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Introduction

When studying the geometric properties of a semi—Riemannian manifold, the starting point
usually comes from some invariants of the metric structure. Among those invariants, the

curvature tensor is perhaps the simplest and most natural one. In the words of R. Osserman
[109]

The notion of curvature is one of the central concepts of differential geometry;
one could argue that it is the central one, distinguishing the geometrical core
of the subject from those aspects that are analytical, algebraic or topological.
In the words of M. Berger, curvature is the “Number 1 Riemannian invariant
and the most natural. Gauss and then Riemann saw it instantly”.

Curvature, however, can be studied from several points of view. On the one hand, an
essential problem in differential geometry is to relate properties of the curvature tensor to
the underlying geometry of the manifold. Another point of view is to consider different
kinds of objects naturally associated with the metric structure of the manifold and relate
the curvature of the manifold to the properties of these natural constructions.

When dealing with a complicated object such as the curvature tensor, it is interest-
ing to decompose it in more elementary constituents. Usually, these smaller parts give
a simplified picture and a deeper insight into the whole problem. In Chapter 2 we show
that the curvature tensor may be decomposed in terms of some simple algebraic curvature
tensors. This is of special importance when considering Osserman-like problems.

Furthermore, the fact that the whole curvature tensor is very difficult to handle derived
the investigation to the consideration of geometric objects naturally associated with the
curvature. Typical examples are the sectional curvature, the Ricci tensor or the scalar
curvature. Part I of this thesis fits into this philosophy. Among the different operators that
can be defined from the curvature tensor, we are specially interested in the Jacobi operator,
which encodes important geometric information and whose properties strongly influence
the underlying geometry of the manifold. The Jacobi operator and Jacobi vector field
theory are important tools in semi—Riemannian geometry. They provide a good description
of curvature, behavior of geodesics and geometry of certain kinds of submanifolds. Thus,
understanding the Jacobi operator of a semi-Riemannian manifold allows us to characterize
the geometry of the manifold in several cases. Chapter 3 of this thesis is devoted to the
investigation of the Jacobi operator in relation to the so—called Osserman problem. In
Chapter 3 we focus on the Osserman problem in dimension four. Our main goal is to



2 Introduction

show the existence of Osserman metrics whose Jacobi operators are non-nilpotent and
non—diagonalizable. This answers in the negative a conjecture on the non—existence of
such manifolds. Moreover, a complete local description of any such metrics is given.

As it was stated above, another approach is to enlighten our understanding of a manifold
by investigating the relation between curvatures of geometric objects naturally associated
with the metric structure of the manifold and the curvature of the manifold itself. Examples
of these structures are small geodesic spheres, geodesic disks and tubes around significant
submanifolds.

Part I of this thesis is devoted to the study of some of the previously mentioned
objects. In particular we study scalar curvature invariants of geodesic spheres in Chapter
4. Scalar curvature invariants are of main interest and many important geometries can be
characterized in terms of these functions. We consider them in relation to geodesic spheres.
In this chapter, we integrate the scalar curvature invariants of geodesic spheres and disks,
obtaining the first terms in their power series expansions as a function of the radius. This
leads to some characterizations of the two—point homogeneous spaces among Riemannian
manifolds with adapted holonomy.

Inspired by the construction of geodesic disks in Riemannian geometry, we define
geodesic celestial spheres in the Lorentzian setting. It turns out that this family of objects
is adapted to the consideration of volume comparison results in the Lorentzian frame-
work, which suffered from a lack of geometric constructions analogous to the Riemannian
geodesic spheres and tubes. Chapter 5 is devoted to the investigation of volume proper-
ties of geodesic celestial spheres as well as their total scalar curvatures. This allows us to
characterize isotropic Lorentzian manifolds.

Geodesic spheres and tubes are somehow level sets of the Riemannian distance function
and hence they are closely related to the metric structure. Other objects in Riemannian
manifolds which are related to the metric structure are those submanifolds invariant under
the isometries of the ambient manifold. Orbits of cohomogeneity one actions are examples
of this situation. Furthermore, a principal orbit of a cohomogeneity one action is geomet-
rically a tube around a singular orbit of that action. This involves again the Riemannian
distance function and the Jacobi operator, which is the main tool for calculating the ge-
ometry of geodesic spheres and tubes.

The geometry of orbits of cohomogeneity one actions is more interesting from the ex-
trinsic point of view. Thus, it is the second fundamental form what we study in this case.
Part III of this work is devoted to the investigation of real hypersurfaces with constant
principal curvatures in the complex hyperbolic space. Orbits of cohomogeneity one actions
are the main candidates for these hypersurfaces and are the only known examples so far.
In Chapter 6 we study the shape operator of the orbits of cohomogeneity one actions on
the complex hyperbolic space. We take advantage of this study and give in Chapter 7 a
complete classification of real hypersurfaces with three distinct constant principal curva-
tures.



Chapter 1

Preliminaries and conventions

We introduce some of the basic notions in semi-Riemannian geometry. The notations and
conventions described in this chapter are used throughout this monograph unless otherwise
stated. This concepts can be found in most of the introductory books to Riemannian and
semi-Riemannian geometry. Well-known references are for example [108], [114], [116].

In Section 1.1 we introduce the concept of semi-Riemannian manifold and provide our
sign convention for the curvature tensor. In Section 1.2 we briefly state a few properties
of geodesics and the semi—Riemannian exponential map. Section 1.3 is devoted to the
description of some facts about submanifold geometry. We finish this chapter with a brief
overview of some special kinds of manifolds which are used later in this work. This is
accomplished in Section 1.4.

1.1 Semi—Riemannian manifolds

Let M be an n—dimensional differentiable manifold of class C'*°. Throughout this thesis all
manifolds are assumed to satisfy the second countability axiom. Thus, all manifolds are
para—compact. For each m € M we denote by T,,M the tangent space of M at m. The
tangent bundle is denoted by T'M and we write I'(T'M) for the module of sections of T'M.
As usual, an element in ['(T'M) is called a smooth vector field.

A symmetric bilinear tensor w in a vector space is said to be non—degenerate if w(zx, y) =
0 for all y implies x = 0. Any non—degenerate symmetric bilinear tensor in a vector space
is linearly congruent to a diagonal matrix diag(1, 1, -1, —1). The pair of numbers
(r,s) is called the signature of the tensor.

A semi-Riemannian manifold is a pair (M, g) where M is manifold and g is a non—
degenerate symmetric covariant bilinear tensor field of type (0,2) and constant signature.
Then, each tangent space is equipped with a non—degenerate symmetric bilinear tensor g,,.
If the signature of g, is (7, s), then (M, g) is said to have signature (r,s).

If a semi-Riemannian manifold M has signature (n,0), then M is called a Riemannian
manifold. If the signature is (n —1,1), M is a Lorentzian manifold. Riemannian manifolds
are the direct generalization of Gauss’ theory of surfaces and Lorentzian manifolds appear

3



4 1 Preliminaries and conventions

in relation to the theory of general relativity.

While there is a natural way to differentiate smooth functions on a smooth manifold,
there is no such natural way to differentiate smooth vector fields. The theory of connections
studies the various possibilities for such a differentiation process. In a semi—Riemannian
manifold (M, g) there is a unique torsion—free metric connection which is determined by
the Koszul formula:

20(VxY,Z) = Xg(Y,Z)+Yg(X,Z)— Zg(X,Y)
—|—g([X,Y],Z)—g([X,Z],Y)—g(D/,Z],X),

for any vector fields X,Y,Z € I'(T'M). This connection is known as the Levi-Civita
connection or covariant derivative. The Levi—Civita connection acts as a tensor derivation
on smooth vector fields in the usual way.

The most important concept of semi—Riemannian geometry is curvature. There are
several kinds of curvature of great interest. All of them can be obtained from the Riemann
curvature tensor which we define with the following sign convention:

Rxy = Vixy — [Vx, Vyl].

We also define the (0,4) Riemannian curvature tensor as Rxyvw = g(RxyV, W).
The Riemannian curvature tensor satisfies the following algebraic properties

RXYVW = _RYXVW = _RXYWV = RVWXY>

Rxyvw + Ryvxw + Ryxyw = 0.

The last equality is known as the algebraic Bianchi identity. The curvature tensor also
satisfies the differential Bianchi identity

(VxR)(Y, 2)W + (VyR)(Z, X)W + (V2R)(X,Y)W = 0.

Among all the possible curvatures that can be defined in a semi—Riemannian manifold
we emphasize the Ricci tensor and the scalar curvature. The Ricci tensor, pxy, is defined
as the trace of the linear map Z — Rx ;Y. The algebraic identities of the curvature tensor
show that the Ricci tensor is a self-adjoint bilinear map. The scalar curvature 7 is the
smooth function on M obtained by contracting the Ricci tensor.

1.2 (Geodesics and the exponential map

Let ¢ : I C R — M be a smooth curve in a semi-Riemannian manifold. We denote by
(t) the tangent vector of ¢ at t. The notion of covariant derivative can be defined along a
curve. Such covariant derivative along curves maps smooth vector fields along ¢ to smooth
vector fields along c¢. Let X be a vector field along c¢. We denote by X'(t) the covariant
derivative of X with respect to ¢/(t) at ¢(t).



1.2 Geodesics and the exponential map )

A smooth curve ¢ is called a geodesic if it satisfies ¢/ = V¢’ = 0. Geodesics arise in
Riemannian geometry as the curves which minimize distance between two given points.
These curves do not exist in general but if they do (for example when the two points are
sufficiently close), they are the solutions of the above variational problem. Geodesics can
also be seen as curves with zero acceleration. This interpretation makes sense in the general
semi-Riemannian setting.

The condition ¢’ = 0, when written in coordinates, translates into a system of second
order differential equations. The basic theory of differential equations implies that, for each
point m € M and each tangent vector v € T,, M, there exists a unique maximal geodesic
¢: 1 C R — M such that ¢(0) = m and ¢/(0) = v. This maximal geodesic is often denoted
by ¢,.

A more general theorem of ordinary differential equations implies that geodesics vary
in a differentiable way with respect to the initial conditions. Namely, there exists an open
set U with M C U C T'M such that the map

exp: U — M
v —  exp(v) =c(1),

is well-defined and differentiable. This map is called the ezponential map of (M, g). Taking
the fiber at a point we have the exponential map at a point.

Let m € M. The exponential map at m € M is given by exp,,(v) = ¢,(1) for any
v € T,,M. Such a map is defined in a star—shaped neighborhood of 0 € T,,M. The
exponential map is a differentiable map and exp,,,, is the identity map of 7,,M if we
identify ToT,,M with T,,M. Therefore, there exist an open neighborhood i of 0 € T, M
and a neighborhood U of m € M such that exp,, : 4 — U is a diffeomorphism. A
neighborhood U as above is called a normal neighborhood of m.

Let z € T,,M be a tangent vector. We define R, : T,,M — T,,M as R,(y) = R,,.
The algebraic identities of the Riemannian curvature tensor imply that R, is a self-adjoint
map and R,(xr) = 0. Hence, it can be restricted to R, : ¥ — zt, where z* denotes
the orthogonal complement of the real span of z. This operator is known as the Jacobi
operator.

The Jacobi operator turns out to be very important in semi-Riemannian geometry. We
present now one of its applications. Let ¢ : I C R — M be a geodesic parametrized by
arc length. A vector field X along c is called a Jacobi vector field if it satisfies the linear
second order differential equation

X// + Rc/(X) — 07

which is known as the Jacobi equation. Basic theory of differential equations implies that
Jacobi vector fields are defined in the whole interval I. Moreover, the Jacobi vector fields
along a geodesic form a 2n—dimensional vector space. Thus, any Jacobi vector field is
determined by the initial values X (0) and X'(0).

There is an interesting interplay between Jacobi vector fields and geodesic variations.
A wariation of a curve ¢ : [ — M is a differentiable map F': I x (—¢,e) — M such that
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F(s,0) = ¢(s) for all s. For fixed sy and ¢y, the curve F(so,-) is called transversal and the
curve F'(+,ty) longitudinal. A variation is called a geodesic variation if every longitudinal
curve is a geodesic. The variational vector field of F' along c is the vector field X such that
X (s) is the velocity of the transversal curve trough c(s).

Jacobi vector fields arise geometrically as the variational vector fields of a geodesic vari-
ation. Hence, a Jacobi vector field measures the infinitesimal behavior of nearby geodesics.
Jacobi vector fields can be also used to describe the differential of the exponential map. If
X is a Jacobi vector field along the geodesic ¢ with X (0) = 0 and X'(0) = v then

X(S) = ech(O)*sc’(O)(Sv)a

for all the values of s along the geodesic c.

1.3 Submanifold geometry

Let (M, g) be a semi-Riemannian manifold and M an embedded submanifold. The restric-
tion of g to M provides a symmetric bilinear tensor field on M. However, this tensor field
can be degenerate. When it is not, that is, when M is itself a semi—Riemannian manifold,
M is called a semi—Riemannian submanifold of M. We follow [13] and [108].

The normal bundle of M, that is, the bundle of vectors orthogonal to the tangent space
of M, is denoted by T+M. By I'(T*M) we denote the module of all normal vector fields to
M. A canonical isomorphism holds at each point m € M, namely, T,,M = T,,M & T-M.
Given a vector field X of M along M we denote by X the orthogonal projection of X
onto TM and by X the orthogonal projection onto T+M.

If V is a vector space with inner product g and W C V is a vector subspace, we denote
by V & W the orthogonal complement of W in the inner product vector space V. For
example, with the above notation we have T-M = T,,M © T,,M. If E and F are two
vector subbundles of the tangent bundle of M such that F' C F, we denote by E © F the
vector subbundle such that at each point m we have (F © F),, = E,, © F,,. In particular,
T+M =TM S TM.

The definition of the Riemannian curvature tensor can be given for any Riemannian
manifold. The curvature tensor is said to be an intrinsic geometric invariant. The intrinsic
geometry of both M and M may be studied. Nonetheless, one can also study the geometry
of M in relation to the geometry of M. This is the extrinsic geometry of M. The extrinsic
geometry of a submanifold is encoded in its second fundamental form.

Let us denote by V and R the Levi-Civita connection and the Riemannian curvature
tensor of M, respectively, and by V and R the corresponding objects in M. When studying
submanifolds, this convention is assumed throughout this memory unless otherwise stated.
The second fundamental form of M is defined by the Gauss formula

VxY =VxY +1I(X,Y)

for any X,Y € T(TM). Hence, II(X,Y) = —(VxY)*t. Let £ € T(T+M) be a unit normal
vector field. The shape operator of M associated with ¢ is the self-adjoint operator on M
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defined by g(S¢X,Y) = g(II(X,Y),€), where X, Y € I'(TM). Moreover, denote by V= the
normal connection of M, that is, Vx& = (Vx&)* for any X € T(TM) and & € T(T+-M).
Then we have the Weingarten formula

Vx€ = SeX + VyE.

The relation between the Riemannian curvature tensors of M and M is given by means of
the second fundamental form. This relation is known as the Gauss equation:

Rxyvw = Rxyvw — g(I[(X, V), II(Y,W)) + g(II (X, W), II(Y, V).
The Codazzi equation is also of great important in our work
(Rxy2)*t = (VxIN(Y, Z) — (V31 (X, 2),
where the covariant derivative of the second fundamental form is given by
(VxIN(Y,2) =VxI(Y,Z) - I(VxY,Z) - II(Y,VxZ).
For the sake of completeness we also give the Ricci equation

Rxyen = 9(Rxy&,n) + g([Se, Syl X, Y),

where X, Y € T(TM), §,n € T(T*+M) and R* is the curvature tensor of the normal vector
bundle of M defined by Rxy € = V[ﬁ(,y}f — V%, Vi€

We say that a submanifold is totally geodesic if its second fundamental form vanishes,
II = 0. This is equivalent to saying that every geodesic in M is also a geodesic in M. If
M is complete and totally geodesic we have that M = exp,,(T,,M) for any m € M.

A submanifold is said to be umbilical if there exists a constant A such that I = A g.
Clearly, if A = 0, then M is totally geodesic.

The mean curvature vector H of a semi-Riemannian submanifold is defined as the trace
of the second fundamental form. Hence, with respect to a local orthonormal basis {F;} of
TM we may write H =) . g(E;, E;)II(E;, E;).

A submanifold is said to be minimal if and only if its mean curvature vector van-
ishes. Minimal submanifolds appear in a natural way as the critical points of the volume
functional and they are a topic of current interest in differential geometry.

We say that M is a spherical manifold or an extrinsic sphere if M is umbilical and
its mean curvature vector is parallel with respect to the normal connection of M, that is,
II = \ g for some constant A and V*H = 0.

An umbilical submanifold of a space of constant curvature is also spherical. Umbilical
submanifolds of spaces with constant curvature have been classified. See [13] for a more
detailed discussion.

Assume now that M is a hypersurface of M, that is, an embedded submanifold of
codimension one. Then, up to sign, there exists a unique unit normal vector field £ € T+ M.
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We write € = g(§,€&) € {—1,1}. Hence the second fundamental form I/ is a multiple of &.
We define the scalar second fundamental form o of M by the equality II(X,Y) = eo(X,Y )¢
for X,Y € I'(T'M), that is, o(X,Y) = g({I(X,Y),€).

We denote by S = S¢ the shape operator with respect to . With respect to the
scalar second fundamental form we have g(SX,Y) = o(X,Y). The Gauss formula and the
Weingarten equation can be written as

VxY =VxY +eg(SX,Y)¢ and  Vx&=SX.
Then, the Gauss and Codazzi equation reduce to
Rxyvw = Rxyvw — eg(SX,V)g(SY, W) + € g(SX, W)g(SY, V),

(Vx9)Y — (VyS)X = —Rxy¥¢,

whereas the Ricci equation does not give further information for hypersurfaces.
The mean curvature vector H is proportional to the vector £&. We define the scalar
mean curvature h by the equation H = hé.

We say that A\ : M — R is a principal curvature of M (associated with &) if there exists
a vector field X € T'(T'M) such that SX = AX. If M is a Riemannian manifold, the shape
operator S is diagonalizable at every point because it is a self-adjoint map and the metric
is positive definite.

If A is a principal curvature we denote by 7\ (p) the eigenvector space of A\(p) and call
it the principal curvature space associated with \(p). If X € Ty(p), X # 0 we say that X
is a principal curvature vector of A at p. We emphasize here that, in general, the principal
curvature spaces associated with a principal curvature A do not always have the same
dimension.

A connected hypersurface is said to have constant principal curvatures if the shape
operator is diagonalizable and its eigenvalues are the same at every point. In this case
the principal curvature spaces associated with an eigenvalue A have the same dimension
at any point. We denote by m, the dimension of any of the vector spaces T)(p) and call
this number the multiplicity of A\. By T, we denote the distribution on M formed by the
principal curvature spaces of A and by I'(7)) we denote the set of all sections of T}, that
is, the vector fields X € I'(T'M) such that SX = A X.

1.4 Some special classes of semi—Riemannian mani-

folds

We introduce a few kinds of manifolds which will be of special relevance in this thesis.
The description is not intended to be thorough and we restrict ourselves to those types
which are going to be used later. A wider study of structures on manifolds can be found
for example in [134].
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1.4.1 Two—point homogeneous spaces

A connected Riemannian manifold M is called two-point homogeneous if the isometry
group of M acts transitively on equidistant pairs of points. This means that for any
P1,DP2,q1,q2 € M with d(p1,q1) = d(ps, q2), where d is the Riemannian distance function
of M, there is an isometry ® of M such that ®(p;) = ps and ®(¢1) = ¢2. This definition
clearly implies that a two—point homogeneous space is homogeneous and complete.

Let M be a semi-Riemannian manifold and p € M. The manifold M is said to be
1sotropic at p if the isotropy group of the isometry group of M at p acts transitively on
the unit pseudo—sphere bundle. The manifold is called isotropic if it is isotropic at every
point, or equivalently, if for each point p € M and any non—null vectors x,y € T}, M with
g(x,x) = g(y, y) there exists an isometry ® of M such that ®(p) = p and D,,(z) = P.,(v).
The notion of locally isotropic manifold can be defined in an analogous way.

If M is a Riemannian manifold, then M is two—point homogeneous if and only if it is
isotropic. Any two—point homogeneous space is symmetric [122]. Indeed, a simply con-
nected two—point homogeneous space is a flat space, an irreducible symmetric space of rank
one or one of its non—compact duals. Hence, a simply connected two—point homogenous
space is isometric to one of the following manifolds:

(i) The Euclidean space R™.

(ii) The sphere S = SO(n+1)/SO(n), the real projective space RP" = SO(n+1)/0O(n)
or the real hyperbolic space RH" = S0O°(1,n)/SO(n).

(iii) The complex projective space CP" = SU(n + 1)/U(n) or the complex hyperbolic
space CH™ = SU(1,n)/S(U(1)U(n)).

(iv) The quaternionic projective space HHP™ = Sp(n+1)/Sp(1)Sp(n) or the quaternionic
hyperbolic space HH™ = Sp(1,n)/Sp(1)Sp(n).

(v) The2 Cayle}goprojective plane OP? = F,;/Spin(9) or the Cayley hyperbolic plane
OH? = F;7"/Spin(9).

The examples in (ii) are called real space forms, the examples in (iii) are called complex
space forms and the examples in (iv) are called quaternionic space forms. These three con-
structions can be generalized to the general semi—Riemannian setting. We briefly describe
them in what follows.

Indefinite real space forms

A semi-Riemannian manifold (M", g) of signature (r, s) is called a real space form if (M, g)
has constant sectional curvature. If (M, g) is a real space form of constant curvature A € R,
the curvature tensor of (M, g) is given by

Rayz = Mg(z, 2)y — g(y, 2)x),
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for all x,y,z € TM.
A complete and simply connected real space form is isometric to

RP" = SO(s,r +1)/O(s,r), RH"=S0%s+1,7)/SO(s,r) or R~

according to whether the sectional curvature is positive, negative or zero [133].

Indefinite complex space forms

Let (M, J) be an almost complex manifold with almost complex structure J, that is, J
is a (1,1)-tensor field on M satisfying J? = —Id. A semi-Riemannian metric tensor g of
signature (2r, 2s) is said to be Hermitian if g(JX,Y)+g¢(X,JY) =0forall X, Y € I'(T'M).
If the metric tensor is integrable, that is, if [J,J] = 0 where [J, J](X,Y) = [JX,JY] —
JJX,Y] = JX,JY] = [X,Y], then J is said to be a complex structure.

The triple (M?",g,J) is said to be a Kdhler manifold if J is a complex structure and
the 2-form Q(X,Y) = g(X, JY) is closed. This couple of conditions can be equivalently
described by VJ = 0, where V is the Levi-Civita connection of g.

A plane 7 is called holomorphic if it remains invariant under the complex structure
(Jm C ), and the holomorphic sectional curvature is defined as the restriction of the
sectional curvature to non—degenerate holomorphic planes. A Ké&hler manifold (M, g, J) is
called a complex space form if (M, g, J) is of constant holomorphic sectional curvature. If
this constant is p, then the curvature tensor of (M, g, J) is given by,

Ryyz = %(9(% 2)y — 9(y, 2)r + g(Jx, 2)Jy — g(Jy, 2)Jx + 2g9(J, y)JZ>

for all z,y,2 € TM. Let z € TM be a unit vector. The Jacobi operator of z is given by

. pg(z, z) Id, if zeRJz,
o Lg(z,2) 1d, if zeCzt.

The model spaces of non—zero constant holomorphic sectional curvature are given by the
symmetric spaces

CP!'=SU(s,r+1)/U(s,r) and CH!=SU(s+1,7)/S(U(s+1)U(r)).

Indefinite quaternionic space forms

An almost quaternionic manifold is a manifold M equipped with a 3—dimensional vector
bundle Q of (1,1)-tensor fields on M such that there exists a local basis {Ji, J2, J3} of
Q satisfying J? = —1Id, i = 1,2,3, and J;J; = J;, where (i, j, k) is a cyclic permutation
of (1,2,3). Such a local basis {Ji, J2, J3} is called a canonical local basis of Q and Q is
referred to as an almost quaternionic structure on M. A semi—Riemannian metric tensor
g of signature (4r,4s) is said to be adapted to the almost quaternionic structure Q if
g(@X,Y)+g(X,¢Y)=0forall ¢ € Q and X,Y € I'(TM).
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Let (M, g,Q) be an almost quaternionic manifold and {.J;, Js, J3} be a canonical local
basis of Q. For each i € {1,2,3}, we put ®;(X,Y) = ¢g(X, J;Y), where X,Y € I'(TM).
Then, ®; is a locally defined 2—form such that = &; A &1 + Py A Py + P35 A P3 gives
rise to a globally defined 4—form on M. A quaternionic metric structure (g, Q) is said to
be Kahler if € is parallel (or equivalently, if Q is parallel) with respect to the Levi-Civita
connection V of g.

Let (M, g,Q) be a quaternionic Kahler manifold. Then M has signature (4r,4s). Any
vector x € T,M determines a 4-dimensional subspace Q(z) = Rz & RJiz & RJoz & RJsx
which remains invariant under the action of the quaternionic structure. We call it the
Q-section determined by x. If the sectional curvature of planes in Q(x) is a constant v(x),
where x € T'M is non—null, we call this constant v(x) the quaternionic sectional curvature
of (M, g) with respect to z.

A quaternionic Kéahler manifold (M, g, Q) is called a quaternionic space form if (M, g, Q)
is of constant quaternionic sectional curvature. Then its curvature tensor is given by

v

3
Rz = {olw,2)y = gy, 202 + Y (9w, 2) iy — 9y, 2)Jsw + 29w ) Iz ) |,
i=1

for all z,y,z € TM, and where {Jy, J5, J3} is a canonical local basis of Q.
A non—flat quaternionic space form is isometric to one of the following symmetric spaces

HP! = Sp(s,r+1)/Sp(1)Sp(s,r) or HH] = Sp(s+1,7)/Sp(1)Sp(s,r).

1.4.2 Para—complex space forms

In addition to the well-known examples of semi-Riemannian manifolds described above,
there are some other examples which have no Riemannian analog. However, they may be
considered as a kind of real version of complex manifolds.

A para—Kdhler manifold is a symplectic manifold locally diffeomorphic to a product of
Lagrangian submanifolds. Such a product induces a decomposition of the tangent bundle
TM into a Whitney sum of Lagrangian subbundles L and L', that is, TM = L & L.
By generalizing this definition, an almost para—Hermitian manifold is defined to be an
almost symplectic manifold (M, €)) whose tangent bundle splits into a Whitney sum of
Lagrangian subbundles. This implies that the (1, 1)-tensor field J defined by J = o1, — o/
is an almost para—complex structure (J? = Id) on M such that Q(JX, JY) = —Q(X,Y) for
all X, Y € I'(TM), where o, and o/ are the projections of TM onto L and L’, respectively.
The 2—form  induces a non—degenerate (0,2)—tensor field g on M defined by ¢g(X,Y) =
Q(X,JY), where X, Y € I'(T'M). Now, by using the relation between the almost para—
complex and the almost symplectic structures on M, it follows that ¢ defines a semi—
Riemannian metric tensor of signature (n,n) on M and g(JX,Y) + ¢g(X,JY) = 0, where
X,Y € I'(TM). The special significance of the para—Kéahler condition is equivalently
stated in terms of the parallelizability of the para—complex structure with respect to the
Levi—Civita connection of g, that is, V.J = 0 [35].
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A plane 7 is called para—holomorphic if it is left—invariant by the action of the para—
complex structure J, that is, Jm C w. The para—holomorphic sectional curvature is defined
by the restriction of the sectional curvature to para—holomorphic non-degenerate planes.
A para—Kéhler manifold (M, g, J) is called a para—complezx space form if (M, g, J) is of
constant para—holomorphic sectional curvature. Hence, the curvature tensor of (M, g, J)
is determined by

Ruyz = 5 (g 2y = gy, 2)2 — 9. 2) Ty + g(Jy, 2)Jw = 29(J,y).J2),

for all z,y, 2 € T,M and some constant ;1 € R. Then, the Jacobi operator with respect to
a unit vector z € T'M is given by

n-{

Non-flat complete and simply connected para—complex space forms are isometric to
the symmetric spaces SL(n,R)/SL(n —1,R) x R.

g(z,2) 1d, if zeRJz,
g(z,2) Id, if ze€ (RzpRJ2):.

NI

1.4.3 Einstein manifolds and k—stein manifolds

A semi-Riemannian manifold (M",g) is called an Einstein manifold if the Ricci tensor
is proportional to the metric, that is, if there exists a constant A € R such that p = A\ g.
Taking traces we easily see that A = 7/n and hence the scalar curvature is constant. If n > 2
and there exists a function f : M — R such that p = f g then, the Schur lemma implies
that f is constant and thus the manifold is Einstein. If a semi—Riemannian manifold M
has dimension 2 or 3 then, M is Einstein if and only if M has constant sectional curvature.

A semi-Riemannian manifold is said to be k—stein, for k£ > 1, if there exists a constant
A such that tr R = Ag(z,x)* for all x € TM, where R¥ is the k—power of the Jacobi
operator. Note that a manifold is 1-stein if and only if it is Einstein.

We are specially interested in the 2—stein condition, which plays an important role in
Part II. With respect to an orthonormal basis {e;} the 2-stein condition may be written

as
n

> gleiegles,e) B2, e, = Mgl ).

ij=1
A manifold M is said to be super—FEinstein if

n

Y dlenegles es)glens er) R e, = ngla, ),
ij k=1

for some constant p. It was shown in [33] that 2-stein manifolds are super—Einstein al-
though the converse is not true. For instance, irreducible symmetric spaces are super—
Einstein but not necessarily 2—stein.
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Geometric consequences of algebraic
properties of the curvature tensor
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A central problem in differential geometry is to relate algebraic properties of the cur-
vature tensor to the underlying geometry of the manifold. From an algebraic point of view
the space of algebraic curvature tensors on an n—dimensional vector space V is a vector
space R(V) of dimension n?(n?—1)/12, which makes it very difficult to manipulate. Hence,
the investigation focused many times on trying to find suitable bases or sets of generators
allowing some simplifications. A typical example is the Singer—Thorpe basis in dimension
four (see also [92] for higher dimensions).

Recently, the work of B. Fiedler [59] and P. Gilkey [68] showed the existence of nice
sets of generators of R(V') constructed from symmetric and skew—symmetric bilinear forms,
which seems to be useful in understanding some curvature conditions. Our approach to
this problem, based on the use of the Nash embedding theorem and the possibility of
realizing geometrically any algebraic curvature tensor, has two main advantages. The first
one is that it allows us to obtain some sharper (although not optimal) estimates for the
number of generators of R(V'). Secondly, it shows that each algebraic curvature tensor can
also be seen from an extrinsic point of view as the second fundamental form of a suitable
embedding. All these discussions are carried out in Chapter 2.

Another purpose of this part is to study the influence of algebraic properties of natural
operators associated with the curvature tensor on the manifold geometry. More precisely,
our attention is mainly devoted to the investigation of the Jacobi operator by focusing on
the structure of four—dimensional Osserman metrics.

A semi-Riemannian manifold is said to be Osserman if the eigenvalues of the Jacobi
operators are independent of the direction and the base point. Since the group of local
isometries of an isotropic space acts transitively on the unit pseudo—sphere bundles, it is
clear that any isotropic space is Osserman. No other examples may exist in the Riemannian
(dim # 16) and Lorentzian settings but there exist non—symmetric and even non-locally
homogeneous Osserman metrics in any signature (p, q¢) with p,q > 2.

Four—dimensional Osserman metrics are of particular interest. First of all, four is the
first non-trivial dimension to be considered in the investigation of the Osserman problem
(note that any Osserman metric is Einstein, and thus of constant sectional curvature in

15



dimensions 2 and 3), and moreover, four is the lowest possible dimension which supports
metrics of neutral non—Lorentzian signature, where the first non-symmetric Osserman
metrics were discovered.

Due to curvature identities, for any non—null vector x € T'M, the Jacobi operator
acts as a self-adjoint operator in z*, which has induced metric of Lorentzian signature
in the (2,2) setting. Osserman metrics with diagonalizable Jacobi operators have been
characterized by N. Blazi¢, N. Bokan and Z. Raki¢ [21], who also showed the non-existence
of Osserman metrics in dimension four whose Jacobi operators have complex eigenvalues.
However, the Lorentzian signature of z* supports two other possibilities corresponding
to a double or triple root of the minimal polynomial of the Jacobi operators. The fact
that all known examples in those situations have nilpotent Jacobi operators and that four—
dimensional symmetric Osserman spaces have diagonalizable or two—step nilpotent Jacobi
operators motivated a conjecture that Osserman metrics whose Jacobi operators are not
diagonalizable must have nilpotent Jacobi operators.

Our purpose in Chapter 3 is to answer the above conjecture in the negative by showing
explicit examples of Osserman metrics whose Jacobi operators are neither diagonalizable
nor nilpotent. Finally, a complete description of such metrics is given in Section 3.3.

16



Chapter 2

Algebraic curvature tensors and
natural operators

In this chapter we discuss some algebraic properties of the curvature tensor and its covariant
derivatives. When studying curvature it is sometimes convenient to work in the algebraic
setting. This often simplifies calculations and allows one to distinguish between purely
geometric or topological properties and those properties which are imposed by the linear
nature of most of the objects that can be defined in a manifold.

Section 2.1 is devoted to the study of algebraic curvature tensors. Geometric realiz-
ability turns this concept into a very powerful notion when studying manifolds where the
curvature tensor verifies some algebraic property. Hence, it is interesting to be capable of
decomposing the curvature tensor into more elementary parts which can be studied in an
easier way. Theorems 2.3 and 2.4 contribute to this philosophy giving somehow an upper
bound of the complexity of the curvature tensor. Some other results are given in relation
to this decomposition of the curvature tensor.

Section 2.2 deals with certain natural operators that can be defined from the curvature
tensor of a semi—Riemannian manifold. We give the basic definitions and results that will
be used in the following chapter.

2.1 Algebraic curvature tensors

Let V be an n-dimensional vector space with an inner product g. An algebraic curva-
ture tensor is a tensor F' € ®*(V*) satisfying the algebraic identities of the Riemannian
curvature tensor, that is,

F(a:,y,v,w) = —F(y,m,v,w) = —F(x,y,w,v) = F(’U,?U,.T,y),
F(z,y,v,w) + F(y,v,z,w) + F(v,z,y,w) = 0.

Let us denote by R(V') the vector space of algebraic curvature tensors of V. This vector
space has dimension n?(n* —1)/12.

17
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Given a symmetric bilinear form ¢ in V we define the algebraic curvature tensor F¢ by

Fd)(ma y,v,w) = ¢(x,v)¢(y,w) - gb(y,v)¢(:c,w)

Now let 1) be a skew—symmetric bilinear form on V. Then, F¥ defined by

Fd}(x? Y0, w) = ¢($7 U)¢(y, w) - ¢<y’ U)¢($7 w) - 277/)(1’, ?JW(% w)

is an algebraic curvature tensor.

We define S(V') as the span of all F'® where ¢ is a symmetric bilinear tensor. Analo-
gously we define A(V) as the span of all F¥ where 1 is a skew—symmetric bilinear tensor.
The following theorem was proved by B. Fiedler [59] using group representation theory
and by P. Gilkey and R. Ivanova [68], [72] using linear algebra.

Theorem 2.1. Let (V" g) be an n—dimensional vector space with an inner product g.
Then, R(V)=S8(V) = A(V).

Now we turn our attention to the covariant derivative of the Riemannian curvature
tensor. As before, we work in the algebraic setting. Let (V™, g) be an inner product vector
space. An algebraic covariant derivative curvature tensor Fy is a tensor Fy € ®°(V*)
verifying both the algebraic identities of a Riemannian curvature tensor and the differential
Bianchi identity, namely,

Fl(Z,Q%Z/;an) = _Fl(zaywruvaw) = _FI(%%Z/’UJ’U) = FI(Z7U7w7x7y)7
F1<z7xayyvvw) + Fl(Zan,nyl?aw) + Fl(zaval'ayaw) = 07
Fi(z,z,y,v,w) + Fi(z,y, z,v,w) + Fi(y, z,2,v,w) = 0.

We point out that the first entry of the tensor stands for derivation when considering the
covariant derivative of the Riemannian tensor of a semi-Riemannian manifold. Let R(V)
be the vector space of algebraic covariant derivative curvature tensors.

Let ¢ be a symmetric bilinear tensor and ¢; a symmetric 3-linear tensor in V. Then,
the tensor F*" € ®3(V*) defined by

qus’(bl (’Zv T,Y,v, w) = (bl(Z, €, U)¢(y7 w) + ¢(‘T7 U>¢1<Zv Y, U))
_¢1(Z’ Z, w)qb(y, U) - ¢(ZE, w)(bl(za Y, w)

is an algebraic covariant derivative curvature tensor. If one thinks of ¢; as the symmetrized
covariant derivative of ¢, then Ff5 “ can be regarded, at least formally speaking, as the
covariant derivative of F'?.

Again, B. Fiedler used group representation theory to prove the analog of Theorem 2.1
for algebraic covariant derivative curvature tensors [59], [60].

Theorem 2.2. Let (V" g) be an inner product vector space. Then the linear span of the
tensors Ffﬁ"m coincides with the vector space of algebraic covariant derivative curvature

tensors R1(V).
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Theorem 2.1 (resp. Theorem 2.2) shows that algebraic curvature tensors (resp. al-
gebraic covariant derivative curvature tensors) can be written as a linear combination of
simple algebraic curvature tensors (resp. algebraic covariant derivative curvature tensors).
In order to simplify the latter linear combinations further, it is interesting to find the
minimum number of addends. We partially respond to the question.

Let us take F' € R(V) and F; € R1(V). We denote by pu(F') and p(F7) the minimum
integer number so that there exist symmetric bilinear tensors ¢; and 1;, symmetric 3-linear
tensors vy ; and constants A;, A\; ; such that

) p1(F1)
=1 J=1

We define the following constants depending on the dimension

p(n)= sup p(F) and  yu(n)= sup p(F),
FeR(V) FieR1(V)

where V' is any inner product vector space of dimension n.
We give upper and lower bounds for these quantities in the following section.

2.1.1 Decomposition of algebraic curvature tensors

The proof of Theorem 2.1 as given in [68] or [72] is constructive and relies on basic linear
algebra. By following that proof one may estimate the number of the distinct symmetric
tensors needed to express a given algebraic curvature tensor. Let F' be an algebraic cur-
vature tensor and decompose it as F' = Y % A\, F?". Choose an orthonormal basis {e;}.
Then ¢, belongs to one of the following:

(i) For i < j we define ¢(e;, e;) = ¢(ej, i) = 1, ¢(eq, e5) = 0 otherwise.

(ii) For j # i # k,j < k one defines ¢(e;,e;) = o(ej,e;) = Plei,ex) = Plex,e;) = 1,
®(eq, ep) = 0 otherwise.

(iii) For distinct ¢, 7, k,, one considers ¢(e;,ex) = ¢(ex,e;) = ¢(ej,e1) = (e, e5) = 1,
®(eq, ep) = 0 otherwise.

A simple calculation shows that the number of different symmetric tensors ¢ needed
to express any given algebraic curvature tensor is at most n(n — 1)(n* —n + 2)/8. Our
purpose is to provide an alternative proof of R(V) = S(V') that gives a better (although
not optimal) estimate [40].

Theorem 2.3. Let (V" g) be an n—dimensional vector space with an inner product g.
Then, for each algebraic curvature tensor F € @*(V*) there exist at most n(n + 1)/2
symmetric tensors ¢ on V' such that F' is a linear combination of the associated algebraic
curvature tensors F°.
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Proof. Any algebraic curvature tensor F is geometrically realizable, that is, there exists a
smooth manifold M and a metric g on M such that the curvature tensor of (M, g) at some
point m € M is exactly F. More explicitly, there exists a linear isometry of inner product
vector spaces ® : (V,g) — (T,,M, g) such that ' = ®*R,,, where R is the curvature
tensor of (M, g). This can be achieved, for example, by defining the following metric in
a neighborhood of the origin of R, g;;(z',...,2") = d;; — (1/3) D20 5, Finjsr®x?, where
Fijri = F(es,ej, ek, €e), {e;} is an orthonormal basis of R" and ¢ denotes the Kronecker
delta. Then, using the previous basis to identify V' = R", we get R,, = F' at the origin.

It follows from the Nash embedding theorem [102] that M can be isometrically embed-
ded in R™™* for sufficiently large x. As usual, let us denote by II the second fundamental
form of the embedding. Let {ej,...,e.} be an orthonormal basis of the normal space
TLM. We define the symmetric bilinear tensors ¢; by ¢;(z,y) = g(Il(x,y),e;) for all
i € {1,...,k}. Then, for any z,y € T,,M we have II(z,y) = >, ¢i(x,y)e;. Using the
Gauss equation (note that R = 0) and the above expression for the second fundamental
form II we get

Flr,y,v,w) = Bu(z,y,0,0) = g((x,0), [I(y,w)) — g (U (z,w),(y,v))
= > A{biz, )iy, w) — dilw, w)dily, )} = Y F(x,y,0,w).
i=1 =1
In order to obtain the bound x = n(n + 1)/2, we note that the dimension in the Nash em-

bedding theorem can be reduced provided that the manifold is analytic and the embedding
is local [84]. O

We have a similar result for covariant derivative curvature tensors. See also [41].

Theorem 2.4. Let (V" g) be an n—dimensional vector space with an inner product g.
For any covariant derivative algebraic curvature tensor Fy € Rq(V) there exist at most
n(n + 1)/2 symmetric tensors ¢; € @*(V*) and ¢1,; € ®@3(V*) such that Fy is a linear
combination of the associated algebraic curvature tensors F91i.

Proof. Again, we assume that F} is the covariant derivative of the Riemannian curvature
tensor of certain Riemannian manifold M at some point m. For example this can be
achieved by defining the metric in R"

n

1
gij(x', .. a") =0y — g Z Fi(eq ep, €, ey,ej)waxﬁaﬂ,

a,B,7=1
with respect to some basis {e;} at the origin. By virtue of the Nash embedding theorem
[102] we may assume that M is isometrically embedded in R"™* for some k. Taking
covariant derivatives in the Gauss equation, using the definition of the covariant derivative
of the second fundamental form and the fact that R = 0 we get

Fl(z,x,y,v,w) - (VZR)m(x,y,v,w)
= g ((VzID)(z,v), 1 (y,w)) + g (1 (z,v), (V) (y,w))
—g (V2 ID)(2,w), I (y,v)) — g (I (z,w),(V:I)(y,v))
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for any tangent vectors z,z,y,v,w € V = T, M. Let {e,...,es} be an orthonor-
mal basis of T.>M. We define the tensors ¢; € ®*T M) and ¢,; € ®3*(T:M) by
oi(z,y) = g(Il(z,y),e;) and ¢y (2, z,y) = g(VEI)(z,y),e;) for all i € {1,...,k}. As
in the previous theorem, ¢; is symmetric and II(z,y) = >, ¢;(x,y)e;. For all z,y,z €
ToM, ¢1:(z,2,y) = ¢1.:(2,y,x) by the symmetry of II. Moreover, the Codazzi equa-
tion in R” reads (VL II)(x,y) — (Vi 1I)(z,y) = 0. Hence ¢y ,(z,z,y) = ¢1.(x, z,y) for all
z,y,z € T,, M. Altogether, this means that ¢, ; is a symmetric tensor for all i € {1,...,x}
and (VLII)(z,y) = ., ¢1.(z, 7, y)e;. Therefore, the above expression becomes

Fi(z,x,y,v,w) = Z FOoP (2 oy, v, w).

=1

The bound k = n(n + 1)/2 can be obtained by taking a local embedding of M in a
neighborhood of m as M may be supposed analytic [84]. O

Now, we turn our attention to the lower bounds of u(n) and py(n).

Let (V™ g) be an n—dimensional inner product vector space, F' € R(V) and F; €
R1(V). We define the curvature operators Kr and Kp, associated with F' and Fj by the
identities

Q(ICF(%?/)U,UJ) - F(x)y7vvw)7
9(Kp (z,z,y)v,w) = Fi(z,2,y,v,w),

for arbitrary z,x,y,v,w € V. Thus, once we fix z,x,y € V, both Kr(z,y) and K, (2, x,y)
are endomorphisms of V.

Lemma 2.5. Let (V™ g) be an inner product vector space. Let ¢ € @*(V*) and ¢ €
®3(V*) be symmetric tensors and z,x,y € V arbitrary vectors. Then rank{Kps(z,y)} < 2
and rank{K o4, (2, 7,9)} < 2.

Proof. Let ® and ®; be the associated self-adjoint endomorphism characterized by the
identities g(®x,y) = ¢(z,y) and g(P1(2)z,y) = ¢1(2,z,y). Then

Kpo(z,y)v = {o(z,v) @}y — {8(y,v) @}z,
KiP (za, v = {ou(z,2,0)@ + ¢z, 0)@1(2) by — {6y, v)®1(2) + ¢1(2,y,0)0 },
for any z,z,y,v € V and the result follows. [l

Corollary 2.6. Let (V" g) be an inner product vector space. Let ' € R(V) and F| €
R1(V). Then, for any z,x,y € V we have the relation rank{Kr(z,y)} < 2u(F) and
rank{Cr, (z,z,y)} < 2u1(F).

Proof. By definition of p(F') and p1(F;), we may write

w1 (F1)

1(F)
F=> aF* and Z B Fyre
i=1
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for certain symmetric tensors ¢;,v; € ®2*(V*), ¢1; € ®3(V*) and constants a;, 3; € R.
Clearly, we have Kp = 3_; a; Kpo; and K, = 32, 6; K s;.01;. Then Lemma 2.5 implies
1

w(F) w(F)
rank Kp = rank{z ociICF(pi} < Z rank Kps, < 2u(F),
i=1

i=1
pa(F1) pa(F1)
rank Kp, = rank{ z; @"CFle,m,j} < 2 rank ICFle,ij < 2uy(F),
j= j=
which proves the result. O

Lemma 2.7. Let V' be a vector space of dimension n = 2n or n = 2n + 1. There exist
FeR(V), F € Ri(V) and vectors z,x,y € V such that

rank{Kr(z,y)} =20 and rank{Kp (z,z,y)} = 2n.

Proof. It n = 2n, let {eq,...,€a, f1,..., fa} be an orthonormal basis of V; if n is odd, the
argument is similar and we simply extend F' and F; to be trivial on the additional basis
vector. Define ¢; € ®2(V*) and ¢1,; € @3(V*) by

bi(ej, ex) = ¢i(f5, fr) = 0ij i, di(ej, fr) =0,
1€, e, er) = ¢1i(fiy fur 1) = i dir bar, d1.i(es, ens fr) = driley, fis fr) =0,

for i € {1,...,7}. We consider the following algebraic curvature tensors

n

F= zn: i and F = ZF{%%,i_
=1

i=1
We also define the vectors xt =e; +---+ ez, y= f1 + -+ f7 and 2 = x + y. We have
Kr(z,y)e; = Ko, (€, fi)ei = — fi,
Kr(z,y)fi = Ki(ei, fi) fi = e,
K (z,2,9)es =R oo (€5, fisei + fi)es = =2f;
1
’CFl(Z,iﬁ, y)fi = RF¢1”¢1,1’ (ez', Jisei + fi)fi = 2e;.
1

The statement now follows. O
We can now prove the main theorem of this section [41].
Theorem 2.8. Let n > 2. Then

n(n+1)
2

< u(n) < and

NI
N3
IN
E
z
IN
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Proof. The upper bounds for p(n) and p(n) follow immediately from Theorems 2.3 and
2.4. On the other hand, Corollary 2.6 shows that for any F' € R(V) (resp. I} € R1(V)),
w(F) > srank{Kp(z,y)} (resp. pi(Fy) > 35rank{Kp(z,z,y)}). But Lemma 2.7 shows
that the value n/2 is attained for certain F' (resp. Fj). Thus u(n) > n/2 and pi(n) >
n/2. O

For low dimension we provide the exact value of p [40].

Proposition 2.9. Let F' be an algebraic curvature tensor in a 3—dimensional vector space.
One of the following two possibilities holds:

(a) There exists exactly one symmetric tensor ¢ € @3(V*) such that F = F°.

(b) There exist exactly two distinct symmetric tensors ¢1, ¢o € @*(V*) and constants r,
and ko such that F = k1 F?' + ko %2,

The second case occurs if and only if the Ricci tensor has eigenvalues Ay # 0 # Ao and

Az = A1+ Ao

Proof. Let F' be an algebraic curvature tensor in a 3—-dimensional vector space V with
inner product g. Let pf denote the Ricci tensor and 7% the scalar curvature of F. Then
F can be written as

7_F

F(z,y,0,w) = 7(9(%0)9(%10)—g(l’yw)g(y,v)>

— (pF(% v)g(y,w) + p" (y,w)g(x,v) — p" (x, w)g(y,v) — p (y,v)g(x, w)) :

Let {e1, e, e3} be an orthonormal basis diagonalizing p'" and put p*'(e;, ¢;) = A;. Then we

have
AL+ Ag + A3

5 _)\z’_>\j> F‘S(ei,ej,ek,el),

F<€i7ejuek7€l> = (

where F°(e;, ej, er, e1) = 0,051 — 610, and § is the Kronecker delta. Define

ap = A —A— A3 = 2F(€2, €3, €2, 63),
as = =AM +A—A3 = 2F(e1,e3 e1,€3),
a3 = —/\1 — /\2 + )\3 = 2F(€1, €9, €1, 62).

We consider several possibilities.

Assume aq, ag and ag are different from zero. Let ¢, = £1 denote the sign of «;, put
€ = €169€3 and [ = y/eajazag/2. We define the symmetric tensor ¢ with respect to the
above basis by ¢;; = (3/;)d;;. Then F = ¢ F.

Assume a1 # 0 and as = a3 = 0. We define the symmetric tensor ¢ by the trivial
bilinear extension of ¢(eq, e2) = 1 and ¢(es, e3) = a1/2. It is straightforward to check that
F=F?,

Assume oy = ag = a3 = 0. Then F = 0.
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Finally assume aq,as # 0 and az = 0. We show that it is not possible to express the
given algebraic curvature tensor as F' = yF'?. On the contrary, assume this can be achieved
for certain v and ¢. Since oy, # 0 we have F' # 0 and hence v # 0. Then F = vF*¢
implies

¢11¢22—¢%2 = 0, ¢11¢33—¢%3 = %, G22P33 %7
P11P23 = 13012, G12P33 = 13023, P12023 = P13022.

Straightforward calculations show that the above system of equations has no solution.
Nevertheless, it is possible to write F' = F®1 4+ F?2. For example take

0 0 0 10 0
p=(01 0 [, ¢p2=1( 00 0
00 F 00 %
and the equality follows after a simple calculation. O

Corollary 2.10. We have u(2) =1 and p(3) = 2.

Proof. First, we observe that for any two—dimensional manifold, the curvature tensor is
expressed in terms of the Ricci tensor and thus, any algebraic curvature tensor on a two—
dimensional vector space is completely determined by exactly one F*. The second assertion
is an immediate consequence of Proposition 2.9. ]

Remark 2.11. Theorem 2.3 provides a criteria for the non—existence of embeddings of a
given manifold into a Euclidean space. For instance, no Riemannian 3—-dimensional mani-
fold whose curvature tensor is as in Proposition 2.9 (b) at some point can be isometrically
embedded as a hypersurface in a flat space.

2.2 Natural curvature operators

When investigating algebraic properties of the curvature tensor, one usually focus on dif-
ferent kinds of natural operators defined from the curvature, with special attention to their
spectrum. Among those operators, the Jacobi operator is probably the most natural and
widely investigated. Nevertheless, many interesting information is encoded by other oper-
ators such as the Szabo operator or the skew—symmetric curvature operator. We recall the
definitions and some relevant results related to the associated Osserman—like problems.

2.2.1 The Jacobi operator

Let M be a semi-Riemannian manifold of signature (p,q) and dimension n = p + q.
Let ST(M) be the bundle of unit spacelike tangent vectors and S™(M) the bundle of unit
timelike tangent vectors. Also, S(M) is defined by S (M) = S} (M)US, (M) for all p € M.
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We recall that the Jacobi operator R, for x € T'M is the self-adjoint endomorphism of x*
characterized by the identity

9(R:(y), 2) = R(x,y,7,2).

