3, x4)
)
S(x3, x4)− 2S(x3, x4)2 + 4S4(x3, x4) = 0,

which hold if and only if T (x3, x4) = S(x3, x4) = 0. Using this condition, the last equation
in (3.2) leads to τγ(x3, x4)−2(P4(x3, x4)+Q3(x3, x4)) = 0 and therefore we can determine
γ by

γ(x3, x4) =
2
τ
(P4(x3, x4) +Q3(x3, x4)).

Altogether this implies case (B) of Theorem 3.17.
Assume κ = τ/6 �= 0. In this case, the expression in Claim 3.19 yields

a = a(x1, x3, x4) =
τ

6
x21 + x1P (x3, x4) + ξ(x3, x4),

b = b(x2, x3, x4) =
τ

6
x22 + x2Q(x3, x4) + η(x3, x4),

c = c(x1, x2, x3, x4) =
τ

6
x1x2 + x1S(x3, x4) + x2T (x3, x4) + γ(x3, x4),

and a straightforward calculation shows that the last two equations in (3.2) transform into

τ

6
ξ(x3, x4)− (P (x3, x4)T (x3, x4)− T (x3, x4)

2 + 2T3(x3, x4)) = 0,

τ

6
η(x3, x4)− (Q(x3, x4)S(x3, x4)− S(x3, x4)

2 + 2S4(x3, x4)) = 0,

τ

6
γ(x3, x4)− (S(x3, x4)T (x3, x4) +Q3(x3, x4)− S3(x3, x4) + P4(x3, x4)− T4(x3, x4)) = 0,
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from where we can determine ξ(x3, x4), η(x3, x4) and γ(x3, x4) as follows

ξ(x3, x4) =
6
τ
(P (x3, x4)T (x3, x4)− T (x3, x4)

2 + 2T3(x3, x4)),

η(x3, x4) =
6
τ
(Q(x3, x4)S(x3, x4)− S(x3, x4)

2 + 2S4(x3, x4)),

γ(x3, x4) =
6
τ
(S(x3, x4)T (x3, x4) +Q3(x3, x4)− S3(x3, x4) + P4(x3, x4)− T4(x3, x4)).

Altogether this implies case (C) in Theorem 3.17, which finishes the proof.

3.2.2 Osserman para–Hermitian structures on Walker manifolds

In this section we analyze the Osserman condition for the three families of Einstein para–
Hermitian Walker metrics determined in Theorem 3.17. We study each case separately.

Einstein para–Hermitian metrics of type (A)

Einstein para–Hermitian Walker metrics of type (A) defined in Theorem 3.17 are Osserman,
but they do not provide the new desired examples. Indeed, if X =

∑4
i=1 αi∂i is an arbitrary

vector then the associated Jacobi operator, when expressed in the coordinate basis, has
the form

RX =

(
A B

0 tA

)
, where A =

Ψ
4

(
−α3α4 −α24

α23 α3α4

)
and Ψ = Q3 + S3 − P4 − T4. Hence the characteristic polynomial of the Jacobi operators
is pRX

(λ) = λ4 (independently of the 2× 2-matrix B). Therefore the Jacobi operators are
either vanishing or nilpotent.

Einstein para–Hermitian metrics of type (B)

Metrics in the family (B) of Theorem 3.17 are not Osserman. To see this, recall that a
four–dimensional semi–Riemannian manifold is pointwise Osserman if and only if there is
a choice of orientation such that the manifold is Einstein self–dual (or anti–self–dual). See
[3], [62].
Given the Walker metric g, we have that

e1 =
1
2
(1− a)∂1 + ∂3, e2 = −c∂1 +

1
2
(1− b)∂2 + ∂4,

e3 = −1
2
(1 + a)∂1 + ∂3, e4 = −c∂1 −

1
2
(1 + b)∂2 + ∂4

defines an orthonormal basis of the tangent space. Local bases of the spaces of self–dual
and anti–self–dual two–forms can be constructed as Λ2± = span

{
E±
1 , E±

2 , E±
3

}
, where

E±
1 =

e1 ∧ e2 ± e3 ∧ e4√
2

, E±
2 =

e1 ∧ e3 ± e2 ∧ e4√
2

, E±
3 =

e1 ∧ e4 ∓ e2 ∧ e3√
2

.
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A long but direct and straightforward calculation using Lemmas 3.14 and 3.15 and the
definition of the Weyl tensor shows that W+

22 = W−
22 = −τ/6, and hence para–Hermitian

Walker metrics of type (B) cannot be Osserman. See Lemma 3.23 for details.

Einstein para–Hermitian metrics of type (C)

This last family of Einstein para–Hermitian Walker metrics will provide the desired exam-
ples of Osserman spaces. In particular, we have the following

Theorem 3.20. An Einstein para–Hermitian Walker metric of type (C) is Osserman of
signature (2, 2) with eigenvalues {0, τ/6, τ/24, τ/24}.

Proof. After a long but straightforward calculation one gets that (see Lemma 3.23)

W− = 0, W+ =

 W+
11 W+

12 W+
11 +

τ
12

−W+
12

τ
6 −W+

12

−(W+
11 +

τ
12) −W+

12 −(W+
11 +

τ
6 )

 ,

and hence it follows that W+ has eigenvalues {τ/6,−τ/12,−τ/12}. As a consequence,
any Einstein para–Hermitian Walker metric defined by Theorem 3.17 (C) is Osserman
(Einstein self–dual) and thus the eigenvalues of the self–dual operator W+ determine the
eigenvalues of the Jacobi operators, which turn out to be {0, τ/6, τ/24, τ/24}.

Remark 3.21. Note that the metric studied in Section 3.1 is a particular case of the general
family of Einstein para–Hermitian Walker metrics of Theorem 3.17 (C).

3.3 General description of Osserman metrics whose
Jacobi operators have two distinct non-zero eigen-
values

The purpose of this section is to clarify the situation of Type II Jordan–Osserman metrics
by proving the following [49]

Theorem 3.22. Let (M, g) be a four–dimensional Type II Jordan–Osserman manifold.
Then the Jacobi operators are either two–step nilpotent or there exist local coordinates
(x1, . . . , x4) such that the metric is given by

dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2 +
4∑

i,j=3

sij dxi ⊗ dxj
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for some functions sij(x1, . . . , x4) which can be written as

s33 = x21
τ

6
+ x1P + x2Q+

6
τ

{
Q(T − U) + V (P − V )− 2(Q4 − V3)

}
,

s44 = x22
τ

6
+ x1S + x2T +

6
τ

{
S(P − V ) + U(T − U)− 2(S3 − U4)

}
,

s34 = s43 = x1x2
τ

6
+ x1U + x2V +

6
τ

{
−QS + UV + T3 − U3 + P4 − V4

}
,

where P , Q, S, T , U and V are arbitrary functions depending on the coordinates (x3, x4).

The proof of Theorem 3.22 is based on the following facts:

1. A four–dimensional semi–Riemannian manifold is pointwise Osserman if and only if
it is Einstein self–dual (or anti–self–dual) [3], [80].

2. A Type II Jordan–Osserman metric is either Ricci flat (that is, α = β = 0) or
β = 4α �= 0 [21, Corollary 8.3].

3. A Type II Jordan–Osserman metric whose Jacobi operators are not nilpotent (that is,
α = 4β �= 0) admits a local parallel field of two–dimensional planes [21, Proposition
8.4].

Therefore, we investigate Walker metrics (which are those admitting a locally defined
two–dimensional degenerate parallel distribution) in detail in Subsection 3.3.1, with special
attention to the (anti–)self–dual Weyl curvature tensors. A complete description of self–
dual Walker metrics is given in Subsection 3.3.2. The integration of the Einstein equation
for a self–dual Walker metric, which lets us determine all pointwise Osserman self–dual
Walker metrics, is carried out in Subsection 3.3.3. This leads to the proof of Theorem
3.22.

3.3.1 Self-duality and anti-self-duality conditions

In this section we obtain the expression of the self–dual and the anti–self–dual Weyl con-
formal curvature tensors for the Walker metric g given at the beginning of Section 3.2 with
respect to an orthonormal basis {e1, . . . , e4} where

e1 =
1
2
(1− a)∂1 + ∂3, e2 = −c∂1 +

1
2
(1− b)∂2 + ∂4,

e3 = −1
2
(1 + a)∂1 + ∂3, e4 = −c∂1 −

1
2
(1 + b)∂2 + ∂4.

A long but straightforward calculation using Lemma 3.14 and the expressions for the
Ricci tensor and the scalar curvature in Lemma 3.15 implies the following lemma.
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Lemma 3.23. With respect to the above basis, the components of W− are given by

W−
11 = − 1

12
(a11 + 3a22 + 3b11 + b22 − 4c12), W−

22 = −1
6
(a11 + b22 − 4c12),

W−
33 =

1
12
(a11 − 3a22 − 3b11 + b22 − 4c12), W−

12 =
1
4
(a12 + b12 − c11 − c22),

W−
13 =

1
4
(a22 − b11), W−

23 = −1
4
(a12 − b12 + c11 − c22).

The components of W+ are determined by W+
11, W

+
12 and the scalar curvature as follows

W+
22 = −τ

6
, W+

33 = W+
11 +

τ

6
, W+

13 = W+
11 +

τ

12
, W+

23 = W+
12.

Finally, we have the expressions for W+
11 and W+

12:

W+
11 =

1
12

(
6ca1b2 − 6a1b3 − 6ba1c2 + 12a1c4 − 6ca2b1 + 6a2b4 + 6ba2c1 + 6a3b1 − 6a4b2

− 12a4c1 + 6ab1c2 − 6ab2c1 + 12b2c3 − 12b3c2 − a11 − 12c2a11 − 12bca12

+ 24ca14 − 3b2a22 + 12ba24 − 12a44 − 3a2b11 + 12ab13 − b22 − 12b33

+ 12acc11 − 2c12 + 6abc12 − 24cc13 − 12ac14 − 12bc23 + 24c34
)
,

W+
12 =

1
4
(−2ca11 − ba12 + 2a14 + ab12 − 2b23 + ac11 − 2cc12 − 2c13 − bc22 + 2c24).

Remark 3.24. The connection between Einstein (anti–)self–dual and pointwise Osserman
manifolds goes further to the Jordan normal forms of the non–zero part of the Weyl curva-
ture tensor W± and the Jacobi operators (see [62]). Pointwise Osserman manifolds whose
Jacobi operators are of Type Ia, Ib, II or III correspond to self–dual (or anti–self–dual)
Einstein manifolds whose self–dual (or anti–self–dual) Weyl curvature tensor is of Type Ia,
Ib, II or III, respectively.
Lemma 3.23 shows that

W+ =

 W+
11 W+

12 W+
11 +

τ
12

−W+
12

τ
6 −W+

12

−(W+
11 +

τ
12) −W+

12 −(W+
11 +

τ
6 )

 ,

and, as a consequence, the eigenvalues of W+ are {τ/6,−τ/12,−τ/12}. Since the induced
metric on Λ2+ has Lorentzian signature, the structure of W

+ is determined by its Jordan
normal form, which may correspond to Type Ia or Type II/III, depending on whether W+

is diagonalizable or not. A straightforward calculation shows that

(
W+ − τ

6
Id
)
·
(
W+ +

τ

12
Id
)
=

τ 2 + 12τW+
11 + 48

(
W+
12

)2
48

−1 0 −1
0 0 0
1 0 1

 ,

from where we have the following:
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(i) If τ �= 0, we have that W+ has non–zero eigenvalues {τ/6,−τ/12,−τ/12} and the
equality τ 2 + 12τW+

11 + 48
(
W+
12

)2
= 0 is the necessary and sufficient condition for

the diagonalizability of W+. If the above equation does not hold, then −τ/12 is a
double root of the minimal polynomial of W+.

(ii) If τ = 0, then W+ vanishes if and only if W+
11 = W+

12 = 0 and moreover

1. W+ is two–step nilpotent if and only if W+
11 �= 0 and W+

12 = 0,

2. W+ is three–step nilpotent if and only if W+
12 �= 0.

On the other hand, taking into account the eigenvalues of W+, any anti–self–dual Walker
metric has vanishing scalar curvature and hence Einstein anti–self–dual Walker metrics are
Ricci flat.

3.3.2 Explicit form of self-dual Walker metrics

Our main purpose is to obtain a description of non–Ricci flat Type II Jordan–Osserman
four–dimensional manifolds. As a consequence of Remark 3.24 we may restrict our analysis
to self–dual Walker metrics. In this section we give a complete description of self–dual
Walker metrics by integrating the partial differential equations obtained from Lemma 3.23.

Theorem 3.25. A Walker metric g is self–dual if and only if the defining functions a, b
and c are given by

a = x31A+ x21B + x21x2C + x1x2D + x1P + x2Q+ ξ,

b = x32C + x22E + x1x
2
2A+ x1x2F + x1S + x2T + η,

c =
1
2
x21F +

1
2
x22D + x21x2A+ x1x

2
2C +

1
2
x1x2(B + E) + x1U + x2V + γ,

where P , Q, S, T , U , V , A, B, C, D, E, F , ξ, η and γ are functions depending on the
coordinates (x3, x4).

Proof. Using Lemma 3.23 the self–duality can be initially characterized by means of the
following five equations

(3.3) a22 = b11 = a12 − c22 = b12 − c11 = a11 + b22 − 4c12 = 0.

Claim 3.26. We have

a(x1, x2, x3, x4) = x2A(x1, x3, x4) +B(x1, x3, x4),

b(x1, x2, x3, x4) = x1C(x2, x3, x4) +D(x2, x3, x4),

c(x1, x2, x3, x4) =
1
2

x22A1(x1, x3, x4) + x2E(x1, x3, x4) + F (x1, x3, x4).

for differentiable functions A, B, C, D, E and F .
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The first and second equalities in (3.3) imply that a and b can be written as

a(x1, x2, x3, x4) = x2A(x1, x3, x4) +B(x1, x3, x4),

b(x1, x2, x3, x4) = x1C(x2, x3, x4) +D(x2, x3, x4)

Hence the third equation in (3.3) reads c22(x1, x2, x3, x4) = A1(x1, x3, x4) which implies
that

c(x1, x2, x3, x4) =
1
2
x22A1(x1, x3, x4) + x2E(x1, x3, x4) + F (x1, x3, x4).

This finishes the proof of Claim 3.26.

Claim 3.27. We have

a(x1, x2, x3, x4) = x31x2G+ x21x2C + x1x2D + x2Q+B,

b(x1, x2, x3, x4) = x1x
3
2G+ x1x

2
2A+ x1x2F + x1S +D,

c(x1, x2, x3, x4) =
3
2
x21x

2
2G+

1
2
x21F +

1
2
x22D + x21x2A+ x1x

2
2C + x1x2I + x1U + x2V + γ.

where G, I, Q, U , V , A, C, D, F , S and γ are functions depending on (x3, x4) and B and
D are functions depending on (x2, x3, x4).

The fourth equality in (3.3) (c11 − b12 = 0) and Claim 3.26 imply

1
2
x22A111(x1, x3, x4) + x2E11(x1, x3, x4) + F11(x1, x3, x4)− C2(x2, x3, x4) = 0.

Taking derivatives with respect to x1 yields A1111(x1, x3, x4) = 0, E111(x1, x3, x4) = 0 and
F111(x1, x3, x4) = 0. Hence

A(x1, x3, x4) = x31G(x3, x4) + x21C(x3, x4) + x1D(x3, x4) +Q(x3, x4),

E(x1, x3, x4) = x21H(x3, x4) + x1I(x3, x4) + V (x3, x4),

F (x1, x3, x4) = x21J(x3, x4) + x1U(x3, x4) + γ(x3, x4).

Using the last two equations we get

3x22G(x3, x4) + 2x2A(x3, x4) + 2J(x3, x4)− C2(x2, x3, x4) = 0,

from where, taking derivatives with respect to x2, we get C22(x2, x3, x4) = 6x2G(x3, x4) +
2A(x3, x4) and hence

C(x2, x3, x4) = x32G(x3, x4) + x22A(x3, x4) + x2F(x3, x4) + S(x3, x4).

Finally the above equation reads −2J(x3, x4)+F(x3, x4) = 0, that is, J = F/2. Altogether
this implies Claim 3.27.
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We now finish the proof of Theorem 3.25. Plugging the expression of Claim 3.27 in the
last equality of (3.3) and differentiating with respect to x1 and x2 leads to G(x3, x4) = 0
and hence that equality reduces to

6x1A(x3, x4) + 6x2C(x3, x4) + 4I(x3, x4)− B11(x1, x3, x4)− D22(x2, x3, x4) = 0.

Differentiation with respect to x1 gives B111(x1, x2, x3) = 6A(x3, x4) and hence

B(x1, x3, x4) = x31A(x3, x4) + x21B(x3, x4) + x1P (x3, x4) + ξ(x3, x4).

As a consequence, the last equality becomes

6x2C(x3, x4) + 4I(x3, x4)− 2B(x3, x4)− D22(x2, x3, x4) = 0,

from where D222(x2, x3, x4) = 6C(x3, x4) and hence

D(x2, x3, x4) = x32C(x3, x4) + x22E(x3, x4) + x2T (x3, x4) + η(x3, x4).

Thus, the last equation turns into 2I(x3, x4)− B(x3, x4)− E(x3, x4) = 0 and we can write
I = (B + E)/2. Altogether this finishes the proof of Theorem 3.25.

Remark 3.28. A four–dimensional Walker metric is said to be strict if it admits two or-
thogonal parallel null vector fields rather than a parallel two–dimensional null distribution.
It follows from the work by Walker [129] that any strict Walker metric is given by

g(x1,x2,x3,x4) = dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2 + a(x3, x4)dx3 ⊗ dx3

+b(x3, x4)dx4 ⊗ dx4 + c(x3, x4)
(
dx3 ⊗ dx4 + dx4 ⊗ dx3

)
.

Thus, Lemma 3.15 and Theorem 3.25 imply that any strict Walker metric is Ricci flat and
self–dual, and hence Osserman. Moreover, Remark 3.24 shows that the Jacobi operators are
either identically zero or two–step nilpotent (depending on whether W+

11 = 2c34− a44− b33
vanishes or not).

3.3.3 Proof of Theorem 3.22

Our purpose is to obtain a local description of Type II Jordan–Osserman metrics whose
Jacobi operators have non–zero eigenvalues. In such a case, the eigenvalues must be in a
ratio 1 : 4 and the underlying metric is a Walker metric. Therefore, in order to achieve the
desired result, only Osserman metrics on Walker manifolds deserve further consideration.
It immediately follows from Remark 3.24 that we may restrict to self–dual Walker metrics.
In Theorem 3.29 we obtain a complete description of self–dual Einstein Walker metrics
from where Theorem 3.22 is derived.

Theorem 3.29. A Walker metric is pointwise Osserman self–dual if and only if one of
the following holds:



52 3 Four–dimensional Osserman metrics

(i) The scalar curvature τ is non–zero and the metric tensor is completely determined
by the functions a, b and c as follows

a = x21
τ

6
+ x1P + x2Q+

6
τ

{
Q(T − U) + V (P − V )− 2(Q4 − V3)

}
,

b = x22
τ

6
+ x1S + x2T +

6
τ

{
S(P − V ) + U(T − U)− 2(S3 − U4)

}
,

c = x1x2
τ

6
+ x1U + x2V +

6
τ

{
−QS + UV + T3 − U3 + P4 − V4

}
,

where P , Q, S, T , U and V are arbitrary functions depending on (x3, x4). In this
case, the Jacobi operators have eigenvalues {0, τ/6, τ/24, τ/24} and they are diago-
nalizable if and only if τ 2 + 12τW+

11 + 48
(
W+
12

)2
= 0. Otherwise, τ/24 is a double

root of the minimal polynomial of the Jacobi operators and the Walker manifold is
Jordan–Osserman on the open set where τ 2+12τW+

11+48
(
W+
12

)2
= 0 does not hold.

(ii) The scalar curvature vanishes and the metric tensor is given by

a = x1P + x2Q+ ξ,

b = x1S + x2T + η,

c = x1U + x2V + γ,

where P , Q, S, T , U , V , ξ, η and γ are smooth functions depending only on (x3, x4)
and satisfying

2(Q4 − V3) = Q(T − U) + V (P − V ),

2(S3 − U4) = S(P − V ) + U(T − U),

T3 − U3 + P4 − V4 = QS − UV.

In this case, the Jacobi operators have zero eigenvalues and one of the following
possibilities holds:

(a) The Jacobi operators vanish (which corresponds to the diagonalizable case Type
Ia) if and only if T3 + U3 − P4 − V4 = 0 and W+

11 = 0 (see Lemma 3.23).

(b) The Jacobi operators are two–step nilpotent (which corresponds to Type II) if
and only if T3 + U3 − P4 − V4 = 0 and W+

11 �= 0.
(c) The Jacobi operators are three–step nilpotent (that is, Type III) if and only if

T3 + U3 − P4 − V4 �= 0.

Proof. Since the manifold is self–dual, the functions defining the Walker metric are com-
pletely determined by Theorem 3.25. Since the manifold is Einstein, the traceless Ricci
tensor vanishes. Then, using Lemma 3.16, ρ013 = ρ014 = ρ023 = 0 becomes

2x1A− 2x2C + B − E = 0, 2x2A+ F = 0, 2x1C +D = 0,
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from where A = C = D = F = 0 and E = B. Hence, Lemma 3.15 implies that the
(constant) scalar curvature is τ = 6B. As a consequence, the expression in Theorem 3.25
reduces to

a = x21
τ

6
+ x1P + x2Q+ ξ,

b = x22
τ

6
+ x1S + x2T + η,

c = x1x2
τ

6
+ x1U + x2V + γ.

Using Lemma 3.16 we have that ρ033 = ρ034 = ρ044 = 0 transforms into

τ

6
ξ − {Q(T − U) + V (P − V )− 2(Q4 − V3)} = 0,

τ

6
γ − {−QS + UV + T3 − U3 + P4 − V4} = 0,

τ

6
η − {S(P − V ) + U(T − U)− 2(S3 − U4)} = 0.

If the scalar curvature τ does not vanish, we can determine ξ, η and γ from above. If τ = 0
we get exactly the system of equations in Theorem 3.29 (ii).
Finally, the eigenvalues and the minimal polynomial of the Jacobi operators for the two

cases are obtained as a direct application of Remark 3.24 since the eigenvalues and the
minimal polynomial of the self–dual Weyl tensor W+ determine the behavior of the Jacobi
operators of a pointwise Osserman self–dual manifold.

As a consequence of Theorem 3.29 and Remark 3.24 we have the following characteri-
zation of Jordan–Osserman Walker metrics.

Theorem 3.30. Let (M, g) be a Jordan–Osserman Walker 4–dimensional manifold. Then,
one of the following holds:

(i) If the Jacobi operators are diagonalizable, then (M, g) is either flat or locally isometric
to a para–complex space form.

(ii) If the Jacobi operators are non–diagonalizable, then one of the following two possi-
bilities holds:

(a) The Jacobi operators are two–step or three–step nilpotent.

(b) The metric is given by Theorem 3.22.

Proof. Four–dimensional Jordan–Osserman manifolds with diagonalizable Jacobi operators
have been classified in [21], where it is shown that they correspond to real, complex or
para–complex space forms. Real and complex space forms do not support a Walker metric
unless they are flat. Indeed, any space of constant curvature is locally conformally flat and
hence W+ = 0 implies that any such Walker metric is flat. Analogously, Kähler metrics
of constant holomorphic sectional curvature have zero Bochner tensor, which shows that
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W+ = 0 [25], [63]. Hence, no Kähler metric of constant holomorphic sectional curvature is
a Walker metric unless it is flat.
On the other hand, as Type Ib cannot occur [21], if the Jacobi operators are non–

diagonalizable, they are of Type II or III. Since anti–self–dual Jordan–Osserman Walker
metrics have vanishing scalar curvature, the corresponding Jacobi operators are either two–
step or three–step nilpotent. The only remaining case is that of self–dual Jordan–Osserman
Walker metrics, which corresponds to Theorem 3.22. This finishes the proof.

Remark 3.31. Para–Kähler manifolds of constant para–holomorphic sectional curvature α
may be easily described as Walker manifolds. For instance, let a, b and c be the coordinate
functions given by

a(x1, x2, x3, x4) = αx21, b(x1, x2, x3, x4) = αx22, c(x1, x2, x3, x4) = αx1x2,

and J the para–complex structure determined by

J∂1 = −∂1, J∂2 = −∂2, J∂3 = −a∂1 − c∂2 + ∂3, J∂4 = −c∂1 − b∂2 + ∂4.

Then, (R4, g, J) is a para–Kähler manifold of constant para–holomorphic sectional curva-
ture α.

Remark 3.32. From Remark 3.24 we see that any anti–self–dual Jordan–Osserman Walker
metric has nilpotent Jacobi operators. Although many nilpotent Jordan–Osserman metrics
are known, none of the previous examples were anti–self–dual and all of them corresponded
to special cases of Theorem 3.29. The general expression of W+

11 given in Lemma 3.23
is untractable and hence it is very difficult to obtain the general form of anti–self–dual
Walker metrics. However, for the special choice of a(x1, x2, x3, x4) = b(x1, x2, x3, x4) =
c(x1, x2, x3, x4), anti–self–dual Einstein metrics are characterized by

a11 = a22 = −a12, a13 = a14, a23 = a24, a33 + a44 = 2a34.

After some calculations it follows that

a(x1, x2, x3, x4) = (x2 − x1)P (x2 − x1, x3 + x4)

+(x1 + x2)α(x3 + x4) + x3β(x3 + x4) + x4γ(x3 + x4) + δ(x+x4),

for some function P depending on two variables and some real–valued functions α, β, γ and
δ. The corresponding Walker metric is an Osserman anti–self–dual Walker metric whose
Jacobi operators are vanishing or two–step nilpotent, depending on whether the expression
2P1 + (x2 − x1)P11 is zero or not,

Remark 3.33. Any Type III Jordan–Osserman Walker metric is Ricci flat, and thus the
Jacobi operators are three–step nilpotent. The existence of non–Ricci flat Type III metrics
is still an open problem.



Open problems

The following questions remain open.

• Obtain an optimal bound for µ(n) and µ1(n). Our upper bound is obtained from
variations of the Nash embedding theorem and we might expect that, under weaker
conditions, the codimension of the submanifold could be lowered.

• Existence of non–nilpotent Osserman metrics with non–diagonalizable Jacobi opera-
tors in dimension higher than four. It is interesting to know whether our construction
can be generalized for higher dimensions. We might expect this to be possible in other
neutral signature settings.

• Obtain a description of Type III four–dimensional Osserman metrics. The complete
solution of the Osserman problem is still an open question in dimension four, where
the existence of non–nilpotent Type III Osserman metrics is unclear. It is not even
known under which conditions these examples may exist.
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Part II

Curvature invariants of geodesic
spheres and geodesic celestial spheres
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In order to study the geometry of a Riemannian manifold (M, g) it is often useful
to consider objects naturally associated with the metric structure of (M, g). These can
be special hypersurfaces such as small geodesic spheres and tubes, bundles with (M, g)
as base manifold or families of transformations reflecting symmetry properties of (M, g)
[128]. In this part of the thesis we focus on the study of geodesic spheres and their
curvature in relation to the curvature of the ambient manifold. Indeed, the existence of a
relationship between the curvature of a Riemannian manifold and the volume of its geodesic
spheres and tubes led some authors to state the following question: “To what extent is the
curvature or the geometry of a given Riemannian manifold influenced, or even determined,
by the properties of certain naturally defined families of geometric objects in M?”. This
problem seems very difficult to handle in such a generality. However, when one looks at
manifolds with a high degree of symmetry (for example two–point homogeneous spaces),
these geometric objects have nice properties and one may expect to obtain characterizations
of those spaces by means of such properties. By comparing a Riemannian manifold with
a model space such as a two–point homogenous space we get an idea of its geometry.
Thus, by understanding the geometry of spaces with a high degree of symmetry and why
their properties are characteristic of them, we get a better insight into the geometry of a
Riemannian manifold.
Since geodesic spheres are compact submanifolds, it makes sense to calculate their

volume. A. Gray and L. Vanhecke calculated the first terms in the power series expansion
of the volume of geodesic spheres [83]. They conjectured that the volume of geodesic
spheres can be used to characterize Euclidean geometry. More specifically, if each geodesic
sphere of a Riemannian manifold has the same volume as a Euclidean sphere of the same
radius, then the manifold is flat. Although the answer is known to be affirmative in several
special cases, the problem remains open in full generality.
Further work on geodesic spheres involved the investigation of their geometric properties

and how they influence the geometry of the ambient manifold. Certain types of manifolds
can be characterized by properties of geodesic spheres [33]. In this work, B.–Y. Chen
and L. Vanhecke study intrinsic and extrinsic curvatures of geodesic spheres. It turns out
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that in many cases curvature properties provide a better understanding of geometry than
volume properties.
The fact that the curvature tensor of a manifold is very difficult to handle motivated

the study of several kinds of simplifications of this object. We are specially interested
in the so–called scalar curvature invariants. Apart from their ubiquity in Riemannian
geometry, specially when studying geodesic spheres and related objects, they are of interest
by themselves. See for example [113] where a nice characterization of homogeneous spaces
using scalar curvature invariants is given.
Our aim in Chapter 4 is to investigate curvature invariants of geodesic spheres. By

integrating a scalar curvature invariant along every geodesic sphere of a manifold we get a
good interplay between curvature and volume–like properties. The volume conjecture of A.
Gray and L. Vanhecke may be generalized to these new objects. We see in Subsection 4.2.3
that in certain cases two–point homogeneous spaces can be characterized by the integrals
of scalar curvature invariants of geodesic spheres. We emphasize that it suffices one single
curvature invariant to characterize these model spaces. See Subsection 4.3.1 for examples
of such curvature invariants.
In addition to geodesic spheres, other objects may be considered in Riemannian geome-

try which are also related to the Riemannian distance function: tubes around submanifolds
and disks. The former are studied in Chapter 4 and they are of interest in the last part
of this thesis. Geodesic disks are the main concern of Subsection 4.3.2. They were previ-
ously investigated by O. Kowalski and L. Vanhecke with special attention to their volume
properties [93], [94], [95]. In this subsection we are interested in the intrinsic geometry of
the boundaries of these disks and we devote our attention to the study of their total scalar
curvatures obtained by integrating the scalar curvature and the quadratic scalar curvature
invariants along these boundaries. Our main result is that two–point homogeneous spaces
are characterized by some of the total curvatures of the boundaries of geodesic disks among
Riemannian manifolds with adapted holonomy.

When the attention is turned from Riemannian manifolds to space–times, various dif-
ficulties emerge. An important characteristic of Riemannian manifolds is that they have a
Riemannian distance function which is continuous and whose induced topology is the same
as the topology of the manifold itself. Thus, several geometric objects such as geodesic
spheres may be defined, at least locally, by means of this function. These objects are also
Riemannian manifolds. They have nice properties, such as compactness and an acceptable
behavior with respect to other constructions. When dealing with general semi–Riemannian
manifolds there is no “semi–Riemannian distance” function. In fact, a distance–like func-
tion is only defined for space–times, but even in this case its properties are completely
different from those in the Riemannian setting [7]. For example, the “Lorentzian distance”
may not be continuous or bounded and geometric objects defined from it usually have
awkward properties. Moreover, level sets of the Lorentzian distance function with respect
to a given point are not compact and although some properties of those sets have been
previously investigated, they do not seem to be adequate for the investigation of volume
properties.
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In Chapter 5 we consider a new family of geometric objects in Lorentzian geometry,
namely geodesic celestial spheres. Roughly speaking, they are the set of points reached
after a fixed distance travelling along radial geodesics emanating from a point which are
orthogonal to a given timelike direction. In Relativity, a unit timelike vector represents
an instantaneous observer and the vector subspace which is orthogonal to it is called the
infinitesimal rest–space, that is, the infinitesimal Newtonian universe where the observer
perceives particles as Newtonian particles relative to his rest position. Then, a geodesic
celestial sphere is nothing but the image by the exponential map of a celestial sphere in
the infinitesimal rest–space.
Following the idea of characterizing spaces with high degree of symmetry by means of

volume properties of geometric objects, we carry out in Section 5.2 the calculation of the
volume of geodesic celestial spheres. This depends on the radius, the base point and the
instantaneous observer employed to define it. Nonetheless, in an isotropic Lorentzian man-
ifold, this measure depends only on the radius. We see that this property is characteristic
of locally isotropic Lorentzian manifolds. We discuss volume comparison results and give
Bishop–Günther and Gromov type theorems for these objects in Section 5.2. Finally, in
Section 5.3 we accomplish the characterization of locally isotropic Lorentzian manifolds
using integrals of scalar curvature invariants of geodesic celestial spheres in the spirit of
Chapter 4. We take advantage of the results of Subsection 4.2.3 to get this characterization.

In this part we tried to keep calculations to a minimum in order to make the work
more readable. A package implementing the basic identities of curvature tensors has been
developed by the author [39]. This package allows us to perform calculations involving
scalar curvature invariants and integration along geodesic spheres. We can obtain both ex-
plicit expressions in two–point homogeneous spaces and power series expansions in general
Riemannian manifolds.
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Chapter 4

The Riemannian setting

Let p, q ∈ M be two points of a Riemannian manifoldM and c : [a, b]→ M a curve joining
p and q, that is, c(a) = p and c(b) = q. The length of c is given by L(c) =

∫ b

a
‖c′(t)‖dt.

The Riemannian distance between the points p and q is defined as

d(p, q) = inf{L(c) : c joins p and q}.

This function is indeed a distance in M and the induced topology of d coincides with
the topology of M as a topological manifold. We emphasize at this point that the above
definition is characteristic of Riemannian geometry and cannot be directly generalized to
the indefinite signature setting.
Given a point m ∈ M , the geodesic spheres of M centered at m are the level sets of the

Riemannian distance function with respect to m, that is, {p ∈ M : d(p,m) = r} for each
radius r > 0. For sufficiently small radius r, these level sets are Riemannian hypersurfaces
of M . Nevertheless, for some radii it might happen that these level sets have codimension
greater that one or they fail to be submanifolds of M . The latter case is not of interest
to us in this chapter and we restrict our definition of geodesic spheres to sufficiently small
radii so that they are compact Riemannian submanifolds.
A geodesic sphere can also be defined as the image by the exponential map of a Eu-

clidean sphere of the tangent space at a point. The fact that the Riemannian metric is
positive definite ensures a good interplay between the exponential map and the Riemann-
ian distance function. This definition is more operative for our purposes and provides us
a good setting to perform the calculations needed in this chapter. The following chapter
takes advantage of these ideas and proposes a new family of objects in Lorentzian manifolds
whose properties may be used to characterize isotropy.
As it was stated before, we focus on the study of scalar curvature invariants of geodesic

spheres, thus contributing to the investigation of how the curvature of geodesic spheres is
related to the curvature of the ambient manifold.
This chapter is organized as follows. In Section 4.1 we introduce the main concepts

of Jacobi vector field theory which are used both in this part and Part III. Then, we
particularize this study to geodesic spheres in Section 4.2. We also introduce in this
section the concept of simple Weyl invariant. By integrating simple Weyl invariants along
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geodesic spheres we get the so–called total curvatures of geodesic spheres. After giving some
properties of these objects, we focus on the characterization of two–point homogeneous
spaces in Subsection 4.2.3. Finally, Section 4.3 takes advantage of our previous work to
provide examples of total curvatures of geodesic spheres and disks which may be used to
characterize real, complex and quaternionic space forms.

4.1 Tubes and Jacobi vector field theory

Let M̄ be a Riemannian manifold of dimension n and M ⊂ M̄ a Riemannian submanifold
of M̄ . For fixed r > 0, we define the set

GM(r) = {exp(rξ) : ξ ∈ T⊥M, g(ξ, ξ) = 1}.

In general GM(r) is not a Riemannian submanifold of M̄ . If M is a compact embedded
submanifold of M̄ it turns out that GM(r) is a compact hypersurface of M̄ for sufficiently
small radius. Thus, for a sufficiently small neighborhood of any point p ∈ M , a tube
of sufficiently small radius around that neighborhood is a hypersurface. If GM(r) is a
hypersurface then we say that GM(r) is the tube of radius r around M . We follow [13].
If GM(r) is a Riemannian submanifold of M̄ of codimension greater than one, then

GM(r) is called a focal manifold of M at distance r.
Let p ∈ M and c : I → M̄ a geodesic parametrized by arc length with c(0) = p

and c′(0) ∈ T⊥
p M . Let F (s, t) = cs(t) be a geodesic variation of c = c0 such that γ(s) =

F (s, 0) = cs(0) ∈ M for all s and let us define ξ(s) = c′s(0) ∈ T⊥M . Let ζ be the variational
vector field of F . Then ζ is a solution of the initial value problem

ζ ′′ + R̄c′(ζ) = 0, ζ(0) = γ′(0) ∈ TpM, ζ ′(0) = Sξ(0)ζ(0) +∇⊥
ζ(0)ξ.

A Jacobi vector field ζ along c verifying ζ(0) ∈ Tc(0)M and ζ ′(0) − Sc′(0)ζ(0) ∈ T⊥
c(0)M is

called an M–Jacobi vector field.
We say that c(r) is a focal point of M along c if there exists an M–Jacobi vector field

ζ along c such that ζ(r) = 0. A focal point arising from a Jacobi vector field ζ such that
ζ(0) = 0, ζ ′(0) ∈ T⊥

p M and ζ(r) = 0 is a conjugate point of p in M̄ along c.
Assume now that GM(r) is a submanifold of M̄ . Let ξ be a smooth curve in T⊥M with

ξ(0) = c′(0) such that g(ξ(t), ξ(t)) = 1 for all t. Then F (s, t) = exp
(
t ξ(s)
)
is a smooth

geodesic variation of c consisting of geodesics intersecting M perpendicularly. Let ζ be the
corresponding M–Jacobi vector field which is the variational vector field of F . Then ζ is
determined by the initial values ζ(0) = γ′(0) and ζ ′(0) = ξ′(0), where γ(s) = F (s, 0). For
any r, the curve γr(s) = F (r, s) = exp(r ξ(s)) is a smooth curve in GM(r). Then,

Tc(r)GM(r) = {ζ(r) : ζ is an M–Jacobi vector field along c}.

Let us denote by S(r) the shape operator of GM(r). Then it follows that

S(r)c′(r)ζ(r) = ζ ′(r)�.
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If GM(r) is a tube, that is, if GM(r) is a hypersurface, its shape operator can be
described in an efficient way.
Let X ∈ Tc(0)M̄ � R c′(0), where � denotes the orthogonal complement. We introduce

the following notation. By BX we denote the parallel translation of X along the geodesic c.
We define ζX as the M–Jacobi vector field along c given by the following initial conditions

ζX(0) = X, ζ ′
X(0) = Sc′(0)X, if X ∈ Tc(0)M,

ζX(0) = 0, ζ ′
X(0) = X, if X ∈ T⊥

c(0)M � R c′(0).

We define D(r) by D(r)BX(r) = ζX(r) for all X ∈ Tc(0)M̄ �R c′(0). Then D is a Tc(r)M̄ �
Rc′(r) endomorphism–valued tensor field along c determined by the following initial value
problem

D′′ + R̄c′ ◦ D = 0, D(0) =

(
IdTpM 0
0 0

)
, D′(0) =

(
Sc′(0) 0
0 IdT⊥

p M�R c′(0)

)
.

The endomorphism D(r) is singular if and only if c(r) is a focal point of M along c. If this
is not the case, GM(r) is a tube and its shape operator in the direction of c′(r) is given by

S(r)c′(r) = D′(r)D(r)−1.

Of special interest is the case when M is just a single point. This is the main concern
of the rest of this chapter. Another interesting situation occurs when M is hypersurface.
We deal with this in what follows.

Let M ⊂ M̄ be a hypersurface. The next calculations are local, so we may assume that
M is an oriented submanifold and its orientation is given by a global unit normal vector
field ξ. Let r > 0 and define the map

Φr :M −→ M̄
p �→ Φr(p) = exp(r ξp).

We denote by η the vector field along Φr such that ηr(p) = c′p(r), where cp is the geodesic
of M̄ determined by the initial conditions cp(0) = p and c′p(0) = ξp. The map Φr is
smooth and parametrizes the tube of radius r around M , GM(r). Obviously, GM(r) is an
immersed submanifold of M̄ if and only if Φr is an immersion. It may happen, nonetheless,
that GM(r) is a focal manifold. The fact that GM(r) has higher codimension depends on
the rank of Φr.
Let ζX be an M–Jacobi vector field. We have X = ζX(0) ∈ TM and ζ ′

X(0) = SX
because ξ has unit length and the normal bundle of M has rank one. Then it follows that

Φr∗X = ζX(r), ∇̄vηr = ζ ′
X(r).

Thus, Φr is not an immersion at p ∈ M if and only if Φr(p) is a focal point of M along
the geodesic cp. The dimension of the kernel of Φr∗p is called the multiplicity of the focal
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point. If there exists a positive integer k such that Φr(q) is a focal point of M along cq

with multiplicity k for all q in some open neighborhood U of p, then, if U is sufficiently
small, Φr|U parametrizes and embedded (n − 1 − k)–dimensional submanifold of M̄ , the
focal manifold of M in M̄ . If Φr(q) is not a focal point of M along cq, for a sufficiently
small neighborhood U of p, Φr|U parametrizes an embedded hypersurface of M̄ , which is
called an equidistant hypersurface to M in M̄ .
If GM(r) is a hypersurface, its shape operator can be calculated by using the endo-

morphism D defined above. In this case the initial conditions simplify slightly and D is
determined by the initial value problem

D′′ + R̄c′ ◦ D = 0, D(0) = IdTpM , D′(0) = Sξp .

4.2 Geodesic spheres in Riemannian manifolds

Of particular interest is the case of a tube around a single point M = {m}. In this
situation Gm(r) is called the geodesic sphere centered at m with radius r. For sufficiently
small radius we have Gm(r) = expm(S

n−1(r)), where Sn−1(r) is the Euclidean sphere of
radius r centered at the origin of TmM and of dimension n − 1. We always assume that
r < i(m), where i(m) is the injectivity radius at the point m. Hence, geodesic spheres are
the level sets of the Riemannian distance function, that is, Gm(r) = {p ∈ M : d(m, p) = r}.
Throughout this chapter, it is convenient to introduce the following notation. We use

the symbol ˜ for the geometric objects of Gm(r). For the geometric objects of M we
just use the usual symbols (without bars). We perform most of the calculations with
respect to an orthonormal basis {ei}. We define εi = g(ei, ei) ∈ {−1, 1}. We also set
εi1···ik = εi1 · · · εik for the sake of simplicity in our notation. The notation ωi1···ik means
ωei1 ···eik

for any tensor field ω and ∇ij··· means ∇eiej ···. Finally, we define ∇0ω = ω and we
write ∇k

i1···ikωj1···jl
for (∇k

ei1 ···eik
ω)ej1 ···ejl

. This will simplify considerably our writing in the
long formulas appearing in this chapter.
Let m ∈ M and u ∈ TmM . The shape operator S(r) of a geodesic sphere is given by

S(r)(expm(ru)) = D′(r)D(r)−1,

where D is the above endomorphism which in this particular case is determined by the
initial value problem

D′′ +Rc′ ◦ D = 0, D(0) = 0, D′(0) = Id .

along the geodesic c(t) = expm(tu).
We define the volume density function θm as

θm(p) =
√
det(gp).
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It can be proved (see [33], for example) that θm(expm(ru)) = (detD(r))/r
n−1. Hence, the

mean curvature hm of a geodesic sphere centered at m is [33], [128]

hm(expm(ru)) = trS(r)(expm(ru)) =
(detD)′(r)
(detD)(r)

=
n − 1

r
+

θ′m(expm(ru))
θm(expm(ru))

.

The map r �→ S(r) is an endomorphism–valued tensor field along the geodesic c. Taking
derivatives in the equality S(r)D(r) = D′(r) we get S ′(r)D(r) + S(r)D′(r) = D′′(r) and
using again S(r)D(r) = D′(r) we obtain the Riccati equation

S ′ + S2 +Rc′ = 0.

We define C(r) = rS(r). It can be proved that C is a differentiable endomorphism–
valued tensor field in a neighborhood of 0 ∈ R. Then the Riccati equation is equivalent to
rC ′+C2−C+ r2Rc′ = 0. Taking the k–th derivative of the latter equation and evaluating
at r = 0, we obtain the Ledger recursion formula [33], [128]

(k − 1)C(k)(0) = −k(k − 1)R(k−2)(0)−
k∑

i=0

(
n
k

)
C(i)(0)C(k−i)(0), k ∈ N,

where g(R(i)(0)x, y) = ∇i−2
u···uRuxuy(m) for all x, y ∈ TmM � Ru and i ∈ N.

The Ledger recursion formula allows us to calculate power series expansions of geometric
objects defined in geodesic spheres. This has already been done by several authors. See
for example [33], [82], [83], [128] where the first terms of power series expansions of several
intrinsic and extrinsic curvature tensors of geodesic spheres are given. However, we are
interested in a more detailed description. In the following section we introduce the concepts
and notation needed to achieve this.

4.2.1 Curvature and Weyl invariants

A scalar curvature invariant is a polynomial in the components of the curvature tensor and
its covariant derivatives which does not depend on the choice of orthonormal basis used
in its construction [83], [113]. The degree of a scalar curvature invariant is the number of
derivatives of the metric tensor involved in its construction. Since the curvature tensor has
two derivatives of the metric tensor, a scalar curvature invariant has always even degree.
Let us denote by I(ν, n) the vector space of scalar curvature invariants of degree 2ν in

a manifold of dimension n.
It is well known that for n ≥ 2, I(1, n) is a vector space of dimension 1 generated by

the scalar curvature τ .
If n ≥4, I(2, n) is a vector space of dimension 4 spanned by

(4.1) τ 2, ‖R‖2 =
∑

εijkl R
2
ijkl, ‖ρ‖2 =

∑
εij ρ2ij, ∆τ =

∑
εi∇2iiτ.
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For n ≥ 6, the vector space I(3, n) has dimension 17 and is spanned by the following
basis:

(4.2)

τ 3,

τ‖ρ‖2,
τ‖R‖2,
ρ̌ =

∑
εijkl ρijρikρjk,

〈ρ ⊗ ρ, R̄〉 =
∑

εijkl ρijρklRikjl,

〈ρ, Ṙ〉 =
∑

εijklp ρijRiklpRjklp,

Ř =
∑

εijklpq RijklRijpqRklpq,

ˇ̄R =
∑

εijklpq RijklRipkqRjplq,

‖∇τ‖2 =
∑

εi (∇iτ)
2 ,

‖∇ρ‖2 =
∑

εijk (∇iρjk)
2 ,

α(ρ) =
∑

εijk ∇iρjk∇jρik,

‖∇R‖2 =
∑

εijklp (∇iRjklp)
2 ,

τ∆τ,

〈ρ,∆ρ〉 =
∑

εijk ρij∇2kkρij,

〈∇2τ, ρ〉 =∑ εij ρij∇2ijτ,
〈R,∆R〉 =

∑
εijklp Rijkl∇2ppRijkl,

∆2τ.

