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Topolox́ıa pola axuda que sempre nos brindan e polo seu bo facer tanto matematicamente
como persoalmente. Como colaborador deste departamento tamén quero amosar a miña
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igual de levadeiro. Gracias a Javi, Esteban, Manolo, Coté, Maŕıa, Carlos e sobre todo
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Resumo

As variedades de Einstein constituen un aspecto central no estudo da xeometŕıa pseudo-
Riemanniana. O seu interese non só reside na súa xeometŕıa particular, senón que trascende
ó campo da F́ısica e en particular ó da cosmolox́ıa. A ecuación de Einstein, que describe
tales variedades, pode ser xeneralizada dende diversos puntos de vista. Aqúı adoptaremos
un deles que se vincula a distintos campos da Xeometŕıa Diferencial e das Matemáticas.

A investigación dos fenómenos de rixidez é un tema central en Xeometŕıa pseudo-
Riemanniana. Os resultados de rixidez poden aparecer a nivel métrico, como nos teoremas
de descomposición, ou a nivel topolóxico, como sucede cos teoremas de compacidade e
os resultados que involucran o primeiro grupo fundamental. Ademais, se a variedade
está equipada cunha estructura adicional, esta pode impoñer novas restriccións sobre a
variedade a calquera dos dous niveis.

Nesta tese considéranse variedades Lorentzianas dotadas dunha estrutura adicional
dada por certas ecuacións diferenciais: as ecuacións de solitón de Ricci e de métrica quasi-
Einstein. Tradicionalmente, no campo da Análise, discútese a existencia dunha solución
non trivial dunha ecuación diferencial nun dominio determinado. Porén, en Xeometŕıa
tamén se adoita discutir a existencia dunha variedade que sexa un dominio axeitado para
que a ecuación diferencial teña unha solución non trivial. Isto habitualmente proporciona
un resultado de rixidez para a estrutura correspondente. En xeral, neste traballo adoptare-
mos un punto de vista local para o estudo destas ecuacións, pero tamén en certos casos
faremos consideracións globais relacionadas principalmente coa completitude da variedade.

Os solitóns de Ricci e as métricas quasi-Einstein conxugan os dous aspectos que vimos
de mencionar. Por un lado poden considerarse xeneralizacións das variedades de Einstein,
pero ademais dan lugar a resultados de rixidez. A pesar de amosar certas similitudes,
a motivación das condicións de solitón de Ricci e de métrica quasi-Einsten proveñen de
problemas diferentes. O obxectivo final das distintas ecuacións de evolución xeométrica é
producir (ou deducir a existencia de) variedades cun comportamento óptimo con respecto
ós invariantes propostos: o fluxo de Ricci fai posible a construción de métricas de Einstein
baixo certas condicións, mentres que o fluxo de curvatura media permite deformar certas
superficies noutras nas que a curvatura media é constante. Porén, hai condicións baixo as
cales a estrutura inicial non evoluciona baixo o fluxo senón que permanece como un punto
fixo da mesma. Os solitóns de Ricci son os puntos fixos xeométricos (módulo homotecias e
difeomorfismos) do fluxo de Ricci. Por outra banda, xa que aparecen como singularidades
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do fluxo, a análise da súa xeometŕıa é un paso importante de cara á comprensión do fluxo de
Ricci. A ecuación das métricas quasi-Einstein preséntase como a ecuación natural asociada
ó tensor de Ricci Lichnerowicz-Bakry-Emery, que é unha xeneralización da curvatura de
Ricci a variedades con densidade. Ademais, a ecuación das métricas quasi-Einstein codifica
información necesaria e suficiente para a construción de métricas de Einstein que son
produtos warped.