One says that M is spacelike Osserman (rvesp. timelike Osserman) if the eigenvalues of
the Jacobi operator are constant on ST(M) (resp. S™(M)). It turns out that these two
notions are equivalent and such a manifold is simply said to be Osserman. A manifold M
is said to be pointwise Osserman if the eigenvalues of the Jacobi operator are independent
of the direction, although they may change from point to point.

A manifold is pointwise Osserman if and only if it is k—stein for all £ > 1. In particular,
every Osserman manifold is Einstein.

The local isometries of any isotropic space act transitively on the unit pseudo—sphere
bundles and thus the eigenvalues of the Jacobi operator are constant on S(M), which
shows that M is Osserman. R. Osserman [109] wondered whether the converse holds. This
question has been called the Osserman conjecture by subsequent authors. This conjecture
has been answered in the affirmative in the Riemannian setting if n # 16 by the work of
Q. S. Chi [34] and Y. Nikolayevsky [104], [105], [106].

In the Lorentzian setting (p = 1), an Osserman manifold has constant sectional curva-
ture [19], [61]. In the higher signature setting (p > 1, ¢ > 1) the situation is much more
complicated since many non-symmetric examples exist [64]. See for example [62], [68] and
the references therein for more information. Moreover, the fact that the spectrum does not
completely determine a self-adjoint operator in the indefinite setting suggested the con-
sideration of the Jordan normal form rather than just the eigenvalue structure. Then, one
says that (M,g) is spacelike Jordan—Osserman (resp. timelike Jordan—Osserman) if the
Jordan normal form of the Jacobi operator is constant on ST(M) (resp. S™(M)). These
two notions are not equivalent if n > 5. The structure of a Jordan—Osserman algebraic
curvature tensor strongly depends on the signature (p,q) of the metric tensor. Indeed, it
has been shown in [71] that the spacelike Jacobi operators of a spacelike Jordan—Osserman
algebraic curvature tensor are necessarily diagonalizable whenever p < ¢, but they can be
arbitrarily complicated in the neutral case (p = q) [70].

Ezample 2.12. [41] Let (Z,9) for ¥ = (x1,...,2,) and ¥ = (y1, ..., yp) be coordinates on R?
where p > 3. Let f : R? — R be a differentiable function. We define a semi—Riemannian
metric g of signature (p,p) on R* by

0 0 \_09of of 9 9N 4 and 9 9N _s
I\0z 007 ) ~ 0w oz I \ayr oy )~ M I \Griiay ) T %
Let ¢ be the Euclidean Hessian
o 9 0 f o 9 o 9 o 9
o an) =avar apan) =0 @ (awag) =(apan) =0

Then, the curvature tensor of g; is R = F?. We assume that the restriction of ¢ to
span{d/0x'} is positive definite henceforth. Then M is a complete semi-Riemannian
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manifold that is spacelike and timelike Jordan—Osserman. Similarly define ¢; by the trivial

bilinear extension of
y i o 0 B 03 f
"\ 0zt 02’ 02k ) T Oxidwidxk

One has VR = F'%¢1, Thus if f is not quadratic, M is not a locally symmetric space. With
a bit more work one can show that for such a generic f, M is curvature homogeneous but
not locally affine homogeneous. We refer to [52], [75] for further details.

2.2.2 The higher order Jacobi operator

Let (M, g) be a semi-Riemannian manifold and let G, ;(7,M) be the Grassmannian of all
subspaces E2 C T),M such that the restriction of g to £ is a non-degenerate inner product
of signature (r,s). Let {e;} be an orthonormal basis of E € Gr,(T,M). We define the
higher order Jacobi operator by

r+s

J(E) =" e,Re,

ij=1

where €; = g(e;,e;). A semi-Riemannian manifold (M, g) is said to be (r, s)-Osserman
at p € M if the coefficients of the characteristic polynomial of J(FE) are independent of
E € Gr,(T,M) (see [68], [78], [120] and the references therein). An interesting observation
is that only the value r + s is important in the previous definition. Moreover, any k—
Osserman manifold is of constant sectional curvature in the Riemannian (for k£ > 1) and
Lorentzian settings (see [69], [79]). Again, the situation is more complex in the higher
signature case, where many non-symmetric k—Osserman metrics exist (see for example

22], [68]).

2.2.3 The Szabd operator

There is an analogous operator to the Jacobi operator which is defined for VR. The Szabo
operator J1(z) is the self-adjoint endomorphism of 7'M characterized by

9g(J(2)y, z) = (VR)(z,z,y,2,2) = (V.R)(z,y,x, 2).

One says that M is spacelike Szabo (resp. timelike Szabo) if the eigenvalues of J(-) are
constant on ST(M) (resp. S™(M)). These notions are equivalent and such a manifold is
simply said to be Szabd. The notion spacelike Jordan—Szabd (resp. timelike Jordan—Szabd)
is defined similarly.

In his study of 2—point homogeneous spaces, Z. 1. Szab6 [122] gave a topological ar-
gument showing that any Riemannian Szabd manifold is necessarily a locally symmetric
space, that is, VR = 0. This result was subsequently extended to the Lorentzian case [79].
In the higher signature setting, the situation is unclear again. The metric g; described in
Example 2.12 defines a Szabé semi—Riemannian manifold of signature (p, p).
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Even in the algebraic setting, there are no known non—zero elements F; € R;(V) which
are spacelike Jordan—Szabd. It has been shown in [73] that if F} is a spacelike Jordan—
Szabé algebraic covariant derivative curvature tensor on a vector space of signature (p, q),
where ¢ = 1 (mod2) and p < ¢ or where ¢ = 2 (mod4) and p < ¢ — 1, then F} = 0.
This algebraic result yields an elementary proof of the geometrical fact that any pointwise
totally isotropic semi-Riemannian manifold with such a signature is locally symmetric.
The general question of finding non-trivial spacelike Jordan Szabd covariant algebraic
curvature tensors or showing non—existence remains open.

2.2.4 The skew-symmetric curvature operator

Let {e1, ez} be an orthonormal basis for an oriented spacelike (resp. timelike) 2-plane 7.
The skew—symmetric curvature operator R(m) is characterized by the identity

g(R(m)y, z) = R(ey,e2,y, 2).

This definition is independent of the particular choice of orthonormal basis. One says that
M is spacelike Tvanov—Petrova (resp. timelike Ivanov-Petrova) if the eigenvalues of R(-)
are constant on the Grassmannian of oriented spacelike (resp. timelike) 2—planes. These
two notions are equivalent and such a manifold is simply said to be Ivanov—Petrova. The
notions spacelike Jordan—Ivanov—Petrova and timelike Jordan Ivanov—Petrova are defined
similarly and are not equivalent.

The Riemannian Ivanov—Petrova manifolds have been classified in [74], [107]. They
have also been classified in the Lorentzian setting [135] if n > 10. For all these manifolds,
the curvature tensors have the form R = F, where ¢ is an idempotent isometry and
7@(#) has rank 2. Conversely, in the algebraic setting, if R is a spacelike Jordan—Ivanov—
Petrova algebraic curvature tensor on a vector space of signature (p,q) where ¢ > 5 and
where rank R(-) = 2, then there exist A and ¢ such that R = AF?. The situation in the
indefinite setting is again quite different. There exist spacelike Ivanov—Petrova manifolds
of signature (p,2p) where R () has rank 4 and where the curvature tensor does not have
the form R = F?. We refer to [76] for further details.
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Chapter 3

Four—dimensional Osserman metrics

Any Osserman metric is Einstein and thus of constant sectional curvature in dimension two
and three. Therefore, dimension four is the lowest dimensional non—trivial case to study
Osserman metrics. Moreover, it supports metrics of neutral signature (2,2) where the Ja-
cobi operator exhibits a completely different behavior with respect to both the Riemannian
and Lorentzian settings and enjoys some special features of four-dimensional geometry.

Considering the curvature tensor R as an endomorphism of A%(M), we have the follow-
ing O(2, 2)—decomposition for (2,2)-metrics

R:% Tdpe +0° + W : AZ = A2

where p° denotes the traceless Ricci tensor, p°(X,Y) = p(X,Y) — (7/4) g(X,Y) and W
denotes the Weyl conformal curvature tensor given by

WX, Y, VW) = R(X,Y,V,W)+ X,V)g(Y,W)—g(Y,V)g(X,W)}

(n— 1)7-(71 —2) {g(

X Vg W) — 7, V)g(X, W)

+ (Y. W)g(X, V) = p(X, W)g(¥. V) }.

The Hodge star operator * : A> — A? associated with any (2,2) metric induces a further
splitting A = A2 @ A2, where A3 denotes the +1-eigenspaces of the Hodge star operator,
that is, A2 = {a € A>(M) : xa = +a}. Then, the curvature tensor decomposes as

R= 17—2 Idpe +p° +WH + W,
where W* = (W £ *W)/2. Recall that a semi-—Riemannian four—-dimensional manifold is
called self-dual (resp. anti-self-dual) if W~ =0 (resp. W =0).
An interesting feature of four—-dimensional Osserman metrics comes from the fact that
an algebraic curvature tensor in a four-dimensional vector space is Osserman if and only
if it is Einstein and self-dual for an appropriate orientation of the underlying vector space.

29
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Therefore, pointwise Osserman metrics in dimension four are those which are Einstein and
self-dual or anti-self-dual.

Let {e1, es, e3,e4} be an orthonormal basis with e; and ey spacelike vectors and ez and
e4 timelike vectors. Local bases of the spaces of self-dual and anti—self-dual two—forms
may be constructed as

A% =span {Ef,Ey, Ey },

where

61/\64:F62/\63

V2

el Ne2 e Net el Ned+e2 Net
V2 ’ V2 ’

We observe that the Hodge star operator satisfies

Ef = Ey = Ey =

e Al Ax(ef Nel) = (615] — 010]) eiejet At Aed A€t

where ¢; = g(e;,e;). Note that (Ef, EY) = 1, (Ef, Ey) = (E;, Ef) = —1. Then, with
respect to the above bases the self-dual and the anti—self-dual Weyl curvature operators
W* : A3 — A2 have the matrix representation

Wi Wi Wi
W= | =W —Wa =Wy |,

+ + +
_W13 Va3 _W33

where Wf; = W(EF, E]i) and W (e Ael ek Ael) = W(es,ej,er, ).

For any non-null vector z in the (2,2) setting, the induced metric on Rat is of
Lorentzian signature, and hence, the eigenvalue structure does not completely characterize
the Jacobi operator R,. The consideration of the Jordan normal form led to introduce
the so—called Jordan—-Osserman metrics (see Subsection 2.2.1). Four-dimensional Jordan—
Osserman metrics were initially investigated by N. Blazi¢, N. Bokan and Z. Rakié¢ [21] who
considered four different possibilities according to the behavior of the Jordan normal form
of the Jacobi operators. These four types are:

Q
(Ia) The Jacobi operator is diagonalizable, R, = 16}
7

o —f

(Ib) The Jacobi operator has a complex eigenvalue, R, = [ § «
/‘)/
o

(II) The minimal polynomial of the Jacobi operator has a double root, R, = B
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@
(ITI) The minimal polynomial of the Jacobi operator has a triple root, R, = | 1 «

1 «

Moreover, there is a one to one correspondence between the different possibilities of the
Jacobi operators of Types Ia, Ib, II, III and the Jordan normal form of the (anti-)self-dual
part of the Weyl conformal curvature tensor [62].

It has been shown in [21] that four-dimensional Osserman metrics with diagonalizable
Jacobi operators are locally isometric to a real, complex or para—complex space form and
that Type Ib metrics cannot occur. Moreover, a locally symmetric Osserman (2, 2) metric
has diagonalizable Jacobi operators or it is isometric with some Type II metric to nilpotent
Jacobi operators [65].

The fact that all known examples of non—-symmetric Osserman metrics had 2—-step or
3-step nilpotent Jacobi operators suggested that no other examples exist [62], [68]. This
was conjectured by several authors. Our purpose is to show the existence of such metrics
(Section 3.1) and to give a complete description of them (Sections 3.2 and 3.3).

3.1 New examples of Osserman metrics with non—
diagonalizable Jacobi operators

Let us take the usual coordinates (1, T, 3, z4) in M = R*. For any arbitrary real-valued
function f and any non—zero constant k& we define the metric [48]

1
g = do'®dr® +d2® @ dot + do® @ dat + dot ® da® + <4kx% - Ef(mf) dz’® @ dz®
1
+4kaidr* @ dot + (41{::B1x2 + xof(24) — Ef’(:m)) (do® @ da* + da* ® da®).

The following two lemmas can be obtained after some tedious but straightforward
calculations from the definition of the metric g.

Lemma 3.1. The Christoffel symbols associated with g are

Py =~ = ks iy =Ty =T = %Fi = —%Fih py
[y =Ty = T4y = %(4/%951 + f(z4)), Tl = 16k20% — o f(20)?,

Py = 21 (16K @102 — f'(20)) + f(24) (4’%1@ +f ,ff)) ,

T}, = 16k%020, + 4ka12s f (1) — %xl Flag) — w |

1
I3 = 5 &2 (32k22129 + ko f(24) — f'(4)),

f"(a)
4k 7’

[}, = 16k*2 23 + 4kasf(14) — 2, = 16k
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From the previous lemma we get

Lemma 3.2. The curvature tensor of g is determined by

Rists = Roum = —4k, Rigsa = Rus = —2k,
Rizza = kao(dkar + f(z4)), Rusy = 4k*x3,
Rozzy = f(:fT”y—zug%f, Rogzs = / /(54)—kx2(4kaz1+ f(z4)),
Rauss = fl(j;j)z+2kx1x2f’(x4)—Qkng(x4)2—x1f”(x4)
— () <8k2x1m§ Py -1 /ﬁ‘*)) |

Now, we calculate the Jacobi operator associated with g. We have the following theo-
rem [48].

Theorem 3.3. For any function f, the metric g is Osserman of signature (2,2) with
eigenvalues {0, 4k, k, k}. Moreover, the Jacobi operators are diagonalizable if and only if

24k'f(334)f/(l’4)l’2 — 12]€f//($4).1’1 -+ 3f($4)f”(334) + 4f/(l’4)2 =0.

Otherwise, k is a double root of the minimal polynomial of the Jacobi operators and (M, g)
1s Jordan—Osserman on the open set where the above equation does not hold.

Proof. The eigenvalues of the Jacobi operator of an Osserman metric change sign when
passing from timelike to spacelike directions. Thus, for the purpose of studying the Os-
serman property, it is convenient to consider the normalized Jacobi operator Jg(X) =
g(X, X)™' Ry associated with each non—null vector X, whose eigenvalues are constant if and
only if (M, g) is Osserman. Let X = 3.+ 2;0; be a non-null vector, where {9; = 9/dz"}
denotes the coordinate basis. The associated Jacobi operator Ry = R(X, -)X can be
expressed with respect to the coordinate basis {0;} as

ail a2 13 a4
a1 22 (23 Q24
(3.1) Ry = , :
—4k0é3 —4k043064 ass Qs34
—4]{30[3(1/4 —416(1421 43 Q44
with

a1 = Skxof(zs)asay — f(z4)a3 + 2k(2a1a3 + aatuy
+2k(4ziaj + drizacsou + 2503)) — sz f'(24),

1
12 = Za4(12kx2f(x4)a4 — 3f($4)20é3 + 81{5(@1 + 6]€l’1 (ZL’lOég + I2064)) — 2Oé4f/(l’4)),
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@13

Q14

21

22

Q23

Q24

a33
34

Q43

Q44

1
Tor
—|—a4f”(a:4)) — 2(4]60(4(2]6’.’13’1(1’1063 + .CE2044) — Oél)f/([&l)

=30} f'(z4)? + 8k(4kar (on + 4k (z105 + T20u)) + 2104 " (24)))),

_ﬁ(f(u)?ag(agf’(m) — 12kaws) + 4f (24) (4k22s (103 + San0u)

+7kl‘2063054f/(l'4) —+ 063054f,/(l'4)) + 2(—4%(0&10&3 -+ oy

f($4)2013(16]€041 + Oé4f/(l‘4)) + 4f(l‘4)0(4(7kl‘20[4f/($4) — 161€2$QO[1

+2k.’1)10&3<$10&3 —+ x2a4))f’(x4) -+ 30(3@4]“(374)2 -+ 8]€(4k(3]€$10&2($10{3 + %2&4)
+061(Oég + k$2($1&3 + $2a4))) - x1a3a4f"(x4)))),
= Q3 (3]€$2f($4)(13 + 2k‘(0&2 + 61{3132(.%’1@3 + 1'2044)) - Oégf/(l‘4)),

1
= 2kajag — Zf(x4)2a§ + 4k 23 a; + dkagay + 5k f (24) 2030

3
+20k2 2 2003004 + 16k2 22075 — §a3a4f’(:v4),

1
= —E(Zlk'(k'xgom(l’l&?) + I20é4) — Oéloég)f/(l’4) — kf($4)2062043 + 0630é4f/(l‘4)2

+f(l'4)(4k2l'2(3051&3 + 062064) + 9]6%20&3044]”(%4) + OégCY4f//(£C'4))
—|—4]{3(4]€(l€$€10{2($1063 + .TQO(4) + o (062 + 3/{7.%’2(1'10[3 + %26‘64))) — %1&30&4f”(1’4)),

1
= E (2]€C¥3(3C¥2 + 2/€$2(£C1C¥3 + $20&4))f/($4) + Od%f,(l'4)2 + f($4)063(—16k2.1'2042

F9kzaas [ (14) + asf(24)) — 4k(dkos(as + 4k (z105 + To01)) + 3105 [ (24)))
= k(4a1a3 —+ $2f($4)0[30(4 + 20&4(0(2 + 2]€172(l’10(3 + LU2064))),

= —]fOég(—2C¥2 + Igf(l’4)a3 + 4]€J,’2(ZE1063 + IQO&4)),

= iOM (f($4)2063 — 4]431'2f(374)0&4 + 2(4]{(0&1—2]{'1'1(5131063 + ZL’QO(4)) + a4f/(274))>,

1
= kxof(vs)ozoy — Zf(ﬂ)?ag + 2k(ora3 + 2(asay + kryas(xias + zaay)))
1

—5043044f/(x4)~

Using the above expressions we get that the characteristic polynomial of Jg(X) is given
by pracx)y(A) = A(A — 4k)(A — k)2, and thus the metric g is Osserman with eigenvalues
{0,4k, k,k}. In order to analyze the diagonalizability of the Jacobi operators, we consider
the minimal polynomials m ,x)()). It follows after some calculations that

0 0 —af asa
k 1|0 0 azay —a?
TR(X) - (JR(X) = 4k1d) - (Ja(X) = kId) = Z9(X. X)E | o 0 “F 70
00 O 0
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where = = 3f(z4)(8kzaf (z4) + f"(74)) +4(f (x4)? — 3kxy f"(x4)). This shows that = = 0 is
the necessary and sufficient condition for diagonalizability of the Jacobi operators. Finally,
in the open set where = does not vanish (M, g) is Jordan—Osserman and k is a double root
of the minimal polynomials m s, (x)()). O

Remark 3.4. It was shown in [65] that the Jacobi operators of a locally symmetric four—
dimensional Osserman metric are either diagonalizable or two—step nilpotent. Therefore,
the metric g cannot be locally symmetric unless their Jacobi operators diagonalize. It
follows after some calculations that the covariant derivative of the curvature tensor vanishes
at a point (z1,...,x4) if and only if

f"(@4) =0, f(za) ['(x4) =0,
f/(l'4)21'1 = O, 24]€$2fl($4)2 + f///($4)(f($4) — 4]{?1‘1) = 0.

Hence (R*, g) is locally symmetric if and only if the function f is constant, and thus the
Jacobi operators are diagonalizable by Theorem 3.3. Furthermore, it follows from the
work in [20] that any four-dimensional Jordan-Osserman manifold has isotropic covariant
derivative of the curvature tensor, that is, ||VR|| = 0, although VR may be non—zero.

The existence of timelike, spacelike and null vectors on any indefinite inner product
vector space suggested the consideration of the Osserman problem separately. However,
it was shown in [62] that the spacelike and timelike Osserman conditions are equivalent
and moreover, any of them implies the null Osserman condition (since eigenvalues of the
Jacobi operators change sign from spacelike to timelike directions). On the other hand it
is known that the spacelike and timelike Jordan—Osserman conditions are not equivalent
[68] and even both of them do not imply the null Jordan—Osserman condition as shown in
the following

Theorem 3.5. For any function f, the metric g is null Osserman with two-step nilpotent
null Jacobi operators.

Proof. First of all, observe that a vector U = 2?21 «;0; is null if and only if

f(x4)?
4k

f'(x4)
2k

20103+ 20004 + a3 (4]%% — ) +asay (2f(964)£€2 + 8kx179 — ) +4kz3a3 = 0.

A tedious but straightforward calculation from (3.1) shows that

bll b12 b13 b14

b21 b22 bZ3 b24
—16]{3204% —16k2a3a4 b33 b34 ’

—161{720[3064 —16]{72042 b43 b44

R} = g(U,U)
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where

bll

b12

bis

bl4

b21

b22

bas

b24

633

b34
b43

b44

k(16ka1&3 —4f(24)a3 + 1Tk f(24) 200304
+2k(agay + 2k(x1a3 + o) (162103 + Ta01y)) — 3043044]”’(954)),

ZOZ4(56]€O(1 — 15(f(l’4) + 4k31]1)((f([)’}4) — 4]{31'1)()[3 — 4:161’2064) - 100[4f,($4)),
—16k*ad + §a1(8(f($4) + 4kxy)((f(xq) — dka1)as — dkxoay) + 3y f'(24))

1
+EOJ4 (f’(x4)(5f(x4)2043 + 44kf($4).1’2054 — 8Ok2$1 (.1'1053 + 1'26(4)

+1dayf'(x4)) + 8(f(xy) — 4kx1)a4f”(x4)),

1_16 (—9601{%%@2043 — 960k 11 1000004 + 80K 23 f/(w4) + 40Kkoay f'(4)
+80k*z 20030 f (24) — 1dazauf'(14)* — 5f(24)%az(—12kag + asf'(24))
+8ka (—32kay — 2kao((f(w4) + 4kxr) s + dkroo) + 3as f'(24))
+32kz1agan [ (24) + Af (24) a(—kaa(60kas + 11as f'(24)) — 2asf" (24))),
kas(14kas + 15kxs((f(24) + 4kar)as + 4kzaas) — bag f'(x4)),

L (Sharag — F(z)ad + 68k () wza0s
+16k(4dagay + k(z103 + mocry) (w1003 + 161901)) — 22030 f'(24)),
}l(kf(:v4)2a2a3 — 16k 22 agas — 16k 212000004 — dkagory f'(24)
—20Kk*z 290304 f' (24) — 20K% 2505 f'(24) — azaaf (v4)? + 4kay (—16kasy
—15kzo((f (24) + 4kay)ovs + dkzaay) + Sasf'(24)) + Skayosa f (24)

+ f(z1)aa(—kxa(dkas + 21as f'(24)) — 203" (24))),

;l(—64k2oz§ + 2k (—32kxo((f(x4) + 4k1)az + dkaoay) + 13asf'(24))
+az(f'(24) (kr2(21f (24)as + 20k(x103 + 220)) + azf'(24))

+2(f(4) — dkxr)as [ (24))),
k(16karag + as(2kas + kaa((f (z4) + 4kzr) oz + dkaaoy) + az f'(24))),
—kos (—14kas + kao((f(24) + 4ka1)as + dkaaos) + asf'(24)),

—§a4(—56ka1 — (f(wa) + 4kz1) ((f (24) — dka1) g — dkaooy) — 6 f'(24)),

k
Z(8k’0&10&3 — f(l'4)2Oé§ + 4kf(33'4)l’2063064

+16]€(40{2044 + kalOég(Iloé3 —I— 132()(4)) — 6&30{4f/(l‘4)).
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Since U is a null vector we clearly have R? = 0. Moreover, it follows from (3.1) that if
Ry = 0 then a3 = a4 = 0 and the Jacobi operator reduces to

0 0 of oo

o 0 0 o a%
fu==4k14 0 o 0
00 0 0

which shows that Ry vanishes if and only if U = 0. This proves that (1, g) is null Osserman
with two—step nilpotent null Jacobi operators. [l

Remark 3.6. Although the null Jacobi operators are two—step nilpotent, their Jordan nor-
mal form is not necessarily constant on the null cone since the corresponding minimal
polynomials may admit one or two double roots. For instance, U = a;0; + as0s is a null
vector whose associated Jacobi operator is

00 o aa 0000

B 0 0 ajap 2 . 0000
Ry = —4k 00 0 0 ,  with Jordan normal form 000 0
00 0 0 0010

On the other hand, for any function f with f(0) = 0, V' = 05 is a null vector at (0, x5, x3,0).
Moreover, in such a case the associated Jacobi operator satisfies

0 00 O 0 00O

/ 2
| -f o0 0o K% . 1000
(Rv)(o,xz,zg,o) = a5 00 0 ,  with Jordan normal form 000 0
0 00 O 0010

whenever f/(0) # 0. Hence the null Osserman and the null Jordan—Osserman conditions
are not equivalent for (2,2) metrics at the algebraic level, in contrast to the non—null
Osserman conditions. The above example shows that, although the algebraic Osserman
condition implies the null Osserman condition, there exist Jordan—Osserman algebraic
curvature tensors which are not null Jordan-Osserman.

3.1.1 Some geometrical properties

Next, we show that there exist four-dimensional Szabd metrics such that the degree of
nilpotency of the associated Szab6 operators changes depending on the direction. In con-
trast to what happens with the Jacobi operator, the Szabd and the Jordan—Szabd algebraic
conditions are not equivalent in dimension four.

Theorem 3.7. For any function f, the metric g is Szabo of signature (2,2) with zero
eigenvalues. The minimal polynomial of the Szabé operators J1(X) depends on the direction
X at each point and hence the metric g is not pointwise Jordan—Szabd.
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Proof. Let X = Zle «;0; be a non—null vector. The associated Szabd operator, when
expressed in the coordinate basis has the form

(A B o (azay  AF
s71(X)_(0 tA)7 A_‘Il(—@g —Q30 )

where U = 2asf(x4) f'(x4) + caf”(x4). Hence, the characteristic polynomial of the Szabé
operators is pz, x)(A) = A, independently of the 2 x 2-matrix B.

Since the degree of nilpotency depends on B, in order to show that the Szabd and Jordan
Szabé algebraic conditions are not equivalent, we make the special choice f(z4) = x4. If
X and Y are the unit vectors in the direction of 0; + 03 and 0, + Jy, respectively, one has

0 0 0 2ex — 1)z
_ —21’4 0 2%4 4(&31 — g_z + $2$4(8]€SE1 + .T4>)
JE) =1 9 0 o 224 ’
0 0 O 0
and
00 61’2 + 2(3€y — 5)1’4 0
00 0 0
jl(Y) - 00 0l

00 0

0
0
where 7 = g(Z,Z) = £1. This shows that J;(X) is three—step nilpotent at most points
while J;(Y) is two—step nilpotent. O

Remark 3.8. It follows from the work in [22] that a four—dimensional metric is 1-Osserman
and 2-Osserman if and only if it is either of constant curvature or the Jacobi operators are
two—step nilpotent. Therefore, the metric g is not Osserman of higher order.

Jordan—Osserman metrics which are also Ivanov—Petrova but not of constant sectional
curvature have been constructed by P. Gilkey and S. Nikéevi¢ by using the so—called
generalized wave metrics in neutral signature (2,2) [77]. All such examples have nilpotent
Jacobi operators which seems to be a specific feature of the intersection between Ivanov—
Petrova and Jordan—Osserman metrics.

Theorem 3.9. For any function f, the metric g is Osserman but not Ivanov—Petrova.

Proof. Note that m = span{0d;, J3} is a non—degenerate plane whose skew-symmetric oper-
ator satisfies

4k 0 16k%2Y — f(24)? Bkwy(4kry + f(24)) — L f'(24)
By | O 2k Bkua(dkey + f(2a)) — f(24) 8h22

0 O 0 —2k
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and hence, it has constant eigenvalues {2k, 4k, —2k, —4k} independently of the function f.
On the other hand, for any function f with f'(0) # 0, it follows that m = span{ds, 04} is a
non—degenerate plane at the origin whose skew—symmetric operator satisfies

0 f(0)2 _f(0)4£ (0) _3f'(0) +2Zg(0)f (0)
7%( ) ’ k ' 0 2fl(0) fl(0)2+f1;(0)f//(0) 0
T =
fO)fo o 0 0
0 0 —£(0)? —2f(0)

and has eigenvalues {0, 0, 2k, —2k}. This shows that for any function f with f’(0) # 0, the
metric g is not Ivanov—Petrova on planes of signature (—+) at the origin.

The eigenspace corresponding to the double eigenvalue k& of the Jacobi operator is of
Lorentzian signature (see Remark 3.11), and thus the curvature tensor at each point is
completely determined by the diagonalizability of the Jacobi operator, independently of
the function f. In fact, at any point where the Jacobi operators diagonalize (resp. are
not diagonalizable) there exist orthonormal bases where the (algebraic) curvature tensor is
expressed in terms of the eigenvalues of the Jacobi operators, independently of the function
f (see [21], [62, Thm. 4.2.2]).

Next, observe that it is possible to give functions f satisfying f’(0) # 0 and 3f(0) f”(0)+
4f'(0)*> = 0 (see Theorem 3.3) and therefore the Jacobi operators are diagonalizable at the
origin. Also, there exist functions with f/(0) # 0 and 3f(0)f”(0) + 4f'(0)? # 0 and hence
the corresponding metric g has non-diagonalizable Jacobi operators at the origin. From
the eigenvalue structure of the skew—symmetric curvature operators corresponding to the
planes discussed above, it follows that none of the corresponding (algebraic) curvature
tensors can be Ivanov—Petrova, which shows that the metric ¢ is not Ivanov—Petrova at
any point. O

Remark 3.10. It was proved in [21] that any four-dimensional Osserman algebraic curva-
ture tensor is Jordan—Osserman. The existence of Osserman metrics that are not Jordan—
Osserman was already pointed out in [64]. Indeed, the Jordan normal form of the Ja-
cobi operators (3.1) corresponding to the metric g changes from diagonalizable to non—
diagonalizable according to the statement of Theorem 3.3. Since 24kf(z4)f'(x4)zy —
12k f"(x4)x1 + 3f(24) f" (24) + 4f'(x4)* defines a polynomial on xy, o, the metric g, when
considered as globally defined in R*, changes its Jordan normal form, and hence, it is Os-
serman but not Jordan—Osserman. However, it restricts to Jordan—Osserman metrics on
suitable open sets.

Since the metric g is not Jordan—Osserman in general, it is not curvature homogeneous,
and thus it cannot be locally homogeneous. Even when we restrict to open sets where
g defines a Jordan—Osserman metric (and hence 0-curvature homogeneous), the metric is
not necessarily locally homogeneous. Indeed, for the special choice of f(x4) = x4, (R%, g)
is Jordan—Osserman in the open set defined by 6kxzsxs # —1. However, it is not locally
homogeneous, since VR vanishes at any point (0,0, x3,0) and it is different from zero at
those points (0,0, x3, z4) with x4 # 0. This shows that it is not 1-curvature homogeneous.
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Remark 3.11. Different kinds of Osserman manifolds may share the same eigenvalue struc-
ture. Indeed, the Jacobi operators of indefinite complex and para—complex space forms
have the same spectrum as those of the metric g. A straightforward calculation shows that
g has exactly the same second, fourth and sixth degree scalar curvature invariants as the
symmetric models. The main difference between complex and para—complex space forms
from the point of view of their Jacobi operators, is that the restriction of the metric to the
subspace Fy(X) = RX @ ker(Rx — 4k Id) is definite in the complex case and indefinite in
the para—complex setting [23]. The metric ¢ induces a Lorentzian inner product on Ejyy,
because the Jacobi operators are non—diagonalizable. It follows from the expression of the
Jacobi operator associated with any non—null vector X = >~ ;0; that —ay 0 + a3d; is a
null eigenvector of Ry corresponding to the double eigenvalue k.

3.2 Osserman para-Hermitian metrics

In order to give some motivation for the metrics ¢ discussed in the previous section we
show that they appear naturally in the study of Walker para—Hermitian structures [49],
[50].

A starting point in the search of Osserman spaces with non—diagonalizable Jacobi opera-
tors is the known fact that in the case of two different eigenvalues o and 3 (o with multiplic-
ity two) we have 5 = 4« (see [21]). As it was discussed in Remark 3.11, an important differ-
ence between complex and para—complex space forms from the point of view of their Jacobi
operators is that the restriction of the metric to the subspace E3 = RX @ ker(Rx — #1d)
is definite in the complex case and indefinite in the para—complex setting [23]. In the case
of two distinct eigenvalues, the non—diagonalizability of the Jacobi operators implies that
the metric induces a Lorentzian inner product on Ejs. This fact turns our attention to
para—Kahler structures and, by extension, to Walker manifolds.

A Walker manifold is a triple (M, g, D) where M is an n—dimensional manifold, g an
indefinite metric and D an r—dimensional parallel null distribution. Of special interest are
those manifolds admitting a field of null planes of maximum dimension (r = n/2). Since
the dimension of a null plane is r < n/2, the lowest dimensional case of a Walker metric
is that of (2,2)—manifolds admitting a field of parallel null two—planes. For such metrics a
canonical form was obtained by A. G. Walker [129]. He showed the existence of suitable

coordinates (z1, ..., x4) where the metric is expressed as
0010

0 001

g(:c1,x2,x3,ac4) - 10 a ¢

01 ¢ b

for some functions a, b and ¢ depending on the variables (z1, ..., z4).

If a four—dimensional Walker manifold is assumed to be Osserman para—Kahler, then it
is a Ricci flat manifold or a para—complex space form, and hence this kind of manifolds does
not provide the new desired examples of Osserman manifolds whose Jacobi operators are
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neither diagonalizable nor nilpotent. This motivates the study of a more general situation:
Walker four—dimensional manifolds equipped with a para—Hermitian structure, which we
tackle in the following section.

3.2.1 Einstein para-Hermitian structures on Walker manifolds

Let g be a Walker metric expressed in the above coordinates (x1, ..., z4). There is a natural
almost para—Hermitian structure J defined by

Jalz_ala J82:827

Jag = —aa1+63, J84 :b82—84,
where as usual, 9; = 9/dz'. Throughout this section we use subscripts to denote partial
derivatives of functions, that is, for each function h depending on (z1,...,x4) we write

After doing some straightforward calculations we determine the Levi—Civita connection
of a Walker metric.

Lemma 3.12. The non—vanishing components of the Levi—Civita connection are

1 1 1 1
Vo, 05 = §a131 + 50132, V,04 = 50131 + 55132,

1 1 1 1
Va,05 = 561281 + 502(92, V9,04 = 50281 + §b2327

1 1 a a
V3383 = 5(&@1 + cas + 613)81 + 5(0@1 + ba2 — Gy + 263)82 — 5183 — 5284,

1 1 c c
Vo, 04 = §(a4 + acy 4 cc3)0 + 5(b3 + ey + bey)dy — 5103 — 5204,

1 1 b b
Vo,01 = 5 (aby + cby — by + 2c)0y + 5 (cby + by + ba) 0z — 5133 - 5284.

By analyzing the almost para—Hermitian structure J we obtain the following

Theorem 3.13. The Walker metric g equipped with the almost para—Hermitian structure J
1s para—Hermatian if and only if ay = by = 0. Moreover, the almost para—Kdhler condition
holds if and only if c; = ¢ = 0 and hence the para—Kdhler condition is equivalent to
ay =b; =c1 =co=0.

Proof. We write JO; = > i Jij 0;. The components of the Nijenhuis tensor are determined
by

’ , 4
. O.J oJl ! oJ!
N;k:2§:<ﬂ k—J,anJl—J; Erg2 .

=1

7 Ox; 0z; T 0xy,
The non—zero components are

N124 = 4by, N213 = 4as, N413 = —2basy, N423 = 2ab;.
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Hence, the integrability of J is characterized by ay = b, = 0. On the other hand, the
second part of the result is obtained after a direct and straightforward calculation from
Lemma 3.12. O

In the rest of this section we study four—dimensional Walker metrics equipped with the
para—Hermitian structure J. We obtain a classification of Einstein para—Hermitian Walker
metrics as a first step to analyze the Osserman condition for Walker manifolds.

Using Lemma 3.12, we calculate the Riemannian curvature tensor after some tedious
calculations:

Lemma 3.14. The curvature tensor of the Walker metric g is given by

1 1 1 1

Ri313 = —§G11, Riz14 = —5011, Ris03 = —§a12, Rizo4 = —5612,
1 1 1 1
Ry = —=b Rigps = —= Rigps = —=b Rosss = —=b
1414 B 11, 1423 2612, 1424 5 125 2424 5 22,
1 1 1
Raso3 = —5@227 Ras04 = —5022, Ray34 = Z (a2bl — c1cg — 2093 + 2024) )
1
Rigsq = 1 (—agby + 109 + 2a14 — 2¢13)
1 2
R1434 = Z (_Cl + Cllbl — blCQ + bgCl — 2b13 + 2014) s
1 2
Ras3q = 4 (Cg — agby — aycy + azer + 2az4 — 2023) )
1
R3434 = Z(—GC% — ng + aalbl + C&lbg — albg + 2&104 + ca2b1 + ba2b2 + a2b4

+ a3b1 — a4b2 — 2&401 + 2[)263 — 2b302 — 206162 — 2&44 — 2b33 + 4034).

Using the previous result we calculate the Ricci tensor and the scalar curvature.

Lemma 3.15. The Ricci tensor of the four—dimensional Walker metric g is given by

1 1
P13 = 5 (a11 + c12) , p1a = 5 (b2 + c11),
1 1
p23 = B (a12 + c22) , P24 = B (baa + c12)
1
P33 = 5 (—C% + a1co + Cl,gbg — aoCy + aaq; + 26&12 + b(lgz + 2623 — 2&24) 5
1
p34 e 5 (—CLle + C1C2 + 14 + b23 —l— acii + 26012 — (13 + bCQQ - 624) )
1

P44 = 5 (—C% + (llbl - b1€2 + bgCl + CLbH + 2Cb12 — 2b13 + bbgg + 2014) .

As a consequence, the scalar curvature is T = a1 + bags + 2¢1o.
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Corollary 3.16. The traceless Ricci tensor p° = p — (1/4)g of the Walker metric g is
determined by

Pls = —poy = i (a11 — ba2), Pl = % (b12 + c11) P = % (a12 + €22)

Py = i (2a1¢2 + 2a2by — 2a3¢1 — 2¢5 + a(ary — baz) + 4caiz + 2basy — 4asy — 2acis + 4ca3)
P, = i (2a1b1 — 2bycy + 2byey — 23 — b(ay; — byo) + 2abyy + 4cbiy — 4byg — 2beyy + 4014) ,

Pas = % (—2a2by 4 2c1c2 — c(arr — 2¢12 + baa) + 2a14 + 2bo3 + 2ac11 — 2¢13 + 2bcog — 2¢24) -

We are now ready to characterize Einstein para—Hermitian Walker metrics.

Theorem 3.17. The four dimensional Walker metric g equipped with the almost para—
Hermitian structure J is Einstein para-Hermitian if and only if the defining functions a, b
and c are any of the following types:

(A) The scalar curvature T vanishes and a, b and ¢ can be written as

a = a(xy,r3,14) = zP(x3,x4) + (23, 14),
b = b(x27x37'r4) = I2Q(‘T37I4) +77(x3,$4)’
¢ = c(r,m9,x3,24) = x15(w3,24) + 22T (23, 24) + Y(T3, 24),

where &, ) and 7y are arbitrary smooth functions, and P, Q), S, T are smooth functions
satisfying

PT —T?+2T5 =0, QS —S8*+28, =0, ST 4+ Q3 — S3+ P, — Ty = 0.

(B) The scalar curvature T is non-zero and a, b and ¢ satisfy
T

a = a(xry,r3,14) = Zx? + 21 P(x3, 1) + £(23, 24),
T

b = b(xe,xs3,74) = 1 x5+ 12Q(w3, 14) + (3, 74),
2

c = c(xs, 14) = - (Py(ws, 4) + Q3(3,74))

where P, Q, & and n are arbitrary smooth functions.

(C) The scalar curvature T is non—zero and a, b and ¢ can be written as

6

a = a(xy,3,14) = %x%—{—lejL— (PT—T2+2T3) ,
T
6

b = b(ZL’Q,J]g,I4) = %JZ%‘FIQQ—F; (QS—52+254> s

6
c = C(xl,x2,$3,$4) = %$1$2+$1S+$2T—|—;(ST+Q3—53+P4—T4),

for any smooth functions P, Q, S and T depending on (x3,x4).
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Proof. Since J is para-Hermitian, we have a; = by = 0 by Theorem 3.13. Hence, a =
a(zy, 3, w4) and b = b(xy, z3,74). Since g is Einstein, we have p° = 0. Using the previous
fact for the functions a and b and Corollary 3.16 we get

app —byy = c11 = ¢ = 0,
(3.2) 2a1¢c9 — 20% — 2acy9 + 4023 = 2b201 — 20? — 25012 +4dcyy = 0,

20162 — cayp + 2@14 — Cb22 + 2b23 + 26612 - 2013 - 2024 = 0.
We separate the proof of this theorem in three steps.

Claim 3.18. The functions a, b and ¢ defining the metric g satisfy

a = a(x17x37x4) = x%"£(£37‘r4) +SE1P($3,ZC4> +£(l’3,$4),
= b(wq, 73, 74) = z3k(13,74) + 22Q(x3, 24) + n(T3, 74),
¢ = c(z1,m9,23,24) = xyma0(3,74) + 15 (23, 24) + 2T (23, 24) + y(3, T4)

where K($37$4)7 P(:U37x4)7 Q(l'g,le), 6(1‘3,1’4), U(x37$4); CY(.’L'?,,QZ’4>, S(ﬂfg,l’z}), T($3,l‘4)
and y(x3,x4) are arbitrary functions.

The first equation in (3.2) and ay = by = 0 implies a11; = bagz = 0 and hence a (resp. b)
is a quadratic function of x; (resp. xs) with parameters z3 and z4. Then, we can express
a and b as stated in the first two equations of Claim 3.18. On the other hand, the last two

equalities of the first equation in (3.2) imply that ¢ is a linear function with respect to
and x4, taking the form of the third equation of Claim 3.18.

Claim 3.19. The functions a, b and ¢ can be written as

a = a(xy,r3,14) = Kka]+ 21 P(x3,24) + E(23, 74),
b = b('r27x37x4) = "i‘rg +SE2Q($37'%4) +7](.T3,x4),
T
¢ = c(ry,m9,w3,4) = (5 — 2/£> 1T + 115(23, ) + 2T (23, 24) + (23, T4),

where Kk is a constant and P(xs3,x4), Q(x3,24), &(x3,24), (T3, 24), S(T3,24), T (23, 24)
and y(x3,z4) are arbitrary functions. Moreover, one of the following three possibilities can

occur: k=T =0 or, in case T # 0, either k = 7 or Kk = ¢.

Lemma 3.15 combined with Claim 3.18 implies 7 = 4k(x3,z4) + 2a(x3,24). Hence,
alxs, x4) = 7/2 — 2K(x3,24). We recall that, since ¢ is Einstein, the scalar curvature 7 is
constant. Differentiating the second equation in (3.2) twice with respect to z1, we get

7% — 107k(w3, 74) + 24K (x5, 74)* = 0.
Thus, x(x3,x4) must be constant and Claim 3.19 follows.

We are now ready to finish the proof of Theorem 3.17. We analyze the three different
possibilities which arise in Claim 3.19 separately.
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Assume Kk = 7 = 0. This is the simplest case, because the expression in Claim 3.19
reduces to

a = a(xy,xs,z4) = @1 P(x3,24) + &(23, 24),
= b(xg, 23, 14) = 22Q(x3,x4) + n(zs, 4),
c = C(‘/E17x27aj3ax4) - xIS(I3Jx4) + LUQT(./L'?,,LU;;) "‘7(1’3,.%4).

Furthermore, for such functions the last two equations in (3.2) transform into
PT —T?+2T5=0, QS—S*+25,=0, ST+Q3—S3+P,—T,=0,

which is exactly case (A) of Theorem 3.17.
Assume k= 7/4 # 0. In this case, the expression of Claim 3.19 transforms into

-
a = a(xy,r3,14) = Zﬁ + 21 P (23, 24) + &(23, 24),
T
b = b(xz,3,14) = 7 x5 + 12Q (w3, x4) + n(23, T4),
¢ = c(r1,m,3,04) = x15(x3,24) + 22T (23, 24) + (23, 24).

The second equation in (3.2) reduces to
(Txl + 2P(.§L’3, %4))T($3, .1’4) — 2T(.§U3, $4)2 + 4T3(Q33, .I‘4) 0
(Txg +2Q(x3, x4 ) w3, 24) — 25 (23, 04)% + 4S4(x3,14) = 0,

which hold if and only if T'(x3,z4) = S(3,24) = 0. Using this condition, the last equation
in (3.2) leads to 7y(z3, 24) — 2(Py(x3, x4) + Q3(x3,4)) = 0 and therefore we can determine
7 by )
V(w3 24) = ;(P4($37$4) + Q3(73,74)).
Altogether this implies case (B) of Theorem 3.17.
Assume k= 7/6 # 0. In this case, the expression in Claim 3.19 yields

-
a = a(ry,rs,x4) = 6$f+x1P($3,x4)+£(:v3,x4),
T
b = b(xa,3,24) = g$§+sz(a¢3,x4)+n($3,w4),
T
¢ = oz, w9, w3, 14) = 6$11‘2—|—$1S($3,£L‘4)+$2T(l‘3,$4)+7(1‘3,$4),

and a straightforward calculation shows that the last two equations in (3.2) transform into

L ¢(wy, w4) — (P(xg, 24)T (w3, 24) — T(s, 24)* + 2Ty (w3, 24)) = 0,

n(xs, 24) — (Q(x3, 24)S (w3, 24) — S(23, 24)* + 2S4(23, 24)) = 0,

[ 1 e I =21 e W e

Y(xs, x4) — (S(z3, 24)T (23, 4) + Q3(x3, 24) — S3(x3, 4) + Pa(x3, x4) — Tu(xs, 24)) = 0,
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from where we can determine &(x3,z4), n(zs, z4) and y(x3,z4) as follows

€ (w5, 24) = D (P(ws,24)T (w3, 34) — T(ws, 24)% + 2Ts(ws, 24)),

-
6
77($3, 1’4) = ;(Q($37$4)S<$3; 5174) - 5(373,374)2 + 254@3, 1’4))7
6
7(1’37954) = ;(S(iU:a, $4)T(i€3, IB4) + Q3(1’3, 1754) - 53(1’37334) + P4(5L’37$4) - T4(iU3, 5704))-
Altogether this implies case (C) in Theorem 3.17, which finishes the proof. O

3.2.2 Osserman para—Hermitian structures on Walker manifolds

In this section we analyze the Osserman condition for the three families of Einstein para—
Hermitian Walker metrics determined in Theorem 3.17. We study each case separately.

Einstein para—Hermitian metrics of type (A)

Einstein para—Hermitian Walker metrics of type (A) defined in Theorem 3.17 are Osserman,
but they do not provide the new desired examples. Indeed, if X = Z?:l «;0; is an arbitrary
vector then the associated Jacobi operator, when expressed in the coordinate basis, has

the form ;
A B —Q30y —O

Rx = , where A= E o *

0 A 4\ af azy

and ¥ = Q3 + S3 — P, — T. Hence the characteristic polynomial of the Jacobi operators
is pry (A) = A* (independently of the 2 x 2-matrix B). Therefore the Jacobi operators are
either vanishing or nilpotent.

Einstein para—Hermitian metrics of type (B)

Metrics in the family (B) of Theorem 3.17 are not Osserman. To see this, recall that a
four-dimensional semi-Riemannian manifold is pointwise Osserman if and only if there is
a choice of orientation such that the manifold is Einstein self-dual (or anti-self-dual). See
3], [62]

Given the Walker metric g, we have that

1 1
€1 — 5(1—&)81+63, €9y — —081+§(1—b)82+84,

. 1
e = —5(1+a)d + s, e = —cOy — S(1+0)32 + 04

defines an orthonormal basis of the tangent space. Local bases of the spaces of self-dual
and anti-self-dual two—forms can be constructed as A2 = span {Eli, EF, E?,i}, where

el ANed e Net

7 ,

el ANe2+ed Aet

7 :

61/\64:F62/\63

Ef = %

Ey = Ey =
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A long but direct and straightforward calculation using Lemmas 3.14 and 3.15 and the
definition of the Weyl tensor shows that Wy, = W,, = —7/6, and hence para—Hermitian
Walker metrics of type (B) cannot be Osserman. See Lemma 3.23 for details.

Einstein para—Hermitian metrics of type (C)

This last family of Einstein para—Hermitian Walker metrics will provide the desired exam-
ples of Osserman spaces. In particular, we have the following

Theorem 3.20. An Finstein para—Hermitian Walker metric of type (C) is Osserman of
signature (2,2) with eigenvalues {0,7/6,7/24,7/24}.

Proof. After a long but straightforward calculation one gets that (see Lemma 3.23)

Wi Wi, Wi+ 5
Wo=0, Wr=| -—W r W,

~Wihi+5) —Wh (Wi +9)

and hence it follows that W™ has eigenvalues {7/6,—7/12, —7/12}. As a consequence,
any Einstein para—Hermitian Walker metric defined by Theorem 3.17 (C) is Osserman
(Einstein self-dual) and thus the eigenvalues of the self-dual operator W+ determine the
eigenvalues of the Jacobi operators, which turn out to be {0,7/6,7/24,7/24}. O

Remark 3.21. Note that the metric studied in Section 3.1 is a particular case of the general
family of Einstein para—Hermitian Walker metrics of Theorem 3.17 (C).

3.3 General description of Osserman metrics whose
Jacobi operators have two distinct non-zero eigen-
values

The purpose of this section is to clarify the situation of Type II Jordan—Osserman metrics
by proving the following [49]

Theorem 3.22. Let (M, g) be a four—dimensional Type II Jordan—Osserman manifold.
Then the Jacobt operators are either two—step nilpotent or there exist local coordinates
(x1,...,24) such that the metric is given by

4
de! @ da® + da® @ dzt + dz? @ dat + dat @ da® + Z 5 dr' @ da’
i,j=3
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for some functions s;;(x1,...,x4) which can be written as

T 6
27
6
6
834 = Su3 = $1l’2%+$1U+$2V—|—;{—QS+UV+T3—U3+P4—‘/4},

S44 — T

6
+ xS + 2T + ;{S(P —V)+UT -U)—2(S5 — Uy},

where P, Q, S, T, U and V are arbitrary functions depending on the coordinates (x3,x4).
The proof of Theorem 3.22 is based on the following facts:

1. A four—dimensional semi—Riemannian manifold is pointwise Osserman if and only if
it is Einstein self-dual (or anti-self-dual) [3], [80].

2. A Type II Jordan-Osserman metric is either Ricci flat (that is, = § = 0) or
B =4a # 0 [21, Corollary 8.3].

3. A Type II Jordan—-Osserman metric whose Jacobi operators are not nilpotent (that is,
a =4 # 0) admits a local parallel field of two—dimensional planes [21, Proposition
8.4].

Therefore, we investigate Walker metrics (which are those admitting a locally defined
two—dimensional degenerate parallel distribution) in detail in Subsection 3.3.1, with special
attention to the (anti-)self-dual Weyl curvature tensors. A complete description of self-
dual Walker metrics is given in Subsection 3.3.2. The integration of the Einstein equation
for a self-dual Walker metric, which lets us determine all pointwise Osserman self-dual
Walker metrics, is carried out in Subsection 3.3.3. This leads to the proof of Theorem
3.22.