Scalar curvature invariants are a powerful tool in Riemannian geometry, but they may
become useless when the metric is allowed to have indefinite signature [22], [27].
We explain some notions from the theory of invariants in a more general context mainly

following [47], [113].
Let FM = (FM,π, M, Gl(n, R)) be the bundle of linear frames over (M, g). For k ≥ 1

we shall denote by T kM = ∪m∈M(TmM × · · · × TmM) the bundle over M with standard
fibre Rn× k. . . ×Rn and structure group Gl(n, R) which is associated with the principal
bundle FM . If k = 0 we set T 0M :=M .
A partial Weyl invariant, W , with k degrees of freedom is a map

(4.3)
W : T kM −→ R

(v1, . . . , vk) �→ tr(g ⊗ · · · ⊗ g ⊗∇l1R ⊗ · · · ⊗ ∇lνR)(v1, . . . , vk)

where lj ∈ N ∪ {0}, j ∈ {1, . . . , ν}, ν ∈ N, and tr is a product of traces [9] with respect
to some permutation of the indices. Two partial Weyl invariants W1 and W2 are equal if
and only if W1(v1, . . . , vk) = W2(v1, . . . , vk) for any (v1, . . . , vk) ∈ T kM and every semi–
Riemannian manifold (M, g).
We say that a partial Weyl invariant W is simple if its construction does not involve

covariant derivatives of the curvature tensor, that is, W = tr(g ⊗ · · · ⊗ g ⊗ R ⊗ · · · ⊗ R).
In particular, aWeyl invariant, as defined in [113], is a partial Weyl invariant with zero

degrees of freedom, that is, k = 0.
We define the degree of a partial Weyl invariant given by (4.3) as

degW = l1 + · · ·+ lν + 2ν.

We point out that other authors define the degree (or order) of a curvature invariant as
half this number. Equivalently, the degree of a partial Weyl invariant is the number of
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derivatives of the metric tensor involved in its construction. Clearly, if W1 and W2 are two
partial Weyl invariants, then W1W2 can be considered as another partial Weyl invariant in
the obvious way and

degW1W2 = degW1 + degW2.

For instance, the curvature tensor R and the Ricci tensor ρ are simple partial Weyl invari-
ants of degree 2, the former with 4 degrees of freedom and the latter with 2.
By definition, a partial scalar curvature invariant is a linear combination of partial Weyl

invariants. If all partial Weyl invariants involved in the construction of a partial scalar
curvature invariant have the same degree d then this partial scalar curvature invariant is
said to have degree d.
Given a tangent vector u ∈ TM and a partial scalar curvature invariant W with k

degrees of freedom, we say that W (u, k. . ., u) is a partial directional curvature invariant or
to be more specific, a partial curvature invariant in the direction of u.
It follows from Weyl’s theory of invariants [9], [132], that the scalar curvature invari-

ants are precisely the traces of the curvature tensor and its covariant derivatives. As a
consequence, a scalar curvature invariant is a linear combination of Weyl invariants. Al-
ternatively, a scalar curvature invariant is a partial scalar curvature invariant with zero
degrees of freedom.
Simple curvature invariants and simple Weyl invariants are of special interest and they

constitute one of our main concerns in this chapter. Up to multiplication by a constant,
there exists a unique simple curvature invariant of degree 2, which is the scalar curvature
τ . The space of simple curvature invariants of degree 4 has dimension 3 and is spanned by
τ 2, ‖ρ‖2 and ‖R‖2. A basis for the vector space of simple scalar curvature invariants of
degree 6 is given by the left–hand side column of (4.2).
Curvature invariants of degree 4 are important from a geometric point of view because

they may be used to characterize certain types of manifolds. The following result can be
found, for example, in [9], [33].

Lemma 4.1. We have:

(a) For any n–dimensional Riemannian manifold, ‖ρ‖2 ≥ 1
n

τ 2, with equality if and only

if the manifold is an Einstein space.

(b) For any n–dimensional Riemannian manifold, ‖R‖2 ≥ 2
n − 1 ‖ρ‖

2, with equality if

and only if the manifold has constant sectional curvature.

(c) For a 2n–dimensional Kähler manifold, ‖R‖2 ≥ 4
n+ 1

‖ρ‖2, with equality if and only
if M has constant holomorphic sectional curvature.

(d) For a 4n–dimensional quaternionic Kähler manifold, ‖R‖2 ≥ 5n+ 1
(n+ 2)2

‖ρ‖2, with
equality precisely for quaternionic space forms.
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Remark 4.2. Let W = tr(R⊗ ν· · · ⊗R) be a Weyl invariant of degree 2ν. In a (n − 1)–
dimensional Riemannian manifold of constant sectional curvature λ the curvature tensor
may be written as R = λR0, where R0 can be expressed with respect to an orthonormal
basis as

R0ijkl = δikδjl − δilδjk.

Then, W = tr(R⊗ ν· · · ⊗R) = λν tr(R0⊗ ν· · · ⊗R0) = ĀW (n − 1)λν where ĀW is a poly-
nomial that depends only on W . Moreover, if n ∈ {1, 2}, then R = 0 and hence we have
ĀW (0) = ĀW (1) = 0. Thus, ĀW may be written as ĀW (n− 1) = (n− 1)(n− 2)AW (n− 1),
where AW is another polynomial. Therefore, for the constant curvature case we have

W = (n − 1)(n − 2)AW (n − 1)λν .

The polynomial AW will be used latter in this work and plays an important role to deter-
mine several curvatures of geodesic spheres.

Example 4.3. The polynomials AW corresponding to the simple Weyl invariants appearing
in (4.1) and (4.2) can be explicitly given as follows. Suppose (Mn−1, g) has constant
sectional curvature λ. First, we have τ = (n − 1)(n − 2)λ, and thus,

Aτ (n − 1) = 1.

Also, for the simple Weyl invariants of degree 4,

A ‖R‖2(n − 1) = 2, A ‖ρ‖2(n − 1) = n − 2, A τ2(n − 1) = (n − 1)(n − 2).

The expressions corresponding to the simple invariants of degree 6 are summarized in the
following table:

W AW (n − 1) W AW (n − 1)
τ 3 (n − 1)2(n − 2)2 〈ρ ⊗ ρ, R̄〉 (n − 2)2

τ‖ρ‖2 (n − 1)(n − 2)2 〈ρ, Ṙ〉 2(n − 2)
τ‖R‖2 2(n − 1)(n − 2) Ř 4

ρ̌ (n − 2)2 ˇ̄R n − 3

We consider a (n− 1)–dimensional manifold because this is what we will need afterwards.
The concept of partial Weyl invariant allows us to describe in a convenient way several

geometric objects in a geodesic sphere. First, we calculate the scalar second fundamental
form. Then, the Gauss formula allows us to calculate its curvature tensor. See [33] for
explicit calculations of the first terms in its power series expansion. We follow [47].

Lemma 4.4. Let σ denote the second fundamental form of the geodesic sphere Gm(r). We
have the power series expansion

σij (expm(ru)) =
s−1∑

α=−1

rα

(α + 1)!
σα+1

ij (u) +O (rs) ,
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where σα
ij(u), α ≥ 2, is a partial scalar curvature invariant of M at m with α + 2 degrees

of freedom and degree α. The first terms of this expansion are

σij (expm(ru)) =
1
r
δij −

r

3
Ruiuj(m)−

r2

4
∇uRuiuj(m)

−r3

(
1
45

n∑
a=1

RuiuaRujua +
1
10

∇2uuRuiuj

)
(m) +O

(
r4
)
.

Proof. Using the Ledger recursion formula and the fact σ(expm(ru))(x, y) = g(C(r)x, y),
with the notation of that formula we get

σ0ij(u) = δij, σ1ij(u) = 0,

σα
ij(u) = −α(α − 1)

α + 1
∇α−2

u...uRuiuj(m)−
1

α + 1

α−2∑
β=2

(
α
β

) n∑
γ=2

σβ
iγ(u)σ

α−β
γj (u),

for all α ≥ 2. The result now follows by induction.

The first terms in the power series expansion of the curvature tensor of a geodesic
sphere where obtained in [33], [44].

Lemma 4.5. Let R̃ denote the curvature tensor of a geodesic sphere Gm(r). Then

R̃ijkl (expm(ru)) =
s−2∑

α=−2
rαR̃α+2

ijkl (u) +O
(
rs−1) ,

where R̃α
ijkl(u), α ≥ 2, is a partial curvature invariant at m of degree α such that for all

the Weyl invariants used in its construction the number of degrees of freedom has the same
parity as α. More specifically

R̃ijkl (expm(ru)) =
1
r2

(
δikδjl − δilδjk

)
+
(
Rijkl −

1
3
δikRujul +

1
3
δilRujuk +

1
3
δjkRuiul −

1
3
δjlRuiuk

)
(m)

+r
(
∇uRijkl −

1
4
δjl∇uRuiuk +

1
4
δjk∇uRuiul +

1
4
δil∇uRujuk −

1
4
δik∇uRujul

)
(m)

+r2
(
−1
9
RuiulRujuk +

1
9
RuiukRujul −

1
45

δik

n∑
a=1

RujuaRulua +
1
45

δil

n∑
a=1

RujuaRukua

+
1
45

δjk

n∑
a=1

RuiuaRulua −
1
45

δjl

n∑
a=1

RuiuaRukua +
1
2
∇2uuRijkl −

1
10

δjl∇2uuRuiuk

+
1
10

δjk∇2uuRuiul +
1
10

δil∇2uuRujuk −
1
10

δik∇2uuRujul

)
(m) +O

(
r3
)
.
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Proof. The Gauss equation may be written as R̃xyvw = Rxyvw + σxvσyw − σxwσyv in this
case. Using the power series expansion along a geodesic with respect to a parallel basis,
Rijkl(expm(ru)) = Rijkl(m) + r∇uRijkl(m) + (r2/2!)∇2uuRijkl(m) + · · · and plugging the
above expression and the formula of Lemma 4.4 into the Gauss equation we have

R̃0ijkl(u) = δikδjl − δilδjk = R0ijkl, R̃1ijkl(u) = 0,

R̃α
ijkl(u) =

1
(α − 2)!∇

α−2
u...uRijkl(m)

+
1
α!

α−3∑
β=1

(
α

β + 1

)(
σβ+1

ik (u)σ
α−β−1
jl (u)− σβ+1

il (u)σ
α−β−1
jk (u)

)
,

for all α ≥ 2. Hence, the first part of the result follows by induction. Finally, in the
last equality of the above formula there are two clearly different terms. The first one
∇α−2

u···uRijkl(m)/(α−2)! is a partial scalar curvature invariant with α+2 degrees of freedom.
The second addend is another partial curvature invariant with α + 4 degrees of freedom.
The last statement then follows from Lemma 4.4.

The following lemma is a technical result that will be needed in Theorem 4.7.

Lemma 4.6. Let (V, 〈 , 〉) be an inner product vector space of dimension n > 2 and tr
a total trace in the space of covariant tensors of order 4ν over V . If R is an algebraic
curvature tensor on V , Sc(R) its scalar curvature and W the algebraic invariant defined
by W = tr(R⊗ ν· · · ⊗R), then

tr

(
ν∑

α=1

R0 ⊗ · · ·⊗
α
↓
R ⊗ · · · ⊗ R0

)
= νAW (n)Sc(R).

Proof. Clearly, tr(
∑ν

α=1R
0 ⊗ · · · ⊗ R ⊗ · · · ⊗ R0) is a scalar curvature invariant of degree

one, and hence it is a multiple of the scalar curvature. Write

aSc(R) = tr

(
ν∑

α=1

R0 ⊗ · · ·⊗
α
↓
R ⊗ · · · ⊗ R0

)
.

The above formula is true for each algebraic curvature tensor R in V . If we take R = R0

we have

a n(n − 1) =
ν∑

α=1

tr

R0 ⊗ · · ·⊗
α
↓

R0 ⊗ · · · ⊗ R0


= ν tr (R0 ⊗ · · · ⊗ R0) = ν n(n − 1)AW (n).

Thus a = ν AW (n).

We are now ready to give a power series expansion of a simple Weyl invariant in a
geodesic sphere.
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Theorem 4.7. Let W̃ be a simple intrinsic Weyl invariant of degree 2ν, ν > 1, in a
geodesic sphere Gm(r). We have

W̃ (expm(ru)) =
s−2ν∑

α=−2ν
rαW̃α+2ν(u) +O

(
rs−2ν+1) ,

where W̃α(u) is a partial curvature invariant of degree α in the direction of u such that the
degree of freedom of each Weyl invariant involved in its construction has the same parity
as α. More specifically, we have

W̃0(u) = (n − 1)(n − 2)AW (n − 1),
W̃1(u) = 0,

W̃2(u) = ν AW (n − 1)
(

τ − 2(n+ 1)
3

ρuu

)
(m),

W̃3(u) = ν AW (n − 1)
(
∇uτ − n+ 2

2
∇uρuu

)
(m),

W̃4(u) = ω4(u) +
ν

2
AW (n − 1)

(
∇2uuτ − 2(n+ 3)

5
∇2uuρuu

)
(m),

where ω4(u) is a simple directional curvature invariant of degree four given by

ω4(u) =

{
ν AW (n−1)

(
−2n+ 1
45

n∑
a,b=1

R2uaub +
1
9
ρ2uu

)
+B1W (n−1)

(
‖R‖2 − 4

n∑
a,b,c=1

R2uabc +
4(n+ 12)
9

n∑
a,b=1

R2uaub −
8
3

n∑
a,b=1

ρabRuaub +
4
9
ρ2uu

)

+B2W (n−1)
(
‖ρ‖2 + n2

9

n∑
a,b=1

R2uaub −
2n
3

n∑
a,b=1

ρabRuaub − 2
n∑

a=1

ρ2ua +
3n+ 14
9

ρ2uu−
2
3
τρuu

)

+B3W (n−1)
(

τ − 2(n+ 1)
3

ρuu

)2}
(m),

and B1W , B
2
W and B3W are polynomials satisfying

2B1W (n − 1) + (n − 2)B2W (n − 1) + (n − 1)(n − 2)B3W (n − 1) =
(

ν
2

)
AW (n − 1).

Proof. Using the notation of Lemma 4.5, we have

(R̃ ⊗ · · · ⊗ R̃)i1j1k1l1···iνjνkν lν=
s−2ν∑

α=−2ν
rα

( ∑
β1+···+βν=α

R̃β1+2
i1j1k1l1

(u) · · · R̃βν+2
iνjνkν lν

(u)

)
+O
(
rs−2ν+1) .

By taking traces in the above expression, the result of Lemma 4.5 and the rule to compute
the degrees, imply the first statement of Theorem 4.7.
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Now we turn our attention to the explicit expressions of Theorem 4.7. As R̃ is the
curvature tensor of the geodesic sphere Gm(r), the coefficients of its power series expansion
given by Lemma 4.5 are algebraic curvature tensors in u⊥ = TmM � Ru. Using Lemma
4.5 and Remark 4.2 we get

W̃0(u) = tr
(
R̃0i1j1k1l1(u) · · · R̃0iνjνkν lν

(u)
)
= tr
(
R0⊗ ν· · · ⊗R0

)
= (n − 1)(n − 2)AW (n − 1).

Using the notation of Lemma 4.5, since R̃1 = 0, we have

W̃1(u) = tr

(
ν∑

α=1

R̃0i1j1k1l1(u) · · · R̃
1
iαjαkαlα(u) · · · R̃0iνjνkν lν (u)

)
= 0.

Lemmas 4.5 and 4.6 yield

W̃2(u) = tr

(
ν∑

α=1

R̃0i1j1k1l1(u) · · · R̃
2
iαjαkαlα(u) · · · R̃0iνjνkν lν (u)

)

= tr

(
ν∑

α=1

R0i1j1k1l1 · · · R̃
2
iαjαkαlα(u) · · ·R0iνjνkν lν

)
= νAW (n − 1)Sc(R̃2),

and from the definition of R̃2 in Lemma 4.5 we get Sc(R̃2) = τ − 2(n+1)
3 ρuu. Hence

W̃2(u) = νAW (n − 1)
(

τ − 2(n+ 1)
3

ρuu

)
(m).

Similarly, using Lemmas 4.5 and 4.6 and the fact that Sc(R̃3) = ∇uτ − n+2
2 ∇uρuu, we

obtain

W̃3(u) = tr

(
ν∑

α=1

R̃0i1j1k1l1(u) · · · R̃
3
iαjαkαlα(u) · · · R̃0iνjνkν lν (u)

)

= tr

(
ν∑

α=1

R0i1j1k1l1 · · · R̃
3
iαjαkαlα(u) · · ·R0iνjνkν lν

)

= ν AW (n − 1)
(
∇uτ − n+ 2

2
∇uρuu

)
(m).

Finally, using the expression of R̃⊗· · ·⊗ R̃ at the beginning of this proof, we get for ν > 1,

W̃4(u) = tr

(
ν∑

α=1

R0i1j1k1l1 · · · R̃
4
iαjαkαlα(u) · · ·R0iνjνkν lν

)

+tr

(∑
α<β

R0i1j1k1l1 · · · R̃
2
iαjαkαlα(u) · · · R̃0iγjγkγ lγ (u) · · · R̃2iβjβkβ lβ

(u) · · ·R0iνjνkν lν

)
.
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For the first term of the above equality we again use Lemmas 4.5 and 4.6 to get

ν AW (n − 1)
(
−2n+ 1
45

n∑
a,b=1

R2uaub +
1
9
ρ2uu +

1
2
∇2uuτ − n+ 3

5
∇2uuρuu

)
(m).

Now, we briefly discuss the second term of W̃4(u), which is a simple directional curvature
invariant of degree 4. Using the method of Lemma 4.6 to write the second addend of W̃4(u)
as a linear combination of curvature invariants of degree 4 associated with R̃2 (see the basis
of curvature invariants of degree 4 (4.1)) we get the expression for ω4(u) and the relation
among the polynomials B1W , B

2
W and B3W . We delete the details.

Remark 4.8. If ν = 1 in the previous theorem, we essentially have to deal with the scalar
curvature τ̃ . In this case, the second addend of W̃4(u) does not appear and ω4(u) = 0.
Then, τ̃(expm(ru)) =

∑s−2
α=−2 r

αSc(R̃α+2)+O (rs−1). See [33] and [44] for an explicit power
series expansion.

Example 4.9. The coefficients B1W and B2W in the expression of ω4(u) for Weyl invariants
of degree 4 and 6 can be given as follows [39]

W ‖R‖2 ‖ρ‖2 τ 2

B1W (n − 1) 1 0 0

B2W (n − 1) 0 1 0

W τ 3 τ‖ρ‖2 τ‖R‖2 ρ̌ 〈ρ ⊗ ρ, R̄〉 〈ρ, Ṙ〉 Ř ˇ̄R

B1W (n − 1) 0 0 (n − 1)(n − 2) 0 0 n − 2 6 −3/2
B2W (n − 1) 0 (n − 2)(n − 1) 0 3(n − 2) 2n − 5 4 0 3

These coefficients can also we found in [37], [38] and [44].

Now, we derive some geometrical consequences of the expansions in Theorem 4.7. We
first need the following technical result. See for example [45].

Lemma 4.10. Let (M, g) be an n–dimensional Einstein manifold. If

a ‖R‖2 + b

n∑
i,j,k=1

R2uijk + c

n∑
i,j=1

R2uiuj = k

for some real constants a, b, c, k with (n + 4)b + 3c �= 0, c �= 0 and for all unit vectors
u ∈ TM , then (M, g) is 2–stein.

Proof. We define the tensors

ωxyvw =
n∑

i,j=1

RxiyjRviwj and ηxy =
n∑

i,j,k=1

RxijkRyijk.
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For all vectors x, y ∈ TmM and all constants α, β ∈ R, it follows from the assumption that

a ‖R‖2g2α x+β y,α x+β y + b ηα x+β y,α x+β ygα x+β y,α x+β y + c ωα x+β y,...,α x+β y = k g2α x+β y,α x+β y.

Now, we expand the previous expression and take the coefficient of α2β2. Putting y = ei

and taking the trace we obtain

2a ‖R‖2(n+ 2)g(x, x) + b
(
‖R‖2g(x, x) + (n+ 4)ηxx

)
+2c

(
n∑

i,j=1

ρijRxixj +
3
2
ηxx

)
= 2(n+ 2)kg(x, x).

Since (M, g) is assumed to be an Einstein manifold the previous equation becomes{
b(n+ 4) + 3c

}
ηxx = −

{
2(n+ 2)a ‖R‖2 + b ‖R‖2 + 2cτ

2

n2
− 2(n+ 2)k

}
gxx

and taking traces this gives{
b(n+ 4) + 3c

}
‖R‖2 = −n

{
2(n+ 2)a ‖R‖2 + b ‖R‖2 + 2cτ

2

n2
− 2(n+ 2)k

}
.

The last two equations and the fact that b(n+ 4) + 3c �= 0 imply ηxx = ( ‖R‖2/n)gxx and
thus polarization gives η = ( ‖R‖2/n)g. Hence, it follows from the assumption that

ωxxxx = −1
c

(
na+ b

n
‖R‖2 − k

)
g2xx

which shows that (M, g) is 2–stein.

Proposition 4.11. Let (Mn, g) a Riemannian manifold and W a simple Weyl invariant
of degree 2ν, ν > 1, such that

AW (n − 1) �= 0,
(2n+ 1)νAW (n − 1)− 20(n+ 12)B1W (n − 1) + 5n2B2W (n − 1) �= 0,
(2n+ 1)νAW (n − 1) + 40nB1W (n − 1) + 5n2B2W (n − 1) �= 0,

If the corresponding Weyl invariants of geodesic spheres W̃ (expm(ru)) depend neither on
the center m nor on the direction u, then M is 2–stein.

Proof. Since AW (n− 1) �= 0, using the coefficient W̃2(u) given in Theorem 4.7, we get that
τ −2ρuu(n+1)/3 is independent of m and u. This implies that the manifoldM is Einstein.
Now, the coefficient W̃4 is also constant by hypothesis. Using the fact that M is Einstein,
we obtain

B1W (n − 1) ‖R‖2 − 4B1W (n − 1)
n∑

a,b,c=1

R2uabc

−
(
2n+ 1
45

νAW (n − 1)− 4(n+ 12)
9

B1W (n − 1)− n2

9
B2W (n − 1)

) n∑
a,b=1

R2uaub = constant.
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The above equation has the form of that of Lemma 4.10. The last two conditions of
Proposition 4.11 ensure that the latter lemma can be applied and the result follows.

Remark 4.12. Let W be a simple Weyl invariant such that AW (n − 1) �= 0. If M is
a Riemannian manifold such that the corresponding Weyl invariants of geodesic spheres
W̃ (expm(ru)) depend only on the radius, then the above proof shows thatM is an Einstein
manifold.

Remark 4.13. It was proved in [33] that if τ̃(expm(ru)) depends neither on the center m
nor on the direction u, then the manifold is 2–stein. Moreover, if the manifold is assumed
to be analytic, then it is harmonic.

Example 4.14. It can easily be shown that the conditions in Proposition 4.11 hold for all
the curvature invariants of Example 4.9. Hence, those may be used to characterize 2–stein
manifolds.

Proposition 4.15. Let (M, g) be a complete analytic Riemannian manifold with constant
Weyl invariants and such that all its small geodesic spheres have constant scalar curvature.
Then,M is locally isometric to a two–point homogeneous manifold or a Damek–Ricci space.

Proof. As all the Weyl invariants ofM are constant,M is locally homogeneous [113]. Since
all the small geodesic spheres have constant scalar curvature and the manifold is analytic,
M is harmonic [33]. Complete homogenous harmonic manifolds have been classified in [87].
According to this paper, M is locally isometric to a two–point homogeneous manifold or a
Damek–Ricci space.

Corollary 4.16. Let (M, g) be a complete analytic Riemannian manifold with constant
Weyl invariants such that all its small geodesic spheres have also constant Weyl invariants.
Then, M is locally isometric to a two–point homogeneous space.

Proof. Using the previous proposition, M is locally isometric to a two–point homogeneous
space or a Damek–Ricci space. On the other hand, all the small geodesic spheres of M
are homogeneous, as they also have constant Weyl invariants. Hence, M is Osserman [80].
But a Damek–Ricci space cannot be Osserman unless it is symmetric [17]. The result
follows because locally symmetric Damek–Ricci spaces are locally isometric to a two–point
homogeneous space.

4.2.2 Total scalar curvatures of geodesic spheres

Since a geodesic sphere is a compact Riemannian submanifold, one may consider the in-
tegral of a curvature invariant W for geodesic spheres. Following, for example, [33], we
define the total scalar curvature W associated with the scalar curvature invariant W by

W(m, r) =
∫

Gm(r)
W̃ = rn−1

∫
Sn−1
(W̃θm)(expm(ru))du,
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where W̃ is the corresponding curvature invariant of Gm(r), θm is the volume density
function at m and du is the volume element of Sn−1. Then, W is a function depending on
the base point and the radius of the geodesic sphere.

Example 4.17. When (M, g) is a Riemannian manifold of constant sectional curvature
λ > 0, each geodesic sphere Gm(r) has constant sectional curvature λ̃ = λ/ sin2 r

√
λ [83]

(here, we only consider the positive curvature case; similar expressions can be obtained for
negative and zero curvature). We now compute the total scalar curvature associated with
a Weyl invariant W of degree 2ν. From Remark 4.2 we get

W̃ = (n − 1)(n − 2)AW (n − 1)
(

λ

sin2 r
√

λ

)ν

.

In a space of constant sectional curvature λ > 0 the volume density function is

θm (expm(ru)) =

(
sin r

√
λ

r
√

λ

)n−1

(see for example [82], [128]) and we have the exact expression for the total scalar curvature
associated with W∫

Gm(r)
W̃ = cn−1(n − 1)(n − 2)AW (n − 1)

(
sin r

√
λ√

λ

)n−1−2ν

.

We emphasize that the above total scalar curvature does not depend on the base point m.

In order to obtain a power series expansion of a total scalar curvature we need the
volume density function of a Riemannian manifold [33].

Lemma 4.18. Let θm be the volume density function at a point m. Then we have

θm (expm(ru)) =
s∑

α=0

rαθα(u) +O
(
rs+1
)
,

where θα(u), α ≥ 2, is a partial curvature invariant of degree α in the direction of u with
α degrees of freedom. The first terms of this power series expansion are

θm (expm(ru)) = 1− 1
6
ρuu(m)r

2 − 1
12

∇uρuu(m)r
3

+
(
− 1
180

n∑
a,b=1

R2uaub +
ρ2uu

72
− 1
40

∇2uuρuu

)
(m)r4 +O

(
r5
)
.

Proof. First, we consider the mean curvature function of a geodesic sphere which is easily
obtained from Lemma 4.4 taking traces

hm(expm(ru)) =
s−1∑

α=−1
rαhα+1(u) +O (rs) ,
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where hα(u), α ≥ 0 are partial scalar curvature invariants of degree α in the direction of
u and with α degrees of freedom. The first terms in the power series expansion of hm are
well–known [33], [128]

hm(expm(ru)) =

{
n−1

r
− r

3
ρuu−

r2

4
∇uρuu − r3

(
1
45

n∑
a,b=1

R2uaub +
1
10

∇2uuρuu

)}
(m)+O

(
r4
)
.

Now, using the relation

hm (expm(ru)) =
n − 1

r
+

∂

∂r
log θm (expm(ru)) ,

we obtain

θα(u) =
[α/2]∑
β=1

1
β!

 ∑
γ1+···+γβ=α

hγ1(u) · · ·hγβ
(u)

γ1 · · · γβ

 , α ≥ 2,

where [ ] denotes the integer part of a real number. The result follows from the above
formula after considering the properties and explicit expressions of the terms hα.

Using standard arguments of calculus one can show that the volume of a Euclidean
sphere of radius 1 in Rn is given by

cn−1 =
nπ

n
2

Γ
(

n
2 + 1
) ,

where Γ is the gamma function defined by Γ(α) =
∫∞
0 e−ttα−1dt =

∫∞
−∞ e−t2|t|2α−1dt.

The following result is a technical lemma which will be used in the proof of the Theorem
4.20. We only point out the main steps of the proof.

Lemma 4.19. Let ω be a covariant tensor of order 2ν. Then,∫
Sn−1

ωu···udu =
cn−1

2νν!
ν−1∏
α=0

(n+ 2α)

n∑
α1···α2ν=1

δα1α2 · · · δα2ν−1α2ν

∑
σ∈G2ν

ωασ(1)···ασ(2ν)
.

where G2ν is the group of permutations of 2ν elements.

Proof. We proceed by induction. If ν = 1, the expression of Lemma 4.19 is a well–known
fact. See, for example, [83]. Next, let ω be a covariant tensor of order 2(ν + 1). Choose
an orthonormal basis {ei} at the origin of Rn and write the unit vector u with respect to
that basis as u =

∑
i xiei. Then∫

Sn−1
ωu···udu =

n∑
α1···α2ν+2=1

ωα1···α2ν+2

∫
Sn−1

xα1 · · ·xα2ν+2du.
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We recall the formula for integrating polynomials along Euclidean spheres [82]:∫
Sn−1

xβ1
1 · · · xβn

n du = cn−1
β1) · · · βn)

n(n+ 2) · · · (n+ β1 + · · ·+ βn + 2)
,

where

2β) = (2β − 1)(2β − 3) · · · 3 · 1, 2β − 1) = 0, for all β ∈ N and 0) = 1.

Concentrating on the last index α2ν+2 and using the previous formula, we get∫
Sn−1

ωu···udu=
n∑

α1...α2ν+1=1

2ν+1∑
β=1

 1∑2ν+1
γ=1 δαβαγ

ωα1...α2ν+1
↓
β

...α2ν+1

∫
Sn−1

xα1 . . . xα2νx
2
α2ν+1

du


=

1
n+ 2ν

n∑
α=1

2ν+1∑
β=1

∫
Sn−1

ω(u, . . . , u, eα
↓
β

, u, . . . , u, eα)du

 .

Now the inner integrand is a tensor of order 2ν and we can apply our induction hypothesis
to get∫

Sn−1
ωu···udu=

cn−1

2νν!
ν∏

α=0

(n+ 2α)

n∑
α1...α2ν+1=1

2ν+1∑
β=1

(
δα1α2 · · · δα2ν−1α2ν

∑
σ∈G2ν

ωασ(1)...α2ν+1
↓
β

...ασ(2ν)α2ν+1

)

=
cn−1

2νν!
ν∏

α=0

(n+ 2α)

n∑
α1...α2ν+2=1

(
δα1α2 · · · δα2ν+1α2ν+2

∑
σ∈G2ν+2

σ(2ν+2)=2ν+2

ωασ(1)...ασ(2ν+2)

)
,

from where the result follows.

Theorem 4.20. Let W be a simple Weyl invariant of degree 2ν. The total scalar curvature
associated with W has a power series expansion

W(m, r) =
∫

Gm(r)
W̃ = cn−1rn−1−2ν

[s/2]∑
α=0

r2α
W2α(m)∏α−1

β=0(n+ 2β)
+O
(
rs+1
) ,

where W2α(m), α ≥ 1, is a scalar curvature invariant of M at m of degree α, [ ] denotes
the integer part of a real number and

W0(m) = (n − 1)(n − 2)AW (n − 1),

W2(m) = −(n − 2)(n − 2ν − 1)AW (n − 1)
6

τ(m),

W4(m) =

(
C1W (n − 1) ‖R‖2 + C2W (n − 1) ‖ρ‖2 + C3W (n − 1) τ 2

−(n − 2)(n − 2ν − 1)AW (n − 1)
20

∆τ

)
(m).
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Moreover, we have the relation

2C1W (n − 1) + (n − 1)C2W (n − 1) + n(n − 1)C3W (n − 1)

=
(n − 2)(n+ 2)(n − 1− 2ν)(5n − 10ν − 7)

360
AW (n − 1).

Proof. By definition we have

W(m, r) =
∫

Gm(r)
W̃ = rn−1

∫
Sn−1

(
W̃θm

)
(expm(ru))du.

Using Theorem 4.7 and Lemma 4.18, we get

(
W̃θm

)
(expm(ru)) =

s−2ν∑
α=−2ν

rαW̄α+2ν(u) +O
(
rs−2ν+1) ,

where W̄α(u), α ≥ 2, is a partial curvature invariant in the direction of u with degree α
such that for all the Weyl invariants involved in its construction their number of degrees of
freedom has the same parity as α. In fact, we have W̄α(u) =

∑α
β=0 W̃β(u)θα−β(u), α ≥ 2,

and in particular, using Theorem 4.7 and Lemma 4.18

W̄0(u) = (n − 1)(n − 2)AW (n − 1),

W̄1(u) = 0,

W̄2(u) = AW (n − 1)
(

ντ − 4ν(n+ 1) + (n − 1)(n − 2)
6

ρuu

)
(m),

W̄4(u) = ω̄4(u) +
AW (n − 1)

2

(
ν∇2uuτ − 40ν(n+ 3) + (n − 1)(n − 2)

20
∇2uuρuu

)
(m),

where ω̄4(u) is a simple directional curvature invariant of degree 4. Integration gives

W(m, r) = rn−1
(

s−2ν∑
α=−2ν

rα

∫
Sn−1

W̄α+2ν(u)du+O
(
rs−2ν+1)) .

If α is odd, W̄α+2ν(u) is a linear combination of Weyl invariants in the direction of u with
an odd number of degrees of freedom. Each one of them is an odd function on a sphere,
and thus its integral vanishes. Hence, we have

W(m, r) = rn−1

[
s−2ν
2 ]∑

α=−ν

r2α
∫

Sn−1
W̄2α+2ν(u)du+O

(
rs−2ν+1)

 .

The problem of integrating W̄2α(u), with α ≥ 1, reduces to the integration of directional
Weyl invariants of degree 2α in the direction of u with an even number of degrees of freedom.
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This number is at most 2α. For such an invariant, Lemma 4.19 asserts that its integral
is a linear combination of products of total traces, divided by certain polynomial. This
immediately implies that

∫
Sn−1 W̄2α+2ν(u)du is a curvature invariant at m with degree 2α,

and the first statement of Theorem 4.20 follows.
For the explicit expressions of W̄0, W̄2 and W̄4, we may use the general method described

in this proof and just do the calculations taking into account the formulas for the known
W̄2α(u). Examples of those may be found in [33], [82] and [83]. Also, the calculations can
be obtained automatically using the program [39]. Finally, we integrate ω̄4(u) which is a
simple curvature invariant at m of degree 4. Lemma 4.19 implies that

∫
Sn−1 ω̄4(u)du is a

simple curvature invariant of degree 4. Hence, we may write∫
Sn−1

ω̄4(u)du =
1

n(n+ 2)

(
C1W (n − 1) ‖R‖2 + C2W (n − 1) ‖ρ‖2 + C3W (n − 1) τ 2

)
(m),

and from here we get the expression for W4(m). Doing the Taylor power series expansion
of the function in Example 4.17 we get in a space of constant sectional curvature∫

Gm(r)
W̃ = cn−1(n − 1)(n − 2)AW (n − 1)rn−1−2ν

(
1− n − 1− 2ν

6
λr2

+
(n − 1− 2ν)(5n − 10ν − 7)

360
λ2r4 +O

(
r6
))

.

Since for an n–dimensional space of constant sectional curvature λ we have τ = n(n− 1)λ,
‖R‖2 = 2n(n − 1)λ2 and ‖ρ‖2 = n(n − 1)2λ2 the integral

∫
Sn−1 ω̄4(u)du becomes∫

Sn−1
ω̄4(u)du =

n − 1
n+ 2

(
2C1W (n − 1) + (n − 1)C2W (n − 1) + n(n − 1)C3W (n − 1)

)
λ2.

But ∇2uuτ = ∇2uuρuu = 0 in a space of constant curvature and hence the last two equations
imply the desired result.

4.2.3 Homogeneity and two–point homogeneous spaces

IfM is a locally homogeneous Riemannian manifold, its total scalar curvaturesW(m, r) =∫
Gm(r)

W̃ do not depend on the point m and thus one may wonder whether the converse
is also true. The answer is known to be positive for several special cases, but the problem
remains open in its full generality. In our general context, positive answers can be given
in a similar way as a consequence of Theorem 4.20 and the following result (we omit the
details, which are similar to those in [26]).

Proposition 4.21. Let W be a Weyl invariant such that AW (n−1) �= 0. If a Riemannian
manifold (Mn, g) of dimension n > 2, n �= 2ν + 1 satisfies that W(m, r) is independent
of the point m, then the scalar curvature and the quadratic invariant C1W (n − 1)‖R‖2 +
C2W (n − 1)‖ρ‖2 are constant.
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In particular, if W = 1, S(m, r) =
∫

Gm(r)
1 is the volume of the geodesic sphere Gm(r).

A manifold having the property that the volume of geodesic spheres is independent of the
center is called ball-homogeneous [26], [57]. Also, a Riemannian manifold is said to be
scalar curvature homogeneous if T (m, r) =

∫
Gm(r)

τ̃ is independent of m [26], [81] (this is
also a particular case of our context for W = τ). Next, we show that both notions above
are equivalent for Einstein manifolds, thus answering a question stated in [26].

Theorem 4.22. Ball–homogeneity and scalar curvature homogeneity are equivalent in the
class of Einstein manifolds.

Proof. As usual, we denote by ′ the derivative with respect to the radius r. We use the
following relation all over this proof

hm(expm(ru)) =
n − 1

r
+

θ′m(expm(ru))
θm(expm(ru))

.

Taking derivatives and using the above relation we get

S ′(m, r) =
d

dr

[
rn−1
∫

Sn−1
θmdu

]
= rn−1

∫
Sn−1
(hm θm)du.

Again, taking derivatives with respect to the radius and using the relation between hm and
θm we obtain

S ′′(m, r) =
d

dr

[
rn−1
∫

Sn−1
(hm θm)du

]
= rn−1

∫
Sn−1

(
n − 1

r
hm θm + h′

m θm + hm θ′m

)
du

= rn−1
∫

Sn−1

((
h2m + h′

m

)
θm

)
du.

Taking traces in the Gauss equation we get the scalar curvature of a geodesic sphere Gm(r).
This is τ̃ = τ−2 ρuu+h2m−‖σm‖2. Next, we consider the Riccati equation, σ′+σ2+Ru = 0,
and we take traces to get h′

m + ‖σm‖2 + ρuu = 0. Therefore, the scalar curvature becomes
τ̃ = τ − ρuu + h2m + h′

m. Hence, S ′′(m, r) turns into

S ′′(m, r) = T (m, r)− rn−1
∫

Sn−1
((τ − ρuu) θm).

In the class of Einstein manifolds τ − ρuu = n−1
n

τ is constant. Thus, we get

S ′′(m, r) = T (m, r)− n − 1
n

τ S(m, r).

Since τ is constant, T depends on m if and only if S depends on m.

Now, we turn our attention to the characterization of two–point homogeneous spaces
using the total curvatures of geodesic spheres associated with simple Weyl invariants.
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Theorem 4.23. Let (Mn, g) be a Riemannian manifold of dimension n > 2. Assume that
the total scalar curvature associated with a simple Weyl invariant of degree 2ν is the same
as in a Riemannian manifold of constant sectional curvature λ. If

n �= 2ν + 1, AW (n − 1) �= 0, C1W (n − 1) �= 0,

C1W (n − 1)
(

C2W (n − 1) + 2
n − 1C

1
W (n − 1)

)
≥ 0,

then M is a Riemannian manifold of constant sectional curvature λ.

Proof. As we have already seen, in a manifold of constant sectional curvature λ, we have

(4.4)

∫
Gm(r)

W̃ = cn−1(n − 1)(n − 2)AW (n − 1)rn−1−2ν
(
1− n − 1− 2ν

6
λ r2

+
(n − 1− 2ν)(5n − 10ν − 7)

360
λ2r4 +O

(
r6
))

.

Since AW (n−1) �= 0 and n �= 2ν+1, comparing (4.4) with the expression in Theorem 4.20
we immediately get τ = n(n − 1)λ. Then, the formula of Theorem 4.20 becomes

W(m, r) = cn−1rn−1−2ν
{
(n − 1)(n − 2)AW (n − 1)− r2

6
(n − 2)(n − 1− 2ν)AW (n − 1)λ

+
r4

n(n+ 2)

(
C1W (n−1) ‖R‖2 + C2W (n−1) ‖ρ‖2 + n2(n − 1)2C3W (n−1)λ2

)
+O
(
r6
)}
(m).

Comparing again with (4.4) we easily get

C1W (n−1)
(
‖R‖2 − 2

n − 1 ‖ρ‖
2

)
+

(
C2W (n − 1) + 2

n − 1C
1
W (n − 1)

)(
‖ρ‖2 − 1

n
τ 2
)
= 0.

The hypotheses of this theorem and Lemma 4.1 (a)–(b) imply that both terms of
the left–hand side of the above equation are simultaneously non–negative or non–positive
(depending on the sign of C1W (n)). Then, both addends must be zero and hence ‖R‖2 =
2

n−1 ‖ρ‖2. Thus, M has constant sectional curvature by Lemma 4.1 (a)–(b). Since τ =
n(n − 1)λ, the sectional curvature is precisely λ.

We state similar theorems for the other two–point homogeneous spaces. See [33] or [83]
for more information. The proof is similar to the above theorem using Lemma 4.1 (c)–(d)
instead of Lemma 4.1 (b). We delete the details.

Theorem 4.24. Let (M2n, g, J) be a Kähler manifold of complex dimension n > 1. Assume
that the total scalar curvature associated with a simple Weyl invariant of degree 2ν is the
same as in a Kähler manifold of constant holomorphic sectional curvature λ. If

AW (2n − 1) �= 0, C1W (2n − 1) �= 0,
C1W (2n − 1)

(
C2W (2n − 1) + 4

n+ 1
C1W (2n − 1)

)
≥ 0,

then M is a Kähler manifold of constant holomorphic sectional curvature λ.
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Theorem 4.25. LetM4n be a quaternionic Kähler manifold of real dimension 4n. Assume
that the total scalar curvature associated with a simple Weyl invariant of degree 2ν is the
same as in a quaternionic Kähler manifold of constant Q–sectional curvature λ. If

AW (4n − 1) �= 0, C1W (4n − 1) �= 0,
then M is a quaternionic Kähler manifold of constant Q–sectional curvature λ.

If the holonomy group of a Riemannian manifold is contained in Spin(9), then the
manifold is locally isometric to the Cayley projective or hyperbolic plane [2]. Combining
the previous results and this fact we get

Theorem 4.26. Let M be an n–dimensional Riemannian manifold, n ≥ 2, whose holon-
omy group is contained in the holonomy group of one of the two–point homogeneous spaces.
Assume that the total scalar curvature associated with a simple Weyl invariant of degree
2ν is the same as in the corresponding two–point homogeneous space. If

n �= 2ν + 1, AW (n − 1) �= 0, C1W (n − 1) �= 0,

C1W (n − 1)
(

C2W (n − 1) + 2
n − 1C

1
W (n − 1)

)
≥ 0,

then M is locally isometric to that space.

Remark 4.27. If n = 3, the Gauss–Bonnet theorem gives T (m, r) = 8π. Hence, T is a
topological invariant. Generalizations of the Gauss–Bonnet theorem show that some total
scalar curvatures have no geometrical meaning in certain dimensions [44]. Now, letW be a
simple Weyl invariant of order 2ν. Consider a Riemannian manifold of constant sectional
curvature and dimension 2ν+1. Then, Example 4.17 shows thatW(m, r) = 2ν(2ν−1)c2ν .
Thus, W(m, r) is a topological invariant for (2ν + 1)–dimensional manifolds of constant
sectional curvature and therefore it cannot be used to determine the curvature.

Remark 4.28. The third condition in Theorem 4.26 can be dropped if the manifold is
assumed to be Einstein or locally conformally flat (see [44] or [83] for similar situations).

4.3 Applications

The purpose of this section is to employ Theorem 4.26 and its variations to characterize
two–point homogeneous spaces. It turns out that for certain important scalar curvature
invariants the hypotheses of Theorem 4.26 are satisfied and thus these invariants provide
essential information of two–point homogeneous spaces.
In what follows, we provide an immediate application of Theorem 4.26 for the simple

Weyl invariants of degree 4 and 6 given by (4.1) and (4.2). Then, we discuss further results
that can be obtained under assumptions which are not satisfied in Theorem 4.26.
Subsection 4.3.2 deals with total scalar curvatures of boundaries of geodesic disks in

a Riemannian manifold. The results of this section are consequence of those obtained in
Subsection 4.3.1. One may obtain more general results in the spirit of Theorem 4.26 but
we content ourselves with just a few examples.
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4.3.1 Total scalar curvatures of geodesic spheres

It is possible to give explicit expressions of C1W and C2W and C3W for simple Weyl invariants
of low degree. This was achieved for example in [37], [38], [39] and [44]. Since C3W can be
obtained from C1W and C2W from the relation of Theorem 4.20, we do not include it in the
following tables.
First, for the scalar curvature we have

W C1W (n − 1) C2W (n − 1)

τ −(n+ 2)(n+ 3)
120

n2 + 5n+ 21
45

For the simple Weyl invariant of degree 4 in (4.1) we have

W C1W (n − 1) C2W (n − 1)

‖R‖2 59n2 − 93n − 10
60

2(n2 − 37n+ 60)
45

‖ρ‖2 −n3 − 9n2 − 16n − 20
120

n3 + 31n2 − 16n − 120
45

τ2 −(n − 2)(n − 1)(n2 + 13n+ 10)
120

n4 + 10n3 + 43n2 − 14n+ 120
45

Finally, for simple Weyl invariants of degree 6 in (4.2),

W C1W (n − 1) C2W (n − 1)

τ3 −(n − 1)2(n − 2)2(n2 + 21n+ 14)
120

(n − 1)(n − 2)(n4 + 18n3 + 118n2 + 105n+ 238)
45

τ‖ρ‖2 −(n − 1)(n − 2)(n3 − n2 − 28n − 28)
120

(n − 2)(n4 + 38n3 + 28n2 + 15n+ 238)
45

τ‖R‖2 (n − 1)(n − 2)(59n2 − 101n − 14)
60

2(n4 − 32n3 + 248n2 − 135n+ 238)
45

ρ̌ −(n − 2)(n3 − 41n2 − 28n − 28)
120

(n − 2)(n3 + 79n2 − 73n − 238)
45

〈ρ⊗ρ,R̄〉 −n4 − 23n3 + 34n2 + 28n+ 56
120

n4 + 57n3 − 141n2 − 2n+ 476
45

〈ρ, Ṙ〉 59n3 − 179n2 + 188n+ 28
60

2(n3 + 9n2 + 77n − 238)
45

Ř
179n2 − 261n − 14

30
4(n2 − 129n+ 119)

45

ˇ̄R −n3 + 138n2 − 289n − 42
120

n3 + 78n2 + 56n − 357
45
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Example 4.29. Using the expressions of Example 4.3 and the coefficients of C1W and C2W
just calculated, we may check the conditions of Theorem 4.26. We give a table with those
simple Weyl invariants which can be used for characterizing the two–point homogeneous
spaces and the dimension n for which the conditions of Theorem 4.26 hold.