3.3.1 Self-duality and anti-self-duality conditions

In this section we obtain the expression of the self-dual and the anti—self-dual Weyl con-
formal curvature tensors for the Walker metric g given at the beginning of Section 3.2 with

respect to an orthonormal basis {e1, ..., es} where
1 1
e = 5(1—&)81—1-83, €y = —c@l+§(1—b)82+84,
1 1
€3 = —5(1+&)81+637 €y = —081 — 5(1—}-())82—’—64

A long but straightforward calculation using Lemma 3.14 and the expressions for the
Ricci tensor and the scalar curvature in Lemma 3.15 implies the following lemma.
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Lemma 3.23. With respect to the above basis, the components of W~ are given by

1 1
Wn = _E<a11 + 3age + 3b11 + bay — 4cq2), W,y = _é(a“ + by — 4cpa),
_ 1 _ 1
Wiy = E(an — 3agy — 311 + a2 — 4c12), W = 1(012 + bia — 11 — C22),
_ 1 _ 1
Wi = Z(am —bu1), Wa = —1(042 — b1y + c11 — c22).
The components of W are determined by Wi, W, and the scalar curvature as follows
T T T
W;gz—g, W;;g:Wf{—i—E, WﬁzWﬁ—l—E, Wat = Wi,

Finally, we have the expressions for Wi and W :

1
WH == E <60a1b2 - 6a1b3 - 6b(1102 + 12@164 - 60a2b1 + 6a2b4 + 6ba201 + 6a3b1 — 6a4b2

— 12a4¢1 + 6abycs — 6abycy + 12bycs — 12b3¢y — agq — 12¢%aq; — 12bcayy
-+ 24CCL14 — 3()20,22 + 12[)@24 — 12&44 — 3a2b11 + 12&[)13 — b22 — 12b33

+ 120,6611 — 2012 + 6@6012 — 240013 - 12(1614 — 12b623 + 24634),

1
le = Z(—QCCLH — bCL12 + 20,14 + CLb12 — 2b23 + acyy — 26612 — 2613 — bc22 + 2624).

Remark 3.24. The connection between Einstein (anti-)self-dual and pointwise Osserman
manifolds goes further to the Jordan normal forms of the non—zero part of the Weyl curva-
ture tensor W= and the Jacobi operators (see [62]). Pointwise Osserman manifolds whose
Jacobi operators are of Type Ia, Ib, IT or III correspond to self-dual (or anti—self-dual)
Einstein manifolds whose self-dual (or anti—self-dual) Weyl curvature tensor is of Type Ia,
Ib, IT or III, respectively.

Lemma 3.23 shows that

+ + + T

+ _ + T +
W — _W12 6 _W12 9

~Wi+ ) Wi =)+ §)

and, as a consequence, the eigenvalues of W+ are {7/6, —7/12, —7/12}. Since the induced
metric on A% has Lorentzian signature, the structure of W is determined by its Jordan
normal form, which may correspond to Type Ia or Type II/III, depending on whether W+

is diagonalizable or not. A straightforward calculation shows that
w24 120y +a8 (W) (T8 T
48 10 1

(W+ - %Id) - (W+ + %Id) -

from where we have the following:
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(i) If 7 # 0, we have that W™ has non-zero eigenvalues {7/6, —7/12, —7/12} and the

equality 72 + 127W| + 48 (Wf;)2 = 0 is the necessary and sufficient condition for
the diagonalizability of W*. If the above equation does not hold, then —7/12 is a
double root of the minimal polynomial of WT.

(ii) If 7 = 0, then W vanishes if and only if W] = Wi}, = 0 and moreover

1. W is two-step nilpotent if and only if W} # 0 and W}, = 0,
2. W is three-step nilpotent if and only if W, # 0.
On the other hand, taking into account the eigenvalues of W7, any anti-self-dual Walker

metric has vanishing scalar curvature and hence Einstein anti—self-dual Walker metrics are
Ricci flat.

3.3.2 Explicit form of self-dual Walker metrics

Our main purpose is to obtain a description of non—Ricci flat Type II Jordan—Osserman
four—dimensional manifolds. As a consequence of Remark 3.24 we may restrict our analysis
to self-dual Walker metrics. In this section we give a complete description of self—-dual
Walker metrics by integrating the partial differential equations obtained from Lemma 3.23.

Theorem 3.25. A Walker metric g is self-dual if and only if the defining functions a, b
and c are given by

a= 23 A+ 22B+ 2225C + 2129D + 21 P + 15Q + &,

b=a3C + 22€ + 2123 A + 21209 F + 218 + 2T + 1,
1

1 1
c= 51‘%}" + 537%2? + 239 A + 2125C + 5:1;1:102(8 + &)+ 21U + 2V + 7,

where P, Q, S, T, U, V, A, B,C, D, £, F, & n and v are functions depending on the
coordinates (x3,1y4).

Proof. Using Lemma 3.23 the self-duality can be initially characterized by means of the
following five equations

(3.3) a9y = b1y = @13 — cag = big — €11 = @11 + bay — 4c1o = 0.

Claim 3.26. We have

a(x17$27x37x4) == xQA('rlax?)JxéL) +B(flf1,$3,$4),
b(x17$2,x3,$4) - $1C(.T27x3,x4) +D($2,‘T3,I‘4),
1
C($17$2,l’3,$4) - §$§A1($1,$3,$4)+$2E($1,x3,$4)+F($1,$3,$4).

for differentiable functions A, B, C, D, ¥ and F.
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The first and second equalities in (3.3) imply that a and b can be written as

a(l‘l7m27'x3ax4) - LUQA($171'3,1'4> +B(I’1,l‘3,$4),
b(x17x27x37x4) = :1:10(132,1}3,%4) +D(.§C2,x3,x4)

Hence the third equation in (3.3) reads coo(z1, X2, z3,24) = Ai(x1, 3, 24) which implies

that )
C<x17 IQ,ZU37.T4) - Engl(Ila x37$4) + xQE($17x37 I4) + F(‘Tb xs, Jf4).

This finishes the proof of Claim 3.26.
Claim 3.27. We have
a(xy, 9,73, 14) = T309G + 2229C + 1129D + 15Q + B,

b(.’L’l, X9, T3, .1'4) = l'll’gG + xlflng + 33'1[172? + 51318 -+ D,
1

2 —_—
21:

3 1
c(x1, T2, 3, 4) = —xfﬂcQG + §xf.7:+

5 5D + 27w A + 1125C + w120 + 21U + 35V 4 7.

where G, I, Q, U, V, A, C, D, F,S and~y are functions depending on (x3,x4) and B and
D are functions depending on (xq,x3,T4).
The fourth equality in (3.3) (11 — b1z = 0) and Claim 3.26 imply

1
533314111(331, T3, x4) + TaFE11 (21, T3, 4) + F11(21, 23, 24) — Co(x2, 23, 24) = 0.

Taking derivatives with respect to zy yields Aj111(x1, z3,24) = 0, E111(21, 23, 24) = 0 and
Fi11(z1, 23, 24) = 0. Hence

A(wy, 3, 24) = 23G(x3,24) + 27C(23, 24) + 21D (23, T4) + Q(23, T4),
E(xy,w3,24) = 22H (w3, 24) + 211 (23, 24) + V (23, 24),
F(x1,23,14) = 21J(x3,24) + 21U (23, 24) + v(23, 24).

Using the last two equations we get
323G (23, 74) + 229 A(x3, 14) + 2J (23, 24) — Co(29, 73, 74) = 0,

from where, taking derivatives with respect to x2, we get Cas(x2, x3,x4) = 622G(23, x4) +
2A(x3,24) and hence

C(xo, w3, 14) = 135G (23, 14) + 25A(3, 24) + 22 F (23, 24) + S(23, 74).

Finally the above equation reads —2J (3, z4) +F (v3,24) = 0, that is, J = F/2. Altogether
this implies Claim 3.27.
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We now finish the proof of Theorem 3.25. Plugging the expression of Claim 3.27 in the
last equality of (3.3) and differentiating with respect to x; and x5 leads to G(z3,x4) = 0
and hence that equality reduces to

6x1.A(23, 4) + 622C (23, 24) + 41 (23, 24) — Br1(x1, T3, 24) — Doa(xe, x3,24) = 0.
Differentiation with respect to x; gives Biyiq(21, e, x3) = 6.A(x3,x4) and hence
B(wy, 13, 74) = 23 A3, 24) + 01B(13, 14) + 21 P (203, 24) + &(23, 74).
As a consequence, the last equality becomes
6x9C (13, 14) + 41 (23, 4) — 2B(x3,24) — Das(xa, x3,24) = 0,
from where Dago(22, x3,24) = 6C(23,14) and hence
D(xy, w3, 14) = 25C (23, 24) + 23E (23, 14) + 22T (3, 24) + 1(T3, T4).

Thus, the last equation turns into 27(x3, z4) — B(xs, x4) — E(x3,24) = 0 and we can write
I = (B+&)/2. Altogether this finishes the proof of Theorem 3.25. O

Remark 3.28. A four—dimensional Walker metric is said to be strict if it admits two or-
thogonal parallel null vector fields rather than a parallel two—dimensional null distribution.
It follows from the work by Walker [129] that any strict Walker metric is given by

v msmses) = dr'@de? 4+ de? @ det + do® @ da* + da* @ da® + a(ws, x4)da® ® da®
+b(x3, x4)da? @ da* + c(x3, v4) (d2® @ da* + da* @ dx?).

Thus, Lemma 3.15 and Theorem 3.25 imply that any strict Walker metric is Ricci flat and
self-dual, and hence Osserman. Moreover, Remark 3.24 shows that the Jacobi operators are
either identically zero or two-step nilpotent (depending on whether W, = 2c34 — @44 — b33
vanishes or not).

3.3.3 Proof of Theorem 3.22

Our purpose is to obtain a local description of Type II Jordan—Osserman metrics whose
Jacobi operators have non—zero eigenvalues. In such a case, the eigenvalues must be in a
ratio 1 : 4 and the underlying metric is a Walker metric. Therefore, in order to achieve the
desired result, only Osserman metrics on Walker manifolds deserve further consideration.
It immediately follows from Remark 3.24 that we may restrict to self-dual Walker metrics.
In Theorem 3.29 we obtain a complete description of self-dual Einstein Walker metrics
from where Theorem 3.22 is derived.

Theorem 3.29. A Walker metric is pointwise Osserman self-dual if and only if one of
the following holds:
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(i) The scalar curvature T is non-zero and the metric tensor is completely determined
by the functions a, b and ¢ as follows

6
@ = ﬁ%+mP+@Q+;%ﬂT—U%HNP—V}J@h—%ﬁ,
5T 6
b = %g+ms+@T+;&w140+U@—Uyawy4m}
T 6
c = IL’ll'Qg+$1U+372V+;{—QS+UV+T3—U3+P4—V;1},

where P, Q, S, T, U and V are arbitrary functions depending on (x3,x4). In this
case, the Jacobi operators have eigenvalues {0,7/6,7/24,7/24} and they are diago-
nalizable if and only if T2 + 127W1; + 48 (ng)z = 0. Otherwise, 7/24 is a double
root of the minimal polynomial of the Jacobi operators and the Walker manifold is
Jordan—Osserman on the open set where 7%+ 127W,| + 48 (I/sz)2 = 0 does not hold.

(ii) The scalar curvature vanishes and the metric tensor is given by

a = 1P+ 2Q +¢,
= 1S + 2T + 1,
c = .%'1U‘|—CL’2V+’Y7
where P, Q, S, T, U, V, &, n and v are smooth functions depending only on (x3,x,)

and satisfying
2Qs—V3) =Q(I'=U)+ V(P -V),

2(S3—Uy) =S(P-V)+U((T-U),
T3—U3+P4—V;L:QS—UV
In this case, the Jacobi operators have zero eigenvalues and one of the following
possibilities holds:
(a) The Jacobi operators vanish (which corresponds to the diagonalizable case Type
Ia) if and only if Ts + Us — Py — V3 = 0 and W, =0 (see Lemma 3.23).

(b) The Jacobi operators are two—step nilpotent (which corresponds to Type II) if
and only if Ts + Us — Py — V3 = 0 and Wy, # 0.

(c) The Jacobi operators are three—step nilpotent (that is, Type III) if and only if
Ty + Us — Py — Vy 0.

Proof. Since the manifold is self-dual, the functions defining the Walker metric are com-
pletely determined by Theorem 3.25. Since the manifold is Einstein, the traceless Ricci
tensor vanishes. Then, using Lemma 3.16, p{5 = p?, = p; = 0 becomes

21’1A—2$2C+B—5:0, 2172A+f:0, 2I1C+D:0,
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from where A = C = D = F = 0 and £ = B. Hence, Lemma 3.15 implies that the
(constant) scalar curvature is 7 = 68. As a consequence, the expression in Theorem 3.25
reduces to -

a = xfg—l—le—{—sz%—ﬁ,

b = x§%+x13+x2T+n,
T
c = .:1:1:U26+:B1U+a:2‘/+’y.

Using Lemma 3.16 we have that p35 = p3, = pJ, = 0 transforms into

%g_{Q(T—U)—i—V(P—V)—2(Q4—V3)}:O7
%7—{—QS+UV+T3—U3+P4—V4}:0>
-

i {S(P-V)4+U(T-U)—2(S3 —Uy)} =0.
If the scalar curvature 7 does not vanish, we can determine &,  and v from above. If 7 =0
we get exactly the system of equations in Theorem 3.29 (ii).

Finally, the eigenvalues and the minimal polynomial of the Jacobi operators for the two
cases are obtained as a direct application of Remark 3.24 since the eigenvalues and the
minimal polynomial of the self-dual Weyl tensor W+ determine the behavior of the Jacobi
operators of a pointwise Osserman self-dual manifold. n

As a consequence of Theorem 3.29 and Remark 3.24 we have the following characteri-
zation of Jordan—Osserman Walker metrics.

Theorem 3.30. Let (M, g) be a Jordan—Osserman Walker 4-dimensional manifold. Then,
one of the following holds:

(i) If the Jacobi operators are diagonalizable, then (M, g) is either flat or locally isometric
to a para—complex space form.

(i) If the Jacobi operators are non—diagonalizable, then one of the following two possi-
bilities holds:

(a) The Jacobi operators are two—step or three—step nilpotent.

(b) The metric is given by Theorem 3.22.

Proof. Four—dimensional Jordan—Osserman manifolds with diagonalizable Jacobi operators
have been classified in [21], where it is shown that they correspond to real, complex or
para—complex space forms. Real and complex space forms do not support a Walker metric
unless they are flat. Indeed, any space of constant curvature is locally conformally flat and
hence W = 0 implies that any such Walker metric is flat. Analogously, Kahler metrics
of constant holomorphic sectional curvature have zero Bochner tensor, which shows that
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W+ =0 [25], [63]. Hence, no Kéhler metric of constant holomorphic sectional curvature is
a Walker metric unless it is flat.

On the other hand, as Type Ib cannot occur [21], if the Jacobi operators are non—
diagonalizable, they are of Type II or III. Since anti—self-dual Jordan—Osserman Walker
metrics have vanishing scalar curvature, the corresponding Jacobi operators are either two—
step or three—step nilpotent. The only remaining case is that of self-dual Jordan—-Osserman
Walker metrics, which corresponds to Theorem 3.22. This finishes the proof. ]

Remark 3.31. Para—Kéahler manifolds of constant para—holomorphic sectional curvature «
may be easily described as Walker manifolds. For instance, let a, b and ¢ be the coordinate
functions given by

a(ry, 2a, x3,24) = oy, b(wy, Lo, x5, 84) =y, (w1, T, T3, Ty) = QX1 Ty,
and J the para—complex structure determined by
J@l = —81, Jaz = —82, Jag = —a(?l — Caz + 83, J04 = —c@l — baz + 64.

Then, (R*, g, J) is a para-—Kéahler manifold of constant para—holomorphic sectional curva-
ture «.

Remark 3.32. From Remark 3.24 we see that any anti—self-dual Jordan—Osserman Walker
metric has nilpotent Jacobi operators. Although many nilpotent Jordan—Osserman metrics
are known, none of the previous examples were anti—self-dual and all of them corresponded
to special cases of Theorem 3.29. The general expression of W, given in Lemma 3.23
is untractable and hence it is very difficult to obtain the general form of anti—self-dual
Walker metrics. However, for the special choice of a(xy, s, x3,24) = b(21, 29,23, 24) =
c(x1, x9, 3, x4), anti-self-dual Einstein metrics are characterized by

11 = Q22 = —Q12, @13 = 14, Q23 = 24, ass + aqq = 20a34.
After some calculations it follows that

a(zy, e, w3, 04) = (w9 — x1) P29 — 21,23 + X4)

+(z1 + 22)a(xs + x4) + 230(23 + T4) + ay(23 + T4) + (T 1 24),

for some function P depending on two variables and some real-valued functions «, (3, v and
0. The corresponding Walker metric is an Osserman anti-self-dual Walker metric whose
Jacobi operators are vanishing or two—step nilpotent, depending on whether the expression
2P + (z3 — x1) P11 is zero or not,

Remark 3.33. Any Type III Jordan—Osserman Walker metric is Ricci flat, and thus the
Jacobi operators are three—step nilpotent. The existence of non—Ricci flat Type IIT metrics
is still an open problem.



Open problems

The following questions remain open.

e Obtain an optimal bound for p(n) and p(n). Our upper bound is obtained from
variations of the Nash embedding theorem and we might expect that, under weaker
conditions, the codimension of the submanifold could be lowered.

e Existence of non—nilpotent Osserman metrics with non—diagonalizable Jacobi opera-
tors in dimension higher than four. It is interesting to know whether our construction
can be generalized for higher dimensions. We might expect this to be possible in other
neutral signature settings.

e Obtain a description of Type III four-dimensional Osserman metrics. The complete
solution of the Osserman problem is still an open question in dimension four, where
the existence of non—nilpotent Type III Osserman metrics is unclear. It is not even
known under which conditions these examples may exist.
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Part 11

Curvature invariants of geodesic
spheres and geodesic celestial spheres

o7






In order to study the geometry of a Riemannian manifold (M, g) it is often useful
to consider objects naturally associated with the metric structure of (M, g). These can
be special hypersurfaces such as small geodesic spheres and tubes, bundles with (M, g)
as base manifold or families of transformations reflecting symmetry properties of (M, g)
[128]. In this part of the thesis we focus on the study of geodesic spheres and their
curvature in relation to the curvature of the ambient manifold. Indeed, the existence of a
relationship between the curvature of a Riemannian manifold and the volume of its geodesic
spheres and tubes led some authors to state the following question: “To what extent is the
curvature or the geometry of a given Riemannian manifold influenced, or even determined,
by the properties of certain naturally defined families of geometric objects in M?”. This
problem seems very difficult to handle in such a generality. However, when one looks at
manifolds with a high degree of symmetry (for example two—point homogeneous spaces),
these geometric objects have nice properties and one may expect to obtain characterizations
of those spaces by means of such properties. By comparing a Riemannian manifold with
a model space such as a two—point homogenous space we get an idea of its geometry.
Thus, by understanding the geometry of spaces with a high degree of symmetry and why
their properties are characteristic of them, we get a better insight into the geometry of a
Riemannian manifold.

Since geodesic spheres are compact submanifolds, it makes sense to calculate their
volume. A. Gray and L. Vanhecke calculated the first terms in the power series expansion
of the volume of geodesic spheres [83]. They conjectured that the volume of geodesic
spheres can be used to characterize Euclidean geometry. More specifically, if each geodesic
sphere of a Riemannian manifold has the same volume as a Euclidean sphere of the same
radius, then the manifold is flat. Although the answer is known to be affirmative in several
special cases, the problem remains open in full generality.

Further work on geodesic spheres involved the investigation of their geometric properties
and how they influence the geometry of the ambient manifold. Certain types of manifolds
can be characterized by properties of geodesic spheres [33]. In this work, B.—=Y. Chen
and L. Vanhecke study intrinsic and extrinsic curvatures of geodesic spheres. It turns out
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that in many cases curvature properties provide a better understanding of geometry than
volume properties.

The fact that the curvature tensor of a manifold is very difficult to handle motivated
the study of several kinds of simplifications of this object. We are specially interested
in the so—called scalar curvature invariants. Apart from their ubiquity in Riemannian
geometry, specially when studying geodesic spheres and related objects, they are of interest
by themselves. See for example [113] where a nice characterization of homogeneous spaces
using scalar curvature invariants is given.

Our aim in Chapter 4 is to investigate curvature invariants of geodesic spheres. By
integrating a scalar curvature invariant along every geodesic sphere of a manifold we get a
good interplay between curvature and volume-like properties. The volume conjecture of A.
Gray and L. Vanhecke may be generalized to these new objects. We see in Subsection 4.2.3
that in certain cases two—point homogeneous spaces can be characterized by the integrals
of scalar curvature invariants of geodesic spheres. We emphasize that it suffices one single
curvature invariant to characterize these model spaces. See Subsection 4.3.1 for examples
of such curvature invariants.

In addition to geodesic spheres, other objects may be considered in Riemannian geome-
try which are also related to the Riemannian distance function: tubes around submanifolds
and disks. The former are studied in Chapter 4 and they are of interest in the last part
of this thesis. Geodesic disks are the main concern of Subsection 4.3.2. They were previ-
ously investigated by O. Kowalski and L. Vanhecke with special attention to their volume
properties [93], [94], [95]. In this subsection we are interested in the intrinsic geometry of
the boundaries of these disks and we devote our attention to the study of their total scalar
curvatures obtained by integrating the scalar curvature and the quadratic scalar curvature
invariants along these boundaries. Our main result is that two—point homogeneous spaces
are characterized by some of the total curvatures of the boundaries of geodesic disks among
Riemannian manifolds with adapted holonomy.

When the attention is turned from Riemannian manifolds to space-times, various dif-
ficulties emerge. An important characteristic of Riemannian manifolds is that they have a
Riemannian distance function which is continuous and whose induced topology is the same
as the topology of the manifold itself. Thus, several geometric objects such as geodesic
spheres may be defined, at least locally, by means of this function. These objects are also
Riemannian manifolds. They have nice properties, such as compactness and an acceptable
behavior with respect to other constructions. When dealing with general semi—Riemannian
manifolds there is no “semi—Riemannian distance” function. In fact, a distance-like func-
tion is only defined for space—times, but even in this case its properties are completely
different from those in the Riemannian setting [7]. For example, the “Lorentzian distance”
may not be continuous or bounded and geometric objects defined from it usually have
awkward properties. Moreover, level sets of the Lorentzian distance function with respect
to a given point are not compact and although some properties of those sets have been
previously investigated, they do not seem to be adequate for the investigation of volume
properties.
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In Chapter 5 we consider a new family of geometric objects in Lorentzian geometry,
namely geodesic celestial spheres. Roughly speaking, they are the set of points reached
after a fixed distance travelling along radial geodesics emanating from a point which are
orthogonal to a given timelike direction. In Relativity, a unit timelike vector represents
an instantaneous observer and the vector subspace which is orthogonal to it is called the
infinitesimal rest—space, that is, the infinitesimal Newtonian universe where the observer
perceives particles as Newtonian particles relative to his rest position. Then, a geodesic
celestial sphere is nothing but the image by the exponential map of a celestial sphere in
the infinitesimal rest—space.

Following the idea of characterizing spaces with high degree of symmetry by means of
volume properties of geometric objects, we carry out in Section 5.2 the calculation of the
volume of geodesic celestial spheres. This depends on the radius, the base point and the
instantaneous observer employed to define it. Nonetheless, in an isotropic Lorentzian man-
ifold, this measure depends only on the radius. We see that this property is characteristic
of locally isotropic Lorentzian manifolds. We discuss volume comparison results and give
Bishop—Giinther and Gromov type theorems for these objects in Section 5.2. Finally, in
Section 5.3 we accomplish the characterization of locally isotropic Lorentzian manifolds
using integrals of scalar curvature invariants of geodesic celestial spheres in the spirit of
Chapter 4. We take advantage of the results of Subsection 4.2.3 to get this characterization.

In this part we tried to keep calculations to a minimum in order to make the work
more readable. A package implementing the basic identities of curvature tensors has been
developed by the author [39]. This package allows us to perform calculations involving
scalar curvature invariants and integration along geodesic spheres. We can obtain both ex-
plicit expressions in two—point homogeneous spaces and power series expansions in general
Riemannian manifolds.
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Chapter 4

The Riemannian setting

Let p, ¢ € M be two points of a Riemannian manifold M and ¢ : [a,b] — M a curve joining
p and ¢, that is, ¢c(a) = p and ¢(b) = ¢q. The length of ¢ is given by L(c) = f;Hc’(t)Hdt.
The Riemannian distance between the points p and ¢ is defined as

d(p,q) = inf{L(c) : ¢ joins p and ¢}.

This function is indeed a distance in M and the induced topology of d coincides with
the topology of M as a topological manifold. We emphasize at this point that the above
definition is characteristic of Riemannian geometry and cannot be directly generalized to
the indefinite signature setting.

Given a point m € M, the geodesic spheres of M centered at m are the level sets of the
Riemannian distance function with respect to m, that is, {p € M : d(p, m) = r} for each
radius r > 0. For sufficiently small radius 7, these level sets are Riemannian hypersurfaces
of M. Nevertheless, for some radii it might happen that these level sets have codimension
greater that one or they fail to be submanifolds of M. The latter case is not of interest
to us in this chapter and we restrict our definition of geodesic spheres to sufficiently small
radii so that they are compact Riemannian submanifolds.

A geodesic sphere can also be defined as the image by the exponential map of a Eu-
clidean sphere of the tangent space at a point. The fact that the Riemannian metric is
positive definite ensures a good interplay between the exponential map and the Riemann-
ian distance function. This definition is more operative for our purposes and provides us
a good setting to perform the calculations needed in this chapter. The following chapter
takes advantage of these ideas and proposes a new family of objects in Lorentzian manifolds
whose properties may be used to characterize isotropy.

As it was stated before, we focus on the study of scalar curvature invariants of geodesic
spheres, thus contributing to the investigation of how the curvature of geodesic spheres is
related to the curvature of the ambient manifold.

This chapter is organized as follows. In Section 4.1 we introduce the main concepts
of Jacobi vector field theory which are used both in this part and Part III. Then, we
particularize this study to geodesic spheres in Section 4.2. We also introduce in this
section the concept of simple Weyl invariant. By integrating simple Weyl invariants along
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geodesic spheres we get the so—called total curvatures of geodesic spheres. After giving some
properties of these objects, we focus on the characterization of two—point homogeneous
spaces in Subsection 4.2.3. Finally, Section 4.3 takes advantage of our previous work to
provide examples of total curvatures of geodesic spheres and disks which may be used to
characterize real, complex and quaternionic space forms.

4.1 Tubes and Jacobi vector field theory

Let M be a Riemannian manifold of dimension n and M C M a Riemannian submanifold
of M. For fixed r > 0, we define the set

G (r) = {exp(r§) : £ € T"M, g(&,€) = 1}.

In general G(r) is not a Riemannian submanifold of M. If M is a compact embedded
submanifold of M it turns out that G(r) is a compact hypersurface of M for sufficiently
small radius. Thus, for a sufficiently small neighborhood of any point p € M, a tube
of sufficiently small radius around that neighborhood is a hypersurface. If Gy (r) is a
hypersurface then we say that Gy (r) is the tube of radius r around M. We follow [13].

If Gp(r) is a Riemannian submanifold of M of codimension greater than one, then
Gr(r) is called a focal manifold of M at distance 7.

Let p € M and ¢ : I — M a geodesic parametrized by arc length with ¢(0) = p
and /(0) € T,;-M. Let F(s,t) = c,(t) be a geodesic variation of ¢ = ¢o such that ~(s) =
F(s,0) = ¢,(0) € M for all s and let us define £(s) = ¢,(0) € T+ M. Let ¢ be the variational
vector field of F'. Then ( is a solution of the initial value problem

"+ Ra()=0,  ((0)=7(0) €T,M,  ((0) = Se0)C(0) + V-

A Jacobi vector field ¢ along c verifying ((0) € T,yM and ¢'(0) — S¢)¢(0) € Tc%o
called an M —Jacobi vector field.

We say that c(r) is a focal point of M along c if there exists an M—Jacobi vector field
¢ along ¢ such that ((r) = 0. A focal point arising from a Jacobi vector field ¢ such that
¢(0) =0, ¢'(0) € T;-M and ((r) = 0 is a conjugate point of p in M along c.

Assume now that G /(r) is a submanifold of M. Let ¢ be a smooth curve in T+ M with
€(0) = (0) such that g(£(t),£(t)) = 1 for all t. Then F(s,t) = exp(t(s)) is a smooth
geodesic variation of ¢ consisting of geodesics intersecting M perpendicularly. Let ¢ be the
corresponding M—Jacobi vector field which is the variational vector field of F'. Then ( is
determined by the initial values ((0) = +/(0) and ¢'(0) = £(0), where v(s) = F(s,0). For

any r, the curve 7,(s) = F(r,s) = exp(r&(s)) is a smooth curve in G/(r). Then,

)M is

ToyGur(r) = {¢(r) : ¢ is an M—Jacobi vector field along c}.
Let us denote by S(r) the shape operator of Gj/(r). Then it follows that

S(r)ew(r) =¢(r)".
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If Gp(r) is a tube, that is, if Gy (r) is a hypersurface, its shape operator can be
described in an efficient way.

Let X € To)M &R (0), where & denotes the orthogonal complement. We introduce
the following notation. By By we denote the parallel translation of X along the geodesic c.
We define (x as the M—Jacobi vector field along ¢ given by the following initial conditions

Cx(()) = X, C_/X(O) = SC/(O)X, if X e TC(O)M,
(x(0) =0, ¢&(0) =X, if X € T.MoRC(0).

We define D(r) by D(r)Bx(r) = (x(r) for all X € ToyM SR (0). Then D is a T ()M &
R (r) endomorphism—valued tensor field along ¢ determined by the following initial value
problem

0B _ ~( Wdg,r O s Seo) 0
D'+ RuoD =0, D(O)—( o) PO= (70 Mg )

The endomorphism D(r) is singular if and only if ¢(r) is a focal point of M along c. If this
is not the case, G/(r) is a tube and its shape operator in the direction of ¢(r) is given by

S(r)e) = D'(r) D(r)™".

Of special interest is the case when M is just a single point. This is the main concern
of the rest of this chapter. Another interesting situation occurs when M is hypersurface.
We deal with this in what follows.

Let M C M be a hypersurface. The next calculations are local, so we may assume that
M is an oriented submanifold and its orientation is given by a global unit normal vector
field £. Let » > 0 and define the map

o, M — M
p = @.(p)=exp(rép).

We denote by 7 the vector field along @, such that 7,(p) = c,(r), where ¢, is the geodesic
of M determined by the initial conditions ¢,(0) = p and c,(0) = &,. The map &, is
smooth and parametrizes the tube of radius r around M, G (r). Obviously, G/(r) is an
immersed submanifold of M if and only if ®, is an immersion. It may happen, nonetheless,
that Gy (r) is a focal manifold. The fact that G/(r) has higher codimension depends on
the rank of ®,.

Let (x be an M-Jacobi vector field. We have X = (x(0) € TM and (%(0) = SX
because ¢ has unit length and the normal bundle of M has rank one. Then it follows that

d,. X = CX(T), VUTIT’ = g;((r)

Thus, ®, is not an immersion at p € M if and only if ®,(p) is a focal point of M along
the geodesic c,. The dimension of the kernel of ®,,, is called the multiplicity of the focal
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point. If there exists a positive integer £ such that ®,(q) is a focal point of M along ¢,
with multiplicity & for all ¢ in some open neighborhood U of p, then, if I/ is sufficiently
small, ®,, parametrizes and embedded (n — 1 — k)-dimensional submanifold of M, the
focal manifold of M in M. If ®,(q) is not a focal point of M along c,, for a sufficiently
small neighborhood U of p, ®,;; parametrizes an embedded hypersurface of M, which is
called an equidistant hypersurface to M in M.

If Gp(r) is a hypersurface, its shape operator can be calculated by using the endo-
morphism D defined above. In this case the initial conditions simplify slightly and D is
determined by the initial value problem

D" + Rc/ oD = 0, D(O) = IdTpMy D,(O) = Sgp.

4.2 Geodesic spheres in Riemannian manifolds

Of particular interest is the case of a tube around a single point M = {m}. In this
situation G,,(r) is called the geodesic sphere centered at m with radius r. For sufficiently
small radius we have G,,(r) = exp,,(S""!(r)), where S""!(r) is the Euclidean sphere of
radius r centered at the origin of 7,, M and of dimension n — 1. We always assume that
r < i(m), where i(m) is the injectivity radius at the point m. Hence, geodesic spheres are
the level sets of the Riemannian distance function, that is, G,,(r) = {p € M : d(m,p) = r}.

Throughout this chapter, it is convenient to introduce the following notation. We use
the symbol ~ for the geometric objects of G,,(r). For the geometric objects of M we
just use the usual symbols (without bars). We perform most of the calculations with
respect to an orthonormal basis {¢;}. We define ¢; = g(e;,e;) € {—1,1}. We also set
€iyi, = €iy - €, for the sake of simplicity in our notation. The notation wj,..;,, means
We, e, for any tensor field w and V;;.. means V... Finally, we define Vo = w and we
write VI _; wj,..; for <v§¢1~~eikw)en“'en' This will simplify considerably our writing in the
long formulas appearing in this chapter.

Let m € M and u € T,,M. The shape operator S(r) of a geodesic sphere is given by

S(r)(exp,, (ru)) = D'(r)D(r) ",

where D is the above endomorphism which in this particular case is determined by the
initial value problem

D'+ RyoD=0, D0)=0  D'(0)=Id.

along the geodesic c¢(t) = exp,, (tu).
We define the volume density function 6, as

Om(p) = \/ det(gy).
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It can be proved (see [33], for example) that 6,,(exp,,(ru)) = (det D(r))/r"~!. Hence, the
mean curvature h,, of a geodesic sphere centered at m is [33], [128]

e st~ 2

(exp,, (ru))

exp,,
(exp,, (ru))

The map r — S(r) is an endomorphism—valued tensor field along the geodesic c. Taking
derivatives in the equality S(r)D(r) = D'(r) we get S'(r)D(r) + S(r)D'(r) = D"(r) and
using again S(r)D(r) = D'(r) we obtain the Riccati equation

S"+S?+ R, =0.

We define C(r) = rS(r). It can be proved that C' is a differentiable endomorphism-—
valued tensor field in a neighborhood of 0 € R. Then the Riccati equation is equivalent to
rC"+C? —C+1r?Ry = 0. Taking the k-th derivative of the latter equation and evaluating
at r = 0, we obtain the Ledger recursion formula [33], [128]

(k — 1)C®(0) = —k(k — 1)R*2(0) — i (Z) cO)C*(0), keN,

=0

where g(R®(0)x,y) = V=2 Rypuy(m) for all z,y € T,,M © Ru and i € N.

The Ledger recursion formula allows us to calculate power series expansions of geometric
objects defined in geodesic spheres. This has already been done by several authors. See
for example [33], [82], [83], [128] where the first terms of power series expansions of several
intrinsic and extrinsic curvature tensors of geodesic spheres are given. However, we are
interested in a more detailed description. In the following section we introduce the concepts
and notation needed to achieve this.

4.2.1 Curvature and Weyl invariants

A scalar curvature invariant is a polynomial in the components of the curvature tensor and
its covariant derivatives which does not depend on the choice of orthonormal basis used
in its construction [83], [113]. The degree of a scalar curvature invariant is the number of
derivatives of the metric tensor involved in its construction. Since the curvature tensor has
two derivatives of the metric tensor, a scalar curvature invariant has always even degree.

Let us denote by I(v,n) the vector space of scalar curvature invariants of degree 2v in
a manifold of dimension n.

It is well known that for n > 2, I(1,n) is a vector space of dimension 1 generated by
the scalar curvature 7.

If n >4, 1(2,n) is a vector space of dimension 4 spanned by

(41) 7% IRI” =) cim R, o> =" e 03 AT =) Vi



68 4 The Riemannian setting

For n > 6, the vector space I(3,n) has dimension 17 and is spanned by the following
basis:

Ivrl* =X (Vir)*,

3
T )
? IVpl? =i (Vipi)”
Tllpll?,
IR]? (r) = 2 €ijk VipjkVipik;
7— )
p Zg PiiPik P HVRH2 = Zeijklp (ViRjklp)Z,
= ijkl PijPikPjks
(4.2) ) gkl PijPikPj Ar
(p@p,R) =2 cijm pijpriBinst,

(Pa AP> = Z €ijk pijv%kpijy

(p, R) = > €ijkip Pij Rikip Rikip,

§ S (V21,p) = € pis Vi,

R = D €ijkipg Rijri Rijpg Rripg; 9

. (R,AR) =" €ijrip Rijta Vo, Rijis
Jklp 5 pp~ )

R = Eijkipg Rijki Ripkq Rijpig,

A2T.

Scalar curvature invariants are a powerful tool in Riemannian geometry, but they may
become useless when the metric is allowed to have indefinite signature [22], [27].

We explain some notions from the theory of invariants in a more general context mainly
following [47], [113].

Let FM = (FM,n,M,Gl(n,R)) be the bundle of linear frames over (M, g). For k > 1
we shall denote by T*M = Uerr (T, M x -+ x T;, M) the bundle over M with standard
fibre R"x .*. xR"™ and structure group Gl(n,R) which is associated with the principal
bundle FM. If k = 0 we set T°M := M.

A partial Weyl invariant, W, with k degrees of freedom is a map

W Tk M — R

4.
(4.3) (v1,...,01) = tr(g® - ®9gRVIR®- - @ VVR)(vy,...,v)

where [; € NU {0}, j € {1,...,v}, v € N, and tr is a product of traces [9] with respect
to some permutation of the indices. Two partial Weyl invariants W; and W5 are equal if
and only if Wi(vy,...,v) = Wa(vy,...,v) for any (vi,...,v,) € TEM and every semi—
Riemannian manifold (M, g).

We say that a partial Weyl invariant W is simple if its construction does not involve
covariant derivatives of the curvature tensor, that is, W =tr(¢ ® - - ® g@ R® --- ® R).

In particular, a Weyl invariant, as defined in [113], is a partial Weyl invariant with zero
degrees of freedom, that is, k = 0.

We define the degree of a partial Weyl invariant given by (4.3) as

degW =1 +---+1, +2v.

We point out that other authors define the degree (or order) of a curvature invariant as
half this number. Equivalently, the degree of a partial Weyl invariant is the number of
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derivatives of the metric tensor involved in its construction. Clearly, if W; and W5 are two
partial Weyl invariants, then ;W5 can be considered as another partial Weyl invariant in
the obvious way and

deg W1 W2 = deg W1 + deg WQ.

For instance, the curvature tensor R and the Ricci tensor p are simple partial Weyl invari-
ants of degree 2, the former with 4 degrees of freedom and the latter with 2.

By definition, a partial scalar curvature invariant is a linear combination of partial Weyl
invariants. If all partial Weyl invariants involved in the construction of a partial scalar
curvature invariant have the same degree d then this partial scalar curvature invariant is
said to have degree d.

Given a tangent vector u € TM and a partial scalar curvature invariant W with &
degrees of freedom, we say that W(u,.*.,u) is a partial directional curvature invariant or
to be more specific, a partial curvature invariant in the direction of w.

It follows from Weyl’s theory of invariants [9], [132], that the scalar curvature invari-
ants are precisely the traces of the curvature tensor and its covariant derivatives. As a
consequence, a scalar curvature invariant is a linear combination of Weyl invariants. Al-
ternatively, a scalar curvature invariant is a partial scalar curvature invariant with zero
degrees of freedom.

Simple curvature invariants and simple Weyl invariants are of special interest and they
constitute one of our main concerns in this chapter. Up to multiplication by a constant,
there exists a unique simple curvature invariant of degree 2, which is the scalar curvature
7. The space of simple curvature invariants of degree 4 has dimension 3 and is spanned by
72 |lpll* and ||R||*>. A basis for the vector space of simple scalar curvature invariants of
degree 6 is given by the left-hand side column of (4.2).

Curvature invariants of degree 4 are important from a geometric point of view because
they may be used to characterize certain types of manifolds. The following result can be
found, for example, in [9], [33].

Lemma 4.1. We have:

1
(a) For any n—dimensional Riemannian manifold, |p||* > — 72, with equality if and only
n

if the manifold is an Einstein space.

2
(b) For any n—dimensional Riemannian manifold, ||R|* > — pll?, with equality if
n—

and only if the manifold has constant sectional curvature.

4
(¢) For a 2n-dimensional Kdhler manifold, ||R|* > T | p|I?, with equality if and only
n

if M has constant holomorphic sectional curvature.

5n+1

(ESE Ipll?, with

(d) For a 4n-dimensional quaternionic Kdhler manifold, ||R|* >

equality precisely for quaternionic space forms.
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Remark 4.2. Let W = tr(R® - ®R) be a Weyl invariant of degree 2v. In a (n — 1)-
dimensional Riemannian manifold of constant sectional curvature A the curvature tensor
may be written as R = ARY, where R° can be expressed with respect to an orthonormal
basis as

R?jkl — 5ik5jl - 5i15jk-
Then, W = tr(R® --- ®R) = X tr(R°® -*- ®R°) = Ay (n — 1)\ where Ay is a poly-
nomial that depends only on W. Moreover, if n € {1,2}, then R = 0 and hence we have
Aw(0) = Ay (1) = 0. Thus, Ay may be written as Ay (n—1) = (n—1)(n —2)Aw(n — 1),

where Ay, is another polynomial. Therefore, for the constant curvature case we have
W= (n-1)(n—-2)Aw(n—1)\".

The polynomial Ay will be used latter in this work and plays an important role to deter-
mine several curvatures of geodesic spheres.

Ezxample 4.3. The polynomials Ay, corresponding to the simple Weyl invariants appearing
in (4.1) and (4.2) can be explicitly given as follows. Suppose (M"! g) has constant
sectional curvature A. First, we have 7 = (n — 1)(n — 2)\, and thus,

A (n—1)=1
Also, for the simple Weyl invariants of degree 4,
A”RHz(n—l):Z, A||pH2(TL—1):TL—2, ATz(n—l):(n—l)(n—Q).

The expressions corresponding to the simple invariants of degree 6 are summarized in the
following table:

w Aw(n—1) w Aw(n—1)

7 (n—1)*(n - 2)? (p® p, R) (n—2)*
Aol? | (o= 1) -2 (0. B 2n —2)
7||R|? 2(n—1)(n—2) If? 4

p (n —2)? R n—3

We consider a (n — 1)—-dimensional manifold because this is what we will need afterwards.

The concept of partial Weyl invariant allows us to describe in a convenient way several
geometric objects in a geodesic sphere. First, we calculate the scalar second fundamental
form. Then, the Gauss formula allows us to calculate its curvature tensor. See [33] for
explicit calculations of the first terms in its power series expansion. We follow [47].

Lemma 4.4. Let o denote the second fundamental form of the geodesic sphere G, (r). We
have the power series expansion

7 50, (ru) = 3 g ol ) + 0 (),

a=-1
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where ofi(u), o > 2, is a partial scalar curvature invariant of M at m with o + 2 degrees
of freedom and degree ov. The first terms of this expansion are

1 T r2
o (exp,,(ru)) = ;5@'— Ruiuj(m)——Vuij(m)

_ (45 Z RyivaRujua + 10V2 Ruiuj) (m)+ 0O (r).

Proof. Using the Ledger recursion formula and the fact o(exp,,(ru))(z,y) = g(C(r)x,y),
with the notation of that formula we get

U?j(u) = 0ij, Uilj(u) =0,
ala—1) 1 =X/ w
e a—2 B8 a—
Uij(u) == Vo PRuivg(m) — ( ) E iam(u)aw (u),
a+1 a+1 = B =
for all a« > 2. The result now follows by induction. O]

The first terms in the power series expansion of the curvature tensor of a geodesic
sphere where obtained in [33], [44].

Lemma 4.5. Let R denote the curvature tensor of a geodesic sphere G,,,(r). Then

s—2

éz‘jkl (exp,,(ru)) = Z aRzanggf( u)+ 0 (Ts_l) )

a=-—2

where ﬁ%kl(u), a > 2, 1s a partial curvature invariant at m of degree o such that for all
the Weyl invariants used in its construction the number of degrees of freedom has the same
parity as o. More specifically

1
Rijui (exp,,(ru)) = 3 <5ik5jl - 5il5jk>

1 1 1 1
‘|’<Rijkl — §5iszujul + §5ilRujuk + g(sjk:Ruiul - §5lem'uk> (m)
1 1 1 1
+r (vuRijkl - Z(SjlvuRuzuk + ZéjkvuRuzul + ZézlvuRuguk 461kvuRujul> (m)
o 1 1 1. <« 1. <
+r (_§RmulRujuk + §RuiukRujul - E(Szk Z RujuaRulua 1l Z RuguaRukua
a=1
+15-§:RAR —1&2”:}%-3 +1V2R~ 15v JRui
45 Ik £ wiuadlulua 45 3l £ wivadlukua 9 Vuu ijkl — 10 3l uiuk
1 1
+ — 10 ]kv Ruzul + 0511V2 Rujuk - ToézkviuRujul> (m) + O (T3) .
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Proof. The Gauss equation may be written as Exva = Ryyow + Ou0yw — 020y in this
case. Using the power series expansion along a geodesic with respect to a parallel basis,
Rijri(exp,,(ruw)) = Rijm(m) + rVyRim(m) + (r?/20) V2, Rijr(m) + -+ and plugging the
above expression and the formula of Lemma 4.4 into the Gauss equation we have

ﬁ?jkl(“) = Ol — 0l = R?jkl’ Ezljkl(u) = 0,
~ 1

Sa(u) = mviii&jm(m)

1 a—3 L .
rar 2 () (o800 o e ).

for all @ > 2. Hence, the first part of the result follows by induction. Finally, in the
last equality of the above formula there are two clearly different terms. The first one
Ve 2Ri(m)/(a—2)! is a partial scalar curvature invariant with a+2 degrees of freedom.
The second addend is another partial curvature invariant with o + 4 degrees of freedom.
The last statement then follows from Lemma 4.4. O

The following lemma is a technical result that will be needed in Theorem 4.7.

Lemma 4.6. Let (V,(,)) be an inner product vector space of dimension n > 2 and tr
a total trace in the space of covariant tensors of order 4v over V. If R is an algebraic
curvature tensor on V', Sc(R) its scalar curvature and W the algebraic invariant defined

by W = tr(R® -*- @R), then
’ I
tr (Z RR® - ®R® - ® R0> = vAw(n)Sc(R).
a=1

Proof. Clearly, tr(}./ | R°®---® R® ---® R’) is a scalar curvature invariant of degree
one, and hence it is a multiple of the scalar curvature. Write

- i
aSc(R) = tr (ZRO®-~®R®“'®RO).

a=1
The above formula is true for each algebraic curvature tensor R in V. If we take R = R°

we have

[e3

v !
an(n—-1) = > &R --@R @ @R
a=1

= vir(RP®---®@R°) = vn(n—1)Aw(n).
Thus a = v Ay (n). O

We are now ready to give a power series expansion of a simple Weyl invariant in a
geodesic sphere.
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Theorem 4.7. Let W be a simple intrinsic Weyl invariant of degree 2v, v > 1, in a
geodesic sphere G,,,(r). We have

s—2v

W (exp,, (ru)) = D r*Wayay(u) + O (r=2+1)

a=—2v

where Wa(u) 1s a partial curvature invariant of degree o in the direction of u such that the
degree of freedom of each Weyl invariant involved in its construction has the same parity
as a. More specifically, we have

Wo(u) = (n—1)(n_2)AW(n_1),

Wl (’LL) =

—~

1)
Wy(u) = vAw(n—1)(7— n+ uu) (m),
n+2

p) (m),

W) = wilu) + 2 Awln - >( )

—~

Wi(u) = vAw(n—1)( V1 —

where wg(u) is a simple directional curvature invariant of degree four given by

2 1
w4<u>={qu<n 1( nt ZRmb+ pw)

4(n + 12) & 4
+BW(n ]‘) (HRH2 4 Z Ruabc Z Ruaub Z pabRuaub + §p12w)

a,b,c=1 ab 1

3n —|— 14 2
+B§V(n 1 (HpH2 Z Ruaub Z pabRuaub -2 Z Pua ,Ouu §Tpuu>

+B% (n—1) (T - %nle);uu>2}(m), -

and B}y, B, and By, are polynomials satisfying

2Bl (n—1)+(n—2)By;(n—1)+ (n—1)(n—2)Bj,(n—1) = (;) Aw(n—1).

Proof. Using the notation of Lemma 4.5, we have

s—2v
(R ®--® R)iljlklll...iujukulu = Z TQ( Z R’Lﬁll‘]filll( ) Rff;lz 1, ( )>+O (Ts_2y+1) .

Bt +Br=a

a=—2v

By taking traces in the above expression, the result of Lemma 4.5 and the rule to compute
the degrees, imply the first statement of Theorem 4.7.
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Now we turn our attention to the explicit expressions of Theorem 4.7. As R is the
curvature tensor of the geodesic sphere G,,(r), the coefficients of its power series expansion
given by Lemma 4.5 are algebraic curvature tensors in u~ = T;,M © Ru. Using Lemma
4.5 and Remark 4.2 we get

v

Wo(u) = tx (leklzl( ) R?uyukyly (u)) = tr (RO@ o
= (n—1)(n—-2)Aw(n—1).

®R0>

Using the notation of Lemma 4.5, since R = 0, we have

=tr (Z Rz1]1k1l1 Rzla]ak la (U) o R?ijkl,ll, (U)) = 0.

Lemmas 4.5 and 4.6 yield
Wa(u) = (Z RY oy (W) - R2 g () R (U)>

= (Z leklll i la]akala (u) - Rz‘oyjykyly> = vAw(n — 1>SC(32>7
and from the definition of k? in Lemma 4.5 we get Sc(R?) = 7 — (n+1)puu Hence
Wa(u) = vAy(n —1) <T - Tpuu) (m).

Similarly, using Lemmas 4.5 and 4.6 and the fact that Sc(}N%S) = VT — 2V, puu, we

obtain
Wi(u) = <Z Rzlglklll Rijak (u) - R?ijkulum))

f— . .« .. 0
- (: : Rll]lklll ’La]akala (U) Riujukulu>

n+2
2

— v Aw(n—1) (w— vupuu> (m).

Finally, using the expression of R®---®R at the beginning of this proof, we get for v > 1,

— E 0
W4 - ( Rll]lklll ’ Za]akl ( ) ) Riujukulu>

+ tr <Z Rzulklll zajakala () - Rio'ijk'yl'y (u) - R?ﬁjﬁkalﬂ( u)-- R?ujukulu> '

a<f
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For the first term of the above equality we again use Lemmas 4.5 and 4.6 to get

2n+1 n+3

VAW(n - 1 ( Z Ruaub + puu + %Viu Viupuu> (m)

Now, we briefly discuss the second term of W4 (u), which is a simple directional curvature
invariant of degree 4. Using the method of Lemma 4.6 to write the second addend of Wj(u)
as a linear combination of curvature invariants of degree 4 associated with R? (see the basis
of curvature invariants of degree 4 (4.1)) we get the expression for ws(u) and the relation
among the polynomials Bj;,, B3, and Bj,. We delete the details. O

Remark 4.8. If v = 1 in the previous theorem, we essentially have to deal with the scalar
curvature 7. In this case, the second addend of Wy(u) does not appear and wy(u) = 0.
Then, 7(exp,,(ru)) = S22, r*Se(R**2) 40 (r*~1). See [33] and [44] for an explicit power
series expansion.

Ezample 4.9. The coefficients Bj;, and B3, in the expression of wy(u) for Weyl invariants
of degree 4 and 6 can be given as follows [39]

W IRIZ o>
Bl (n—1) 1 0 0
B (n—1) 0 1 0
w2 T)? 7||R|? i {p@p R (pR) R R
Biy(n—1)] 0 0 m—1)(n-2) 0 0 n—2 6 =3/2
B (n—1)] 0 (n—2)(n—1) 0 3(n—2) 2n-5 4 0 3

These coefficients can also we found in [37], [38] and [44].

Now, we derive some geometrical consequences of the expansions in Theorem 4.7. We
first need the following technical result. See for example [45].

Lemma 4.10. Let (M, g) be an n—dimensional Einstein manifold. If
2
a ||R|| + b Z Ruzgk +c Z Ruzu] -
i,j,k=1 2,7=1

for some real constants a, b, ¢, k with (n +4)b+ 3¢ # 0, ¢ # 0 and for all unit vectors
u e TM, then (M,g) is 2—stein.

Proof. We define the tensors

n n
Weyow = § Rmiijviwj and Ney = E Rmiijyijk-

3,j=1 i,5.k=1
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For all vectors x,y € T,,M and all constants «, § € R, it follows from the assumption that

2
a“RH gaz+ﬁyax+ﬂy+bnar+ﬂyaw+ﬁy9az+ﬂyaw+6y+Cwaa:+ﬁy ..... az+By kgax+ﬂy,a:v+ﬁy‘

Now, we expand the previous expression and take the coefficient of a?3%. Putting y = e;
and taking the trace we obtain

20 | RI*(n + 2)g(x, ) + b (I RIg(w, ) + (1 + D

- 3
c (Zpinm'xj + 5%9:) = 2(n+2)kg(z, ).

1,j=1

Since (M, g) is assumed to be an Einstein manifold the previous equation becomes

2
{b(n +4) + 3¢} e = —{2(n +2)al|R|?+ bR+ = —2(n+ 2)k}gm
and taking traces this gives
2 2
{b(n+4) + 3e} 1RI2 = —n{2(n + 2)a | RI? + b |RI? + =5 - 2(n + 2k }.

The last two equations and the fact that b(n + 4) + 3¢ # 0 imply 7., = (||R|*/n)gz: and
thus polarization gives n = (||R||*/n)g. Hence, it follows from the assumption that

1 (na+0

which shows that (M, g) is 2-stein. O

Proposition 4.11. Let (M™,g) a Riemannian manifold and W a simple Weyl invariant
of degree 2v, v > 1, such that

(2n + 1)vAw(n — 1) — 20(n + 12) By, (n — 1) + 5n2B2,(n — 1) # 0,
(2n 4+ 1) vAw(n — 1) +40nBj,(n — 1) + 5n?B3,(n — 1) # 0,

If the corresponding Weyl invariants of geodesic spheres W(expm(ru)) depend neither on
the center m nor on the direction u, then M is 2-stein.

Proof. Since Ay (n—1) # 0, using the coefficient Wg(u) given in Theorem 4.7, we get that
T —2puu(n+1)/3 is independent of m and . This implies that the manifold M is Einstein.

Now, the coefficient Wy is also constant by hypothesis. Using the fact that M is Einstein,
we obtain

BW(n - 1) HfiH2 4BW(n - 1 Z Ruabc

a,b,c=1

2n +1 4 12
_( 714;)— I/AW(n — 1) — (n;— )Bév(n — 1) — EBW n — ]. ) Z Ruaub = constant.

a,b=1
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The above equation has the form of that of Lemma 4.10. The last two conditions of
Proposition 4.11 ensure that the latter lemma can be applied and the result follows. [

Remark 4.12. Let W be a simple Weyl invariant such that Ay (n — 1) # 0. If M is
a_Riemannian manifold such that the corresponding Weyl invariants of geodesic spheres

W (exp,,(ru)) depend only on the radius, then the above proof shows that M is an Einstein
manifold.

Remark 4.13. It was proved in [33] that if 7(exp,,(ru)) depends neither on the center m
nor on the direction u, then the manifold is 2—stein. Moreover, if the manifold is assumed
to be analytic, then it is harmonic.

FExample 4.14. Tt can easily be shown that the conditions in Proposition 4.11 hold for all
the curvature invariants of Example 4.9. Hence, those may be used to characterize 2-stein
manifolds.

Proposition 4.15. Let (M, g) be a complete analytic Riemannian manifold with constant
Weyl invariants and such that all its small geodesic spheres have constant scalar curvature.
Then, M 1is locally isometric to a two—point homogeneous manifold or a Damek—Ricci space.

Proof. As all the Weyl invariants of M are constant, M is locally homogeneous [113]. Since
all the small geodesic spheres have constant scalar curvature and the manifold is analytic,
M is harmonic [33]. Complete homogenous harmonic manifolds have been classified in [87].
According to this paper, M is locally isometric to a two—point homogeneous manifold or a
Damek—Ricci space. O

Corollary 4.16. Let (M, g) be a complete analytic Riemannian manifold with constant
Weyl invariants such that all its small geodesic spheres have also constant Weyl invariants.
Then, M s locally isometric to a two—point homogeneous space.

Proof. Using the previous proposition, M is locally isometric to a two—point homogeneous
space or a Damek—Ricci space. On the other hand, all the small geodesic spheres of M
are homogeneous, as they also have constant Weyl invariants. Hence, M is Osserman [80)].
But a Damek-Ricci space cannot be Osserman unless it is symmetric [17]. The result
follows because locally symmetric Damek—Ricci spaces are locally isometric to a two—point
homogeneous space. O

4.2.2 Total scalar curvatures of geodesic spheres

Since a geodesic sphere is a compact Riemannian submanifold, one may consider the in-
tegral of a curvature invariant W for geodesic spheres. Following, for example, [33], we
define the total scalar curvature VW associated with the scalar curvature invariant W by

W(m, r) = /G PRI /S (0, (exp,, (),



78 4 The Riemannian setting

where W is the corresponding curvature invariant of Gm(r), O, is the volume density
function at m and du is the volume element of S"~*. Then, W is a function depending on
the base point and the radius of the geodesic sphere.

Ezxample 4.17. When (M, g) is a Riemannian manifold of constant sectional curvature
A > 0, each geodesic sphere G,,(r) has constant sectional curvature A = A/sinrv/A [83]
(here, we only consider the positive curvature case; similar expressions can be obtained for
negative and zero curvature). We now compute the total scalar curvature associated with
a Weyl invariant W of degree 2v. From Remark 4.2 we get

W =(n-1)(n-2)A4y(n—1) (ﬁ)

In a space of constant sectional curvature A > 0 the volume density function is

n—1
sin rﬁ)

VA

(see for example [82], [128]) and we have the exact expression for the total scalar curvature
associated with W

O (exp,,(ru)) = (

n—1-—2v
sin r\/x
\/X .

We emphasize that the above total scalar curvature does not depend on the base point m.

W =cp1(n—1)(n—2)Ay(n—1) (
Gm(r)

In order to obtain a power series expansion of a total scalar curvature we need the
volume density function of a Riemannian manifold [33].

Lemma 4.18. Let 0,, be the volume density function at a point m. Then we have
O, (exp,,(ru)) = Z 0o (u) + O (r*th)
a=0

where 0,(u), o > 2, is a partial curvature invariant of degree o in the direction of u with
a degrees of freedom. The first terms of this power series expansion are

1 1
O (exp,,(ru)) = 1— —,Ouu(m)r2 — Evupuu(m)r3

i - 2 @ i 2 4 5
+(_180 Z RZ b+ = —40Vuupuu)(m)r +0 (r°).

Proof. First, we consider the mean curvature function of a geodesic sphere which is easily
obtained from Lemma 4.4 taking traces

s—1

hm(exp,, (Tu)) = Z T hat1(u) + O (%),

a=-1
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where h,(u), @ > 0 are partial scalar curvature invariants of degree « in the direction of
u and with a degrees of freedom. The first terms in the power series expansion of h,, are
well-known [33], [128]

n—1 r r?
hm(expm(ru)) :{ r - gpuu_ Zvupuu -r (45 Z Ruaub + 5 10 uupuu>} (m) +0 (T4)’

a,b=1

Now, using the relation

n—1 0
hm (exp,,(ru)) = " + o log 6,,, (exp,,(ru)),

we obtain

/2]
I R I

Y1t Fyg=a N 'YB

where [] denotes the integer part of a real number. The result follows from the above
formula after considering the properties and explicit expressions of the terms h,. n

Using standard arguments of calculus one can show that the volume of a Euclidean
sphere of radius 1 in R" is given by

where T is the gamma function defined by I'(ar) = [“ e "t*dt = [ e P [t[2 .
The following result is a technical lemma Wthh will be used in the proof of the Theorem
4.20. We only point out the main steps of the proof.

Lemma 4.19. Let w be a covariant tensor of order 2v. Then,

n
Cp—1
/ wu...udu = o1 E 5&1&2 e 60421/710‘21/ E : waau)"'aa(zu)‘
S§n—1 _
2V H(n + 2a) o=l 7€ G2
a=0

where &y, is the group of permutations of 2v elements.

Proof. We proceed by induction. If v = 1, the expression of Lemma 4.19 is a well-known
fact. See, for example, [83]. Next, let w be a covariant tensor of order 2(v + 1). Choose
an orthonormal basis {e;} at the origin of R™ and write the unit vector u with respect to
that basis as u = ) . x;e;. Then

n

/ 1 Wy AU = E Way a2 / 1 Loy« 'xa2u+2du'
S§n— Sn—

ay-agppo=1
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We recall the formula for integrating polynomials along Euclidean spheres [82]:

Bi .. B — ﬁl)ﬁn)
/Snlxl x"du_Cnfln(n+2)-~~(n+ﬁ1+--~+ﬁn+2)’

where
28)=(2-1)(26—-3)---3-1, 28—-1)=0, forall3&N and 0) =1.
Concentrating on the last index aw, 2 and using the previous formula, we get

2v+1

_ 2
/ 1 Wy..du = g E 2u+1 5 Wary.. oy 410241 / 1 Toy - - - xcmxabﬂdu
sn at..azi1=1 B=1 ’Y 1 Yagay ,(li sn
n 2v+1
- n—i—2u§ E / ..,u,ef,u,...,u,ea)du
S§n—1
=1 f=1 5

Now the inner integrand is a tensor of order 2v and we can apply our induction hypothesis
to get

2v+1

Cn—1
/ 1wu-~-udu: v g § (alaz" Qo102 E Way(1y...02041.. Oég(2y)a2u+1)
S 2”V‘H(n+2@) at...az,+1=1 B=1 cEBy, é
a=0

n

Cn—1
= > g <5a1a2 to 5a2u+1a2u+2 E , waa(l)"‘ao(Zu+2)> )

aq...aoy10=1 SO
2] (1 + 20) e2ess
a=0
from where the result follows. O

Theorem 4.20. Let W be a simple Weyl invariant of degree 2v. The total scalar curvature
associated with W has a power series erpansion

[s/2]

177 —1- W2a(m) 1
W(m,r) :/ W = ¢, r =% r2e — + O (rt ;
G (1) ; 15 0(n +28) )

where Wha(m), a > 1, is a scalar curvature invariant of M at m of degree o, [ ]| denotes
the integer part of a real number and

Wo(m) = (n—=1)(n = 2)Aw(n - 1),
(n—=2)(n—2v—1)Aw(n—1)

W, (m) = - 6 T(m)>

Wilm) — (ow SR+ Ctn— D)ol + Ci(n— 1) 7

(n—2)(n—2v—1)Aw(n—1)
— 50 AT) (m).
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Moreover, we have the relation

205 (n =1+ (n—1C%(n—-1)+n(n—1)C%(n—1)

_(m=2)(n+2)(n _3168 2v)(5n — 10v — 7)Aw(n ~1).

Proof. By definition we have

W, r) = /G m(r)W:r”_l /S (W6,) (exp,, ().

Using Theorem 4.7 and Lemma 4.18, we get

s—2v

(W6,) (exp(ru)) = 3 1 Wosaulu) +0 (1°727)

a=-—2v

where W, (u), o > 2, is a partial curvature invariant in the direction of u with degree a
such that for all the Weyl invariants involved in its construction their number of degrees of
freedom has the same parity as . In fact, we have W (u) = 275 Ws(u)0a—p(u), o > 2,
and in particular, using Theorem 4.7 and Lemma 4.18

Wo(u) = (n—1)(n—2)Aw(n—1),

Wl (U) = O,
Wolu) = Aw(n—1) (1/7‘ B dv(n+1)+ (6n —1)(n-— Z)puu) (m),
W) = aufw)+ 2O (o, A0 Y,

where @, (u) is a simple directional curvature invariant of degree 4. Integration gives

s—2v
W(m,r) =r""* ( Z ra/ Wasaw (u)du + O (7‘8_2”“)) )
Sn—l

a=—2v

If o is odd, W, 9, (u) is a linear combination of Weyl invariants in the direction of u with
an odd number of degrees of freedom. Each one of them is an odd function on a sphere,
and thus its integral vanishes. Hence, we have

[572V

=]
W(m,r) =r""" Z r2 Woasaw(u)du + O (r*=211)
§n—1

o=—V

The problem of integrating Wa(u), with a > 1, reduces to the integration of directional
Weyl invariants of degree 2« in the direction of u with an even number of degrees of freedom.
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This number is at most 2a. For such an invariant, Lemma 4.19 asserts that its integral
is a linear combination of products of total traces, divided by certain polynomial. This
immediately implies that fsw—l Wgawy(u)du is a curvature invariant at m with degree 2,
and the first statement of Theorem 4.20 follows.

For the explicit expressions of W, W5 and W,, we may use the general method described
in this proof and just do the calculations taking into account the formulas for the known
Waa(u). Examples of those may be found in [33], [82] and [83]. Also, the calculations can
be obtained automatically using the program [39]. Finally, we integrate w,(u) which is a
simple curvature invariant at m of degree 4. Lemma 4.19 implies that [, , @4(u)du is a
simple curvature invariant of degree 4. Hence, we may write

1

[ @ntdu =~ (Chyln = DRI + Gl = Dl + Ciyn = ) 7))

and from here we get the expression for W, (m). Doing the Taylor power series expansion
of the function in Example 4.17 we get in a space of constant sectional curvature

n—1-—2v

/ W = Cno1(n —1)(n — 2)Aw(n — 1)r" 12 (1 A2
Gon(r) 6
—1-2 — 100 —
B2 )

Since for an n—dimensional space of constant sectional curvature A we have 7 = n(n — 1)\,
|R|*> = 2n(n — 1)A% and ||p||* = n(n — 1)®A? the integral [,, , @4(u)du becomes

/Snl Da(u)du = "t (zc;V(n 1)+ (n—1)C%n — 1) +n(n — 1)C3(n — 1))%.

But V2,7 = V2 _pu.. = 0 in a space of constant curvature and hence the last two equations
imply the desired result. O

4.2.3 Homogeneity and two—point homogeneous spaces

If M is a locally homogeneous Riemannian manifold, its total scalar curvatures W(m,r) =
/. G (1) W do not depend on the point m and thus one may wonder whether the converse
is also true. The answer is known to be positive for several special cases, but the problem
remains open in its full generality. In our general context, positive answers can be given
in a similar way as a consequence of Theorem 4.20 and the following result (we omit the
details, which are similar to those in [26]).

Proposition 4.21. Let W be a Weyl invariant such that Ay (n—1) # 0. If a Riemannian
manifold (M™, g) of dimension n > 2, n # 2v + 1 satisfies that W(m,r) is independent
of the point m, then the scalar curvature and the quadratic invariant C,(n — 1)||R||* +
C% (n—1)||p||* are constant.
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In particular, if W =1, S(m,r) = me(r) 1 is the volume of the geodesic sphere G, (r).
A manifold having the property that the volume of geodesic spheres is independent of the
center is called ball-homogeneous [26], [57]. Also, a Riemannian manifold is said to be
scalar curvature homogeneous if T (m,r) = me(T) 7 is independent of m [26], [81] (this is
also a particular case of our context for W = 7). Next, we show that both notions above
are equivalent for Einstein manifolds, thus answering a question stated in [26].

Theorem 4.22. Ball-homogeneity and scalar curvature homogeneity are equivalent in the
class of Finstein manifolds.

Proof. As usual, we denote by ' the derivative with respect to the radius r. We use the
following relation all over this proof

B (€xp,, (T0)) = not + Zigimgz;;

r

Taking derivatives and using the above relation we get

S'(m,r) = dir {r”_l/g B deu} = 7’"_1/S B (N, O ) da.

Again, taking derivatives with respect to the radius and using the relation between h,,, and
8,, we obtain

d -1
S"(m,r) = — [r"! (R Op)du| = ™1 n B Oy + R, 0, + h,, 0 ) du
d?“ gn—1 Sn—1 m m

r
_ gl / ((hfn 4 h;n) Qm) du.
Snfl

Taking traces in the Gauss equation we get the scalar curvature of a geodesic sphere G, (7).
Thisis T = 7—2 pyu+hZ, —||om||?. Next, we consider the Riccati equation, o’ +0%+ R, = 0,
and we take traces to get h,, + ||om||* + puu = 0. Therefore, the scalar curvature becomes
T =7T— puu + h% + h!,. Hence, 8”"(m,r) turns into

S"(m,r) =T (m,r) —r"* /§n1 (7 = puw) Om)-

In the class of Einstein manifolds 7 — p,, = ”T_l 7 is constant. Thus, we get

n—1

S"(m,r)=T(m,r) — TS(m,r).

n

Since 7 is constant, 7 depends on m if and only if S depends on m. n

Now, we turn our attention to the characterization of two—point homogeneous spaces
using the total curvatures of geodesic spheres associated with simple Weyl invariants.
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Theorem 4.23. Let (M", g) be a Riemannian manifold of dimension n > 2. Assume that
the total scalar curvature associated with a simple Weyl invariant of degree 2v is the same
as in a Riemannian manifold of constant sectional curvature \. If

n#2v+1, Aw(n—1) #0, Cly(n—1) #£0,
Chtn = 1) (Chln =1+ 2 Chn=1)) 20

then M is a Riemannian manifold of constant sectional curvature .
Proof. As we have already seen, in a manifold of constant sectional curvature A\, we have

n—1-—2v
6

W = coa(n—1)(n—2)Ap(n—1)r" =% (1 Ar?

(4.4) Gm(®)
+(n —1-2v)(5n —10v —7)

360

Since Ay (n—1) # 0 and n # 2v+ 1, comparing (4.4) with the expression in Theorem 4.20
we immediately get 7 = n(n — 1)A. Then, the formula of Theorem 4.20 becomes

Nt 4 0 (7«6)) .

2

Wm,r) = euar 72 (n = 1)(n = 2)Aw (n — 1) = =(n = 2)(n — 1 = 20) Ay (n — A

7,4

gy (O =D IRI? + Cio(n=1) ] +n%(n = 1y (n=1)X) + 0 () } ().

Comparing again with (4.4) we easily get

Cln=) (IR = 25 101P) + (Ctn =+ 2l =1)) (1ol - 572) =o.

The hypotheses of this theorem and Lemma 4.1 (a)—(b) imply that both terms of
the left—hand side of the above equation are simultaneously non—negative or non—positive
(depending on the sign of C}y,(n)). Then, both addends must be zero and hence ||R|? =
—2-|lp|l>. Thus, M has constant sectional curvature by Lemma 4.1 (a)—(b). Since 7 =
n(n — 1)\, the sectional curvature is precisely A. O

We state similar theorems for the other two—point homogeneous spaces. See [33] or [83]
for more information. The proof is similar to the above theorem using Lemma 4.1 (¢)—(d)
instead of Lemma 4.1 (b). We delete the details.

Theorem 4.24. Let (M?*", g, J) be a Kdihler manifold of complex dimensionn > 1. Assume
that the total scalar curvature associated with a simple Weyl invariant of degree 2v is the
same as in a Kdahler manifold of constant holomorphic sectional curvature . If

Aw(2n —1) #0, Cly(2n—1) #£0,
Cyy(2n —1) (C&V@n —-1)+ niHO;V(zn - 1)) >0,

then M is a Kdahler manifold of constant holomorphic sectional curvature .
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Theorem 4.25. Let M*" be a quaternionic Kahler manifold of real dimension 4n. Assume
that the total scalar curvature associated with a simple Weyl invariant of degree 2v is the
same as in a quaternionic Kdhler manifold of constant ()—sectional curvature \. If

Aw(4n —1) #£0, Ciy(4n —1) #0,
then M is a quaternionic Kdhler manifold of constant (Q—sectional curvature .

If the holonomy group of a Riemannian manifold is contained in Spin(9), then the
manifold is locally isometric to the Cayley projective or hyperbolic plane [2]. Combining
the previous results and this fact we get

Theorem 4.26. Let M be an n—dimensional Riemannian manifold, n > 2, whose holon-
omy group is contained in the holonomy group of one of the two—point homogeneous spaces.
Assume that the total scalar curvature associated with a simple Weyl invariant of degree
2v s the same as in the corresponding two—point homogeneous space. If

n#2v+1, Aw(n—1) #£0, Ch(n—1) #£0,

Ciy(n —1) (Csv(n - 1)+ %C;V(n — 1)) > 0,

then M s locally isometric to that space.

Remark 4.27. If n = 3, the Gauss—Bonnet theorem gives 7 (m,r) = 8r. Hence, 7 is a
topological invariant. Generalizations of the Gauss—Bonnet theorem show that some total
scalar curvatures have no geometrical meaning in certain dimensions [44]. Now, let W be a
simple Weyl invariant of order 2v. Consider a Riemannian manifold of constant sectional
curvature and dimension 2v+ 1. Then, Example 4.17 shows that W(m,r) = 2v(2v —1)cy,.
Thus, W(m,r) is a topological invariant for (2v + 1)—dimensional manifolds of constant
sectional curvature and therefore it cannot be used to determine the curvature.

Remark 4.28. The third condition in Theorem 4.26 can be dropped if the manifold is
assumed to be Einstein or locally conformally flat (see [44] or [83] for similar situations).

4.3 Applications

The purpose of this section is to employ Theorem 4.26 and its variations to characterize
two—point homogeneous spaces. It turns out that for certain important scalar curvature
invariants the hypotheses of Theorem 4.26 are satisfied and thus these invariants provide
essential information of two—point homogeneous spaces.

In what follows, we provide an immediate application of Theorem 4.26 for the simple
Weyl invariants of degree 4 and 6 given by (4.1) and (4.2). Then, we discuss further results
that can be obtained under assumptions which are not satisfied in Theorem 4.26.

Subsection 4.3.2 deals with total scalar curvatures of boundaries of geodesic disks in
a Riemannian manifold. The results of this section are consequence of those obtained in
Subsection 4.3.1. One may obtain more general results in the spirit of Theorem 4.26 but
we content ourselves with just a few examples.
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4.3.1 Total scalar curvatures of geodesic spheres

It is possible to give explicit expressions of Cf;; and C3, and Cf;, for simple Weyl invariants
of low degree. This was achieved for example in [37], [38], [39] and [44]. Since C}, can be
obtained from Cf;, and C3, from the relation of Theorem 4.20, we do not include it in the

following tables.
First, for the scalar curvature we have

W Cly(n—1) C%(n—1)
(n+2)(n+3) n? 4 5n + 21
’ 1200 45
For the simple Weyl invariant of degree 4 in (4.1) we have
1474 Cly(n—1) C%(n—1)
IR|? 59n% — 93n — 10 2(n? — 37n + 60)
60 45
5 n3 —9n? — 16n — 20 n3 + 31n? — 16n — 120
rdl - 190 T
) (n —2)(n —1)(n? + 13n + 10) nt 4+ 10n3 4 43n? — 14n + 120
’ - 120 45
Finally, for simple Weyl invariants of degree 6 in (4.2),
w Ciy(n—1) C%(n—1)
3 (n—1)%(n—2)2n%+2In+14) (n—1)(n—2)(n* + 18n3 + 118n? + 105n + 238)
. 120 45
5 | (n—1)(n—2)(n®—n? —28n — 28) (n — 2)(n* + 38n3 + 28n2 + 15n + 238)
Il |- 120 15
IR (n —1)(n — 2)(59n% — 101n — 14) 2(n* — 32n3 4 248n? — 135n + 238)
60 45
. (n —2)(n3 — 41n? — 28n — 28) (n —2)(n3 + 79n2 — 73n — 238)
P - 120 45
_ nt —23n3 + 34n? + 28n + 56 nt +57n3 — 141n? — 2n + 476
(popR) = 120 45
(o B 59n3 — 179n? + 188n + 28 2(n® + 9n? + 7Tn — 238)
’ 60 45
P 179n% — 261n — 14 4(n? — 129n + 119)
30 45
A ~ n®+138n% — 289n — 42 n3 + 78n? + 56n — 357
120 45
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Ezample 4.29. Using the expressions of Example 4.3 and the coefficients of Cf;; and C3%,
just calculated, we may check the conditions of Theorem 4.26. We give a table with those
simple Weyl invariants which can be used for characterizing the two—point homogeneous
spaces and the dimension n for which the conditions of Theorem 4.26 hold.

w C(n — 1)+%C§V(n— 1) n
IR| an3 + 2278?7;1—_1(15))71 — 270 R
|2 4n* + 117n31—801<€;1221; 368n + 540 3<n<10,n+5
Il (n — 2)(4n* + 14903 :—8315712 + 144n + 1036) 5 <n<g
IR 4n* 4 49n® + 3395(;12 + 24n 4 1036 n>2mAT
5 (n—2)(4n" + 303;’;(; 4_8312 — 576n + 1036 S<m<dlnidT
(® o ) 4nf 4 221n* — 72?122(24_5%2 + 1828n — 2072 3<n<alntl
o) 4n* 4 2093 —902(?157121; 6961 + 1036 N2 ntT
i (n — 2)(;1;(2;_215)71 + 259) NS on AT

In particular, we emphasize the following result which gives an answer to a question
posed in [33] of whether a single invariant might be used for the characterization of the
two—point homogeneous spaces. Characterizations with two invariants have already been

obtained in [33].

Theorem 4.30. Let M a Riemannian manifold of dimension n > 2 whose holonomy group

is contained in the holonomy of one of the two—point homogenous spaces. The following
statements are equivalent:

1) For each sufficiently small geodesic sphere, R||? is the same as in the two—point
Gm(7)
homogeneous space (n #5).

(i) For each sufficiently small geodesic sphere, me(r) FIIR|? is the same as in the two-
point homogeneous space (n # 7).

(i1i) For each sufficiently small geodesic sphere, me(T) (p, R) is the same as in the two—
point homogeneous space (n # 7).
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(iv) For each sufficiently small geodesic sphere, me(r) R is the same as in the two—point
homogeneous space (n # 7).

(v) M is locally isometric to that two—point homogeneous space.

Remark 4.31. If the manifold is assumed to be Einstein or locally conformally flat then all
the simple Weyl invariants of degree 4 and 6 appearing in (4.1) and (4.2) can be used to
characterize the two—point homogeneous spaces.

Dimension 5 (resp. 7) is a singular case for simple scalar curvature invariants of degree
4 (resp. 6) since the corresponding total curvatures of geodesic spheres are topological
invariants in manifolds of constant sectional curvature (see Remark 4.27). Nonetheless, we
can still detect constant curvature manifolds [37], [44] although we cannot determine the
exact value of their sectional curvature.

Theorem 4.32. Let M a 5-dimensional Riemannian manifold. The following statements
are equivalent:

(i) For each sufficiently small geodesic sphere, me(r)Hﬁﬂz is the same as in a manifold
of constant sectional curvature.

(ii) For each sufficiently small geodesic sphere, me(T)HﬁH2 is the same as in a manifold
of constant sectional curvature.

(iii) M has constant sectional curvature.

Proof. Using Theorem 4.20 and the formulas for C’ﬁRHQ and C’ﬁRHQ at the beginning of this
section we get

/ HMP—Mc+ic 1RIE = S102) = 2 (o2 = L 72) Y m) + 0 ()
() T 2 9 5 '

By Remark 4.27 we obtain that in a manifold of constant sectional curvature [, - |R|% =
24c4. Hence, comparing this two expressions we get

35 1
(e = 50012) + 3 (ol = 37 <o

and it follows from Lemma 4.1 that M has constant sectional curvature. For [p|* we
proceed in an analogous way taking into account that

4
- 1 2 298 2 1 9 6
[ e = stes e (1mE - 10k*) + 55 (Wl =572 pom +0 7).

and using Lemma 4.1 once again. O

In a similar way we obtain the following result. We delete the details [38].
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Theorem 4.33. Let M a 7-dimensional Riemannian manifold. The following statements
are equivalent:

(i) For each sufficiently small geodesic sphere, me(T) 7|\ R||? is the same as in a manifold
of constant sectional curvature.

(ii) For each sufficiently small geodesic sphere, me(T) ;5 1s the same as in a manifold of
constant sectional curvature.

111) For each sufficiently small geodesic sphere, PR p, }:é is the same as in a man-
y g P )P @D
ifold of constant sectional curvature.
w) For each sufficiently small geodesic sphere, 0, R) is the same as in a manifold
Gm(r)
of constant sectional curvature.

(v) For each sufficiently small geodesic sphere, me(T) R is the same as in a manifold of
constant sectional curvature.

(vi) M has constant sectional curvature.

4.3.2 Total scalar curvatures of boundaries of geodesic disks

Geodesic disks were introduced by O. Kowalski and L. Vanhecke as a generalization of
two—dimensional disks in the Euclidean space R®. In a series of papers [93], [94], [95],
they investigated their volume properties in relation to local homogeneity and gave a
characterization of two—point homogeneous spaces by means of the volumes of their small
geodesic disks. Since the boundaries of small geodesic disks are compact submanifolds, we
are interested in their total scalar curvatures obtained by integrating the corresponding
scalar curvature invariants.

The geodesic disk, DS, (r), of sufficiently small radius r, centered at m € M and orthog-
onal to & € T,,M, is defined by

D5 (r) = {exp,,(su):u € T,M, ||lu| =1, g(u,&) =0, 0 < s <r}
= {pe M :d(m,p) <r}nexp,, (REL).

For the purpose of this section and the investigation of total scalar curvatures, we consider
the boundaries of geodesic disks

DS.(r) ={p € M : d(m,p) = r} Nexp,,(REH).

The boundary of a geodesic disk is nothing but a geodesic sphere of the (local) manifold
exp,,(REL) centered at m for sufficiently small radius. Throughout this section we use
the following notation. The objects of M are denoted by R, p and so on, the objects of
exp,,(REL) are denoted by R, p, ... and the objects of boundaries of geodesic disks are
denoted by R, p and so on.
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In what follows we consider the total scalar curvatures of boundaries of geodesic disks
associated with scalar curvature invariants of degree 2 and 4. Hence, it suffices to study
the scalar curvature 7 and the scalar curvature invariants in (4.1). We do not consider the
Laplacian of the scalar curvature since |, G (1) AFdu =0 by the divergence theorem.

In order to obtain the first terms in the power series expansions of total curvatures
of boundaries of geodesic disks, we need the following result relating scalar curvature
invariants of degree 2 and 4 of exp,,(R¢L) with the corresponding objects in M.

Lemma 4.34. Let (M, g) be an n—dimensional Riemannian manifold and & € T,, M a unit
vector. Then, the following relation holds at m:

IRI? = |RIP+4) R —4 Y Riy,
ij=1 z’jk 1
1pI1” = ||P||2+P§g_zngz+ ZRgzgg 2szyR§z£J=
i,j=1 i,j=1
T = T—2p¢,

AT = AT —2Apge +2Viepee — Vi + pss Zpgﬂr ZR&& Z Rejr.

1,j=1 i,j,k:l
Proof. Tt follows from the work in [93], after some calculations. O]

The first terms in the power series expansions of the total curvatures of the boundaries
of geodesic disks are obtained from the corresponding ones of geodesic spheres. We use the
results of Section 4.3.1 in conjunction to Lemma 4.34. We omit the calculations which are
straightforward and immediately state the different expansions separately in the following

Proposition 4.35. Let (M, g) be an n-dimensional Riemannian manifold, m € M and

& e T, M a unit vector. Then, for sufficiently small radius r, one has the following power
series erpansions

/Dg 3= { (n=D(=3) (m=3n=14) ,

r? 6(n—1)
N r? n2—9n+27_2_(n+2)(n+1)HRH2 n? +3n+17H 2
(n—1(n+1) 72 120
(n—3)(n—4) (n—3)(n—4) n?—9n+2
— 20 AT -+ 20 (VEET — 2V§§pgg -+ 2Ap§§) — TTpgg

n

M+2)(n+11) < 5, (=4 (Tn—11) < ., n?—2n+7 )
- 45 D Pa - 90 D R+ 1 > R
i=1 i,j=1 i,j,k=1

2(n? +3n +17) < (n—1)(n —4)
N 45 ]Zl HeiePii 18 Pee | O () ¢(m),
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22 w2 (M=2*(n—=3)* (n—3)*(n—06)(n—2)
=, — -2
R 6n—y )

N 1 n* — 18n3 + 77n* — 164n — 84 2 (n—3)%*(n—6)(n—2) Ar
(n—1)(n+1) 72 20
n*+6n®+19n*> —74n +168 , , (n—2)(n—3)(n*+11ln —2) 5

+ 15 loll” = 120 IRl
nt 42603 —31n? —4n + 228~ , (n—2)(n—3)(n2+n+8) <

_ ‘ R2.

n* — 18n% + 77n? — 164n — 84 Tnt — 78n3 + 223n? — 488n + 276 2”: B2
18 Pee 90 = €igj
2(n* 4+ 6n° + 19n% — T4n + 168) n* —10n® + 57n? — 136n — 60
A ) > Reiejpij + Pee
45 = 18
(n —3)%(n — 6)(n —2)
+ 50 (Veer = 2Veepee +20pge) ) + O(r) ¢ (m),
A2 w2 f (n—=2)(n—3)% (n—3)*(n—6)
—c,_ — —2
[, e = e B2 O (- 2000
1 n®—16n*+13n+46 , n®—12n?+5n— 14 9

+ T = IRl
(n—1)(n+1) 72 120
n3+28n* —75n —74 ., (n—3)*(n—6) n® — 35n + 38

— A - TT T2

* 45 Il 20 T 18 e
(n — 3)*(n — 6) n3 — 16n? + 13n + 46

+ 20 (VEET - 2V§§,0§§ + 2Ap§§) - 18 TPeg
2(n3 + 28n% — Thn — T4) < Tn® — 164n? 4 435n — 218

- > Reicipiy = > Ri

45 Pt 90 =
n® + 68n2 — 195n — 94 < n® —12n? + 25m — 34 <

- 15 Zpé + 15 Z Rgijk) + O(T)}(m),

i=1 i,5,k=1
. o[2(n—=2)(n—-3) (n—3)(n—06)
[N = {2 =D (- 2
1 n?—13n+14 , 59n? — 211n + 142 (n—3)(n —6)
R|]* - A

+(n—1)(n+1)( % " 60 1% 10 7

2(n? —39n +98)  , 173n% —657Tn + 514 <~ , 4(n? — 39n + 98) <

RE,. — Reic;pij

2(29n% — 101n 4+ 62) < (n—3)(n—6) ,_, )

- 15 > Réget 10 (Ve — 2Viepee + 2Apee)
1,5,k=1

n

2(n% — 69n + 178) n?—13n + 14 (n —2)(n —23)
45 D Pk~ 9 TPes 9 Pec | +O(r) ¢ (m).

=1
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As an application of the expansions in Theorem 4.35 we are now ready to obtain
characterizations of the two—point homogeneous spaces by means of the total curvatures
of the boundaries of geodesic disks.

Lemma 4.36. Let M be an n—dimensional Riemannian manifold. Assume that one of the
following holds:

(i) We have n > 4 and [, (T)f' coincides with the corresponding one in an Einstein
manifold.

ii) We have 3 < n # 6 and any of [, . 72, X 2 or X IR||? coincides with
DS, (r) Db, () 1P Dg,
the corresponding one in an Finstein mam'fold

Then M is an Einstein manifold with the same scalar curvature as the model space.

Proof. In case (i) it follows from the constant term of the power series expansion of [ T

in Proposition 4.35. In case (ii) it follows from the coefficient of r~2 in the power series
expansion of fD?n(r) 72 fD%(T) |pl|? or fD%(T) | R||* in Proposition 4.35. O

Lemma 4.37. Let M be an n—dimensional Riemannian manifold. Assume that one of the
following holds:

(i) We have n > 4 and ng ") 7 does not depend on the normal direction .

(ii) We have 3 <n # 6 and one of [,e 7%, [pe (o 1817 or [pe i,y |R||? does not depend
on the normal direction €.

Then, M s 2—stein.

Proof. Assume that (i) holds. Since the total scalar curvatures of the boundaries of geodesic
disks of the manifold M do not depend on the normal direction, the constant term and the
coefficient of 72 in its power series expansion given by Proposition 4.35 are independent
of the unit £ € T'M. From the independent term it follows that 7 — 2p¢¢ is constant and
hence M is an Einstein space. Moreover, for an Einstein manifold, the coefficient of 72 in
the power series expansion of f D, (1) 7 becomes

1 (n —4)(5n® — 3Tn? + 62n + 92) 2 (n+2)(n+1) IR
(n—1)(n+1) 360n2 120
(n — 2n n’—2n+7 =
- Z Reiej + > R

1,7=1 1,5,k=1

Therefore, using Lemma 4.10 we get that M is a 2-stein space.
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If (i) holds, we get the result in a similar way. From the coefficient of 7=2 in the power
series expansions of [1e ) 7%, [Le ) [|AlI* and [ ) [|R||* we deduce that M is Einstein,
and then, rewriting the independent terms of those power series expansions we get

1 5nS — 102n° + 789n* — 271203 + 3352n% 4 1520n — 5712
.
(n—1)(n+1) 360n2
(n—2)(n—3)(n2+11ln—2) , _ » 7Tn*—78n3 +223n2 — 488n + 276 <~ _,
a 120 121" = 90 Z Rejej
i,j=1
(n—2)n—3)n>+n+8) <~ .»
+ 15 Z Rgijk; )
i,5,k=1
1 7n® — 164n® + 435n — 218 Z”: B2 n3 —12n% + 5n — 14 IR|?
n—1)(n+ “ L9
1 1 90 Pt Cits 120
5n — 92n* + 6051 — 1622n? + 548n + 2696 - n® —12n% 4+ 25n — 34 B2
360n2 * 15 2 B
1,7,k=1
1 5nt — 77n® 4+ 14n? + 1180n — 2072 N 59n% — 211n + 142 IR|?
T
(n—1)(n+1) 180n? 60
173n% — 657n + 514 <~ ., 2(29n% — 101n + 62) <~ .,
t 5 > R - 5 > Ry
=1 i,5,k=1

for fon(r) 72 fon(r) 1]|? and ng ") || 2|2, respectively. Applying Lemma 4.10 one eventu-
ally gets the result. O]

Now we are ready to derive the desired characterizations of the two—point homogeneous
spaces for n > 4.

Theorem 4.38. Let M be an n—dimensional Riemannian manifold whose holonomy group
18 contained in the holonomy group of a two—point homogeneous space. If n > 4 and ng ") T
coincides with that of the two—point homogeneous space for sufficiently small radius, then

M s locally isometric to that two—point homogeneous space.

Proof. It follows from Lemma 4.37 (i) that M is 2-stein and thus super—Einstein [33], from
where we get that

3 1
Z Ry = —+2) (5 |R||* + - 72> and Z R = ’RHZ
1,j=1 i,5,k=1

Then, the coefficient of 7? in the power series expansion of [ DS, (1) 7 given by Proposition
4.35 becomes

n—4 5n* —27n® — 12n? 4+ 188n + 228 , n3+n?+26n+6 IR
T — :
n(n?—1)(n+2) 360n 120
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Now the result is obtained just by comparing this with the corresponding coefficient in the
model space and using Lemma 4.1. O]

It is worthwhile to emphasize that dimension four is excluded in the previous theo-
rem. Since the boundaries of the geodesic disks in a 4-dimensional manifold are compact
surfaces, the total curvature [ DS, (r) 7 is the Gauss Bonnet integral, and thus a topological
invariant.

Theorem 4.39. Let M be an n—dimensional Riemannian manifold whose holonomy group
is contained in the holonomy group of a two—point homogeneous space. If 3 < n # 6 and
one of [pe 7% [pe o A1 or [pe |R||? coincides with that of the two—point homo-
geneous space for sufficiently small radius, then M is locally isometric to that two—point
homogeneous space.

Proof. We proceed as in the previous theorem. Using Lemma 4.37 (ii) we get that M is 2—
stein. Then, the independent terms of the power series expansions of [ ") 72, e - A%

o Jpe () || R||? given by Proposition 4.35 become

1 5n” —92n° + 585n° — 1162n* — 1760n3 + 7332n% — 720n — 12528
-
n(n?—1)(n+2) 360n
n® —9nt — 190n3 + 714n? — 840n — 216 IR
120 ’
n—3 5n5 — 67n 4 220n3 + 220n% — 1380n — 2088
-
n(n? —1)(n+2) 360n
(n* —14n — 2)(n? — n + 18) IR
120 ’
1 (n — 3)(5n* — 52n® — 206n% + 10120 + 696
-
n(n?—1)(n+2) 180n
N (n — 3)(59n3 — 148n? — 34n — 12)
60 ’

respectively. Now the result follows by comparing these coefficients with the corresponding
ones in the model spaces and using Lemma 4.1. O]



Chapter 5

Geodesic celestial spheres in
Lorentzian manifolds

In the previous chapter we have seen that every Riemannian manifold carries a so—called
Riemannian distance function whose level sets with respect to a point are exactly the
geodesic spheres of the manifold. Moreover, geodesic spheres can also be seen as the
image by the exponential map of Euclidean spheres in the tangent space at a point. In
the general semi-Riemannian setting, such a distance is not defined and the fact that the
pseudo—spheres of the tangent space are not compact leads us to believe that their image
by the exponential map is not suitable for study.

A distance-like function d : M x M — [0, 00] may be defined for space-times. For
any p,q € M we have d(p,q) = 0 if and only if ¢ is not in the causal future of p and
d(p,q) = sup{L(c) : cis a future directed non—spacelike curve from p to ¢} if ¢ is in the
causal future of p. However, the properties of this distance function are completely different
from those in the Riemannian setting [7]. For example, the “Lorentzian distance” may fail
to be continuous or finite—valued and its level sets with respect to a given point are not
compact. Some properties of those sets have been previously investigated [4], [56], but they
do not seem to be adequate for the investigation of volume properties. Therefore, different
families of objects have been considered for this purpose in Lorentzian geometry. We give
an overview of these constructions in Section 5.1.

The concept of geodesic celestial sphere which we introduce in this chapter is somehow
an extension of the concept of geodesic disk to Lorentzian geometry. Given a unit timelike
vector, its orthogonal complement in the tangent space has definite signature. In Relativity,
a unit timelike vector £ is called an instantaneous observer and its orthogonal complement
in the tangent space is called the infinitesimal rest—space of £. In Special Relativity the
rest space of an instantaneous observer corresponds to the Newtonian universe perceived by
this observer. A geodesic celestial sphere is the image by the exponential map of a sphere
centered at the origin of the rest—space associated with certain instantaneous observer.

It is clear that every geodesic celestial sphere (for sufficiently small radius) is a com-
pact Riemannian submanifold. We see in this chapter that geodesic celestial spheres are
closely related to geodesic spheres and they inherit most of their properties. Thus, volume

95
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properties can be discussed and in many cases we get analogous results to those of the
Riemannian setting.

This chapter is organized as follows. Section 5.1 reviews some constructions in Riemann-
ian and Lorentzian geometry which we attempt to generalize. In Section 5.2 we study the
volume of geodesic celestial spheres and give the necessary background to prove the main
theorems of this section, namely, Theorems 5.16 and 5.17 (which compare the volumes of
sufficiently small geodesic celestial spheres in a Lorentzian manifold with the corresponding
ones in a Lorentzian space form) and Theorem 5.22 (which characterizes locally isotropic
space—times). Finally, in Section 5.3 we state some results analogous to Theorem 5.22
showing that local isotropy can be detected by considering the total curvatures of geodesic
celestial spheres. We also give examples of scalar curvature invariants which may be used
for this characterization.

5.1 Volume comparison results

Any Riemannian manifold (M™! g) carries a Riemannian distance function which has a
very nice behavior with respect to the underlying structure of the manifold. Therefore, a
natural family of subregions of a Riemannian manifold to be considered is that defined by
the level sets of the Riemannian distance function with respect to a base point (that is,
geodesic spheres) or with respect to some topologically embedded submanifolds (that is,
tubes around a submanifold).

For sufficiently small radii » > 0, geodesic spheres G,,(r) are obtained by projecting
the Euclidean spheres S™(r) centered at 0 € T,,M via the exponential map. Therefore,
they are a nice family of hypersurfaces and their volume can be calculated as

S(m,r) =vol (G, (r)) = T"/ Om(expp, (ru))du.

Comparison theorems for the volumes of subregions of Riemannian manifolds under some
curvature hypotheses have played an important role in Riemannian geometry. For instance,
the Bishop—Giinther inequalities show lower (resp. upper) bounds for volumes of geodesic
balls and tubes by imposing upper (resp. lower) bounds on the sectional curvature. These
inequalities have been improved by assuming weaker conditions on the Ricci tensor or by
considering the ratio between the volumes of geodesic balls in the manifold and the model
spaces (see for example [82] and the references therein).

The basic idea behind the Bishop—Giinter and Gromov comparison theorems [82], is
that under suitable curvature conditions the Riccati differential equation

S'+S*+R,=0.

becomes an inequality and its solutions give upper or lower bounds for the volume density
function #,, in terms of the corresponding function in the model space via

0
hon(exp,,, (T10)) = ; + g log 6,,,(exp,, (ru)).
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Finally, an integration process from the Riccati equations leads to [18], [86]

Theorem 5.1. Let (M™! g) be a complete Riemannian manifold and assume that r is
not greater than the distance between m and its cut locus. Let K™ denote the sectional
curvature of (M, g).

(i) If KM > X, then vol™ (G,,(r)) < vol M (G (r)).
(i) If KM <\, then vol™ (G, (1)) > vol™ V(G (r)).

Here, M(X) is a model space of constant sectional curvature A\ and m € M(X). More-
over, equalities hold for (i) or (ii) and some radii if and only if G,,(r) is isometric to the
corresponding geodesic sphere in the model space.

A sharper result involving the Ricci curvature instead of the sectional curvature was
proved by R. L. Bishop [18].

Theorem 5.2. Let (M™" g) be a complete Riemannian manifold. Assume that r is not
greater that the distance between m and its cut locus and the Ricci curvature p™ of (M, g)
satisfies pM (v,v) > n X for all vectors v € TM.

Then vol™ (G (r)) < volMMN(Gp(r)), where M()) is a space of constant sectional
curvature A. The equality holds if and only if G,,(r) is isometric to the corresponding
geodesic sphere in the model space.

A further generalization of Theorem 5.2 was obtained by M. Gromov as follows [85].

Theorem 5.3. Let (M", g) be a complete Riemannian manifold. Assume that r is not
greater that the distance between m and its cut locus and that the Ricci curvature p™ of
(M, g) satisfies p™ (v,v) > n X\ for all vectors v. Then the function

vol™ (G (1))
volM (Ga(r)) ’

T =

where M(X) is a space of constant sectional curvature \, is non—increasing.

When the attention is turned from Riemannian manifolds to space-times, various dif-
ficulties emerge. For example, conditions on bounds for the sectional curvature (resp. the
Ricci tensor) easily produce manifolds of constant sectional curvature (resp. Einstein) [7],
[108]. This demands a revision of such conditions [5] (see Section 5.2.2). However, a more
difficult task is related to the consideration of the regions under investigation. This is
mainly due to the fact that when dealing with general semi-Riemannian manifolds there is
no “semi-Riemannian distance function”. In fact, a distance—like function is only defined
for space—times, but even in this case its properties are completely different from those in
the Riemannian setting (see [7]). For instance, level sets of the Lorentzian distance func-
tion with respect to a given point are not compact and they do not seem to be adequate for
the investigation of volume properties. Therefore, different families of objects have been
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considered in Lorentzian geometry for the purpose of investigating their volume properties.
Among those, truncated light cones, compact distance wedges in the chronological future
of some point, and more generally some neighborhoods covered by timelike geodesics ema-
nating from a given point have been investigated. In what follows we review some known
results of the geometry of those families. Then, we introduce geodesic celestial spheres,
which is the main object of study throughout this chapter.

5.1.1 Truncated light cones

Truncated light cones were defined in [66], [67] where the authors studied the link between
the volume of the light cones and the curvature of a Lorentzian manifold.

Let £ be an instantaneous observer. The truncated light cone of (sufficiently small)
height T and axis & is the set

Le(T) = { expy,(u) : (w,u) <0, 0< —(u, &) <T}.

Figure 5.1: Truncated light cones in R? with height 7' = 3 and axes & = (0,1) and
§o = (17 \/i)

It is easy to see that the volume of a truncated light cone in the four—-dimensional
Minkowski space-time is given by vol(L¢(T)) = «#T*/3. The investigation of whether this
volume property is characteristic of the Minkowski space motivated further work by R.
Schimming [117], [118], who proved the following result. See also [66].

Theorem 5.4. Let (M, g) be a Lorentzian manifold such that every truncated light cone
has the same volume as in the Minkowski space—time. Then (M, g) is locally flat.

5.1.2 Compact distance wedges

Let E denote the set of future pointing unit timelike vectors in T}, M such that the expo-
nential map is well defined. Let K be a compact subset of E and put 8 = exp,,(toK),
which is a compact subset of the level set d_!(ty) of the Lorentzian distance function with
respect to m € M and which is well defined for sufficiently small ¢,.
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The K-distance wedge B2 (to) is defined by [54]

B2 (ty) = {exp,,(tv) ;v € K, 0 <t < ty}.

N/

Figure 5.2: f-distance wedge centered at m up to a distance t,.

In order to study volume comparison results with model spaces, one needs a method to
relate distance wedges on M and the model space. One proceeds as follows. Choose a point
m in the model space of constant sectional curvature M(—X\) and define a differentiable
map ¥ by U = expy "V ot o (exp™) 1, where ) : T, M — T M(—)) is a linear isometry.
Then, given a distance wedge B%(t,) and using the timelike vectors (K in Ty M (—\) to
construct the corresponding wedge B;g(ﬁ‘) (to) in M(—A), we have B,‘;(ﬁ) (to) = U(BX(ty))
for sufficiently small ¢g.

By making use of the Riccati equation and comparison of the Jacobi equations, the
following volume comparison results for compact distance wedges have been obtained by
P. Ehrlich, Y.-T. Jung and S.-B. Kim [54] as an analogous of the Giinter-Bishop and
Gromov theorems.

Theorem 5.5. Let (M™ g) be a globally hyperbolic space—time satisfying p™(v,v) >
nA > 0 for all timelike unit vectors v. Then for all 0 < 1o < injg(m),

vol (B (rg)) < volM(_)‘)(Bg((i))(rg))

and equality holds at some ro > 0 if and only if BX(r) and BE((:?) (r) are isometric for all
0<r<nrg.

Theorem 5.6. Let (M™ g) be a globally hyperbolic space—time satisfying p™ (v,v) >
nA >0 for all timelike unit vectors v. Then for all 0 < ro <11 < injg

m)?
volM (B (1)) volM (B2 (ry))
volM(_)‘)(Bj((ﬁ)) (ro)) UOZM(_A)(Bj((qﬁ))(rl))

Moreover, equality holds for some 0 < ro < r1 < injg,, if and only if B2(r) and Bj((::))(r)
are isometric for all 0 < r < ry.
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Note that, when comparing with the corresponding results in the Riemannian setting,
inequalities in the previous theorems are with respect to a space of constant sectional
curvature —\. This is due to the fact that the assumption on the Ricci tensor in Theorems
5.2 and 5.3 gives reversed inequalities when considering the Ricatti equation.

5.1.3 SCLV sets

A further generalization of the distance wedges was obtained in [55], where the authors
considered a more general family of subsets of a Lorentzian manifold. Let m € M and
take U C T,,M an open subset in the causal future of the origin, U C J*(0) such that U
is star-shaped from the origin and the exponential map exp,,; is a diffeomorphism onto
its image Y = exp,, U. We also assume that the closure of U is compact.

A subset i as above is called standard for comparison of Lorentzian volumes (SCLV
set) at the base point m € M [55].

Figure 5.3: A SCLV set.

In order to state some comparison results with spaces of constant sectional curvature
M (M), a transplantation process is also needed as before. Let ¢ : T,,M — T;M(\) be a
linear isometry, and define the transplantation map ¥ on a sufficiently small open set as
U = exp%(’\) o) o (expM)~L. For any U C T,,M put Uy = ¢(U) and U, = exp%j(A)(U,\) =
U (L) which makes possible a volume comparison between SCLV sets in M and M(\).
Then we have [55]

Theorem 5.7. Let (M, g) be a (n+ 1)-dimensional Lorentzian manifold and assume that
pM(v,v) = nXg(v,v) for all timelike vector fields v = % exp,,(tvy,)|i—, tangent to L at
m € M. If L is a SCLV set at m, then

volM () < vol™™ (y1y)
and the equality holds if and only if U : L — U, is an isometry.

A comparison result in the spirit of Bishop—Gromov Theorem can also be stated for
SCLV sets, but it requires some previous conventions. For each r > 0 put U(r) =r-U =
{ru:ue U}, Us(r) =r Uy, U(r) = expM (U(r)), Ur(r) = exp™ (U, (r)). Note that the
star-shaped form of SCLV sets ensures the possibility of constructing the above sets for
r > 0 sufficiently small. Then, we have the following result [55].
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Theorem 5.8. Let (M™*! g) be a Lorentz manifold such that p(v,v) > nXg(v,v) for
all timelike vector fields v = 4% exp,,(tvm)|i—t, tangent to a SCLV set U based at m €
M. Assume that ¢ = 0 or the cut function cy of U is constant. Then, the function
r— vol™ (U(r))/ vol™ N (4Uy(r)) is non—increasing. Moreover if there exists 1y < T4 such
that vol™ (U(r1)) /vol™MX (U (1)) = volM (U(r3)) /vol™MPN (Uy(ra)) then U(r) and Uy(r) are

isometric.