W C2W (n − 1) + 2
n − 1C

1
W (n − 1) n

‖R‖2 4n3 + 25n2 + 109n − 270
90(n − 1) n > 2, n �= 5

‖ρ‖2 4n4 + 117n3 − 161n2 − 368n+ 540
180(n − 1) 3 ≤ n ≤ 10, n �= 5

τ‖ρ‖2 (n − 2)(4n4 + 149n3 + 115n2 + 144n+ 1036)
180

3 ≤ n ≤ 6

τ‖R‖2 4n4 + 49n3 + 335n2 + 24n+ 1036
90

n > 2, n �= 7

ρ̌
(n − 2)(4n4 + 309n3 − 485n2 − 576n+ 1036

180(n − 1) 3 ≤ n ≤ 41, n �= 7

〈ρ ⊗ ρ, R̄〉 4n5 + 221n4 − 723n3 + 454n2 + 1828n − 2072
180(n − 1) 3 ≤ n ≤ 21, n �= 7

〈ρ, Ṙ〉 4n4 + 209n3 − 265n2 − 696n+ 1036
90(n − 1) n > 2, n �= 7

Ř
(n − 2)(4n2 + 25n+ 259)

45(n − 1) n > 2, n �= 7

In particular, we emphasize the following result which gives an answer to a question
posed in [33] of whether a single invariant might be used for the characterization of the
two–point homogeneous spaces. Characterizations with two invariants have already been
obtained in [33].

Theorem 4.30. LetM a Riemannian manifold of dimension n ≥ 2 whose holonomy group
is contained in the holonomy of one of the two–point homogenous spaces. The following
statements are equivalent:

(i) For each sufficiently small geodesic sphere,
∫

Gm(r)
‖R̃‖2 is the same as in the two–point

homogeneous space (n �= 5).

(ii) For each sufficiently small geodesic sphere,
∫

Gm(r)
τ̃‖R̃‖2 is the same as in the two–

point homogeneous space (n �= 7).

(iii) For each sufficiently small geodesic sphere,
∫

Gm(r)
〈ρ̃,
˙̃
R〉 is the same as in the two–

point homogeneous space (n �= 7).
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(iv) For each sufficiently small geodesic sphere,
∫

Gm(r)
ˇ̃
R is the same as in the two–point

homogeneous space (n �= 7).

(v) M is locally isometric to that two–point homogeneous space.

Remark 4.31. If the manifold is assumed to be Einstein or locally conformally flat then all
the simple Weyl invariants of degree 4 and 6 appearing in (4.1) and (4.2) can be used to
characterize the two–point homogeneous spaces.

Dimension 5 (resp. 7) is a singular case for simple scalar curvature invariants of degree
4 (resp. 6) since the corresponding total curvatures of geodesic spheres are topological
invariants in manifolds of constant sectional curvature (see Remark 4.27). Nonetheless, we
can still detect constant curvature manifolds [37], [44] although we cannot determine the
exact value of their sectional curvature.

Theorem 4.32. Let M a 5–dimensional Riemannian manifold. The following statements
are equivalent:

(i) For each sufficiently small geodesic sphere,
∫

Gm(r)
‖R̃‖2 is the same as in a manifold

of constant sectional curvature.

(ii) For each sufficiently small geodesic sphere,
∫

Gm(r)
‖ρ̃‖2 is the same as in a manifold

of constant sectional curvature.

(iii) M has constant sectional curvature.

Proof. Using Theorem 4.20 and the formulas for C1‖R‖2 and C2‖R‖2 at the beginning of this
section we get∫

Gm(r)
‖R̃‖2 = 24c4 +

r4

35
c4

{
50
3

(
‖R‖2 − 1

2
‖ρ‖2
)
+
35
9

(
‖ρ‖2 − 1

5
τ 2
)}
(m) +O

(
r6
)
.

By Remark 4.27 we obtain that in a manifold of constant sectional curvature
∫

Gm(r)
‖R̃‖2 =

24c4. Hence, comparing this two expressions we get(
‖R‖2 − 1

2
‖ρ‖2
)
+
35
9

(
‖ρ‖2 − 1

5
τ 2
)
= 0,

and it follows from Lemma 4.1 that M has constant sectional curvature. For ‖ρ‖2 we
proceed in an analogous way taking into account that∫

Gm(r)
‖ρ̃‖2 = 36c4 +

r4

35
c4

{
5
3

(
‖R‖2 − 1

2
‖ρ‖2
)
+
298
18

(
‖ρ‖2 − 1

5
τ 2
)}
(m) +O

(
r6
)
.

and using Lemma 4.1 once again.

In a similar way we obtain the following result. We delete the details [38].
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Theorem 4.33. Let M a 7–dimensional Riemannian manifold. The following statements
are equivalent:

(i) For each sufficiently small geodesic sphere,
∫

Gm(r)
τ̃‖R̃‖2 is the same as in a manifold

of constant sectional curvature.

(ii) For each sufficiently small geodesic sphere,
∫

Gm(r)
ˇ̃ρ is the same as in a manifold of

constant sectional curvature.

(iii) For each sufficiently small geodesic sphere,
∫

Gm(r)
〈ρ̃⊗ ρ̃,

¯̃
R〉 is the same as in a man-

ifold of constant sectional curvature.

(iv) For each sufficiently small geodesic sphere,
∫

Gm(r)
〈ρ̃,
˙̃
R〉 is the same as in a manifold

of constant sectional curvature.

(v) For each sufficiently small geodesic sphere,
∫

Gm(r)
ˇ̃
R is the same as in a manifold of

constant sectional curvature.

(vi) M has constant sectional curvature.

4.3.2 Total scalar curvatures of boundaries of geodesic disks

Geodesic disks were introduced by O. Kowalski and L. Vanhecke as a generalization of
two–dimensional disks in the Euclidean space R3. In a series of papers [93], [94], [95],
they investigated their volume properties in relation to local homogeneity and gave a
characterization of two–point homogeneous spaces by means of the volumes of their small
geodesic disks. Since the boundaries of small geodesic disks are compact submanifolds, we
are interested in their total scalar curvatures obtained by integrating the corresponding
scalar curvature invariants.
The geodesic disk, D̄ξ

m(r), of sufficiently small radius r, centered at m ∈ M and orthog-
onal to ξ ∈ TmM , is defined by

D̄ξ
m(r) = {expm(su) : u ∈ TmM, ‖u‖ = 1, g(u, ξ) = 0, 0 ≤ s ≤ r}

= {p ∈ M : d(m, p) ≤ r} ∩ expm(Rξ⊥).

For the purpose of this section and the investigation of total scalar curvatures, we consider
the boundaries of geodesic disks

Dξ
m(r) = {p ∈ M : d(m, p) = r} ∩ expm(Rξ⊥).

The boundary of a geodesic disk is nothing but a geodesic sphere of the (local) manifold
expm(Rξ⊥) centered at m for sufficiently small radius. Throughout this section we use
the following notation. The objects of M are denoted by R, ρ and so on, the objects of
expm(Rξ⊥) are denoted by R̃, ρ̃, . . . and the objects of boundaries of geodesic disks are
denoted by R̂, ρ̂ and so on.
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In what follows we consider the total scalar curvatures of boundaries of geodesic disks
associated with scalar curvature invariants of degree 2 and 4. Hence, it suffices to study
the scalar curvature τ and the scalar curvature invariants in (4.1). We do not consider the
Laplacian of the scalar curvature since

∫
Gm(r)

∆̃τ̃ du = 0 by the divergence theorem.
In order to obtain the first terms in the power series expansions of total curvatures

of boundaries of geodesic disks, we need the following result relating scalar curvature
invariants of degree 2 and 4 of expm(Rξ⊥) with the corresponding objects in M .

Lemma 4.34. Let (M, g) be an n–dimensional Riemannian manifold and ξ ∈ TmM a unit
vector. Then, the following relation holds at m:

‖R̃‖2 = ‖R‖2 + 4
n∑

i,j=1

R2ξiξj − 4
n∑

i,j,k=1

R2ξijk ,

‖ρ̃‖2 = ‖ρ‖2 + ρ2ξξ − 2
n∑

i=1

ρ2ξi +
n∑

i,j=1

R2ξiξj − 2
n∑

i,j=1

ρijRξiξj ,

τ̃ = τ − 2ρξξ ,

∆̃τ̃ = ∆τ − 2∆ρξξ + 2∇2ξξρξξ −∇2ξξτ +
4
9
ρ2ξξ −

4
9

n∑
i=1

ρ2ξi +
4
3

n∑
i,j=1

R2ξiξj −
2
3

n∑
i,j,k=1

R2ξijk.

Proof. It follows from the work in [93], after some calculations.

The first terms in the power series expansions of the total curvatures of the boundaries
of geodesic disks are obtained from the corresponding ones of geodesic spheres. We use the
results of Section 4.3.1 in conjunction to Lemma 4.34. We omit the calculations which are
straightforward and immediately state the different expansions separately in the following

Proposition 4.35. Let (M, g) be an n-dimensional Riemannian manifold, m ∈ M and
ξ ∈ TmM a unit vector. Then, for sufficiently small radius r, one has the following power
series expansions∫

Dξ
m(r)

τ̂ = cn−2rn−2
{
(n − 2)(n − 3)

r2
− (n − 3)(n − 4)

6(n − 1) (τ − 2ρξξ)

+
r2

(n − 1)(n+ 1)

(
n2 − 9n+ 2
72

τ 2 − (n+ 2)(n+ 1)
120

‖R‖2 + n2 + 3n+ 17
45

‖ρ‖2

−(n − 3)(n − 4)
20

∆τ +
(n − 3)(n − 4)

20

(
∇2ξξτ − 2∇2ξξρξξ + 2∆ρξξ

)
− n2 − 9n+ 2

18
τρξξ

−(n+ 2)(n+ 11)
45

n∑
i=1

ρ2ξi −
(n − 4)(7n − 11)

90

n∑
i,j=1

R2ξiξj +
n2 − 2n+ 7
15

n∑
i,j,k=1

R2ξijk

−2(n
2 + 3n+ 17)
45

n∑
i,j=1

Rξiξjρij +
(n − 1)(n − 4)

18
ρ2ξξ

)
+O
(
r3
)}
(m),
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Dξ

m(r)
τ̂ 2 = cn−2rn−2

{
(n − 2)2(n − 3)2

r4
− (n − 3)2(n − 6)(n − 2)

6(n − 1)r2 (τ − 2ρξξ)

+
1

(n − 1)(n+ 1)

(
n4 − 18n3 + 77n2 − 164n − 84

72
τ 2 − (n − 3)2(n − 6)(n − 2)

20
∆τ

+
n4 + 6n3 + 19n2 − 74n+ 168

45
‖ρ‖2 − (n − 2)(n − 3)(n2 + 11n − 2)

120
‖R‖2

−n4 + 26n3 − 31n2 − 4n+ 228
45

n∑
i=1

ρ2ξi +
(n − 2)(n − 3)(n2 + n+ 8)

15

n∑
i,j,k=1

R2ξijk

−n4 − 18n3 + 77n2 − 164n − 84
18

τρξξ −
7n4 − 78n3 + 223n2 − 488n+ 276

90

n∑
i,j=1

R2ξiξj

−2(n
4 + 6n3 + 19n2 − 74n+ 168)

45

n∑
i,j=1

Rξiξjρij +
n4 − 10n3 + 57n2 − 136n − 60

18
ρ2ξξ

+
(n − 3)2(n − 6)(n − 2)

20

(
∇2ξξτ − 2∇2ξξρξξ + 2∆ρξξ

))
+O(r)

}
(m),∫

Dξ
m(r)

‖ρ̂‖2 = cn−2rn−2
{
(n − 2)(n − 3)2

r4
− (n − 3)2(n − 6)

6(n − 1)r2 (τ − 2ρξξ)

+
1

(n − 1)(n+ 1)

(
n3 − 16n2 + 13n+ 46

72
τ 2 − n3 − 12n2 + 5n − 14

120
‖R‖2

+
n3 + 28n2 − 75n − 74

45
‖ρ‖2 − (n − 3)2(n − 6)

20
∆τ +

n3 − 35n+ 38
18

ρ2ξξ

+
(n − 3)2(n − 6)

20

(
∇2ξξτ − 2∇2ξξρξξ + 2∆ρξξ

)
− n3 − 16n2 + 13n+ 46

18
τρξξ

−2(n
3 + 28n2 − 75n − 74)

45

n∑
i,j=1

Rξiξjρij −
7n3 − 164n2 + 435n − 218

90

n∑
i,j=1

R2ξiξj

−n3 + 68n2 − 195n − 94
45

n∑
i=1

ρ2ξi +
n3 − 12n2 + 25n − 34

15

n∑
i,j,k=1

R2ξijk

)
+O(r)

}
(m),

∫
Dξ

m(r)
‖R̂‖2 = cn−2rn−2

{
2(n − 2)(n − 3)

r4
− (n − 3)(n − 6)
3(n − 1)r2 (τ − 2ρξξ)

+
1

(n − 1)(n+ 1)

(
n2 − 13n+ 14

36
τ 2 +

59n2 − 211n+ 142
60

‖R‖2 − (n − 3)(n − 6)
10

∆τ

+
2(n2 − 39n+ 98)

45
‖ρ‖2 +173n

2 − 657n+ 514
45

n∑
i,j=1

R2ξiξj −
4(n2 − 39n+ 98)

45

n∑
i,j=1

Rξiξjρij

−2(29n
2 − 101n+ 62)
15

n∑
i,j,k=1

R2ξijk +
(n − 3)(n − 6)

10

(
∇2ξξτ − 2∇2ξξρξξ + 2∆ρξξ

)
−2(n

2 − 69n+ 178)
45

n∑
i=1

ρ2ξi −
n2 − 13n+ 14

9
τρξξ +

(n − 2)(n − 23)
9

ρ2ξξ

)
+O(r)

}
(m).
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As an application of the expansions in Theorem 4.35 we are now ready to obtain
characterizations of the two–point homogeneous spaces by means of the total curvatures
of the boundaries of geodesic disks.

Lemma 4.36. Let M be an n–dimensional Riemannian manifold. Assume that one of the
following holds:

(i) We have n > 4 and
∫

Dξ
m(r)

τ̂ coincides with the corresponding one in an Einstein
manifold.

(ii) We have 3 < n �= 6 and any of
∫

Dξ
m(r)

τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 or
∫

Dξ
m(r)

‖R̂‖2 coincides with
the corresponding one in an Einstein manifold.

Then M is an Einstein manifold with the same scalar curvature as the model space.

Proof. In case (i) it follows from the constant term of the power series expansion of
∫

Dξ
m(r)

τ̂

in Proposition 4.35. In case (ii) it follows from the coefficient of r−2 in the power series
expansion of

∫
Dξ

m(r)
τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 or
∫

Dξ
m(r)

‖R̂‖2 in Proposition 4.35.

Lemma 4.37. Let M be an n–dimensional Riemannian manifold. Assume that one of the
following holds:

(i) We have n > 4 and
∫

Dξ
m(r)

τ̂ does not depend on the normal direction ξ.

(ii) We have 3 < n �= 6 and one of
∫

Dξ
m(r)

τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 or
∫

Dξ
m(r)

‖R̂‖2 does not depend
on the normal direction ξ.

Then, M is 2–stein.

Proof. Assume that (i) holds. Since the total scalar curvatures of the boundaries of geodesic
disks of the manifoldM do not depend on the normal direction, the constant term and the
coefficient of r2 in its power series expansion given by Proposition 4.35 are independent
of the unit ξ ∈ TM . From the independent term it follows that τ − 2ρξξ is constant and
hence M is an Einstein space. Moreover, for an Einstein manifold, the coefficient of r2 in
the power series expansion of

∫
Dξ

m(r)
τ̂ becomes

1
(n − 1)(n+ 1)

{
(n − 4)(5n3 − 37n2 + 62n+ 92)

360n2
τ 2 − (n+ 2)(n+ 1)

120
‖R‖2

− (n − 4)(7n − 11)
90

n∑
i,j=1

R2ξiξj +
n2 − 2n+ 7
15

n∑
i,j,k=1

R2ξijk

}
.

Therefore, using Lemma 4.10 we get that M is a 2–stein space.
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If (ii) holds, we get the result in a similar way. From the coefficient of r−2 in the power
series expansions of

∫
Dξ

m(r)
τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 and
∫

Dξ
m(r)

‖R̂‖2 we deduce that M is Einstein,
and then, rewriting the independent terms of those power series expansions we get

1
(n − 1)(n+ 1)

{
5n6 − 102n5 + 789n4 − 2712n3 + 3352n2 + 1520n − 5712

360n2
τ 2

−(n − 2)(n − 3)(n2 + 11n − 2)
120

‖R‖2 − 7n
4 − 78n3 + 223n2 − 488n+ 276

90

n∑
i,j=1

R2ξiξj

+
(n − 2)(n − 3)(n2 + n+ 8)

15

n∑
i,j,k=1

R2ξijk

}
,

1
(n − 1)(n+ 1)

{
−7n

3 − 164n2 + 435n − 218
90

n∑
i,j=1

R2ξiξj −
n3 − 12n2 + 5n − 14

120
‖R‖2

+
5n5 − 92n4 + 605n3 − 1622n2 + 548n+ 2696

360n2
τ 2+

n3 − 12n2 + 25n − 34
15

n∑
i,j,k=1

R2ξijk

}
,

1
(n − 1)(n+ 1)

{
5n4 − 77n3 + 14n2 + 1180n − 2072

180n2
τ 2 +

59n2 − 211n+ 142
60

‖R‖2

+
173n2 − 657n+ 514

45

n∑
i,j=1

R2ξiξj −
2(29n2 − 101n+ 62)

15

n∑
i,j,k=1

R2ξijk

}
,

for
∫

Dξ
m(r)

τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 and
∫

Dξ
m(r)

‖R̂‖2, respectively. Applying Lemma 4.10 one eventu-
ally gets the result.

Now we are ready to derive the desired characterizations of the two–point homogeneous
spaces for n > 4.

Theorem 4.38. Let M be an n–dimensional Riemannian manifold whose holonomy group
is contained in the holonomy group of a two–point homogeneous space. If n > 4 and

∫
Dξ

m(r)
τ̂

coincides with that of the two–point homogeneous space for sufficiently small radius, then
M is locally isometric to that two–point homogeneous space.

Proof. It follows from Lemma 4.37 (i) thatM is 2–stein and thus super–Einstein [33], from
where we get that

n∑
i,j=1

R2ξiξj =
1

n(n+ 2)

(
3
2
‖R‖2 + 1

n
τ 2
)

and
n∑

i,j,k=1

R2ξijk =
1
n
‖R‖2.

Then, the coefficient of r2 in the power series expansion of
∫

Dξ
m(r)

τ̂ given by Proposition
4.35 becomes

n − 4
n(n2 − 1)(n+ 2)

{
5n4 − 27n3 − 12n2 + 188n+ 228

360n
τ 2 − n3 + n2 + 26n+ 6

120
‖R‖2
}

.
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Now the result is obtained just by comparing this with the corresponding coefficient in the
model space and using Lemma 4.1.

It is worthwhile to emphasize that dimension four is excluded in the previous theo-
rem. Since the boundaries of the geodesic disks in a 4–dimensional manifold are compact
surfaces, the total curvature

∫
Dξ

m(r)
τ̂ is the Gauss Bonnet integral, and thus a topological

invariant.

Theorem 4.39. Let M be an n–dimensional Riemannian manifold whose holonomy group
is contained in the holonomy group of a two–point homogeneous space. If 3 < n �= 6 and
one of

∫
Dξ

m(r)
τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2 or
∫

Dξ
m(r)

‖R̂‖2 coincides with that of the two–point homo-
geneous space for sufficiently small radius, then M is locally isometric to that two–point
homogeneous space.

Proof. We proceed as in the previous theorem. Using Lemma 4.37 (ii) we get that M is 2–
stein. Then, the independent terms of the power series expansions of

∫
Dξ

m(r)
τ̂ 2,
∫

Dξ
m(r)

‖ρ̂‖2

or
∫

Dξ
m(r)

‖R̂‖2 given by Proposition 4.35 become

1
n(n2 − 1)(n+ 2)

{
5n7 − 92n6 + 585n5 − 1162n4 − 1760n3 + 7332n2 − 720n − 12528

360n
τ 2

− n6 − 9n4 − 190n3 + 714n2 − 840n − 216
120

‖R‖2
}

,

n − 3
n(n2 − 1)(n+ 2)

{
5n5 − 67n4 + 220n3 + 220n2 − 1380n − 2088

360n
τ 2

− (n
2 − 14n − 2)(n2 − n+ 18)

120
‖R‖2
}

,

1
n(n2 − 1)(n+ 2)

{
(n − 3)(5n4 − 52n3 − 296n2 + 1012n+ 696

180n
τ 2

+
(n − 3)(59n3 − 148n2 − 34n − 12)

60

}
,

respectively. Now the result follows by comparing these coefficients with the corresponding
ones in the model spaces and using Lemma 4.1.



Chapter 5

Geodesic celestial spheres in
Lorentzian manifolds

In the previous chapter we have seen that every Riemannian manifold carries a so–called
Riemannian distance function whose level sets with respect to a point are exactly the
geodesic spheres of the manifold. Moreover, geodesic spheres can also be seen as the
image by the exponential map of Euclidean spheres in the tangent space at a point. In
the general semi–Riemannian setting, such a distance is not defined and the fact that the
pseudo–spheres of the tangent space are not compact leads us to believe that their image
by the exponential map is not suitable for study.
A distance–like function d : M × M → [0,∞] may be defined for space–times. For

any p, q ∈ M we have d(p, q) = 0 if and only if q is not in the causal future of p and
d(p, q) = sup{L(c) : c is a future directed non–spacelike curve from p to q} if q is in the
causal future of p. However, the properties of this distance function are completely different
from those in the Riemannian setting [7]. For example, the “Lorentzian distance” may fail
to be continuous or finite–valued and its level sets with respect to a given point are not
compact. Some properties of those sets have been previously investigated [4], [56], but they
do not seem to be adequate for the investigation of volume properties. Therefore, different
families of objects have been considered for this purpose in Lorentzian geometry. We give
an overview of these constructions in Section 5.1.
The concept of geodesic celestial sphere which we introduce in this chapter is somehow

an extension of the concept of geodesic disk to Lorentzian geometry. Given a unit timelike
vector, its orthogonal complement in the tangent space has definite signature. In Relativity,
a unit timelike vector ξ is called an instantaneous observer and its orthogonal complement
in the tangent space is called the infinitesimal rest–space of ξ. In Special Relativity the
rest space of an instantaneous observer corresponds to the Newtonian universe perceived by
this observer. A geodesic celestial sphere is the image by the exponential map of a sphere
centered at the origin of the rest–space associated with certain instantaneous observer.
It is clear that every geodesic celestial sphere (for sufficiently small radius) is a com-

pact Riemannian submanifold. We see in this chapter that geodesic celestial spheres are
closely related to geodesic spheres and they inherit most of their properties. Thus, volume

95
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properties can be discussed and in many cases we get analogous results to those of the
Riemannian setting.
This chapter is organized as follows. Section 5.1 reviews some constructions in Riemann-

ian and Lorentzian geometry which we attempt to generalize. In Section 5.2 we study the
volume of geodesic celestial spheres and give the necessary background to prove the main
theorems of this section, namely, Theorems 5.16 and 5.17 (which compare the volumes of
sufficiently small geodesic celestial spheres in a Lorentzian manifold with the corresponding
ones in a Lorentzian space form) and Theorem 5.22 (which characterizes locally isotropic
space–times). Finally, in Section 5.3 we state some results analogous to Theorem 5.22,
showing that local isotropy can be detected by considering the total curvatures of geodesic
celestial spheres. We also give examples of scalar curvature invariants which may be used
for this characterization.

5.1 Volume comparison results

Any Riemannian manifold (Mn+1, g) carries a Riemannian distance function which has a
very nice behavior with respect to the underlying structure of the manifold. Therefore, a
natural family of subregions of a Riemannian manifold to be considered is that defined by
the level sets of the Riemannian distance function with respect to a base point (that is,
geodesic spheres) or with respect to some topologically embedded submanifolds (that is,
tubes around a submanifold).
For sufficiently small radii r > 0, geodesic spheres Gm(r) are obtained by projecting

the Euclidean spheres Sn(r) centered at 0 ∈ TmM via the exponential map. Therefore,
they are a nice family of hypersurfaces and their volume can be calculated as

S(m, r) = vol (Gm(r)) = rn

∫
Sn

θm(expm(ru))du.

Comparison theorems for the volumes of subregions of Riemannian manifolds under some
curvature hypotheses have played an important role in Riemannian geometry. For instance,
the Bishop–Günther inequalities show lower (resp. upper) bounds for volumes of geodesic
balls and tubes by imposing upper (resp. lower) bounds on the sectional curvature. These
inequalities have been improved by assuming weaker conditions on the Ricci tensor or by
considering the ratio between the volumes of geodesic balls in the manifold and the model
spaces (see for example [82] and the references therein).
The basic idea behind the Bishop–Günter and Gromov comparison theorems [82], is

that under suitable curvature conditions the Riccati differential equation

S ′ + S2 +Ru = 0.

becomes an inequality and its solutions give upper or lower bounds for the volume density
function θm in terms of the corresponding function in the model space via

hm(expm(ru)) =
n

r
+

∂

∂r
log θm(expm(ru)).
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Finally, an integration process from the Riccati equations leads to [18], [86]

Theorem 5.1. Let (Mn+1, g) be a complete Riemannian manifold and assume that r is
not greater than the distance between m and its cut locus. Let KM denote the sectional
curvature of (M, g).

(i) If KM ≥ λ, then volM(Gm(r)) ≤ volM(λ)(Gm̃(r)).

(ii) If KM ≤ λ, then volM(Gm(r)) ≥ volM(λ)(Gm̃(r)).

Here, M(λ) is a model space of constant sectional curvature λ and m̃ ∈ M(λ). More-
over, equalities hold for (i) or (ii) and some radii if and only if Gm(r) is isometric to the
corresponding geodesic sphere in the model space.

A sharper result involving the Ricci curvature instead of the sectional curvature was
proved by R. L. Bishop [18].

Theorem 5.2. Let (Mn+1, g) be a complete Riemannian manifold. Assume that r is not
greater that the distance between m and its cut locus and the Ricci curvature ρM of (M, g)
satisfies ρM(v, v) ≥ nλ for all vectors v ∈ TM .
Then volM(Gm(r)) ≤ volM(λ)(Gm̃(r)), where M(λ) is a space of constant sectional

curvature λ. The equality holds if and only if Gm(r) is isometric to the corresponding
geodesic sphere in the model space.

A further generalization of Theorem 5.2 was obtained by M. Gromov as follows [85].

Theorem 5.3. Let (Mn+1, g) be a complete Riemannian manifold. Assume that r is not
greater that the distance between m and its cut locus and that the Ricci curvature ρM of
(M, g) satisfies ρM(v, v) ≥ nλ for all vectors v. Then the function

r �→ volM(Gm(r))

volM(λ)(Gm̃(r))
,

where M(λ) is a space of constant sectional curvature λ, is non–increasing.

When the attention is turned from Riemannian manifolds to space–times, various dif-
ficulties emerge. For example, conditions on bounds for the sectional curvature (resp. the
Ricci tensor) easily produce manifolds of constant sectional curvature (resp. Einstein) [7],
[108]. This demands a revision of such conditions [5] (see Section 5.2.2). However, a more
difficult task is related to the consideration of the regions under investigation. This is
mainly due to the fact that when dealing with general semi–Riemannian manifolds there is
no “semi–Riemannian distance function”. In fact, a distance–like function is only defined
for space–times, but even in this case its properties are completely different from those in
the Riemannian setting (see [7]). For instance, level sets of the Lorentzian distance func-
tion with respect to a given point are not compact and they do not seem to be adequate for
the investigation of volume properties. Therefore, different families of objects have been
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considered in Lorentzian geometry for the purpose of investigating their volume properties.
Among those, truncated light cones, compact distance wedges in the chronological future
of some point, and more generally some neighborhoods covered by timelike geodesics ema-
nating from a given point have been investigated. In what follows we review some known
results of the geometry of those families. Then, we introduce geodesic celestial spheres,
which is the main object of study throughout this chapter.

5.1.1 Truncated light cones

Truncated light cones were defined in [66], [67] where the authors studied the link between
the volume of the light cones and the curvature of a Lorentzian manifold.
Let ξ be an instantaneous observer. The truncated light cone of (sufficiently small)

height T and axis ξ is the set

Lξ(T ) =
{
expm(u) : 〈u, u〉 < 0, 0 ≤ −〈u, ξ〉 ≤ T

}
.

Figure 5.1: Truncated light cones in R21 with height T = 3 and axes ξ1 = (0, 1) and
ξ2 = (1,

√
2).

It is easy to see that the volume of a truncated light cone in the four–dimensional
Minkowski space–time is given by vol(Lξ(T )) = πT 4/3. The investigation of whether this
volume property is characteristic of the Minkowski space motivated further work by R.
Schimming [117], [118], who proved the following result. See also [66].

Theorem 5.4. Let (M, g) be a Lorentzian manifold such that every truncated light cone
has the same volume as in the Minkowski space–time. Then (M, g) is locally flat.

5.1.2 Compact distance wedges

Let E denote the set of future pointing unit timelike vectors in TmM such that the expo-
nential map is well defined. Let K be a compact subset of E and put K = expm(t0K),
which is a compact subset of the level set d−1

m (t0) of the Lorentzian distance function with
respect to m ∈ M and which is well defined for sufficiently small t0.
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The K–distance wedge BK
m(t0) is defined by [54]

BK
m(t0) = {expm(tv) : v ∈ K, 0 ≤ t ≤ t0}.

Figure 5.2: K–distance wedge centered at m up to a distance t0.

In order to study volume comparison results with model spaces, one needs a method to
relate distance wedges onM and the model space. One proceeds as follows. Choose a point
m̃ in the model space of constant sectional curvature M(−λ) and define a differentiable
map Ψ by Ψ = expM(−λ)

m̃ ◦ψ ◦ (expM
m )

−1, where ψ : TmM → Tm̃M(−λ) is a linear isometry.
Then, given a distance wedge BK

m(t0) and using the timelike vectors ψ(K) in Tm̃M(−λ) to
construct the corresponding wedge B

Ψ(K)
m̃ (t0) in M(−λ), we have B

Ψ(K)
m̃ (t0) = Ψ(BK

m(t0))
for sufficiently small t0.
By making use of the Riccati equation and comparison of the Jacobi equations, the

following volume comparison results for compact distance wedges have been obtained by
P. Ehrlich, Y.–T. Jung and S.–B. Kim [54] as an analogous of the Günter–Bishop and
Gromov theorems.

Theorem 5.5. Let (Mn+1, g) be a globally hyperbolic space–time satisfying ρM(v, v) ≥
nλ > 0 for all timelike unit vectors v. Then for all 0 ≤ r0 ≤ injK(m),

volM(BK
m(r0)) ≤ volM(−λ)(BΨ(K)ψ(m)(r0))

and equality holds at some r0 > 0 if and only if BK
m(r) and B

Ψ(K)
ψ(m)(r) are isometric for all

0 < r ≤ r0.

Theorem 5.6. Let (Mn+1, g) be a globally hyperbolic space–time satisfying ρM(v, v) ≥
nλ > 0 for all timelike unit vectors v. Then for all 0 ≤ r0 < r1 ≤ injK(m),

volM(BK
m(r0))

volM(−λ)(BΨ(K)ψ(m)(r0))
≥ volM(BK

m(r1))

volM(−λ)(BΨ(K)ψ(m)(r1))
.

Moreover, equality holds for some 0 ≤ r0 < r1 ≤ injK(m) if and only if B
K
m(r) and B

Ψ(K)
ψ(m)(r)

are isometric for all 0 < r ≤ r1.
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Note that, when comparing with the corresponding results in the Riemannian setting,
inequalities in the previous theorems are with respect to a space of constant sectional
curvature −λ. This is due to the fact that the assumption on the Ricci tensor in Theorems
5.2 and 5.3 gives reversed inequalities when considering the Ricatti equation.

5.1.3 SCLV sets

A further generalization of the distance wedges was obtained in [55], where the authors
considered a more general family of subsets of a Lorentzian manifold. Let m ∈ M and
take U ⊂ TmM an open subset in the causal future of the origin, U ⊂ J+(0) such that U
is star–shaped from the origin and the exponential map expm|U is a diffeomorphism onto
its image U = expm U . We also assume that the closure of U is compact.
A subset U as above is called standard for comparison of Lorentzian volumes (SCLV

set) at the base point m ∈ M [55].

Figure 5.3: A SCLV set.

In order to state some comparison results with spaces of constant sectional curvature
M(λ), a transplantation process is also needed as before. Let ψ : TmM → Tm̃M(λ) be a
linear isometry, and define the transplantation map Ψ on a sufficiently small open set as
Ψ = expM(λ)

m̃ ◦ψ ◦ (expM
m )

−1. For any U ⊂ TmM put Uλ = ψ(U) and Uλ = exp
M(λ)
m̃ (Uλ) =

Ψ(U) which makes possible a volume comparison between SCLV sets in M and M(λ).
Then we have [55]

Theorem 5.7. Let (M, g) be a (n+ 1)–dimensional Lorentzian manifold and assume that
ρM(v, v) ≥ nλ g(v, v) for all timelike vector fields v = d

dt
expm(tvm)|t=t0 tangent to U at

m ∈ M . If U is a SCLV set at m, then

volM(U) ≤ volM(λ)(Uλ)

and the equality holds if and only if Ψ : U → Uλ is an isometry.

A comparison result in the spirit of Bishop–Gromov Theorem can also be stated for
SCLV sets, but it requires some previous conventions. For each r > 0 put U(r) = r · U =
{ru : u ∈ U}, Uλ(r) = r · Uλ, U(r) = expM

m (U(r)), Uλ(r) = exp
M(λ)
m̃ (Uλ(r)). Note that the

star–shaped form of SCLV sets ensures the possibility of constructing the above sets for
r > 0 sufficiently small. Then, we have the following result [55].
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Theorem 5.8. Let (Mn+1, g) be a Lorentz manifold such that ρ(v, v) ≥ nλ g(v, v) for
all timelike vector fields v = d

dt
expm(tvm)|t=t0 tangent to a SCLV set U based at m ∈

M . Assume that c = 0 or the cut function cU of U is constant. Then, the function
r �→ volM(U(r))/ volM(λ)(Uλ(r)) is non–increasing. Moreover if there exists r1 < r2 such
that volM(U(r1))/volM(λ)(Uλ(r1)) = volM(U(r2))/volM(λ)(Uλ(r2)) then U(r) and Uλ(r) are
isometric.

5.1.4 Geodesic celestial spheres

In this subsection we consider a different family of geometric objects from those presented
so far, the so–called geodesic celestial spheres.
In Relativity, a unit timelike vector ξ ∈ TmM is called an instantaneous observer, and

Rξ⊥ is called the infinitesimal rest–space of ξ, that is, the infinitesimal Newtonian universe
where the observer perceives particles as Newtonian particles relative to his rest position.
The celestial sphere of radius r perpendicular to a unit timelike vector ξ is defined as the
set Sξ(r) = {x ∈ ξ⊥ : ‖x‖ = r} (see [114]). If U is a sufficiently small neighborhood of the
origin in TmM , M̃ = expm(U ∩ ξ⊥) is an embedded Riemannian submanifold of M . We
denote by ∇̃ the Levi–Civita connection of M̃ , by R̃ its curvature tensor and, in general,
we use the symbol ˜ to denote the geometric objects of M̃ .
We define the geodesic celestial sphere of radius r associated with ξ as [46]

Gξ
m(r) = expm

({
x ∈ ξ⊥ : ‖x‖ = r

})
= expm(S

ξ(r)).

Figure 5.4: A plot of geodesic celestial spheres in the Minkowski space–time(
R3,−dt2 + dx2 + dy2

)
with center (1, 1, 1) associated with the instantaneous observers

(1, 0, 0) and (2/
√
3, 1/

√
3, 0).
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Figure 5.5: Geodesic celestial spheres in a space–time of constant sectional curva-
ture
(
R3, −dt2+dx2+dy2

(1+ 14 (−t2+x2+y2))2

)
with centers at (0, 0, 0), (0, 1, 1), (1, 1, 1) and (−1/2, 1, 1)

associated with the instantaneous observers (1, 0, 0) and ( 2√
3
, 1√
3
, 0).

Figure 5.6: A graphic of geodesic celestial
spheres in the warped product Lorentzian mani-
fold
(
(R−{0})×R2,−dt2+ 1

t2

(
dx2 + dy2

))
with

center (1, 1, 1) associated with the instantaneous
observers (1, 0, 0) and ( 2√

3
, 1√
3
, 0).
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For sufficiently small radius r, Gξ
m(r) is a compact submanifold of M̃ . Furthermore,

by definition, a geodesic celestial sphere Gξ
m(r) is nothing but a geodesic sphere Gm(r)

of radius r centered at m in the submanifold M̃ . Therefore, by studying the volumes of
geodesic celestial spheres in comparison with the volumes of the corresponding celestial
spheres one obtains a measure of how the exponential map distorts volumes on spacelike
directions.

5.2 Volume of geodesic celestial spheres

In this section we study the volume of geodesic celestial spheres. Our objectives are two–
fold. On the one hand, we are interested in volume comparison results in the spirit of the
Bishop–Günther and Gromov theorems previously discussed. Then we characterize locally
isotropic Lorentzian manifolds by means of the volume of geodesic celestial spheres.
From the very definition of geodesic celestial sphere it is clear that for a given radius, the

volume of geodesic celestial spheres depends both on the observer field ξ ∈ TmM and the
center point m ∈ M . However, if (M, g) is assumed to be of constant sectional curvature,
then the volumes depend only on the radii, as Lorentzian space forms are locally isotropic
[133]. The converse result is also true. Indeed, one may compute the volume of geodesic
celestial spheres in a Lorentzian space form [46].

Theorem 5.9. Let Mn+1(λ) be a Lorentzian manifold of constant sectional curvature λ.
Then, for each point m ∈ M and each instantaneous observer ξ ∈ TmM , the volume of the
geodesic celestial sphere Gξ

m(r) satisfies

voln−1
(
Gξ

m(r)
)
=



cn−1

(
sin r

√
λ√

λ

)n−1

, λ > 0,

cn−1rn−1, λ = 0,

cn−1

(
sinh r

√
−λ√

−λ

)n−1
, λ < 0.

Proof. Consider the manifold M̃ = expm

(
U ∩ Rξ⊥

)
defined above, which is an embed-

ded Riemannian submanifold of M . Since M has constant sectional curvature λ, M̃
has also sectional curvature λ (see for example [116]). As it was noticed before, the
geodesic celestial sphere Gξ

m(r) is the geodesic sphere of radius r centered at m of the
n–dimensional Riemannian submanifold M̃ . The volume of geodesic spheres in constant
curvature Riemannian manifolds is well known [33], [83], [128], which gives the formula of
the statement of this theorem.

If N(λ) is a Lorentzian manifold of constant sectional curvature λ, by Theorem 5.9,
the volume of a geodesic celestial sphere is independent of the base point m ∈ N(λ) and
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the instantaneous observer ξ ∈ TmN(λ). Thus, in this case we can use the unambiguous
notation

voln−1 (G(r)) = voln−1
(
Gξ

m(r)
)
.

For the purpose of the comparison results below, we will also denote by volMn−1
(
Gξ

m(r)
)
the

(n − 1)–dimensional volume of the geodesic celestial sphere Gξ
m(r) of radius r and center

m associated with the instantaneous observer ξ in the manifold M .

In the following subsection we give the technical background to prove the main theorems
of this chapter, which are in Subsections 5.2.2 and 5.2.3.

5.2.1 Power series expansions

The technique we use to prove the main results of this chapter relies on the possibil-
ity of writing down the first terms in the power series expansion of the function r �→
volMn−1

(
Gξ

m(r)
)
, for sufficiently small r.

From now on we assume the following notation. For fixed m ∈ M and ξ ∈ TmM we
consider the Riemannian submanifold M̃ = expm(U ∩ ξ⊥), where U is a sufficiently small
neighborhood of m. Objects of M̃ are denoted by ˜. We choose an orthonormal basis
{e0 = ξ, e1, . . . , en} at m.

Lemma 5.10. With the above notation, the first and second order curvature invariants of
M and M̃ at the base point m satisfy

‖R̃‖2 = ‖R‖2 + 4
n∑

i,j,k=1

R2ξijk − 4
n∑

i,j=1

R2ξiξj,

‖ρ̃‖2 = ‖ρ‖2 + 2
n∑

i=1

ρ2ξi − ρ2ξξ +
n∑

i,j=1

R2ξiξj + 2
n∑

i,j=1

ρijRξiξj,

τ̃ = τ + 2ρξξ,

∆̃τ̃ = ∆τ + 2∆ρξξ +∇2ξξτ + 2∇2ξξρξξ +
4
9

n∑
i=1

ρ2ξi +
2
3

n∑
i,j,k=1

R2ξijk.

Proof. Denote by ξ a local extension of ξ ∈ TmM to the normal bundle of M̃ . If c is a radial
geodesic in M̃ starting at m, then ∇̃c′c

′ = ∇c′c
′ = II(c′, c′) = 0 since M̃ = expm(U∩Rξ⊥).

Thus, taking covariant derivatives and evaluating at m, we get ∇̃k
u···uσuu = 0, k ≥ 0, for all

u ∈ TmM̃ . For k = 0 we immediately get by polarization that

σuv = 0, for all u, v ∈ TmM̃.

Now put k = 1 and take arbitrary a, b, c ∈ R and u, v, w ∈ TmM̃ . We have

0 = ∇̃au+bv+cwσau+bv+cw,au+bv+cw = · · ·+ 2abc
(
∇̃uσvw + ∇̃vσuw + ∇̃wσuv

)
+ · · ·
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and hence ∇̃uσvw + ∇̃vσuw + ∇̃wσuv = 0. Then it follows from the Riccati equation that

Ruvwξ = ∇̃uσvw − ∇̃vσuw and Ruwvξ = ∇̃uσvw − ∇̃wσuv.

Therefore, we can express ∇̃σ in terms of the curvature tensor of the ambient manifold M
as follows

∇̃uσvw =
1
3
(Ruvwξ +Ruwvξ) , for all u, v, w ∈ TmM̃.

We now determine the curvature tensor of M̃ at m. An immediate application of the
Gauss equation and σuv = 0 shows that

(5.1) R̃xyvw = Rxyvw,

for all x, y, v, w ∈ TmM̃ .
Taking covariant derivatives in the Gauss equation we get

(5.2)
∇̃ZR̃XY V W=∇ZRXY V W + σZXRξY V W + σZY RXξV W + σZV RXY ξW + σZW RXY V ξ

−σY W ∇̃ZσXV − σXV ∇̃ZσY W + σY V ∇̃ZσXW + σXW ∇̃ZσY V

for all X, Y, Z, V, W ∈ Γ(TM̃). Using σuv = 0 we get

(5.3) ∇̃zR̃xyvw = ∇zRxyvw

for all z, x, y, v, w ∈ TmM̃ .
Finally, taking covariant derivatives in (5.2) we obtain

∇̃2XXR̃Y ZY Z = ∇2XXRY ZY Z + σXX∇ξRY ZY Z + 2σ
2
XY RξXξZ + 2σ

2
XZRξY ξY

−4σXY σXZRξY ξZ + 2σXY RTXZY Z + 2 σXZRY TXY Z + 2 ∇̃XσXY RξZY Z

+2 ∇̃XσXZRY ξY Z − σY Y ∇̃XXσZZ − σZZ∇̃XXσY Y + σY Z∇̃XXσY Z

−2∇̃XσY Y ∇̃XσZZ + 2
(
∇̃XσY Z

)2
+ 4σXY ∇XRξZY Z + 4σXZ∇XRY ξY Z ,

and using the expression for σ and ∇̃σ at m we get

(5.4)
∇̃2xxR̃yzyz = ∇2xxRyzyz + 2

3RxyxξRyzξz + 2
3RxzxξRyzyξ

−89RxyξyRxzξz + 2
9R
2
xyzξ +

2
9R
2
xzyξ +

4
9RxyzξRxzyξ,

for all x, y, z ∈ TmM̃ .
Lemma 5.10 follows from (5.1), (5.3), (5.4) and the definitions of τ , ‖R‖2, ‖ρ‖2 and

∆τ after doing some straightforward calculations.
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Theorem 5.11. Let
(
Mn+1, g

)
be a Lorentzian manifold and ξ ∈ TmM an instantaneous

observer. The (n− 1)–dimensional volume of the geodesic celestial spheres associated with
ξ ∈ TmM satisfies

voln−1
(
Gξ

m(r)
)
= cn−1rn−1

(
1 +

A(ξ)
n

r2 +
B(ξ)

n(n+ 2)
r4 +O(r6)

)
(m),

where

A(ξ) = −1
6
(τ + 2ρξξ),

B(ξ) = − 1
120

‖R‖2 + 1
45

‖ρ‖2 + 1
72

τ 2 − 1
20
∆τ − 1

15

n∑
i,j,k=1

R2ξijk +
2
45

n∑
i,j=1

ρijRξiξj

+
1
18

n∑
i,j=1

R2ξiξj +
1
45

n∑
i=1

ρ2ξi +
1
30

ρ2ξξ +
1
18

τρξξ −
1
10
∆ρξξ −

1
20

∇2ξξτ − 1
10

∇2ξξρξξ.

Proof. Since radial geodesics starting from m orthogonally to ξ are the same forM and M̃ ,
it is clear that the geodesic celestial sphere Gξ

m(r) of M associated with the instantaneous
observer ξ ∈ TmM coincides with the geodesic sphere GM̃

m (r) of radius r centered at m in
the Riemannian manifold M̃ for sufficiently small radius. Now, the first terms in the power
series expansion of the volume of sufficiently small geodesic spheres are well known [83].
This is also a special case of Theorem 4.20 for the Weyl invariant of degree 0, W = 1:

vol
(
GM̃

m (r)
)
= cn−1rn−1

{
1− τ̃

6n
r2 − r4

n(n+ 2)

(‖R̃‖2
120

− ‖ρ̃‖2
45

− τ̃ 2

72
+
∆̃τ̃

20

)
+O(r6)

}
(m).

Using the relations in Lemma 5.10 the result follows.

We also state here some algebraic preliminaries.

Lemma 5.12. Let (V, 〈 , 〉) a Lorentzian vector space and let W denote a covariant tensor
of type (0, 2k). If Wζ···ζ = 0 for all ζ with 〈ζ, ζ〉 = −1, then Wx···x = 0 for all x ∈ V .