5.1.4 Geodesic celestial spheres

In this subsection we consider a different family of geometric objects from those presented
so far, the so—called geodesic celestial spheres.

In Relativity, a unit timelike vector £ € T,, M is called an instantaneous observer, and
R&S s called the infinitesimal rest-space of £, that is, the infinitesimal Newtonian universe
where the observer perceives particles as Newtonian particles relative to his rest position.
The celestial sphere of radius r perpendicular to a unit timelike vector £ is defined as the
set S(r) = {x € & ¢ ||z|| = 7} (see [114]). If U is a sufficiently small neighborhood of the
origin in T,,M, M = exp,,(44 N &) is an embedded Riemannian submanifold of M. We
denote by V the Levi-Civita connection of M. , by R its _curvature tensor and, in general,
we use the symbol ~ to denote the geometric objects of M.

We define the geodesic celestial sphere of radius r associated with & as [46]

GS,(r) = exp,, ({z € &« ||zl = r}) = exp,,, (S°(r)).

Figure 5.4: A plot of geodesic celestial spheres in the Minkowski space—time
(R3, —dt? + dz? + dy2) with center (1,1, 1) associated with the instantaneous observers

(1,0,0) and (2/v/3,1/v/3,0).
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Figure 5.5: Geodesic celestial spheres in a space-time of constant sectional curva-

ture <R3, (1+_ld(t:r2d4fijfzj))2> with centers at (0,0,0), (0,1,1), (1,1,1) and (—1/2,1,1)
4
2 1

associated with the instantaneous observers (1,0,0) and (73, 75 0).

Figure 5.6: A graphic of geodesic celestial
spheres in the warped product Lorentzian mani-
fold ((R—{0}) xR2, —dt>+ % (dz? + dy?)) with
center (1, 1,1) associated with the instantaneous

observers (1,0,0) and (\%, \%,0).
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For sufficiently small radius 7, G$, (r) is a compact submanifold of M. Furthermore,
by definition, a geodesic celestial sphere G¢ (r) is nothing but a geodesic sphere G,,(r)
of radius r centered at m in the submanifold M. Therefore, by studying the volumes of
geodesic celestial spheres in comparison with the volumes of the corresponding celestial
spheres one obtains a measure of how the exponential map distorts volumes on spacelike

directions.

5.2 Volume of geodesic celestial spheres

In this section we study the volume of geodesic celestial spheres. Our objectives are two—
fold. On the one hand, we are interested in volume comparison results in the spirit of the
Bishop—Giinther and Gromov theorems previously discussed. Then we characterize locally
isotropic Lorentzian manifolds by means of the volume of geodesic celestial spheres.

From the very definition of geodesic celestial sphere it is clear that for a given radius, the
volume of geodesic celestial spheres depends both on the observer field ¢ € T,,M and the
center point m € M. However, if (M, g) is assumed to be of constant sectional curvature,
then the volumes depend only on the radii, as Lorentzian space forms are locally isotropic
[133]. The converse result is also true. Indeed, one may compute the volume of geodesic
celestial spheres in a Lorentzian space form [46].

Theorem 5.9. Let M™1()\) be a Lorentzian manifold of constant sectional curvature \.
Then, for each point m € M and each instantaneous observer & € T,, M, the volume of the
geodesic celestial sphere G, (1) satisfies

n—1
sin rv/\
Cp-1 —\/X , A > 0,

vol,, 1 (G%(T)) =9 ¢ A=0,

n—1
inh rv/—A\
Cn—1 (%) s A <0.

Proof. Consider the manifold M = exp,, (Llﬂ]Rf‘L) defined above, which is an embed-
ded Riemannian submanifold of M. Since M has constant sectional curvature A, M
has also sectional curvature A (see for example [116]). As it was noticed before, the
geodesic celestial sphere G¢ (r) is the geodesic sphere of radius r centered at m of the

n—dimensional Riemannian submanifold M. The volume of geodesic spheres in constant
curvature Riemannian manifolds is well known [33], [83], [128], which gives the formula of
the statement of this theorem. O

If N(\) is a Lorentzian manifold of constant sectional curvature A\, by Theorem 5.9,
the volume of a geodesic celestial sphere is independent of the base point m € N()) and
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the instantaneous observer ¢ € T, N(A). Thus, in this case we can use the unambiguous
notation

vol,_1 (G(r)) = vol,_1 (G5,(r)) -

For the purpose of the comparison results below, we will also denote by volX’ | (an(r)) the
(n — 1)-dimensional volume of the geodesic celestial sphere G¢ (r) of radius r and center
m associated with the instantaneous observer £ in the manifold M.

In the following subsection we give the technical background to prove the main theorems
of this chapter, which are in Subsections 5.2.2 and 5.2.3.

5.2.1 Power series expansions

The technique we use to prove the main results of this chapter relies on the possibil-
ity of writing down the first terms in the power series expansion of the function r —
voli! | (GS,(r)), for sufficiently small 7.

From now on we assume the following notation. For fixed m € M and § € T,,,M we
consider the Riemannian submanifold M = exp,, (4 N &T), where 4 is a sufficiently small
neighborhood of m. Objects of M are denoted by . We choose an orthonormal basis

{eo =&, e1,...,e,} at m.

Lemma 5.10. With the above notation, the first and second order curvature invariants of
M and M at the base point m satisfy

IR|I* = |R|*+4 Z Rgj —4 Z R,
ij k=1 i,j=1
n n n
Hﬁ”2 = H/)HZ + 22/)21' - pé + Z Rgigj +2 Z pijReicj,
i=1 ij=1 ij=1
T =T + ngg,

AT = AT+ 2Ape + VET +2Viepee + 5 Z pat 3 Z R% .

i,5,k=1

Proof. Denote by ¢ alocal extension of 5 € T, M to the normal bundle of M. If cis a radial
geodesic in M starting at m, then Voo’ = Vod = II(d,¢) = 0 since M = exp,, (SNREL).
Thus, taking covariant derivatives and evaluating at m, we get V =0, k>0, for all
u €T, mM . For k = 0 we immediately get by polarization that

ow =0, forall u,ve Tmﬂ.

Now put £ = 1 and take arbitrary a,b,c € R and u,v,w € Tmﬂ. We have

0= vau+bv+cwaau+bv+cw,au+b'u+cw = -+ 2abc (vuavw + v'uo-uw + vwauv) + -
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and hence 6uovw + ﬁvauw + %wauv = 0. Then it follows from the Riccati equation that

Ruvwf = vuo-vw - Vvduw and Ruwvf = Vuo-vw - Vwo-ufu-

Therefore, we can express Vo in terms of the curvature tensor of the ambient manifold M
as follows

~ —

V0w = § (Ruvwf + Ruwvg) ) for all u,v,Ww € T, M.

We now determine the curvature tensor of M at m. An immediate application of the
Gauss equation and o,, = 0 shows that

(51) R:):va = nyvwa

for all z,y,v,w € TmM.
Taking covariant derivatives in the Gauss equation we get

(5.2) ﬁzéxvazszxva +ozxReyvw +ozyv Rxevw + 0zvRxyvew + ozw Rxyve

—oywVzoxy — oxvVzoyw + oyvVzoxw +oxwVzoyy

for all X,Y,Z,V,W € I(TM). Using 0., = 0 we get

(53) Vszva = szxva

for all z,z,y,v,w € Tmﬂ.
Finally, taking covariant derivatives in (5.2) we obtain

VixByzvz = VixRvzvz+0oxxVeRyzyz +20%xy Rexez +20% ;Revey
—4doxyoxzReyvez +20xyRrxzyvz +20xzRyrxyz +2VxoxyRezyvz

+2VxoxzRyevz — 0yyVxxozz — 072V xx0oyy + 0yzVxxoyz

_ _ ~ 2
—2VxoyyVxozz +2 (VX0Y2> +4oxyVxRezyz +40xzVxRyeyz,

and using the expression for o and Vo at m we get

( ) 6imﬁyzyz = V?:nyzyz + %Racyxf Ryze. + %szxﬁ Ry
5.4
— 5 Rayey Raze: + 3100 + SR + §RayzeRaye,
for all z,y, 2z € TmM.
Lemma 5.10 follows from (5.1), (5.3), (5.4) and the definitions of 7, ||R||?, ||p||* and
AT after doing some straightforward calculations. n
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Theorem 5.11. Let (M”“,g) be a Lorentzian manifold and & € T,,M an instantaneous
observer. The (n — 1)-dimensional volume of the geodesic celestial spheres associated with
& e T, M satisfies

A B
volu1 (G5,(r)) = camar™™! (1 + ff%z + n(nf)?)r“ + O(r‘*)) (m),
where
1
Ag) = _E(T + 2pge),
1 1 1 1 1 — 2 —
B(§) = 120 IR|I? + 5 ol + 572 ~ 0 At — R Z RE + = Z pijReic
i,5,k=1 ij=1

1 < 1< 1 1 1 1 1
— R, + — 24— pl 4+ — — —Apee — —Vi1 — V2 pec.
18 oy e 15 ;p@ 3o T gTree T gt T gp VeeT T qg Ve
Proof. Since radial geodesics starting from m orthogonally to £ are the same for M and M ,
it is clear that the geodesic celestial sphere G¢ (r) of M associated with the instantaneous
observer ¢ € T,,M coincides with the geodesic sphere G (r) of radius r centered at m in
the Riemannian manifold M for sufficiently small radius. Now, the first terms in the power

series expansion of the volume of sufficiently small geodesic spheres are well known [83].
This is also a special case of Theorem 4.20 for the Weyl invariant of degree 0, W = 1:

4 ~2

Moa) _ n1fq{ T oo T IR 1> 7 AF 6
vol (Gm (7“)) = Gl {1 6n n(n+2)( 120 45 72 20 ) O )

Using the relations in Lemma 5.10 the result follows. O]
We also state here some algebraic preliminaries.

Lemma 5.12. Let (V,(,)) a Lorentzian vector space and let W denote a covariant tensor

of type (0,2k). If We... =0 for all ¢ with (¢,() = —1, then Wy..., =0 for allz € V.

Proof. If ( is a timelike vector, we have, by hypothesis

—k
Wc...c,

_ ¢ ¢ _(_
- veg) ~ (69)

and thus We... = 0. Now, if x is an arbitrary vector, for sufficiently small €, { + ez is
timelike if ¢ is timelike. Then, 0 = W ({ +€x,...,( +ex) = Wec + - - + €W, Taking
into account that e is arbitrary, this immediately implies that W,.., = 0 which proves the
result. O]

Lemma 5.13. Let (M"+1, g) be a Lorentzian manifold and let a, b, ¢ be real numbers with
b#0. IfaT + bpec = ¢ at some point m € M for all vector ¢ € T,,M with g(¢,() = —1,
then the manifold is Einstein at m.
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Proof. The hypothesis can equivalently be written as —ag(¢, ()7 + bpec + c9(¢,¢) = 0,
which using Lemma 5.12 implies —ag(z, )7 + bpzr + cg(z,x) = 0 for all x € T,,,M. The
result follows from linearity and symmetry of the Ricci tensor. n

For the purpose of analyzing the coefficient B(¢) in Theorem 5.11, we define the fol-
lowing two tensors

n

n(xay) = Z Eiejek‘R(x7€i7€j76k)R(y7€iaejaek)a
i.5,k=0
w(z,y,v,w) = Z eie;R(x,e;,y,e;)R(v, e, w, €;),
i,j=0

where, as usual ¢; = g(e;,¢;) and z,y,v,w € T,,M. Note that the definitions above are
independent of the orthonormal basis chosen, and thus w and 7 are well defined tensors at
a given point m € M. We have the following result.

Lemma 5.14. Let (M”“,g) be an Finstein Lorentzian manifold. If there exist constants
a,b,c,k € R with ¢ # 0 and 3¢ # (n + 5)b such that

a||R|* +bnge + cweeee = k
for all vectors ¢ € T,, M with g((,() = —1, then M has constant sectional curvature at m.
Proof. Using Lemma 5.12; the hypothesis can be rewritten as
(5.5) a||R|Pg(x,2)* — bg(x, 2)n(x, ) + cw(z, 2, x,2) = kg(x, z)?
for all x € T, M. For arbitrary «, 3 € R and tangent vectors = and y we get

a ||RH2giw+[3y,o¢z+ﬂy - bgar+ﬁy,ar+ﬁynax+ﬁy,am+ﬁy + CWaz+py,...ax+By = kg?xcc—l—ﬁy,oaa:—&—ﬁy'
Since a and [ are arbitrary, expanding the above equality and comparing the coefficients
of o23? we get,

20 || RI[*(9usyy + 292,) — b(Gaalyy + 4Gzyney + GyyTs)
+2¢(Wanyy + Wayay + Wagye) =  2K(Gawlyy + 295,)-

Setting y = e; in the above equality and contracting we have

2a(n+3) HRHng, —b (HRHZQa:x +(n+5)Nez) +C(377$I +2 Z €i6jpinwixj> = 2(n+3)k Gue-
i,j=0
Since M is Einstein,
n 2

-
Z €i€;Pij Raizj = mgzzu

1,7=0
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and the above equation becomes

2
(—=b(n+5) + 3¢)Nw = (—2a(n +3)||R|I*+b||R|* - 2c(n :_ 2 + 2k (n + 3))gm.
Contracting again,
2
(=b(n +5) +3c) | R||* = <—2a(n +3) |R|*+ b||R|* - 2c(n —Tr g + 2k (n + 3)> (n+1).

Hence, 1, = ||R||*gze/(n + 1), which by the symmetry of 7 and the metric tensor, it is
equivalent to n = ||R||?g/(n + 1). As a consequence, using (5.5) we have

(5.6) e = 2 (—alr)? 5 LB kY gy
c n—+1 ’

Next, we show that the above equation is an equivalent condition to constant sectional
curvature for Lorentzian manifolds. Let m# C T,,M be a plane of signature (—+) and let
{¢,9} be an orthonormal basis of © with ¢(¢,({) = —¢g(9,9) = —1. The Jacobi operator
Re(x) = R(¢, x)¢ is self-adjoint when restricted to ¢+, and thus it is diagonalizable with
respect to an orthonormal basis {ey, ..., e, } of (* with eigenvalues A\;(¢), ..., M\.(¢). Now,
with respect to the orthonormal basis of T,,,M, {eq = (,e1,...,e,}, Equation (5.6) gives

" 1 /b—(n+1a
2 _ 2
§ Rﬁez’(ej - c < n4+1 HRH + k) :

ij=1

Hence, the the eigenvalues A, (() are bounded independently of the timelike unit ¢ because

& 1/b—(n+1a
2 _ p2 2 _ 2
Ml = B, € 3 e = (e k).

for all a € {1,...,n}. Writing ¢ = ) " | ¥e; with respect to the basis above, one has that

the sectional curvature of 7 satisfies

n

K(r) = —Repco = — Y 0" Reece, = — 3 (9 X(Q).

ij=1 i=1

Since (9,9) =1 = >"" (¥")?, one has |K(7)] < Y_r (92| \i(¢)| < C for some constant
C'. This shows that the sectional curvature is bounded on planes of signature (+—) and
therefore, M has constant curvature at m (see [7], [96], [108]). O

Remark 5.15. Equation (5.6) is equivalent to the 2-stein condition. See [79] for a different
proof that 2—stein Lorentzian manifolds have constant curvature.
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5.2.2 Volume comparison theorems

It is well known that the sectional curvature of a semi-Riemannian manifold is bounded
from above or from below if and only if it is constant [7], [108]. In order to derive volume
comparison theorems we need a revision of the boundedness conditions on the sectional
curvature. It seems natural to impose such curvature bounds on the curvature tensor itself
rather than on the sectional curvature. Following [5], we write R > X or R < X if and only
if for all z,y € TM

R(z,y,z,y) > Mg(z,2)9(y,y) — g(z,y)?) or

R(z,y,z,y) < Mgz, 2)g(y,y) — g(z,y)?),

respectively. Note that the first condition above (resp. the second condition) is equivalent
to requiring the sectional curvature to be bounded from below (resp. from above) on planes
of signature (++) and from above (resp. from below) on planes of signature (+—).

Examples of semi—-Riemannian manifolds whose curvature tensor is bounded as above
can easily be produced as follows:

o Let (My,q1), (Ms,g2) be Riemannian manifolds with non-negative K™ > 0 and
non-positive K™ < 0 sectional curvature, respectively. Then the product manifold
(M X My, g1 — g2) is a semi—Riemannian manifold whose curvature tensor satisfies
R > 0. See [5] for related examples.

e A more general construction of Lorentzian manifolds with bounded curvature is as
follows. Let (M, g) be a conformally flat Lorentz manifold whose Ricci tensor is diago-
nalizable, p = diag(po, 11, - - - , fin), where the distinguished eigenvalue py corresponds
to a timelike eigenspace. If po > max{py, ..., pn} (vesp. po < min{p, ..., i, }) then
R < X (resp. R > \) for some constant A\. Note that the previous construction ap-
plies to Robertson—-Walker space—times as well as to locally conformally flat static
space—times whose rest—spaces are of constant sectional curvature [24].

Although it is not possible to obtain direct information of the Ricci tensor from the
boundedness conditions above, an important observation for the purpose of studying vol-
ume properties of geodesic celestial spheres is the following. Let £ be an instantaneous
observer at m € M and complete it to an orthonormal basis {ey = &, e1,...,¢e,} of
TM. Then 7+ 2pe = 223:1 R;jij. Hence by assuming R > A (resp. R < \), we
have 7+ 2pge > n(n — 1)A (resp. 7+ 2pge < n(n —1)N).

We are now ready to prove a Bishop—Giinther type theorem [43], [46].

Theorem 5.16. Let (M™"! g) be a (n+1)-dimensional Lorentzian manifold and N™*1(\)
a Lorentzian manifold of constant sectional curvature A. The following statements hold:

(i) If R > )\, then
voll | (GS,()) < vollY (G(r)),

for all sufficiently small r and all instantaneous observers & € T,, M.



110 5 Geodesic celestial spheres in Lorentzian manifolds

(i1) If R < A, then
ol | (GS,(r)) > voll Y (G(r))

for all sufficiently small r and all instantaneous observers & € T,, M.

Moreover, the equality holds in (i) or (ii) for all & € T,,M if and only if M has constant
sectional curvature \ at m.

Proof. Assume that R > A. If R < )\ the result is obtained in a similar way. As usual, let
{eo =&, €1,...,€e,} be an orthonormal basis of T,, M. As we have already seen, T + 2pg =
> i1 Rijij- Hence, 7+ 2pge > n(n — 1)A. Thus, by Theorems 5.9 and 5.11, we have for
sufficiently small r

_ +2
volo' | (GS,(r) = comrr™ ! (1 — 76—np§57a2 +O(r4)>

n—1

< et (1 — Ar? 4 O(r4)> = Volg_(/}) (G(r)),

which proves the first part of the assertion.

Now, assume that the equality holds for sufficiently small » and all £ € T,,M. Then,
T+ 2pee = n(n — 1)A for all £ € T,,M. We prove that this implies that the sectional
curvature K is constant K = X on planes of signature (++). Given 7 a plane of signature
(++), we take an orthonormal basis {z,y} of 7 and we complete it to an orthonormal
basis {eg, €1 = x,65 = y,...,e,} of T,, M with eq timelike. Then

Z Riji; = T+ 2pege, = n(n — 1)A

1,7=1

and since R;j;; > A by assumption, it follows that K (7) = A. Now the constancy of the
sectional curvature at m follows from [108]. O

The previous theorem shows that voli’ | (G,(r)) / Volfj_()l‘) (G(r)) <1 (resp. > 1) if
R > X (resp. R < A). A more precise result in the spirit of Gromov’s theorem can be
stated as follows [43], [46]

Theorem 5.17. Let (M"™, g) be a (n+1)-dimensional Lorentzian manifold and N™""(\)
a Lorentzian manifold of constant sectional curvature \.

(i) If R > A, then
= volM | (an(r))
vol, Y (G(r))

18 non—increasing for sufficiently small r and all instantaneous observers & € T, M.
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(i1) If R < A, then
voli' | (GS,(r))

vol'Y (G(r))

is non—decreasing for sufficiently small r and all instantaneous observers & € T,, M .

Proof. By using the results in Theorem 5.9 and Theorem 5.11 one gets the first terms in
the power series expansion of the quotient

voldl, (S5,(r) - <n(n — DA — (7 + 2pg)
6n

Vo™ (5(r) ) Hor

Therefore, if R > A, we have 7 + 2pge > n(n — 1)\. Hence the derivative of the quotient
is negative for small 7, and thus the quotient is decreasing, which shows (i), since in case
R = X the quotient above is constant for sufficiently small 7. The proof of (ii) is completely
analogous. [

Remark 5.18. Under the hypothesis of Theorem 5.17, if there exists 0 < ry < r; such that

vol'; (GS,(ro)) _ vol,; (G5,(r1))
vol YV (G(ro))  volYV (G (1))

I

then the sectional curvature is constant. Indeed, since the quotient above is monotone,
then it must be constant and thus R = X (see proof of Theorem 5.17).

Remark 5.19. We point out here that the proofs of Theorem 5.16 and 5.17 only require
the boundedness conditions to hold for spacelike planes.

5.2.3 Characterization of locally isotropic Lorentzian manifolds

We recall that a Lorentzian manifold is said to be locally isotropic if for each point m € M
and all pair of non—null vectors z,y € T,,M with g(x,z) = ¢(y,y) there exists a local
isometry of (M, g) fixing m and transforming x into y.

If M is locally isotropic, vol2 | (an (r)) does not depend on the instantaneous observer
¢ € T,,M. Moreover, since locally isotropic Lorentzian manifolds are locally homogeneous,
it follows that vol (an(r)) does not depend on the center m. The following theorem
shows that local isotropy can be recovered from the properties of the volume of geodesic
celestial spheres [46].

Theorem 5.20. Let (M”H,g) be a Lorentzian manifold. If the volume of the geodesic
celestial spheres G, (r) is independent of the observer field € € TM, then M has constant
sectional curvature.

Proof. If the volume of each geodesic celestial sphere G¢,(r) is independent of the instanta-
neous observer ¢ € T,,, M, then the coefficients A(£) and B() in the power series expansion
of vol,,_1(G5,(r)) in Theorem 5.11 are independent of €. Now, as —(7 + 2pg)/6 = A(€) is
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constant, using Lemma 5.13, one has that that M is Einstein, and thus p = 75 g. Hence,
it follows from the second coefficient B(&) in Theorem 5.11 that

n

1 o  Hn*P+38n+61 , 1 ) I —
constant = B(§) = —EOHRH + 360(n + 1)° T +1_82R§i5j_ﬁ Z Reije-

ij=1 i, k=1

With the notation of Lemma 5.14 we have

n n

n n n
_ 2 _ 2 _ 2 _ 2 2
weeee = D el = ) Ry and nmee= Y aeerRgy = > Rey =2 Rig,

i,j=0 ij=1 i,7,k=0 i4,k=1 ij=1
and it follows from that lemma that the sectional curvature of M is constant. O

Corollary 5.21. Let (M"+1,g) be a Lorentzian manifold. If the volume of each geodesic
celestial sphere of sufficiently small radius coincides with the corresponding one of a geodesic
celestial sphere of the same radius in a space of constant sectional curvature X\, then M
has constant sectional curvature .

Proof. Theorem 5.9 implies that in a Lorentzian manifold of constant sectional curvature
the volume of geodesic celestial spheres does not depend on the instantaneous observer.
Using Theorem 5.20 we deduce that M has constant sectional curvature A\. Doing the
power series expansion of the formula in Theorem 5.9 we get

0 a2 010)

Comparing the coefficient of r2 in the above power series expansion with the corresponding
one in the formula of Theorem 5.11 we get that the sectional curvature is exactly \. [

Since the concept of local isotropy is equivalent to constant sectional curvature for
Lorentzian manifolds, the results of this section can be condensed for n +1 > 3 in the
following

Theorem 5.22. A Lorentzian manifold is locally isotropic if and only if the volume of its
geodesic celestial spheres is independent of the instantaneous observer.

5.3 Total curvatures of geodesic celestial spheres

The main purpose of this section is to investigate the curvature of geodesic celestial spheres
by focusing on the properties of their total curvatures associated with simple Weyl invari-
ants. We show that Lorentzian manifolds of constant sectional curvature can be charac-
terized by means of total curvatures of geodesic celestial spheres (see Theorem 5.26).
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From now on, all geometric objects defined on a geodesic celestial sphere will be denoted
using the symbol ~. Let W be a simple Weyl invariant. We define the total scalar curvature
of the geodesic celestial sphere G (r) associated with the simple Weyl invariant W as [42]

Wi (&, r) = W,
Gion(r)

As stated before, W denotes the corresponding simple Weyl invariant in the geodesic
celestial sphere GS,(r).

As it was the case for the volume of geodesic celestial spheres, it is clear from the
definition that the total scalar curvature associated with a simple Weyl invariant depends
on the radius r, the base point m, the instantaneous observer ¢ € T,,M and the Weyl
invariant W involved in its construction. If the manifold has constant sectional curvature
there is no dependence on the point or the instantaneous observer. In fact, an exact formula
may be obtained.

Theorem 5.23. Let (M”H,g) a Lorentzian manifold of constant sectional curvature ).
For each point m € M and each instantaneous observer & € T, M the total scalar curvature
Wi (&, 1) associated with the simple Weyl invariant W of degree 2v is

(

. n—1—2v
sin T\/X) 7 A0,
VA
vol,—1 (G5,(r)) = {0 comi(n —1)(n — 2)Aw(n — 1)r" 172, A =0,
sinh 7“\/__/\) "_1_2”7 A <0,
vV =A

Cno1(n—1)(n —2)Aw(n — 1)(

\

Cno1(n—1)(n —2)Aw(n — 1)(

where Ay is the polynomial given in Remark 4.2.

Proof. Since the manifold M has constant curvature, the submanifold M = exp,, (11 N é’i)
defined in the previous section has also sectional curvature A. The geodesic celestial sphere
G¢,(r) is the geodesic sphere of radius r centered at m of the n—dimensional Riemannian
submanifold M. Then, the total scalar curvature of the geodesic celestial sphere G¢ (r)
associated with TV is the total scalar curvature of the geodesic sphere G, (r) of M associated
with W. The latter was given in Example 4.17 for positive curvature. For zero and

negative curvature we get analogous expressions, the ones appearing in the statement of
this theorem. ]

In order to derive a characterization of locally isotropic Lorentzian manifolds we need
the first terms of the power series expansion of r — W,,(£,r). These are calculated in
what follows. We assume that {eg = £, e1,...,¢e,} is an orthonormal basis of T, M.
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Theorem 5.24. Let (M™"! g) be a Lorentzian manifold and let W be a simple Weyl
inwvariant of order 2v. Then, we have :

Wi(&,r) = cnlr”12”{(n —1)(n—-2)Aw(n—1)

7“2

_6—n(71 —2)(n—2v — DAy (n — 1) {7 + 2pec}
+m(cév<n “ DRI+ C(n— 1) ol + Chy(n — 1)
(= 2)(”20_ 20 =) fr(n— 1) At + 262 (n — 1) il pisReze;
{40k (n 1) - (n = 2)(7;0_ 20 =) g — 1) ]i RZ,
+ (20@(71 _py_ln= 2)(’15_ 20 =) g — 1)>J§ PF+4C3, (n — 1)7pee

i=1

(=GR n = 1) + 4G = 1) e + (~ACH (0 =) + Chon = 1) D Reg
(n—2)(n—2 —1) e

— 5 Aw(n—1) (2Ap££ + Vi + 2V§g/?§£)> +0 (r6)}(m),

where Ay, CY,, C3, and C3, are the same polynomials as in Theorem 4.20.

Proof. Tt follows from Theorem 4.20 and the fact that the geodesic celestial sphere G¢, (1)
is the geodesic sphere centered at m in the Riemannian submanifold exp,,($N&L) [42]. O

Remark 5.25. Of particular interest is the case W = 1, where we consider W as a simple
Weyl invariant of order 0. Then W,,(&, r) is nothing but the volume of a geodesic celestial
sphere, and one has Theorem 5.11 as a particular case.

In what follows we generalize Theorem 5.22 to total scalar curvatures of geodesic ce-
lestial spheres associated with simple Weyl invariants. Afterwards, we deal with the usual
lower degree simple Weyl invariants and we see that the abstract conditions in the following
theorem can be dropped.

Theorem 5.26. Let (M"™! g) be a Lorentzian manifold with n +1 > 3 and W a simple
Weyl invariant of order 2v. Assume W,,(§,1) is independent of the infinitesimal observer
&€ TM and that the following relations hold

2v+1+#n, Aw(n—1) #0,
4CY(n— 1)+ C2 (n—1) — L= 2)(”15_ L= 2) syl —1) £0,
4 +2)C (0 — 1) — 3% (n—1) — =D ;Z)(” —L W) = 1) £0.

Then, M has constant sectional curvature.
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Proof. Since W,,(&,r) is independent of £ € T M, it is clear that the coefficient of r? in the
power series expansion of Theorem 5.24 must be constant. Since n + 1 > 3 using the first
two conditions we have 0 # (n — 2)(n — 2v — 1)Aw (n — 1) and thus 7 4 2pg, is constant.
Then Lemma 5.13 implies that M is Einstein.

Since M is Einstein, the power series expansion of Theorem 5.24 reduces to

W, r) = cn,lr"’kQ”{(n —1)(n—-2)Aw(n—1)

2

—m(n —2)(n—2v—1)(n—1)Aw(n — 1)1
"L 1) R ! 2)C2,(n — 1 12C3 (n — 1)) 72
+m{ w(n—1) R +m((n—) (n—1)+ (n—1)*Cyy(n — ))T
+<4O§V(n— - (= 2>(”30_ 2= 1) gin—1) ) Z R,

i,5,k=1

(G (-1 + Cln - 1) 3 B} + 067 om).

1,j=1

Proceeding as before, the coefficient of r* must also be constant and thus

constant = CL,(n—1)||R|* + <4C§V(n — 1) — =202l Ay (- 1) ) Z R

i,7,k=1

+<—4C’§V(n — 1)+ Cf(n — 1>> zn: Réig;-

1,j=1

The last two conditions of the statement of the theorem ensure that Lemma 5.14 can be
applied and thus, M has constant sectional curvature. [l

Corollary 5.27. Let (M", g) be a Lorentzian manifold and W a simple Weyl invariant.
If for each small radius v and each & € TM, W,,(§,r) is the same as the corresponding
one in an (n-+ 1)—Lorentzian manifold of constant sectional curvature A and the conditions
in Theorem 5.26 hold, then M is a Lorentzian manifold of constant sectional curvature .

Proof. A Lorentzian manifold of constant sectional curvature is locally isotropic, so the
total scalar curvatures of geodesic celestial spheres do not depend on the infinitesimal ob-
server £. Thus, from Theorem 5.26 it follows that M has also constant sectional curvature.
From Theorem 5.23 we get that the power series expansion of W,,(§,r) for a Lorentzian
manifold of constant sectional curvature becomes

(n—2v—1)

Wm(gv T) = Cp-1 (n - 1)(n — Z)Aw(n — 1) Tn7172’/{1 — G )\TZ
(n—1-2v)bn—10v —=7) , ,
+ 360 A7 +O(r6)}.
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Comparing the coefficient of r? in the power series expansion of Theorem 5.24 with the
corresponding one in the equation above gives 7 = n(n 4+ 1)\, and hence the curvature is
exactly A. O]

As an application of Theorem 5.26 we show how the simple Weyl invariants of lower
degree can be used for characterizing the Lorentzian manifolds of constant sectional cur-
vature. First of all, when n = 2 geodesic celestial spheres are flat, and hence all scalar
curvature invariants vanish. When n = 3 geodesic celestial spheres are 2-dimensional
Riemannian manifolds. Therefore, by Gauss-Bonnet Theorem [, & (r) 7 = 8m, which makes
7 useless for the purpose of characterizing Lorentzian manifolds by means of total scalar
curvatures. However, for higher dimension we have

Corollary 5.28. Let (M™"', g) be a Lorentzian manifold with n > 4 such that [ 7
depends only on the radius. Then, M has constant sectional curvature.

Proof. Tt follows from Theorem 5.26 taking into account that A,(n —1) =1, Cl(n — 1) =
—(n+2)(n+3)/120 and C?(n — 1) = (n® + 5n + 21)/45, [42], [44]. See Example 4.3 and
Section 4.3.1 for details. O

The space of simple Weyl invariants of degree four is generated by 72, || R||? and | p||?.
Using Example 4.3 and Section 4.3.1 we get the following result. We delete the details.

Corollary 5.29. Let (M™"! g) be a Lorentzian manifold with n # 5. The following
statements are equivalent:

(1) Jos, |R||? depends only on the radius.
(i1) fGﬁn(r) 10117 depends only on the radius.
(iii) fG%L(T) 72 depends only on the radius.
(iv) M has constant sectional curvature.

A similar characterization is obtained for simple Weyl invariants of degree six. A basis
of this vector space is the first column of (4.2).

Corollary 5.30. Let (M™"' g) be a Lorentzian manifold with n # 7. The following
statements are equivalent:

(i) ngn(T) 72 depends only on the radius.
(i) Jeg oy TNAI? depends only on the radius.
(11i) [ ") #||R||? depends only on the radius.

(iv) fG%(T)p: depends only on the radius.
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(v) fG§n(T)( O X P, é) depends only on the radius.
(vi) f(;én(r)@v R) depends only on the radius.

(vii) [ ") R depends only on the radius.

~

(viii) e (1t depends only on the radius.

(ix) M has constant sectional curvature.
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Open problems

We are interested in the following problems:

e The volume conjecture of A. Gray and L. Vanhecke remains open in its full generality.
In view of the examples given in [83] where the authors build manifolds such that
the first terms of the power series expansion of the volume of their geodesic spheres
vanish, it seems that this power series expansion approach is not sufficient to attack
the problem at this stage. Hence, a new method or a more powerful description of
these power series expansions is needed. On the other hand, similar questions can be
stated for total scalar curvatures and the same comments apply. Nonetheless, the fact
that certain curvature invariants can be used to characterize two—point homogenous
spaces whereas others with the same degree cannot, poses the following question:
what is the significance of those total curvatures which can be used to detect two—
point homogeneous spaces and why do they provide such a characterization?

e A similar problem can be stated for ball-homogeneity. It is not known whether ball-
homogeneity implies homogeneity or whether the notions of W-homogeneity (that
is, the fact that the total curvatures associated with W do not depend on the base
point) are equivalent for different scalar curvature invariants . Similar questions
can be stated for disk-homogeneity.

e In Chapter 5 we carried out the characterization of Lorentzian manifolds of constant
sectional curvature. It is an interesting question to determine whether other mani-
folds such as Robertson-Walker or Schwarzschild space-times can be detected using
geometric features associated with geodesic celestial spheres.
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Part 111

Real hypersurfaces in the complex
hyperbolic space
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The aim of submanifold geometry is to understand geometric invariants of submanifolds
and to classify submanifolds according to given geometric data. In Riemannian geometry,
the structure of a submanifold is encoded in the second fundamental form and its geometry
is controlled by the equations of Gauss, Codazzi and Ricci. The situation simplifies for
hypersurfaces, as the Ricci equation is trivial and the second fundamental form can be
written in terms of a self-adjoint tensor field, the shape operator. The eigenvalues of the
shape operator, the so—called principal curvatures, are the simplest geometric invariants
of a hypersurface. Two basic problems in submanifold geometry are to understand the
geometry of hypersurfaces for which the principal curvatures are constant, and to classify
them. This problem has a long history and over the years many surprising features have
been discovered.

E. Cartan 28] showed that in spaces of constant curvature a hypersurface has constant
principal curvatures if and only if it is isoparametric. There is a remarkable interplay
between the geometry and topology of isoparametric hypersurfaces in spheres S™. Using
methods from algebraic topology, H. F. Miinzner [101] proved that the number g of dis-
tinct principal curvatures of an isoparametric hypersurface in S™ is 1, 2, 3, 4 or 6. In a
series of papers, [28], [29], [30], [31], E. Cartan investigated isoparametric hypersurfaces
in spheres and classified those for which ¢ is at most three. It follows from his work
that all isoparametric hypersurfaces in spheres with g < 3 are open parts of homogeneous
hypersurfaces. It is obvious that homogeneous hypersurfaces have constant principal cur-
vatures. The homogeneous hypersurfaces in spheres have been classified by W.—Y. Hsiang
and H. B. Lawson [89]. It follows from this classification that homogeneous hypersurfaces
with ¢ = 6 exist only in spheres of dimension 7 and 13. U. Abresch [1] then proved that
isoparametric hypersurfaces with ¢ = 6 exist only in S7 and S'3. This naturally leads
to the conjecture that any isoparametric hypersurface in a sphere with ¢ = 6 is an open
part of a homogeneous hypersurface. This was answered affirmatively by J. Dorfmeister
and E. Neher [51] for n = 7, but for n = 13 the problem is still open. Surprisingly, for
g = 4 there are inhomogeneous isoparametric hypersurfaces. The first such examples were
constructed by H. Ozeki and M. Takeuchi [110]. D. Ferus, H. Karcher and H.—F. Miinzner
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[58] then constructed series of inhomogeneous isoparametric hypersurfaces in spheres using
representations of real Clifford algebras. A remarkable result by S. Stolz [121] says that
the principal curvatures and their multiplicities of any isoparametric hypersurface with
g = 4 in a sphere coincide with the ones of either the homogeneous hypersurfaces or the
hypersurfaces constructed by D. Ferus, H. Karcher and H.—F. Miinzner. T. Cecil, Q.—S.
Chi and G. Jensen [32] recently proved that with 10 possible exceptions all isoparametric
hypersurfaces in spheres with g = 4 are among the known homogeneous or inhomogeneous
examples.

Whereas the classification problem of isoparametric hypersurfaces in spheres is rather
involved, it is much simpler in its non—compact dual, the real hyperbolic space RH™. In
fact, using the Gauss and Codazzi equations, E Cartan [28] showed that the number g
of distinct principal curvatures of an isoparametric hypersurface in RH" is either 1 or
2. This easily leads to a complete classification: geodesic hyperspheres, horospheres, to-
tally geodesic hyperplanes and its equidistant hypersurfaces, tubes around totally geodesic
subspaces of dimension greater or equal than one. As a consequence, all isoparametric
hypersurfaces in real hyperbolic spaces are open parts of homogeneous hypersurfaces.

The isoparametric hypersurfaces in Euclidean spaces were classified by T. Levi-Civita
[97] for dimension 3 and by B. Segre [119] for arbitrary dimensions. Also here all isopara-
metric hypersurfaces are open parts of homogeneous hypersurfaces.

In complex space forms the notions of isoparametric hypersurfaces and hypersurfaces
with constant principal curvatures are not the same [127]. In fact, Q—M. Wang [130]
gave an example of an isoparametric hypersurface in complex projective space CP" with
non—constant principal curvatures. The current state of the classification problem of hy-
persurfaces with constant principal curvatures in complex space forms is as follows. We
continue to denote by g the number of distinct principal curvatures. To emphasize that the
real codimension of the hypersurface is one (and not two as it is for a complex hypersurface)
we use the notion of a real hypersurface. Y. Tashiro and S. I. Tachibana [126] proved that
there are no totally umbilical real hypersurfaces in non—flat complex space forms. Thus
the case g = 1 cannot occur. If £ is a (local) unit normal field of a real hypersurface M in
a complex space form M, and J denotes the complex structure of M, then J¢ is tangent to
M everywhere. The vector field J¢ is called the Hopf vector field on M. The hypersurface
M is said to be a Hopf hypersurface if J¢ is a principal curvature vector of M everywhere.
We assume n > 2.

Using the classification of homogeneous hypersurfaces in spheres and the Hopf map
S+l CP", R. Takagi [123] derived the classification of homogeneous real hypersurfaces
in complex projective spaces. All of them are Hopf hypersurfaces, and the number g of
distinct principal curvatures is either 2, 3 or 5. R. Takagi then proved in [124] and [125]
that every real hypersurface with two or three distinct constant principal curvatures in
CP™ is an open part of a homogeneous hypersurface. The case ¢ = 3 and n = 2 was
omitted by R. Takagi and settled later by Q.-M. Wang [131]. M. Kimura [91] showed that
every Hopf hypersurface in CP" with constant principal curvatures is an open part of a
homogeneous hypersurface in CP". It is still unknown whether for any real hypersurface
with constant principal curvatures in CP" the number ¢ is necessarily 2, 3 or 5. Also,
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there is no known example of a real hypersurface with constant principal curvatures in
CP™ which is not an open part of a homogeneous real hypersurface.

S. Montiel [99] proved that every real hypersurface with two distinct constant principal
curvatures in complex hyperbolic space CH™, n > 3, is an open part of a geodesic sphere,
of a horosphere, of a tube around a totally geodesic CH"' C CH™, or of a tube with
radius log(2 +1/3) around a totally geodesic RH™ ¢ CH™. All these real hypersurfaces are
homogeneous Hopf hypersurfaces. For n = 2 this problem is still open. J. Berndt derived
in [10] the classification of all Hopf hypersurfaces with constant principal curvatures in
CH™. Any such hypersurface is an open part of a horosphere, of a tube around a totally
geodesic CH* C CH™ for some k € {0,...,n — 1}, or of a tube around a totally geodesic
RH™ C CH™. All these tubes and horospheres are homogeneous hypersurfaces. This
naturally leads to the question whether all homogeneous real hypersurfaces in CH™ are
necessarily Hopf hypersurfaces. The answer to this question is negative. In [11] J. Berndt
constructed homogeneous hypersurfaces in CH™ which are not Hopf hypersurfaces.

J. Berndt and M. Briick constructed in [12] new examples of homogeneous real hyper-
surfaces in CH™. J. Berndt and Tamaru [16] showed recently that these new examples,
together with the above mentioned homogeneous real hypersurfaces, provide the complete
classification of homogeneous real hypersurfaces in CH". The number of distinct principal
curvatures of all these homogeneous real hypersurfaces is either 2, 3, 4 or 5. No examples
are known of real hypersurfaces with constant principal curvatures in CH"™ which are not
an open part of a homogeneous real hypersurface. It is also not known whether for any real
hypersurface with constant principal curvatures in CH" the number g of distinct principal
curvatures must necessarily be 2, 3, 4 or 5.

In Chapter 6 we study cohomogeneity one actions on the complex hyperbolic space.
Based on the classification given by J. Berndt and H. Tamaru, we focus on the geometry
of the orbits of the cohomogeneity one actions described in [16]. This is accomplished in
Section 6.3. In Chapter 7 we carry out the classification of real hypersurfaces in CH"
with three distinct constant principal curvatures. In particular, our result implies that
real hypersurfaces in complex hyperbolic spaces with at most three constant principal
curvatures are homogeneous submanifolds.
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Chapter 6

Cohomogeneity one actions on the
complex hyperbolic space

In this chapter we study the geometry of the orbits of a cohomogeneity one action on CH"
[15]. In Section 6.1 we give the basic definitions and concepts needed to describe cohomo-
geneity one actions. We explain some facts of cohomogeneity one actions on Hadamard
manifolds and give an overview of the situation in R™ and RH"™. Then, Section 6.2 is de-
voted to presenting a suitable description of CH"™. The conventions and results explained
throughout this section are used in the rest of the chapter, sometimes without explicit
mention to them. Finally, Section 6.3 carries out the study of cohomogeneity one actions
on the complex hyperbolic space with special attention to the description of the singu-
lar orbits of cohomogeneity one actions with one non—totally geodesic singular orbit. In
particular we emphasize Theorems 6.8 and 6.16 as they are used in the following chapter.

6.1 Preliminaries

Let M be a Riemannian manifold and G a Lie group. A G—action on M or an action of G
on M is a map
GxM — M
(9.p) = gp

such that ep = p for all p € M, where e is the identity of G, and g(hp) = (gh)p for all
g,h € Gandp e M. If p e M, then G-p = {gp : g € G} is the orbit of G through
pand G, = {g € G : gp = p} is the isotropy group of G at p. If M = G - p for some
p € M, then the action of G is said to be transitive and M is called a homogeneous G-
space. Homogeneous spaces are of great interest in differential geometry. See [88] for a
comprehensive introduction to the subject.

An isometric action of G on M is a G—action such that for any fixed g € G, the map
p +— gp is an isometry of M. From now on, we assume that G is a connected closed
subgroup of the isometry group of M acting on M in the usual way.
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We denote by M /G the set of orbits of the action of G on M and equip M /G with the
quotient topology relative to the canonical projection p € M — G-p € M/G. Since G is a
closed subgroup of the isometry group of M, the quotient space M /G is a Hausdorff space
and each orbit G- p is a closed embedded submanifold [90]. Moreover, G, is compact, G -p
is a Riemannian homogeneous space G - p = G/G, and G acts transitively on G - p by
isometries.

D. Montgomery and C. T. Yang introduced in [98] the concept of a slice. This notion
provides the technical machinery which allows us to define a partial ordering on the set of
orbit types. We say that two orbits G - p and G - ¢ have the same orbit type if G, and
G, are conjugate in GG. This defines an equivalence relation among the orbits of G. We
denote by [G - p] the corresponding equivalence class of G - p and we call [G - p] the orbit
type of GG - p. We introduce a partial ordering on the moduli space of orbit types. We put
|G - p] < [G - q| if and only if G, is conjugate in G to some subgroup of G,. There exists
a largest orbit type in the moduli space of orbit types. Each representative of this largest
orbit type is called a principal orbit. The union of all principal orbits forms a dense and
open subset of M. Each principal orbit is an orbit of maximal dimension. A non—principal
orbit with the same dimension as a principal orbit is called an exceptional orbit. An orbit
whose dimension is less that the dimension of a principal orbit is called a singular orbit.

A cohomogeneity one action of G on a manifold M is an isometric action of G on M
such that the codimension of each principal orbit is one. We say that two cohomogeneity
one actions are orbit equivalent if there is an isometry of M that maps the orbits of one
action onto the orbits of the other action.

An embedded submanifold of a Riemannian manifold M is said to be extrinsically
homogeneous, if there exists an isometry of M that acts transitively on the submanifold
and leaves it invariant. Cohomogeneity one actions are intimately related to extrinsically
homogeneous hypersurfaces. Indeed the classification problem of cohomogeneity one ac-
tions up to orbit equivalence is equivalent to the classification of extrinsically homogeneous
hypersurfaces up to isometry congruence.

P. S. Mostert [100] and L. Bérard Bergery [8] proved that the orbit space M/G of a co-
homogeneity one action is homeomorphic to R, St, [0, 1] or [0, c0). This result implies that
a cohomogeneity one action has at most two singular or exceptional orbits corresponding
to the boundary points of M/G. If there exists one singular orbit, each principal orbit
is geometrically a tube around the singular orbit. If there are no singular or exceptional
orbits, in which case M/G is homeomorphic either to R or S', the orbits of the action of
G on M form a Riemannian foliation on M. Moreover, since principal orbits are always
homeomorphic to each other, the projection M — M/G is a fiber bundle.

Assume G is a connected closed subgroup of the isometry group of M acting on M
with cohomogeneity one. Let F' be a singular or exceptional orbit of the action. Then, the
isotropy group G, at p € I’ acts transitively on the unit sphere of the normal space of F
at p. This implies that any singular or exceptional orbit of a cohomogeneity one action is
minimal [12]. Moreover, if dim(G - p) < (dim M — 1)/2 then G - p is totally geodesic in M
[112].

From now on we assume that M is a Hadamard manifold, that is, a connected, simply
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connected, complete Riemannian manifold of non—positive curvature. As M is simply
connected, M /G cannot be homeomorphic to S!. This follows from the exact homotopy
sequence of a fiber bundle with connected fibers and base space S*

= m (M) - m(M/G) = mo(F) — - .

where F' is the fiber. A cohomogeneity one action on a Hadamard manifold cannot have
exceptional orbits and it can have at most one singular orbit. Therefore, M /G is homeo-
morphic to R or to [0, 00).

The above assertions can be improved in the following way (see [12] and [111]).

Theorem 6.1. Let G be a connected closed subgroup of the isometry group of an n—
dimensional Hadamard manifold M acting on M with cohomogeneity one. Then one of
the following two possibilities holds:

(a) All orbits are principal and the isotropy group at any point is a maximal compact sub-
group of G. Any orbit is diffeomorphic to R"! and there exists a solvable connected
closed subgroup of G acting simply transitively on each orbit.

(b) There exists exactly one singular orbit F' and the isotropy group at any point of F
is a maximal compact subgroup of G. The singular orbit is diffeomorphic to R¥ for
some k € {0,...,n — 2} and there exists a solvable connected closed subgroup of G

acting simply transitively on F. Any principal orbit is a tube around F and thus
diffeomorphic to RF x SP—F-1,

Among all Hadamard manifolds, of special interest are the Euclidean space and all
rank one symmetric spaces of non—compact type. The cohomogeneity one actions on the
Euclidean space were classified by T. Levi-Civita [97] and B. Segre [119].

Theorem 6.2. Let G be a Lie subgroup of the isometry group of R™, R" x, O(n), acting
on R™ with cohomogeneity one. Then the action of G is orbit equivalent to one of the
following actions:

(i) The action of SO(n) C R" x, O(n). The singular orbit is a point and the principal
orbits are spheres.

(ii) The action of R* x, SO(n — k) C R" x, O(n) for some k € {1,...,n —2}. There
is one singular orbit which is a totally geodesic R¥ C R™ and the principal orbits are
tubes around it.

(iii) The action of R" 1 C R™ x, O(n). All orbits are principal and totally geodesic
hyperplanes.

The classification of cohomogeneity one actions on the real hyperbolic space follows from
the work by E. Cartan [28], where he classified all the hypersurfaces with constant principal
curvatures in the real hyperbolic space RH™. Every principal orbit of a cohomogeneity one
action has constant principal curvatures. Hence, Cartan’s result applies and we get
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Theorem 6.3. Fvery cohomogeneity one action on the the real hyperbolic space RH™ =
S0°(1,n)/SO(n) is orbit equivalent to one of the following cohomogeneity one actions:

(i) The action of SO(n) C SO°(1,n). The singular orbit is a point and the principal
orbits are geodesic spheres.

(ii) The action of SO°(1,k) x SO(n — k) C SO°(1,n) for some k € {1,...,n—2}. The
singular orbit is a totally geodesic RH* C RH™ and the principal orbits are tubes
around it.

(iii) The action of SO°(1,n — 1) C SO°(1,n). All the orbits are principal, one orbit is a
totally geodesic RH™ ' C RH"™ and the others are equidistant hypersurfaces to it.

(iv) The action of the nilpotent subgroup in an Iwasawa decomposition of SO°(1,n). All
the orbits are principal and the resulting foliation is the horosphere foliation on RH™.

As we have just seen, every singular orbit of a cohomogeneity one action on R™ or
RH" is totally geodesic. This is no longer true in the other rank one symmetric spaces of
non—compact type. Examples of cohomogeneity one actions on CH", HH"™ and QOH? with
one non—totally geodesic singular orbit were given in [12]. Moreover, the moduli space of
orbit equivalent cohomogeneity one actions on R™ and RH" is finite. This does not hold
for the other hyperbolic spaces either.

J. Berndt and H. Tamaru derived in [16] the classification of cohomogeneity one actions
on the complex hyperbolic space. We devote the rest of this chapter to the study of the
geometry of the orbits of that list.