Proof. If ζ is a timelike vector, we have, by hypothesis

0 = W

(
ζ√

−〈ζ, ζ〉
, . . . ,

ζ√
−〈ζ, ζ〉

)
=
(
−〈ζ, ζ〉

)−k

Wζ···ζ ,

and thus Wζ···ζ = 0. Now, if x is an arbitrary vector, for sufficiently small ε, ζ + εx is
timelike if ζ is timelike. Then, 0 = W (ζ + εx, . . . , ζ + εx) = Wζ···ζ + · · ·+ ε2kWx···x. Taking
into account that ε is arbitrary, this immediately implies that Wx···x = 0 which proves the
result.

Lemma 5.13. Let
(
Mn+1, g

)
be a Lorentzian manifold and let a, b, c be real numbers with

b �= 0. If a τ + b ρζζ = c at some point m ∈ M for all vector ζ ∈ TmM with g(ζ, ζ) = −1,
then the manifold is Einstein at m.
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Proof. The hypothesis can equivalently be written as −ag(ζ, ζ)τ + bρζζ + cg(ζ, ζ) = 0,
which using Lemma 5.12 implies −ag(x, x)τ + bρxx + cg(x, x) = 0 for all x ∈ TmM . The
result follows from linearity and symmetry of the Ricci tensor.

For the purpose of analyzing the coefficient B(ξ) in Theorem 5.11, we define the fol-
lowing two tensors

η(x, y) =
n∑

i,j,k=0

εiεjεkR(x, ei, ej, ek)R(y, ei, ej, ek),

ω(x, y, v, w) =
n∑

i,j=0

εiεjR(x, ei, y, ej)R(v, ei, w, ej),

where, as usual εi = g(ei, ei) and x, y, v, w ∈ TmM . Note that the definitions above are
independent of the orthonormal basis chosen, and thus ω and η are well defined tensors at
a given point m ∈ M . We have the following result.

Lemma 5.14. Let
(
Mn+1, g

)
be an Einstein Lorentzian manifold. If there exist constants

a, b, c, k ∈ R with c �= 0 and 3c �= (n+ 5)b such that

a ‖R‖2 + b ηζζ + c ωζζζζ = k

for all vectors ζ ∈ TmM with g(ζ, ζ) = −1, then M has constant sectional curvature at m.

Proof. Using Lemma 5.12, the hypothesis can be rewritten as

(5.5) a ‖R‖2g(x, x)2 − bg(x, x)η(x, x) + c ω(x, x, x, x) = kg(x, x)2

for all x ∈ TmM . For arbitrary α, β ∈ R and tangent vectors x and y we get

a ‖R‖2g2αx+βy,αx+βy − b gαx+βy,αx+βyηαx+βy,αx+βy + c ωαx+βy,...,αx+βy = k g2αx+βy,αx+βy.

Since α and β are arbitrary, expanding the above equality and comparing the coefficients
of α2β2 we get,

2a ‖R‖2(gxxgyy + 2g
2
xy)− b(gxxηyy + 4gxyηxy + gyyηxx)

+2c(ωxxyy + ωxyxy + ωxyyx) = 2k(gxxgyy + 2g2xy).

Setting y = ei in the above equality and contracting we have

2a(n+3) ‖R‖2gxx− b (‖R‖2gxx+(n+5)ηxx)+ c

(
3ηxx+2

n∑
i,j=0

εiεjρijRxixj

)
= 2(n+3)k gxx.

Since M is Einstein,
n∑

i,j=0

εiεjρijRxixj =
τ 2

(n+ 1)2
gxx,
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and the above equation becomes

(−b(n+ 5) + 3c)ηxx =

(
−2a(n+ 3) ‖R‖2 + b ‖R‖2 − 2c τ 2

(n+ 1)2
+ 2k (n+ 3)

)
gxx.

Contracting again,

(−b(n+ 5) + 3c) ‖R‖2 =
(
−2a(n+ 3) ‖R‖2 + b ‖R‖2 − 2c τ 2

(n+ 1)2
+ 2k (n+ 3)

)
(n+ 1).

Hence, ηxx = ‖R‖2gxx/(n + 1), which by the symmetry of η and the metric tensor, it is
equivalent to η = ‖R‖2g/(n+ 1). As a consequence, using (5.5) we have

(5.6) ωxxxx =
1
c

(
−a ‖R‖2 + b

‖R‖2
n+ 1

+ k

)
g(x, x)2.

Next, we show that the above equation is an equivalent condition to constant sectional
curvature for Lorentzian manifolds. Let π ⊂ TmM be a plane of signature (−+) and let
{ζ, ϑ} be an orthonormal basis of π with g(ζ, ζ) = −g(ϑ, ϑ) = −1. The Jacobi operator
Rζ(x) = R(ζ, x)ζ is self–adjoint when restricted to ζ⊥, and thus it is diagonalizable with
respect to an orthonormal basis {e1, . . . , en} of ζ⊥ with eigenvalues λ1(ζ), . . . , λn(ζ). Now,
with respect to the orthonormal basis of TmM , {e0 = ζ, e1, . . . , en}, Equation (5.6) gives

n∑
i,j=1

R2ζeiζej
=
1
c

(
b − (n+ 1)a

n+ 1
‖R‖2 + k

)
.

Hence, the the eigenvalues λα(ζ) are bounded independently of the timelike unit ζ because

λα(ζ)
2 = R2ζeαζeα

≤
n∑

i,j=1

R2ζeiζej
=
1
c

(
b − (n+ 1)a

n+ 1
‖R‖2 + k

)
,

for all α ∈ {1, . . . , n}. Writing ϑ =
∑n

i=1 ϑ
iei with respect to the basis above, one has that

the sectional curvature of π satisfies

K(π) = −Rζϑζϑ = −
n∑

i,j=1

ϑiϑjRζeiζej
= −

n∑
i=1

(ϑi)2λi(ζ).

Since 〈ϑ, ϑ〉 = 1 = ∑n
i=1(ϑ

i)2, one has |K(π)| ≤ ∑n
i=1(ϑ

i)2|λi(ζ)| ≤ C for some constant
C. This shows that the sectional curvature is bounded on planes of signature (+−) and
therefore, M has constant curvature at m (see [7], [96], [108]).

Remark 5.15. Equation (5.6) is equivalent to the 2–stein condition. See [79] for a different
proof that 2–stein Lorentzian manifolds have constant curvature.
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5.2.2 Volume comparison theorems

It is well known that the sectional curvature of a semi–Riemannian manifold is bounded
from above or from below if and only if it is constant [7], [108]. In order to derive volume
comparison theorems we need a revision of the boundedness conditions on the sectional
curvature. It seems natural to impose such curvature bounds on the curvature tensor itself
rather than on the sectional curvature. Following [5], we write R ≥ λ or R ≤ λ if and only
if for all x, y ∈ TM

R(x, y, x, y) ≥ λ (g(x, x)g(y, y)− g(x, y)2) or

R(x, y, x, y) ≤ λ (g(x, x)g(y, y)− g(x, y)2) ,

respectively. Note that the first condition above (resp. the second condition) is equivalent
to requiring the sectional curvature to be bounded from below (resp. from above) on planes
of signature (++) and from above (resp. from below) on planes of signature (+−).
Examples of semi–Riemannian manifolds whose curvature tensor is bounded as above

can easily be produced as follows:

• Let (M1, g1), (M2, g2) be Riemannian manifolds with non–negative KM1 ≥ 0 and
non–positive KM2 ≤ 0 sectional curvature, respectively. Then the product manifold
(M1 × M2, g1 − g2) is a semi–Riemannian manifold whose curvature tensor satisfies
R ≥ 0. See [5] for related examples.

• A more general construction of Lorentzian manifolds with bounded curvature is as
follows. Let (M, g) be a conformally flat Lorentz manifold whose Ricci tensor is diago-
nalizable, ρ = diag(µ0, µ1, . . . , µn), where the distinguished eigenvalue µ0 corresponds
to a timelike eigenspace. If µ0 ≥ max{µ1, . . . , µn} (resp. µ0 ≤ min{µ1, . . . , µn}) then
R ≤ λ (resp. R ≥ λ) for some constant λ. Note that the previous construction ap-
plies to Robertson–Walker space–times as well as to locally conformally flat static
space–times whose rest–spaces are of constant sectional curvature [24].

Although it is not possible to obtain direct information of the Ricci tensor from the
boundedness conditions above, an important observation for the purpose of studying vol-
ume properties of geodesic celestial spheres is the following. Let ξ be an instantaneous
observer at m ∈ M and complete it to an orthonormal basis {e0 = ξ, e1, . . . , en} of
TmM . Then τ + 2ρξξ =

∑n
i,j=1Rijij. Hence by assuming R ≥ λ (resp. R ≤ λ), we

have τ + 2ρξξ ≥ n(n − 1)λ (resp. τ + 2ρξξ ≤ n(n − 1)λ).

We are now ready to prove a Bishop–Günther type theorem [43], [46].

Theorem 5.16. Let (Mn+1, g) be a (n+1)–dimensional Lorentzian manifold and Nn+1(λ)
a Lorentzian manifold of constant sectional curvature λ. The following statements hold:

(i) If R ≥ λ, then
volMn−1

(
Gξ

m(r)
)
≤ volN(λ)n−1 (G(r)) ,

for all sufficiently small r and all instantaneous observers ξ ∈ TmM .



110 5 Geodesic celestial spheres in Lorentzian manifolds

(ii) If R ≤ λ, then

volMn−1
(
Gξ

m(r)
)
≥ volN(λ)n−1 (G(r)) ,

for all sufficiently small r and all instantaneous observers ξ ∈ TmM .

Moreover, the equality holds in (i) or (ii) for all ξ ∈ TmM if and only if M has constant
sectional curvature λ at m.

Proof. Assume that R ≥ λ. If R ≤ λ the result is obtained in a similar way. As usual, let
{e0 = ξ, e1, . . . , en} be an orthonormal basis of TmM . As we have already seen, τ +2ρξξ =∑n

i,j=1Rijij. Hence, τ + 2ρξξ ≥ n(n − 1)λ. Thus, by Theorems 5.9 and 5.11, we have for
sufficiently small r

volMn−1
(
Gξ

m(r)
)
= cn−1rn−1

(
1− τ + 2ρξξ

6n
r2 +O(r4)

)
≤ cn−1rn−1

(
1− n − 1

6
λ r2 +O(r4)

)
= volN(λ)n−1 (G(r)) ,

which proves the first part of the assertion.
Now, assume that the equality holds for sufficiently small r and all ξ ∈ TmM . Then,

τ + 2ρξξ = n(n − 1)λ for all ξ ∈ TmM . We prove that this implies that the sectional
curvature K is constant K = λ on planes of signature (++). Given π a plane of signature
(++), we take an orthonormal basis {x, y} of π and we complete it to an orthonormal
basis {e0, e1 = x, e2 = y, . . . , en} of TmM with e0 timelike. Then

n∑
i,j=1

Rijij = τ + 2ρe0e0 = n(n − 1)λ

and since Rijij ≥ λ by assumption, it follows that K(π) = λ. Now the constancy of the
sectional curvature at m follows from [108].

The previous theorem shows that volMn−1
(
Gξ

m(r)
)
/ volN(λ)n−1 (G(r)) ≤ 1 (resp. ≥ 1) if

R ≥ λ (resp. R ≤ λ). A more precise result in the spirit of Gromov’s theorem can be
stated as follows [43], [46]

Theorem 5.17. Let (Mn+1, g) be a (n+1)–dimensional Lorentzian manifold and Nn+1(λ)
a Lorentzian manifold of constant sectional curvature λ.

(i) If R ≥ λ, then

r �→ volMn−1
(
Gξ

m(r)
)

volN(λ)n−1 (G(r))

is non–increasing for sufficiently small r and all instantaneous observers ξ ∈ TmM .
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(ii) If R ≤ λ, then

r �→ volMn−1
(
Gξ

m(r)
)

volN(λ)n−1 (G(r))

is non–decreasing for sufficiently small r and all instantaneous observers ξ ∈ TmM .

Proof. By using the results in Theorem 5.9 and Theorem 5.11 one gets the first terms in
the power series expansion of the quotient

volMn−1
(
Sξ

m(r)
)

volN(λ)n−1 (S(r))
= 1 +

(
n(n − 1)λ − (τ + 2ρξξ)

6n

)
r2 +O(r4).

Therefore, if R > λ, we have τ + 2ρξξ > n(n − 1)λ. Hence the derivative of the quotient
is negative for small r, and thus the quotient is decreasing, which shows (i), since in case
R = λ the quotient above is constant for sufficiently small r. The proof of (ii) is completely
analogous.

Remark 5.18. Under the hypothesis of Theorem 5.17, if there exists 0 < r0 < r1 such that

volMn−1
(
Gξ

m(r0)
)

volN(λ)n−1 (G(r0))
=
volMn−1

(
Gξ

m(r1)
)

volN(λ)n−1 (G(r1))
,

then the sectional curvature is constant. Indeed, since the quotient above is monotone,
then it must be constant and thus R = λ (see proof of Theorem 5.17).

Remark 5.19. We point out here that the proofs of Theorem 5.16 and 5.17 only require
the boundedness conditions to hold for spacelike planes.

5.2.3 Characterization of locally isotropic Lorentzian manifolds

We recall that a Lorentzian manifold is said to be locally isotropic if for each point m ∈ M
and all pair of non–null vectors x, y ∈ TmM with g(x, x) = g(y, y) there exists a local
isometry of (M, g) fixing m and transforming x into y.
IfM is locally isotropic, volMn−1

(
Gξ

m(r)
)
does not depend on the instantaneous observer

ξ ∈ TmM . Moreover, since locally isotropic Lorentzian manifolds are locally homogeneous,
it follows that volMn−1

(
Gξ

m(r)
)
does not depend on the center m. The following theorem

shows that local isotropy can be recovered from the properties of the volume of geodesic
celestial spheres [46].

Theorem 5.20. Let
(
Mn+1, g

)
be a Lorentzian manifold. If the volume of the geodesic

celestial spheres Gξ
m(r) is independent of the observer field ξ ∈ TM , then M has constant

sectional curvature.

Proof. If the volume of each geodesic celestial sphere Gξ
m(r) is independent of the instanta-

neous observer ξ ∈ TmM , then the coefficients A(ξ) and B(ξ) in the power series expansion
of voln−1(Gξ

m(r)) in Theorem 5.11 are independent of ξ. Now, as −(τ + 2ρξξ)/6 = A(ξ) is
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constant, using Lemma 5.13, one has that that M is Einstein, and thus ρ = τ
n+1g. Hence,

it follows from the second coefficient B(ξ) in Theorem 5.11 that

constant = B(ξ) = − 1
120

‖R‖2 + 5n
2 + 38n+ 61
360(n+ 1)2

τ 2 +
1
18

n∑
i,j=1

R2ξiξj −
1
15

n∑
i,j,k=1

R2ξijk.

With the notation of Lemma 5.14 we have

ωξξξξ =
n∑

i,j=0

εiεjR
2
ξiξj =

n∑
i,j=1

R2ξiξj and ηξξ =
n∑

i,j,k=0

εiεjεkR
2
ξijk =

n∑
i,j,k=1

R2ξijk − 2
n∑

i,j=1

R2ξiξj,

and it follows from that lemma that the sectional curvature of M is constant.

Corollary 5.21. Let
(
Mn+1, g

)
be a Lorentzian manifold. If the volume of each geodesic

celestial sphere of sufficiently small radius coincides with the corresponding one of a geodesic
celestial sphere of the same radius in a space of constant sectional curvature λ, then M
has constant sectional curvature λ.

Proof. Theorem 5.9 implies that in a Lorentzian manifold of constant sectional curvature
the volume of geodesic celestial spheres does not depend on the instantaneous observer.
Using Theorem 5.20 we deduce that M has constant sectional curvature λ. Doing the
power series expansion of the formula in Theorem 5.9 we get

voln−1
(
GN(λ)(r)

)
= cn−1rn−1

{
1− n − 1

6
λ r2 +O

(
r4
)}

.

Comparing the coefficient of r2 in the above power series expansion with the corresponding
one in the formula of Theorem 5.11 we get that the sectional curvature is exactly λ.

Since the concept of local isotropy is equivalent to constant sectional curvature for
Lorentzian manifolds, the results of this section can be condensed for n + 1 ≥ 3 in the
following

Theorem 5.22. A Lorentzian manifold is locally isotropic if and only if the volume of its
geodesic celestial spheres is independent of the instantaneous observer.

5.3 Total curvatures of geodesic celestial spheres

The main purpose of this section is to investigate the curvature of geodesic celestial spheres
by focusing on the properties of their total curvatures associated with simple Weyl invari-
ants. We show that Lorentzian manifolds of constant sectional curvature can be charac-
terized by means of total curvatures of geodesic celestial spheres (see Theorem 5.26).
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From now on, all geometric objects defined on a geodesic celestial sphere will be denoted
using the symbol ˆ. LetW be a simple Weyl invariant. We define the total scalar curvature
of the geodesic celestial sphere Gξ

m(r) associated with the simple Weyl invariant W as [42]

Wm(ξ, r) =
∫

Gξ
m(r)

Ŵ .

As stated before, Ŵ denotes the corresponding simple Weyl invariant in the geodesic
celestial sphere Gξ

m(r).
As it was the case for the volume of geodesic celestial spheres, it is clear from the

definition that the total scalar curvature associated with a simple Weyl invariant depends
on the radius r, the base point m, the instantaneous observer ξ ∈ TmM and the Weyl
invariant W involved in its construction. If the manifold has constant sectional curvature
there is no dependence on the point or the instantaneous observer. In fact, an exact formula
may be obtained.

Theorem 5.23. Let
(
Mn+1, g

)
a Lorentzian manifold of constant sectional curvature λ.

For each point m ∈ M and each instantaneous observer ξ ∈ TmM the total scalar curvature
Wm(ξ, r) associated with the simple Weyl invariant W of degree 2ν is

voln−1
(
Gξ

m(r)
)
=



cn−1(n − 1)(n − 2)AW (n − 1)
(
sin r

√
λ√

λ

)n−1−2ν
, λ > 0,

cn−1(n − 1)(n − 2)AW (n − 1)rn−1−2ν , λ = 0,

cn−1(n − 1)(n − 2)AW (n − 1)
(
sinh r

√
−λ√

−λ

)n−1−2ν
, λ < 0,

where AW is the polynomial given in Remark 4.2.

Proof. Since the manifold M has constant curvature, the submanifold M̃ = expm

(
U ∩ ξ⊥

)
defined in the previous section has also sectional curvature λ. The geodesic celestial sphere
Gξ

m(r) is the geodesic sphere of radius r centered at m of the n–dimensional Riemannian
submanifold M̃ . Then, the total scalar curvature of the geodesic celestial sphere Gξ

m(r)
associated withW is the total scalar curvature of the geodesic sphereGm(r) of M̃ associated
with W . The latter was given in Example 4.17 for positive curvature. For zero and
negative curvature we get analogous expressions, the ones appearing in the statement of
this theorem.

In order to derive a characterization of locally isotropic Lorentzian manifolds we need
the first terms of the power series expansion of r �→ Wm(ξ, r). These are calculated in
what follows. We assume that {e0 = ξ, e1, . . . , en} is an orthonormal basis of TmM .
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Theorem 5.24. Let (Mn+1, g) be a Lorentzian manifold and let W be a simple Weyl
invariant of order 2ν. Then, we have :

Wm(ξ, r) = cn−1rn−1−2ν
{
(n − 1)(n − 2)AW (n − 1)

− r2

6n
(n − 2)(n − 2ν − 1)AW (n − 1) {τ + 2ρξξ}

+
r4

n(n+ 2)

(
C1W (n − 1) ‖R‖2 + C2W (n − 1) ‖ρ‖2 + C3W (n − 1) τ 2

−(n − 2)(n − 2ν − 1)
20

AW (n − 1)∆τ + 2C2W (n − 1)
n∑

i,j=1

ρijRξiξj

+
(
4C1W (n − 1)− (n − 2)(n − 2ν − 1)

30
AW (n − 1)

) n∑
i,j,k=1

R2ξijk

+

(
2C2W (n − 1)− (n − 2)(n − 2ν − 1)

45
AW (n − 1)

) n∑
i=1

ρ2ξi + 4C
3
W (n − 1)τρξξ

+
(
−C2W (n − 1) + 4C3W (n − 1)

)
ρ2ξξ +
(
−4C1W (n − 1) + C2W (n − 1)

) n∑
i,j=1

R2ξiξj

−(n − 2)(n − 2ν − 1)
20

AW (n − 1)
(
2∆ρξξ +∇2ξξτ + 2∇2ξξρξξ

))
+O (r6)

}
(m),

where AW , C1W , C
2
W and C3W are the same polynomials as in Theorem 4.20.

Proof. It follows from Theorem 4.20 and the fact that the geodesic celestial sphere Gξ
m(r)

is the geodesic sphere centered at m in the Riemannian submanifold expm(U∩ξ⊥) [42].

Remark 5.25. Of particular interest is the case W = 1, where we consider W as a simple
Weyl invariant of order 0. Then Wm(ξ, r) is nothing but the volume of a geodesic celestial
sphere, and one has Theorem 5.11 as a particular case.

In what follows we generalize Theorem 5.22 to total scalar curvatures of geodesic ce-
lestial spheres associated with simple Weyl invariants. Afterwards, we deal with the usual
lower degree simple Weyl invariants and we see that the abstract conditions in the following
theorem can be dropped.

Theorem 5.26. Let (Mn+1, g) be a Lorentzian manifold with n + 1 > 3 and W a simple
Weyl invariant of order 2ν. Assume Wm(ξ, r) is independent of the infinitesimal observer
ξ ∈ TM and that the following relations hold

2ν + 1 �= n, AW (n − 1) �= 0,

4C1W (n − 1) + C2W (n − 1)− (n − 2)(n − 1− 2ν)
15

AW (n − 1) �= 0,

4(n+ 2)C1W (n − 1)− 3C2W (n − 1)− (n − 2)(n − 1)(n − 1− 2ν)
30

AW (n − 1) �= 0.

Then, M has constant sectional curvature.
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Proof. SinceWm(ξ, r) is independent of ξ ∈ TM , it is clear that the coefficient of r2 in the
power series expansion of Theorem 5.24 must be constant. Since n+ 1 > 3 using the first
two conditions we have 0 �= (n − 2)(n − 2ν − 1)AW (n − 1) and thus τ + 2ρξξ is constant.
Then Lemma 5.13 implies that M is Einstein.
Since M is Einstein, the power series expansion of Theorem 5.24 reduces to

W(ξ, r) = cn−1rn−1−2ν
{
(n − 1)(n − 2)AW (n − 1)

− r2

6n(n+ 1)
(n − 2)(n − 2ν − 1)(n − 1)AW (n − 1)τ

+
r4

n(n+ 2)

{
C1W (n − 1) ‖R‖2 + 1

(n+1)2

(
(n−2)C2W (n − 1) + (n − 1)2C3W (n − 1)

)
τ 2

+
(
4C1W (n − 1)− (n − 2)(n − 2ν − 1)

30
AW (n − 1)

) n∑
i,j,k=1

R2ξijk

+
(
−4C1W (n − 1) + C2W (n − 1)

) n∑
i,j=1

R2ξiξj

}
+O (r6)

}
(m).

Proceeding as before, the coefficient of r4 must also be constant and thus

constant = C1W (n − 1) ‖R‖2 +
(
4C1W (n − 1)− (n−2)(n−2ν−1)

30 AW (n − 1)
) n∑

i,j,k=1

R2ξijk

+
(
−4C1W (n − 1) + C2W (n − 1)

) n∑
i,j=1

R2ξiξj.

The last two conditions of the statement of the theorem ensure that Lemma 5.14 can be
applied and thus, M has constant sectional curvature.

Corollary 5.27. Let (Mn+1, g) be a Lorentzian manifold and W a simple Weyl invariant.
If for each small radius r and each ξ ∈ TM , Wm(ξ, r) is the same as the corresponding
one in an (n+1)–Lorentzian manifold of constant sectional curvature λ and the conditions
in Theorem 5.26 hold, then M is a Lorentzian manifold of constant sectional curvature λ.

Proof. A Lorentzian manifold of constant sectional curvature is locally isotropic, so the
total scalar curvatures of geodesic celestial spheres do not depend on the infinitesimal ob-
server ξ. Thus, from Theorem 5.26 it follows thatM has also constant sectional curvature.
From Theorem 5.23 we get that the power series expansion of Wm(ξ, r) for a Lorentzian
manifold of constant sectional curvature becomes

Wm(ξ, r) = cn−1 (n − 1)(n − 2)AW (n − 1) rn−1−2ν
{
1− (n − 2ν − 1)

6
λ r2

+
(n − 1− 2ν)(5n − 10ν − 7)

360
λ2 r4 +O (r6)

}
.
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Comparing the coefficient of r2 in the power series expansion of Theorem 5.24 with the
corresponding one in the equation above gives τ = n(n + 1)λ, and hence the curvature is
exactly λ.

As an application of Theorem 5.26 we show how the simple Weyl invariants of lower
degree can be used for characterizing the Lorentzian manifolds of constant sectional cur-
vature. First of all, when n = 2 geodesic celestial spheres are flat, and hence all scalar
curvature invariants vanish. When n = 3 geodesic celestial spheres are 2–dimensional
Riemannian manifolds. Therefore, by Gauss–Bonnet Theorem

∫
Gξ

m(r)
τ̂ = 8π, which makes

τ useless for the purpose of characterizing Lorentzian manifolds by means of total scalar
curvatures. However, for higher dimension we have

Corollary 5.28. Let (Mn+1, g) be a Lorentzian manifold with n ≥ 4 such that
∫

Gξ
m(r)

τ̂

depends only on the radius. Then, M has constant sectional curvature.

Proof. It follows from Theorem 5.26 taking into account that Aτ (n − 1) = 1, C1τ (n − 1) =
−(n + 2)(n + 3)/120 and C2τ (n − 1) = (n2 + 5n + 21)/45, [42], [44]. See Example 4.3 and
Section 4.3.1 for details.

The space of simple Weyl invariants of degree four is generated by τ 2, ‖R‖2 and ‖ρ‖2.
Using Example 4.3 and Section 4.3.1 we get the following result. We delete the details.

Corollary 5.29. Let (Mn+1, g) be a Lorentzian manifold with n �= 5. The following
statements are equivalent:

(i)
∫

Gξ
m(r)

‖R̂‖2 depends only on the radius.

(ii)
∫

Gξ
m(r)

‖ρ̂‖2 depends only on the radius.

(iii)
∫

Gξ
m(r)

τ̂ 2 depends only on the radius.

(iv) M has constant sectional curvature.

A similar characterization is obtained for simple Weyl invariants of degree six. A basis
of this vector space is the first column of (4.2).

Corollary 5.30. Let (Mn+1, g) be a Lorentzian manifold with n �= 7. The following
statements are equivalent:

(i)
∫

Gξ
m(r)

τ̂ 2 depends only on the radius.

(ii)
∫

Gξ
m(r)

τ̂‖ρ̂‖2 depends only on the radius.

(iii)
∫

Gξ
m(r)

τ̂‖R̂‖2 depends only on the radius.

(iv)
∫

Gξ
m(r)
ˇ̂ρ depends only on the radius.
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(v)
∫

Gξ
m(r)

〈ρ̂ ⊗ ρ̂,
¯̂
R〉 depends only on the radius.

(vi)
∫

Gξ
m(r)

〈ρ̂,
˙̂
R〉 depends only on the radius.

(vii)
∫

Gξ
m(r)
ˇ̂
R depends only on the radius.

(viii)
∫

Gξ
m(r)

ˇ̂̄
R depends only on the radius.

(ix) M has constant sectional curvature.
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Open problems

We are interested in the following problems:

• The volume conjecture of A. Gray and L. Vanhecke remains open in its full generality.
In view of the examples given in [83] where the authors build manifolds such that
the first terms of the power series expansion of the volume of their geodesic spheres
vanish, it seems that this power series expansion approach is not sufficient to attack
the problem at this stage. Hence, a new method or a more powerful description of
these power series expansions is needed. On the other hand, similar questions can be
stated for total scalar curvatures and the same comments apply. Nonetheless, the fact
that certain curvature invariants can be used to characterize two–point homogenous
spaces whereas others with the same degree cannot, poses the following question:
what is the significance of those total curvatures which can be used to detect two–
point homogeneous spaces and why do they provide such a characterization?

• A similar problem can be stated for ball–homogeneity. It is not known whether ball–
homogeneity implies homogeneity or whether the notions of W–homogeneity (that
is, the fact that the total curvatures associated with W do not depend on the base
point) are equivalent for different scalar curvature invariants W . Similar questions
can be stated for disk–homogeneity.

• In Chapter 5 we carried out the characterization of Lorentzian manifolds of constant
sectional curvature. It is an interesting question to determine whether other mani-
folds such as Robertson–Walker or Schwarzschild space–times can be detected using
geometric features associated with geodesic celestial spheres.
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Part III

Real hypersurfaces in the complex
hyperbolic space
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The aim of submanifold geometry is to understand geometric invariants of submanifolds
and to classify submanifolds according to given geometric data. In Riemannian geometry,
the structure of a submanifold is encoded in the second fundamental form and its geometry
is controlled by the equations of Gauss, Codazzi and Ricci. The situation simplifies for
hypersurfaces, as the Ricci equation is trivial and the second fundamental form can be
written in terms of a self–adjoint tensor field, the shape operator. The eigenvalues of the
shape operator, the so–called principal curvatures, are the simplest geometric invariants
of a hypersurface. Two basic problems in submanifold geometry are to understand the
geometry of hypersurfaces for which the principal curvatures are constant, and to classify
them. This problem has a long history and over the years many surprising features have
been discovered.
É. Cartan [28] showed that in spaces of constant curvature a hypersurface has constant

principal curvatures if and only if it is isoparametric. There is a remarkable interplay
between the geometry and topology of isoparametric hypersurfaces in spheres Sn. Using
methods from algebraic topology, H. F. Münzner [101] proved that the number g of dis-
tinct principal curvatures of an isoparametric hypersurface in Sn is 1, 2, 3, 4 or 6. In a
series of papers, [28], [29], [30], [31], É. Cartan investigated isoparametric hypersurfaces
in spheres and classified those for which g is at most three. It follows from his work
that all isoparametric hypersurfaces in spheres with g ≤ 3 are open parts of homogeneous
hypersurfaces. It is obvious that homogeneous hypersurfaces have constant principal cur-
vatures. The homogeneous hypersurfaces in spheres have been classified by W.–Y. Hsiang
and H. B. Lawson [89]. It follows from this classification that homogeneous hypersurfaces
with g = 6 exist only in spheres of dimension 7 and 13. U. Abresch [1] then proved that
isoparametric hypersurfaces with g = 6 exist only in S7 and S13. This naturally leads
to the conjecture that any isoparametric hypersurface in a sphere with g = 6 is an open
part of a homogeneous hypersurface. This was answered affirmatively by J. Dorfmeister
and E. Neher [51] for n = 7, but for n = 13 the problem is still open. Surprisingly, for
g = 4 there are inhomogeneous isoparametric hypersurfaces. The first such examples were
constructed by H. Ozeki and M. Takeuchi [110]. D. Ferus, H. Karcher and H.–F. Münzner
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[58] then constructed series of inhomogeneous isoparametric hypersurfaces in spheres using
representations of real Clifford algebras. A remarkable result by S. Stolz [121] says that
the principal curvatures and their multiplicities of any isoparametric hypersurface with
g = 4 in a sphere coincide with the ones of either the homogeneous hypersurfaces or the
hypersurfaces constructed by D. Ferus, H. Karcher and H.–F. Münzner. T. Cecil, Q.–S.
Chi and G. Jensen [32] recently proved that with 10 possible exceptions all isoparametric
hypersurfaces in spheres with g = 4 are among the known homogeneous or inhomogeneous
examples.
Whereas the classification problem of isoparametric hypersurfaces in spheres is rather

involved, it is much simpler in its non–compact dual, the real hyperbolic space RHn. In
fact, using the Gauss and Codazzi equations, É Cartan [28] showed that the number g
of distinct principal curvatures of an isoparametric hypersurface in RHn is either 1 or
2. This easily leads to a complete classification: geodesic hyperspheres, horospheres, to-
tally geodesic hyperplanes and its equidistant hypersurfaces, tubes around totally geodesic
subspaces of dimension greater or equal than one. As a consequence, all isoparametric
hypersurfaces in real hyperbolic spaces are open parts of homogeneous hypersurfaces.
The isoparametric hypersurfaces in Euclidean spaces were classified by T. Levi–Civita

[97] for dimension 3 and by B. Segre [119] for arbitrary dimensions. Also here all isopara-
metric hypersurfaces are open parts of homogeneous hypersurfaces.
In complex space forms the notions of isoparametric hypersurfaces and hypersurfaces

with constant principal curvatures are not the same [127]. In fact, Q.–M. Wang [130]
gave an example of an isoparametric hypersurface in complex projective space CP n with
non–constant principal curvatures. The current state of the classification problem of hy-
persurfaces with constant principal curvatures in complex space forms is as follows. We
continue to denote by g the number of distinct principal curvatures. To emphasize that the
real codimension of the hypersurface is one (and not two as it is for a complex hypersurface)
we use the notion of a real hypersurface. Y. Tashiro and S. I. Tachibana [126] proved that
there are no totally umbilical real hypersurfaces in non–flat complex space forms. Thus
the case g = 1 cannot occur. If ξ is a (local) unit normal field of a real hypersurface M in
a complex space form M̄ , and J denotes the complex structure of M̄ , then Jξ is tangent to
M everywhere. The vector field Jξ is called the Hopf vector field on M . The hypersurface
M is said to be a Hopf hypersurface if Jξ is a principal curvature vector of M everywhere.
We assume n ≥ 2.
Using the classification of homogeneous hypersurfaces in spheres and the Hopf map

S2n+1 → CP n, R. Takagi [123] derived the classification of homogeneous real hypersurfaces
in complex projective spaces. All of them are Hopf hypersurfaces, and the number g of
distinct principal curvatures is either 2, 3 or 5. R. Takagi then proved in [124] and [125]
that every real hypersurface with two or three distinct constant principal curvatures in
CP n is an open part of a homogeneous hypersurface. The case g = 3 and n = 2 was
omitted by R. Takagi and settled later by Q.-M. Wang [131]. M. Kimura [91] showed that
every Hopf hypersurface in CP n with constant principal curvatures is an open part of a
homogeneous hypersurface in CP n. It is still unknown whether for any real hypersurface
with constant principal curvatures in CP n the number g is necessarily 2, 3 or 5. Also,
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there is no known example of a real hypersurface with constant principal curvatures in
CP n which is not an open part of a homogeneous real hypersurface.
S. Montiel [99] proved that every real hypersurface with two distinct constant principal

curvatures in complex hyperbolic space CHn, n ≥ 3, is an open part of a geodesic sphere,
of a horosphere, of a tube around a totally geodesic CHn−1 ⊂ CHn, or of a tube with
radius log(2+

√
3) around a totally geodesic RHn ⊂ CHn. All these real hypersurfaces are

homogeneous Hopf hypersurfaces. For n = 2 this problem is still open. J. Berndt derived
in [10] the classification of all Hopf hypersurfaces with constant principal curvatures in
CHn. Any such hypersurface is an open part of a horosphere, of a tube around a totally
geodesic CHk ⊂ CHn for some k ∈ {0, . . . , n − 1}, or of a tube around a totally geodesic
RHn ⊂ CHn. All these tubes and horospheres are homogeneous hypersurfaces. This
naturally leads to the question whether all homogeneous real hypersurfaces in CHn are
necessarily Hopf hypersurfaces. The answer to this question is negative. In [11] J. Berndt
constructed homogeneous hypersurfaces in CHn which are not Hopf hypersurfaces.
J. Berndt and M. Brück constructed in [12] new examples of homogeneous real hyper-

surfaces in CHn. J. Berndt and Tamaru [16] showed recently that these new examples,
together with the above mentioned homogeneous real hypersurfaces, provide the complete
classification of homogeneous real hypersurfaces in CHn. The number of distinct principal
curvatures of all these homogeneous real hypersurfaces is either 2, 3, 4 or 5. No examples
are known of real hypersurfaces with constant principal curvatures in CHn which are not
an open part of a homogeneous real hypersurface. It is also not known whether for any real
hypersurface with constant principal curvatures in CHn the number g of distinct principal
curvatures must necessarily be 2, 3, 4 or 5.

In Chapter 6 we study cohomogeneity one actions on the complex hyperbolic space.
Based on the classification given by J. Berndt and H. Tamaru, we focus on the geometry
of the orbits of the cohomogeneity one actions described in [16]. This is accomplished in
Section 6.3. In Chapter 7 we carry out the classification of real hypersurfaces in CHn

with three distinct constant principal curvatures. In particular, our result implies that
real hypersurfaces in complex hyperbolic spaces with at most three constant principal
curvatures are homogeneous submanifolds.
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Chapter 6

Cohomogeneity one actions on the
complex hyperbolic space

In this chapter we study the geometry of the orbits of a cohomogeneity one action on CHn

[15]. In Section 6.1 we give the basic definitions and concepts needed to describe cohomo-
geneity one actions. We explain some facts of cohomogeneity one actions on Hadamard
manifolds and give an overview of the situation in Rn and RHn. Then, Section 6.2 is de-
voted to presenting a suitable description of CHn. The conventions and results explained
throughout this section are used in the rest of the chapter, sometimes without explicit
mention to them. Finally, Section 6.3 carries out the study of cohomogeneity one actions
on the complex hyperbolic space with special attention to the description of the singu-
lar orbits of cohomogeneity one actions with one non–totally geodesic singular orbit. In
particular we emphasize Theorems 6.8 and 6.16 as they are used in the following chapter.

6.1 Preliminaries

Let M be a Riemannian manifold and G a Lie group. A G–action on M or an action of G
on M is a map

G × M −→ M
(g, p) �→ gp

such that ep = p for all p ∈ M , where e is the identity of G, and g(hp) = (gh)p for all
g, h ∈ G and p ∈ M . If p ∈ M , then G · p = {gp : g ∈ G} is the orbit of G through
p and Gp = {g ∈ G : gp = p} is the isotropy group of G at p. If M = G · p for some
p ∈ M , then the action of G is said to be transitive and M is called a homogeneous G–
space. Homogeneous spaces are of great interest in differential geometry. See [88] for a
comprehensive introduction to the subject.
An isometric action of G on M is a G–action such that for any fixed g ∈ G, the map

p �→ gp is an isometry of M . From now on, we assume that G is a connected closed
subgroup of the isometry group of M acting on M in the usual way.
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We denote by M/G the set of orbits of the action of G on M and equip M/G with the
quotient topology relative to the canonical projection p ∈ M → G · p ∈ M/G. Since G is a
closed subgroup of the isometry group of M , the quotient space M/G is a Hausdorff space
and each orbit G · p is a closed embedded submanifold [90]. Moreover, Gp is compact, G · p
is a Riemannian homogeneous space G · p = G/Gp and G acts transitively on G · p by
isometries.
D. Montgomery and C. T. Yang introduced in [98] the concept of a slice. This notion

provides the technical machinery which allows us to define a partial ordering on the set of
orbit types. We say that two orbits G · p and G · q have the same orbit type if Gp and
Gq are conjugate in G. This defines an equivalence relation among the orbits of G. We
denote by [G · p] the corresponding equivalence class of G · p and we call [G · p] the orbit
type of G · p. We introduce a partial ordering on the moduli space of orbit types. We put
[G · p] ≤ [G · q] if and only if Gq is conjugate in G to some subgroup of Gp. There exists
a largest orbit type in the moduli space of orbit types. Each representative of this largest
orbit type is called a principal orbit. The union of all principal orbits forms a dense and
open subset of M . Each principal orbit is an orbit of maximal dimension. A non–principal
orbit with the same dimension as a principal orbit is called an exceptional orbit. An orbit
whose dimension is less that the dimension of a principal orbit is called a singular orbit.
A cohomogeneity one action of G on a manifold M is an isometric action of G on M

such that the codimension of each principal orbit is one. We say that two cohomogeneity
one actions are orbit equivalent if there is an isometry of M that maps the orbits of one
action onto the orbits of the other action.
An embedded submanifold of a Riemannian manifold M is said to be extrinsically

homogeneous, if there exists an isometry of M that acts transitively on the submanifold
and leaves it invariant. Cohomogeneity one actions are intimately related to extrinsically
homogeneous hypersurfaces. Indeed the classification problem of cohomogeneity one ac-
tions up to orbit equivalence is equivalent to the classification of extrinsically homogeneous
hypersurfaces up to isometry congruence.
P. S. Mostert [100] and L. Bérard Bergery [8] proved that the orbit space M/G of a co-

homogeneity one action is homeomorphic to R, S1, [0, 1] or [0,∞). This result implies that
a cohomogeneity one action has at most two singular or exceptional orbits corresponding
to the boundary points of M/G. If there exists one singular orbit, each principal orbit
is geometrically a tube around the singular orbit. If there are no singular or exceptional
orbits, in which case M/G is homeomorphic either to R or S1, the orbits of the action of
G on M form a Riemannian foliation on M . Moreover, since principal orbits are always
homeomorphic to each other, the projection M → M/G is a fiber bundle.
Assume G is a connected closed subgroup of the isometry group of M acting on M

with cohomogeneity one. Let F be a singular or exceptional orbit of the action. Then, the
isotropy group Gp at p ∈ F acts transitively on the unit sphere of the normal space of F
at p. This implies that any singular or exceptional orbit of a cohomogeneity one action is
minimal [12]. Moreover, if dim(G · p) < (dimM − 1)/2 then G · p is totally geodesic in M
[112].
From now on we assume that M is a Hadamard manifold, that is, a connected, simply
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connected, complete Riemannian manifold of non–positive curvature. As M is simply
connected, M/G cannot be homeomorphic to S1. This follows from the exact homotopy
sequence of a fiber bundle with connected fibers and base space S1

· · · → π1(M)→ π1(M/G)→ π0(F )→ · · · .

where F is the fiber. A cohomogeneity one action on a Hadamard manifold cannot have
exceptional orbits and it can have at most one singular orbit. Therefore, M/G is homeo-
morphic to R or to [0,∞).
The above assertions can be improved in the following way (see [12] and [111]).

Theorem 6.1. Let G be a connected closed subgroup of the isometry group of an n–
dimensional Hadamard manifold M acting on M with cohomogeneity one. Then one of
the following two possibilities holds:

(a) All orbits are principal and the isotropy group at any point is a maximal compact sub-
group of G. Any orbit is diffeomorphic to Rn−1 and there exists a solvable connected
closed subgroup of G acting simply transitively on each orbit.

(b) There exists exactly one singular orbit F and the isotropy group at any point of F
is a maximal compact subgroup of G. The singular orbit is diffeomorphic to Rk for
some k ∈ {0, . . . , n − 2} and there exists a solvable connected closed subgroup of G
acting simply transitively on F . Any principal orbit is a tube around F and thus
diffeomorphic to Rk × Sn−k−1.

Among all Hadamard manifolds, of special interest are the Euclidean space and all
rank one symmetric spaces of non–compact type. The cohomogeneity one actions on the
Euclidean space were classified by T. Levi–Civita [97] and B. Segre [119].

Theorem 6.2. Let G be a Lie subgroup of the isometry group of Rn, Rn ×τ O(n), acting
on Rn with cohomogeneity one. Then the action of G is orbit equivalent to one of the
following actions:

(i) The action of SO(n) ⊂ Rn ×τ O(n). The singular orbit is a point and the principal
orbits are spheres.

(ii) The action of Rk ×τ SO(n − k) ⊂ Rn ×τ O(n) for some k ∈ {1, . . . , n − 2}. There
is one singular orbit which is a totally geodesic Rk ⊂ Rn and the principal orbits are
tubes around it.

(iii) The action of Rn−1 ⊂ Rn ×τ O(n). All orbits are principal and totally geodesic
hyperplanes.

The classification of cohomogeneity one actions on the real hyperbolic space follows from
the work by É. Cartan [28], where he classified all the hypersurfaces with constant principal
curvatures in the real hyperbolic space RHn. Every principal orbit of a cohomogeneity one
action has constant principal curvatures. Hence, Cartan’s result applies and we get
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Theorem 6.3. Every cohomogeneity one action on the the real hyperbolic space RHn =
SO0(1, n)/SO(n) is orbit equivalent to one of the following cohomogeneity one actions:

(i) The action of SO(n) ⊂ SO0(1, n). The singular orbit is a point and the principal
orbits are geodesic spheres.

(ii) The action of SO0(1, k)× SO(n − k) ⊂ SO0(1, n) for some k ∈ {1, . . . , n − 2}. The
singular orbit is a totally geodesic RHk ⊂ RHn and the principal orbits are tubes
around it.

(iii) The action of SO0(1, n − 1) ⊂ SO0(1, n). All the orbits are principal, one orbit is a
totally geodesic RHn−1 ⊂ RHn and the others are equidistant hypersurfaces to it.

(iv) The action of the nilpotent subgroup in an Iwasawa decomposition of SO0(1, n). All
the orbits are principal and the resulting foliation is the horosphere foliation on RHn.

As we have just seen, every singular orbit of a cohomogeneity one action on Rn or
RHn is totally geodesic. This is no longer true in the other rank one symmetric spaces of
non–compact type. Examples of cohomogeneity one actions on CHn, HHn and OH2 with
one non–totally geodesic singular orbit were given in [12]. Moreover, the moduli space of
orbit equivalent cohomogeneity one actions on Rn and RHn is finite. This does not hold
for the other hyperbolic spaces either.
J. Berndt and H. Tamaru derived in [16] the classification of cohomogeneity one actions

on the complex hyperbolic space. We devote the rest of this chapter to the study of the
geometry of the orbits of that list.

6.2 The complex hyperbolic space as a solvable Lie
group

Let CHn, n ≥ 2, denote the n–dimensional complex hyperbolic space equipped with the
Fubini–Study metric of constant holomorphic sectional curvature −1 which we denote by
g = 〈·, ·〉. Let J be its complex structure. Thus the curvature tensor of the complex
hyperbolic space can be written as

R̄XY Z = −1
4

(
〈X, Z〉Y − 〈Y, Z〉X + 〈JX, Z〉JY − 〈JY, Z〉JX + 2〈JX, Y 〉JZ

)
for any X, Y, Z ∈ Γ(TCHn). Hence the Jacobi equation is written as

ζ ′′(t)− 1
4

(
ζ(t) + 3〈ζ(t), Jc′ξ(t)〉Jc′ξ(t)

)
= 0,

along a unit speed geodesic cξ determined by the initial condition c′ξ(0) = ξ ∈ TCHn.
We denote by CHn(∞) the ideal boundary of CHn. Each element x of CHn(∞) is an

equivalence class of asymptotic geodesics in CHn. Two geodesic c1 and c2 are asymptotic
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if limt→∞ d(c1(t), c2(t)) ≤ C for some constant C > 0, where d is the Riemannian distance
function of CHn. We equip CHn∪CHn(∞) with the cone topology. Then, CHn∪CHn(∞)
becomes homeomorphic to a closed ball in the Euclidean space R2n. For any p ∈ CHn

and any x ∈ CHn(∞) there exists a unique unit speed geodesic c through p such that
limt→∞ c(t) = x. Thus, the choice of a point at infinity x ∈ CHn(∞) is equivalent to the
choice of a unit geodesic vector field on CHn: the one whose integral curves are geodesics
that converge to x. See [53] for more details.
Let KAN be the Iwasawa decomposition of the identity component of the isometry

group of CHn, which we denote by I0(CHn), with respect to some point o ∈ CHn and
some point x in the ideal boundary CHn(∞) of CHn. The Lie group K coincides with the
isotropy group of I0(CHn) at o and the orbit through o of the one–dimensional Lie group
A is a geodesic in CHn belonging to equivalence class determined by the point at infinity
x. It is known that AN is a connected, simply connected, solvable Lie group that acts
simply transitively on CHn. Thus, we may identify CHn with the Lie group AN equipped
with the left–invariant Riemannian metric 〈·, ·〉. We now describe in more detail the Lie
algebra a ⊕ n of AN . We follow [17].
Let us consider z = R endowed with the quadratic form q(x) = −x2, and denote by

J the standard representation of the Clifford algebra Cl(z, q) ∼= C on the vector space
v = Cn−1, J : Z ∈ Cl(z, q)→ JZ ∈ End(v). We define an inner product 〈·, ·〉 on the vector
space direct sum n = z⊕v by requiring that the induced quadratic form on z is just −q, the
vector spaces z and v are orthogonal and J1 is an orthogonal transformation with respect
to the induced inner product on v. Such inner product exists and is unique. We define a
skew–symmetric bilinear map [·, ·] : n × n → n by the equation

〈[X + U, Y + V ], Z +W 〉 = 〈JZU, V 〉,

where X,Y, Z ∈ z and U, V, W ∈ v. Then, (n, [ , ]) becomes a two–step nilpotent Lie
algebra with center z, called the Heisenberg algebra (of dimension 2n− 1). The connected,
simply connected, nilpotent Lie group N , with Lie algebra n is called the Heisenberg
group (of dimension 2n − 1). It is isomorphic to the nilpotent Lie group in the above
Iwasawa decomposition of I0(CHn). We equip N with the left–invariant Riemannian
metric determined by 〈·, ·〉.
Let us denote by Expn the Lie exponential map of N . Since N is connected, simply

connected and nilpotent, the Lie exponential map Expn is a diffeomorphism [88]. This
implies that N is diffeomorphic to R2n−1. The Campbell–Hausdorff formula simplifies in
the case of a two–step nilpotent Lie group and gives in our case

Expn(X + U) · Expn(Y + V ) = Expn

(
X + Y + U + V +

1
2
[U, V ]
)
,

for any X + U, Y + V ∈ n = z ⊕ v.
The Lie algebra a is one–dimensional. Choose A ∈ a. We extend the previous inner

product 〈·, ·〉 to the vector space direct sum s = a ⊕ n by requiring the following three
conditions. The vector A is a unit vector of a. The Lie algebras a and n are orthogonal.
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The restriction of this inner product to n is just the previously defined one. Again, such an
inner product exists and is unique. We extend the Lie algebra structure of n to the vector
space direct sum a ⊕ n by defining

[A,X] = X, [A,U ] =
1
2

U,

where X ∈ z and U ∈ v. Thus a ⊕ n becomes a solvable Lie algebra. The connected,
simply connected solvable Lie group AN equipped with the left–invariant Riemannian
metric determined by 〈·, ·〉 is isometric to CHn and is isomorphic to the solvable Lie group
in the above Iwasawa decomposition of I0(CHn).
We use the following notation in what follows. Since, z is one dimensional, we may

choose a unit vector Z ∈ z such that JZ is the complex structure J of CHn acting on v.
We may assume as well Z = JA. Then, the Lie algebra structure of n is determined by

[U, V ] = 〈JU, V 〉Z and [Z, U ] = 0,

for any U, V ∈ v.
The definition of the Lie algebra structure on s = a ⊕ n implies that s is a semi–

direct sum of a and n with respect to the algebra homomorphism f : a → der(n) given
by f(A)(X + U) = X + 1

2 U , where der(n) is the Lie algebra of the derivations on n and
X+U ∈ n = z⊕v. Since the Lie group A = Expa(RA) is one–dimensional, we may identify
R = A using the isomorphism t �→ Expa(tA). Thus AN is the semi–direct product of A = R
and the Heisenberg group N , R ×F N , where F (t)(Expn(X + U)) = Expn(e

tX + et/2U).
Then the group structure of AN = R ×F N is determined by(
a,Expn(xZ+U)

)
·
(
b,Expn(yZ+V )

)
=
(
a+ b,Expn

(
xZ+eaY +U +ea/2V +

1
2
[U, V ]
))

.

In particular, this implies that AN is diffeomorphic to R2n as we already knew. To describe
the Lie exponential map Exps of s we first define the function ρ : R → R by

ρ(s) =


es − 1

s
, if s �= 0,

1 , if s = 0.

The function ρ is analytic in R. Then we have

Exps

(
aA+ xZ + U

)
=
(
a,Expn

(
ρ(a)xZ + ρ

(a
2

)
U
))

and the Lie exponential map Exps is a diffeomeorphism.
The standard method for calculating the Levi–Civita connection ∇̄ of a Lie group

equipped with a left–invariant metric yields the following expression in our particular case:

∇̄aA+xZ+U

(
bA+ yZ+V

)
=
(1
2
〈U, V 〉+x y

)
A+
(1
2
〈JU, V 〉− b x

)
Z − b

2
U − y

2
JU − x

2
JV,
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where a, b, x, y ∈ R are real numbers and U, V ∈ v. All vector fields are considered to be
left–invariant.
Let aA + xZ + U be a unit vector in s and c : R → CHn = AN the geodesic in CHn

such that c(0) = o and c′(0) = aA + xZ + U . Then, c lies in a suitable totally geodesic
CH2 ⊂ CHn and we have the explicit expression [17]

c =

(
log

(
1− θ2

χ

)
,Expn

(
2θ(1− a θ)

χ
U +

2x θ2

χ
JU +

2x θ

χ
Z

))
,

where

θ(t) = tanh
t

2
and χ(t) = (1− a θ(t))2 + x2θ(t)2.

Moreover, the tangent vector of the geodesic is given by

c′ =

√
h

χ

{
(1− a θ)2 − x2θ2

}
U +

2x
√

h

χ
θ(1− a θ)JU + xhZ + (log h)′A,

with h(t) = (1− θ(t)2)/χ(t).

We refer to [17], where a comprehensive study of the geometry of Damek–Ricci spaces is
presented. Non–symmetric Damek–Ricci spaces are counterexamples to the Lichnerowicz
conjecture on harmonic spaces [36]. The symmetric Damek–Ricci spaces are the rank
one symmetric spaces of non–compact type. Thus, Damek–Ricci spaces provide a unified
description of all hyperbolic spaces over the real division algebras.

6.3 Cohomogeneity one actions on CHn

The study of cohomogeneity one actions on the complex hyperbolic space relies on the
following classification result given by J. Berndt and H. Tamaru [16].

Theorem 6.4. Let G be a connected closed subgroup of the isometry group of the complex
hyperbolic space acting on CHn, n ≥ 2, with cohomogeneity one. Then the action of G is
orbit equivalent to one of the following cohomogeneity one actions:

(i) The action of S(U(1, k) × U(n − k)) ⊂ SU(1, n) for some k ∈ {0, . . . , n − 1}. The
singular orbit is a totally geodesic CHk ⊂ CHn and the principal orbits are tubes
around it .

(ii) The action of SO0(1, n) ⊂ SU(1, n). The singular orbit is a totally geodesic RHn ⊂
CHn and the principal orbits are tubes around it.

(iii) The action of N . Each orbit is a horosphere in CHn. The orbits of N form a
Riemannian foliation on CHn called the horosphere foliation of CHn.
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(iv) The action of the connected, simply connected Lie subgroup H of AN whose Lie
algebra is h = a ⊕ z ⊕ w, where w is a linear hyperplane of v. All the orbits of this
action are principal, the orbit H · o is minimal and any other orbit is an equidistant
hypersurface to this minimal one.

(v) The action of the group N0K(H)H where H is the connected, simply connected Lie
subgroup H of AN whose Lie algebra is h = a ⊕ z ⊕ w, where w⊥ is a real linear
subspace of v of codimension k ∈ {2, . . . , n − 1}. The singular orbit is minimal and
non–totally geodesic. The principal orbits are tubes around the singular one.

(vi) The action of the group N0K(H)H, where H is the connected, simply connected Lie
subgroup H of AN whose Lie algebra is h = a⊕ z⊕w, where w⊥ is a linear subspace
of v of constant Kähler angle ϕ ∈ (0, π/2). The singular orbit is minimal and non–
totally geodesic. The principal orbits are tubes around the singular one.

Examples (i) and (ii) correspond to cohomogeneity one actions with one totally geodesic
singular orbit. The families (iii) and (iv) are foliations in CHn and as a consequence the
corresponding cohomogeneity one actions do not have singular orbits. The families (v) and
(vi) are cohomogeneity one actions with one non–totally geodesic singular orbit.
Let (M̄, J) be a Hermitian manifold andM a real hypersurface with (local) unit vector

field ξ. Obviously, Jξ is everywhere tangent to M . The vector field Jξ is called the Hopf
vector field of M . We say that M is a Hopf hypersurface if the integral curves of Jξ are
geodesics in M . If M̄ is a Kähler manifold this is equivalent to the condition that Jξ is a
principal curvature vector of M at every point. Principal orbits of examples (i), (ii) and
(iii) in the above theorem are Hopf hypersurfaces while principal orbits of (iv), (v) and
(vi) are not.
The classification of Hopf hypersurfaces with constant principal curvatures is due to J.

Berndt [10]. We use this result later so we state it here.

Theorem 6.5. Let M be a connected Hopf real hypersurface of CHn, n ≥ 2, with constant
principal curvatures. Then M is holomorphically congruent to an open part of one of the
following hypersurfaces:

(i) A tube around a totally geodesic CHk for some k ∈ {0, . . . , n − 1}.

(ii) A tube around a totally geodesic RHn.

(iii) A horosphere in CHn.

We emphasize that each hypersurface in Theorem 6.5 coincides with one of the principal
orbits in cases (i), (ii) or (iii) of Theorem 6.4. Therefore, a connected complete Hopf real
hypersurface is extrinsically homogeneous if and only if it has constant principal curvatures.
In what follows we discuss in detail the above cohomogeneity one actions on the complex

hyperbolic space [15].
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6.3.1 Cohomogeneity one actions with one totally geodesic sin-
gular orbit

Theorem 6.4 states the existence of two families of cohomogeneity one actions on CHn with
one totally geodesic singular orbit. They correspond to cases (i) and (ii) in that theorem.
The following result completely explains both the intrinsic and extrinsic geometry of

totally geodesic submanifolds of CHn.

Theorem 6.6 (Rigidity of totally geodesic submanifolds in CHn). Let M be a
totally geodesic submanifold of CHn. Then M is holomorphically congruent to an open
part of a real hyperbolic space RHk for some k ∈ {1, . . . , n} or to a complex hyperbolic
space CHk for some k ∈ {1, . . . , n− 1}. Any two totally geodesic submanifolds of CHn are
locally holomorphically congruent to each other if and only if they are locally isometric.

Theorem 6.4 implies that a totally geodesic RHk with k ∈ {1, . . . , n − 1} cannot be a
singular orbit of a cohomogeneity one action. We briefly explain the reason [12]. For any
totally geodesic RHk ⊂ CHn there exists a totally geodesic CHk such that RHk ⊂ CHk.
Any isometry of CHn leaving RHk invariant leaves CHk also invariant. The isotropy group
of a cohomogeneity one action on CHn acts transitively on the normal space of RHk at
any point. But normal vectors of RHk which are tangent to CHk remain tangent to CHk;
this is only possible if k = n.
The other totally geodesic hyperbolic spaces of CHn can be singular orbits of cohomo-

geneity one action as Theorem 6.4 shows. In what follows we study the geometry of the
orbits of those actions. We briefly study the two families (i) and (ii) separately.

The action of S(U(1, k)× U(n − k))

The group G = S(U(1, k) × U(n − k)) ⊂ SU(1, n) for some k ∈ {0, . . . , n − 1} acts on
CHn with cohomogeneity one. This action has exactly one singular orbit which is a totally
geodesic CHk ⊂ CHn. Therefore, the second fundamental form is completely determined
by II = 0.
The procedure to construct such a totally geodesic CHk is as follows. Let o ∈ CHn and

choose V ⊂ ToCHn a complex linear subspace of complex dimension k. Then, expo(V ) is
a totally geodesic CHk.
We turn our attention to the principal orbits of this action. If M is one principal

orbit of the action of G then M is a tube of certain radius r > 0 around the singular
orbit. Standard Jacobi vector field theory shows that M has three principal curvatures
(we choose the outward unit normal vector field ξ so that the principal curvatures with
respect to it are positive)

α =
1
2
tanh

r

2
, β =

1
2
coth

r

2
, γ = coth r,

with corresponding multiplicities

mα = 2(n − k − 1), mβ = 2k, mγ = 1.
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Furthermore, Tα and Tβ are complex distributions on M and the Hopf vector field is a
principal curvature vector of γ at any point of M . Thus, M is a Hopf hypersurface. More
specifically, let p ∈ M and let c be the geodesic of CHn defined by the initial condition
c′(0) = ξp. Then c(r) is a point in the totally geodesic CHk. The principal curvature
vector subspace Tα(p) is the parallel translate of Tc(r)CHk along the geodesic c and Tβ(p)
is the parallel translate of T⊥

c(r)CHk � RJc′(r) along the geodesic c.
In the above discussion if k = 0, that is, the singular orbit is a point, then the principal

orbits are geodesic spheres and there are just two eigenvalues α = 1
2 tanh

r
2 and γ = coth r

with multiplicities 2(n − 1) and 1 respectively.
Similarly, if k = n − 1 then the singular orbit is a totally geodesic CHn−1 ⊂ CHn

and the tubes around it have only two constant principal curvatures β = 1
2 coth

r
2 and

γ = coth r with corresponding multiplicities 2(n − 1) and 1.

The action of SO0(1, n)

The group G = SO0(1, n) ⊂ SU(1, n) acts on CHn with cohomogeneity one. This action
has one singular orbit which is a totally geodesic RHn ⊂ CHn. The second fundamental
form is completely determined by II = 0. Such a totally geodesic RHn can be constructed
as follows. Let o ∈ CHn and choose V ⊂ ToCHn a real linear subspace of the tangent
space of real dimension n. Then, expo(V ) is a totally geodesic RHn.
We briefly discuss the geometry of the principal orbits of the action of G. Let M be

one of these orbits. Then, M is a tube of certain radius r > 0 around the singular orbit.
Using standard Jacobi vector field theory we get that M has three principal curvatures.
We choose the outward unit normal vector field ξ so that the principal curvatures with
respect to it are positive. The three principal curvatures are

α =
1
2
tanh

r

2
, β =

1
2
coth

r

2
, γ = tanh r,

with corresponding multiplicities

mα = n − 1, mβ = n − 1, mγ = 1.

The distributions Tα and Tβ are real and the Hopf vector field is a principal curvature vector
of γ. Thus, M is a Hopf hypersurface. Let p ∈ M and let c be the geodesic of CHn defined
by the initial condition c′(0) = ξp. Then c(r) is a point in the totally geodesic RHn. The
principal curvature vector subspace Tα(p) is the parallel translate of Tc(r)RHn � RJc′(r)
along the geodesic c and the principal vector subspace Tβ(p) is the parallel translate of
T⊥

c(r)RHn � Rc′(r) along the geodesic c.

A special situation occurs when r = log(2 +
√
3). In this case β = γ and there are just

two principal curvatures α and γ with multiplicities n − 1 and n. Both Tα(p) and Tγ(p)
keep being real and the Hopf vector field is a principal vector field.
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6.3.2 Cohomogeneity one actions with no singular orbits

Cases (iii) and (iv) in Theorem 6.4 correspond to cohomogeneity one actions on the com-
plex hyperbolic space with no singular orbits. These cohomogeneity one actions arise
naturally from the Iwasawa decomposition of SU(1, n). Different choices for the Iwasawa
decomposition lead to congruent actions.

The horosphere foliation

Let KAN be an Iwasawa decomposition of the isometry group of CHn with respect to
some point o ∈ CHn and some point at infinity x ∈ CHn(∞).
The group N acts on CHn with cohomogeneity one and all the orbits are principal.

The resulting foliation is the well–known horosphere foliation. It contains the Heisenberg
group N as a horosphere and any other orbit is a suitable left translate of it. This foliation
is constructed in the following way. Let c be a unit speed geodesic with c(0) = o. We
define the Busemann function, Bc : CHn → R, with respect to c as

Bc(p) = lim
t→∞
(d(p, c(t))− t),

where d stands for the Riemannian distance function. The level sets of this function are
called horospheres.
A horosphere has the following geometrical interpretation. Consider the geodesic sphere

centered at c(r) of radius r. This geodesic sphere contains o. In the complex hyperbolic
space such geodesic spheres are defined for any r > 0. The limit set of these geodesic
spheres when r tends to infinity is a horosphere. Different choices of o along c give all
the different horospheres of the horosphere foliation determined by the point at infinity
x = limt→∞ c(t).
A horosphere has exactly two distinct principal curvatures

α =
1
2

and β = 1,

with corresponding multiplicities

mα = 2(n − 1) and mβ = 1.

As usual, we choose the unit normal vector ξ so that the principal curvatures are positive.
The principal vector space of α is the orthogonal complement of the complex span of the
unit normal vector ξ. Hence, Tα is a complex distribution. The Hopf vector field Jξ is a
principal curvature vector of the principal curvature β. Hence, every horosphere is a Hopf
hypersurface with constant principal curvatures.
We have the following rigidity result. The proof is an easy consequence of Theorem

6.5. However, we sketch the proof as it was given in [10] because of its geometric interest.

Theorem 6.7 (Rigidity of horospheres in CHn). Let M be a real hypersurface of the
complex hyperbolic space with principal curvatures 1/2 and 1. Then M is an open part of
a horosphere.
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Sketch of the proof. Let ξ denote a local unit vector of M . Using the Gauss and Codazzi
equations one can show that Jξ is a principal vector associated with the eigenvalue 1. For
any p, let cp be the geodesic cp(t) = expp(tξp). For r ≥ 0 let Φr be the map defined by
Φr(p) = expp(rξp). Let v ∈ TpM . Using Jacobi vector field theory one gets Φr∗(v) =
e−r/2Bv(r) if v ∈ T1/2(p) and Φr∗(v) = e−rBv(r) if v ∈ RJξp. This implies ‖Φr∗(v)‖ ≤
e−r/2‖v‖ for all v ∈ TM . Let d denote the Riemannian distance function of CHn and dM

the Riemannian distance function of M . The above inequality shows that d(cp(r), cq(r)) ≤
e−r/2dM(p, q) for any p, q ∈ M and r ≥ 0. Using the triangle inequality we get

d(p, co(t))− t = d(p, co(t))− d(p, cp(t)) ≤ d(cp(t), co(t)) ≤ e−t/2dM(p, o).

Then the Busemann function verifies Bc(p) = 0 for all p ∈ M , which proves that M is an
open part of a horosphere.

The solvable foliation

As usual, let a⊕ z⊕v be the Lie algebra of the solvable part of the Iwasawa decomposition
KAN with respect to some o ∈ CHn and x ∈ CHn(∞). Let us take w a linear hyperplane
in v. Then h = a ⊕ z ⊕ w is a Lie subalgebra of a ⊕ z ⊕ v of codimension one. If H
is the connected, simply connected Lie subgroup whose Lie algebra is h, then H acts on
CHn with cohomogeneity one. The resulting cohomogeneity one action has no singular
orbits and therefore induces a foliation on CHn. We call it the solvable foliation of CHn.
Different choices of w lead to congruent actions. We mainly follow [11].
The orbit H · o through o is the unique minimal orbit of this action. We study its

geometry in more detail. The maximal complex subspace of c ⊂ h is a Lie subalgebra and
the connected, simply connected Lie subgroup whose Lie algebra is this maximal complex
subspace c acts onH ·o by left translation. The resulting orbit through o is a totally geodesic
CHn−1 ⊂ CHn. Indeed, H · o is ruled by totally geodesic CHn−1 in CHn. The orthogonal
complement h�c is one–dimensional and induces inH ·o an integrable distributionD by left
translation of h� c. Each integral curve of D through p ∈ H ·o is a horocycle in the totally
geodesic RH2 determined by Dp and x ∈ CHn(∞). By definition we denote by W 2n−1

a manifold constructed in this way. As we stated before all W 2n−1 are holomorphically
congruent to each other. In Subsection 6.3.3 we generalize this construction and give more
details about it. For the moment we content ourselves with the present description and
study the geometry of the other orbits.
Any other orbit of the action of H is an equidistant hypersurface to this minimal one.

Any two such orbits are congruent to each other if and only if their distance to H · o is the
same. None of them is ruled by a totally geodesic CHn−1 in the above sense.
Let M denote an orbit of H at a distance r ≥ 0 from H · o. If r = 0 we consider the

orbit H · o itself. The shape operator S of M has exactly three eigenvalues

α =
1
2
tanh

r

2
, β =

3
4
tanh

r

2
− 1
2

√
1− 3
4
tanh2

r

2
, γ =

3
4
tanh

r

2
+
1
2

√
1− 3
4
tanh2

r

2
.
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with corresponding multiplicities

mα = 2n − 3, mβ = 1, mγ = 1.

The principal vector space of α is neither real nor complex. If ξ denotes the unit normal
of M , the Hopf vector field Jξ is not a principal vector field and hence M is not a Hopf
hypersurface. Indeed, Jξ has non–trivial orthogonal projections onto Tβ and Tγ.
For the orbit H · o we have r = 0 and the principal curvatures become 0, −1/2 and

1/2 with multiplicities 2n − 3, 1 and 1. We clearly see then that H · o is minimal. The
following theorem shows that this eigenvalue structure is characteristic of this orbit [14].
It is a consequence of Theorem 6.16 which we prove later in Section 6.3.3. We also use
some elementary results of the following chapter which we avoid repeating here to focus
our attention on the main argument.

Theorem 6.8 (Rigidity of the submanifold W 2n−1). Let M be a connected real hy-
persurface in CHn, n ≥ 3, with three distinct principal curvatures 0, −1/2 and 1/2 and
multiplicities 2n − 3, 1 and 1, respectively. Then M is holomorphically congruent to an
open part of the ruled real hypersurface W 2n−1.

Proof. Let ξ be the corresponding unit normal vector of M . Let p ∈ M and suppose that
the orthogonal projection of Jξp onto T0(p) is non–zero. Then T0(p) is a real subspace of
TpCHn by Corollary 7.5. Since dimT0(p) = 2n − 3, this is impossible for n > 3 and we
must have n = 3. As ξp ∈ T0(p)⊥ it follows that Jξp ∈ T0(p). Since orthogonal projection
onto subbundles is a continuous map, this must hold on an open neighborhood U of p in
M . Therefore, U is a Hopf hypersurface in CH3 with three distinct constant principal
curvatures 0, −1/2 and 1/2. According to Theorem 6.5 such a hypersurface does not exist.
We conclude that the orthogonal projection of the Hopf vector field Jξ onto T0 is zero
everywhere.
Now define M+ as the set of all points p ∈ M at which the orthogonal projections of

Jξp onto T−1/2(p) and T1/2(p) are both non–zero. Clearly, M+ is an open subset of M .
Using again the classification of Theorem 6.5 we see that M+ is non–empty.
Let X and Y be local unit vector fields on M with X ∈ Γ(T−1/2) and Y ∈ Γ(T1/2).

Then we can write Jξ = aX + bY with a, b ∈ R such that a2 + b2 = 1. We may assume
that X and Y are chosen such that a, b ≥ 0. As we have seen above, T0(p) cannot be a real
subspace at any point p ∈ M . Thus there exists a non–zero vector field U ∈ Γ(T0) such
that JU ∈ Γ(T0). Since ∇̄J = 0 we have ∇̄UJξ = J∇̄Uξ = JSU = 0, and thus Lemma 7.3
implies

0 = U〈JU, Jξ〉 = 〈∇UJU, Jξ〉 = a〈∇UJU,X〉+ b〈∇UJU, Y 〉 = 1
2
(a2 − b2)〈U,U〉 .

This gives a2 = b2 and hence a = b = 1/
√
2. This shows that M+ is a closed subset of

M . As M+ is open and non–empty, we see that M+ = M . In particular, the length of
the orthogonal projections of the Hopf vector field Jξ onto T−1/2 and T1/2 is constant and
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equal to 1/
√
2. We now define Z = a(X − Y ). Then the second fundamental form of M

has the form of that in Theorem 6.16. Indeed,

II(Z, Jξ) = −〈∇̄ZJξ, ξ〉 ξ = 〈SZ, Jξ〉 ξ = −a2

2
〈X + Y,X + Y 〉 ξ = −1

2
ξ ,

II(Jξ, Jξ) = −〈∇̄JξJξ, ξ〉 ξ = 〈SJξ, Jξ〉 ξ =
a2

2
〈−X + Y,X + Y 〉 ξ = 0,

II(Z, Z) = −〈∇̄ZZ, ξ〉 ξ = 〈SZ, Z〉 ξ =
a2

2
〈X + Y, X − Y 〉 ξ = 0,

and II(U,X) = −〈∇̄UX, ξ〉 = 〈X, SU〉 = 0 for any U ∈ Γ(T0) and X ∈ Γ(TM). The result
now follows from that theorem.

6.3.3 Cohomogeneity one actions with one non–totally geodesic
singular orbit

Let H be a closed subgroup of AN and consider the closed subgroup N0K(H)H ⊂ KAN ,
whereN0K(H) is the identity component of the normalizerNK(H) = {k ∈ K : kHk−1 ⊂ H}
of H in K. Let F = H · o be the orbit of H through o. Then, F = (N0K(H)H) · o and the
following result holds [12].

Theorem 6.9. Let h be the Lie algebra of H. Assume h can be written in the form
h = a ⊕ z ⊕ w, where w⊥ is a linear vector subspace of v of dimension ≥ 2 and constant
Kähler angle ϕ. Then N0K(H)H acts on CHn with cohomogeneity one and F is a singular
orbit of that action. Furthermore, if ϕ ∈ (0, π/2] then F is not totally geodesic in CHn.

Let V ⊂ Cn be a linear subspace. Let v ∈ V be a non–zero vector. The Kähler angle of
V with respect to v is the angle ϕ(v) ∈ [0, π/2] between V and the real span of iv. Thus,
ϕ(v) ∈ [0, π/2] is determined by requiring that (cosϕ(v))‖v‖ is the length of the orthogonal
projection of iv onto V . We say that V has constant Kähler angle ϕ if ϕ(v) = ϕ for all
non–zero vectors v ∈ V .
Linear subspaces with constant Kähler angle are of interest in what follows so we first

derive some results that will be used later.
Let V ⊂ Cn a linear subspace with constant Kähler angle ϕ ∈ [0, π/2]. We denote by J

the endomorphism of Cn consisting of multiplying by the imaginary unit, that is, Jv = iv
for all v ∈ Cn. If ϕ = 0 then V is said to be a complex subspace of Cn. This is equivalent
to JV ⊂ V . If ϕ = π/2 then V is a real subspace of Cn. In this case JV ⊂ Cn � V .
Let CV be the minimal complex vector subspace of Cn containing V and let V ⊥ =

CV � V . We denote by π : CV → V and σ : CV → V ⊥ the orthogonal projections onto
V and V ⊥, respectively. We define P = πJ and F = σJ . If ϕ = 0 we have CV = V ,
π = IdCV , σ = 0, P = J and F = 0. If ϕ = π/2 we have the orthogonal direct sum
decomposition CV = V ⊕ JV and P = J σ, F = J π. In what follows we study the
non–trivial case ϕ ∈ (0, π/2).
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Lemma 6.10. Let V ⊂ Cn be a linear subspace with constant Kähler angle ϕ ∈ (0, π/2).
Then

P 2 = −(cos2 ϕ)π − PFσ, F 2 = −FPπ − (cos2 ϕ)σ,

PF = −(sin2 ϕ)π + PFσ, FP = FPπ − (sin2 ϕ)σ.

Proof. Let x ∈ V . Since V has constant Kähler angle ϕ, by definition, 〈Px, Px〉 =
(cos2 ϕ)〈x, x〉. Iterating the equality 〈P 2x, P 2x〉 = (cos2 ϕ)〈Px, Px〉 = (cos4 ϕ)〈x, x〉. On
the other hand, 〈P 2x, x〉 = 〈JPx, x〉 = −〈Px, Jx〉 = −〈Px, Px〉 = −(cos2 ϕ)〈x, x〉. Since
P 2x has the same length as the component of P 2x in the direction of x we obtain P 2x =
−(cos2 ϕ)x. Then, P 2π = −(cos2 ϕ)π.
Now we have −x = J2x = P 2x + FPx + PFx + F 2x. Taking the component in

V ⊥ we get F 2x = −FPx, that is, F 2π = −FPπ. Taking the component in V we get
−x = P 2x + PFx = −(cos2 ϕ)x + PFx. Thus, PFx = −(sin2 ϕ)x, which implies PFπ =
−(sin2 ϕ)π.
Using the above relations we have JFPx = PFPx+F 2Px = −(sin2 ϕ)Px+(cos2 ϕ)Fx.

Also, 〈Fx, FPx〉 = −〈x, JFPx〉 = −〈x, PFPx〉 = (sin2 ϕ)〈x, Px〉 = 0. Altogether this
means that for any non–zero vector x ∈ V the vectors x, Px, Fx and FPx are orthogonal
and span a complex vector subspace of CV . Moreover, x, Px ∈ V and Fx, FPx ∈ V ⊥.
A similar argument in CV � (Rx⊕RPx⊕RFx⊕RFPx) shows that there exist non–

zero vectors x1, . . . , xk ∈ V such that {x1, Px1, . . . , xk, Pxk} is an orthogonal basis of V
and {Fx1, FPx1, . . . , Fxk, FPxk} is an orthogonal basis of V ⊥. In particular this implies
that the dimension of V is even.
Now let y ∈ V ⊥. We observe that Fy is the projection of Jy onto V ⊥. The existence

of the previous basis of CV shows that we can write y = aFx+ bFPx for some x ∈ V and
a, b ∈ R. For any z ∈ V we have 〈Fz, Fz〉 = 〈Jz, Jz〉 − 〈Pz, Pz〉 = (1 − cos2 ϕ)〈z, z〉 =
(sin2 ϕ)〈z, z〉. This, the above results and the fact that 〈FPx, Fx〉 = 0 implies

〈Fy, Fy〉 = a2〈F 2x, F 2x〉+ 2ab〈F 2x, F 2Px〉+ b2〈F 2Px, F 2Px〉
= a2(sin2 ϕ)(cos2 ϕ)〈x, x〉+ 2ab(cos2 ϕ)〈FPx, Fx〉+ b2(cos4 ϕ)(sin2 ϕ)〈x, x〉
= (cos2 ϕ)

(
a2〈Fx, Fx〉+ b2〈FPx, FPx〉

)
= (cos2 ϕ)〈y, y〉,

which shows that V ⊥ has constant Kähler angle. Reversing the roles of P and F we get
F 2σ = −(cos2 ϕ)σ, FPσ = −(sin2 ϕ)σ, P 2σ = −FPσ. Altogether this gives the result.

The proof of the previous lemma implies

Corollary 6.11. Let V ⊂ Cn be a vector subspace with constant Kähler angle ϕ ∈ (0, π/2).
Then V has even dimension, let us say 2k and there exist non–zero vectors x1, . . . , xk ∈ V
such that {x1, Px1, . . . , xk, Pxk} is an orthogonal basis of V . Moreover, CV � V has also
constant Kähler angle ϕ.

An easy consequence of the definition allows us to calculate the inner product of the
orthogonal projections of a vector onto V and V ⊥.
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Corollary 6.12. Let V ⊂ Cn a linear subspace with constant Kähler angle ϕ ∈ [0, π/2].
We have

(i) If x, y ∈ V then 〈Px, Py〉 = (cos2 ϕ)〈x, y〉 and 〈Fx, Fy〉 = (sin2 ϕ)〈x, y〉.

(ii) If x, y ∈ V ⊥ then 〈Px, Py〉 = (sin2 ϕ)〈x, y〉 and 〈Fx, Fy〉 = (cos2 ϕ)〈x, y〉.
Proof. For ϕ = 0 and ϕ = π/2 the result follows immediately. Let ϕ ∈ (0, π/2). Since V has
constant Kähler angle ϕ, for any x ∈ V we have 〈Px, Px〉 = (cos2 ϕ)〈x, x〉. Polarization
of this equality implies 〈Px, Py〉 = (cos2 ϕ)〈x, y〉 for all x, y ∈ V . Hence 〈Fx, Fy〉 =
〈Jx, Jy〉 − 〈Px, Py〉 = (1 − cos2 ϕ)〈x, y〉 = (sin2 ϕ)〈x, y〉. This proves (i). Statement (ii)
follows easily after taking into account that V ⊥ has also constant Kähler angle ϕ and the
roles of P and F are reversed.

We give a geometric construction of the singular orbits of cohomogeneity one actions
in CHn with one non–totally geodesic singular orbit [15].
Let KAN be the Iwasawa decomposition with respect to o ∈ CHn and x ∈ CHn(∞),

and let k ⊕ a ⊕ n be the corresponding decomposition on Lie algebra level. The nilpotent
algebra n is decomposed into n = z ⊕ v as described in Section 6.2.
Let w be a linear subspace of v such that w⊥ = v � w has constant Kähler angle

ϕ ∈ [0, π/2]. Then h = a⊕ z⊕w is a subalgebra of a⊕ z⊕ v of codimension k. Denote by
H the closed subgroup of AN with Lie algebra h and by N0K(H) the identity component of
the normalizer of H in K. Then G = N0K(H)H ⊂ KAN acts on CHn with cohomogeneity
one. We denote by W 2n−k

ϕ the orbit of G through o. For all g ∈ N0K(H) we have g(H · o) =
g(H · g−1o) = (gHg−1) · o ⊂ H · o, and hence W 2n−k

ϕ = H · o.
If k = 1, then obviously ϕ = π/2, and the orbits of this action form a Riemannian

foliation on CHn which is the solvable foliation described in the previous subsection. In
this case the ruled minimal orbit of this foliation W 2n−1 is exactly W 2n−1

π/2 . In general, if

ϕ = π/2 we denote W 2n−k = W 2n−k
π/2 . If k > 1, then W 2n−k

ϕ has codimension k, and all

other orbits are the tubes around it. If ϕ = 0, then k is even, say k = 2j, and W 2n−k
0 is

a totally geodesic CHn−j ⊂ CHn. In this case the action of G is orbit equivalent to the
action in Theorem 6.4 (i). For this reason we assume ϕ > 0 from now on.
Any two Iwasawa decompositions of KAN are conjugate, and any two linear subspaces

of v with the same dimension and the same Kähler angle are conjugate by g∗ = Ad(g) for
some g in the normalizer of A in K [6]. As a consequence any two submanifolds W 2n−k

ϕ

and W 2n−j
φ with k = j and ϕ = φ are holomorphically congruent.

We now study the geometry of W 2n−k
ϕ in more detail. The maximal complex subspace

c of h is a subalgebra and the closed subgroup Hc of H with Lie algebra c acts on W 2n−k
ϕ

isometrically by left translations. The orbit Hc · o is a totally geodesic CHn−k ⊂ CHn.
Note that the complex dimension of c is n − k. By identifying W 2n−k

ϕ with H equipped
with the induced left–invariant Riemannian metric, it follows now that W 2n−k

ϕ is ruled by
totally geodesic CHn−k ⊂ CHn.
The Lie algebra a ⊕ n can be decomposed orthogonally into

a ⊕ n = c ⊕ d ⊕ w⊥.
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We denote by C, D and W⊥ the corresponding left–invariant distributions on CHn along
W 2n−k

ϕ . As we have seen above, C is autoparallel and the integral submanifolds are totally
geodesic CHn−k ⊂ CHn. The distribution W⊥ is just the normal bundle T⊥W 2n−k

ϕ .
We give a geometric description of the submanifold W 2n−k

ϕ .

Proposition 6.13. The submanifold W 2n−k
ϕ has the following properties:

(i) The maximal holomorphic subbundle C of TW 2n−k
ϕ is integrable and the leaves of the

induced foliation on W 2n−k
ϕ are totally geodesic CHn−k ⊂ CHn.

(ii) The following statements are equivalent:

(a) The distribution D on W 2n−k
ϕ is integrable.

(b) The distribution RA ⊕ D on W 2n−k
ϕ is integrable.

(c) ϕ = π/2.

In this case the leaves of the foliation on W 2n−k induced by RA ⊕ D are totally
geodesic RHk+1 ⊂ CHn and the leaves of the foliation on W 2n−k induced by D are
horospheres with center x in these totally geodesic RHk+1 ⊂ CHn.

(iii) The left-invariant subbundle W⊥ of TCHn along W 2n−k
ϕ is the normal bundle of

W 2n−k
ϕ .

(iv) For each non–zero ξ ∈ w⊥ the left–invariant distribution RA ⊕ RPξ along W 2n−k
ϕ

is integrable and the leaves of the induced foliation on W 2n−k
ϕ are totally geodesic

RH2 ⊂ CHn.

(v) For each non–zero ξ ∈ w⊥ the left-invariant distribution RPξ on W 2n−k
ϕ is integrable

and the leaves of the induced foliation on W 2n−k
ϕ are horocycles with center x in the

totally geodesic RH2 ⊂ CHn given by the distribution RA ⊕ RPξ.

Proof. We use the formulas and notations as described in Section 6.2.
Statement (i) follows immediately from the expression of the Levi–Civita connection

of CHn for left–invariant vector fields and the fact that the only complex totally geodesic
submanifolds of CHn are complex hyperbolic spaces.
Using the formulas for the Lie bracket of left–invariant vector fields in CHn we get

[aA+ U, bA+ V ] =
a

2
V − b

2
U + [U, V ] and [U, V ] = 〈JU, V 〉Z.

for all aA+U, bA+V ∈ RA⊕D. This shows that RA⊕D is integrable if and only if D is
integrable if and only if D is real, that is, ϕ = π/2. In this case the Levi–Civita connection
yields

∇̄aA+U(bA+ V ) =
1
2
〈U, V 〉A − b

2
U ∈ RA ⊕ D
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for all aA+ U, bA+ V ∈ RA ⊕ D. This shows that RA ⊕ D is autoparallel and its leaves
are totally geodesic real submanifolds of CHn. The only real totally geodesic submanifolds
of CHn are the real hyperbolic spaces. For all U, V ∈ D we have

∇̄UV =
1
2
〈U, V 〉A and ∇̄UA = −1

2
U,

which implies that the leaves of D are spherical hypersurfaces of the corresponding real
hyperbolic spaces (Theorem 6.6). Since the sectional curvature of a totally geodesic real
hyperbolic subspace is −1/4, and the mean curvature vector of any leaf of D is (1/2)A, it
follows that the leaves of D are horospheres centered at x in the real hyperbolic subspaces.
This finishes the proof of (ii).
Statement (iii) holds by construction.
For any aA+ xPξ, bA+ yPξ ∈ RA ⊕ RPξ we have

∇̄aA+xPξ(bA+ yPξ) =
xy

2
(sin2 ϕ)A − bx

2
Pξ ∈ RA ⊕ RPξ.

From this, we easily get the assertion (iv) using Theorem 6.6.
Finally, define Uξ = Pξ/ sin(ϕ). Then the expression of the Levi–Civita connection for

left–invariant metrics implies

∇̄Uξ
Uξ =

1
2

A and ∇̄Uξ
∇̄Uξ

Uξ = −1
4

Uξ.

Since the real hyperbolic planes in (iv) have constant sectional curvature −1/4, this shows
that the integral curves of Uξ are horocycles with center x in the corresponding real hy-
perbolic planes. This proves (v).

The above properties are characteristic of W 2n−k
ϕ . Any other submanifold of CHn with

these properties is holomorphically congruent to someW 2n−k
ϕ as the following result shows.

Afterwards we will see that, in fact, all the information of W 2n−k
ϕ is encoded in its second

fundamental form.

Corollary 6.14. Let k ∈ {1, . . . , n − 1}, and fix a totally geodesic CHn−k ⊂ CHn and
points o ∈ CHn−k and x ∈ CHn−k(∞). Let KAN be the Iwasawa decomposition of
SU(1, n) with respect to o and x, and let H ′ be the subgroup of AN which acts simply
transitively on CHn−k. Next, let V be a subspace of T⊥

o CHn−k with constant Kähler angle
ϕ ∈ (0, π/2] such that CV = T⊥

o CHn−k. Left translation of V by H ′ to all points in CHn−k

determines a subbundle V of the normal bundle T⊥CHn−k. At each point p ∈ CHn−k

attach the horocycles determined by x and the linear lines in Vp. The resulting subset M
of CHn is holomorphically congruent to the ruled submanifold W 2n−k

ϕ .

Proof. LetW 2n−k
ϕ be the ruled minimal submanifold of CHn constructed from the Iwasawa

decomposition KAN associated with x and o and the choice of w⊥ = T⊥
o CHn−k � V . We

use the above notations. From Proposition 6.13 we already know that M ⊂ W 2n−k
ϕ . It

suffices to prove that W 2n−k
ϕ ⊂ M .
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Let p ∈ W 2n−k
ϕ . There exists an isometry s ∈ H with p = s(o). Then there is

a unique vector X in the Lie algebra h of H such that s = Exps(X). We can write
X = aA+ zZ +U +V with some U ∈ c, V ∈ d and a, z ∈ R. Note that [V, U ] = 0 because
they are complex orthogonal. We now define

g = Exps

(
ρ
(a
2

)
V
)

and h = Exps(aA+ zZ + U).

Note that h ∈ H ′. Using the description of CHn given in Section 6.2 we get

gh = Exps

(
ρ
(a
2

)
V
)
Exps(aA+ zZ + U)

=
(
0,Expn

(
ρ
(a
2

)
V
))

·
(
a,Expn

(
ρ(a)z Z + ρ

(a
2

)
U
))

=

(
a,Expn

(
ρ(a)z Z + ρ

(a
2

)
U + ρ

(a
2

)
V +

1
2
[V, U ]

))
= Exps(aA+ zZ + U + V ) = s.

By construction, h(o) ∈ CHn−k and s(o) = g(h(o)) is on the horocyle with center x
through h(o) tangent to RV . From this we conclude that W 2n−k

ϕ ⊂ M . Altogether this
implies M = W 2n−k

ϕ and the result follows.

Next, we calculate the second fundamental form of W 2n−k
ϕ .

Proposition 6.15. The second fundamental form of W 2n−k
ϕ is given by the formula

II
(
aA+ xZ + U + Pξ, bA+ yZ + V + Pη

)
= −sin

2 ϕ

2

(
yξ + xη

)
for any U, V ∈ TW 2n−k

ϕ � (RA⊕RZ), ξ, η ∈ T⊥W 2n−k
ϕ and a, b, x, y ∈ R. Thus II is given

by the trivial bilinear extension of 2II(Z, Pξ) = −(sin2 ϕ)ξ for any ξ ∈ T⊥W 2n−k
ϕ .

Proof. Since A, Z, U , V , Pξ and Pη are tangent to W 2n−k
ϕ , the normal component of the

Levi–Civita connection reduces to

II
(
aA+ xZ + U + Pξ, bA+ yZ + V + Pη

)
= −
(
∇̄aA+xZ+U+Pξ(bA+ yZ + V + Pη)

)⊥
=
(y
2
JPξ +

x

2
JPη
)⊥
=

y

2
FPξ +

x

2
FPη.

Since FP|T⊥W 2n−k
ϕ
= −(sin2 ϕ) IdT⊥W 2n−k

ϕ
by Lemma 6.10, the result follows.

The second fundamental form ofW 2n−k
ϕ and the fact that its normal bundle has constant

Kähler angle ϕ are enough to characterize W 2n−k
ϕ among all the submanifolds of CHn.
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Theorem 6.16 (Rigidity of the submanifoldW 2n−k
ϕ ). LetM be a (2n−k)–dimensional

connected submanifold in CHn with normal bundle T⊥M ⊂ TCHn of constant Kähler
angle ϕ ∈ (0, π/2]. Assume that there exists a unit vector field Z tangent to the maximal
holomorphic distribution on M such that the second fundamental form II of M is given by
the trivial bilinear extension of

2II(Z, Pξ) = −(sin2 ϕ) ξ,

for all ξ ∈ T⊥M . Then M is holomorphically congruent to an open part of the ruled
minimal submanifold W 2n−k

ϕ .

Proof. We will first show the following:

(i) The maximal holomorphic subbundle C of TM is integrable and each integral mani-
fold is an open part of a totally geodesic CHn−k ⊂ CHn.

(ii) For each unit normal vector field ξ of M the totally real subbundle RJZ ⊕ RPξ of
TM is integrable and each integral manifold is an open part of a totally geodesic
RH2 ⊂ CHn.

(iii) For each unit normal vector field ξ of M the image of any integral curve of Pξ is an
open part of the horocycle centered at the point at infinity determined by −JZ in
the corresponding totally geodesic RH2 ⊂ CHn as described in (ii).

To prove (i) we first note that TM = C ⊕ P T⊥M . For U, V ∈ Γ(C) and ξ ∈ Γ(T⊥M)
the condition on II implies 〈II(U, V ), F ξ〉 = 0 and thus

〈∇UV, Pξ〉 = 〈∇̄UV, Pξ〉 = 〈∇̄UV, Jξ〉 − 〈∇̄UV, Fξ〉 = −〈J∇̄UV, ξ〉 = 〈II(U, JV ), ξ〉 = 0

and
〈∇̄UV, ξ〉 = −〈II(U, V ), ξ〉 = 0

by the condition on II once again. This shows that C is an autoparallel subbundle of TM
and each integral manifold is a totally geodesic submanifold of CHn. As C is a complex
subbundle of complex rank n − k, each of these integral manifolds must be an open part
of a totally geodesic CHn−k ⊂ CHn.
We turn our attention to (ii). Let A = −JZ, X ∈ Γ(D � RJZ) and η ∈ Γ(T⊥M)

be a local unit normal vector field on M . Using the explicit expression of R̄, the Codazzi
equation, the second fundamental form II and ∇̄J = 0 we get

0 = R̄APηJXη = 〈(∇⊥
AII)(Pη, JX)− (∇⊥

PηII)(A, JX), η〉

= −〈II(Pη,∇AJX), η〉 = −〈∇AJX, Z〉〈II(Pη, Z), η〉

=
sin2 ϕ
2

〈∇̄AJX, Z〉 = −sin
2 ϕ

2
〈∇AA,X〉.
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This implies 〈∇̄AA,X〉 = 〈∇AA,X〉 = 0. Next, our assumption and ∇̄J = 0 yield

〈∇AA,Pη〉 = 〈∇̄AA,Pη〉 = 〈∇̄AA, Jη − Fη〉 = 〈II(A,Z), η〉+ 〈II(A,A), Fη〉 = 0.