6.2 The complex hyperbolic space as a solvable Lie
group

Let CH™, n > 2, denote the n—dimensional complex hyperbolic space equipped with the
Fubini-Study metric of constant holomorphic sectional curvature —1 which we denote by
g = (-,+). Let J be its complex structure. Thus the curvature tensor of the complex
hyperbolic space can be written as

RyyZ = —i ((X, 2V — Y, Z)X + (JX, Z)JY — (JY, Z)JX + 2(JX, Y>JZ)

for any XY, Z € I'(TCH™). Hence the Jacobi equation is written as

1

(1) — 3 (<) + 3¢, T ) Te(0) =0

along a unit speed geodesic c¢ determined by the initial condition c;(0) = { € TCH™.
We denote by CH"(oc0) the ideal boundary of CH". Each element x of CH™(c0) is an
equivalence class of asymptotic geodesics in CH". Two geodesic ¢; and ¢y are asymptotic
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if limg o d(c1(t), c2(t)) < C for some constant C' > 0, where d is the Riemannian distance
function of CH™. We equip CH"UCH"(o0) with the cone topology. Then, CH"UCH"(c0)
becomes homeomorphic to a closed ball in the Euclidean space R?". For any p € CH"
and any z € CH™(oc0) there exists a unique unit speed geodesic ¢ through p such that
lim; ., ¢(t) = z. Thus, the choice of a point at infinity x € CH"(o0) is equivalent to the
choice of a unit geodesic vector field on CH™: the one whose integral curves are geodesics
that converge to z. See [53] for more details.

Let KAN be the Iwasawa decomposition of the identity component of the isometry
group of CH", which we denote by I°(CH"), with respect to some point 0 € CH" and
some point z in the ideal boundary CH"(0c0) of CH". The Lie group K coincides with the
isotropy group of I°(CH™) at o and the orbit through o of the one-dimensional Lie group
A is a geodesic in CH" belonging to equivalence class determined by the point at infinity
x. It is known that AN is a connected, simply connected, solvable Lie group that acts
simply transitively on CH". Thus, we may identify CH" with the Lie group AN equipped
with the left—invariant Riemannian metric (-,-). We now describe in more detail the Lie
algebra a @ n of AN. We follow [17].

Let us consider 3 = R endowed with the quadratic form g(z) = —z?, and denote by
J the standard representation of the Clifford algebra Cl(3,q) = C on the vector space
v=C""' J:Z€Cl(3,4q) — Jz € End(v). We define an inner product (-, -) on the vector
space direct sum n = 3@ v by requiring that the induced quadratic form on 3 is just —¢, the
vector spaces 3 and v are orthogonal and J; is an orthogonal transformation with respect
to the induced inner product on v. Such inner product exists and is unique. We define a
skew—symmetric bilinear map [-, -] : n X n — n by the equation

(X +UY +V],Z+W) = (J;U,V),

where XY, Z € 3 and U,V,WW € v. Then, (n,[,]) becomes a two—step nilpotent Lie
algebra with center 3, called the Heisenberg algebra (of dimension 2n — 1). The connected,
simply connected, nilpotent Lie group N, with Lie algebra n is called the Heisenberg
group (of dimension 2n — 1). It is isomorphic to the nilpotent Lie group in the above
Iwasawa decomposition of I°(CH™). We equip N with the left-invariant Riemannian
metric determined by (-, -).

Let us denote by Exp, the Lie exponential map of N. Since N is connected, simply
connected and nilpotent, the Lie exponential map Exp, is a diffecomorphism [88]. This
implies that N is diffeomorphic to R?*"~!., The Campbell-Hausdorff formula simplifies in
the case of a two—step nilpotent Lie group and gives in our case

1
Exp, (X + U) - Exp, (Y + V) = Expn<X +Y +U+V 4 [0, V]),

forany X +U, Y +Ven=380.

The Lie algebra a is one-dimensional. Choose A € a. We extend the previous inner
product (-,-) to the vector space direct sum s = a & n by requiring the following three
conditions. The vector A is a unit vector of a. The Lie algebras a and n are orthogonal.
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The restriction of this inner product to n is just the previously defined one. Again, such an
inner product exists and is unique. We extend the Lie algebra structure of n to the vector
space direct sum a @ n by defining

1
AX]= X, [AU]=3U.

where X € 3 and U € v. Thus a @& n becomes a solvable Lie algebra. The connected,
simply connected solvable Lie group AN equipped with the left—invariant Riemannian
metric determined by (-, ) is isometric to CH™ and is isomorphic to the solvable Lie group
in the above Iwasawa decomposition of I°(CH™).

We use the following notation in what follows. Since, 3 is one dimensional, we may
choose a unit vector Z € 3 such that Jz is the complex structure J of CH" acting on v.
We may assume as well Z = JA. Then, the Lie algebra structure of n is determined by

[U,V]=(JUV)Z and [Z,U]=0,

for any U,V € v.

The definition of the Lie algebra structure on s = a @ n implies that s is a semi-
direct sum of a and n with respect to the algebra homomorphism f : a — der(n) given
by f(A)(X +U) = X + 1 U, where der(n) is the Lie algebra of the derivations on n and
X+U € n=3®v. Since the Lie group A = Exp,(RA) is one-dimensional, we may identify
R = A using the isomorphism ¢ — Exp,(tA). Thus AN is the semi-direct product of A = R
and the Heisenberg group N, R xz N, where F(t)(Exp, (X + U)) = Exp,(e!X + e'/2U).
Then the group structure of AN =R X N is determined by

(a, Expn(xZ+U)) - <b, Expn(yZ—i—V)) - <a+b, Expn<xZ+e“Y+U+e“/2V—|— %[U, V])>.

In particular, this implies that AN is diffeomorphic to R*" as we already knew. To describe
the Lie exponential map Exp, of s we first define the function p: R — R by

e —1

if s #£0,
p(s) = °7

1 , ifs=0.

The function p is analytic in R. Then we have

Exp,(aA+zZ+U) = (a, Exp, <p(a)x Z+ p(%) U))

and the Lie exponential map Exp, is a diffeomeorphism. B
The standard method for calculating the Levi—Civita connection V of a Lie group
equipped with a left—invariant metric yields the following expression in our particular case:

Varrorso (A +y7+V) = (SO V) +ay) A+ (5 (0, V>—bx)2—gU—gJU_§Jv,
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where a,b,z,y € R are real numbers and U,V € v. All vector fields are considered to be
left—invariant.

Let aA + xZ + U be a unit vector in s and ¢ : R — CH"™ = AN the geodesic in CH"
such that ¢(0) = o0 and ¢/(0) = aA + xZ + U. Then, c lies in a suitable totally geodesic
CH? Cc CH™ and we have the explicit expression [17]

1—6? 20(1 — 2z 62 2
c:<log( 9),Expn< ( a9)U+ 0 JU—i—ﬁZ)),
X X X X

where
0(t) = tanh% and  x(t) = (1 —afd(t))* + 2%0(t)*

Moreover, the tangent vector of the geodesic is given by

oo Vh {(1—-a0)’—220°}U + 2ovh
X X

(1—a0)JU +zhZ+ (logh)'A,

with A(t) = (1 — 0(t)%)/x(t).

We refer to [17], where a comprehensive study of the geometry of Damek—Ricci spaces is
presented. Non—symmetric Damek—Ricci spaces are counterexamples to the Lichnerowicz
conjecture on harmonic spaces [36]. The symmetric Damek—Ricci spaces are the rank
one symmetric spaces of non—compact type. Thus, Damek—Ricci spaces provide a unified
description of all hyperbolic spaces over the real division algebras.

6.3 Cohomogeneity one actions on CH"

The study of cohomogeneity one actions on the complex hyperbolic space relies on the
following classification result given by J. Berndt and H. Tamaru [16].

Theorem 6.4. Let G be a connected closed subgroup of the isometry group of the complex
hyperbolic space acting on CH™, n > 2, with cohomogeneity one. Then the action of G is
orbit equivalent to one of the following cohomogeneity one actions:

(1) The action of S(U(1,k) x U(n —k)) C SU(1,n) for some k € {0,...,n —1}. The
singular orbit is a totally geodesic CH® C CH™ and the principal orbits are tubes
around it .

(ii) The action of SO°(1,n) C SU(1,n). The singular orbit is a totally geodesic RH™ C
CH™ and the principal orbits are tubes around it.

(iii) The action of N. FEach orbit is a horosphere in CH™. The orbits of N form a
Riemannian foliation on CH™ called the horosphere foliation of CH™.
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(iv) The action of the connected, simply connected Lie subgroup H of AN whose Lie
algebra is h = a & 3 B w, where w is a linear hyperplane of v. All the orbits of this
action are principal, the orbit H - o is minimal and any other orbit is an equidistant
hypersurface to this minimal one.

(v) The action of the group N%(H)H where H is the connected, simply connected Lie
subgroup H of AN whose Lie algebra is b = a @ 3 ® w, where v’ is a real linear
subspace of v of codimension k € {2,...,n — 1}. The singular orbit is minimal and
non—totally geodesic. The principal orbits are tubes around the singular one.

(vi) The action of the group N%(H)H, where H is the connected, simply connected Lie
subgroup H of AN whose Lie algebra is h = a® 3@ to, where o+ is a linear subspace
of v of constant Kdihler angle ¢ € (0,7/2). The singular orbit is minimal and non—
totally geodesic. The principal orbits are tubes around the singular one.

Examples (i) and (ii) correspond to cohomogeneity one actions with one totally geodesic
singular orbit. The families (iii) and (iv) are foliations in CH™ and as a consequence the
corresponding cohomogeneity one actions do not have singular orbits. The families (v) and
(vi) are cohomogeneity one actions with one non-totally geodesic singular orbit.

Let (M, J) be a Hermitian manifold and M a real hypersurface with (local) unit vector
field €. Obviously, J¢ is everywhere tangent to M. The vector field J¢ is called the Hopf
vector field of M. We say that M is a Hopf hypersurface if the integral curves of J¢ are
geodesics in M. If M is a Kihler manifold this is equivalent to the condition that J¢ is a
principal curvature vector of M at every point. Principal orbits of examples (i), (ii) and
(iii) in the above theorem are Hopf hypersurfaces while principal orbits of (iv), (v) and
(vi) are not.

The classification of Hopf hypersurfaces with constant principal curvatures is due to J.
Berndt [10]. We use this result later so we state it here.

Theorem 6.5. Let M be a connected Hopf real hypersurface of CH™, n > 2, with constant
principal curvatures. Then M is holomorphically congruent to an open part of one of the
following hypersurfaces:

(i) A tube around a totally geodesic CH* for some k € {0,...,n — 1}.
(i) A tube around a totally geodesic RH™.
(i1i) A horosphere in CH™.

We emphasize that each hypersurface in Theorem 6.5 coincides with one of the principal
orbits in cases (i), (ii) or (iii) of Theorem 6.4. Therefore, a connected complete Hopf real
hypersurface is extrinsically homogeneous if and only if it has constant principal curvatures.

In what follows we discuss in detail the above cohomogeneity one actions on the complex
hyperbolic space [15].
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6.3.1 Cohomogeneity one actions with one totally geodesic sin-
gular orbit

Theorem 6.4 states the existence of two families of cohomogeneity one actions on CH™ with
one totally geodesic singular orbit. They correspond to cases (i) and (ii) in that theorem.

The following result completely explains both the intrinsic and extrinsic geometry of
totally geodesic submanifolds of CH™.

Theorem 6.6 (Rigidity of totally geodesic submanifolds in CH"). Let M be a
totally geodesic submanifold of CH™. Then M 1is holomorphically congruent to an open
part of a real hyperbolic space RH* for some k € {1,...,n} or to a complex hyperbolic
space CH® for some k € {1,...,n—1}. Any two totally geodesic submanifolds of CH™ are
locally holomorphically congruent to each other if and only if they are locally isometric.

Theorem 6.4 implies that a totally geodesic RH* with k € {1,...,n — 1} cannot be a
singular orbit of a cohomogeneity one action. We briefly explain the reason [12]. For any
totally geodesic RH* C CH™ there exists a totally geodesic CH* such that RH* ¢ CH*.
Any isometry of CH" leaving RH* invariant leaves CH” also invariant. The isotropy group
of a cohomogeneity one action on CH™ acts transitively on the normal space of RH* at
any point. But normal vectors of RH* which are tangent to CH* remain tangent to CH*;
this is only possible if k = n.

The other totally geodesic hyperbolic spaces of CH™ can be singular orbits of cohomo-
geneity one action as Theorem 6.4 shows. In what follows we study the geometry of the
orbits of those actions. We briefly study the two families (i) and (ii) separately.

The action of S(U(1,k) x U(n — k))
The group G = S(U(1,k) x U(n — k)) C SU(1,n) for some k € {0,...,n — 1} acts on

CH™ with cohomogeneity one. This action has exactly one singular orbit which is a totally
geodesic CH¥ ¢ CH™. Therefore, the second fundamental form is completely determined
by I = 0.

The procedure to construct such a totally geodesic CH* is as follows. Let o € CH™ and
choose V' C T,CH™ a complex linear subspace of complex dimension k. Then, exp, (V') is
a totally geodesic CH*.

We turn our attention to the principal orbits of this action. If M is one principal
orbit of the action of G then M is a tube of certain radius » > 0 around the singular
orbit. Standard Jacobi vector field theory shows that M has three principal curvatures
(we choose the outward unit normal vector field £ so that the principal curvatures with
respect to it are positive)

1 1
a:—tanhf7 ﬁ:—cothi, v = cothr,
2 2 2 2

with corresponding multiplicities

me =2(n—k —1), mg = 2k, m., = 1.
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Furthermore, T, and T} are complex distributions on M and the Hopf vector field is a
principal curvature vector of v at any point of M. Thus, M is a Hopf hypersurface. More
specifically, let p € M and let ¢ be the geodesic of CH" defined by the initial condition
d(0) = &,. Then c(r) is a point in the totally geodesic CH*. The principal curvature
vector subspace T,(p) is the parallel translate of T, CH* along the geodesic ¢ and Tj(p)
is the parallel translate of TCL(T)CH ¥ o RJJ(r) along the geodesic c.

In the above discussion if £ = 0, that is, the singular orbit is a point, then the principal
orbits are geodesic spheres and there are just two eigenvalues o = %tanhg and v = cothr
with multiplicities 2(n — 1) and 1 respectively.

Similarly, if & = n — 1 then the singular orbit is a totally geodesic CH"™! c CH"
and the tubes around it have only two constant principal curvatures § = %cothg and
v = cothr with corresponding multiplicities 2(n — 1) and 1.

The action of SO°(1,n)

The group G = SO°(1,n) C SU(1,n) acts on CH™ with cohomogeneity one. This action
has one singular orbit which is a totally geodesic RH™ C CH". The second fundamental
form is completely determined by II = 0. Such a totally geodesic RH™ can be constructed
as follows. Let o € CH™ and choose V' C T,CH™ a real linear subspace of the tangent
space of real dimension n. Then, exp, (V') is a totally geodesic RH™.

We briefly discuss the geometry of the principal orbits of the action of G. Let M be
one of these orbits. Then, M is a tube of certain radius » > 0 around the singular orbit.
Using standard Jacobi vector field theory we get that M has three principal curvatures.
We choose the outward unit normal vector field ¢ so that the principal curvatures with
respect to it are positive. The three principal curvatures are

1 T 1 r
. _ N _ —
o 5 tanh 2’ 15} 5 coth 5 v = tanhr,

with corresponding multiplicities
Mo =n—1, mg=mn—1, m, = 1.

The distributions 7, and 7} are real and the Hopf vector field is a principal curvature vector
of . Thus, M is a Hopf hypersurface. Let p € M and let ¢ be the geodesic of CH™ defined
by the initial condition ¢/(0) = £,. Then ¢(r) is a point in the totally geodesic RH™. The
principal curvature vector subspace T, (p) is the parallel translate of T,,wRH"™ © RJc'(r)
along the geodesic ¢ and the principal vector subspace Tj(p) is the parallel translate of
T+ JRH"™ © R (r) along the geodesic c.

c(r

A special situation occurs when r = log(2 + /3). In this case 3 = v and there are just
two principal curvatures a and - with multiplicities n — 1 and n. Both T,(p) and T, (p)
keep being real and the Hopf vector field is a principal vector field.
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6.3.2 Cohomogeneity one actions with no singular orbits

Cases (iii) and (iv) in Theorem 6.4 correspond to cohomogeneity one actions on the com-
plex hyperbolic space with no singular orbits. These cohomogeneity one actions arise
naturally from the Iwasawa decomposition of SU(1,n). Different choices for the Iwasawa
decomposition lead to congruent actions.

The horosphere foliation

Let KAN be an Iwasawa decomposition of the isometry group of CH™ with respect to
some point 0 € CH" and some point at infinity © € CH"(00).

The group N acts on CH" with cohomogeneity one and all the orbits are principal.
The resulting foliation is the well-known horosphere foliation. It contains the Heisenberg
group N as a horosphere and any other orbit is a suitable left translate of it. This foliation
is constructed in the following way. Let ¢ be a unit speed geodesic with ¢(0) = 0. We
define the Busemann function, B. : CH™ — R, with respect to c as

Be(p) = lim (d(p, c(t)) — 1),

where d stands for the Riemannian distance function. The level sets of this function are
called horospheres.

A horosphere has the following geometrical interpretation. Consider the geodesic sphere
centered at c¢(r) of radius r. This geodesic sphere contains o. In the complex hyperbolic
space such geodesic spheres are defined for any r» > 0. The limit set of these geodesic
spheres when r tends to infinity is a horosphere. Different choices of o along ¢ give all
the different horospheres of the horosphere foliation determined by the point at infinity
r = limy o c(t).

A horosphere has exactly two distinct principal curvatures

=g and B8 =1,

with corresponding multiplicities
me = 2(n —1) and mg = 1.

As usual, we choose the unit normal vector £ so that the principal curvatures are positive.
The principal vector space of « is the orthogonal complement of the complex span of the
unit normal vector £. Hence, T, is a complex distribution. The Hopf vector field J¢ is a
principal curvature vector of the principal curvature 3. Hence, every horosphere is a Hopf
hypersurface with constant principal curvatures.

We have the following rigidity result. The proof is an easy consequence of Theorem
6.5. However, we sketch the proof as it was given in [10] because of its geometric interest.

Theorem 6.7 (Rigidity of horospheres in CH"). Let M be a real hypersurface of the
complex hyperbolic space with principal curvatures 1/2 and 1. Then M is an open part of
a horosphere.
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Sketch of the proof. Let & denote a local unit vector of M. Using the Gauss and Codazzi
equations one can show that J¢ is a principal vector associated with the eigenvalue 1. For
any p, let ¢, be the geodesic c,(t) = exp,(t{,). For r > 0 let ®, be the map defined by
®,(p) = exp,(réy). Let v € T,M. Using Jacobi vector field theory one gets ®,.(v) =
e "2B,(r) if v € Tyj2(p) and @,.(v) = e "B,(r) if v € RJE,. This implies ||®,.(v) <
e”"/2||v|| for all v € TM. Let d denote the Riemannian distance function of CH™ and dy,
the Riemannian distance function of M. The above inequality shows that d(c,(r), c,(r)) <
e "/2dy(p, q) for any p,q € M and r > 0. Using the triangle inequality we get

d(p, co(t)) =t = d(p, co(t)) — d(p, (1)) < dlcy(t), colt)) < €™*dar(p,0).

Then the Busemann function verifies B.(p) = 0 for all p € M, which proves that M is an
open part of a horosphere. [l

The solvable foliation

As usual, let a® 3P v be the Lie algebra of the solvable part of the Iwasawa decomposition
K AN with respect to some 0 € CH™ and # € CH"(0). Let us take to a linear hyperplane
in v. Then h = a @ 3@ o is a Lie subalgebra of a & 3 & v of codimension one. If H
is the connected, simply connected Lie subgroup whose Lie algebra is h, then H acts on
CH™ with cohomogeneity one. The resulting cohomogeneity one action has no singular
orbits and therefore induces a foliation on CH". We call it the solvable foliation of CH™.
Different choices of v lead to congruent actions. We mainly follow [11].

The orbit H - o through o is the unique minimal orbit of this action. We study its
geometry in more detail. The maximal complex subspace of ¢ C § is a Lie subalgebra and
the connected, simply connected Lie subgroup whose Lie algebra is this maximal complex
subspace ¢ acts on H-o by left translation. The resulting orbit through o is a totally geodesic
CH™ ! c CH". Indeed, H - o0 is ruled by totally geodesic CH"™! in CH™. The orthogonal
complement hSc is one-dimensional and induces in H -0 an integrable distribution © by left
translation of h © ¢. Each integral curve of ® through p € H -0 is a horocycle in the totally
geodesic RH? determined by D, and z € CH"(c0). By definition we denote by W?2"!
a manifold constructed in this way. As we stated before all W?"~! are holomorphically
congruent to each other. In Subsection 6.3.3 we generalize this construction and give more
details about it. For the moment we content ourselves with the present description and
study the geometry of the other orbits.

Any other orbit of the action of H is an equidistant hypersurface to this minimal one.
Any two such orbits are congruent to each other if and only if their distance to H - o is the
same. None of them is ruled by a totally geodesic CH"™~! in the above sense.

Let M denote an orbit of H at a distance r > 0 from H - o. If r = 0 we consider the
orbit H - o itself. The shape operator S of M has exactly three eigenvalues

1 3 1 3
az?canhf, 08 =-tanh - — = 1——tanh2i, fyzztanhg—l—é I—Ztanh2g.
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with corresponding multiplicities
Mo = 2n — 3, mg =1, m, = 1.

The principal vector space of « is neither real nor complex. If £ denotes the unit normal
of M, the Hopf vector field J¢ is not a principal vector field and hence M is not a Hopf
hypersurface. Indeed, J¢ has non-trivial orthogonal projections onto 73 and 7.

For the orbit H - 0 we have r = 0 and the principal curvatures become 0, —1/2 and
1/2 with multiplicities 2n — 3, 1 and 1. We clearly see then that H - 0 is minimal. The
following theorem shows that this eigenvalue structure is characteristic of this orbit [14].
It is a consequence of Theorem 6.16 which we prove later in Section 6.3.3. We also use
some elementary results of the following chapter which we avoid repeating here to focus
our attention on the main argument.

Theorem 6.8 (Rigidity of the submanifold W?"1). Let M be a connected real hy-
persurface in CH™, n > 3, with three distinct principal curvatures 0, —1/2 and 1/2 and
multiplicities 2n — 3, 1 and 1, respectively. Then M is holomorphically congruent to an
open part of the ruled real hypersurface W?"~1,

Proof. Let & be the corresponding unit normal vector of M. Let p € M and suppose that
the orthogonal projection of J¢, onto Ty(p) is non—zero. Then T(p) is a real subspace of
T,CH" by Corollary 7.5. Since dim 7y(p) = 2n — 3, this is impossible for n > 3 and we
must have n = 3. As &, € Ty(p)™ it follows that J&, € Ty(p). Since orthogonal projection
onto subbundles is a continuous map, this must hold on an open neighborhood U of p in
M. Therefore, U is a Hopf hypersurface in CH? with three distinct constant principal
curvatures 0, —1/2 and 1/2. According to Theorem 6.5 such a hypersurface does not exist.
We conclude that the orthogonal projection of the Hopf vector field J¢ onto Tj is zero
everywhere.

Now define M as the set of all points p € M at which the orthogonal projections of
J&, onto T_q5(p) and T} /2(p) are both non-zero. Clearly, M™* is an open subset of M.
Using again the classification of Theorem 6.5 we see that M ™ is non—empty.

Let X and Y be local unit vector fields on M with X € I'(T_;/3) and Y € I'(T2).
Then we can write J¢ = aX + bY with a,b € R such that a®> + > = 1. We may assume
that X and Y are chosen such that a,b > 0. As we have seen above, Ty(p) cannot be a real
subspace at any point p € M. Thus there exists a non—zero vector field U € I'(Tj) such
that JU € I'(Ty). Since V.J = 0 we have Vi J¢ = JVy€ = JSU = 0, and thus Lemma 7.3

implies
1
0=U(JU,JE) = (VyJU, JE) = a(NVyJU, X) + b(VyJU,Y) = E(a2 — U, U) .

This gives a®> = b* and hence a = b = 1//2. This shows that M* is a closed subset of
M. As M is open and non—empty, we see that M* = M. In particular, the length of
the orthogonal projections of the Hopf vector field J§ onto T/, and T}/, is constant and
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equal to 1/v/2. We now define Z = a(X — Y). Then the second fundamental form of M
has the form of that in Theorem 6.16. Indeed,

2
02,06 = ~(VJ68¢ = (SZJ0E = ~T(X4V,X4Y)E = —¢,
2
HIEJE) = ~(Vid6 € = (SI6JOE = T(-X+¥,X+Y)E = 0,
0(2,2) = —(V2,6¢ = (SZ,2)¢ = %2<X+Y,X—Y)§ _

and II(U, X) = —(VyX,&) = (X,SU) =0 for any U € ['(Ty) and X € T'(TM). The result
now follows from that theorem. n

6.3.3 Cohomogeneity one actions with one non—totally geodesic
singular orbit

Let H be a closed subgroup of AN and consider the closed subgroup Ny (H)H C KAN,
where NY-(H) is the identity component of the normalizer Ny (H) = {k € K : kHk™* C H}
of Hin K. Let F = H - 0 be the orbit of H through o. Then, F = (N%(H)H) - 0 and the
following result holds [12].

Theorem 6.9. Let h be the Lie algebra of H. Assume § can be written in the form
h=ad3®Dw, where wt is a linear vector subspace of v of dimension > 2 and constant
Kdhler angle o. Then N%(H)H acts on CH™ with cohomogeneity one and F is a singular
orbit of that action. Furthermore, if ¢ € (0,7/2] then F' is not totally geodesic in CH™.

Let V' C C" be a linear subspace. Let v € V' be a non—zero vector. The Kahler angle of
V' with respect to v is the angle p(v) € [0, 7/2] between V' and the real span of iv. Thus,
¢(v) € [0, 7/2] is determined by requiring that (cos ¢(v))||v|| is the length of the orthogonal
projection of v onto V. We say that V' has constant Kdhler angle ¢ if ¢(v) = ¢ for all
non-zero vectors v € V.

Linear subspaces with constant Kéahler angle are of interest in what follows so we first
derive some results that will be used later.

Let V' C C™ a linear subspace with constant Kéhler angle ¢ € [0, 7/2]. We denote by J
the endomorphism of C" consisting of multiplying by the imaginary unit, that is, Jv = iv
for all v € C". If ¢ = 0 then V is said to be a compler subspace of C". This is equivalent
to JV C V. If o = 7/2 then V is a real subspace of C". In this case JV C C" S V.

Let CV be the minimal complex vector subspace of C" containing V and let V+ =
CV & V. We denote by 7 : CV — V and o : CV — V' the orthogonal projections onto
V and V*, respectively. We define P = nJ and F = oJ. If ¢ = 0 we have CV =V,
7 =1Idey, 0 =0, P=Jand F = 0. If ¢ = 7/2 we have the orthogonal direct sum
decomposition CV =V @& JV and P = Jo, ' = Jw. In what follows we study the
non—trivial case ¢ € (0,7/2).
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Lemma 6.10. Let V C C" be a linear subspace with constant Kdhler angle ¢ € (0,7/2).
Then
P? = —(cos*¢)mr — PFo, F? = —FPr— (cos’yp)o,

PF = —(sin®p)t+ PFo, FP = FPr— (sin®¢)o.

Proof. Let x € V. Since V has constant Kahler angle ¢, by definition, (Px, Px) =
(cos® p){x, ). Tterating the equality (P*x, P?z) = (cos? ¢)(Px, Pz) = (cos? ¢){(z,z). On
the other hand, (P%*z,z) = (JPx,z) = —(Px, Jx) = —(Px, Px) = —(cos? ¢)(z,x). Since
P2z has the same length as the component of P2z in the direction of  we obtain P?x =
—(cos? )x. Then, P*r = —(cos? ).

Now we have —x = J?r = P?x + FPx + PFx + F?x. Taking the component in
V4t we get F?x = —FPux, that is, F?r = —FPr. Taking the component in V we get
—z = P2x + PFx = —(cos? ¢)x + PFx. Thus, PFx = —(sin® ¢)x, which implies PF'1 =
—(sin? o).

Using the above relations we have JF Px = PFPx+ F?Px = —(sin® ¢) Pz +(cos? p) Fx.
Also, (Fx, FPx) = —(x, JFPx) = —(x, PFPx) = (sin®¢){x, Px) = 0. Altogether this
means that for any non—zero vector x € V' the vectors z, Pz, F'x and F'Px are orthogonal
and span a complex vector subspace of CV. Moreover, z, Pr € V and Fx, FPx € V+.

A similar argument in CV & (Rx @ RPz @ RFx @ RF Px) shows that there exist non—
zero vectors x1,...,x € V such that {x1, Pxy,...,zx, Pxy} is an orthogonal basis of V'
and {Fxy, FPxy,..., Fx, FPx,} is an orthogonal basis of V1. In particular this implies
that the dimension of V' is even.

Now let y € V1. We observe that Fy is the projection of Jy onto V+. The existence
of the previous basis of CV shows that we can write y = aFx 4 bF Px for some x € V and
a,b € R. For any z € V we have (Fz, Fz) = (Jz,Jz) — (P2, Pz) = (1 — cos?¢)(z,2) =
(sin? p)(z, z). This, the above results and the fact that (F'Pz, Fx) = 0 implies

(Fy,Fy) = o*(F*x, F%z) + 2ab(F*z, F2Px) + b*(F? Pz, F? Px)
= a®(sin® p)(cos® @) (z, x) + 2ab(cos® @) (F Px, Fx) + b*(cos* ) (sin® o) (x, z)
= (cos® ) <a2<Fa;, Fz) + b*(F Pz, FPa:‘}) = (cos® o) (y,y),

which shows that V* has constant Kihler angle. Reversing the roles of P and F we get
F%0 = —(cos’ p)o, FPo = —(sin® ¢)o, P20 = —F Po. Altogether this gives the result. [

The proof of the previous lemma implies

Corollary 6.11. Let V' C C" be a vector subspace with constant Kdhler angle ¢ € (0,7/2).
Then V' has even dimension, let us say 2k and there exist non—zero vectors x1,...,x, € V
such that {1, Px1, ..., x, Pz} is an orthogonal basis of V. Moreover, CV ©V has also
constant Kdahler angle .

An easy consequence of the definition allows us to calculate the inner product of the
orthogonal projections of a vector onto V and V=.
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Corollary 6.12. Let V' C C" a linear subspace with constant Kdhler angle ¢ € [0,7/2].
We have

(i) If z,y €V then (Px, Py) = (cos® )(z,y) and (Fz, Fy) = (sin® ¢)(x,y).
(ii) If z,y € VL then (Px, Py) = (sin® ){x,y) and (Fx, Fy) = (cos? ¢){x,y).

Proof. For ¢ = 0 and ¢ = /2 the result follows immediately. Let ¢ € (0,7/2). Since V has
constant Kahler angle o, for any z € V we have (Pz, Px) = (cos® ¢)(x,x). Polarization
of this equality implies (Pz, Py) = (cos®p){x,y) for all z,y € V. Hence (Fz, Fy) =
(Jz, Jy) — (Pz, Py) = (1 — cos? ¢)(x,y) = (sin? p)(z,y). This proves (i). Statement (ii)
follows easily after taking into account that V* has also constant Kihler angle ¢ and the
roles of P and F' are reversed. ]

We give a geometric construction of the singular orbits of cohomogeneity one actions
in CH™ with one non—totally geodesic singular orbit [15].

Let K AN be the Iwasawa decomposition with respect to o € CH™ and x € CH"(0),
and let £ & a @ n be the corresponding decomposition on Lie algebra level. The nilpotent
algebra n is decomposed into n = 3 @ v as described in Section 6.2.

Let o be a linear subspace of b such that ot = v © tv has constant Kéhler angle
@ €10,7/2]. Then h = a® 3@ w is a subalgebra of a ® 3 @ v of codimension k. Denote by
H the closed subgroup of AN with Lie algebra b and by NY%(H) the identity component of
the normalizer of H in K. Then G = N%-(H)H C KAN acts on CH" with cohomogeneity
one. We denote by W2"~* the orbit of G through o. For all g € N (H) we have g(H -o0) =
g(H-g7'0) = (gHg™")- 0 C H -0, and hence W2"* = H - o.

If £ = 1, then obviously ¢ = 7/2, and the orbits of this action form a Riemannian
foliation on CH™ which is the solvable foliation described in the previous subsection. In
this case the ruled minimal orbit of this foliation W?"~1 is exactly W7f72_1. In general, if

¢ = 7/2 we denote WF = Wj%_k. If k > 1, then W2"~* has codimension k, and all

other orbits are the tubes around it. If ¢ = 0, then k is even, say k = 27, and WZ" " is
a totally geodesic CH" ™7 C CH™. In this case the action of G is orbit equivalent to the
action in Theorem 6.4 (i). For this reason we assume ¢ > 0 from now on.

Any two Iwasawa decompositions of K AN are conjugate, and any two linear subspaces
of v with the same dimension and the same Ké&hler angle are conjugate by ¢g. = Ad(g) for
some ¢ in the normalizer of A in K [6]. As a consequence any two submanifolds TW2"~*
and Wgn_j with £ = j and ¢ = ¢ are holomorphically congruent.

We now study the geometry of Wj"‘k in more detail. The maximal complex subspace
¢ of b is a subalgebra and the closed subgroup H. of H with Lie algebra ¢ acts on an_k
isometrically by left translations. The orbit H. - o is a totally geodesic CH"* c CH".
Note that the complex dimension of ¢ is n — k. By identifying W2"~* with H equipped
with the induced left-invariant Riemannian metric, it follows now that an_k is ruled by
totally geodesic CH"* c CH™.

The Lie algebra a & n can be decomposed orthogonally into

AaBn=chHodto .
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We denote by €, © and 20+ the corresponding left-invariant distributions on CH" along
Wj”_k. As we have seen above, € is autoparallel and the integral submanifolds are totally
geodesic CH™™* € CH". The distribution 20 is just the normal bundle T+W2"~*.

We give a geometric description of the submanifold Wg”*k.
Proposition 6.13. The submanifold Wf,”_k has the following properties:

(i) The maximal holomorphic subbundle € of TWj”_k is integrable and the leaves of the
induced foliation on Wg"*k are totally geodesic CH" % c CH™.

(ii) The following statements are equivalent:

a e distribution D on ~" 15 1ntegrable.
The distribution © Wj“ ks bl

e distribution @ on ~" 15 integrable.
b) The distribution RA & D Wj” ks bl

(c) o =7/2.

In this case the leaves of the foliation on W?" % induced by RA © ® are totally
geodesic RH**1 c CH"™ and the leaves of the foliation on W2"~* induced by © are
horospheres with center x in these totally geodesic RH**' c CH™.

(iii) The left-invariant subbundle 20+ of TCH™ along Wg”*k 1s the normal bundle of
W2n—k'
©

(iv) For each non—zero & € wt the left-invariant distribution RA & RP¢ along Wj”_k
1s integrable and the leaves of the induced foliation on Wf,”_k are totally geodesic
RH?* C CH".

(v) For each non—zero & € o the left-invariant distribution RPE on Wf,”_k 18 integrable

and the leaves of the induced foliation on Wj"‘k are horocycles with center x in the
totally geodesic RH?* C CH™ given by the distribution RA @ RPE.

Proof. We use the formulas and notations as described in Section 6.2.

Statement (i) follows immediately from the expression of the Levi-Civita connection
of CH™ for left-invariant vector fields and the fact that the only complex totally geodesic
submanifolds of CH™ are complex hyperbolic spaces.

Using the formulas for the Lie bracket of left—invariant vector fields in CH™ we get

b
@A+ U,bA+V] = gV— SUFIUV] and  [UV] = (JUV)Z
for all atA+ U, bA+V € RA®®. This shows that RA® D is integrable if and only if ® is
integrable if and only if D is real, that is, ¢ = 7/2. In this case the Levi-Civita connection
yields

1 b
Vaarw(pA+V) = (U V)A - U €RA®D
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for all aA 4+ U, bA+V € RA @ ®. This shows that RA & ® is autoparallel and its leaves
are totally geodesic real submanifolds of CH™. The only real totally geodesic submanifolds
of CH™ are the real hyperbolic spaces. For all U,V € ® we have

_ 1 ) 1
VoV =2{UV)A  and  VyA=-_U

which implies that the leaves of ® are spherical hypersurfaces of the corresponding real
hyperbolic spaces (Theorem 6.6). Since the sectional curvature of a totally geodesic real
hyperbolic subspace is —1/4, and the mean curvature vector of any leaf of ® is (1/2)A, it
follows that the leaves of ® are horospheres centered at x in the real hyperbolic subspaces.
This finishes the proof of (ii).

Statement (iii) holds by construction.

For any aA 4+ x P&, bA + yP& € RA ® RPE we have

vaA_;_ng(bA + yPﬁ) = % (sin2 (p)A - %Pﬁ e RA @RP&

From this, we easily get the assertion (iv) using Theorem 6.6.
Finally, define U = P/ sin(p). Then the expression of the Levi-Civita connection for
left—invariant metrics implies

_ 1 - 1
VUEUg = 5 A and VUnggU&j = _Z Ug.

Since the real hyperbolic planes in (iv) have constant sectional curvature —1/4, this shows
that the integral curves of U, are horocycles with center x in the corresponding real hy-
perbolic planes. This proves (v). O

The above properties are characteristic of Wj”‘k. Any other submanifold of CH™ with
these properties is holomorphically congruent to some Wi”_k as the following result shows.
Afterwards we will see that, in fact, all the information of Wj”_k’ is encoded in its second
fundamental form.

Corollary 6.14. Let k € {1,...,n — 1}, and fiz a totally geodesic CH"* c CH™ and
points o € CH" ™ and v € CH" *(c0). Let KAN be the Iwasawa decomposition of
SU(1,n) with respect to o and x, and let H' be the subgroup of AN which acts simply
transitively on CH"*. Next, let V be a subspace of T;-CH" * with constant Kdhler angle
¢ € (0,7/2] such that CV = T;;CH"*. Left translation of V by H' to all points in CH"*
determines a subbundle 0 of the normal bundle T*CH"%. At each point p € CH"*
attach the horocycles determined by x and the linear lines in *U,. The resulting subset M
of CH™ s holomorphically congruent to the ruled submanifold Wi”_’“.

Proof. Let Wj”_k be the ruled minimal submanifold of CH" constructed from the Iwasawa
decomposition K AN associated with x and o and the choice of w* = T-CH" % V. We
use the above notations. From Proposition 6.13 we already know that M C Wf,”’k. It
suffices to prove that Wg”’k C M.
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Let p € Wg"’k. There exists an isometry s € H with p = s(0). Then there is
a unique vector X in the Lie algebra h of H such that s = Exp,(X). We can write
X =aA+2Z+U+V with some U € ¢, V € 0 and «a, z € R. Note that [V, U] = 0 because
they are complex orthogonal. We now define

g = Exp, (p (g) V) and  h=Exp,(aA+2Z+4U).

Note that h € H’'. Using the description of CH™ given in Section 6.2 we get

gh = Exp, (p (g) V) Exp,(aA+2Z 4+ U)

= (0B (o () V) (oBn (o012 0 (3) V)

= (a,EXpn<p(a)zZ+,0<g>U—l—p(%)V%—%[V,U]))
= Exp,(aA+:2Z4+U+V) = s.

By construction, h(o) € CH"* and s(o) = g(h(0)) is on the horocyle with center x
through h(o) tangent to R). From this we conclude that Wj”‘k C M. Altogether this
implies M = W2"~* and the result follows. O

Next, we calculate the second fundamental form of Wf)"_k.

Proposition 6.15. The second fundamental form of Wj”_k is given by the formula

.2

I(aA+aZ + U+ PEVA+yZ +V + Pn) :_3“1290

(& + xn)

for any U,V € TWSE"_]“ O(RAGRZ), &,n € TLWLg”_k and a,b,z,y € R. Thus II is given
by the trivial bilinear extension of 2II(Z, PE) = —(sin? )¢ for any & € THWw2rk,

Proof. Since A, Z, U, V, P¢ and Pn are tangent to Wg”*k , the normal component of the
Levi-Civita connection reduces to

H(aA+2Z+U+PEVA+yZ +V + Py) = —(vaA+IZ+U+p§(bA+yZ+V—|—P7]))L

Yy x + (0 x
- (Yyp —P> — Yppe+ Xrpy,
<2J S+ g /Pm g PE+ 5 FPn

Since F'P TLwnE = —(sin? @) IdTngn—k by Lemma 6.10, the result follows. O

The second fundamental form of Wg”*k and the fact that its normal bundle has constant
Kahler angle ¢ are enough to characterize Wg”*k among all the submanifolds of CH™.
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Theorem 6.16 (Rigidity of the submanifold W2"~*). Let M be a (2n—k)-dimensional
connected submanifold in CH™ with normal bundle T*M C TCH" of constant Kdihler
angle ¢ € (0,7/2]. Assume that there exists a unit vector field Z tangent to the maximal
holomorphic distribution on M such that the second fundamental form Il of M is given by
the trivial bilinear extension of

21(Z, PE) = —(sin® ¢) €,

for all € € T+M. Then M is holomorphically congruent to an open part of the ruled
manimal submanifold Wg”_k.

Proof. We will first show the following;:

(i) The maximal holomorphic subbundle € of T'M is integrable and each integral mani-
fold is an open part of a totally geodesic CH"* c CH™.

(ii) For each unit normal vector field £ of M the totally real subbundle RJZ @& RP¢ of
TM is integrable and each integral manifold is an open part of a totally geodesic
RH?* Cc CH™.

(iii) For each unit normal vector field £ of M the image of any integral curve of P¢ is an
open part of the horocycle centered at the point at infinity determined by —JZ in
the corresponding totally geodesic RH? C CH™ as described in (ii).

To prove (i) we first note that TM = € @ PT+M. For U,V € I'(€) and ¢ € T'(T+ M)
the condition on I implies (II(U, V'), F¢) = 0 and thus

(VuV, P&) = (VuV, P§) = (VyV, JE) = (VuV, F§) = —(JVyV.&) = (L[(U, JV),£) =0

and
(VuV,€) = —(II(U,V),§) =0

by the condition on II once again. This shows that € is an autoparallel subbundle of T'M
and each integral manifold is a totally geodesic submanifold of CH™. As € is a complex
subbundle of complex rank n — k, each of these integral manifolds must be an open part
of a totally geodesic CH" % c CH™.

We turn our attention to (ii). Let A = —JZ, X € [(® 6 RJZ) and n € T(T+ M)
be a local unit normal vector field on M. Using the explicit expression of R, the Codazzi
equation, the second fundamental form II and V.J = 0 we get

0 = Rappxy = ((VII)(Pn, JX)_(Vf’nID(A’ JX),m)
= —(I(Pn,VaJX),n) = —(VaJX, Z)(II(Pn,Z),n)

sin? o~ sin?

= S (VaIX.Z) = 5 (VaA X).
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This implies (V 44, X) = (V4A, X) = 0. Next, our assumption and V.J = 0 yield
(VaA, Pn) = (VaA, Pn) = (V4A, Jn — Fn) = (II(A, Z),n) + (I[(A, A), i) = 0.
Also, we easily get (VaA,n) = —(II(A, A),n) = 0. Therefore we have V4 A = 0.

Now we study V 4 P¢. First,

Our assumption of II implies (5,A4,Y) = (II(A,Y),n) = 0 for any Y € I'(T'M) and thus
Sy A = 0. This gives

(VAP Pn) = (V4P Py) = (VaPE, Jn — Fn) = —(JS,A, P§) + (II(A, P¢), Fn) = 0.

Moreover, (VP& n) = —(II(A, P€),n) = 0. Thus V4 P¢ = 0.
We have (V,xP¢, Z) = —(VyxZ,J§ — F&) = (II(JX, A), &) — (II(JX, Z),F¢) = 0.

This, together with the explicit expression of R, the Codazzi equation, the equation of I/
and V.J = 0 implies

0 = Rpexpee = (VD) (JX, PE) — (VyxI)(PE, PE),€)
= —(lI(VpeJX, PE), &) — 2(I1(V x P§, P),§)
= (Ve X, Z)(1I(Z, P€), &) — 2(V ;x P§, Z){11(Z, P¢€), )
sin? ¢ _SiHQQO

= 9 <vp§JX,Z)+(sin2g0)<VJXP£,Z) = 9 <VP§A,X>.

Thus we get (VpeA, X) = (VpeA, X) = 0. Next, our assumption implies

sin? o
If (P¢, Pn) =0, then (£,n) = 0 because of Corollary 6.12, and hence (VpcA, Pn) = 0. We
also have (VpeA,n) = —(II(P€, A),7) = 0. Then VpeA = —"2¢ ¢ € T(RA @ RPY).

We now consider the covariant derivative VpeP{. We have

(VpeA, Py = —(VpeJZ,Jn — Fn) = (II(P¢, Z),n) + (I[(PE, A), Fy) = —

(VpePEX) = (VpePE X) = —(VpeX, JE - FE)
sin?

= A )T = o

For any Y € I'(T'M) we have 2(S,P¢,Y) = 2(II(P&,Y),n) = —(sin? p)(&,n)(Z,Y) and
hence 25, P§ = —(sin® ) (&, n)Z. This implies

(VpePS, Pn) = (VpePg, Jn — Fi) = —(J8,P¢, P¢) + (11 (P€, P¢), F) = 0.

Finally, (Vpe P¢,n) = (II(PE, PE),n) = 0. Therefore Vpe P& = %A e '(RA @ RPY).



148 6 Cohomogeneity one actions on the complex hyperbolic space

Altogether this shows that RJZ @ RP¢ is integrable and each integral manifold is a
totally geodesic submanifold of CH™. As RJZ & RP¢ is a totally real subbundle of rank
2, each of these totally geodesic submanifolds must be an open part of a totally geodesic
RH? C CH™

We now proceed with (iii). We define U = P{/||P¢|| = P¢/sing. From the above
result for V pg P€ we obtain Q?Ug Us = A. Using this and Vpe A we get

_ _ _ 1_ 1
VUnggUg + <VU§U§, VU§U§>U5 = EngA + Z(A, A>U§ =0.

From this we see that the integral curves of U are horocycles as described in (iii).

To finish our argument let o € M and F, be the leaf of € through o, which is an open
part of a totally geodesic CH"* Cc CH™. Let ¢ : I — F, be a curve with ¢(0) = 0. The
normal spaces of M along c are uniquely determined by the differential equation

sin? ¢

VoX + (d,Z)JX =0

along ¢* TH*CH"*. Indeed, if X is a vector field normal to F, along ¢ with X, € T;- M and
satisfying the above differential equation, then X € Tct)]\/[ for any t. To prove this asser-
tion we write X = £+ Jn with £, n € T'(y* T+ M) and 7, = 0. Using the assumption on the
second fundamental form we get (Se ¢/, X) = (II(¢, X), &) = (¢, Z)(X, P§)(1I(Z, P§), &) =
—(sin® p)(c/, Z)(P¢, X) /2, which implies

L2
Vot = —=5 0 Z)PE+ Ve,
Then using V.J = 0 we get
) c 2 12
0 = VoX + 22 2)JX = Vb + IVon+ 24, Z)JE+ 22, 2)0%

L2
- P (Vﬁn + yw, Z)Fn)

1 sinp B sin? ¢

+vc/£+T<C,Z>F€+F Vcl/r/—i_

(, Z)Fn) .

Taking the component tangent to M yields 2Vin + (sin® @) (¢, Z) F'np = 0. Since 1.y = 0,
the uniqueness of solutions of ordinary differential equations implies 7. = 0 for all ¢ as
desired. Conditions (i)—(iii), the rigidity of totally geodesic submanifolds of Riemannian
manifolds (see for example [13, page 230]), and of horocycles in real hyperbolic planes (see

for example [13, pages 24-26]), then imply the assertion. O
Remark 6.17. The proof of the above rigidity result shows that the differential equation
.2
VX + 2220 2V IX =0

characterizes left translation by S, of the normal spaces of Wj"*k.



6.3.3 Cohomogeneity one actions with one non-totally geodesic singular orbit 149

The above study provides a fairly good description of the non—totally geodesic singular
orbits of the cohomogeneity one actions on CH" given by cases (v) and (vi) of Theorem 6.4.
It also includes the ruled minimal orbit of case (iv) as a particular case. We now conclude
this chapter by studying the geometry of the principal orbits of the cohomogeneity one
actions given by Theorem 6.4 (v) and (vi). We recall here that these orbits are tubes
around the singular ones so one actually has to study the geometry of tubes around Wﬁ”*k.
We do this in two steps depending on the the Kéhler angle of T2 .

Constant Kahler angle ¢ = 7/2

Using the notation above for the singular orbit W?2"~* with k£ > 2, we have that tv* has
constant Kéhler angle ¢ = /2, that is, to! is real. This means that the normal bundle
TEWn=k of W2r=F ig real.

We recall that the second fundamental form of W2"~* is given by the trivial bilinear
extension of

(7,76 = €.

for all ¢ € THW?2"=*_ Thus, with respect to a unit vector & € T+W?2"~* the shape operator
is determined by

S(7)=—5 06 S =57 5(X)=0

for all X € TW?" ko (RZ @ RJE). The eigenvalues of the shape operator with respect to
¢ are 0, —1/2 and 1/2, with corresponding multiplicities 2n — 2 — k, 1 and 1. The corre-
sponding eigenspaces are TW?"* o (RZGRJIE), R(Z + J¢) and R(—Z + JE), respectively.

The above information allows us to calculate the shape operator of the principal orbits.
Every principal orbit of this action is a tube around W?"~*. We use Jacobi vector field
theory. Let us fix a unit vector £ € T-W?"~*. We define the geodesic c¢ by the initial
conditions c¢(0) = o and c;(0) = §. We follow the notation of Section 4.1. For any
X € T, 0)CH" we denote by Bx the parallel translation of the vector X along c¢. If
X € TW? % we denote by (x the Jacobi vector field defined by the initial conditions
(x(0) = X and (4 (0) = Se(X). If n € T*W?' we define the Jacobi vector field ¢, by
the initial conditions (,(0) = 0 and ¢/ (0) = 7.

The solution of the Jacobi equation yields

( cosh(t/2)Bx(t) . if X e TW*F o (RZ @ RJE),
oy | /DB - %sinh(t)BJg(t) L #X=2
(1) =
—sinh(t/2) By (t) 4+ cosh(t)Be(t) if X = J¢,
| 2sinh(¢/2)Bx(t) . ifX eTPW P oRe.
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Using the theory of Section 4.1 we get the shape operator S(r) of the tube of radius r
around W2"=* Gyon—i(r). This is given by

1
S(r)Bx(r) = 3 (tanh g) Bx(r),  if X e TW** & (RZ @ RJE),
1 1
S(r)Bz(r) = 3 (ta,nh3 g) By(r) =5 (sech3 g) Bye(r),
1 r 1 r r
S(r)Bye(r) = —3 <sech3 5) By (r) + (1 +3 sech? 5) (tanh 5) Bye(r),
1
S(r)Bx(r) = 3 (coth g) Bx(r), i X eT W™ *oRe.
Hence, we have the matrix representation
tanh 7
tanh® 5 — sech® 5
1
S(r) =35 tanh 2 Tdy, 5 4
— sech® 5 2 (1 + 3 sech® %) tanh 3
coth 5 Idy

with respect to the following direct sum decomposition
TC€(T) Gw2n—k (T) = B]RA (T) @ B]RZ (T) EB BTOW2"*’“9(RAEBRZ@J§) (7") @ B]RJE (T) EB BTDJ_WmL—kGRE (T) .

where By denotes the parallel translation of any vector subspace V' C T,CH™" along c;.
A straightforward calculation shows that Gyy2.—« (1) has four principal curvatures
1 T 1 T

a = —tanh—, 8 = =coth—,
2 2 2 2

3 1/ 3 3 1 3
v o= % tanh - — = 1——tanhzt, o = —tanhi—k— 1— 2 tanh? L .
4 2 2 4 2 4 2 2 4 2

with corresponding multiplicities
me =2n — 2 — k, mpg =k —1, m, =1, mgs = 1.

The Hopf vector field of Gy2n—x(r) is not a principal vector. In fact, it has non—trivial
orthogonal projection onto 7', and T5.

A special case occurs when r = log(2 + v/3). In this case, 3 = 0 and the principal
curvatures are a = v/3/6, 8 = § = v/3/2 and v = 0 with multiplicities 2n — k — 2, k and 1.
The Hopt vector field has non-trivial projection onto T3 and T),. We emphasize this fact
here as it becomes important in Section 7.2.1.
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The previous calculations show that the interesting part of the shape operator of both
the singular and the principal orbits is the one concerning the vectors Z and J¢. We make
this statement more precise.

Let £ € TW? be a unit vector. Consider g = C(A® &) = RADRZ & RJIE @ RE,
which is a Lie subalgebra of s = a ® 3 ® v, and let G = Exp(g) be the connected, simply
connected Lie subgroup of AN whose Lie algebra is §. Then, G - o is a totally geodesic
CH? in CH™. This CH? defines a “slice” of CH™ through o.