Also, we easily get 〈∇̄AA, η〉 = −〈II(A, A), η〉 = 0. Therefore we have ∇̄AA = 0.
Now we study ∇̄APξ. First,

〈∇APξ, X〉 = 〈∇̄APξ, X〉 = −〈∇̄AX, Jξ − Fξ〉 = −〈II(A, JX), ξ〉 − 〈II(A,X), F ξ〉 = 0.

Our assumption of II implies 〈SηA, Y 〉 = 〈II(A, Y ), η〉 = 0 for any Y ∈ Γ(TM) and thus
SηA = 0. This gives

〈∇APξ, Pη〉 = 〈∇̄APξ, Pη〉 = 〈∇̄APξ, Jη − Fη〉 = −〈JSηA,Pξ〉+ 〈II(A,Pξ), Fη〉 = 0.

Moreover, 〈∇̄APξ, η〉 = −〈II(A,Pξ), η〉 = 0. Thus ∇̄APξ = 0.
We have 〈∇JXPξ, Z〉 = −〈∇JXZ, Jξ − Fξ〉 = 〈II(JX, A), ξ〉 − 〈II(JX,Z), F ξ〉 = 0.

This, together with the explicit expression of R̄, the Codazzi equation, the equation of II
and ∇̄J = 0 implies

0 = R̄PξJXPξξ = 〈(∇⊥
PξII)(JX, Pξ)− (∇⊥

JXII)(Pξ, Pξ), ξ〉

= −〈II(∇PξJX, Pξ), ξ〉 − 2〈II(∇JXPξ, Pξ), ξ〉

= −〈∇PξJX,Z〉〈II(Z, Pξ), ξ〉 − 2〈∇JXPξ, Z〉〈II(Z, Pξ), ξ〉

=
sin2 ϕ
2

〈∇̄PξJX, Z〉+ (sin2 ϕ)〈∇JXPξ, Z〉 = −sin
2 ϕ

2
〈∇PξA,X〉.

Thus we get 〈∇̄PξA,X〉 = 〈∇PξA,X〉 = 0. Next, our assumption implies

〈∇PξA,Pη〉 = −〈∇̄PξJZ, Jη − Fη〉 = 〈II(Pξ, Z), η〉+ 〈II(Pξ, A), Fη〉 = −sin
2 ϕ

2
〈ξ, η〉.

If 〈Pξ, Pη〉 = 0, then 〈ξ, η〉 = 0 because of Corollary 6.12, and hence 〈∇PξA,Pη〉 = 0. We
also have 〈∇̄PξA, η〉 = −〈II(Pξ,A), η〉 = 0. Then ∇̄PξA = − sin2 ϕ

2 Pξ ∈ Γ(RA ⊕ RPξ).
We now consider the covariant derivative ∇̄PξPξ. We have

〈∇PξPξ, X〉 = 〈∇̄PξPξ, X〉 = −〈∇̄PξX, Jξ − Fξ〉
= −〈II(Pξ, JX), ξ〉 − 〈X, Z〉〈II(Pξ, Z), F ξ〉

= −sin
2 ϕ

2
〈X, Z〉〈ξ, Fξ〉 = 0.

For any Y ∈ Γ(TM) we have 2〈SηPξ, Y 〉 = 2〈II(Pξ, Y ), η〉 = −(sin2 ϕ)〈ξ, η〉〈Z, Y 〉 and
hence 2SηPξ = −(sin2 ϕ)〈ξ, η〉Z. This implies

〈∇PξPξ, Pη〉 = 〈∇̄PξPξ, Jη − Fη〉 = −〈JSηPξ, Pξ〉+ 〈II(Pξ, Pξ), Fη〉 = 0.

Finally, 〈∇̄PξPξ, η〉 = 〈II(Pξ, Pξ), η〉 = 0. Therefore ∇̄PξPξ = sin2 ϕ
2 A ∈ Γ(RA ⊕ RPξ).
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Altogether this shows that RJZ ⊕ RPξ is integrable and each integral manifold is a
totally geodesic submanifold of CHn. As RJZ ⊕ RPξ is a totally real subbundle of rank
2, each of these totally geodesic submanifolds must be an open part of a totally geodesic
RH2 ⊂ CHn.
We now proceed with (iii). We define Uξ = Pξ/‖Pξ‖ = Pξ/ sinϕ. From the above

result for ∇̄PξPξ we obtain 2∇̄Uξ
Uξ = A. Using this and ∇̄PξA we get

∇̄Uξ
∇̄Uξ

Uξ + 〈∇̄Uξ
Uξ, ∇̄Uξ

Uξ〉Uξ =
1
2
∇̄Uξ

A+
1
4
〈A,A〉Uξ = 0.

From this we see that the integral curves of Uξ are horocycles as described in (iii).
To finish our argument let o ∈ M and Fo be the leaf of C through o, which is an open

part of a totally geodesic CHn−k ⊂ CHn. Let c : I → Fo be a curve with c(0) = o. The
normal spaces of M along c are uniquely determined by the differential equation

∇̄c′X +
sin2 ϕ
2

〈c′, Z〉JX = 0

along c∗ T⊥CHn−k. Indeed, if X is a vector field normal to Fo along c with Xo ∈ T⊥
o M and

satisfying the above differential equation, then Xc(t) ∈ T⊥
c(t)M for any t. To prove this asser-

tion we write X = ξ+Jη with ξ, η ∈ Γ(γ∗ T⊥M) and ηo = 0. Using the assumption on the
second fundamental form we get 〈Sξ c′, X〉 = 〈II(c′, X), ξ〉 = 〈c′, Z〉〈X, Pξ〉〈II(Z, Pξ), ξ〉 =
−(sin2 ϕ)〈c′, Z〉〈Pξ, X〉/2, which implies

∇̄c′ξ = −sin
2 ϕ

2
〈c′, Z〉Pξ +∇⊥

c′ξ.

Then using ∇̄J = 0 we get

0 = ∇̄c′X +
sin2 ϕ
2

〈c′, Z〉JX = ∇̄c′ξ + J∇̄c′η +
sin2 ϕ
2

〈c′, Z〉Jξ +
sin2 ϕ
2

〈c′, Z〉J2η

= P

(
∇⊥

c′η +
sin2 ϕ
2

〈c′, Z〉Fη

)
+∇⊥

c′ξ +
sin2 ϕ
2

〈c′, Z〉Fξ + F

(
∇⊥

c′η +
sin2 ϕ
2

〈c′, Z〉Fη

)
.

Taking the component tangent to M yields 2∇⊥
c′η + (sin

2 ϕ)〈c′, Z〉Fη = 0. Since ηc(0) = 0,
the uniqueness of solutions of ordinary differential equations implies ηc(t) = 0 for all t as
desired. Conditions (i)–(iii), the rigidity of totally geodesic submanifolds of Riemannian
manifolds (see for example [13, page 230]), and of horocycles in real hyperbolic planes (see
for example [13, pages 24-26]), then imply the assertion.

Remark 6.17. The proof of the above rigidity result shows that the differential equation

∇̄c′X +
sin2 ϕ
2

〈c′, Z〉JX = 0

characterizes left translation by Sc of the normal spaces of W 2n−k
ϕ .
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The above study provides a fairly good description of the non–totally geodesic singular
orbits of the cohomogeneity one actions on CHn given by cases (v) and (vi) of Theorem 6.4.
It also includes the ruled minimal orbit of case (iv) as a particular case. We now conclude
this chapter by studying the geometry of the principal orbits of the cohomogeneity one
actions given by Theorem 6.4 (v) and (vi). We recall here that these orbits are tubes
around the singular ones so one actually has to study the geometry of tubes aroundW 2n−k

ϕ .
We do this in two steps depending on the the Kähler angle of T⊥W 2n−k

ϕ .

Constant Kähler angle ϕ = π/2

Using the notation above for the singular orbit W 2n−k, with k ≥ 2, we have that w⊥ has
constant Kähler angle ϕ = π/2, that is, w⊥ is real. This means that the normal bundle
T⊥W 2n−k of W 2n−k is real.
We recall that the second fundamental form of W 2n−k is given by the trivial bilinear

extension of

II(Z, Jξ) = −1
2

ξ,

for all ξ ∈ T⊥W 2n−k. Thus, with respect to a unit vector ξ ∈ T⊥W 2n−k the shape operator
is determined by

Sξ(Z) = −1
2

Jξ, Sξ(Jξ) = −1
2

Z, Sξ(X) = 0,

for all X ∈ TW 2n−k � (RZ ⊕RJξ). The eigenvalues of the shape operator with respect to
ξ are 0, −1/2 and 1/2, with corresponding multiplicities 2n − 2 − k, 1 and 1. The corre-
sponding eigenspaces are TW 2n−k � (RZ⊕RJξ), R(Z+Jξ) and R(−Z+Jξ), respectively.

The above information allows us to calculate the shape operator of the principal orbits.
Every principal orbit of this action is a tube around W 2n−k. We use Jacobi vector field
theory. Let us fix a unit vector ξ ∈ T⊥W 2n−k. We define the geodesic cξ by the initial
conditions cξ(0) = o and c′ξ(0) = ξ. We follow the notation of Section 4.1. For any
X ∈ Tcξ(0)CHn we denote by BX the parallel translation of the vector X along cξ. If
X ∈ TW 2n−k we denote by ζX the Jacobi vector field defined by the initial conditions
ζX(0) = X and ζ ′

X(0) = Sξ(X). If η ∈ T⊥W 2n−k we define the Jacobi vector field ζη by
the initial conditions ζη(0) = 0 and ζ ′

η(0) = η.
The solution of the Jacobi equation yields

ζX(t) =



cosh(t/2)BX(t) , if X ∈ TW 2n−k � (RZ ⊕ RJξ),

cosh(t/2)BZ(t)−
1
2
sinh(t)BJξ(t) , if X = Z,

− sinh(t/2)BZ(t) + cosh(t)BJξ(t) , if X = Jξ,

2 sinh(t/2)BX(t) , if X ∈ T⊥W 2n−k � Rξ.
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Using the theory of Section 4.1 we get the shape operator S(r) of the tube of radius r
around W 2n−k, GW 2n−k(r). This is given by

S(r)BX(r) =
1
2

(
tanh

r

2

)
BX(r), if X ∈ TW 2n−k � (RZ ⊕ RJξ),

S(r)BZ(r) =
1
2

(
tanh3

r

2

)
BZ(r)−

1
2

(
sech3

r

2

)
BJξ(r),

S(r)BJξ(r) = −1
2

(
sech3

r

2

)
BZ(r) +

(
1 +
1
2
sech2

r

2

)(
tanh

r

2

)
BJξ(r),

S(r)BX(r) =
1
2

(
coth

r

2

)
BX(r), if X ∈ T⊥W 2n−k � Rξ.

Hence, we have the matrix representation

S(r) =
1
2



tanh r
2

tanh3 r
2 − sech3 r

2

tanh r
2 Id2n−3−k

− sech3 r
2 2

(
1 + 1

2 sech
2 r
2

)
tanh r

2

coth r
2 Idk−1


.

with respect to the following direct sum decomposition

Tcξ(r)GW 2n−k(r) = BRA(r)⊕BRZ(r)⊕BToW 2n−k�(RA⊕RZ⊕Jξ)(r)⊕BRJξ(r)⊕BT⊥
o W 2n−k�Rξ(r).

where BV denotes the parallel translation of any vector subspace V ⊂ ToCHn along cξ.
A straightforward calculation shows that GW 2n−k(r) has four principal curvatures

α =
1
2
tanh

r

2
, β =

1
2
coth

r

2
,

γ =
3
4
tanh

r

2
− 1
2

√
1− 3
4
tanh2

r

2
, δ =

3
4
tanh

r

2
+
1
2

√
1− 3
4
tanh2

r

2
.

with corresponding multiplicities

mα = 2n − 2− k, mβ = k − 1, mγ = 1, mδ = 1.

The Hopf vector field of GW 2n−k(r) is not a principal vector. In fact, it has non–trivial
orthogonal projection onto Tγ and Tδ.
A special case occurs when r = log(2 +

√
3). In this case, β = δ and the principal

curvatures are α =
√
3/6, β = δ =

√
3/2 and γ = 0 with multiplicities 2n− k− 2, k and 1.

The Hopf vector field has non–trivial projection onto Tβ and Tγ. We emphasize this fact
here as it becomes important in Section 7.2.1.
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The previous calculations show that the interesting part of the shape operator of both
the singular and the principal orbits is the one concerning the vectors Z and Jξ. We make
this statement more precise.
Let ξ ∈ T⊥

o W 2n−k be a unit vector. Consider g̃ = C(A ⊕ ξ) = RA ⊕ RZ ⊕ RJξ ⊕ Rξ,
which is a Lie subalgebra of s = a ⊕ z ⊕ v, and let G̃ = Exp(g̃) be the connected, simply
connected Lie subgroup of AN whose Lie algebra is g̃. Then, G̃ · o is a totally geodesic
CH2 in CHn. This CH2 defines a “slice” of CHn through o.
Let h̃ = s ∩ g̃ = RA ⊕ RZ ⊕ RJξ. Then h̃ is a Lie subalgebra of g̃ of codimension one.

Let H̃ = Exp(h̃) be the connected, simply connected Lie subgroup of G̃ whose Lie algebra
is h̃. Then, H̃ acts on CH2 = G̃ ·o with cohomogeneity one and all the orbits of this action
are principal. This cohomogeneity one action on CH2 gives exactly the solvable foliation
of CH2 described in the previous section.
We know that the orbits of the action of H̃ on CH2 are the equidistant hypersurfaces to

the orbit H̃ · o. On the other hand, the intersection of the orbits of the cohomogeneity one
action of G on CHn with the slice CH2 also gives tubes around H̃ · o because CH2 = G̃ · o
is totally geodesic in CHn. So, in order to study the geometry of the orbits of the action
of G on CHn in the slice CH2 it suffices to study the orbits of the action of H̃ on CH2.
As it was said before, this has been accomplished in the previous section. See also [11].
Let c be the geodesic determined by the initial condition c′(0) = ξ. The shape operator

of the orbit through c(r) of the action of H̃ on CH2 with respect to the parallel basis along
the geodesic c, {BA(r), BZ(r), BJξ(r)}, has the matrix representation

S(r) =
1
2

 tanh
r
2 0 0

0 tanh3 r
2 − sech3 r

2

0 − sech3 r
2 2
(
1 + 1

2 sech
r
2

)
tanh r

2


as previous calculations show. However, in this context it is more convenient to use left–
invariant vector fields.
The tangent vector of the geodesic c can be written with respect to left–invariant vector

fields as (see Section 6.2)

c′(t) = −
(
tanh

t

2

)
A+
(
sech

t

2

)
ξ.

Then, {sech(r/2)A + tanh(r/2)ξ, Z, Jξ} is an orthonormal basis of the tangent space of
H̃ ·c(r) at c(r). With respect to this basis the shape operator has the matrix representation

S(r) =
1
2

 tanh r
2 0 0

0 2 tanh r
2 − sech r

2
0 − sech r

2 tanh r
2

 .

The following result gives the relation between the above two bases. The second one is
more suitable for calculations, so we use it in what follows.
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Lemma 6.18. The parallel basis along c, {BA(r), BZ(r), BJξ(r)}, and the left–invariant
basis {sech(r/2)A+ tanh(r/2)ξ, Z, Jξ} are related by the linear transformation

(
BA(r), BZ(r), BJξ(r)

)
=
((
sech

r

2

)
A+
(
tanh

r

2

)
ξ, Z, Jξ

) 1 0 0

0 sech r
2 tanh r

2

0 − tanh r
2 sech

r
2

 .

Proof. First, we find a relation between the parallel basis {BA(r), BZ(r), BJξ(r), Bξ(r)}
and the left–invariant basis {A,Z, Jξ, ξ} along c.
Let U ∈ ToCH2 and denote by BU(t) its parallel translation along c. We may write

BU(t) = a1(t)A+a2(t)Z+a3(t)Jξ+a4(t)ξ. Since c′(t) = Bξ(r) = − tanh(t/2)A+sech(t/2)ξ,
the formula for the Levi–Civita connection of CH2 yields

0 = B′
U(t) =

(
a′
1(t) +

a4(t)
2
sech

t

2

)
A+

(
a′
2(t) +

a3(t)
2
sech

t

2

)
Z

+

(
a′
3(t)−

a2(t)
2
sech

t

2

)
Jξ +

(
a′
4(t)−

a1(t)
2
sech

t

2

)
ξ.

As a consequence, in order to express the parallel basis {BA(t), BZ(t), BJξ(t), Bξ(t)} in
terms of the left–invariant basis {A,Z, Jξ, ξ} one needs to solve the matrix differential
equation

D′(t) +
1
2

(
sech

t

2

)
C D(t) = 0, D(0) = Id, where C =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

The solution is the change of basis matrix

D(t) =


sech t

2 0 0 − tanh t
2

0 sech t
2 − tanh t

2 0

0 tanh t
2 sech t

2 0

tanh t
2 0 0 sech t

2

 .

The relation between {BA(r), BZ(r), BJξ(r)} and {sech(r/2)A+tanh(r/2)ξ, Z, Jξ} follows
easily from the previous transition matrix.

We now focus our attention on some distributions of the orbits of the action of H̃ on
CH2. Let GW 3(r) the orbit of the action of H̃ through the point c(r). If r = 0, we just
have W 3 ⊂ CH2, whose geometry has been studied in this section. Assume r �= 0.
The non–trivial part of the shape operator of the orbits of H̃ concerns the vectors BZ(r)

and BJξ(r) = Jc′(r). Lemma 6.18 shows that the real span of {BZ(r), BJξ(r)} coincides
with the real span of the left–invariant vector fields Z and Jξ at c(r). Then, the subbundle
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generated by {BZ(r), BJξ(r)} is an integrable distribution and using the expression of the
Levi–Civita connection of CHn we get

∇̄ZZ = A, ∇̄JξJξ =
1
2
A, ∇̄ZJξ =

1
2
ξ, ∇̄JξZ =

1
2
ξ.

Thus, the shape operator with respect to the normal vector BA(r) of each integral manifold
as a submanifold of GW 3(r) = H̃ · c(r), has the matrix representation

1
2

(
2 sech r

2 tanh
r
2

tanh r
2 sech r

2

)
.

Obviously, this implies that its mean curvature is (3/2) sech(r/2).
The distribution RZ ⊕ RJξ, when considered as a distribution on CH2, is integrable.

The above formulas for the Levi–Civita connection show that

II(Z,Z) = 2II(Jξ, Jξ) = A, II(Z, Jξ) =
1
2
ξ.

Hence, the mean curvature vector of each integral manifold is (3/2)A. With regard to
the intrinsic geometry of the integral manifolds we have that the Gaussian curvature is
K = −(1/4) + 〈A, (1/2)A〉 − 〈(1/2)ξ, (1/2)ξ〉 = 0.
On the other hand, using Lemma 6.18 we get

∇̄BA(r)BA(r) = ∇̄(sech r
2)A+(tanh r

2)ξ

((
sech

r

2

)
A+
(
tanh

r

2

)
ξ
)
= −1
2

(
tanh

r

2

)
Bξ(r).

Hence, every integral curve of BA(r) is a geodesic in GW 3(r) = H̃ · c(r).
All in all, this means that GW 3(r) = H̃ · c(r) is diffeomorphic to R3 and it is foli-

ated by one autoparallel one–dimensional distribution whose leaves are geodesics and one
orthogonal integrable distribution whose leaves are isometric to R2.

Constant Kähler angle ϕ ∈ (0, π/2)

Let us consider the singular orbit W 2n−k̃
ϕ , with k̃ ≥ 2 and ϕ ∈ (0, π/2). We have that

w⊥ (and hence T⊥W 2n−k̃
ϕ ) has constant Kähler angle ϕ. Corollary 6.11 implies that k̃

is an even number, so we write k̃ = 2k. We use the notation and results above. For
any point o ∈ W

2(n−k)
ϕ , we denote by π : C T⊥

o W
2(n−k)
ϕ → C T⊥

o W
2(n−k)
ϕ � T⊥

o W
2(n−k)
ϕ

and σ : C T⊥
o W

2(n−k)
ϕ → T⊥

o W
2(n−k)
ϕ the corresponding orthogonal projections and P =

πJ and F = σJ are the operators defined at the beginning of this section. Note that
C T⊥

o W
2(n−k)
ϕ �T⊥

o W
2(n−k)
ϕ is tangent toW

2(n−k)
ϕ . It is convenient to introduce the following

notation

P̄X =
PX

‖PX‖ and F̄X =
FX

‖FX‖ .
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for all unit vector X ∈ C T⊥
o W

2(n−k)
ϕ . Then, the second fundamental form of W

2(n−k)
ϕ is

given by the trivial bilinear extension of

II(Z, P̄ ξ) = −sinϕ

2
ξ,

for all unit ξ ∈ T⊥W
2(n−k)
ϕ . Thus, with respect to a unit vector ξ ∈ T⊥W

2(n−k)
ϕ the shape

operator is described by

Sξ(Z) = −sinϕ

2
P̄ ξ, Sξ(P̄ ξ) = −sinϕ

2
Z, Sξ(X) = 0,

for allX ∈ TW
2(n−k)
ϕ �(RZ⊕RPξ). The eigenvalues of the shape operator are 0, −(sinϕ)/2

and (sinϕ)/2, with corresponding multiplicities 2(n − k − 1), 1 and 1. The corresponding
eigenspaces are TW

2(n−k)
ϕ � (RZ ⊕ RP̄ ξ), R(Z + P̄ ξ) and R(−Z + P̄ ξ), respectively.

Since the principal orbits of the cohomogeneity one action corresponding to Theorem
6.4 (vi) are tubes around the singular orbitW 2(n−k)

ϕ , we may calculate their shape operator
using Jacobi vector field theory. We follow the usual notation for parallel translation and
Jacobi vector field theory explained in Section 4.1. Let us fix a unit vector ξ ∈ T⊥W

2(n−k)
ϕ

and let cξ be the geodesic determined by the initial condition c′ξ(0) = ξ. LetX ∈ Tcξ(0)CHn.
The solution of the Jacobi equation of the manifold CHn gives

ζX(t) = cosh
t

2
BX(t), if X ∈ TW 2n−k � (RZ ⊕ RP̄ ξ),

ζZ(t) = cosh
t

2
BZ(t)− sinϕ

(
cos2 ϕ+ sin2 ϕ cosh

t

2

)
sinh

t

2
BP̄ ξ(t)

− cosϕ sin2 ϕ
(
cosh

t

2
− 1
)
sinh

t

2
BF̄ ξ(t),

ζP̄ ξ(t) = − sinϕ sinh
t

2
BZ(t) +

(
cos2 ϕ cosh

t

2
+ sin2 ϕ cosh t

)
BP̄ ξ(t)

− sinϕ cosϕ

(
cosh

t

2
− cosh t

)
BF̄ ξ(t),

ζF̄ ξ(t) = 2 sinϕ cosϕ

(
cosh

t

2
− 1
)
sinh

t

2
BP̄ ξ(t)

+2

(
1 + cos2 ϕ

(
cosh

t

2
− 1
))
sinh

t

2
BF̄ ξ(t),

ζX(t) = 2 sinh
t

2
BX(t), if X ∈ T⊥W 2n−k � (Rξ ⊕ RF̄ ξ).

Therefore, the shape operator S(r) of the tube of radius r around W
2(n−k)
ϕ can be retrieved

from the above expressions using Jacobi vector field theory (see again Section 4.1). The
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explicit expressions are

S(r)c′ξ(r)BX(t) =
1
2
tanh

r

2
BX(t), if X ∈ TW 2n−k � (RZ ⊕ RP̄ ξ),

S(r)c′ξ(r)BZ(t) = s11(r)BZ(r) + s12(r)BP̄ ξ(r) + s13(r)BF̄ ξ(r),

S(r)c′ξ(r)BP̄ ξ(t) = s21(r)BZ(r) + s22(r)BP̄ ξ(r) + s23(r)BF̄ ξ(r),

S(r)c′ξ(r)BF̄ ξ(t) = s13(r)BZ(r) + s23(r)BP̄ ξ(r) + s33(r)BF̄ ξ(r),

S(r)c′ξ(r)BX(t) =
1
2
coth

r

2
BX(r), if X ∈ T⊥W 2n−k � Rξ.

where

s11(r) =
1
2
tanh

r

2
sech2

r

2

(
cos2 ϕ cosh2

r

2
+ sin2 ϕ sinh2

r

2

)
,

s12(r) = −1
2
sech2

r

2
sinϕ
(
cos2 ϕ+ sin2 ϕ sech

r

2

)
,

s13(r) =
1
2
sech3

r

2
sin2 ϕ cosϕ

(
cosh

r

2
− 1
)

,

s22(r) =
1
2
sech2

r

2

{
cosh

r

2
sinh

r

2
cos2 ϕ+ tanh

r

2
sin4 ϕ

(
1 + 2 cosh2

r

2

)
−2 csch r

2
sin2 ϕ cos2 ϕ

(
1− cosh3 r

2

)}
,

s23(r) = −1
2
sech2

r

2
csch

r

2
sinϕ cosϕ

{
cos2 ϕ

(
1− cosh3 r

2

)
+sech

r

2
sin2 ϕ

(
1− cosh r

2
− cosh2 r

2
sinh2

r

2

)}
,

s33(r) =
1
2
sech2

r

2

{
coth

r

2
cos4 ϕ

(
cosh2

r

2
+ sinh2

r

2

)
+ cosh2

r

2
coth

r

2
sin4 ϕ

+sin2 ϕ cos2 ϕ
(
2 csch

r

2
+ 3 cosh

r

2
sinh

r

2
+ tanh

r

2

)}
.

As a consequence, we have the matrix representation

S(r)c′ξ(r) =
1
2



tanh r
2

s11(r) s12(r) s13(r)

tanh r
2 Id2n−3−2k

s12(r) s22(r) s23(r)

coth r
2 Id2k−2

s13(r) s23(r) s33(r)
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with respect to the direct sum decomposition

Tcξ(r)GW
2(n−k)
ϕ

(r) = BRA(r)⊕ BRZ(r)⊕ B
ToW

2(n−k)
ϕ �(RA⊕RZ⊕RP̄ ξ)

(r)

⊕BRP̄ ξ(r)⊕ BT⊥
o W 2(n−k)�(Rξ⊕RF̄ ξ)(r)⊕ BRF̄ ξ(r).

We will see that G
W
2(n−k)
ϕ

(r) has five distinct constant principal curvatures when k > 1
and four distinct principal curvatures when k = 1. At this stage, however, we are not
ready to study in detail the principal curvatures of the real hypersurface G

W
2(n−k)
ϕ

(r) due
to the computational difficulty its shape operator presents. As in the previous subsection
we focus on the non–trivial part of the shape operator of G

W
2(n−k)
ϕ

(r) and we introduce a
new basis to simplify calculations.

Let v0 ⊂ v be a two–dimensional vector subspace with constant Kähler angle ϕ. Then,
g̃ = a⊕z⊕C v0 is a Lie subalgebra of s = a⊕z⊕v. Let G̃ = Exp(g̃) be the connected, simply
connected Lie subgroup of AN whose Lie algebra is g̃. Then, G̃ · o is a totally geodesic
CH3 in CHn through o. The vector subspace h̃ = s ∩ g̃ = a ⊕ z ⊕ v0 is a Lie subalgebra
of g̃ of codimension two. Denote by H̃ = Exp(h̃) the connected, simply connected Lie
subgroup of G̃ whose Lie algebra is h̃. We know that the Lie group N0K(H̃)H̃ acts on G̃ · o
with cohomogeneity one and its orbit through o is exactly H̃ · o. This cohomogeneity one
action is the one we have been describing throughout this subsection. We are interested in
this particular case because, being it fully representative, it is the simplest of all.
We investigate the geometry of the orbits of the action of G on CHn in the slice

CH3 = G̃ · o. Since the orbits of a cohomogeneity one action are tubes around the singular
orbit and the slice CH3 = G̃·o is totally geodesic, it suffices to study the action of N0K(H̃)H̃
on CH3.
Let us denote v⊥

0 = C v0�v0. For any unit vector ξ ∈ v0 the set {A,Z, P̄ F̄ ξ, P̄ ξ, F̄ ξ, ξ}
is a left–invariant orthonormal basis and {A,Z, P̄ F̄ ξ, P̄ ξ} spans the tangent space of H̃ · o.
Our previous study shows that, with respect to the above tangent basis, the shape operator
Sξ of H̃ · o has the matrix representation

Sξ = −sinϕ

2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ,

and the shape operator of a principal orbit with respect to c′ξ(r), where cξ is the geodesic
determined by cξ(0) = ξ, is given by the matrix

S(r)c′ξ(r) =
1
2



tanh r
2 0 0 0 0

0 s11(r) 0 s12(r) s13(r)

0 0 tanh r
2 0 0

0 s12(r) 0 s22(r) s23(r)

0 s13(r) 0 s23(r) s33(r)


,
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with respect to the basis {BA(r), BZ(r), BP̄ F̄ ξ(r), BP̄ ξ(r)}. In what follows we introduce a
convenient basis to perform calculations.
For any unit vector η ∈ T⊥

p W 4
ϕ we denote by cη the geodesic determined by the initial

conditions cη(0) = p, c′η(0) = η and by Bη the parallel translation along cη. Using the
fact that the normal exponential map of W 4

ϕ is a diffeomorphism, we may define the vector

fields P̃F ξ, P̃ ξ, F̃ ξ and ξ̃ on CH3 − H̃ · o by the formulas

P̃F ξcη(t) = Lcη(t)∗P̄ F̄ η, P̃ ξcη(t) = Lcη(t)∗P̄ η,

F̃ ξcη(t) = Lcη(t)∗F̄ η, ξ̃cη(t) = Lcη(t)∗η.

The following lemma gives the relation between the previously defined vector fields and
the parallel vector fields.

Lemma 6.19. The parallel basis along cη, {Bη
A(r), B

η
Z(r), B

η

P̄ F̄ η
(r), Bη

P̄ η
(r), Bη

F̄ η
(r), Bη

η (r)}
and the basis {Acη(r), Zcη(r), P̃F ξcη(r), P̃ ξcη(r), F̃ ξcη(r), ξ̃cη(r)} are related by the linear trans-
formation

sech r
2 0 0 0 0 − tanh r

2

0 sech r
2 0 − sinϕ tanh r

2 cosϕ tanh r
2 0

0 0 1 0 0 0

0 sinϕ tanh r
2 0

(
cos2ϕ cosh r

2 + sin
2ϕ
)
sech r

2 sinϕ cosϕ
(
cosh r

2 − 1
)
sech r

2 0

0 − cosϕ tanh r
2 0 sinϕ cosϕ

(
cosh r

2 − 1
)
sech r

2

(
cos2ϕ+ sin2ϕ cosh r

2

)
sech r

2 0

tanh r
2 0 0 0 0 sech r

2


.

Proof. For simplicity let us denote c = cη. Using the expression of the tangent vector of a
geodesic in terms of left–invariant vector fields we get

c′(t) = − tanh t

2
Ac(t) + sech

t

2
ηc(t) = − tanh t

2
Ac(t) + sech

t

2
ξ̃c(t),

Let U ∈ ToCH2. We may write the parallel translation of U along c as BU(t) = a1(t)Ac(t)+

a2(t)Zc(t) + a3(t)P̃F ξc(t) + a4(t)P̃ ξc(t) + a5(t)F̃ ξc(t) + a6(t)ξ̃c(t). We recall that, by defini-

tion, along the geodesic c the vector fields {Ac(r), Zc(r), P̃F ξc(r), P̃ ξc(r), F̃ ξc(r), ξ̃c(r)} are
left–invariant. The expression of the Levi–Civita connection on CHn yields

0 = B′
U(t) =

(
a′
1(t) +

a6(t)
2
sech

t

2

)
Ac(t)

+

(
a′
2(t) +

a4(t)
2
sinϕ sech

t

2
− a5(t)
2
cosϕ sech

t

2

)
Zc(t)

+a′
3(t)P̃F ξc(t) +

(
a′
4(t)−

a2(t)
2
sinϕ sech

t

2

)
P̃ ξc(t)

+

(
a′
5(t) +

a2(t)
2
cosϕ sech

t

2

)
F̃ ξc(t) +

(
a′
6(t)−

a′
1(t)
2
sech

t

2

)
ξ̃c(t).
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Hence, the proof reduces to solving the matrix differential equation

D′(t)+
1
2

(
sech

t

2

)
CD(t) = 0, D(0) = Id, where C =


0 0 0 0 0 1
0 0 0 sinϕ −cosϕ 0
0 0 0 0 0 0
0 − sinϕ 0 0 0 0
0 cosϕ 0 0 0 0
−1 0 0 0 0 0

 .

The solution of this differential equation is exactly the matrix given in the statement of
Lemma 6.19.

Our aim in what follows consists of calculating the covariant derivatives of the above
defined vector fields.

Lemma 6.20. Let c = cη be the geodesic determined by the initial condition c′(0) = η,
where η ∈ v⊥

0 is a unit vector. Then we have

∇̄Ac(t)
P̃F ξ =0, ∇̄Ac(t)

P̃ ξ =0,

∇̄Ac(t)
F̃ ξ =0, ∇̄Ac(t)

ξ̃ =0,

∇̄Zc(t)
P̃F ξ =−cosϕ

2
P̄ ηc(t) +

sinϕ

2
F̄ ηc(t), ∇̄Zc(t)

P̃ ξ =
cosϕ
2

P̄ F̄ ηc(t) +
sinϕ

2
ηc(t),

∇̄Zc(t)
F̃ ξ =−sinϕ

2
P̄ F̄ ηc(t) +

cosϕ
2

ηc(t), ∇̄Zc(t)
ξ̃ =−sinϕ

2
P̄ ηc(t) −

cosϕ
2

F̄ ηc(t),

∇̄P̄ F̄ ηc(t)
P̃F ξ=

1
2

Ac(t), ∇̄P̄ F̄ ηc(t)
P̃ ξ=

cosϕ
2

Zc(t),

∇̄P̄ F̄ ηc(t)
F̃ ξ =−sinϕ

2
Zc(t), ∇̄P̄ F̄ ηc(t)

ξ̃ =0,

∇̄P̄ ηc(t)
P̃F ξ =−cosϕ

2
Zc(t), ∇̄P̄ ηc(t)

P̃ ξ =
1
2

Ac(t),

∇̄P̄ ηc(t)
F̃ ξ =0, ∇̄P̄ ηc(t)

ξ̃ =−sinϕ

2
Zc(t),

∇̄F̄ ηc(t)
P̃F ξ =−sinϕ

2
Zc(t) +

1
2
csch

t

2
P̄ ηc(t), ∇̄F̄ ηc(t)

P̃ ξ =−1
2
csch

t

2
P̄ F̄c(t),

∇̄F̄ ηc(t)
F̃ ξ =−1

2
Ac(t) +

1
2
csch

t

2
ηc(t), ∇̄F̄ ηc(t)

ξ̃ =−cosϕ
2

Zc(t) +
1
2
csch

t

2
F̄ ηc(t),

∇̄ηc(t)
P̃F ξ =0, ∇̄ηc(t)

P̃ ξ =
sinϕ

2
Zc(t),

∇̄ηc(t)
F̃ ξ =

cosϕ
2

Zc(t), ∇̄ηc(t)
ξ̃ =

1
2

Ac(t),

Proof. Using the notation and results of Section 6.2, it is not difficult to calculate explicitly
the normal exponential map of W 4

ϕ as the following result shows.



6.3.3 Cohomogeneity one actions with one non–totally geodesic singular orbit 159

Claim 6.21. The normal exponential map of W 4
ϕ satisfies

exp(a,Expn(zZ+uP̄ F̄ η+vP̄ η))
(
h F̄η + j η

)
=
(
a+ log sech2

l

2
, Expn

({
z − uh+ vj

l
sinϕ ea/2 tanh

l

2

}
Z + u P̄ F̄ η + v P̄ η

+
2h
l

ea/2 tanh
l

2
F̄ η +

2j
l

ea/2 tanh
l

2
η
))

where l =
√

h2 + j2 and η ∈ v⊥
0 is a unit normal vector.

The left–invariant vector field N = (h F̄η+j η)/
√

h2 + j2 is always a unit vector. Then
the geodesic cN whose initial conditions are cN(0) = o and c′N(0) = N is written as

cN(t) =

(
log sech2

t

2
, Expn

(
2 tanh

t

2
N

))
.

The point g =
(
a,Expn(zZ + uP̄ F̄ η + vP̄ η)

)
∈ W 4

ϕ can be regarded as an isometry of
CH3. Hence

expg·o(tN) = g · expo(tN) = g · cN(t)

=
(
a+ log sech2

t

2
, Expn

(
zZ + u P̄ F̄ η + v P̄ η + 2ea/2 tanh

t

2
N

+
1
2
ea/2
{

u P̄ F̄ η + v P̄ η, 2 tanh
t

2
N
}))

.

Putting t =
√

h2 + j2, plugging the value of N and calculating the expression for the above
bracket using the usual formula for left–invariant vector fields, we get Claim 6.21.

In particular, Claim 6.21 shows that the principal orbit at distance r from W 4
ϕ of the

cohomogeneity one action of H̃ on CH3 is the set

GW 4
ϕ
(r) =
{
exp(a,Expn(zZ+uP̄ F̄ ξ+vP̄ ξ))

(
h F̄ ξ + j ξ

)
: a, z, u, v, h, j ∈ R, h2 + j2 = r2

}
.

Now, Let X be a left–invariant vector field on CH3 (considered as a solvable Lie
group) and denote by χX the integral curve of X trough c(r). Then we have χX(s) =
c(r) Exps(sX). We know that

c(r) =
(
log sech2

r

2
, Expn

(
2 tanh

r

2
η
))

.

Using this and the explicit expression of the Lie exponential map of CHn, Exps, we easily
obtain
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Claim 6.22. Let X ∈ {A,Z, P̄ F̄ η, P̄ η, F̄ η, η} be a left–invariant vector field. Then the
integral curve of X through c(r) is given by

χA(s) =

(
s+ log sech2

t

2
, Expn

(
2 tanh

t

2
η

))
,

χZ(s) =

(
log sech2

t

2
, Expn

(
s sech2

t

2
Z + 2 tanh

t

2
η

))
,

χP̄ F̄ η(s) =

(
log sech2

t

2
, Expn

(
s sech

t

2
P̄ F̄ η + 2 tanh

t

2
η

))
,

χP̄ η(s) =

(
log sech2

t

2
, Expn

(
s sinϕ tanh

t

2
sech

t

2
Z + s sech

t

2
P̄ η + 2 tanh

t

2
η

))
,

χF̄ η(s) =

(
log sech2

t

2
,Expn

(
−s cosϕ tanh

t

2
sech

t

2
Z + s sech

t

2
F̄ η + 2 tanh

t

2
η

))
,

χη(s) =

(
log sech2

t

2
, Expn

((
2 tanh

t

2
+ s sech

t

2

)
η

))
.

Since CH3 is a Hadamard manifold, the normal exponential map of W 4
ϕ is a diffeo-

morphism. Using the notation above, if χX denotes the integral curve of a left–invariant
vector field X through c(r), then we may write χX(s) = expgX(s)·o(hX(s)F̄ η + jX(s)η) for

some gX(s) ∈ H̃ and hX(s), jX(s) ∈ R. By construction the curves gX : R → H̃ and
hX , jX : R → R are differentiable. Comparing the formulas in Claims 6.21 and 6.22 one
can obtain the explicit expression of those curves. We content ourselves with the derivative
h′

X(0) which is given in the following

Claim 6.23. Assuming the notation above we have

h′
X(0) = 0, if X ∈ s � RF̄ ξ and h′

X(0) =
t

2
csch

t

2
, if X ∈ RF̄ ξ.

We are now ready to conclude the proof of this lemma.
Assume that χ is a curve in CH3 such that χ(0) = c(r) and write χ as χ(s) =

expg(s)·o
(
h(s)F̄ η + j(s)η

)
. Then, by definition,

P̃F ξχ(s) =
j(s)P̄ F̄ ηχ(s) − h(s)P̄ ηχ(s)√

h(s)2 + j(s)2
, P̃ ξχ(s) =

h(s)P̄ F̄ ηχ(s) + j(s)P̄ ηχ(s)√
h(s)2 + j(s)2

,

F̃ ξχ(s) =
j(s)F̄ ηχ(s) − h(s)ηχ(s)√

h(s)2 + j(s)2
, ξ̃χ(s) =

h(s)F̄ ηχ(s) + j(s)ηχ(s)√
h(s)2 + j(s)2

.

Since χ(0) = c(r) we have h(0) = 0 and j(0) = r. This fact and the above expressions
yield

∇̄χ′(0)P̃F ξ = ∇̄χ′(0)P̄ F̄ η +
h′(0)

r
P̄ ηc(r), ∇̄χ′(0)P̃ ξ = ∇̄χ′(0)P̄ η − h′(0)

r
P̄ F̄ ηc(r),

∇̄χ′(0)F̃ ξ = ∇̄χ′(0)F̄ η +
h′(0)

r
ηc(r), ∇̄χ′(0)F̃ ξ = ∇̄χ′(0)η − h′(0)

r
F̄ ηc(r).
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Finally, taking χ as the integral curve of one of the left–invariant vector fields A, Z, P̄ F̄ η,
P̄ η, F̄ η or η and using Claim 6.23 we get the result.

We now give a simpler expression of the shape operator of GW 4
ϕ
(r). Let η be a unit

normal vector of W 4
ϕ and c the geodesic determined by c′(0) = η. Lemma 6.19 implies that

the set {Bη
A(r), Zc(r), P̃F ξc(r), P̃ ξc(r), F̃ ξc(r)} is a basis of the tangent space Tc(r)GW 4

ϕ
(r).

Note that c′(r) = − tanh(r/2)Ac(r) + sech(r/2)ξ̃c(r). Then, Lemma 6.20 allows us to calcu-
late the shape operator of GW 4

ϕ
(r) with respect to that basis. This is given by the matrix

representation

S(r)c′(r) =
1
2



tanh r
2 0 0 0 0

0 2 tanh r
2 0 − sinϕ sech r

2 cosϕ sech r
2

0 0 tanh r
2 0 0

0 − sinϕ sech r
2 0 tanh r

2 0

0 cosϕ sech r
2 0 0 sech r

2

(
csch r

2 + sinh
r
2

)


.

The characteristic polynomial of the non–diagonal part of the above matrix may be written,
after doing some calculations, as

pr,ϕ(x) = −x3 +
1
2

(
csch

r

2
sech

r

2
+ 4 tanh

r

2

)
x2 − 1

4

(
2 sech2

r

2
+ 5 tanh2

r

2

)
x

−1
8

(
csch

r

2
sech3

r

2
sin2 ϕ − sech2 r

2
tanh

r

2
− 2 tanh3 r

2

)
.

We have

pr,ϕ

(
1
2
tanh

r

2

)
= −1
8
csch

r

2
sech3

r

2
sin2 ϕ and p

(
1
2
coth

r

2

)
=
1
8
csch

r

2
sech3

r

2
cos2 ϕ.

Hence, neither (1/2) tanh(r/2) nor (1/2) coth(r/2) are solutions of the above polynomial
for any value of r �= 0 and ϕ ∈ (0, π/2). Since the matrix (sij(r)) has the same eigenvalues
as the non–diagonal part of the above matrix we conclude that neither (1/2) tanh(r/2) nor
(1/2) coth(r/2) are eigenvalues of (sij(r)). A study of the polynomial pr,ϕ using elementary
calculus shows that pr,ϕ has three different roots when r �= 0 and ϕ ∈ (0, π/2). Hence,
in the general context of CHn we get that G

W
2(n−k)
ϕ

(r) has five distinct constant principal
curvatures when k > 1 and four distinct constant principal curvatures when k = 1.

The following result is an easy consequence of Lemmas 6.19 and 6.20.

Proposition 6.24. Let GW 4
ϕ
(r) be the principal orbit of the action of N0K(H̃)H̃ at a dis-

tance r from H̃ · o = W 4
ϕ. Then we have
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(i) The distribution cη(r) �→ Bη
A(r) is integrable and each of its integral curves is a

geodesic in GW 4
ϕ
(r).

(ii) The distribution cη(r) �→ RBη
A(r)⊕ RBP̄ F̄ η(r) is autoparallel and each integral man-

ifold has constant sectional curvature −(1/4) sech(r/2).

(iii) The distribution cη(r) �→ RBη
Z(r)⊕RP̃F ξcη(r)⊕RP̃ ξcη(r)⊕RF̃ ξcη(r) is integrable but

not autoparallel.



Chapter 7

Real hypersurfaces with constant
principal curvatures in the complex
hyperbolic space

The purpose of this chapter is to obtain the following classification of real hypersurfaces
with three distinct constant principal curvatures [14].

Theorem 7.1. Let M be a connected real hypersurface in CHn, n ≥ 3, with three distinct
constant principal curvatures. Then M is holomorphically congruent to an open part of
one of the following real hypersurfaces:

(a) A tube of radius r > 0 around a totally geodesic CHk ⊂ CHn for some integer
k ∈ {1, . . . , n − 2}.

(b) A tube of radius r > 0, r �= log(2 +
√
3), around a totally geodesic RHn ⊂ CHn.

(c) A ruled minimal real hypersurface W 2n−1 ⊂ CHn or one of the equidistant hypersur-
faces to W 2n−1.

(d) A tube of radius r = log(2 +
√
3) around a ruled minimal real submanifold W 2n−k ⊂

CHn for some integer k ∈ {2, . . . , n − 1}.

The previous chapter was devoted, among other things, to the study of the geometry
of the examples in the statement of the theorem above. We emphasize that cases (a) and
(b) are Hopf hypersurfaces whereas cases (c) and (d) are not. From Theorem 6.5 it follows
that in order to derive the above classification result we just need to focus on cases (c)
and (d).
In [115] J. Saito gave a classification of connected real hypersurfaces of CHn with

three distinct constant principal curvatures using the classification of Hopf hypersurfaces
of Theorem 6.5. In this paper J. Saito proves that when three different principal curvatures
are assumed, the Hopf vector field is principal. Most unfortunately J. Saito’s proof is
incorrect. Cases (c) and (d), together with our study in the previous chapter, show that
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this is not true. J. Saito’s mistake consists of getting wrong formulas ((4.42) and (4.59) in
[115]) to get a contradiction when the Hopf vector field is not principal.
This chapter is organized as follows. In Section 7.1 we use the Gauss and Codazzi equa-

tions to get some general results for real hypersurfaces with constant principal curvatures
in the complex hyperbolic space. An easy consequence of this, is Corollary 7.6 where we
classify real hypersurfaces with two distinct constant principal curvatures. Section 7.2 is
devoted to the proof of Theorem 7.1. To achieve this, we first obtain some information
of the eigenvalue structure of the shape operator of the submanifold in Subsection 7.2.1.
Then, in Subsection 7.2.2, using Jacobi vector field theory, we derive the classification
result as a consequence of Theorems 6.8 and 6.16.

7.1 Formulas for constant principal curvatures

From now on,M denotes a real hypersurface with constant principal curvatures. This sim-
plifies Gauss and Codazzi equations considerably and allows us to derive crucial formulas
for the rest of our work.
Let α, β and γ constant real numbers and let X ∈ Γ(Tα), Y ∈ Γ(Tβ) and Z ∈ Γ(Tγ).

Using the Codazzi equation we get

〈(∇XS)Y − (∇Y S)X,Z〉 = −〈R̄XY ξ, Z〉.

On the other hand,

〈(∇XS)Y − (∇Y S)X,Z〉 = 〈∇XSY − S∇XY −∇Y SX + S∇Y X, Z〉

= (β − γ)〈∇XY, Z〉 − (α − γ)〈∇Y X, Z〉.

This proves the following result.

Lemma 7.2. For all X ∈ Γ(Tα), Y ∈ Γ(Tβ) and Z ∈ Γ(Tγ) we have

(β − γ)〈∇XY, Z〉+ (γ − α)〈∇Y X,Z〉 = −R̄XY ξZ .

Putting α = γ in the above lemma we get (β − α)〈∇XY, Z〉 = −R̄XY ξZ . Changing the
role of Y and Z yields the following result whose importance in what follows cannot be
understated.

Lemma 7.3. For all X, Y ∈ Γ(Tα) and Z ∈ Γ(Tβ) with α �= β we have

〈∇XY, Z〉 = −〈∇XZ, Y 〉 = 1
β − α

R̄XZξY

=
1

4(α − β)

{
〈JX, Y 〉〈Z, Jξ〉+ 〈JY, Z〉〈X, Jξ〉+ 2〈JX, Z〉〈Y, Jξ〉

}
.

Corollary 7.4. For all X ∈ Γ(Tα) with 〈X, Jξ〉 = 0, we have ∇XX ∈ Γ(Tα).
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We follow [125]. Assume α = β = γ in Lemma 7.2. Then R̄XY ξZ = 0 for any X,Y, Z ∈
Tα(p). In particular, 0 = R̄XY ξX = −34〈JX, Y 〉〈X, Jξ〉 for any X, Y ∈ Tα(p). Then,
0 = 〈X, Jξ〉 R̄XY ξZ = 1

4 〈JY, Z〉 〈X, Jξ〉2. As a consequence, if X,Y, Z ∈ Tα(p), we have
〈JX, Y 〉 〈Z, Jξ〉 = 0. Hence, we have proved

Corollary 7.5. If the projection of Jξp onto Tα(p) is non–zero, then Tα(p) is a real subspace
of TpCHn, that is, J Tα(p) ⊂ TpCHn � Tα(p).

This immediately implies that the number of constant principal curvatures of M must
be at least two. If this minimum is attained, then the classification of real hypersurfaces
with two constant principal curvatures follows from the work by S. Montiel [99] for n ≥ 3.
We give a simple proof for n ≥ 2 based on the classification of Hopf hypersurfaces with
constant principal curvatures of Theorem 6.5.

Corollary 7.6. Let M be a connected real hypersurface of CHn, n ≥ 2, with two distinct
constant principal curvatures. Then M is holomorphically congruent to an open part of
one of the following real hypersurfaces:

(i) A geodesic sphere of radius r > 0 in CHn.

(ii) A tube of radius r > 0 around a totally geodesic CHn−1 ⊂ CHn.

(iii) A tube of radius r = log(2 +
√
3) around a totally geodesic RHn ⊂ CHn.

(iv) A horosphere in CHn.

Proof. It suffices to prove that M is Hopf hypersurface. The result then follows from
Theorem 6.5 and the study of Section 6.3.
Assume M is not a Hopf hypersurface and call α and β the principal curvatures of M .

Then, there exists a point p ∈ M such that we can write Jξp = X + Y for some non–zero
vectors X ∈ Tα(p) and Y ∈ Tβ(p). According to Lemma 7.5, both Tα(p) and Tβ(p) are real,
so J Tα(p) ⊂ TpCHn � Tα(p) = Tβ(p)⊕ Rξp and J Tβ(p) ⊂ TpCHn � Tβ(p) = Tα(p)⊕ Rξp.
Since n ≥ 2, we can assume dimTα(p) ≥ 2.
We have J(Tα(p) � RX) ⊂ Tβ(p), which implies dimTβ(p) ≥ dim J(Tα(p) � RX) =

dimTα(p) − 1. But Y is not an element of J(Tα(p) � RX) because 〈Y, Jξ〉 �= 0. Thus we
have dimTβ(p) ≥ dimTα(p).
The previous equality shows that dimTβ(p) ≥ 2, so we can proceed with Tβ(p)�RY in

the same way to prove that dimTβ(p) ≥ dimTα(p). Therefore, dimTβ(p) = dimTα(p). This
implies that dimM = dimTβ(p)+dimTα(p) is even, which contradicts dimM = 2n−1.

In the following lemma we rewrite the Gauss equation for principal curvature vectors
associated with different principal curvatures. The resulting formula will be used in many
cases throughout this chapter.
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Lemma 7.7. Let α and β be two distinct principal curvatures, X ∈ Γ(Tα) and Y ∈ Γ(Tβ).
The following relation holds:(1

4
− α β
)
〈X,X〉〈Y, Y 〉+ 1

2
〈JX, Y 〉2 + 2〈∇XY,∇Y X〉 − 〈∇XX,∇Y Y 〉

+
1

4(α − β)

{
4 〈JX, Y 〉

(
X〈Y, Jξ〉+ Y 〈X, Jξ〉

)
+ 〈X, Jξ〉

(
3Y 〈JX, Y 〉+ 〈∇Y X, JY 〉 − 2〈∇XY, JY 〉

)
+ 〈Y, Jξ〉

(
3X〈JX, Y 〉 − 〈∇XY, JX〉+ 2〈∇Y X, JX〉

)}
= 0.

Proof. Using the Gauss equation we get

RXY XY =
(
α β − 1

4

)
〈X, X〉〈Y, Y 〉 − 3

4
〈JX, Y 〉2.

On the other hand, the definition of the intrinsic curvature tensor R yields

RXY XY = 〈∇[X,Y ]X −∇X∇Y X +∇Y ∇XX, Y 〉

= 〈∇[X,Y ]X,Y 〉 − X〈∇Y X, Y 〉+ 〈∇Y X,∇XY 〉+ Y 〈∇XX,Y 〉 − 〈∇XX,∇Y Y 〉.
Using Lemma 7.3 we get

X〈∇Y X,Y 〉 = − 3
4(α − β)

(
〈Y, Jξ〉X〈JX, Y 〉+ 〈JX, Y 〉X〈Y, Jξ〉

)
,

Y 〈∇XX,Y 〉 =
3

4(α − β)

(
〈X, Jξ〉Y 〈JX, Y 〉+ 〈JX, Y 〉Y 〈X, Jξ〉

)
.

Using the Codazzi equation and the first Bianchi identity, we obtain

(α − β)〈∇[X,Y ]X, Y 〉 = 〈
(
∇[X,Y ]S

)
X, Y 〉 = 〈(∇XS) [X,Y ], Y 〉 − 〈R̄[X,Y ]Xξ, Y 〉

= 〈(∇XS)Y,∇XY 〉 − 〈(∇XS)Y,∇Y X〉 − R̄[X,Y ]XξY

= (α − β)〈∇XY,∇Y X〉 − R̄XY ξ∇XY − R̄[X,Y ]XξY

= (α − β)〈∇XY,∇Y X〉+ R̄X∇Y XY ξ − R̄Y ∇XY Xξ .

Now, the definition of the curvature tensor of CHn and the Weingarten equation yield

4(R̄X∇Y XY ξ − R̄Y ∇XY Xξ) = −(α − β)〈JX, Y 〉2 + 〈JX, Y 〉
(
X〈Y, Jξ〉+ Y 〈X, Jξ〉

)
+〈X, Jξ〉

(
〈∇Y X, JY 〉 − 2〈∇XY, JY 〉

)
+〈Y, Jξ〉

(
−〈∇XY, JX〉+ 2〈∇Y X, JX〉

)
.

Altogether this proves the result.
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7.2 Proof of Theorem 7.1

LetM be a connected real hypersurface of the complex hyperbolic space with three constant
principal curvatures. We denote the principal curvatures by α, β and γ. By ξ we denote
a local unit normal vector field on M .
The Hopf vector field Jξ is always tangent to the submanifold M . If Jξ is also a

principal curvature vector, then M is a Hopf hypersurface. As a consequence of Theorem
6.5, and taking into account the study of the number of principal curvatures carried out
in the previous chapter, we have that M is congruent to a local part of a tube of radius
r > 0 around a totally geodesic CHk ⊂ CHn for some integer k ∈ {1, . . . , n − 2} or to a
tube of radius r > 0, r �= log(2 +

√
3) around a totally geodesic RHn ⊂ CHn. This takes

care of cases (a) and (b) of Theorem 7.1.
Therefore, from now on we assume that M is not a Hopf hypersurface. We follow the

next scheme:

1. Using the Gauss and Codazzi equations we get general relations for the eigenvalue
structure of the shape operator of M . This is accomplished by using some facts
from Section 7.1. More specifically, the Hopf vector field Jξ cannot have non–trivial
projection onto the three principal curvature spaces. In case it has two non–trivial
projections, two different possibilities arise and we totally describe the eigenvalue
structure of the shape operator in each case.

2. We study the two cases obtained in the previous point. For the first of them, the
corresponding hypersurface has focal points at distance r = log(2 +

√
3). We deter-

mine the second fundamental form of the focal manifold. For the second possibility
there are no focal points and hence equidistant hypersurfaces form locally a foliation.
Exactly one of the leaves of that foliation is minimal. We study the shape operator
of that minimal leave.

3. Both the focal set in the first possibility and the minimal equidistant hypersurface in
the second have a second fundamental form as described in Theorems 6.8 and 6.16.
Then, those rigidity results apply and the assertion follows.

7.2.1 Principal curvatures

This section is devoted to proving the following result.

Proposition 7.8. Let M be a connected real hypersurface in CHn, n ≥ 3, with three
distinct constant principal curvatures α, β and γ. If the Hopf vector field Jξ of M is
not a principal vector everywhere, then Jξ has non–trivial projection onto two principal
curvature spaces. Assume these are Tβ and Tγ. Then, we have Jξ = aX + b Y , where
X ∈ Γ(Tβ) and Y ∈ Γ(Tγ) are unit vectors, a, b > 0 and a2 + b2 = 1. There exists a unit
vector field A ∈ Γ(Tα) such that JA = bX − a Y . The subbundle RX ⊕RY is real and the
subbundle RA ⊕ RX ⊕ RY ⊕ Rξ is complex. Moreover we may put mγ = 1 and then one
of the following two cases holds:
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(i) mα = 2n−mβ−2 and mβ > 1. The eigenvalues are α =
√
3/6, β =

√
3/2 and γ = 0.

Moreover a = 2
√
2/3, b = 1/3, the subbundle Tβ �RX is real and J(Tβ �RX) ⊂ Tα.

(ii) mα = 2n − 3 and mβ = mγ = 1. The eigenvalues satisfy

|α| < 1/2, β =
1
2

(
3α −

√
1− 3α2

)
, γ =

1
2

(
3α +

√
1− 3α2

)
,

and a and b are constant. In particular,

a2 = −(α − β)(1 + 4α2 − 4αγ)
β − γ

, b2 =
(α − γ)(1 + 4α2 − 4αβ)

β − γ
.

We divide the proof in two major steps.

Jξ has non–trivial projection onto three principal curvature spaces

Let ξ be the (local) unit vector field of the hypersurface M . We assume that there exists a
point p such that Jξp has non–trivial projection onto Tα(p), Tβ(p) and Tγ(p). By continuity
there exists an open neighborhood U of p such that these three projections must be non–
trivial. Hence we may write

Jξ = aX + b Y + c Z,

for some local unit vector fields X ∈ Γ(Tα), Y ∈ Γ(Tβ), Z ∈ Γ(Tγ) and functions a, b, c :
U → R such that a, b, c �= 0 in U .

Lemma 7.9. By taking a suitable orientation, in the neighborhood U we have

JX = c Y − b Z − a ξ, JY = −cX + aZ − b ξ, JZ = bX − a Y − c ξ.

In particular, RX ⊕ RY ⊕ RZ ⊕ Rξ is a complex subbundle of TM .

Proof. Since Tα, Tβ and Tγ are real subbundles by Corollary 7.5, we may write

JX = 〈JX, Y 〉Y + 〈JX,Z〉Z + V1 +W1 − a ξ,

JY = −〈JX, Y 〉X + 〈JY, Z〉Z + U2 +W2 − b ξ,

JZ = −〈JX, Z〉X − 〈JY, Z〉Y + U3 + V3 − c ξ,

with U2, U3 ∈ Γ(Tα � RX), V1, V3 ∈ Γ(Tβ � RY ) and W1,W2 ∈ Γ(Tγ � RZ). Taking into
account that a2 + b2 + c2 = 1 and using the above expressions we have

−ξ = J2ξ = J(aX + b Y + c Z)

= a
(
〈JX, Y 〉Y + 〈JX, Z〉Z + V1 +W1 − a ξ

)
+b
(
−〈JX, Y 〉X + 〈JY, Z〉Z + U2 +W2 − b ξ

)
+c
(
−〈JX, Z〉X − 〈JY, Z〉Y + U3 + V3 − c ξ

)
=
(
−b〈JX, Y 〉 − c〈JX, Z〉

)
X +
(
a〈JX, Y 〉 − c〈JY, Z〉

)
Y +
(
a〈JX, Z〉+ b〈JY, Z〉

)
Z

+
(
b U2 + c U3

)
+
(
a V1 + c V3

)
+
(
aW1 + bW2

)
− ξ.
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Hence,
b U2 + c U3 = a V1 + c V3 = a W1 + bW2 = 0.

and a, b and c satisfy the following system of linear equations

(7.1)

 0 〈JX, Y 〉 〈JX, Z〉
−〈JX, Y 〉 0 〈JY, Z〉
−〈JX,Z〉 −〈JY, Z〉 0

a
b
c

 =
00
0

 .

Let us call A the matrix of the above system. Since A is skew–symmetric, rankA ∈ {0, 2}.
Assume that U2, U3, V1, V3,W1,W2 are all non–zero. Then U2 and U3 are both non–

zero and collinear and the same happens with the pairs V1, V3 and W1, W2. For any
Ṽ ∈ Tβ � (RY ⊕ RV1) we have

〈JU3, Ṽ 〉 = 〈−Z + 〈JX, Z〉JX + 〈JY, Z〉JY − JV3 + c Jξ, Ṽ 〉
= 〈JX,Z〉〈〈JX, Y 〉Y + 〈JX, Z〉Z + V1 +W1 − a ξ, Ṽ 〉
+〈JY, Z〉〈−〈JX, Y 〉X + 〈JY, Z〉Z + U2 +W2 − b ξ, Ṽ 〉 = 0,

and hence JU3 ∈ RY ⊕ RV1 ⊕ RZ ⊕ RW1. Proceeding in a similar way we also get
JV1 ∈ RX ⊕ RU2 ⊕ RZ ⊕ RW1 and JW1 ∈ RX ⊕ RU3 ⊕ RY ⊕ RV1. This means that
the vector subbundle spanned by {X,U2, Y, V1, Z,W1, ξ} is complex. As a complex vector
space cannot have odd dimension, one of the three vectors U3, V1 or W1 must be zero. We
may assume U2 = U3 = 0.
Now, if rankA = 0, then 〈JX, Y 〉 = 〈JX, Z〉 = 〈JY, Z〉 = 0, or equivalently, the

subbundle spanned by {X,Y, Z} is real. In this case, JY = W2 − b ξ which implies
Jξ = (JW2 + Y )/b ∈ Γ(Tα ⊕ Tβ), contradiction. Therefore, rankA = 2. Since a, b and c
are are solutions of the system (7.1) we have

〈JX, Y 〉〈JX,Z〉〈JY, Z〉 �= 0.

because a, b and c are all non–zero.
Taking the expressions of JX, JY and JZ into account we obtain

0 = 〈Z, V3〉 = 〈JZ, JV3〉 = 〈−〈JX, Z〉X − 〈JY, Z〉Y + V3 − c ξ, JV3〉
= 〈JX, Z〉〈〈JX, Y 〉Y + 〈JX, Z〉Z + V1 +W1 − a ξ, V3〉
+〈JY, Z〉〈−〈JX, Y 〉X + 〈JY, Z〉Z +W2 − b ξ, V3〉

= 〈JX, Z〉〈V1, V3〉.

Since V1 and V3 are collinear and 〈JX,Z〉 �= 0 we get V1 = V3 = 0. In a similar way we
also get W1 = W2 = 0. Therefore RX ⊕ RY ⊕ RZ ⊕ Rξ is a complex subbundle of TM .
Solving the system of equations (7.1) we see that the vector (a, b, c) ∈ R3 is in the real

span of (〈JY, Z〉,−〈JX, Z〉, 〈JX, Y 〉) ∈ R3. From a2 + b2 + c2 = 1 and the expressions for
JX, JY and JZ we get

3 = 〈JX, JX〉+ 〈JY, JY 〉+ 〈JZ, JZ〉 = 2
(
〈JY, Z〉2 + 〈JX,Z〉2 + 〈JX, Y 〉2

)
+ 1.
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Thus (〈JY, Z〉,−〈JX, Z〉, 〈JX, Y 〉) is a unit vector in R3. By a suitable choice of orienta-
tion we may put 〈JX, Y 〉 = c, 〈JX, Z〉 = −b and 〈JY, Z〉 = a and Lemma 7.9 follows.

Throughout this subsection we assume the notation of Lemma 7.9. The following result
describes the eigenvalue structure of the shape operator of M . This will allow us to prove
that Jξ cannot have non–trivial projections onto the three eigenspaces.

Lemma 7.10. For any U ∈ Γ(Tα �RX), V ∈ Γ(Tβ �RY ) and W ∈ Γ(Tγ �RZ) we have

(2α(α − β)− 1)〈JU, V 〉 = (2β(α − β) + 1)〈JU, V 〉 = 0,

(2α(α − γ)− 1)〈JU,W 〉 = (2γ(α − γ) + 1)〈JU,W 〉 = 0,

(2β(β − γ)− 1)〈JV,W 〉 = (2γ(β − γ) + 1)〈JV, W 〉 = 0.

Proof. We recall that by Corollary 7.5, Tα, Tβ and Tγ are real subbundles of TM . We
divide the proof in several steps.

Claim 7.11. We have

〈∇UV, Y 〉 = b(a2 − 2α(α − β))
2(b2 + c2)(α − β)

〈JU, V 〉, 〈∇UV, Z〉 = c(a2 − 2α(α − β))
2(b2 + c2)(α − β)

〈JU, V 〉,

〈∇V U,X〉 = a(b2 + 2β(α − β))
2(a2 + c2)(α − β)

〈JU, V 〉, 〈∇V U,Z〉 = c(b2 + 2β(α − β))
2(a2 + c2)(α − β)

〈JU, V 〉,

〈∇UW,Z〉 = c(a2 − 2α(α − γ))
2(b2 + c2)(α − γ)

〈JU,W 〉, 〈∇UW,Y 〉 = b(a2 − 2α(α − γ))
2(b2 + c2)(α − γ)

〈JU,W 〉,

〈∇W U,X〉 = a(c2 + 2γ(α − γ))
2(a2 + b2)(α − γ)

〈JU,W 〉, 〈∇W U, Y 〉 = b(c2 + 2γ(α − γ))
2(a2 + b2)(α − γ)

〈JU,W 〉,

〈∇V W,Z〉 = c(b2 − 2β(β − γ))
2(a2 + c2)(β − γ)

〈JV,W 〉, 〈∇V W,X〉 = a(b2 − 2β(β − γ))
2(a2 + c2)(β − γ)

〈JV,W 〉,

〈∇W V, Y 〉 = b(c2 + 2γ(β − γ))
2(a2 + b2)(β − γ)

〈JV, W 〉, 〈∇W V, X〉 = a(c2 + 2γ(β − γ))
2(a2 + b2)(β − γ)

〈JV, W 〉.

Since V ∈ Γ(Tβ � RY ) and Tβ is a real subbundle of TM , we may write JV = Ũ + W̃
with Ũ ∈ Γ(Tα � RX) and W̃ ∈ Γ(Tγ � RZ). Taking into account that Tα is a real
subbundle of TM and the fact that the complex structure is parallel, ∇̄J = 0, we get
〈Ũ , ∇̄UJξ〉 = α〈Ũ , JU〉 = 0. Using this and Lemma 7.3 we get

0 = U〈Ũ , Jξ〉 = 〈∇̄U Ũ , Jξ〉+ 〈Ũ , ∇̄UJξ〉 = 〈∇̄U Ũ , a X + b Y + c Z〉 = a〈∇U Ũ , X〉,

which implies 〈∇UX, Ũ〉 = 0. Then, the previous equation and Lemma 7.3 give

〈∇UX, JV 〉 = 〈∇UX, Ũ〉+ 〈∇UX, W̃ 〉 = a

2(α − γ)
〈JU, W̃ 〉.

Since Tα is a real subbundle of TM we have 〈JU, W̃ 〉 = 〈JU, JV − Ũ〉 = 0 and hence

〈∇UX, JV 〉 = 0.
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Lemma 7.3 implies

0 = U〈V, Jξ〉 = 〈∇̄UV, a X + b Y + c Z〉+ 〈V, ∇̄UJξ〉

=
a2

2(α − β)
〈JU, V 〉+ b〈∇UV, Y 〉+ c〈∇UV, Z〉 − α〈JU, V 〉.

Using the expression for JX in Lemma 7.9, 〈∇UX, JV 〉 = 0 and Lemma 7.3 we get

0 = U〈V, JX〉 = 〈∇̄UV, c Y − b Z − a ξ〉+ 〈V, ∇̄UJX〉
= c〈∇UV, Y 〉 − b〈∇UV, Z〉 − 〈∇UX, JV 〉 = c〈∇UV, Y 〉 − b〈∇UV, Z〉.

Thus, the last two equations provide a linear system whose unknowns are 〈∇UV, Y 〉 and
〈∇UV, Z〉. This system has clearly one unique solution

〈∇UV, Y 〉 = b(a2 − 2α(α − β))
2(b2 + c2)(α − β)

〈JU, V 〉, 〈∇UV, Z〉 = c(a2 − 2α(α − β))
2(b2 + c2)(α − β)

〈JU, V 〉.

which is the first pair of formulas of Claim 7.11. The other equations are obtained in a
similar way.

Claim 7.12. We have

〈∇UV, Y 〉 = − b

2(α − β)
〈JU, V 〉, 〈∇V U,X〉 = − a

2(α − β)
〈JU, V 〉,

〈∇UW,Z〉 = − c

2(α − γ)
〈JU,W 〉, 〈∇W U,X〉 = − a

2(α − γ)
〈JU,W 〉,

〈∇V W,Z〉 = − c

2(β − γ)
〈JV,W 〉, 〈∇W V, Y 〉 = − b

2(β − γ)
〈JV, W 〉.

Again, we write JV = Ũ + W̃ with Ũ ∈ Γ(Tα � RX) and W̃ ∈ Γ(Tγ � RZ). Using
Lemma 7.3, Claim 7.11 and 〈JU, W̃ 〉 = 0 we get

〈V, ∇̄UJZ〉 = −〈∇UZ, JV 〉= −〈∇UZ, Ũ〉−〈∇UZ, W̃ 〉 = −c(a2 − 2α(α − γ))
2(b2 + c2)(α − γ)

〈JU, W̃ 〉 = 0.

The last equation and Lemmas 7.3 and 7.9 give

0 = U〈V, JZ〉 = 〈∇̄UV, bX − a Y − c ξ〉+ 〈V, ∇̄UJZ〉

= − a b

2(α − β)
〈JU, V 〉 − a〈∇UV, Y 〉 − 〈∇UZ, JV 〉

= − a b

2(α − β)
〈JU, V 〉 − a〈∇UV, Y 〉,

which gives the first equality of Claim 7.12. The others are obtained in a similar way.

Comparing the first two equations of Claims 7.11 and 7.12 we get

〈∇UV, Y 〉 = b(a2 − 2α(α − β))
2(b2 + c2)(α − β)

〈JU, V 〉 = − b

2(α − β)
〈JU, V 〉,
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and hence (2α(α−β)−1)〈JU, V 〉 = 0, which is the first equation of the assertion of Lemma
7.10. The other equalities are obtained in the same way comparing the first column of Claim
7.11 with the formulas of Claim 7.12.

The previous lemma together with Lemma 7.7 implies that Jξ cannot have non–trivial
projection onto Tα, Tβ and Tγ as the following result shows.

Proposition 7.13. Let M be a real hypersurface of CHn, n ≥ 3, with three distinct
constant principal curvatures α, β and γ. There is no point p ∈ M such that Jξp has
non–trivial projection onto Tα(p), Tβ(p) and Tγ(p).

Proof. As n ≥ 3, the vector subspace (Tα(p) � RXp) ⊕ (Tβ(p) � RYp) ⊕ (Tγ(p) � RZp)
is non–zero and all the direct addends are real by Corollary 7.5. Possibly changing the
roles of α, β and γ, we can choose Up ∈ Tα(p), Vp ∈ Tβ(p) and Wp ∈ Tγ(p) such that
〈JUp, Vp〉, 〈JUp,Wp〉 �= 0. Then, Lemma 7.10 implies

2α(α − β)− 1 = 2α(α − γ)− 1 = 2β(α − β) + 1 = 2γ(β − γ) + 1 = 0

and a simple calculation shows that α2 = β2 = γ2. This is a contradiction because the
principal curvatures are different.
Therefore, we may assume mγ = 1, and as a consequence, Tα � RX = J(Tβ � RY ).

Using this fact, the non–trivial equations given by Lemma 7.10 are 2α(α − β) − 1 =
2β(α−β)+1 = 0. This implies α2 = β2 = 1/4. Changing the orientation of ξ, if necessary,
we can put α = −1/2 and β = 1/2.

Claim 7.14. Let U ∈ Γ(Tα � RX) be a unit vector. Then, 〈∇UJU,∇JUU〉 = 1/4.

Since Tα � RX = J(Tβ � RY ), we have that JU ∈ Γ(Tβ � RY ). Let Ũ ∈ Γ(Tα � RX)
and Ṽ ∈ Γ(Tβ � RY ). Using Lemma 7.3 and the fact that α = −β = −1/2 we have

〈∇UJU,X〉 = − a

2(α − β)
〈JU, JU〉 = a

2
, 〈∇UJU, Ũ〉 = 0,

〈∇JUU, Y 〉 = − b

2(α − β)
〈JU, JU〉 = b

2
, 〈∇JUU, Ṽ 〉 = 0.

Taking into account that a2 + b2 + c2 = 1 and putting α = −β = −1/2 in the formulas of
Claims 7.11 and 7.12 yields

〈∇UJU, Y 〉 = − b

2(α − β)
=

b

2
, 〈∇UJU,Z〉 = c(a2 − 2α(α − β))

2(b2 + c2)(α − β)
=

c

2
,

〈∇JUU,X〉 = − a

2(α − β)
=

a

2
, 〈∇JUU,Z〉 =

c(b2 + 2β(α − β))
2(a2 + c2)(α − β)

=
c

2
.

Altogether this means 〈∇UJU,∇JUU〉 = 〈∇UJU,X〉〈∇JUU,X〉+ 〈∇UJU, Y 〉〈∇JUU, Y 〉+
〈∇UJU,Z〉〈∇JUU,Z〉 = 1/4 as Claim 7.14 states.
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We now finish the proof of this proposition. Let U ∈ Γ(Tα � RX) be a unit vector.
From Corollary 7.4 we get 〈∇UU,∇JUJU〉 = 0. Claim 7.14 asserts 〈∇UJU,∇JUU〉 = 1/4.
Applying Lemma 7.7 for U ∈ Γ(Tα � RX) and JU ∈ Γ(Tβ � RY ) and taking the above
expressions into account yields

0 =
1
4
− αβ +

1
2
〈JU, JU〉2 + 2〈∇UJU,∇JUU〉 − 〈∇UU,∇JUJU〉 = 3

2
,

which is a contradiction. Therefore, Jξp cannot have non–trivial projection onto the three
principal curvature spaces.

Jξ has non–trivial projection onto two eigenspaces

As usual, let ξ be a (local) unit normal vector field of M . We assume that Jξp has non–
trivial projection onto two principal curvature spaces, let us say, Tβ(p) and Tγ(p). By
continuity there exists a neighborhood U of p such that

Jξ = aX + b Y,

for some unit local vector fields X ∈ Γ(Tβ) and Y ∈ Γ(Tγ) and everywhere non–zero
functions a, b : U → R.

Lemma 7.15. There exists a local unit vector field A ∈ Γ(Tα) such that RA⊕RX⊕RY ⊕Rξ
is a complex subbundle of TM . Moreover, by a suitable choice of orientation we can write

JA = bX − a Y, JX = −bA − a ξ, JY = aA − b ξ.

In particular RX ⊕ RY is a real subbundle of TM .

Proof. The principal curvature spaces Tβ and Tγ are real by Corollary 7.5. Then we can
write

JX = 〈JX, Y 〉Y + U1 +W − aξ, JY = −〈JX, Y 〉X + U2 + V − bξ,

with U1, U2 ∈ Γ(Tα), V ∈ Γ(Tβ �RX) and W ∈ Γ(Tγ �RY ). Using the last expression we
have

−ξ = J2ξ = J(aX + b Y )

= a
(
〈JX, Y 〉Y + U1 +W − aξ

)
+ b
(
− 〈JX, Y 〉X + U2 + V − bξ

)
= (aU1 + b U2)− b〈JX, Y 〉X + a〈JX, Y 〉Y + b V + aW − (a2 + b2)ξ.

Since a2 + b2 = 1 we get aU1 + b U2 = V = W = 0 and 〈JX, Y 〉 = 0.
The vectors U1 and U2 are both zero or both non–zero. If U1 = U2 = 0 we have

JX = −aξ and JY = −bξ, which is impossible. Hence we can choose a unit vector vector
field A ∈ Γ(RU1) = Γ(RU2) ⊂ Γ(Tα). Since JU1 = aJξ − X ∈ Γ(RX ⊕ RY ) we get
JA ∈ Γ(RX ⊕RY ). This shows that RA⊕RX ⊕RY ⊕Rξ is a complex vector subbundle
of TM .
The two unit vector fields JA, Jξ ∈ Γ(RX ⊕ RY ) are orthogonal and Jξ = aX + bY

by assumption. Then, by a suitable orientation of A we can write JA = bX − a Y and the
result follows.



174 7 Real hypersurfaces with constant principal curvatures

We will need the following covariant derivatives latter in this subsection.

Lemma 7.16. With the notation of Lemma 7.15 we have

∇XX =
3a b

4(α − β)
A, ∇Y Y = − 3a b

4(α − γ)
A,

∇XY = −
(

β +
3a2

4(α − β)

)
A, ∇Y X =

(
γ +

3b2

4(α − γ)

)
A,

∇XA = − 3 a b

4(α − β)
X +

(
β +

3a2

4(α − β)

)
Y, ∇Y A = −

(
γ +

3b2

4(α − γ)

)
X +

3 a b

4(α − γ)
Y,

∇AX =
1

β − γ

{(
3(α − γ)
4(α − β)

− 1
4

)
a2 +

b2

2
+ β(α − γ)

}
Y,

∇AY = − 1
β − γ

{(
3(α − γ)
4(α − β)

− 1
4

)
a2 +

b2

2
+ β(α − γ)

}
X,

∇AA = 0.

Proof. Let U ∈ Γ(Tα � RA), V ∈ Γ(Tβ � RX) and W ∈ Γ(Tγ � RY ).
Since X and Y have unit length we have 〈∇XX, X〉 = 0 and 〈∇Y Y, Y 〉 = 0. From

Lemma 7.3 we easily get

〈∇XX, U〉 = 〈∇XX, Y 〉 = 〈∇XX, W 〉 = 0, 〈∇XX, A〉 = 3a b

4(α − β)
,

〈∇Y Y, U〉 = 〈∇Y Y,X〉 = 〈∇Y Y, V 〉 = 0, 〈∇Y Y,A〉 = − 3a b

4(α − γ)
.

We have 〈V, ∇̄XJξ〉 = β〈V, JX〉 = 0. Using this, Lemma 7.3 and the expression for Jξ we
get

0 = X〈V, Jξ〉 = 〈∇̄XV, a X + b Y 〉+ 〈V, ∇̄XJξ〉 = −a〈∇XX, V 〉.
Hence, 〈∇XX, V 〉 = 0. In a similar way we also obtain 〈∇Y Y,W 〉 = 0. Therefore, the first
two equations of Lemma 7.16 follow.
Since X and Y have unit length we have 〈∇XY, Y 〉 = 0 and 〈∇Y X,X〉 = 0. Using the

expressions for ∇XX and ∇Y Y we immediately get 〈∇XY,X〉 = 0 and 〈∇Y X, Y 〉 = 0.
Also, using Lemma 7.3 we obtain

〈∇XY, V 〉 = 〈∇Y X,W 〉 = 0.
As 〈U, Jξ〉 = 0, taking derivatives, using the expressions for Jξ and ∇XX and the equality
〈U, ∇̄XJξ〉 = β〈U, JX〉 = 0 we get

0 = X〈U, Jξ〉 = 〈∇̄XU, a X + b Y 〉+ 〈U, ∇̄XJξ〉 = −b〈∇XY, U〉.
Hence, 〈∇XY, U〉 = 0 and in a similar way 〈∇Y X, U〉 = 0. Also, as 〈W, ∇̄XJξ〉 =
β〈W,JX〉 = 0, the formula for ∇XX yields

0 = X〈W,Jξ〉 = 〈∇̄XW,aX + b Y 〉+ 〈W, ∇̄XJξ〉 = −b〈∇XY,W 〉
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and hence 〈∇XY,W 〉 = 0. In a similar way we obtain as well 〈∇Y X,V 〉 = 0. Now, as
〈JX, Y 〉 = 0, using Lemma 7.15 and ∇XX we get

0 = X〈JX, Y 〉 = 〈∇̄XJX, Y 〉+ 〈JX, ∇̄XY 〉

= −〈∇̄XX, aA − bξ〉+ 〈∇̄XY,−bA − aξ〉 = − 3a2b
4(α − β)

− b β − b〈∇XY, A〉.

Hence, the above expression and the corresponding one for 0 = Y 〈JY,X〉 yield

〈∇XY, A〉 = −β − 3a2

4(α − β)
and 〈∇Y X,A〉 = γ +

3b2

4(α − γ)
.

Therefore, the third and forth formulas of Lemma 7.16 follow.
Since A has constant length, 〈∇XA,A〉 = 〈∇Y A,A〉 = 0. Lemma 7.3 gives

〈∇XA, V 〉 = 〈∇Y A,W 〉 = 0.

As 〈JY, W 〉 = 0, using Lemma 7.15 and the fact that JW ∈ Γ((Tα � RA) ⊕ (Tβ � RX))
by Lemma 7.5, we obtain,

0 = X〈JY, W 〉 = 〈∇̄XJY, W 〉+ 〈JY, ∇̄XW 〉

= −〈∇XY, JW 〉+ a〈∇XW,A〉+ bβ〈X, W 〉 = −a〈∇XA,W 〉.

Hence, 〈∇XA,W 〉 = 0. From 0 = X〈JY, U〉, 0 = Y 〈JX, V 〉 and 0 = Y 〈JX,U〉 = 0 we
also get 〈∇XA,U〉 = 〈∇Y A, V 〉 = 〈∇Y A,U〉 = 0. Altogether this means that ∇XA =
〈∇XA,X〉X + 〈∇XA, Y 〉Y and ∇Y A = 〈∇Y A,X〉X + 〈∇Y A, Y 〉Y . Using the expressions
obtained for ∇XX, ∇Y Y , ∇XY and ∇Y X we get the formulas of the fifth and sixth
equations of Lemma 7.16.
As X and Y have constant length, 〈∇AX, X〉 = 〈∇AY, Y 〉 = 0. Lemma 7.3 gives

〈∇AX, A〉 = 〈∇AX, U〉 = 〈∇AY, A〉 = 〈∇AY, U〉 = 0.

Lemma 7.2 and the formula for ∇XA gives

0 = −R̄AXξW = (β − γ)〈∇AX, W 〉+ (γ − α)〈∇XA,W 〉 = (β − γ)〈∇AX, W 〉.

Hence, 〈∇AX, W 〉 = 0. Also, 0 = −R̄AY ξV = (γ − β)〈∇AY, V 〉 implies 〈∇AY, V 〉 = 0.
Using this, the expression for Jξ and 〈W, ∇̄AJξ〉 = α〈W,JA〉 = 0 we get

0 = A〈W,Jξ〉 = 〈∇̄AW,aX + bY 〉+ 〈W, ∇̄AJξ〉 = −b〈∇AY, W 〉.

Hence 〈∇AY, W 〉 = 0. Analogously, 0 = A〈V, Jξ〉 yields 〈∇AX, V 〉 = 0. Thus ∇AX =
〈∇AX, Y 〉Y and ∇AY = −〈∇AX,Y 〉X. The latter inner product can be calculated by
using the explicit expression of R̄, Lemma 7.2 and ∇XA as follows

−1
4
(a2 − 2b2) = −R̄AXξY = (β − γ)〈∇AX,Y 〉+ (γ − α)〈∇XA, Y 〉

= (β − γ)〈∇AX,Y 〉+ (γ − α)

(
β +

3a2

4(α − β)

)
.
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Altogether this gives the expressions for ∇AX and ∇AY in Lemma 7.16.
As A has constant length 〈∇AA,A〉 = 0. The previous calculations for ∇AX and

∇AY show that 〈∇AA,X〉 = 〈∇AA, Y 〉 = 0. Moreover, Lemma 7.3 yields 〈∇AA, V 〉 =
〈∇AA,W 〉 = 0. Using the expressions for ∇AX and JX we get

0 = A〈JX,U〉 = 〈∇̄AJX, U〉+ 〈JX, ∇̄AU〉

= −〈∇AX, JU〉+ b〈∇AA,U〉+ aα〈A, U〉 = b〈∇AA,U〉.

Hence, 〈∇AA,U〉 = 0 and the result follows.

Corollary 7.17. The integral curves of A are geodesics in M and the three vector fields
A, X and Y span an autoparallel distribution on M .

We will also need the following relation.

Corollary 7.18. The principal curvatures of M and the functions a and b satisfy the
equation

3(α − γ)
4(α − β)

a2 +
3(α − β)
4(α − γ)

b2 + (α − γ)β + (α − β)γ +
1
4
= 0.

Proof. From Lemma 7.2 we have

−1
4
= −1
4
(a2 + b2) = −R̄XY ξA = (γ − α)〈∇XY,A〉+ (α − β)〈∇Y X, A〉.

Plugging the corresponding expressions of 〈∇XY, A〉 and 〈∇Y X, A〉 given by Lemma 7.16
we easily get the result.

We are now ready to give the following relation among the eigenvalues. This will lead
us to two different possibilities.

Lemma 7.19. Let V ∈ Γ(Tβ � RX) and W ∈ Γ(Tγ � RY ). Then(1
4
− αβ
)
〈V, V 〉 = 0,

(1
4
− αγ
)
〈W,W 〉 = 0.

Proof. Our aim is to apply Lemma 7.7 to the pairs A, V and A,W . To do this, we first
need the following intermediate result.

Claim 7.20. For any V ∈ Γ(Tβ � RX) and W ∈ Γ(Tγ � RY ) we have 〈∇V A,∇AV 〉 =
〈∇W A,∇AW 〉 = 0.
Lemma 7.3 implies

〈∇AV, A〉 = 〈∇AV, U〉 = 〈∇AW,A〉 = 〈∇AW,U〉 = 0

and Lemma 7.16 gives

〈∇AV, X〉 = 〈∇AV, Y 〉 = 〈∇AW,X〉 = 〈∇AW,Y 〉 = 0.
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Hence we have ∇AV,∇AW ∈ Γ
(
(Tβ �RX)⊕ (Tγ �RY )

)
. On the other hand, Lemma 7.3

gives 〈∇V A, Ṽ 〉 = 0 for any Ṽ ∈ Γ(Tβ �RX) and 〈∇W A, W̃ 〉 = 0 for any W̃ ∈ Γ(Tγ �RY ).
Thus, to get Claim 7.20 it suffices to prove 〈∇V A,W 〉 = 〈∇W A, V 〉 = 0 for arbitrary
V ∈ Γ(Tβ � RX) and W ∈ Γ(Tγ � RY ).
Using Lemma 7.15 and the Weingarten formula we get

0 = V 〈X, JW 〉 = 〈∇̄V X, JW 〉+ 〈X, ∇̄V JW 〉

= 〈∇V X, JW 〉+ b〈A,∇V W 〉 − aβ〈V, W 〉 = 〈∇V X, JW 〉 − b〈∇V A,W 〉.

This, and similar equations for 0 = V 〈Y, JW 〉, 0 = W 〈Y, JV 〉 and 0 = W 〈X, JV 〉 yield

(7.2)
〈∇V A,W 〉 = 1

b
〈∇V X, JW 〉 = −1

a
〈∇V Y, JW 〉,

〈∇W A, V 〉 = 1
b
〈∇W X, JV 〉 = −1

a
〈∇W Y, JV 〉.

Since Tγ is a real subbundle by Corollary 7.5, we may write JW = Ũ + Ṽ with Ũ ∈
Γ(Tα � RA) and Ṽ ∈ Γ(Tβ � RX). Using Lemma 7.3 we get

〈∇V X, Ũ〉 = a

2(α − β)
〈V, JŨ〉.

Also, since Tβ is real by Corollary 7.5, 〈Ṽ ,∇V Jξ〉 = 〈Ṽ , JSV 〉 = β〈Ṽ , JV 〉 = 0. Then, the
expression for Jξ implies 0 = V 〈Ṽ , Jξ〉 = −a〈∇V X, Ṽ 〉. Hence we get

〈∇V X, JW 〉 = a

2(α − β)
〈V, JŨ〉.

In a similar way, Lemma 7.3 implies 〈∇V Y, Ṽ 〉 = 0 and

0 = V 〈Ũ , Jξ〉 = −β〈V, JŨ〉 − a2

2(α − β)
〈V, JŨ〉 − b〈∇V Y, Ũ〉.

Thus

〈∇V Y, JW 〉 = −1
b

(
β +

a2

2(α − β)

)
〈V, JŨ〉.

Then (7.2) implies

〈∇V A,W 〉 = a

2b(α − β)
〈V, JŨ〉 = 1

a b

(
β +

a2

2(α − β)

)
〈V, JŨ〉,

and a simple calculation shows that β〈V, JŨ〉 = 0.
In a similar way we may write JV = Û+Ŵ with Û ∈ Γ(Tα�RA) and Ŵ ∈ Γ(Tγ�RY )

which eventually gives

〈∇W A, V 〉 = − b

2a(α − γ)
〈W,JÛ〉 = − 1

a b

(
γ +

b2

2(α − γ)

)
〈W,JÛ〉.
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As a consequence γ〈W,JÛ〉 = 0.
Since either β or γ is non–zero it follows that 〈V, JŨ〉 = 0 or 〈W,JÛ〉 = 0. Hence

〈∇V A,W 〉 = 0 or 〈∇W A, V 〉 = 0. But Lemma 7.2 shows

0 = −R̄V WξA = (γ − α)〈∇V W,A〉+ (α − β)〈∇W V, A〉
= (α − γ)〈∇V A,W 〉 − (α − β)〈∇W A, V 〉.

which implies 〈∇V A, W 〉 = 〈∇W A, V 〉 = 0 in both cases. This finishes the proof of Claim
7.20.

Applying Lemma 7.7 for A and V ∈ Γ(Tβ � RX) and also for A and W ∈ Γ(Tγ � RY )
and taking into account Lemmas 7.15, 7.16 and Claim 7.20, we get(1

4
− α β
)
〈V, V 〉 = 0 and

(1
4
− α γ
)
〈W,W 〉 = 0,

which is the statement of Lemma 7.19.

This immediately implies

Corollary 7.21. mβ = 1 or mγ = 1.

Proof. On the contrary, if mβ,mγ > 1, both Tβ � RX and Tγ � RY are non–zero. Then
Lemma 7.19 implies 1/4− αβ = 1/4− αγ = 0 and hence β = γ which is impossible.

According to the previous corollary we may assume mγ = 1, that is, Tγ = RY . We
distinguish two cases, mβ > 1 and mβ = 1.

Case 1: mβ > 1. Since mβ > 1 and Tβ is a real subbundle of TM by Corollary 7.5 we
have J(Tβ � RX) ⊂ Tα � RA. Also, by using Lemma 7.19 we get 4α β = 1.

Claim 7.22. We have ∇V Y = b β JV for any V ∈ Γ(Tβ � RX).

Since Y has unit length, 〈∇V Y, Y 〉 = 0. Also, Lemma 7.3 implies 〈∇V Y,X〉 =
〈∇V Y, Ṽ 〉 = 0 for any Ṽ ∈ Γ(Tβ � RX). Using the expression for Jξ and Lemma 7.3
we get

0 = V 〈A, Jξ〉 = 〈∇̄V A, aX + bY 〉+ 〈A, ∇̄V Jξ〉 = −b〈∇V Y, A〉
and for any U ∈ Γ(Tα � (RA ⊕ RJV )),

0 = V 〈U, Jξ〉 = 〈∇̄V U, aX + bY 〉+ 〈U, ∇̄V Jξ〉

= −β〈JU, V 〉 − a2

2(α − β)
〈JU, V 〉 − b〈∇V Y, U〉 = −b〈∇V Y, U〉.

Finally using Lemmas 7.3 and 7.15 we get

0 = V 〈V, JY 〉 = 〈∇̄V V, aA − bξ〉+ 〈V, ∇̄V JY 〉 = bβ − 〈JV,∇V Y 〉.

Altogether this implies Claim 7.22.
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Claim 7.23. With the above assumptions and a suitable orientation of ξ we have α =
√
3/6

and β =
√
3/2.

Let V ∈ Γ(Tβ � RX) be a unit vector. Then JV ∈ Γ(Tα � RA). This, Lemma 7.3 and
the expression for Jξ imply

0 = V 〈JV, Jξ〉 = 〈∇̄V JV, aX + bY 〉+ 〈JV, ∇̄V Jξ〉 = a2

2(α − β)
− b〈∇V Y, JV 〉+ β.