Let h=s Ng=RA®RZ ®RJE. Then f is a Lie subalgebra of § of codimension one.
Let H = Exp([j) be the connected, simply connected Lie subgroup of G whose Lie algebra
is . Then, H acts on CH? = G - 0 with cohomogeneity one and all the orbits of this action
are principal. This cohomogeneity one action on CH? gives exactly the solvable foliation
of CH? described in the previous section.

We know that the orbits of the action of H on CH? are the equidistant hypersurfaces to
the orbit H -o. On the other hand, the intersection of the orbits of the cohomogeneity one
action of G on CH™ with the slice CH? also gives tubes around H - o because CH? = G - 0
is totally geodesic in CH™. So, in order to study the geometry of the orbits of the action
of G on CH" in the slice CH? it suffices to study the orbits of the action of H on CH2.
As it was said before, this has been accomplished in the previous section. See also [11].

Let ¢ be the geodesic determined by the initial condition ¢/(0) = £. The shape operator
of the orbit through ¢(r) of the action of H on CH? with respect to the parallel basis along
the geodesic ¢, {Ba(r), Bz(r), Bje(r)}, has the matrix representation

1 tanh 7 0 0
S(r) = 3 0 tanh® 5 —sech®
0 — sech? % 2 (1 + = Sech

as previous calculations show. However, in this context it is more convenient to use left—
invariant vector fields.

The tangent vector of the geodesic ¢ can be written with respect to left—invariant vector
fields as (see Section 6.2)

dt) = (tanh )A - <sech %) €.

Then, {sech(r/2)A + tanh(r/2)¢, Z, J{} is an orthonormal basis of the tangent space of
H-c(r) at ¢(r). With respect to this basis the shape operator has the matrix representation

tanh 7 0 0
S(r)= 5 0 2tanh § —sech §
0 —sech 5 tanh

The following result gives the relation between the above two bases. The second one is
more suitable for calculations, so we use it in what follows.
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Lemma 6.18. The parallel basis along ¢, {Ba(r), Bz(r), Bje(r)}, and the left-invariant
basis {sech(r/2)A + tanh(r/2)¢, Z, JE} are related by the linear transformation

1 0 0
(BA(T),BZ(T),ng(T)) = <(sech g)A—i- (tanhg)f, Z, Jf) 0 sechi tanhj

0 —tanh g sech g

Proof. First, we find a relation between the parallel basis {B4(r), Bz(r), Bje(r), Be(r)}
and the left-invariant basis {A, Z, J§, £} along c.

Let U € T,CH? and denote by By (t) its parallel translation along c. We may write
By (t) = a1(t)A+as(t) Z+as(t) JE+aqu(t)E. Since ¢'(t) = Be(r) = —tanh(t/2)A+sech(t/2)¢,
the formula for the Levi-Civita connection of CH? yields

0 = By(1) — (a;(t) 42 o, %) At <a’2(t) + a32(t) sech %) Z

4 (ag(t) _ a0 o %) JE + <a;<t) _ “12“) sech %) ¢

As a consequence, in order to express the parallel basis {B4(t), Bz(t), Bje(t), Be(t)} in
terms of the left—invariant basis {A, Z, J¢, £} one needs to solve the matrix differential
equation

00 0 -1
1 t 00 —1 0

/ —_— — pr— pr— p—
D(t)+2(sech2>CD(t) 0, D(0)=1Id, where C 01 o0 o
10 0 0

The solution is the change of basis matrix

sech % 0 0 — tanh %
0 sech { —tanhi 0
D(t) = 2 e
0 tanh 3 sech 3 0
tanh £ 0 0 sech £

The relation between { Ba(r), Bz(r), Bje(r)} and {sech(r/2)A+tanh(r/2)¢, Z, J¢} follows

easily from the previous transition matrix. O

We now focus our attention on some distributions of the orbits of the action of H on
CH?. Let Gyys(r) the orbit of the action of H through the point ¢(r). If = 0, we just
have W3 C CH?, whose geometry has been studied in this section. Assume r # 0.

The non—trivial part of the shape operator of the orbits of H concerns the vectors By (r)
and Bye(r) = Jd(r). Lemma 6.18 shows that the real span of {Byz(r), Bye(r)} coincides
with the real span of the left—invariant vector fields Z and J¢ at ¢(r). Then, the subbundle
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generated by {Byz(r), Bje(r)} is an integrable distribution and using the expression of the
Levi—Civita connection of CH" we get

_ _ 1 - 1 - 1
VzZ = A, VieJ€ = 514; VzJ§ = 557 VieZ = 55-

Thus, the shape operator with respect to the normal vector B(r) of each integral manifold
as a submanifold of Gys(r) = H - ¢(r), has the matrix representation

1 ( 2sechs tanhZ
2\ tanhf sechl /|~
Obviously, this implies that its mean curvature is (3/2) sech(r/2).

The distribution RZ @ RJ¢, when considered as a distribution on CH?, is integrable.
The above formulas for the Levi—Civita connection show that

I(Z,2)=2I[(J¢,JE) = A, II(Z,J¢) = %5.

Hence, the mean curvature vector of each integral manifold is (3/2)A. With regard to
the intrinsic geometry of the integral manifolds we have that the Gaussian curvature is
K =—(1/4) + (A, (1/2)4) — {(1/2)¢, (1/2)§) = 0.

On the other hand, using Lemma 6.18 we get

?BA(T)BA(T) = v(sech%)A—&—(tanhg)f ((sech g)A + <tanh £)£> = —% (tanh g) Be(r).

Hence, every integral curve of B,(r) is a geodesic in Gyys(r) = H - ¢(r).

All in all, this means that Gys(r) = H - ¢(r) is diffeomorphic to R? and it is foli-
ated by one autoparallel one-dimensional distribution whose leaves are geodesics and one
orthogonal integrable distribution whose leaves are isometric to R2.

Constant Kahler angle ¢ € (0,7/2)

Let us consider the singular orbit Wj”_k, with & > 2 and ¢ € (0,7/2). We have that
o+ (and hence THW2"~*) has constant Kéhler angle ¢. Corollary 6.11 implies that k

is an even number, so we write & = 2k. We use the notation and results above. For
any point 0 € W2"™ we denote by 7 : CT-W2"" — cTiwi"™ o Tiwin
and o : CTOlVVz(”_k) — Tjo(”‘k) the corresponding orthogonal projections and P =
wJ and F = oJ are the operators defined at the beginning of this section. Note that
CTIWZ P oriw2" ™ s tangent to W2 It is convenient to introduce the following
notation

_ PX _ FX
X=—""0o and FX= "0
[ X
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for all unit vector X € CTEW2"_ Then, the second fundamental form of W2 is
given by the trivial bilinear extension of

sin ¢
2

1(Z, P¢) = - £,

for all unit & € TLI/Vz("*k). Thus, with respect to a unit vector & € TLW,?("*’“) the shape
operator is described by

Se(7)= -2 P, Se(PE) = -

sin
2

Z, Se(X) =0,

forall X € TW£("_k)@(RZ@RP§). The eigenvalues of the shape operator are 0, —(sin ¢)/2
and (sin ¢)/2, with corresponding multiplicities 2(n — k — 1), 1 and 1. The corresponding

eigenspaces are TWE,("%) O (RZ @ RPE), R(Z + P¢) and R(—Z + P¢), respectively.
Since the principal orbits of the cohomogeneity one action corresponding to Theorem
6.4 (vi) are tubes around the singular orbit Wj("fk , we may calculate their shape operator
using Jacobi vector field theory. We follow the usual notation for parallel translation and
Jacobi vector field theory explained in Section 4.1. Let us fix a unit vector £ € TLWZ(n_k)

and let c¢ be the geodesic determined by the initial condition 0'5(0) =¢. Let X € T, (0CH".
The solution of the Jacobi equation of the manifold CH™ gives

t _
Cx(t) = coshz Bx(t), if X € TW* %o (RZ @ RP¢),
t - . £\ Lt
z(t) = cosh§ Bz(t) —sing | cos® ¢ + sin” ¢ cosh§ s1nh§ Bpe(t)
t t
—cos p sin? o <cosh 5 1) sinh 3 Bre(t),
t t
Cpe(t) = —sinyp sinh 5 By(t) + <cos2 ¢ cosh 2 + sin?  cosh t) Bpe(t)
t
—sin p cos ¢ (COSh 5= cosh t) Bre(t),
. t oLt
Cre(t) = 2singp cosgp cosh§ -1 s1nh§ Bpe(t)
t t
+2 (1 + cos® (cosh 5~ 1)) sinh B Bpre(t),

t _
(x(t) = 2sinh 3 Bx(t), if X € T*W* %o (R¢€ @ RF¢).

Therefore, the shape operator S(r) of the tube of radius r around Wj(”_k) can be retrieved

from the above expressions using Jacobi vector field theory (see again Section 4.1). The
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explicit expressions are

1
— tanh
2

r
— Bx (1
2 X( )7

s11(r) Bz (1) + s12(r) Bpe(r) 4 s13(r) Bre(r),

591(1) Bz (1) + s22(1) Bpe(r) + 523(r) Bpe(r),

s13(r) Bz(r) + s23(r) Bpe(r) + s33(r) Bre(r),

1
— coth
5 0

ng(T),

cos? ¢ cosh? g + sin? ¢ sinh® f) ,

sech? g sin ¢ (cos2 @ + sin? ¢ sech g) ,

— sech® g sin? ¢ cos ¢ <coshg — 1) ,

-2 CSChg sin? ¢ cos? ¢ (1 — cosh?® g) },

r r
—3 sech? = csch 2 sin ¢ cos ¢

S(T)CQ(T)BX@) =
S(r)e,mBz(t) =
S(r)e, i Bpe(t) =
S(T)c’g(r)BFE(t) -
S(mcg(r)BX(t) =
where
s1(r) = 1ta,nhfsech2z<
T 2 2
1
812(’/“) = —5
1
813(7”) = 2
1
Soa(r) = Esech2g
823(7") = 2
T,
+sech§ sin go(
833(7") =

As a consequence, we have the matrix representation

1
3 sech? g{coth g cos* (cosh2 g + sinh? g) + cosh® g cothg sin* ¢

(oo

1 — cosh r_ cosh? r sinh? r
2 2

if X e T * o R¢.

2

1 — cosh?® i)
2

ok

+sin? ¢ cos® (2 csch g + 3 cosh g sinh g + tanh g) }

if X e TW* %o (RZ @ RP¢),

{coshg sinh g cos® ¢ + tanh g sin® o <1 + 2 cosh? g)

tanh 3
s11(r) s12(7) s13(7)
tanh § Idy, 32k
s12(7) 522(7) $23(1)
coth 5 Idgy o
s13(7) s23(r) s33(r)
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with respect to the direct sum decomposition

TCE(T)GWEJ(nfk)O") = Bgra(r) ® Brz(r) & BZ,W&"’“@(RA@RZ@RP{) (r)
©Brpe(r) ® Briweo-meomearre) (1) © Brpe(r).-
We will see that G 2K (r) has five distinct constant principal curvatures when £ > 1

and four distinct pr1n01pal curvatures when £ = 1. At this stage, however, we are not
ready to study in detail the principal curvatures of the real hypersurface G 2m-x (1) due
@

to the computational difficulty its shape operator presents. As in the previous subsection
we focus on the non-trivial part of the shape operator of G 2k (r) and we introduce a
]

new basis to simplify calculations.

Let vy C v be a two—dimensional vector subspace with constant Kahler angle . Then,
3 = a®3®C vy is a Lie subalgebra of s = a®3@v. Let G = Exp(§) be the connected, simply
connected Lie subgroup of AN whose Lie algebra is g. Then, G - o0 is a totally geodesic
CH? in CH™ through o. The vector subspace h=snN g=a®dj3 Py is a Lie subalgebra
of g of codimension two. Denote by H = Exp(h) the connected, simply connected Lie
subgroup of G whose Lie algebra is . We know that the Lie group N? (H )I:I acts on G - o
with cohomogeneity one and its orbit through o is exactly H - o. This cohomogeneity one
action is the one we have been describing throughout this subsection. We are interested in
this particular case because, being it fully representative, it is the simplest of all.

We investigate the geometry of the orbits of the action of G on CH™ in the slice
CH?® = G- o. Since the orbits of a cohomogeneity one action are tubes around the singular
orbit and the slice CH? = G-o is totally geodesic, it suffices to study the action of N}){(ﬁ )]jf
on CH3.

Let us denote vy = C vy ©v,. For any unit vector £ € vy the set {A, Z, PF¢, PE, Ff £}
is a left-invariant orthonormal basis and {A, Z, PF¢, P¢} spans the tangent space of H - o.
Our previous study shows that, with respect to the above tangent basis, the shape operator
Se of H - 0 has the matrix representation

0000
S__singp 0001
T 0000 |

0100

and the shape operator of a principal orbit with respect to c’g(r), where c¢ is the geodesic
determined by ¢¢(0) = &, is given by the matrix

tanhZ 0 0 0 0
0 sll(r) 0 Slg(T) Slg(T)

1
S = 5

0
0 812(T> 0 S99
0 (
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with respect to the basis {B4(r), Bz(r), Bpre(r), Bpe(r)}. In what follows we introduce a
convenient basis to perform calculations.

For any unit vector n € T;VV;1 we denote by ¢, the geodesic determined by the initial
conditions ¢,(0) = p, ¢, (0) = n and by B” the parallel translation along c,. Using the
fact that the normal exponential map of W(;‘ is a diffeomorphism, we may define the vector

fields ]3}7/5, ]32?, FZ“ and gon CH?® — H - 0 by the formulas

PFew = LawPFn Pl = LewsPn,
chn(t) = Lcn(t)*FT}, 5677(15) = LCn(t)*/r"

The following lemma gives the relation between the previously defined vector fields and
the parallel vector fields.

Lemma 6.19. The parallel basis along c,, {B}(r), B%(r), BZFn( r), B} (), Bl ( ), B(r)}

and the basis { A, (r), Zey(r), PFE ( 5 F Een(r)s 50,7 )} are related by the linear trans-
formation

sech 5 0 0 0 0 — tanhg
0 sech 5 0 —sin o tanh § cos ¢ tanh 5 0
0 0 1 0 0 0
0 singtanhg 0 (0052g0 coshs + sin2<,0) sechs sin¢cosp (cosh% — 1) sechs 0
0 —cosptanhg 0 singcose (cosh% — 1) sech (COS2<,O + sin?¢p cosh%) sechy 0
tanh 5 0 0 0 0 sechy

Proof. For simplicity let us denote ¢ = ¢,. Using the expression of the tangent vector of a
geodesic in terms of left—invariant vector fields we get

d(t) = —tanh Ay + sech 5 le(t) = — tanh Ay + sech fc

Let U € T,CH?. We may write the parallel translation of U along ¢ as By (t) = ay(t) Aew) +
az(t) Ze(ry + az(t) PEE 4y + as(t) P&y + as(t) FE ) + as(t )fc(t We recall that, by defini-
tion, along the geodesic ¢ the vector fields {A.y), Zow), PF{C(T f ) F §C(T fc(r} are

left—invariant. The expression of the Levi-Civita Connectlon on CH" yields

0 = By(t) = <a’1(t) + G6T(t) sech %) Ay

t t t
+ (aé(t) + a42( ) sin ¢ sech 5 a52( )
Fa(OPFE + (00) -

a9 (t)
2
+ (ag(t) + a22(t) cos ¢ sech — > F&p + < () — a/lz(t) sech — ) Eet)-

t
cos ¢ sech 5) Ze(t)

sin ¢ sech 2) P&
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Hence, the proof reduces to solving the matrix differential equation

0 0 0 0 0 1
0 0 0 singp —cosp 0

1 t
D/(t) +§<sech —)CD(t) =0, D(0) =1d, where C = 0 0 0 0 0 0

2 0 —sinp0 O 0 0
0 cosp 0 O 0 0
-1 0 0 0 0 0

The solution of this differential equation is exactly the matrix given in the statement of
Lemma 6.19. O

Our aim in what follows consists of calculating the covariant derivatives of the above
defined vector fields.

Lemma 6.20. Let ¢ = ¢, be the geodesic determined by the initial condition ¢/(0) = 7,
where 1 € vy is a unit vector. Then we have

Vi PFE =0, Vi P& =0,

Va,FE =0, Vawé =0,

vzcm]/;fi =- CO; 4 P Ne(t) + S F Ne(t) vzcmﬁé Sk d PF e(t) T Si;(p Ne(t)
vzc(t)]?g = _sinTgo pF??c(t) + ik Ne(t) ?Zc(t)g = Si;l ‘ Pnc(t) T _77c(t),
?Pﬁnc(t)ﬁ/f = % Ay, ?Pﬁncu)?ﬁ = CO; d Ze(t)

Vb F¢ =-— Sig Ld Ze(t)s \Y% ppnc(t)g =0,

%M)ﬁ? - ¥ Ze(ty, vﬁnc(t)ﬁé = % Actys

@Pncu) ]?g =0, v1377c<t)g - Si; £ Ze(t)

vﬁnc(w}/)}g =— Sirzl Ld Zey + % csch % Pnc(t), vﬁnc@)ﬁé = —% csch % PP_’C(t),

vlﬂ“ncm]f;f = _% Acw) + % csch % Te(t)» vFnc(t)g - CO; £ Ze(r) + % csch % Fiesy
o, FFE -0 S, P TP,

VawFE =5 Za, Vi€ = % Actr)

Proof. Using the notation and results of Section 6.2, it is not difficult to calculate explicitly
the normal exponential map of W;‘ as the following result shows.
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Claim 6.21. The normal exponential map of W;‘ satisfies

eXp(a,Exp“ (zZ—&-uPFn—i—’uPn)) (h F77 +J 77)
uh +vj

l l __ _
= <a+logsech2§, Expn<{z singpea/QtanhE}Z+uPFn+an

2h [ - 27 l
+ Tea/2 tanh EFn—i- Tje“/2 tanh 577))

where | = \/h? + j2 and n € vy is a unit normal vector.

The left-invariant vector field N = (h F'n+jn)/+/h? + j2 is always a unit vector. Then
the geodesic ¢y whose initial conditions are cy(0) = 0 and ¢\ (0) = N is written as

t
en(t) = (log sech? 3 Exp, (2 tanh % N)) :

The point g = (a,Exp,(2Z +uPFn+vPn)) € W} can be regarded as an isometry of
CH?3. Hence

expg,o(tN) = g-exp,(tN) = g-cn(t)
t _ _ t
= <a+logsech2 3 EXpn<zZ+uPF77+an+2€a/2 tanh EN
L wpof 5z _ t
+§e {uPFn—i—an, 2tanh§N}>>.

Putting t = \/h2 + 72, plugging the value of N and calculating the expression for the above
bracket using the usual formula for left—invariant vector fields, we get Claim 6.21.

In particular, Claim 6.21 shows that the principal orbit at distance r from Wé of the
cohomogeneity one action of H on CH? is the set

GW;} (T) - {exp(a,Exp“(zZ+uPF’§+vP§)) (h Fé' +J 5) ra,z,u,v,h, 5 €R, h? + j2 = TQ} .

Now, Let X be a left-invariant vector field on CH® (considered as a solvable Lie
group) and denote by xx the integral curve of X trough ¢(r). Then we have xx(s) =
c(r) Exp,(sX). We know that

c(r) = <log sech? g, Exp, (2 tanh g n)) :

Using this and the explicit expression of the Lie exponential map of CH", Exp,, we easily
obtain
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Claim 6.22. Let X € {A,Z PFn, Py, Fn,n} be a left-invariant vector field. Then the
integral curve of X through c(r) is given by

t t
xa(s) = (3 + log sech? 2 Exp, (2 tanh 3 n)) ,
,t t
log sech? = EXpn s sech 3 Z + 2tanh 31 )

t 5= t
log sech? = EXpn (s sech 3 PFn+ 2tanh 5 77)) ,

t t t - t
log sech? = Expn (—3 cos¢tanh§sech— Z +s sech§ Fn+ 2tanh§ 7])> ,

t t t - t
Xpy(s) = (log sech2 , Exp, (s sin  tanh 2 sech 3 Z + s sech 2 Pn + 2tanh 3 n)) ,
( ;

t t
log sech? = Expn <<2 tanh 3 + s sech 5) n) > .

Since CH? is a Hadamard manifold, the normal exponential map of Wf, is a diffeo-
morphism. Using the notation above, if xx denotes the integral curve of a left—invariant
vector field X through ¢(r), then we may write xx(s) = expy (o).o(hx(5)Fn + jx(s)n) for
some gx(s) € H and hx(s),jx(s) € R. By construction the curves gx : R — H and
hx,jx : R — R are differentiable. Comparing the formulas in Claims 6.21 and 6.22 one
can obtain the explicit expression of those curves. We content ourselves with the derivative
Ry (0) which is given in the following

Claim 6.23. Assuming the notation above we have
_ t t _
h'(0) =0, if X € s ©RF¢ and h/X(O):§CSCh§, if X € RF¢.

We are now ready to conclude the proof of this lemma.
Assume that y is a curve in CH? such that x(0) = c¢(r) and write x as x(s) =
€XDy(s)-0 (h( YEn + j(s ) Then, by definition,

)n
— §(8)PFnye) — h(s)Prys) oy
PF¢ o = = ==, Py

Vh(s)? +j(s)?
Fe _ J(8) P — hs)nys) F = 1) Fiy(s) + 3(8) o)
o WP+ (5 ' M) (57
Since x(0) = ¢(r) we have h(0) = 0 and j(0) = r. This fact and the above expressions
yield

h(s)PFys) + 7(5) Priys)

\/() O

= == - h'(0) - i - - h'(0) = -
VX/(O)PFg = V PF7]+ i)Pﬁc(T), VX’(O)Pg = VX/(O)PU— ()PFUC(T),

_ _ L H(0 e 1(0) -
VvoFe = Vyoln+ ¥77c<r>a VeoFE = Vuon-
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Finally, taking x as the integral curve of one of the left-invariant vector fields 4, Z, PFn,
Pn, Fnor n and using Claim 6.23 we get the result. O

We now give a simpler expression of the shape operator of GW;; (r). Let n be a unit
normal vector of W:j and ¢ the geodesic determined by ¢/(0) = 7. Lemma 6.19 implies that
the set {B}(r), Zer), PEE (s PEc(rys Féery} 18 a basis of the tangent space Te)Gwa(r).
Note that ¢/(r) = —tanh(r/2) A.y + sech(r/2)&y). Then, Lemma 6.20 allows us to calcu-

late the shape operator of Gwé(r) with respect to that basis. This is given by the matrix
representation

tanh 3 0 0 0 0
, 0 2tanh 3 0 — sin psech 3 cos p sech 5
S(r)ew = 3 0 0 tanh ¢ 0 0
0 — sin g sech 3 0 tanh 3 0
0 cos psech 5 0 0 sech 3 (csch 5 + sinh %)

The characteristic polynomial of the non—diagonal part of the above matrix may be written,
after doing some calculations, as

1 1
pro(z) = —2°+ 5 (csch g sechg + 4 tanh g) r? — 1 (2 sech” g + 5 tanh? g) x
1
—= (csch T sech® L sin? © — sech? " tanh - — 2tanh? C) :
8 2 2 2 2 2
We have

1 1 1 1
Dro (5 tanh g) =73 csch g sech® g sin®p and p <§ coth g) =3 csch g sech® g cos” .

Hence, neither (1/2)tanh(r/2) nor (1/2) coth(r/2) are solutions of the above polynomial
for any value of r # 0 and ¢ € (0,7/2). Since the matrix (s;;(r)) has the same eigenvalues
as the non—diagonal part of the above matrix we conclude that neither (1/2) tanh(r/2) nor
(1/2) coth(r/2) are eigenvalues of (s;;(r)). A study of the polynomial p, , using elementary
calculus shows that p,, has three different roots when » # 0 and ¢ € (0,7/2). Hence,
in the general context of CH" we get that Gwi(n—k) (r) has five distinct constant principal

curvatures when k£ > 1 and four distinct constant principal curvatures when k£ = 1.

The following result is an easy consequence of Lemmas 6.19 and 6.20.

Proposition 6.24. Let Gya(r) be the principal orbit of the action of N%(H)H at a dis-

tance r from H -0 = Wé. Then we have
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(i) The distribution c,(r) — B}(r) is integrable and each of its integral curves is a
geodesic in Gya(r).

(ii) The distribution c,(r) — RB}(r) ® RBpg,(r) is autoparallel and each integral man-
ifold has constant sectional curvature —(1/4)sech(r/2).

(iii) The distribution c,(r) — RB(r) @Rﬁf’%cﬁ(r) oF Rﬁé%(r) @RP/?ECW(T) is integrable but
not autoparallel.



Chapter 7

Real hypersurfaces with constant
principal curvatures in the complex
hyperbolic space

The purpose of this chapter is to obtain the following classification of real hypersurfaces
with three distinct constant principal curvatures [14].

Theorem 7.1. Let M be a connected real hypersurface in CH™, n > 3, with three distinct
constant principal curvatures. Then M 1is holomorphically congruent to an open part of
one of the following real hypersurfaces:

(a) A tube of radius r > 0 around a totally geodesic CH* C CH™ for some integer
ke{l,...,n—2}.

(b) A tube of radius r > 0, r # log(2 + v/3), around a totally geodesic RH™ C CH™.

(c) A ruled minimal real hypersurface W?"=1 C CH™ or one of the equidistant hypersur-
faces to W21,

(d) A tube of radius r = log(2 + v/3) around a ruled minimal real submanifold W*"~* C
CH™ for some integer k € {2,...,n — 1}.

The previous chapter was devoted, among other things, to the study of the geometry
of the examples in the statement of the theorem above. We emphasize that cases (a) and
(b) are Hopf hypersurfaces whereas cases (c) and (d) are not. From Theorem 6.5 it follows
that in order to derive the above classification result we just need to focus on cases (c)
and (d).

In [115] J. Saito gave a classification of connected real hypersurfaces of CH™ with
three distinct constant principal curvatures using the classification of Hopf hypersurfaces
of Theorem 6.5. In this paper J. Saito proves that when three different principal curvatures
are assumed, the Hopf vector field is principal. Most unfortunately J. Saito’s proof is
incorrect. Cases (c) and (d), together with our study in the previous chapter, show that

163
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this is not true. J. Saito’s mistake consists of getting wrong formulas ((4.42) and (4.59) in
[115]) to get a contradiction when the Hopf vector field is not principal.

This chapter is organized as follows. In Section 7.1 we use the Gauss and Codazzi equa-
tions to get some general results for real hypersurfaces with constant principal curvatures
in the complex hyperbolic space. An easy consequence of this, is Corollary 7.6 where we
classify real hypersurfaces with two distinct constant principal curvatures. Section 7.2 is
devoted to the proof of Theorem 7.1. To achieve this, we first obtain some information
of the eigenvalue structure of the shape operator of the submanifold in Subsection 7.2.1.
Then, in Subsection 7.2.2, using Jacobi vector field theory, we derive the classification
result as a consequence of Theorems 6.8 and 6.16.

7.1 Formulas for constant principal curvatures

From now on, M denotes a real hypersurface with constant principal curvatures. This sim-
plifies Gauss and Codazzi equations considerably and allows us to derive crucial formulas
for the rest of our work.

Let «, B and 7 constant real numbers and let X € I'(T,,), Y € I'(13) and Z € I'(T},).
Using the Codazzi equation we get

(VxS)Y — (VyS) X, Z) = —(Rxy&, Z).
On the other hand,
(VxS)Y = (Vy9) X, Z) = (VxSY —SVxY —VySX +SVy X, Z)
= (B=1(VxY.Z) — (a = )(Vyv X, Z).
This proves the following result.

Lemma 7.2. For all X € I'(T,,), Y € I'(I3) and Z € I'(T,) we have
(ﬁ - 7)<VXY7 Z> + ('7 - a)<VYX7 Z> = _RXYfZ-

Putting o =  in the above lemma we get (3 — a)(VxY, Z) = —Rxy¢z. Changing the
role of Y and Z yields the following result whose importance in what follows cannot be
understated.

Lemma 7.3. For all X, Y € I'(T,,) and Z € I'(Tp) with a # [ we have

(ViY,Z) = —(VxZY) = ﬁ%@ Ryzer
1
= L YNZ IO + Y. Z)X, ) + 2K 2, J6) |

Corollary 7.4. For all X € I'(T,) with (X, JE) =0, we have VxX € I'(T,).
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We follow [125]. Assume a = 8 = 7 in Lemma 7.2. Then Rxy¢z = 0 for any X,Y,Z €
T.(p). In particular, 0 = Rxyex = —%(JX, Y)X,JE) for any X, Y € T,(p). Then,
0 = (X, JE) Rxyez = i(JY, ZY(X,JE)2. As a consequence, if X,Y,Z € T,(p), we have
(JX,Y)(Z,JE) = 0. Hence, we have proved

Corollary 7.5. If the projection of J, onto T,(p) is non—zero, then T,,(p) is a real subspace
of T,CH", that is, JT,(p) C T,CH" & T,(p).

This immediately implies that the number of constant principal curvatures of M must
be at least two. If this minimum is attained, then the classification of real hypersurfaces
with two constant principal curvatures follows from the work by S. Montiel [99] for n > 3.
We give a simple proof for n > 2 based on the classification of Hopf hypersurfaces with
constant principal curvatures of Theorem 6.5.

Corollary 7.6. Let M be a connected real hypersurface of CH™, n > 2, with two distinct
constant principal curvatures. Then M is holomorphically congruent to an open part of
one of the following real hypersurfaces:

(i) A geodesic sphere of radius r > 0 in CH".

(ii) A tube of radius r > 0 around a totally geodesic CH"™* C CH™.
(i4) A tube of radius r = log(2 +/3) around a totally geodesic RH™ C CH™.
(iv) A horosphere in CH".

Proof. Tt suffices to prove that M is Hopf hypersurface. The result then follows from
Theorem 6.5 and the study of Section 6.3.

Assume M is not a Hopf hypersurface and call « and 3 the principal curvatures of M.
Then, there exists a point p € M such that we can write J§, = X + Y for some non-zero
vectors X € T,(p) and Y € Tps(p). According to Lemma 7.5, both T, (p) and T3(p) are real,
so JT,(p) C T,CH" & T,(p) = Ts(p) ® RE, and J Ts(p) C T,CH" & Ts(p) = Ta(p) ® RE,.
Since n > 2, we can assume dim 7,,(p) > 2.

We have J(T,(p) © RX) C Ts(p), which implies dim T(p) > dim J(T,(p) © RX) =
dim 7, (p) — 1. But Y is not an element of J(T,(p) © RX) because (Y, J&) # 0. Thus we
have dim Tj3(p) > dim T, (p).

The previous equality shows that dim 7j(p) > 2, so we can proceed with T3(p) ©RY in
the same way to prove that dim 73(p) > dim T, (p). Therefore, dim T3(p) = dim 7, (p). This
implies that dim M = dim Tj(p)+dim T, (p) is even, which contradicts dim M = 2n—1. [

In the following lemma we rewrite the Gauss equation for principal curvature vectors
associated with different principal curvatures. The resulting formula will be used in many
cases throughout this chapter.
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Lemma 7.7. Let o and 3 be two distinct principal curvatures, X € I'(T,,) and Y € T'(Tp).
The following relation holds:

(3 08) (X XYy +

1
2
+4(a1_ { (JX,Y) (XYJg +YXJ§>)

(JX,Y)? +2(VyY, VyX) — (Vi X, VyY)

(X, JE) <3Y (JX,Y) + (Vy X, JY) — 2(VyY, JY})

+ (Y, JE) (3 X(JX,Y) = (VxV,JX) +2(Vy X, JX>> } —0.
Proof. Using the Gauss equation we get
Ryyxy = <aﬁ - i) (X, X)(Y,Y) — %(JX, Y)2.
On the other hand, the definition of the intrinsic curvature tensor R yields
Rxyxy = (VixyX —VxVyX 4+ VyVxX,Y)
= (VxnX,Y) = X(Vy X)Y) + (Vy X, VxY) + Y(Vx X,Y) — (Vx X, VyY).

Using Lemma 7.3 we get

X(VyX,Y) = —ﬁ (<Y, JOX(JX,Y) + (JX, V)XY, Jf)),

Y(VyX,Y) = ﬁ <<X, JOY(JX,Y) + (JX, Y)Y (X, J§)>.

Using the Codazzi equation and the first Bianchi identity, we obtain
(@ =BV X,Y) = (Vw1 9) X,Y) = (VxS [X,Y],Y) = (Rixyx€.Y)
(VxS)Y,VxY)—((Vx9)Y,VyX) — Rixyxev

= (a—B)(VxY,VyX) — Rxvevyy — Rixyixey
(a—=B)(VxY,VyX) + vayxyg - Ryvxyxg :

Now, the definition of the curvature tensor of CH™ and the Weingarten equation yield

4(Rxvyxve — Ryvyvxe) = —(a—pB)(JX,Y)?+ (JX,Y) (X<Y, J§) + Y (X, Jf))
(X, JE) ((VYX, JY) — 2(VyY, JY>)

Y, JE) <—<VXY, JX) + 2(Vy X, JX)).

Altogether this proves the result. O]
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7.2 Proof of Theorem 7.1

Let M be a connected real hypersurface of the complex hyperbolic space with three constant
principal curvatures. We denote the principal curvatures by «, # and 7. By £ we denote
a local unit normal vector field on M.

The Hopf vector field J¢ is always tangent to the submanifold M. If J¢ is also a
principal curvature vector, then M is a Hopf hypersurface. As a consequence of Theorem
6.5, and taking into account the study of the number of principal curvatures carried out
in the previous chapter, we have that M is congruent to a local part of a tube of radius
r > 0 around a totally geodesic CH* C CH™ for some integer k € {1,...,n — 2} or to a
tube of radius r > 0, r # log(2 + v/3) around a totally geodesic RH" C CH™. This takes
care of cases (a) and (b) of Theorem 7.1.

Therefore, from now on we assume that M is not a Hopf hypersurface. We follow the
next scheme:

1. Using the Gauss and Codazzi equations we get general relations for the eigenvalue
structure of the shape operator of M. This is accomplished by using some facts
from Section 7.1. More specifically, the Hopf vector field J¢ cannot have non—trivial
projection onto the three principal curvature spaces. In case it has two non-trivial
projections, two different possibilities arise and we totally describe the eigenvalue
structure of the shape operator in each case.

2. We study the two cases obtained in the previous point. For the first of them, the
corresponding hypersurface has focal points at distance r = log(2 + v/3). We deter-
mine the second fundamental form of the focal manifold. For the second possibility
there are no focal points and hence equidistant hypersurfaces form locally a foliation.
Exactly one of the leaves of that foliation is minimal. We study the shape operator
of that minimal leave.

3. Both the focal set in the first possibility and the minimal equidistant hypersurface in
the second have a second fundamental form as described in Theorems 6.8 and 6.16.
Then, those rigidity results apply and the assertion follows.

7.2.1 Principal curvatures
This section is devoted to proving the following result.

Proposition 7.8. Let M be a connected real hypersurface in CH™, n > 3, with three
distinct constant principal curvatures o, 3 and . If the Hopf vector field J¢ of M s
not a principal vector everywhere, then J& has non—trivial projection onto two principal
curvature spaces. Assume these are Ty and T,. Then, we have J§ = a X + bY, where
X € T(Tp) and Y € I'(T,,) are unit vectors, a,b > 0 and a® + b* = 1. There ezists a unit
vector field A € T'(T,,) such that JA=bX —aY . The subbundle RX & RY is real and the
subbundle RA ® RX @ RY @& RE is complex. Moreover we may put m., = 1 and then one
of the following two cases holds:
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i) ma =2n—mg—2 and mg > 1. The eigenvalues are & = /3/6, 8 =/3/2 and v = 0.
B B
Moreover a = 2v/2/3, b = 1/3, the subbundle T3 ©RX is real and J(T3 ORX) C T,,.

(1) mq = 2n — 3 and mg = m., = 1. The eigenvalues satisfy

1
la| < 1/2, 6:5(304—\/1—3042), v =

and a and b are constant. In particular,

1
5 <3a VI 3a2> ,

a2:_(a—ﬁ)(1+40z2—4a7) )2 (04—7)(1—1—4042—4046).
B—n ’ B—n

We divide the proof in two major steps.

J¢ has non—trivial projection onto three principal curvature spaces

Let & be the (local) unit vector field of the hypersurface M. We assume that there exists a
point p such that J&, has non-trivial projection onto Ty, (p), Ts(p) and T, (p). By continuity
there exists an open neighborhood U of p such that these three projections must be non—
trivial. Hence we may write

JE=aX+bY +cZ,
for some local unit vector fields X € I'(T,,), Y € I'(T3), Z € I'(7,) and functions a,b, ¢ :
U — R such that a,b,c # 0 in U.
Lemma 7.9. By taking a suitable orientation, in the neighborhood U we have
JX =¢cY —-bZ —ak, JY = —cX +aZ —bE, JZ =bX —aY —c&.
In particular, RX & RY & RZ & RE¢ is a complex subbundle of T M.

Proof. Since T,, Tz and T, are real subbundles by Corollary 7.5, we may write

JX = (JX. V)Y +{(JX,2)Z 4+ Vi + W) — af,
JY = —(JX,V)X +(JY,Z)Z + Uy + W5 — b¢,
JZ = —(JX,Z2)X —(JY,2)Y +Us+ Vs — €,
with Uy, Us € I'(T, © RX), V1,V3 e I'(T3 © RY') and Wy, W, € I'(T, © RZ). Taking into
account that a® + b? + ¢ = 1 and using the above expressions we have
—¢=J% = J(aX+bY +cZ)
=a((JX, V)Y + (JX,2)Z + Vi + Wi — af)
+b(—(JX,Y)X + (JY, Z)Z + Uy + W — b¢)
+o(—(JX, Z)X — (JY, Z)Y 4+ Uz + V3 — c¢§)
= (=b(JX,Y) = c(JX,Z))X + (a(JX,Y) = c(JY, Z))Y + (a(JX, Z) + b{JY, Z)) Z
+(bUs 4 cUs) + (aVi +cV3) + (aWy +bWa) — &
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Hence,

bU2+CU3:CL‘/Y1+C‘/;J):(IW1+bW2:O.

and a, b and c satisfy the following system of linear equations

0 (JX,Y) (JX,Z)\ [a 0
(7.1) —(JX,Y) 0 Jy,zy | o] ={o
—(JX,Z) —(JY,Z) 0 0

Let us call A the matrix of the above system. Since A is skew—symmetric, rank A € {0, 2}.

Assume that Us, Us, Vi, V3, Wi, W5 are all non—zero. Then U; and Us are both non—
zero and collinear and the same happens with the pairs Vi, V3 and Wy, W,. For any
V € T3 © (RY @ RV}) we have

(JU3, VY = (=Z+ (JX,Z2)JX + (JY,Z)JY — JVs + cJE, V)
= (JX, 20X, V)Y + (JX,2)Z + Vi + Wi — a&, V)
(Y, ZNU—= (X, V)X + (JY, 2)Z + Uy + Wy — bE, V) =0,

and hence JU3; € RY @& RV} & RZ & RW;. Proceeding in a similar way we also get
JVi € RX  RU; & RZ & RW; and JW; € RX & RU; & RY @ RV;. This means that
the vector subbundle spanned by {X,Us,,Y, Vi, Z, Wy, £} is complex. As a complex vector
space cannot have odd dimension, one of the three vectors Us, Vi or W; must be zero. We
may assume Us; = Us = 0.

Now, if rank A = 0, then (JX,Y) = (JX,Z) = (JY,Z) = 0, or equivalently, the
subbundle spanned by {X,Y,Z} is real. In this case, JY = W, — b¢ which implies
JE = (JWy+Y)/b e I'(T, & 1p), contradiction. Therefore, rank A = 2. Since a, b and ¢
are are solutions of the system (7.1) we have

(JX,YWJIX, Z\JY,Z) 0.

because a, b and ¢ are all non—zero.
Taking the expressions of JX, JY and JZ into account we obtain

0 = (Z,Va) = (JZ,JVs) = (=(JX,Z2)X = (JY, Z)Y + V5 —c¢§, JV3)
(JX, Z2V(JX,YVY + (JX,2)Z + Vi + Wy — a€&, Vi)
FIY, ZN—(JX,Y)X + (JY, Z)Z + Wy — bE, Vi)
= (JX, Z)(1, V3).

Since Vj and V3 are collinear and (JX, Z) # 0 we get V; = V3 = 0. In a similar way we
also get W, = Wy = 0. Therefore RX & RY & RZ & R¢ is a complex subbundle of T'M.

Solving the system of equations (7.1) we see that the vector (a,b,c) € R? is in the real
span of ((JY,Z), —(JX,Z),(JX,Y)) € R3. From a® +b? + ¢* = 1 and the expressions for
JX, JY and JZ we get

3= (JX,JX) + (Y, V) + (J2,02) =2((JYV, 20 + (JX, 2)* + (JX,V)?) + 1.
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Thus ((JY,Z), —(JX, Z),(JX,Y)) is a unit vector in R®. By a suitable choice of orienta-
tion we may put (JX,Y) =¢, (JX,Z) = —b and (JY,Z) = a and Lemma 7.9 follows. [

Throughout this subsection we assume the notation of Lemma 7.9. The following result
describes the eigenvalue structure of the shape operator of M. This will allow us to prove
that J& cannot have non—trivial projections onto the three eigenspaces.

Lemma 7.10. For any U e I'(T, ©6RX), V e I'(T3©RY) and W € I'(T, ©RZ) we have

2ala=p)-DUV) = 28(e-p5)+1)JUV) = 0
Qala =) -DUIUW) = (2y(a=7)+)UJUW) = 0,
26(6=7) DIV, W) = (2B -7)+1JV.W) = 0.

Proof. We recall that by Corollary 7.5, T,, T3 and T, are real subbundles of TM. We
divide the proof in several steps.

Claim 7.11. We have

b(a® — 2a(a — B3))
2(1722 +c2)(a —p)

)
(VuW, Z) = ela” — 20(a — 7)) (JUWY,  (VeW,Y) = ba” 20‘(0‘ - 7)) (JU, WY,
)

JUVY,  (VuV,Z) = C(&chf)((“ _@; JU,VY,
)

c(b* + 26(04 — ﬁ

(VeV)Y) =

(JU, V),

2(0* + ) (a — )
b(c® + 2y(a — 7))

)
_ ) _

(VWU X) = S ey YO W) (VW) = i ot U,
_ (b’ —28(8—9)) _a® —28(8—7)
<VVW’Z> - 2(@2—1—02)(5—7) <J‘/7W>7 <VVVV7X> - 2( ‘I’CQ)(ﬁ /Y) <J‘/,W>,
_ (@ +29(8 - v)) _ a(c +2v(8 - 'y))

Since V € I'(T3 © RY) and T} is a real subbundle of TM, we may write JV = U + W
with U € T(T, © RX) and W € T(T, © RZ). Taking into account that T, is a real
subbundle of 7'M and the fact that the complex structure is parallel, V.J = 0, we get
(U,VyJ€E) = (U, JU) = 0. Using this and Lemma 7.3 we get

0=U(U,JE) = (VyU, JE) + (U, VyJE) = (VyU,a X +bY + ¢ Z) = a(VyU, X),

which implies (Vi X, U ) = 0. Then, the previous equation and Lemma 7.3 give

2(a =)

Since T}, is a real subbundle of TM we have (JU, W) = (JU, JV — U) = 0 and hence

(VuX,JV) = (VuX,U) + (Vy X, W) = (JU,W).

(VuX,JV) = 0.
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Lemma 7.3 implies

0 = UV, JE = (VuV,aX +bY +cZ)+ (V,VyJE)

0,2

2(0& _ ﬁ) <‘]U7 V) + <VU‘/7 > + C<VUV7 > Oé<JU, V)
Using the expression for JX in Lemma 7.9, (Vy X, JV) = 0 and Lemma 7.3 we get

0 = UV,JX) = (VyV,cY —bZ —a&) + (V,VyJX)
= (VuV,Y) = b(VyV,Z) = (VuX,JV) = c(VyV,Y) = b(VyV, Z).

Thus, the last two equations provide a linear system whose unknowns are (VyV,Y) and
(VyV, Z). This system has clearly one unique solution

b(a? — 2a(a — 3)) c(a? = 2a(a — 7))
2(0* + )(o = ) 2(0* + ) (o = )

which is the first pair of formulas of Claim 7.11. The other equations are obtained in a
similar way.

Claim 7.12. We have

(VyV,Y) = (JU VY, (VyV,Z) = (JU, V).

b a
(Ve Y) = —EC;;ZSQHLV% (VyU, X) = —§C;;75<JUJO>
(VoW.2) =~ =S (UW), (VwUX) = —W(JU,W%
(VvW,Z) = —mUV,W% (VwV.Y) = —m<JV;W>-

Again, we write JV = U + W~With U e T(T,©RX) and W € T(T, © RZ). Using
Lemma 7.3, Claim 7.11 and (JU, W) = 0 we get

_c(a® = 2a(a —7)) S
2(b2 4+ ) (a— 1) (U, W) =0.

(V,VulZ) = —(VuZ,JV)=—=(VuZ,U)=(VuZ,W) =

The last equation and Lemmas 7.3 and 7.9 give

0 = UV, JZ) = (VgV,bX —aY —c&) +(V,VyJZ)

ab
ab
= 5OV -V Y),

which gives the first equality of Claim 7.12. The others are obtained in a similar way.

Comparing the first two equations of Claims 7.11 and 7.12 we get

b(a? — 2a(a — 3))
2(0* + ¢)(o = B)

(Ve Y) = (JU V) = — (JU, V),

2(a = f)
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and hence (2a(a—3)—1)(JU, V) = 0, which is the first equation of the assertion of Lemma
7.10. The other equalities are obtained in the same way comparing the first column of Claim
7.11 with the formulas of Claim 7.12. O]

The previous lemma together with Lemma 7.7 implies that J& cannot have non—trivial
projection onto 7T, Tz and T’, as the following result shows.

with three distinct

Proposition 7.13. Let M be a real hypersurface of CH™, 3,
M such that J&, has

n
constant principal curvatures o, 3 and ~y. There is no point p
non—trivial projection onto T,(p), Tz(p) and T, (p).

>
€

Proof. As n > 3, the vector subspace (T,(p) © RX,) & (Is(p) © RY,) & (T(p) © RZ,)
is non—zero and all the direct addends are real by Corollary 7.5. Possibly changing the
roles of «, # and v, we can choose U, € T,(p), V, € Ts(p) and W, € T, (p) such that
(JU,, V), (JU,, W,) # 0. Then, Lemma 7.10 implies

2a(a—p)—1=2a(a—7v)—1=28a—-0)+1=29(—-7v)+1=0

and a simple calculation shows that a? = 3* = 2. This is a contradiction because the
principal curvatures are different.

Therefore, we may assume m., = 1, and as a consequence, T, © RX = J(T3 & RY).
Using this fact, the non-trivial equations given by Lemma 7.10 are 2a(a — ) — 1 =
268(a—3)+1 = 0. This implies a? = 3* = 1/4. Changing the orientation of ¢, if necessary,
we can put & = —1/2 and 3 = 1/2.

Claim 7.14. Let U € I'(T, © RX) be a unit vector. Then, (VyJU,V ;yU) = 1/4.

Since T, © RX = J(T3 © RY'), we have that JU € I'(T © RY). Let U eI (T, ©RX)
and V € I'(T3 © RY). Using Lemma 7.3 and the fact that « = —3 = —1/2 we have

(VyJU, X) = —W(JU,JW —
b
<VJUU,Y> = —m<JU,JU> =

Taking into account that a® + 0? + ¢ = 1 and putting o = —3 = —1/2 in the formulas of
Claims 7.11 and 7.12 yields

, (VyJU,U) = 0,

, (VuUV) = 0.

SN R

b _ b _ c(a® = 2a(a — B3)) _ ¢
VuIUY) = -5 — 2 VW2 = Sseraess ~ o
. a _a (PP +2B(a— P)) ¢
Vol X) = 20— 3) 2 Vol 2) = 2(a?+ ) (a— ) 2
(

(VuJU, Z)(V ;uyU, Z) = 1/4 as Claim 7.14 states.
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We now finish the proof of this proposition. Let U € I'(T, © RX) be a unit vector.
From Corollary 7.4 we get (VyU,V ;yJU) = 0. Claim 7.14 asserts (Vi JU,V jyU) = 1/4.
Applying Lemma 7.7 for U € I'(T, © RX) and JU € I'(T; © RY') and taking the above
expressions into account yields

1 1 3

0=7—af+ §<JU, JUY + 2(VyJU,V juU) — (VyU, V5 JU) = 3
which is a contradiction. Therefore, J§, cannot have non-trivial projection onto the three
principal curvature spaces. [

J¢ has non—trivial projection onto two eigenspaces

As usual, let £ be a (local) unit normal vector field of M. We assume that J§, has non—-
trivial projection onto two principal curvature spaces, let us say, T5(p) and T.(p). By
continuity there exists a neighborhood U of p such that

JE=aX+0bY,

for some unit local vector fields X € I'(T3) and Y € I'(T)) and everywhere non-zero
functions a,b : U4 — R.

Lemma 7.15. There exists a local unit vector field A € T'(T,,) such that RAGRX GRY GRE
is a complex subbundle of TM. Moreover, by a suitable choice of orientation we can write

JA=bX —aY, JX =—-bA—ak, JY =aA—-0b&.
In particular RX & RY s a real subbundle of T M.

Proof. The principal curvature spaces 1 and T, are real by Corollary 7.5. Then we can
write

JX =X, Y)Y + U+ W —a, JY =—(JX, V)X + U, +V — b,

with Uy, U, € I'(T,), V € I'(1Tp©RX) and W € I'(T, ©RY). Using the last expression we
have

—¢ = J%¢ = JaX+bY)
= a((JX, Y)Y + UL+ W —al) +b(— (JX,Y)X + Uy +V — b¢)
= (aU +bUy) —=b(JX, V)X +al(JX, Y)Y + bV +aW — (a® + b*)E.

Since a®> + 0> =1 we get alUy +bUy =V =W =0 and (JX,Y) = 0.

The vectors U; and Uy are both zero or both non-zero. If Uy = Uy = 0 we have
JX = —a€ and JY = —b, which is impossible. Hence we can choose a unit vector vector
field A € I'(RU,) = I'(RU,) C I'(T,,). Since JU; = aJ§ — X € T'(RX & RY) we get
JA € I'(RX @ RY). This shows that RA® RX & RY & RE is a complex vector subbundle
of TM.

The two unit vector fields JA, J¢ € I'(RX @ RY) are orthogonal and J§ = aX + bY
by assumption. Then, by a suitable orientation of A we can write JA =bX —aY and the
result follows. O
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We will need the following covariant derivatives latter in this subsection.

Lemma 7.16. With the notation of Lemma 7.15 we have
3ab 3ab

VaX = A VY =g A
VA = 4<2a—bﬁ>“(ﬁ+4<ja—2m)y’ VoA :_(“4( 3b—zw>)“4<za—bw>y’
R P

cx - (e P S

Va4A =0.

Proof. Let U e I'(T, ©RA), V e I'(T3 ©RX) and W € I'(T, o RY).
Since X and Y have unit length we have (VxX, X) = 0 and (VyY,Y) = 0. From
Lemma 7.3 we easily get

(VxX,U) = (VyX,Y) = (ViX,W) = 0, (ViX,A) = 4(%_65),
(VyY,U) = (VWY,X) = (VWY,V) = 0, (VyY, A) = —4(%_(’7).

We have (V,VxJE) = 3(V, JX) = 0. Using this, Lemma 7.3 and the expression for J¢ we
get - B
0= X(V,JE) = (VxV,a X +bY) + (V,VxJE) = —a(VxX, V).

Hence, (VxX,V) = 0. In a similar way we also obtain (Vy Y, W) = 0. Therefore, the first
two equations of Lemma 7.16 follow.

Since X and Y have unit length we have (VxY.Y) =0 and (Vy X, X) = 0. Using the
expressions for VxX and VyY we immediately get (VxY, X) = 0 and (VyX,Y) = 0.
Also, using Lemma 7.3 we obtain

(VY V) = (Vy X, W) =0.

As (U, J€) = 0, taking derivatives, using the expressions for /¢ and Vx X and the equality
(U,VxJE) =pB(U,JX) =0 we get

0= X(U,JE) = (VxU,aX +bY) + (U, VyJE) = —b(VyY,U).

Hence, (VxY,U) = 0 and in a similar way (VyX,U) = 0. Also, as (W,VxJ¢) =
B(W, JX) =0, the formula for Vx X yields

0=X(W,JE) = (VxW,a X +bY) + (W, VxJE) = —b(VxY, W)
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and hence (VxY, W) = 0. In a similar way we obtain as well (Vy X, V) = 0. Now, as
(JX,Y) =0, using Lemma 7.15 and Vx X we get
0 = X(JX,Y) = (VxJX,Y)+ (JX,VxY)
_ _ 3a%b
= —<VXX, CLA — b€> + <VXY, —bA — CL€> = —— — bﬁ — b(VXY, A>
4o =)
Hence, the above expression and the corresponding one for 0 = Y (JY, X) yield

(V YA)——B—?)—G2 and (Vy X, A) = +3—b2
T e ) T ey
Therefore, the third and forth formulas of Lemma 7.16 follow.
Since A has constant length, (VxA, A) = (Vy A, A) = 0. Lemma 7.3 gives
(VxA, V) =(VyA W) =0.
As (JY,W) = 0, using Lemma 7.15 and the fact that JW € I'((T, © RA) & (T3 © RX))
by Lemma 7.5, we obtain,
0 = X(JY,W) = (VxJY, W)+ (JY,VxW)
= —<VXy, JW) + G<VXW, A> + bﬁ<X, W) = —CL<VXA, W>
Hence, (VxA, W) = 0. From 0 = X(JY,U), 0 = Y(JX,V) and 0 = Y(JX,U) = 0 we
also get (VxA,U) = (VyA,V) = (VyA,U) = 0. Altogether this means that VyA =
(VxA, X)X 4+ (VxA Y)Y and VyA = (VyA, X)X + (VyA,Y)Y. Using the expressions
obtained for VxX, VyY, VxY and Vy X we get the formulas of the fifth and sixth

equations of Lemma 7.16.
As X and Y have constant length, (V4 X, X) = (V4Y,Y) = 0. Lemma 7.3 gives

(VaX,A) =(VaX,U) =(VaY, A) = (V4Y.U) =0.
Lemma 7.2 and the formula for Vx A gives
0= —Raxew = (8 = 7)(VaX, W) + (v = a)(Vx A, W) = (§ = 7)(VaX, W).
Hence, (V4 X, W) = 0. Also, 0 = —Rayev = (v — 6)(V.aY,V) implies (V,Y,V) = 0.
Using this, the expression for J¢ and (W, V4J¢) = a(W, JA) = 0 we get
0= AW, JE) = (VaW,aX + bY) + (W, V4 J€) = —b(VAY, W),

Hence (VAY, W) = 0. Analogously, 0 = A(V, J¢) yields (VAX,V) = 0. Thus V,X =
(VAX, Y)Y and VY = —(V4X,Y)X. The latter inner product can be calculated by
using the explicit expression of R, Lemma 7.2 and Vx A as follows

(@) = “Raxe = (5-2)(VaX, V) + (3~ 0)(VxA,Y)
— B-NTX Y+ (-a) (54 2.
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Altogether this gives the expressions for V4 X and V4Y in Lemma 7.16.

As A has constant length (V4A, A) = 0. The previous calculations for VX and
VY show that (V4 A, X) = (V4A,Y) = 0. Moreover, Lemma 7.3 yields (V4A,V) =
(VAA, W) = 0. Using the expressions for V4 X and JX we get

0 = AUJX,U) = (VAJX,U)+ (JX,VU)
= —(VaX,JU) +b(V4A U)+aa(A U) = b(V4AU).
Hence, (V4A,U) = 0 and the result follows. O

Corollary 7.17. The integral curves of A are geodesics in M and the three vector fields
A, X andY span an autoparallel distribution on M.

We will also need the following relation.
Corollary 7.18. The principal curvatures of M and the functions a and b satisfy the
equation
3(ar — _
(@=1) 2, 3 —0)
Ao — ) Ao —7)
Proof. From Lemma 7.2 we have

_}1 - _i(az +0%) = —Rxyea = (v — a)(VxY, A) + (a = B)(Vy X, A).

P 4 (0= )8 + (o= B+ =0,

Plugging the corresponding expressions of (VxY, A) and (Vy X, A) given by Lemma 7.16
we easily get the result. O]

We are now ready to give the following relation among the eigenvalues. This will lead
us to two different possibilities.

Lemma 7.19. Let V e I'(T3 © RX) and W € I'(T;, S RY'). Then

G — aﬁ) (V,V) =0, G — cw) (W, W) =0.

Proof. Our aim is to apply Lemma 7.7 to the pairs A,V and A,W. To do this, we first
need the following intermediate result.

Claim 7.20. For any V € T'(Ts © RX) and W € I'(T, © RY) we have (Vy A, V4V) =
(ViwA, VW) =0.

Lemma 7.3 implies
(VaV, A) = (VaV,U) = (VaW, 4) = (VaW,U) =0
and Lemma 7.16 gives

(VAV,X) = (VAV,Y) = (VAW, X) = (V.W,Y) = 0.
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Hence we have V4V, VW € I'((T3 ©RX) @ (T, ©RY')). On the other hand, Lemma 7.3
gives (Vi A, V) = 0 for any V € T(T3SRX) and (Vi A, W) = 0 for any W € T(T,, ORY).
Thus, to get Claim 7.20 it suffices to prove (Vy A, W) = (Vi A, V) = 0 for arbitrary
Vel(TseoRX) and W € I'(T, o RY).
Using Lemma 7.15 and the Weingarten formula we get
0 = V(X,JW) = (VyX,JW) + (X, VyJW)
= (Vv X, JW) +b(A,VyW) —aB(V,IV) = (Vy X, JW) —b(Vy A W).

This, and similar equations for 0 = V(Y, JW), 0 = W(Y, JV) and 0 = W(X, JV) yield

1 1
(VvA W) = H(WX.JW) = —(VyY,JW),
(7.2)
1 1
(VwAV) = (VwX,JV) = —(VwY,JV).

Since T, is a real subbundle by Corollary 7.5, we may write JW = U+V with U €
I'(T, ©RA) and V € I'(Ts © RX). Using Lemma 7.3 we get

e
2(o = f)
Also, since T} is real by Corollary 7.5, (V, Vi J&) = (V,JSV) = B(V, JV) = 0. Then, the
expression for J¢ implies 0 = V(V, J¢) = —a(Vy X, V). Hence we get

a

2(a =)

In a similar way, Lemma 7.3 implies (VyY, V) = 0 and

(Vv X,U) = (V,JU).

(Vv X, JW) = (v, JU).

2

0=V(U,JE) = —p(V,JU) — (V,JU) = b(VyY,U).

2(a —p)
Thus )
(VyY,JW) = —= (ﬁ+ 2o ﬂ)) (v, JU).
Then (7.2) implies
(VoA W) = 5o (V0 = = (ﬁ + a—) (v, J0),
(a—B) ab 2(a - p)

and a simple calculation shows that 3(V,.J U )=0. )
In a similar way we may write JV = U+W with U € I'(T,©RA) and W € I'(T,, 6RY")
which eventually gives

b

(VwA, V) = “2aa—7)

(W, JU) = —% <7 + 2(;—2_7)) (W, JU).
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As a consequence (W, J U ) =0. . R
Since either [ or = is non—zero it follows that (V, JU) = 0 or (W, JU) = 0. Hence
(VyA, W) =0or (VwA,V) =0. But Lemma 7.2 shows
0 = _RVW§A = (’Y - Oé)<VVW, A> + (Oé - ﬁ) <v1/v‘/'7 A>
= (a—=yY)VyA W) —(a— ) (VwA,V).

which implies (Vy A, W) = (Vi A, V) = 0 in both cases. This finishes the proof of Claim
7.20.

Applying Lemma 7.7 for A and V' € I'(T © RX) and also for A and W € I'(T, © RY')
and taking into account Lemmas 7.15, 7.16 and Claim 7.20, we get

1 1
(Z—aﬁ)<V,V>—O and (Z—a7)<I/V,W>—O,
which is the statement of Lemma 7.19. O

This immediately implies
Corollary 7.21. mg =1 orm, = 1.

Proof. On the contrary, if mg,m, > 1, both T3 © RX and 7, © RY are non-zero. Then
Lemma 7.19 implies 1/4 — o = 1/4 — oy = 0 and hence 3 = 7 which is impossible.  [J

According to the previous corollary we may assume m, = 1, that is, T, = RY. We
distinguish two cases, mg > 1 and mg = 1.

Case 1: mg > 1. Since mg > 1 and T} is a real subbundle of 7'M by Corollary 7.5 we
have J(1T3 © RX) C T, © RA. Also, by using Lemma 7.19 we get 4o = 1.

Claim 7.22. We have VyY =bF JV for any V € I'(T3 & RX).

Since Y has unit length, (VyY,Y) = 0. Also, Lemma 7.3 implies (VyY, X) =
(VyY,V) = 0 for any V € I'(Ts © RX). Using the expression for J¢ and Lemma 7.3
we get

0= V(A JE) = (VyA aX +bY) + (A, Vi JE) = —b(Vy Y, A)
and for any U € I'(T,, © (RA & RJV)),

0 = V(U,JE) = (VyU,aX +bY) + (U, VyJE)

CL2

2(a = B)
Finally using Lemmas 7.3 and 7.15 we get

= —BUJU,V) - (JU,V) = b(VyY,U) = —b(VyY,U).

0=V(V,JY) = (VyV,aA = b&) + (V,VyJY) = b3 — (JV,VyY).

Altogether this implies Claim 7.22.
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Claim 7.23. With the above assumptions and a suitable orientation of & we have o = \/3/6
and B3 = /3/2.

Let V € I'(Ts © RX) be a unit vector. Then JV € I'(T,, © RA). This, Lemma 7.3 and
the expression for J¢ imply

0=V({JV,JE) = (VyJV,aX +bY) + (JV,Vy JE) = —b(VyY,JV) + 3.

2(a =)

Taking into account Claim 7.22 and the last expression we have

(VyY, JV) = % (ﬁ n ﬁ) — b8,

and using a?+b*> = 1 we obtain after a simple calculation 1+23(a—3) = 0. This, together
with 4a3 = 1 gives the assertion of Claim 7.23.

Claim 7.24. With the above assumptions, we have y # —+/3/6 and

2v3
a2:10<7+15> P2 — _ 7_\/?5 '
o (v+39) o(v+%)
Inserting the values of a and 3 in the formula of Lemma 7.18 we get
3(2vvV3 -1 3v3 1 5
(7\/_ )a2+ V3 b2 90 =0
8 206y —v3) 2 2V3

The above equation and a? + b?> = 1 provide a linear system whose unknowns are a? and
b?. Tt is not hard to see that this system has solution only when v # —1/3/6 and in this
case we obtain the expression given by Claim 7.24.

We now finish the prove of Proposition 7.8 (i). Using Lemma 7.2 and Claim 7.22 we
obtain ,

—5 = ~Byvverw = (B = a) (W V. JV) + (a = )08
and hence
b(1+4B(a —7))
4o — )
Applying Lemma 7.7 to V € I'(Ty © RX) and Y and taking into account the above
expression, Corollary 7.4 and Claims 7.22, 7.23 and 7.24 we obtain

(VyV, JV) =

0 = T BT ATV 4 m( ~ VY, JV) + 26Ty V, JV))
2v/3v (7 - %g)

9

Since v # «, we have v = 0 and Proposition 7.8 (i) follows.
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Case 2: mg =1. We assume m, = 2n — 3, mg = m, = 1. Thus T = RX and T, = RY".
We easily determine a and b from these hypotheses.

Claim 7.25. With the above notation and assumptions we have
a? b?
+
Aa—p) Ha—n)

Hence, a and b are constant and

a2:_(a—ﬁ)(1+4a2—4a7) and b2 (a—7)(1+4a® — 4ap)
= G-
Since n > 3 and RA® RX & RY @ R¢ is a complex subbundle of TM by Lemma 7.15,
we have that T, © RA is complex. Let U € I'(T,, © RA) be a unit vector field. Using the
expression of J¢&, the fact that JU € I'(T, © RA) and Lemma 7.3 we get

0 = U{JU,JE) = (VyJU,aX +bY) + (JU, Vi JE)
a? b2
= X Y = .
a(VyJU, X) +b(VyJU,Y) + a(JU, JU) 4(Oé_m+4(oé_7)+oé

This equation together with a?+b% = 1 yields a linear system of equations whose unknowns
are a® and b?. This system has a unique solution which is the one given by Claim 7.25.

Claim 7.26. We have the following relation among the principal curvatures

(B=7)°—(B+7—4a)* =1—4a".

Plugging the values of a? and b? given by Claim 7.25 in the formula of Corollary 7.18
we get

—%(1 + 1202 4+ 48y — 8af — 8a'y) =0,
which is equivalent to the formula of Claim 7.26.
Claim 7.27. We have the following relation

(B+7)(1+40®) — a(l +46% + 49%) = 0.

Let U € I'(T,, © RA). Since X is a unit vector one gets (Vy X, X) = 0. Using Lemma
7.3 for any V' € I'(T,,), we obtain

(Vo X,V) = —mua V).

We have (X, Vi JE) = a{X, JU) = 0. This and the expression for J¢ yield

0=U(X,J¢) = (VyX,aX +bY) + (X, VyJE) = b({VyX,Y).
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Hence we have a

VX = ———7—JU.
-5
This expression and the one for Vx X given in Lemma 7.16 when plugged in the formula
of Lemma 7.7 for U and X yield

1 a
0 = 3—aB+2VuX,VxU) = (VoU,VxX) + m{z(vxa JUY — (Vy X, JU>}
1 3ab a?
_ L a2 i+ —C
1 of 4(a—ﬁ)<vU A+ 16(a — )2
Proceeding in a similar way using Lemma 7.7 for U and Y we obtain
1 3ab b?
L. Ly 37| S A—'
4 047—|-4(a_7)<VU ’ >+16(0z—’y)2

Cancelling (Vi U, A) in the last two equations and using the first equation of Claim 7.26
we get
!

(i—aﬁ) (a—ﬁ)Jr(%l—OfY) (04—7)—120-

Easy calculations lead to the result of Claim 7.27.

We now finish the proof of Proposition 7.8.

If « = 0, Claims 7.26 and 7.27 imply 3,7 € {—1/2,1/2}. From now on we assume
a # 0. It is convenient to introduce the following notation. Let x = f—~v and y = +vy—4a.
Then, the formulas of Claims 7.26 and 7.27 become

1-1222Y 1+ 16a*
dov - 1602

22—yt =1— 402, x2+<y—

Obviously, these are the equations of a hyperbola and a circle. It is straightforward to
calculate their common points, namely

(ry) = (£VI~30%,~a)  and (x,y):(jzl 1_80‘2),

40’ 4o

where the first possibility arises only if 3a? < 1. Assume, without loss of generality, that
B < 7. Since a # 3,7, this eventually implies

ﬁ:%<3a—m> and 7:%(3044_@)’

where || < 1/v/3. If |a| = 1/2 or |a| = 1/v/3 we easily see that the three principal
curvatures cannot be different. Suppose 1/2 < |a| < 1/4/3. Using the expression for 3 and
~v we have just obtained, the first equation of Claim 7.25 becomes

a? b?

204(04—\/1—3042) * 2av (a+\/1—3a2)
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Figure 7.1: The axes of the ellipse

If 1/2 < |a| < 1/4/3, it is just a matter of elementary calculus to show the inequalities
0 <2a(e—+v1-3a%) <1and0 < 20 (a+v1—3a%) < 1 (see Figure 7.1, where we
plot the above two functions as functions of «). This proves that the above equation is the
equation of an ellipse centered at the origin with axes of length less than 1. Obviously, such
an ellipse has no points of intersection with the circle a? +b? = 1, which is a contradiction.
Hence |a| < 1/2. This finishes the proof of Proposition 7.8.

7.2.2 Equidistant hypersurfaces and rigidity

In this subsection we finish the proof of Theorem 7.1. In order to achieve this, we study the
equidistant hypersurfaces of a real hypersurface with constant principal curvatures. We
need some facts and notation of Jacobi vector field theory. We refer to Section 4.1 where
the main results and conventions are stated.

Let M be a real hypersurface with constant principal curvatures in CH". Let £ be a
local unit normal vector field on M. Let ¢, be the geodesic c,(t) = exp,(t,). Fix r € R,
r # 0. As in Subsection 4.1 we define

d.: M — CH"
p = D.(p) =exp,(rEy).

The vector field 7, along @, is defined by 7,(p) = ¢,(r). The Jacobi equation in CH™ reads

G — }l(cv +3(¢, J,) Jd,) = 0.

We recall that (,(r) = ®,.(v) and /() = Vyn,.

Lemma 7.28. Denote by B, the parallel translation of v € Tx(p) along the geodesic ¢, and
by ¢, the Jacobi vector field along c, such that (,(0) = v and (/(0) = Sv = Av. If J§ and

v are not collinear then

Go(r) = fa(r)Bu(r) + (v, JE)ga(r) Jey(r),
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where

fialr) = coshg + 2\ sinhg and  gA(r) = (coshg - 1) (1 +2 coshg + 2Asinh g)
Now we assume that M has three constant principal curvatures. If M is a Hopf hy-
persurface, Theorem 6.5 asserts that M is holomorphically congruent to an open part of a
tube around a totally geodesic CH” for some k € {0,...,n—1}, to a tube around a totally
geodesic RH™ or to a horosphere in CH™. We assume that M is not a Hopf hypersurface.
Then M satisfies one of the two possibilities described in Proposition 7.8. We will see that
in case (i) of Proposition 7.8 there exists a particular distance r at which the map ®, has
constant rank 2n — mg, which means that the image of ®, forms locally a submanifold of
codimension mg. In case (ii) of Proposition 7.8 there exists a particular distance r at which
the map @, has constant rank 2n — 1 and the image is locally a minimal real hypersurface
with constant principal curvatures. We then use the equation ¢/ (r) = V,7, to obtain some
information about the second fundamental form of these submanifolds. We continue using
the notation introduced in Section 7.2.1.

Case (i): mg > 1

We recall the situation of Proposition 7.8 (i). Throughout this section M is a connected
real hypersurface in CH™, n > 3, with three distinct constant principal curvatures «, 3
and v. The Hopf vector field J¢ of M has non-trivial projection onto T and T,,. We
write J€ = a X +b0Y, where X € I'(T) and Y € I'(T,) are unit vectors, a,b > 0 and
a® + b* = 1. There exists a unit vector field A € T'(T,) such that JA = bX —aY.
The subbundle RX ¢ RY is real and the subbundle RA & RX & RY ¢ R¢ is complex.
We have m, = 2n —mz — 2, mgz > 1 and m, = 1 . The eigenvalues are a = \/3/6,
B =+/3/2 and v = 0. Moreover a = 2v/2/3, b = 1/3, the subbundle T3 © RX is real and
J(Ts o RX) C T, o RA.

Fix r = —log(2 +v/3). We will see that the map ®, is singular and that M has a focal
manifold at distance r. Let p € M and v € T,M. As usual we denote by ¢, the geodesic
cp(t) = exp,(t€,). We write v = v, + v5 + v, with vy € T)\(p) for all A € {«a, 3,v}. Since
VJ =0 we have Jc(r) = aBx,(r) + bBy,(r). Using Lemma 7.28 we get

cbr*p(”) = Cva (T) + Cvg (T) + CU’)/ (’r)

_ \/TEBUQ (1) + (v, TG T () + \/7681” (r) + #W T&)76,(r)
= B0+ {aton ) + (V- 2V8) (0 )} B 1)
g {200+ (1542) 20 )

Straightforward calculations show that ®,.(v) = 0 if and only if v, = 0 and (vg, X) =
(vy,Y) = 0. Consequently, ker ®,., = T3(p) © RX,, and its dimension is mz — 1. This
implies that ®,, is singular and that the rank of ®, is constant. Then for every point in M
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there exists an open neighborhood V such that W = ®,(V) is an embedded submanifold
of CH" and @, : V — W is a submersion. Let p € V and ¢ = ®,(p) € W. The above
expression for the differential of ®, shows that the tangent space T,WW of W, which is
the image of T,(p) ® RX, & RY, by the differential of ®,, coincides with the parallel
translation along ¢, of T,,(p) © RX, & RY,. Hence, the normal space quW is obtained by
parallel translation of R, & (T3(p) © RX,) along ¢, from p to ¢. In particular, W has
dimension 2n — mg and W has a totally real normal vector bundle of dimension mg.

Clearly, n,(p) = Be,(r) is a unit normal vector of W at ¢q. The shape operator S(r)
of W in the direction of 7,(p) is given by the equation S(r),, ;) ¢.(r) = (¢,(r))" for all
v e T,(p) ® RX, & RY,,.

If v € T,(p), we have (,(r) = (v/6/3)B,(r) and ¢’ (r) = 0 by Lemma 7.28. Hence,

S(1r)yeBu(r) =0 for all v € T,(p).

Also, Lemma 7.28 implies that

4 V2 V2 2

Cx(r)=gBx(r) + 5By (r), Cx(r)=—g Bx(r) = 5By (),
4V/2 -2V3 2+ 46 1-2v6 2v2 + /3
Cy(r)=———F3—"Bx(r) = ———Bv(r), G(r)= Bx(r) = ———Bv(r).
9 9 9 9
Therefore, S(r),, ) leaves RBx, (1) ® RBy, (r) invariant and has the matrix representation
1 (-2 7
18\ 7 4v2 )
with respect to the basis {Bx,(r), By, (r)}. We define
1 2v/2
Z,=JA, = Xp——\/_Yp.

Using the above matrix representation we immediately get

S)n@Jdn-() = S)nw) (%B&(” + %BYP(T)> 1B

2v/2 1

SN Bz,(r) = Sy (%BXPW)—TBYP( )) = —5Ju(p)-

Since J(TLW@]RUT ) C J(BTﬁ JORX, (7“)) C Br, ) (r), the fact that S(r),, ( )| Bry () = 0
and the linearity of S(r),, () give

_ 1 _ _
S(r)n w7 = —§<7)r(p)a ) Bz, (r) forallpeV, i€ Ty, W
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Using the symmetry of the second fundamental form of W, II,, and the equation VJ=0
we get <S(T)ﬁj77r7 U> = <I[r(U7 J77r)7 ﬁ) = <VUJ77T> ﬁ> = <VUJ777 777‘> = <S(r)7]'r Jﬁa U> for
any U € T(TW) and 7 € T(T+W). Hence

S(r)adne(p) = S)n, )7,

for all 7j € T,"W. Now let x be a curve in ®.'({¢}) NV with x(0) = p. Since 7,(p) and
n(x(®)) = n-(x(t)) — (m-(x(¥)),n-(p))n-(p) are perpendicular, the linearity of n — S(r),

implies
0 = S(M)nwdix®) = ST)inw) n-(p)
= S)n.yy () — (- (X (), 1 (2)S (7)1, () 11 (P)

(- (x (), nr(0)) Bz, (1) + %(nr(x(t)), 1 (p)) Bz, (r)

e (). 100) (B () = Bz, (7).

N~ N =

This shows that the map p — Bz (r) is of constant value z, in the connected component
Vo of ®;({¢}) NV containing p.
For all v € T(p) © RX,, we have

Vo, = CL(T) =

|

By(r),

which implies that 7, is a local diffeomorphism from ), onto the unit sphere in quW. Thus
n-(Vo) is an open subset of the unit sphere in TqLW. Since S(r),, depends analytically on
n e TqLW, we conclude that

1 1
S<T)WJ77:_§Z<1’ S(T)nzq:_§J77u S(T)WU:O7

for all n € T; W and v € TW & (J(T;W & Ry) & Rz).

Therefore, the second fundamental form II, of W at ¢ is given by the trivial bilinear
extension of II.(z, Jn) = —(1/2)n for all n € T*W. The construction of z shows that it
depends smoothly on the point ¢ € VW. Hence, the second fundamental form of W has the
form of that of Theorem 6.16. Then, W is holomorphically congruent to an open part of
the ruled minimal submanifold W?2"~™_ Altogether this means that M lies in a tube of
radius r = log(2 + \/3) around a ruled minimal submanifold holomorphically congruent to
W?2=ms_ We point out here that the unit normal vector £ of M is outward pointing with
respect to the focal submanifold. This finally implies that M is holomorphically congruent
to an open part of the tube of radius r = log(2 + v/3) around W?"~™s. This corresponds
to case (c) of Theorem 7.1.
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Case (ii): mg =1

We assume the notation of Proposition 7.8 (ii). Thus, M is a connected real hypersurface
in CH", n > 3, with three distinct constant principal curvatures «, 3 and . The Hopf
vector field J¢ of M has non-trivial projection onto 73 and 7', and mg = m, = 1. We write
JE=aX+bY, where X € I'(T3) and Y € I'(T,,) are unit vectors, a,b > 0 and a*+b* = 1.
There exists a unit vector field A € I'(T,) such that JA = bX — aY. The subbundle
T3 ®T, is real and the subbundle RAGRX ®RY @ RE is complex. The eigenvalues satisfy

1
9’

B=1(3a—vI=5?), =1 (3a+vi3a),

<
o] :

and a and b are constant. In particular,

) (a — B)(1 + 4a? — 4ay) )2 (a—fy)(1+4a2—4aﬁ).

“© T B—7 ’ B—

From now on we assume a # 0. Otherwise we would have a =0, § = —1/2 and v = 1/2
and the conditions of Theorem 6.8 would be satisfied for this hypersurface M. We will
show that there exists a certain r such that the equidistant hypersurface of M at distance
7 is minimal and its geometry is that of W?"~! in Theorem 6.8. First, as |a| < 1/2 there
exists r # 0 such that 2 = — tanh(r/2).

Let v € T,M. We write v = v, + vg + v, where vy € Ty(p) for all A € {a, 3,7}. Using
Lemma 7.28 we get the differential of @, as follows

D (v) = Go(r) + Cug (r) + Co, (r)
= B ) + ({09 X 1500) + (05, X,0%5(0) + (0. Yy )b () B ()

({0 ) 13 0) + (03, X, )abgs(r) + (0, Yy, (1)) By, ().

Then, we have

v = fu(r)By(r) forallveT, i () <o (B
T*U_fa(r) U(T) or all v & a(p) an (I)r*Y;; B (T) BYP(T)

where D is the endomorphism whose matrix representation is

D) = fa(t) +a’gs(t)  abgs(t)
U abg () K+

We have f,(r) = cosh(r/2) 4+ 2asinh(r/2) = sech(r/2) # 0. Retrieving the expression of
fr and g, from Lemma 7.28 and the known expressions of 3, v, a and b in terms of «
we get after some straightforward calculations det D(r) = (cosh(r/2) + 2asinh(r/2))3 =
sech®(r/2) # 0. Therefore, ®, has maximum rank 2n — 1 everywhere. Hence, for every



7.2.2 Equidistant hypersurfaces and rigidity 187

point in M there exists an open neighborhood V such that W = ®,.(V) is an embedded real
hypersurface of CH" and @, : V — W is a diffeomorphism. Let p € V and ¢ = ®,(p) € W.
Clearly, the tangent space 7,V of W at ¢ is obtained by parallel translation of 7,,) along
the geodesic ¢, and 7,(p) is a unit normal vector of W at q.

Let us denote by S(r) the shape operator of W with respect to the unit normal 7,(p) =
c,(r), which is determined by the equation S(r)¢,(r) = ¢,(r) for any v € T'M.

v

We easily get f!(r) = 0. This implies (/(r) = 0 for all v € T,,(p). Hence
S(r)B,(r) =0 for all v € T,(p).

On the other hand, using the notation of Section 4.1 we have

A lengthly but straightforward calculation shows that det(D’(r)) = —(1/4) sech®(r/2) and
(det D)/(r) = 0. As a consequence we have

_ det D’(T) . 1 , L (det D)/(T) -
— m =2 and tr(D (r)D(r) ) — _W —0

det(D'(r)D(r)™")
This implies that the eigenvalues of D'(r)D(r)~* are —1/2 and 1/2.

Altogether this means that W has three distinct principal curvatures 0, —1/2 and
1/2 with corresponding multiplicities 2n — 3, 1 and 1. It follows from Theorem 6.8 that
W is holomorphically congruent to an open part of the ruled real hypersurface W?2"—1,
From this we eventually conclude that M is holomorphically congruent to an open part
of an equidistant hypersurface to W?"~! where the distance r is given by the equation
2a = — tanh(r/2).

This finishes the proof of Theorem 7.1.
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Open problems

We are interested in the following questions.

e (lassification of real hypersurfaces with four or five distinct constant principal cur-
vatures. This problem seems to be quite difficult. No examples of real hypersurfaces
with constant principal curvatures in the complex hyperbolic space are known which
are not open parts of homogeneous real hypersurfaces. Thus, one may expect exam-
ples (v) and (vi) of Theorem 6.4 to exhaust all the possibilities in this classification.
However, there is no good analog of Lemmas 7.9 and 7.15 for four or five principal
curvatures. This provokes that using our approach implies handling several different
possibilities separately leading to long and tedious calculations.

e Are there any real hypersurfaces in CH" with constant principal curvatures which
are not an open part of a homogeneous real hypersurface? If there exists such an
example it must have at least four distinct principal curvatures. Hence, the previous
problem could be interesting if its proof led to a non—homogeneous example.

e The classification of real hypersurfaces in CH? with 3 distinct constant principal
curvatures remains open. We use the fact n > 3 in a few places and there is no
straightforward generalization of our arguments to include the case n = 2.

See [103] for a survey on real hypersurfaces of complex projective and hyperbolic spaces
where a wider list of open problems is given.
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Resumo en galego
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O estudiarmos as propiedades xeométricas dunha variedade semi-riemanniana, o punto
de partida a miudo provén da investigacion de invariantes da estructura métrica. Entre
tales invariantes, o tensor de curvatura é probablemente o mais natural. Segundo a opinién

de R. Osserman [109],

A nocién de curvatura é un dos aspectos centrais da xeometria diferencial;
podese argumentar que € o central, distinguindo o nticleo xeométrico da materia
daqueles aspectos que son analiticos, alxébricos ou topoléxicos. Nas palabras de
M. Berger, a curvatura € o invariante riemanniano niimero un e o mais natural.
Gauss e Riemann virono instantaneamente.

A curvatura, non obstante, pode ser estudiada desde varios puntos de vista. En primeiro
lugar, un problema esencial da xeometria diferencial é relacionar propiedades do tensor de
curvatura coa xeometria subxacente da variedade. Outro problema importante é consi-
derar diferentes tipos de obxectos naturalmente asociados 6 tensor métrico e relacionar a
curvatura da variedade coas propiedades destas construcciéns naturais.

Cando se trata con obxectos complicados como o tensor de curvatura, é interesante des-
componelo nos seus constituintes elementais. A miido estas partes mais simples dan unha
versién simplificada e unha visiéon maéis profunda do problema. A Parte I desta memo-
ria céntrase no estudio da curvatura desde un punto de vista alxébrico. No Capitulo 2
amosamos que o tensor de curvatura pode ser descomposto en termos dalgins tensores de
curvatura alxébricos mais simples. Isto é de especial importancia cando se consideran pro-
blemas nos que se pretende obter informacién xeométrica a partir de propiedades alxébricas
de operadores asociados & curvatura. Entre todos estes operadores estamos especialmente
interesados no operador de Jacobi, que codifica informacion xeométrica importante e que
ten propiedades que influencian enormemente a xeometria subxacente da variedade. Asi,
entender o operador de Jacobi dunha variedade semi-riemanniana permitenos caracterizar
a xeometria da variedade en moitos casos. O Capitulo 3 desta tese esta adicado & inves-
tigacion do operador de Jacobi en relaciéon coa chamada conxectura de Osserman. Neste
capitulo centrdmonos no problema de Osserman en dimensién catro. O noso obxectivo
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primordial é amosar a existencia de métricas de Osserman que tefien operadores de Ja-
cobi non nilpotentes e non diagonalizables. Isto contesta negativamente unha conxetura
de non existencia de tales variedades. Ademais, dase tamén unha descripcién local destas
métricas.

Tal e como se dixo anteriormente, outro problema interesante relacionado coa curvatura
é esclarecer o noso entendemento dunha variedade por medio da investigacién da relacion
existente entre a curvatura da propia variedade e as curvaturas de obxectos xeométricos
naturalemente asociados & sua estructura métrica. Exemplos destas estructuras son as
esferas xeodésicas, os discos xeodésicos e os tubos arredor de subvariedades significativas.
A Parte II desta tese estd adicada 6 estudio dalguns dos obxectos previamente menciona-
dos. En particular investigamos os invariantes escalares da curvatura de esferas xeodésicas
no Capitulo 4. Os invariantes escalares da curvatura tefien grande importancia e certas
xeometrias poden ser caracterizadas en termos destas funciéns. Consideramos a estes en
relacion coas esferas xeodésicas. Neste capitulo integramos os invariantes escalares da cur-
vatura en esferas xeodésicas e discos obtendo os primeiros termos nos desenvolvementos
en serie de potencias como funcién do radio. Isto da lugar a algunhas caracterizacions de
espacios homoxéneos dous puntos entre todas as variedades riemannianas con holonomia
adaptada.

Inspirados pola construccion de discos xeodésicos en xeometria riemanniana, definimos
as esferas celestes xeodésicas no contexto lorentziano. Resulta ser que esta familia de ob-
xectos esta adaptada & consideracién de resultados de comparacion de volume no contexto
lorentziano, o cal sufria dunha falta de construcciéns analogas as esferas xeodésicas e 6s
tubos en xeometria riemanniana. O Capitulo 5 adicase & investigacién de propiedades de
volume de esferas celestes xeodésicas asi como &s stias curvaturas escalares totais. Isto
permite caracterizar as variedades lorentzianas isotrépicas.

As esferas xeodésicas e os tubos son dalgin xeito os conxuntos de nivel da funcién de
distancia riemanniana e por tanto estan estreitamente vinculados & estructura métrica. Ou-
tros obxectos en variedades riemannianas que estan relacionados coa estructura métrica son
aquelas subvariedades invariantes baixo as isometrias da variedade ambiente. As érbitas
de acciéns de cohomoxeneidade un son exemplos desta situacién. Ademais, unha orbita
principal dunha accién de cohomoxeneidade un é xeometricamente un tubo arredor dunha
orbita singular desa accién. Isto involucra de novo a funcién distancia riemanniana e o
operador de Jacobi que é a ferramenta principal para o calculo da xeometria das esferas
xeodésicas e dos tubos. A xeometria das orbitas das acciéns de cohomoxeneidade un é
mais interesante desde o punto de vista extrinseco. Asi, é a segunda forma fundamental a
que estudiamos neste caso.

A Parte III deste traballo esta adicada & investigacién de hipersuperficies reais con
curvaturas principais constantes no espacio hiperbdlico complexo. As dérbitas de accions
de cohomoxeneidade un son os principais candidatos para este tipo de hipersuperficies e
son os unicos exemplos conecidos ata o de agora. No Capitulo 6 estudiamos o operador
de configuraciéon das orbitas de acciéns de cohomoxeneidade un no espacio hiperbdlico
complexo. Empregando este estudio damos no Capitulo 7 unha clasificacién completa das
hipersuperficies reais con tres curvaturas principais constantes.
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Parte I. Consecuencias xeométricas de propiedades alxébricas do
tensor de curvatura

O espacio dos tensores de curvatura alxébricos dun espacio vectorial n—dimensional é un
espacio vectorial R(V) de dimension n?(n? — 1)/12, o que o fai moi dificil de manipular.
Por tanto, a investigacién centrouse en tentar atopar bases axeitadas ou conxuntos de
xeneradores que permitisen simplificaciéns. Un exemplo tipico é a base de Singer—Thorpe
en dimensién catro.

Recentemente, o traballo de B. Fiedler [59] e P. Gikey [68] amosou a existencia de bos
conxuntos de xeneradores de R(V') construidos a partir de formas bilineares simétricas e
antisimétricas, o cal parece ttil para entender algunhas condiciéns de curvatura. O noso
método para atacar o problema, baseado no emprego do teorema de embebemento de Nash
e na posibilidade de realizar xeométricamente calquera tensor de curvatura alxébrico, ten
duas vantaxes. A primeira é que nos permite obter unha estimacién mais fina (ainda que
non 6ptima) do nimero de xeneradores de R(V'). A segunda é que amosa que cada tensor
de curvatura alxébrico pode ser visto desde un punto de vista extrinseco como a segunda
forma fundamental dun embebemento axeitado. Estas discusiéns son levadas a cabo no
Capitulo 2.

Outro propdsito desta parte é estudiar a influencia na xeometria da variedade de
propiedades alxébricas de operadores naturais asociados & curvatura. De xeito mais pre-
ciso, adicamos a nosa atencién a investigacion do operador de Jacobi centrdandonos na
estructura de métricas de Osserman de dimension catro. Recordamos que unha variedade
semi-riemanniana se di de Osserman se os autovalores do operador de Jacobi son indepen-
dentes da direccién e do punto base. Dado que as isometrias locais dun espacio isotrépico
actuan transitivamente nos fibrados pseudo—esféricos unitarios, esta claro que calquera es-
pacio isotrépico é de Osserman. Non poden existir mais exemplos nos casos riemanniano
(dimensién distinta de 16) nin lorentziano, pero existen métricas non simétricas e incluso
non localmente homoxéneas en calquera signatura (p, q) con p,q > 2.

As métricas de Osserman de dimension catro tenen particular interese. Primeiro, di-
mensién catro é a primeira dimensién non trivial considerada na investigacién do problema
de Osserman (nétese que calquera métrica de Osserman é Einstein e por tanto de curvatura
seccional constante en dimensién 2 e 3), e ademais, catro é a dimensién méis pequena que
soporta métricas non lorentzianas de signatura neutral, onde as primeiras métricas non
simétricas de Osserman foron descubertas.

Debido &s identidades da curvatura, para calquera vector non nulo x € T'M o operador
de Jacobi é un operador autoadxunto en -, que ten unha métrica inducida lorentziana no
caso de signatura (2,2). As métricas de Osserman con operador de Jacobi diagonalizable
foron caracterizadas por N. Blazi¢, N. Bokan e Z. Raki¢ [21], quen tamén amosaron a non
existencia en dimensién catro de métricas de Osserman con operadores de Jacobi que tenen
autovalores complexos. A signatura lorentziana de 2, soporta, non obstante, outras dias
posibilidades correspondentes a raices dobles e triples do polinomio minimo do operador
de Jacobi. O feito de que todos os exemplos conecidos nesas situacion tenen operador
de Jacobi nilpotente e que as métricas de Osserman simétricas en dimension catro tenen
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operador de Jacobi diagonalizable ou nilpotente en dous pasos, motivaron a conxectura de
que as métricas de Osserman que tenen operadores de Jacobi non diagonlizables deben ter
operadores de Jacobi nilpotentes. O noso propdsito no Capitulo 3 é responder & anterior
conxectura de forma negativa amosando exemplos explicitos de métricas de Osserman con
operadores de Jacobi que non son nin diagonalizables nin nilpotentes. Finalmente, unha
descripcion completa de tales métricas é dada na Seccion 3.3.

Parte II. Invariantes da curvatura de esferas xeodésicas e esferas
celestes xeodésicas

Para estudiar a xeometria dunha variedade de Riemann é a miudo 1til considerar obxec-
tos naturalmente asociados & estructura métrica de M. Estes poden ser hipersuperficies
especiais tales como esferas xeodésicas e tubos arredor de certas subvariedades, espacios
fibrados con M como base ou familias de transformacions reflectindo as propiedades de
simetria de M [128]. Nesta parte da tese centramonos no estudio das esferas xeodésicas e
da sta curvatura en relaciéon coa curvatura da variedade ambiente. De feito, a existencia
dunha relacién entre a curvatura dunha variedade riemanniana e o volume das sias esferas
xeodésicas levou a alguns autores a establecer a seguinte cuestion: “; Ata que punto esta a
curvatura ou a xeometria dunha variedade riemanniana influenciada, ou incluso determi-
nada, polas propiedades de certas familias de obxectos xeométricos naturalmente definidos
sobre M?”. Este problema semella bastante dificil de manipular con tanta xeneralidade.
Sen embargo, cando un considera variedades cun alto grao de simetria (por exemplo os
espacios homoxéneos dous puntos), estes obxectos xeométricos tenen boas propiedades e
espérase obter caracterizacions de tales espacios por medio desas propiedades. Compa-
rando unha variedade riemanniana cun espacio modelo tal como un espacio homoxéneo
dous puntos obtemos unha idea da sia xeometria. Por tanto, entendendo a xeometria de
espacios cun alto grao de simetria e por que as stias propiedades son caracteristicas deles,
conseguimos unha mellor visiéon da xeometria dunha variedade riemanniana.

Dado que as esferas xeodésicas son subvariedades compactas, ten siso calcular o seu
volume. A. Gray e L. Vanhecke [83] calcularon os primeiros termos no desenvolvemento
en serie de potencias do volume de esferas xeodésicas. Conxecturaron que o volume de
esferas xeodésicas pode ser empregado para caracterizar a xeometria euclidiana. Mais
especificamente, se cada esfera xeodésica dunha variedade riemanniana ten o mesmo volume
ca unha esfera euclidiana do mesmo radio, entén a variedade é cha. Ainda que a resposta se
sabe afirmativa en varios casos especiais, o problema segue aberto no caso xeral. Traballo
ulterior con esferas xeodésicas involucrou a investigacion das suas propiedades xeométricas
e como estas influencian a xeometria da variedade ambiente. B.—Y. Chen e L. Vanhecke
[33] estudiaron curvaturas intrinsecas e extrinsecas de esferas xeodésicas. Resultou que
en moitos casos as propiedades de curvatura das esferas xeodésicas dan lugar a un mellor
entendemento da xeometria cas propiedades de volume.

Estamos interesados nesta parte nos chamados invariantes escalares da curvatura. A
marxe da sta ubicuidade en xeometria riemanniana, especialmente cando se estudian es-
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feras xeodésicas e obxectos relacionados, son de interese por eles mesmos. Véxase por
exemplo [113], onde foi realizada unha caracterizacién de espacios homoxéneos empre-
gando invariantes escalares da curvatura. O noso propdésito no Capitulo 4 é investigar os
invariantes da curvatura de esferas xeodésicas. Integrando os invariantes escalares da cur-
vatura 0 longo de cada esfera xeodésica dunha variedade riemanniana obtemos unha boa
relacién entre curvatura e propiedades de volume. A conxectura do volume de A. Gray
e L. Vanhecke pode ser xeneralizada para estes novos obxectos. Vemos na Seccion 4.2.3
que en certos casos os espacios homoxéneos dous puntos poden ser caracterizados mediante
as integrais de invariantes escalares da curvatura en esferas xeodésicas. Enfatizamos que
¢ suficiente un sé invariante para dita caracterizacion. Véxase a Subseccion 4.3.1 para
exemplos de tales invariantes da curvatura.

Ademais de esferas xeodésicas, pdédense considerar outros obxectos en xeometria rie-
manniana que estan relacionados coa funcién distancia riemanniana: tubos arredor de
subvariedades e discos. Os primeiros introdicense no Capitulo 4 e son de interés na ultima
parte desta tese. Os discos xeodésicos son a principal ocupaciéon da Subseccién 4.3.2. Foran
previamente investigados por O. Kowalski e L. Vanhecke con especial atencion as suas
propiedades de volume [93], [94], [95]. Nesta subseccién estamos interesados na xeometria
intrinseca dos bordes destes discos e centramos a nosa atencion no estudio das stas curva-
turas totales obtidas integrando a curvatura escalar e os invariantes escalares cuadraticos da
curvatura nos bordes dos discos. O noso principal resultado é que os espacios homoxéneos
dous puntos estan caracterizados por algunhas das curvaturas totais dos bordes de discos
xeodésicos entre as variedades riemannianas con holonomia adaptada.

Cando volvemos a nosa atencion das variedades riemannianas cara és espacios—tempo
aparecen varias dificultades. Unha caracteristica das variedades riemannianas é que tenen
unha funcién distancia riemanniana que é continua e que induce unha topoloxia na varie-
dade que coincide coa topoloxia de partida. Asi, varios obxectos xeométricos tales como
esferas xeodésicas poden ser definidos, polo menos localmente, por medio desta funcion.
Estes obxectos son tamén variedades riemannianas. Tefien propiedades interesantes como
compacidade e un comportamento aceptable con respecto doutras construcciéns. Cando
se trata con variedades semi-riemannianas en xeral, non hai tal funcién “distancia semi—
riemanniana”. De feito, unha funcién tipo distancia s6 esta definida para espacio—tempos,
pero incluso neste caso as stas propiedades son completamente diferentes daquelas do
contexto riemanniano [7]. Por exemplo, a funcién “distancia lorentziana” pode non ser
continua ou limitada e os obxectos xeométricos definidos a partir dela tefien propiedades
extranas. Ademais, os conxuntos de nivel da funcién de distancia lorentziana con respecto
dun punto dado non son compactos en xeral e ainda que algunhas propiedades destes
conxuntos foron previamente investigadas, non parecen ser axeitados para a investigacion
de propiedades de volume.

No Capitulo 5 consideramos unha nova familia de obxectos en xeometria lorentziana, as
chamadas esferas celestes xeodésicas. A grosso modo, son o conxunto de puntos acadados
despois de viaxar unha distancia fixa, 6 longo de xeodésicas radiais partindo dun punto,
en direccions ortogonais a un vector temporal dado. En Relatividade, un vector temporal
unitario representa un observador instantaneo e o subespacio vectorial do tanxente que é
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ortogonal a un observador instantdneo chamase o espacio de simultaneidade infinitesimal,
é dicir, o universo newtoniano infinitesimal onde o observador percibe as particulas como
particulas newtonianas relativas & sia posicion de repouso. Entén, unha esfera celeste
xeodésica non é mais cd imaxe mediante a aplicacién exponencial dunha esfera celeste no
espacio de simultaneidade infinitesimal.

Seguindo a idea de caracterizar espacios con alto grao de simetria por medio de propie-
dades de volume de obxectos xeométricos, levamos a cabo na Seccién 5.2 o calculo do
volume de esferas celestes xeodésicas. Este depende do radio, do punto base e do obser-
vador instantdneo empregado para definila. Non obstante, nunha variedade lorentziana
isotrépica esta medida s6 depende do radio. Vemos nesta seccion que esta propiedade é
caracteristica das variedades localmente isotropicas. Na Seccion 5.2 discutimos resulta-
dos de comparacién de volume e damos teoremas tipo Bishop—Giinther e Gromov para
estes obxectos. Finalmente na Seccién 5.3 levamos a cabo a caracterizacion de variedades
lorentzianas localmente isotropicas empregando as integrais de invariantes escalares da cur-
vatura en esferas celestes xeodésicas no espirito do Capitulo 4. Empregamos os resultados
da Seccion 4.2.3 para obter esta caracterizacion.

Nesta parte tratamos de explicitar o minimo nimero de calculos para facer o tra-
ballo mais facil de ler. O autor implementou un paquete en Mathematica coas principais
identidades do tensor de curvatura. Este paquete permite realizar cdlculos involucrando
invariantes escalares da curvatura e integracién en esferas xeodésicas. Podemos obter tanto
expresions explicitas en espacios homoxéneous dous puntos como desenvolvementos en serie
de potencias en variedades riemannianas xerais.

Parte III. Hipersuperficies reais no espacio hiperbdlico complexo

O obxectivo da xeometria de subvariedades é entender os invariantes xeométricos e clasi-
ficar as subvariedades a partir de datos xeométricos precisos. En xeometria riemanniana
a estructura dunha variedade esta codificada nas ecuacions de Gauss, Codazzi e Ricci.
A situacién simplificase para hipersuperficies dado que a ecuaciéon de Ricci é trivial e a
segunda forma fundamental pode ser escrita en termos do operador de configuracién. Os
autovalores do operador de configuracién, as chamadas curvaturas principais, son os obxec-
tos xeométricos mais simples dunha hipersuperficie. Dous problemas béasicos da xeometria
de hipersuperficies son entender a xeometria de subvariedades para as que as curvaturas
principais son constantes e clasificalas.

Empregando as ecuacions de Gauss e Codazzi, E. Cartan [28] provou que en espacios
de curvatura constante unha hipersuperficie ten curvaturas principais constantes se e s
se é isoparamétrica. A clasificaciéon de superficies isoparamétricas ten unha longa historia
e co paso dos anos moitas caracteristicas sorprendentes foron descubertas. Ver [127] para
un resumo. E. Cartan tamén provou en [28] que o numero g de curvaturas principais
distintas dunha superficie isoparamétrica no espacio hiperbolico real RH™ é 1 ou 2. Isto da
lugar a unha clasificacion completa: esferas xeodésicas, horosferas, hiperplanos totalmente
xeodésicos e as suas superficies equidistantes e tubos arredor de subespacios totalmente
xeodésicos de dimension maior ou igual ca un. Como consecuencia, todas as hipersuperficies
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no espacio hiperbdlico real con curvaturas principais constantes son partes abertas de
hipersuperficies homoxéneas.

Nesta parte tratamos o problema da clasificacién de hipersuperficies reais con curvaturas
principais constantes no espacio hiperbdlico complexo. Describimos brevemente o estado do
problema. Obviamente, calquera hipersuperficie real homoxénea ten curvaturas principais
contantes. J. Berndt e H. Tamaru [16] derivaron recentemente a clasificacién completa de
hipersuperficies reais homoxéneas en CH™. O niimero g de curvaturas principais constantes
de todas estas hipersuperficies homoxéneas é 2, 3, 4 ou 5. Non se conecen exemplos de
hipersuperficies reais con curvaturas principais constantes que non sexan un aberto dunha
hipersuperficie homoxénea. Tampouco se sabe se para calquera hipersuperficie real con
curvaturas principais constantes o nimero g debe ser necesariamente 2, 3, 4 ou 5.

No Capitulo 6 estudiamos en profundidade a xeometria das orbitas da clasificacion
dada por J. Berndt e H. Tamaru. Prestamos atencién a aquelas acciéns que tenen érbitas
singulares non totalmente xeodésicas, xa que estas consitien novos exemplos s6 conecidos
recentemente. Interesamonos particularmente na existencia de distribuciéns nestas sub-
variedades que nos permitan describilas de xeito xeométrico. A Subseccién 6.3.3 é un bo
exemplo de tal estudio. De feito, nesta seccion séntanse as bases para a caracterizacion
das orbitas singulares de todas as acciéns de cohomoxeneidade un descritas e deméstranse
resultados de rixidez para elas nos Teoremas 6.8 e 6.16.

A partir da ecuacion de Codazzi un pode facilmente deducir que o niimero de curvaturas
constantes dunha hipersuperficie real de CH" verifica g > 1 (ver Corolario 7.5). Séguese
do traballo de S. Montiel [99] que toda hipersuperficie real con ddas curvaturas principais
constantes en CH", n > 3, é un aberto dunha esfera xeodésica, dunha horosfera, dun tubo
arredor dun CH"~! C CH™ totalmente xeodésico ou dun tubo de radio log(2-++/3) arredor
dun RH™ C CH™ totalmente xeodésico. Para n = 2 o problema parece estar aberto. No
Corolario 7.6 presentamos unha proba para a anterior clasificacion que inclie tamén este
caso de dimension baixa. Todas estas hipersuperficies son hipersuperficies homoxéneas
de Hopf. Unha hipersuperficie de CH™ con campo de vectores normal unitario ¢ dise de
Hopf se J& é un autovector do operador de configuracién. J. Berndt obtivo en [10] a
clasificacion de todas as hipersuperficies de Hopf con curvaturas principais constantes en
CH™. Calquera desas hipersuperfices é un aberto dunha horosfera, dun tubo arredor dun
CH* c CH™ totalmente xeodésico para algin k € {0,...,n — 1} ou dun tubo arredor
dun RA"™ C CH" totalmente xeodésico. Todos estes tubos e horosferas son homoxémeos
e g € {2,3}. Non obstante, non todas as hipersuperfices reais homoxéneas de CH™ son de
Hopf. Ver o Capitulo 6 para unha dicussion deste tipo de exemplos.

No Capitulo 7 concluimos o estudio anterior dando unha clasificaciéon das hipersuper-
ficies reais en CH™ con tres curvaturas principais constantes distintas (Teorema 7.1). En
particular, o noso resultado implica que calquera hipersuperficie con como maximo tres
curvaturas principais constantes é homoxénea.
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