Taking into account Claim 7.22 and the last expression we have

〈∇V Y, JV 〉 = 1
b

(
a2

2(α − β)
+ β

)
= bβ,

and using a2+b2 = 1 we obtain after a simple calculation 1+2β(α−β) = 0. This, together
with 4αβ = 1 gives the assertion of Claim 7.23.

Claim 7.24. With the above assumptions, we have γ �= −
√
3/6 and

a2 =
10
(
γ + 2

√
3
15

)
9
(
γ +

√
3
6

) , b2 = − γ −
√
3
6

9
(
γ +

√
3
6

) .
Inserting the values of α and β in the formula of Lemma 7.18 we get

3(2γ
√
3− 1)
8

a2 +
3
√
3

2(6γ −
√
3)

b2 +
1
2
− 5γ

2
√
3
= 0.

The above equation and a2 + b2 = 1 provide a linear system whose unknowns are a2 and
b2. It is not hard to see that this system has solution only when γ �= −

√
3/6 and in this

case we obtain the expression given by Claim 7.24.

We now finish the prove of Proposition 7.8 (i). Using Lemma 7.2 and Claim 7.22 we
obtain

− b

4
= −R̄Y V ξJV = (β − α)〈∇Y V, JV 〉+ (α − γ)bβ

and hence

〈∇Y V, JV 〉 = b (1 + 4β(α − γ))
4(α − β)

.

Applying Lemma 7.7 to V ∈ Γ(Tβ � RX) and Y and taking into account the above
expression, Corollary 7.4 and Claims 7.22, 7.23 and 7.24 we obtain

0 =
1
4
− β γ + 2〈∇V Y,∇Y V 〉+ 1

4(β − γ)

(
− b〈∇V Y, JV 〉+ 2b〈∇Y V, JV 〉

)
= −

2
√
3 γ
(
γ −

√
3
6

)
3
(
γ +

√
3
6

) .

Since γ �= α, we have γ = 0 and Proposition 7.8 (i) follows.
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Case 2: mβ = 1. We assume mα = 2n − 3, mβ = mγ = 1. Thus Tβ = RX and Tγ = RY .
We easily determine a and b from these hypotheses.

Claim 7.25. With the above notation and assumptions we have

a2

4(α − β)
+

b2

4(α − γ)
+ α = 0.

Hence, a and b are constant and

a2 = −(α − β)(1 + 4α2 − 4αγ)
β − γ

and b2 =
(α − γ)(1 + 4α2 − 4αβ)

β − γ
.

Since n ≥ 3 and RA⊕RX ⊕RY ⊕Rξ is a complex subbundle of TM by Lemma 7.15,
we have that Tα � RA is complex. Let U ∈ Γ(Tα � RA) be a unit vector field. Using the
expression of Jξ, the fact that JU ∈ Γ(Tα � RA) and Lemma 7.3 we get

0 = U〈JU, Jξ〉 = 〈∇̄UJU, aX + bY 〉+ 〈JU, ∇̄UJξ〉

= a〈∇UJU,X〉+ b〈∇UJU, Y 〉+ α〈JU, JU〉 = a2

4(α − β)
+

b2

4(α − γ)
+ α.

This equation together with a2+b2 = 1 yields a linear system of equations whose unknowns
are a2 and b2. This system has a unique solution which is the one given by Claim 7.25.

Claim 7.26. We have the following relation among the principal curvatures

(β − γ)2 − (β + γ − 4α)2 = 1− 4α2.

Plugging the values of a2 and b2 given by Claim 7.25 in the formula of Corollary 7.18
we get

−1
2

(
1 + 12α2 + 4βγ − 8αβ − 8αγ

)
= 0,

which is equivalent to the formula of Claim 7.26.

Claim 7.27. We have the following relation

(β + γ)(1 + 4α2)− α(1 + 4β2 + 4γ2) = 0.

Let U ∈ Γ(Tα � RA). Since X is a unit vector one gets 〈∇UX, X〉 = 0. Using Lemma
7.3 for any V ∈ Γ(Tα), we obtain

〈∇UX,V 〉 = − a

4(α − β)
〈JU, V 〉.

We have 〈X, ∇̄UJξ〉 = α〈X, JU〉 = 0. This and the expression for Jξ yield

0 = U〈X, Jξ〉 = 〈∇̄UX, aX + bY 〉+ 〈X, ∇̄UJξ〉 = b〈∇UX,Y 〉.
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Hence we have
∇UX = − a

4(α − β)
JU.

This expression and the one for ∇XX given in Lemma 7.16 when plugged in the formula
of Lemma 7.7 for U and X yield

0 =
1
4
− αβ + 2〈∇UX,∇XU〉 − 〈∇UU,∇XX〉+ a

4(α − β)

{
2〈∇XU, JU〉 − 〈∇UX, JU〉

}
=
1
4
− α β − 3 a b

4(α − β)
〈∇UU,A〉+ a2

16(α − β)2
= 0.

Proceeding in a similar way using Lemma 7.7 for U and Y we obtain

1
4
− α γ +

3 a b

4(α − γ)
〈∇UU,A〉+ b2

16(α − γ)2
= 0.

Cancelling 〈∇UU,A〉 in the last two equations and using the first equation of Claim 7.26
we get (

1
4
− αβ

)
(α − β) +

(
1
4
− αγ

)
(α − γ)− α

4
= 0.

Easy calculations lead to the result of Claim 7.27.

We now finish the proof of Proposition 7.8.
If α = 0, Claims 7.26 and 7.27 imply β, γ ∈ {−1/2, 1/2}. From now on we assume

α �= 0. It is convenient to introduce the following notation. Let x = β−γ and y = β+γ−4α.
Then, the formulas of Claims 7.26 and 7.27 become

x2 − y2 = 1− 4α2, x2 +

(
y − 1− 12α

2

4α

)2
=
1 + 16α4

16α2
.

Obviously, these are the equations of a hyperbola and a circle. It is straightforward to
calculate their common points, namely

(x, y) =
(
±
√
1− 3α2,−α

)
and (x, y) =

(
± 1
4α

,
1− 8α2
4α

)
,

where the first possibility arises only if 3α2 ≤ 1. Assume, without loss of generality, that
β < γ. Since α �= β, γ, this eventually implies

β =
1
2

(
3α −

√
1− 3α2

)
and γ =

1
2

(
3α +

√
1− 3α2

)
,

where |α| ≤ 1/
√
3. If |α| = 1/2 or |α| = 1/

√
3 we easily see that the three principal

curvatures cannot be different. Suppose 1/2 < |α| < 1/
√
3. Using the expression for β and

γ we have just obtained, the first equation of Claim 7.25 becomes

a2

2α
(
α −

√
1− 3α2

) + b2

2α
(
α +

√
1− 3α2

) = 1,
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Figure 7.1: The axes of the ellipse a2

2α(α−
√
1−3α2) +

b2

2α(α+
√
1−3α2) = 1 as a function of α.

If 1/2 < |α| < 1/
√
3, it is just a matter of elementary calculus to show the inequalities

0 < 2α
(
α −

√
1− 3α2

)
< 1 and 0 < 2α

(
α+

√
1− 3α2

)
< 1 (see Figure 7.1, where we

plot the above two functions as functions of α). This proves that the above equation is the
equation of an ellipse centered at the origin with axes of length less than 1. Obviously, such
an ellipse has no points of intersection with the circle a2+ b2 = 1, which is a contradiction.
Hence |α| < 1/2. This finishes the proof of Proposition 7.8.

7.2.2 Equidistant hypersurfaces and rigidity

In this subsection we finish the proof of Theorem 7.1. In order to achieve this, we study the
equidistant hypersurfaces of a real hypersurface with constant principal curvatures. We
need some facts and notation of Jacobi vector field theory. We refer to Section 4.1 where
the main results and conventions are stated.
Let M be a real hypersurface with constant principal curvatures in CHn. Let ξ be a

local unit normal vector field on M . Let cp be the geodesic cp(t) = expp(tξp). Fix r ∈ R,
r �= 0. As in Subsection 4.1 we define

Φr : M −→ CHn

p �→ Φr(p) = expp(rξp).

The vector field ηr along Φr is defined by ηr(p) = c′p(r). The Jacobi equation in CHn reads

ζ ′′
v − 1
4

(
ζv + 3〈ζv, Jc′p〉Jc′p

)
= 0.

We recall that ζv(r) = Φr∗(v) and ζ ′
v(r) = ∇̄vηr.

Lemma 7.28. Denote by Bv the parallel translation of v ∈ Tλ(p) along the geodesic cp and
by ζv the Jacobi vector field along cp such that ζv(0) = v and ζ ′

v(0) = Sv = λv. If Jξ and
v are not collinear then

ζv(r) = fλ(r)Bv(r) + 〈v, Jξ〉gλ(r)Jc′p(r),
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where

fλ(r) = cosh
r

2
+ 2λ sinh

r

2
and gλ(r) =

(
cosh

r

2
− 1
)(
1 + 2 cosh

r

2
+ 2λ sinh

r

2

)
.

Now we assume that M has three constant principal curvatures. If M is a Hopf hy-
persurface, Theorem 6.5 asserts that M is holomorphically congruent to an open part of a
tube around a totally geodesic CHk for some k ∈ {0, . . . , n−1}, to a tube around a totally
geodesic RHn or to a horosphere in CHn. We assume that M is not a Hopf hypersurface.
Then M satisfies one of the two possibilities described in Proposition 7.8. We will see that
in case (i) of Proposition 7.8 there exists a particular distance r at which the map Φr has
constant rank 2n − mβ, which means that the image of Φr forms locally a submanifold of
codimension mβ. In case (ii) of Proposition 7.8 there exists a particular distance r at which
the map Φr has constant rank 2n− 1 and the image is locally a minimal real hypersurface
with constant principal curvatures. We then use the equation ζ ′

v(r) = ∇̄vηr to obtain some
information about the second fundamental form of these submanifolds. We continue using
the notation introduced in Section 7.2.1.

Case (i): mβ > 1

We recall the situation of Proposition 7.8 (i). Throughout this section M is a connected
real hypersurface in CHn, n ≥ 3, with three distinct constant principal curvatures α, β
and γ. The Hopf vector field Jξ of M has non–trivial projection onto Tβ and Tγ. We
write Jξ = aX + b Y , where X ∈ Γ(Tβ) and Y ∈ Γ(Tγ) are unit vectors, a, b > 0 and
a2 + b2 = 1. There exists a unit vector field A ∈ Γ(Tα) such that JA = b X − a Y .
The subbundle RX ⊕ RY is real and the subbundle RA ⊕ RX ⊕ RY ⊕ Rξ is complex.
We have mα = 2n − mβ − 2, mβ > 1 and mγ = 1 . The eigenvalues are α =

√
3/6,

β =
√
3/2 and γ = 0. Moreover a = 2

√
2/3, b = 1/3, the subbundle Tβ � RX is real and

J(Tβ � RX) ⊂ Tα � RA.
Fix r = − log(2+

√
3). We will see that the map Φr is singular and that M has a focal

manifold at distance r. Let p ∈ M and v ∈ TpM . As usual we denote by cp the geodesic
cp(t) = expp(tξp). We write v = vα + vβ + vγ with vλ ∈ Tλ(p) for all λ ∈ {α, β, γ}. Since
∇̄J = 0 we have Jc′p(r) = aBXp(r) + bBYp(r). Using Lemma 7.28 we get

Φr∗p(v) = ζvα(r) + ζvβ
(r) + ζvγ (r)

=

√
6
3

Bvα(r) +
1
2
〈vβ, Jξp〉Jc′p(r) +

√
6
2

Bvγ (r) +
4−

√
6

2
〈vγ, Jξp〉Jc′p(r)

=

√
6
3

Bvα(r) +
1
9

{
4〈vβ, Xp〉+

(
4
√
2− 2

√
3
)
〈vγ, Yp〉

}
BXp(r)

+
1
9

{√
2〈vβ, Xp〉+

(
4
√
6 + 2
)
〈vγ, Yp〉

}
BYp(r).

Straightforward calculations show that Φr∗(v) = 0 if and only if vα = 0 and 〈vβ, X〉 =
〈vγ, Y 〉 = 0. Consequently, kerΦr∗p = Tβ(p) � RXp and its dimension is mβ − 1. This
implies that Φr∗ is singular and that the rank of Φr is constant. Then for every point in M



184 7 Real hypersurfaces with constant principal curvatures

there exists an open neighborhood V such that W = Φr(V) is an embedded submanifold
of CHn and Φr : V → W is a submersion. Let p ∈ V and q = Φr(p) ∈ W . The above
expression for the differential of Φr shows that the tangent space TqW of W , which is
the image of Tα(p) ⊕ RXp ⊕ RYp by the differential of Φr, coincides with the parallel
translation along cp of Tα(p)⊕ RXp ⊕ RYp. Hence, the normal space T⊥

q W is obtained by
parallel translation of Rξp ⊕ (Tβ(p) � RXp) along cp from p to q. In particular, W has
dimension 2n − mβ and W has a totally real normal vector bundle of dimension mβ.
Clearly, ηr(p) = Bξp(r) is a unit normal vector of W at q. The shape operator S(r)

of W in the direction of ηr(p) is given by the equation S(r)ηr(p)ζv(r) = (ζ ′
v(r))

� for all
v ∈ Tα(p)⊕ RXp ⊕ RYp.
If v ∈ Tα(p), we have ζv(r) = (

√
6/3)Bv(r) and ζ ′

v(r) = 0 by Lemma 7.28. Hence,

S(r)ηr(p)Bv(r) = 0 for all v ∈ Tα(p).

Also, Lemma 7.28 implies that

ζX(r)=
4
9
BX(r) +

√
2
9

BY (r), ζ ′
X(r)=

√
2
18

BX(r)−
2
9
BY (r),

ζY (r)=
4
√
2− 2

√
3

9
BX(r)−

2 + 4
√
6

9
BY (r), ζ ′

Y (r)=
1− 2

√
6

9
BX(r)−

2
√
2 +

√
3

9
BY (r).

Therefore, S(r)ηr(p) leaves RBXp(r)⊕RBYp(r) invariant and has the matrix representation

1
18

(
−4

√
2 7

7 4
√
2

)
,

with respect to the basis {BXp(r), BYp(r)}. We define

Zp = JAp =
1
3
Xp −

2
√
2
3

Yp .

Using the above matrix representation we immediately get

S(r)ηr(p)Jηr(p) = S(r)ηr(p)

(
2
√
2
3

BXp(r) +
1
3
BYp(r)

)
= −1

2
BZp(r),

S(r)ηr(p)BZp(r) = S(r)ηr(p)

(
1
3
BXp(r)−

2
√
2
3

BYp(r)

)
= −1

2
Jηr(p).

Since J
(
T⊥

q W�Rηr(p)
)
⊂ J
(
BTβ(p)�RXp(r)

)
⊂ BTα(p)(r), the fact that S(r)ηr(p)|BTα(p)(r)

= 0
and the linearity of S(r)ηr(p) give

S(r)ηr(p)Jη̃ = −1
2
〈ηr(p), η̃〉BZp(r) for all p ∈ V , η̃ ∈ T⊥

Φr(p)W .
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Using the symmetry of the second fundamental form of W , IIr, and the equation ∇̄J = 0
we get 〈S(r)η̃Jηr, U〉 = 〈IIr(U, Jηr), η̃〉 = 〈∇̄UJηr, η̃〉 = 〈∇̄UJη̃, ηr〉 = 〈S(r)ηrJη̃, U〉 for
any U ∈ Γ(TW) and η̃ ∈ Γ(T⊥W). Hence

S(r)η̃Jηr(p) = S(r)ηr(p)Jη̃,

for all η̃ ∈ T⊥
q W. Now let χ be a curve in Φ−1

r ({q}) ∩ V with χ(0) = p. Since ηr(p) and
η̃(χ(t)) = ηr(χ(t)) − 〈ηr(χ(t)), ηr(p)〉ηr(p) are perpendicular, the linearity of η �→ S(r)η
implies

0 = S(r)ηr(p)Jη̃(χ(t)) = S(r)η̃(χ(t))Jηr(p)

= S(r)ηr(χ(t))Jηr(p)− 〈ηr(χ(t)), ηr(p)S(r)ηr(p)Jηr(p)

= −1
2
〈ηr(χ(t)), ηr(p)〉BZχ(t)

(r) +
1
2
〈ηr(χ(t)), ηr(p)〉BZp(r)

= −1
2
〈ηr(χ(t)), ηr(p)〉

(
BZχ(t)

(r)− BZp(r)
)
.

This shows that the map p̃ �→ BZp̃
(r) is of constant value zq in the connected component

V0 of Φ1r({q}) ∩ V containing p.
For all v ∈ Tβ(p)� RXp we have

∇̄vηr = ζ ′
v(r) =

√
2
2

Bv(r),

which implies that ηr is a local diffeomorphism from V0 onto the unit sphere in T⊥
q W. Thus

ηr(V0) is an open subset of the unit sphere in T⊥
q W . Since S(r)η depends analytically on

η ∈ T⊥
q W , we conclude that

S(r)ηJη = −1
2

zq, S(r)η zq = −1
2

Jη, S(r)η v = 0,

for all η ∈ T⊥
q W and v ∈ TqW �

(
J(T⊥

q W � Rη)⊕ Rz
)
.

Therefore, the second fundamental form IIr of W at q is given by the trivial bilinear
extension of IIr(z, Jη) = −(1/2)η for all η ∈ T⊥W . The construction of z shows that it
depends smoothly on the point q ∈ W . Hence, the second fundamental form of W has the
form of that of Theorem 6.16. Then, W is holomorphically congruent to an open part of
the ruled minimal submanifold W 2n−mβ . Altogether this means that M lies in a tube of
radius r = log(2 +

√
3) around a ruled minimal submanifold holomorphically congruent to

W 2n−mβ . We point out here that the unit normal vector ξ of M is outward pointing with
respect to the focal submanifold. This finally implies that M is holomorphically congruent
to an open part of the tube of radius r = log(2 +

√
3) around W 2n−mβ . This corresponds

to case (c) of Theorem 7.1.
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Case (ii): mβ = 1

We assume the notation of Proposition 7.8 (ii). Thus, M is a connected real hypersurface
in CHn, n ≥ 3, with three distinct constant principal curvatures α, β and γ. The Hopf
vector field Jξ ofM has non–trivial projection onto Tβ and Tγ andmβ = mγ = 1. We write
Jξ = aX+ b Y , where X ∈ Γ(Tβ) and Y ∈ Γ(Tγ) are unit vectors, a, b > 0 and a2+ b2 = 1.
There exists a unit vector field A ∈ Γ(Tα) such that JA = bX − a Y . The subbundle
Tβ ⊕Tγ is real and the subbundle RA⊕RX ⊕RY ⊕Rξ is complex. The eigenvalues satisfy

|α| <
1
2
, β =

1
2

(
3α −

√
1− 3α2

)
, γ =

1
2

(
3α+

√
1− 3α2

)
,

and a and b are constant. In particular,

a2 = −(α − β)(1 + 4α2 − 4αγ)
β − γ

, b2 =
(α − γ)(1 + 4α2 − 4αβ)

β − γ
.

From now on we assume α �= 0. Otherwise we would have α = 0, β = −1/2 and γ = 1/2
and the conditions of Theorem 6.8 would be satisfied for this hypersurface M . We will
show that there exists a certain r such that the equidistant hypersurface of M at distance
r is minimal and its geometry is that of W 2n−1 in Theorem 6.8. First, as |α| < 1/2 there
exists r �= 0 such that 2α = − tanh(r/2).
Let v ∈ TpM . We write v = vα + vβ + vγ, where vλ ∈ Tλ(p) for all λ ∈ {α, β, γ}. Using

Lemma 7.28 we get the differential of Φr as follows

Φr∗(v) = ζvα(r) + ζvβ
(r) + ζvγ (r)

= fα(r)Bvα(r) +
(
〈vβ, Xp〉fβ(r) + 〈vβ, Xp〉a2gβ(r) + 〈vγ, Yp〉a b gγ(r)

)
BXp(r)

+
(
〈vγ, Yp〉fγ(r) + 〈vβ, Xp〉a b gβ(r) + 〈vγ, Yp〉b2gγ(r)

)
BYp(r).

Then, we have

Φr∗v = fα(r)Bv(r) for all v ∈ Tα(p) and

(
Φr∗Xp

Φr∗Yp

)
= D(r)

(
BXp(r)

BYp(r)

)

where D is the endomorphism whose matrix representation is

D(t) =

(
fβ(t) + a2gβ(t) a b gβ(t)

a b gγ(t) fγ(t) + b2gγ(t)

)
.

We have fα(r) = cosh(r/2) + 2α sinh(r/2) = sech(r/2) �= 0. Retrieving the expression of
fλ and gλ from Lemma 7.28 and the known expressions of β, γ, a and b in terms of α
we get after some straightforward calculations detD(r) = (cosh(r/2) + 2α sinh(r/2))3 =
sech3(r/2) �= 0. Therefore, Φr has maximum rank 2n − 1 everywhere. Hence, for every
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point inM there exists an open neighborhood V such thatW = Φr(V) is an embedded real
hypersurface of CHn and Φr : V → W is a diffeomorphism. Let p ∈ V and q = Φr(p) ∈ W .
Clearly, the tangent space TqW of W at q is obtained by parallel translation of TpV along
the geodesic cp and ηr(p) is a unit normal vector of W at q.
Let us denote by S(r) the shape operator ofW with respect to the unit normal ηr(p) =

c′p(r), which is determined by the equation S(r)ζv(r) = ζ ′
v(r) for any v ∈ TM .

We easily get f ′
α(r) = 0. This implies ζ ′

v(r) = 0 for all v ∈ Tα(p). Hence

S(r)Bv(r) = 0 for all v ∈ Tα(p).

On the other hand, using the notation of Section 4.1 we have(
S(r)BXp(r)

S(r)BYp(r)

)
= D′(r)D(r)

(
BXp(r)

BYp(r)

)
.

A lengthly but straightforward calculation shows that det
(
D′(r)
)
= −(1/4) sech3(r/2) and(

detD
)′
(r) = 0. As a consequence we have

det
(
D′(r)D(r)−1

)
=
detD′(r)
detD(r)

= −1
4
and tr

(
D′(r)D(r)−1

)
= −
(
detD
)′
(r)

detD(r)
= 0.

This implies that the eigenvalues of D′(r)D(r)−1 are −1/2 and 1/2.
Altogether this means that W has three distinct principal curvatures 0, −1/2 and

1/2 with corresponding multiplicities 2n − 3, 1 and 1. It follows from Theorem 6.8 that
W is holomorphically congruent to an open part of the ruled real hypersurface W 2n−1.
From this we eventually conclude that M is holomorphically congruent to an open part
of an equidistant hypersurface to W 2n−1, where the distance r is given by the equation
2α = − tanh(r/2).
This finishes the proof of Theorem 7.1.
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Open problems

We are interested in the following questions.

• Classification of real hypersurfaces with four or five distinct constant principal cur-
vatures. This problem seems to be quite difficult. No examples of real hypersurfaces
with constant principal curvatures in the complex hyperbolic space are known which
are not open parts of homogeneous real hypersurfaces. Thus, one may expect exam-
ples (v) and (vi) of Theorem 6.4 to exhaust all the possibilities in this classification.
However, there is no good analog of Lemmas 7.9 and 7.15 for four or five principal
curvatures. This provokes that using our approach implies handling several different
possibilities separately leading to long and tedious calculations.

• Are there any real hypersurfaces in CHn with constant principal curvatures which
are not an open part of a homogeneous real hypersurface? If there exists such an
example it must have at least four distinct principal curvatures. Hence, the previous
problem could be interesting if its proof led to a non–homogeneous example.

• The classification of real hypersurfaces in CH2 with 3 distinct constant principal
curvatures remains open. We use the fact n ≥ 3 in a few places and there is no
straightforward generalization of our arguments to include the case n = 2.

See [103] for a survey on real hypersurfaces of complex projective and hyperbolic spaces
where a wider list of open problems is given.
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Resumo en galego
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Ó estudiarmos as propiedades xeométricas dunha variedade semi–riemanniana, o punto
de partida a miúdo provén da investigación de invariantes da estructura métrica. Entre
tales invariantes, o tensor de curvatura é probablemente o máis natural. Segundo a opinión
de R. Osserman [109],

A noción de curvatura é un dos aspectos centrais da xeometŕıa diferencial;
pódese argumentar que é o central, distinguindo o núcleo xeométrico da materia
daqueles aspectos que son anaĺıticos, alxébricos ou topolóxicos. Nas palabras de
M. Berger, a curvatura é o invariante riemanniano número un e o máis natural.
Gauss e Riemann v́ırono instantaneamente.

A curvatura, non obstante, pode ser estudiada desde varios puntos de vista. En primeiro
lugar, un problema esencial da xeometŕıa diferencial é relacionar propiedades do tensor de
curvatura coa xeometŕıa subxacente da variedade. Outro problema importante é consi-
derar diferentes tipos de obxectos naturalmente asociados ó tensor métrico e relacionar a
curvatura da variedade coas propiedades destas construccións naturais.
Cando se trata con obxectos complicados como o tensor de curvatura, é interesante des-

compoñelo nos seus constitúıntes elementais. A miúdo estas partes máis simples dan unha
versión simplificada e unha visión máis profunda do problema. A Parte I desta memo-
ria céntrase no estudio da curvatura desde un punto de vista alxébrico. No Caṕıtulo 2
amosamos que o tensor de curvatura pode ser descomposto en termos dalgúns tensores de
curvatura alxébricos máis simples. Isto é de especial importancia cando se consideran pro-
blemas nos que se pretende obter información xeométrica a partir de propiedades alxébricas
de operadores asociados á curvatura. Entre todos estes operadores estamos especialmente
interesados no operador de Jacobi, que codifica información xeométrica importante e que
ten propiedades que influencian enormemente a xeometŕıa subxacente da variedade. Aśı,
entender o operador de Jacobi dunha variedade semi–riemanniana permı́tenos caracterizar
a xeometŕıa da variedade en moitos casos. O Caṕıtulo 3 desta tese está adicado á inves-
tigación do operador de Jacobi en relación coa chamada conxectura de Osserman. Neste
caṕıtulo centrámonos no problema de Osserman en dimensión catro. O noso obxectivo
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primordial é amosar a existencia de métricas de Osserman que teñen operadores de Ja-
cobi non nilpotentes e non diagonalizables. Isto contesta negativamente unha conxetura
de non existencia de tales variedades. Ademais, dáse tamén unha descripción local destas
métricas.
Tal e como se dixo anteriormente, outro problema interesante relacionado coa curvatura

é esclarecer o noso entendemento dunha variedade por medio da investigación da relación
existente entre a curvatura da propia variedade e as curvaturas de obxectos xeométricos
naturalemente asociados á súa estructura métrica. Exemplos destas estructuras son as
esferas xeodésicas, os discos xeodésicos e os tubos arredor de subvariedades significativas.
A Parte II desta tese está adicada ó estudio dalgúns dos obxectos previamente menciona-
dos. En particular investigamos os invariantes escalares da curvatura de esferas xeodésicas
no Caṕıtulo 4. Os invariantes escalares da curvatura teñen grande importancia e certas
xeometŕıas poden ser caracterizadas en termos destas funcións. Consideramos a estes en
relación coas esferas xeodésicas. Neste caṕıtulo integramos os invariantes escalares da cur-
vatura en esferas xeodésicas e discos obtendo os primeiros termos nos desenvolvementos
en serie de potencias como función do radio. Isto dá lugar a algunhas caracterizacións de
espacios homoxéneos dous puntos entre todas as variedades riemannianas con holonomı́a
adaptada.
Inspirados pola construcción de discos xeodésicos en xeometŕıa riemanniana, definimos

as esferas celestes xeodésicas no contexto lorentziano. Resulta ser que esta familia de ob-
xectos está adaptada á consideración de resultados de comparación de volume no contexto
lorentziano, o cal sufŕıa dunha falta de construccións análogas ás esferas xeodésicas e ós
tubos en xeometŕıa riemanniana. O Caṕıtulo 5 ad́ıcase á investigación de propiedades de
volume de esferas celestes xeodésicas aśı como ás súas curvaturas escalares totais. Isto
permite caracterizar as variedades lorentzianas isotrópicas.
As esferas xeodésicas e os tubos son dalgún xeito os conxuntos de nivel da función de

distancia riemanniana e por tanto están estreitamente vinculados á estructura métrica. Ou-
tros obxectos en variedades riemannianas que están relacionados coa estructura métrica son
aquelas subvariedades invariantes baixo as isometŕıas da variedade ambiente. As órbitas
de accións de cohomoxeneidade un son exemplos desta situación. Ademais, unha órbita
principal dunha acción de cohomoxeneidade un é xeometricamente un tubo arredor dunha
órbita singular desa acción. Isto involucra de novo a función distancia riemanniana e o
operador de Jacobi que é a ferramenta principal para o cálculo da xeometŕıa das esferas
xeodésicas e dos tubos. A xeometŕıa das órbitas das accións de cohomoxeneidade un é
máis interesante desde o punto de vista extŕınseco. Aśı, é a segunda forma fundamental a
que estudiamos neste caso.
A Parte III deste traballo esta adicada á investigación de hipersuperficies reais con

curvaturas principais constantes no espacio hiperbólico complexo. As órbitas de accións
de cohomoxeneidade un son os principais candidatos para este tipo de hipersuperficies e
son os únicos exemplos coñecidos ata o de agora. No Caṕıtulo 6 estudiamos o operador
de configuración das órbitas de accións de cohomoxeneidade un no espacio hiperbólico
complexo. Empregando este estudio damos no Caṕıtulo 7 unha clasificación completa das
hipersuperficies reais con tres curvaturas principais constantes.
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Parte I. Consecuencias xeométricas de propiedades alxébricas do
tensor de curvatura

O espacio dos tensores de curvatura alxébricos dun espacio vectorial n–dimensional é un
espacio vectorial R(V ) de dimension n2(n2 − 1)/12, o que o fai moi dif́ıcil de manipular.
Por tanto, a investigación centrouse en tentar atopar bases axeitadas ou conxuntos de
xeneradores que permitisen simplificacións. Un exemplo t́ıpico é a base de Singer–Thorpe
en dimensión catro.
Recentemente, o traballo de B. Fiedler [59] e P. Gikey [68] amosou a existencia de bos

conxuntos de xeneradores de R(V ) construidos a partir de formas bilineares simétricas e
antisimétricas, o cal parece útil para entender algunhas condicións de curvatura. O noso
método para atacar o problema, baseado no emprego do teorema de embebemento de Nash
e na posibilidade de realizar xeométricamente calquera tensor de curvatura alxébrico, ten
dúas vantaxes. A primeira é que nos permite obter unha estimación máis fina (áında que
non óptima) do número de xeneradores de R(V ). A segunda é que amosa que cada tensor
de curvatura alxébrico pode ser visto desde un punto de vista extŕınseco como a segunda
forma fundamental dun embebemento axeitado. Estas discusións son levadas a cabo no
Caṕıtulo 2.
Outro propósito desta parte é estudiar a influencia na xeometŕıa da variedade de

propiedades alxébricas de operadores naturais asociados á curvatura. De xeito máis pre-
ciso, adicamos a nosa atención á investigación do operador de Jacobi centrándonos na
estructura de métricas de Osserman de dimensión catro. Recordamos que unha variedade
semi–riemanniana se di de Osserman se os autovalores do operador de Jacobi son indepen-
dentes da dirección e do punto base. Dado que as isometŕıas locais dun espacio isotrópico
actúan transitivamente nos fibrados pseudo–esféricos unitarios, está claro que calquera es-
pacio isotrópico é de Osserman. Non poden existir máis exemplos nos casos riemanniano
(dimensión distinta de 16) nin lorentziano, pero existen métricas non simétricas e incluso
non localmente homoxéneas en calquera signatura (p, q) con p, q ≥ 2.
As métricas de Osserman de dimensión catro teñen particular interese. Primeiro, di-

mensión catro é a primeira dimensión non trivial considerada na investigación do problema
de Osserman (nótese que calquera métrica de Osserman é Einstein e por tanto de curvatura
seccional constante en dimensión 2 e 3), e ademais, catro é a dimensión máis pequena que
soporta métricas non lorentzianas de signatura neutral, onde as primeiras métricas non
simétricas de Osserman foron descubertas.
Debido ás identidades da curvatura, para calquera vector non nulo x ∈ TM o operador

de Jacobi é un operador autoadxunto en x⊥, que ten unha métrica inducida lorentziana no
caso de signatura (2, 2). As métricas de Osserman con operador de Jacobi diagonalizable
foron caracterizadas por N. Blažić, N. Bokan e Z. Rakić [21], quen tamén amosaron a non
existencia en dimensión catro de métricas de Osserman con operadores de Jacobi que teñen
autovalores complexos. A signatura lorentziana de x⊥, soporta, non obstante, outras dúas
posibilidades correspondentes a ráıces dobles e triples do polinomio mı́nimo do operador
de Jacobi. O feito de que todos os exemplos coñecidos nesas situación teñen operador
de Jacobi nilpotente e que as métricas de Osserman simétricas en dimensión catro teñen
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operador de Jacobi diagonalizable ou nilpotente en dous pasos, motivaron a conxectura de
que as métricas de Osserman que teñen operadores de Jacobi non diagonlizables deben ter
operadores de Jacobi nilpotentes. O noso propósito no Caṕıtulo 3 é responder á anterior
conxectura de forma negativa amosando exemplos expĺıcitos de métricas de Osserman con
operadores de Jacobi que non son nin diagonalizables nin nilpotentes. Finalmente, unha
descripción completa de tales métricas é dada na Sección 3.3.

Parte II. Invariantes da curvatura de esferas xeodésicas e esferas
celestes xeodésicas

Para estudiar a xeometŕıa dunha variedade de Riemann é a miúdo útil considerar obxec-
tos naturalmente asociados á estructura métrica de M . Estes poden ser hipersuperficies
especiais tales como esferas xeodésicas e tubos arredor de certas subvariedades, espacios
fibrados con M como base ou familias de transformacións reflectindo as propiedades de
simetŕıa de M [128]. Nesta parte da tese centrámonos no estudio das esferas xeodésicas e
da súa curvatura en relación coa curvatura da variedade ambiente. De feito, a existencia
dunha relación entre a curvatura dunha variedade riemanniana e o volume das súas esferas
xeodésicas levou a algúns autores a establecer a seguinte cuestión: “¿Ata que punto está a
curvatura ou a xeometŕıa dunha variedade riemanniana influenciada, ou incluso determi-
nada, polas propiedades de certas familias de obxectos xeométricos naturalmente definidos
sobre M?”. Este problema semella bastante dif́ıcil de manipular con tanta xeneralidade.
Sen embargo, cando un considera variedades cun alto grao de simetŕıa (por exemplo os
espacios homoxéneos dous puntos), estes obxectos xeométricos teñen boas propiedades e
espérase obter caracterizacións de tales espacios por medio desas propiedades. Compa-
rando unha variedade riemanniana cun espacio modelo tal como un espacio homoxéneo
dous puntos obtemos unha idea da súa xeometŕıa. Por tanto, entendendo a xeometŕıa de
espacios cun alto grao de simetŕıa e por que as súas propiedades son caracteŕısticas deles,
conseguimos unha mellor visión da xeometŕıa dunha variedade riemanniana.
Dado que as esferas xeodésicas son subvariedades compactas, ten siso calcular o seu

volume. A. Gray e L. Vanhecke [83] calcularon os primeiros termos no desenvolvemento
en serie de potencias do volume de esferas xeodésicas. Conxecturaron que o volume de
esferas xeodésicas pode ser empregado para caracterizar a xeometŕıa euclidiana. Máis
especificamente, se cada esfera xeodésica dunha variedade riemanniana ten o mesmo volume
ca unha esfera euclidiana do mesmo radio, entón a variedade é chá. Aı́nda que a resposta se
sabe afirmativa en varios casos especiais, o problema segue aberto no caso xeral. Traballo
ulterior con esferas xeodésicas involucrou a investigación das súas propiedades xeométricas
e como estas influencian a xeometŕıa da variedade ambiente. B.–Y. Chen e L. Vanhecke
[33] estudiaron curvaturas intŕınsecas e extŕınsecas de esferas xeodésicas. Resultou que
en moitos casos as propiedades de curvatura das esferas xeodésicas dan lugar a un mellor
entendemento da xeometŕıa cás propiedades de volume.
Estamos interesados nesta parte nos chamados invariantes escalares da curvatura. Á

marxe da súa ubicuidade en xeometŕıa riemanniana, especialmente cando se estudian es-
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feras xeodésicas e obxectos relacionados, son de interese por eles mesmos. Véxase por
exemplo [113], onde foi realizada unha caracterización de espacios homoxéneos empre-
gando invariantes escalares da curvatura. O noso propósito no Caṕıtulo 4 é investigar os
invariantes da curvatura de esferas xeodésicas. Integrando os invariantes escalares da cur-
vatura ó longo de cada esfera xeodésica dunha variedade riemanniana obtemos unha boa
relación entre curvatura e propiedades de volume. A conxectura do volume de A. Gray
e L. Vanhecke pode ser xeneralizada para estes novos obxectos. Vemos na Sección 4.2.3
que en certos casos os espacios homoxéneos dous puntos poden ser caracterizados mediante
as integrais de invariantes escalares da curvatura en esferas xeodésicas. Enfatizamos que
é suficiente un só invariante para dita caracterización. Véxase a Subsección 4.3.1 para
exemplos de tales invariantes da curvatura.
Ademais de esferas xeodésicas, pódense considerar outros obxectos en xeometŕıa rie-

manniana que están relacionados coa función distancia riemanniana: tubos arredor de
subvariedades e discos. Os primeiros introdúcense no Caṕıtulo 4 e son de interés na última
parte desta tese. Os discos xeodésicos son a principal ocupación da Subsección 4.3.2. Foran
previamente investigados por O. Kowalski e L. Vanhecke con especial atención ás súas
propiedades de volume [93], [94], [95]. Nesta subsección estamos interesados na xeometŕıa
intŕınseca dos bordes destes discos e centramos a nosa atención no estudio das súas curva-
turas totales obtidas integrando a curvatura escalar e os invariantes escalares cuadráticos da
curvatura nos bordes dos discos. O noso principal resultado é que os espacios homoxéneos
dous puntos están caracterizados por algunhas das curvaturas totais dos bordes de discos
xeodésicos entre as variedades riemannianas con holonomı́a adaptada.
Cando volvemos a nosa atención das variedades riemannianas cara ós espacios–tempo

aparecen varias dificultades. Unha caracteŕıstica das variedades riemannianas é que teñen
unha función distancia riemanniana que é continua e que induce unha topolox́ıa na varie-
dade que coincide coa topolox́ıa de partida. Aśı, varios obxectos xeométricos tales como
esferas xeodésicas poden ser definidos, polo menos localmente, por medio desta función.
Estes obxectos son tamén variedades riemannianas. Teñen propiedades interesantes como
compacidade e un comportamento aceptable con respecto doutras construccións. Cando
se trata con variedades semi–riemannianas en xeral, non hai tal función “distancia semi–
riemanniana”. De feito, unha función tipo distancia só está definida para espacio–tempos,
pero incluso neste caso as súas propiedades son completamente diferentes daquelas do
contexto riemanniano [7]. Por exemplo, a función “distancia lorentziana” pode non ser
continua ou limitada e os obxectos xeométricos definidos a partir dela teñen propiedades
extrañas. Ademais, os conxuntos de nivel da función de distancia lorentziana con respecto
dun punto dado non son compactos en xeral e áında que algunhas propiedades destes
conxuntos foron previamente investigadas, non parecen ser axeitados para a investigación
de propiedades de volume.
No Caṕıtulo 5 consideramos unha nova familia de obxectos en xeometŕıa lorentziana, as

chamadas esferas celestes xeodésicas. A grosso modo, son o conxunto de puntos acadados
despois de viaxar unha distancia fixa, ó longo de xeodésicas radiais partindo dun punto,
en direccións ortogonais a un vector temporal dado. En Relatividade, un vector temporal
unitario representa un observador instantáneo e o subespacio vectorial do tanxente que é
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ortogonal a un observador instantáneo chámase o espacio de simultaneidade infinitesimal,
é dicir, o universo newtoniano infinitesimal onde o observador percibe as part́ıculas como
part́ıculas newtonianas relativas á súa posición de repouso. Entón, unha esfera celeste
xeodésica non é máis cá imaxe mediante a aplicación exponencial dunha esfera celeste no
espacio de simultaneidade infinitesimal.
Seguindo a idea de caracterizar espacios con alto grao de simetŕıa por medio de propie-

dades de volume de obxectos xeométricos, levamos a cabo na Sección 5.2 o cálculo do
volume de esferas celestes xeodésicas. Este depende do radio, do punto base e do obser-
vador instantáneo empregado para definila. Non obstante, nunha variedade lorentziana
isotrópica esta medida só depende do radio. Vemos nesta sección que esta propiedade é
caracteŕıstica das variedades localmente isotrópicas. Na Sección 5.2 discutimos resulta-
dos de comparación de volume e damos teoremas tipo Bishop–Günther e Gromov para
estes obxectos. Finalmente na Sección 5.3 levamos a cabo a caracterización de variedades
lorentzianas localmente isotrópicas empregando as integrais de invariantes escalares da cur-
vatura en esferas celestes xeodésicas no esṕırito do Caṕıtulo 4. Empregamos os resultados
da Sección 4.2.3 para obter esta caracterización.
Nesta parte tratamos de explicitar o mı́nimo número de cálculos para facer o tra-

ballo máis fácil de ler. O autor implementou un paquete en Mathematica coas principais
identidades do tensor de curvatura. Este paquete permite realizar cálculos involucrando
invariantes escalares da curvatura e integración en esferas xeodésicas. Podemos obter tanto
expresións expĺıcitas en espacios homoxéneous dous puntos como desenvolvementos en serie
de potencias en variedades riemannianas xerais.

Parte III. Hipersuperficies reais no espacio hiperbólico complexo

O obxectivo da xeometŕıa de subvariedades é entender os invariantes xeométricos e clasi-
ficar as subvariedades a partir de datos xeométricos precisos. En xeometŕıa riemanniana
a estructura dunha variedade está codificada nas ecuacións de Gauss, Codazzi e Ricci.
A situación simplif́ıcase para hipersuperficies dado que a ecuación de Ricci é trivial e a
segunda forma fundamental pode ser escrita en termos do operador de configuración. Os
autovalores do operador de configuración, as chamadas curvaturas principais, son os obxec-
tos xeométricos máis simples dunha hipersuperficie. Dous problemas básicos da xeometŕıa
de hipersuperficies son entender a xeometŕıa de subvariedades para as que as curvaturas
principais son constantes e clasificalas.
Empregando as ecuacións de Gauss e Codazzi, É. Cartan [28] provou que en espacios

de curvatura constante unha hipersuperficie ten curvaturas principais constantes se e só
se é isoparamétrica. A clasificación de superficies isoparamétricas ten unha longa historia
e co paso dos anos moitas caracteŕısticas sorprendentes foron descubertas. Ver [127] para
un resumo. É. Cartan tamén provou en [28] que o número g de curvaturas principais
distintas dunha superficie isoparamétrica no espacio hiperbólico real RHn é 1 ou 2. Isto dá
lugar a unha clasificación completa: esferas xeodésicas, horosferas, hiperplanos totalmente
xeodésicos e as súas superficies equidistantes e tubos arredor de subespacios totalmente
xeodésicos de dimensión maior ou igual ca un. Como consecuencia, todas as hipersuperficies
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no espacio hiperbólico real con curvaturas principais constantes son partes abertas de
hipersuperficies homoxéneas.
Nesta parte tratamos o problema da clasificación de hipersuperficies reais con curvaturas

principais constantes no espacio hiperbólico complexo. Describimos brevemente o estado do
problema. Obviamente, calquera hipersuperficie real homoxénea ten curvaturas principais
contantes. J. Berndt e H. Tamaru [16] derivaron recentemente a clasificación completa de
hipersuperficies reais homoxéneas en CHn. O número g de curvaturas principais constantes
de todas estas hipersuperficies homoxéneas é 2, 3, 4 ou 5. Non se coñecen exemplos de
hipersuperficies reais con curvaturas principais constantes que non sexan un aberto dunha
hipersuperficie homoxénea. Tampouco se sabe se para calquera hipersuperficie real con
curvaturas principais constantes o número g debe ser necesariamente 2, 3, 4 ou 5.
No Caṕıtulo 6 estudiamos en profundidade a xeometŕıa das órbitas da clasificación

dada por J. Berndt e H. Tamaru. Prestamos atención a aquelas accións que teñen órbitas
singulares non totalmente xeodésicas, xa que estas consitúen novos exemplos só coñecidos
recentemente. Interesámonos particularmente na existencia de distribucións nestas sub-
variedades que nos permitan describilas de xeito xeométrico. A Subsección 6.3.3 é un bo
exemplo de tal estudio. De feito, nesta sección séntanse as bases para a caracterización
das órbitas singulares de todas as accións de cohomoxeneidade un descritas e demóstranse
resultados de rixidez para elas nos Teoremas 6.8 e 6.16.
A partir da ecuación de Codazzi un pode facilmente deducir que o número de curvaturas

constantes dunha hipersuperficie real de CHn verifica g > 1 (ver Corolario 7.5). Séguese
do traballo de S. Montiel [99] que toda hipersuperficie real con dúas curvaturas principais
constantes en CHn, n ≥ 3, é un aberto dunha esfera xeodésica, dunha horosfera, dun tubo
arredor dun CHn−1 ⊂ CHn totalmente xeodésico ou dun tubo de radio log(2+

√
3) arredor

dun RHn ⊂ CHn totalmente xeodésico. Para n = 2 o problema parece estar aberto. No
Corolario 7.6 presentamos unha proba para a anterior clasificación que inclúe tamén este
caso de dimensión baixa. Todas estas hipersuperficies son hipersuperficies homoxéneas
de Hopf. Unha hipersuperficie de CHn con campo de vectores normal unitario ξ dise de
Hopf se Jξ é un autovector do operador de configuración. J. Berndt obtivo en [10] a
clasificación de todas as hipersuperficies de Hopf con curvaturas principais constantes en
CHn. Calquera desas hipersuperfices é un aberto dunha horosfera, dun tubo arredor dun
CHk ⊂ CHn totalmente xeodésico para algún k ∈ {0, . . . , n − 1} ou dun tubo arredor
dun RHn ⊂ CHn totalmente xeodésico. Todos estes tubos e horosferas son homoxémeos
e g ∈ {2, 3}. Non obstante, non todas as hipersuperfices reais homoxéneas de CHn son de
Hopf. Ver o Caṕıtulo 6 para unha dicussión deste tipo de exemplos.
No Caṕıtulo 7 concluimos o estudio anterior dando unha clasificación das hipersuper-

ficies reais en CHn con tres curvaturas principais constantes distintas (Teorema 7.1). En
particular, o noso resultado implica que calquera hipersuperficie con como máximo tres
curvaturas principais constantes é homoxénea.
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