O obxectivo deste traballo foi investigar os solitóns de Ricci e as métricas quasi-Einstein
baixo certas condicións naturais sobre a curvatura. Centrámonos fundamentalmete na
familia de solitóns chamados gradiente, isto é, aqueles nos que o campo de vectores é
un campo de vectores gradiente. A análise desenvolvida descubriu algúns fenómenos de
rixidez para este tipo de estruturas. En esencia, ámbalas dúas condicións proporcionan
información sobre os conxuntos de nivel das correspondentes funcións potenciais e sobre a
curvatura de Ricci da variedade subxacente. Polo tanto, centrámonos de forma natural nos
espazos localmente conformemente chans, xa que neste caso o tensor de Ricci determina
a curvatura, amosando unha rixidez local para as estruturas que se estudian. Cómpre
destacar aqúı que traballar no ámbito Lorentziano é menos ŕıxido que no campo Rieman-
niano, xa que a xeometŕıa de Lorentz permite a existencia de hipersuperficies dexeneradas
que poden aparecer como conxuntos de nivel das solucións das ecuacións diferenciais que
se consideran.

Tamén prestamos especial atención á existencia de solucións para a ecuación do solitón
de Ricci en variedades cun certo grao de homoxeneidade. Os nosos resultados son especial-
mente conclúıntes no caso tridimensional, onde se dá unha descrición completa dos solitóns
de Ricci gradiente homoxéneos, aśı coma no caso de variedades con grupo de isometŕıas
grande, demostrando que todas elas admiten solitóns de Ricci expansivos, estables e con-
tractivos.

O esquema xeral desta memoria é o seguinte. Preséntase un caṕıtulo inicial de pre-
liminares co propósito de establecer as principais definicións e algúns resultados básicos
que se precisarán posteriormente. Estúdianse as métricas de Walker, prestando especial
atención ás pp-waves e ás plane waves que aparecerán en diversas ocasións nos caṕıtulos
seguintes. Os solitóns de Ricci introdúcense como triples da forma (M, g,X), onde (M, g)
é unha variedade pseudo-Riemanniana e X é un campo de vectores, de xeito que se satisfai
a ecuación seguinte

LXg + ρ = λ g,

onde L denota a derivada de Lie, ρ é o tensor de Ricci e λ ∈ R. Os solitóns de Ricci
gradiente son triples (M, g, f) satisfacendo

Hesf +ρ = λ g,

pois corresponden ó caso especial en que o campo de vectores X é un campo gradiente
X = 1

2∇f para unha certa función potencial f , e o solitón dise que é expansivo, estable
e contractivo segundo sexa λ < 0, λ = 0 e λ > 0, respectivamente. Recórdanse algúns
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exemplos e resultados coñecidos sobre este tipo de estruturas no marco Riemanniano, que
tamén motivan o noso traballo. Lévase a cabo un estudio detallado dos solitóns de Ricci
gradiente en dimensión dous, dando lugar á construción do solitón cigarro Lorentziano na
Sección 1.4.4. A continuación, na Sección 1.4.5, considérase a existencia de solitóns de Ricci
gradiente que son variedades Einstein, amosando a existencia de exemplos non triviais sen
homólogo Riemanniano. Todos estes exemplos están relacionados coa existencia de campos
de vectores nulos paralelos.

Conclúıdos os preliminares, o corpo principal da tese div́ıdese en dúas partes ben dife-
renciadas. A Parte I ocúpase da xeometŕıa dos solitóns de Ricci gradiente. A continuación,
a Parte II está dedicada ó estudio dos solitóns de Ricci xerais e das métricas quasi-Einstein,
consideradas como xeneralizacións naturais da ecuación do solitón de Ricci gradiente.

A Parte I div́ıdese en tres caṕıtulos. O Caṕıtulo 2 está destinado ó estudio de solitóns
de Ricci gradiente localmente conformemente chans. A súa estrutura local vén dada polo
seguinte:

Teorema 2.1 Sexa (M, g, f) un solitón de Ricci gradiente localmente conformemente
chan.

(i) Nun entorno de calquera punto onde ‖∇f‖ 6= 0, M é localmente isométrica a un
produto warped I×ϕN con métrica ε dt2 +ϕ2gN , onde I é un intervalo real e (N, gN )
é un espazo de curvatura seccional constante c.

(ii) Se ‖∇f‖ = 0 nun conxunto aberto non baleiro, entón (M, g) é localmente isométrica
a unha plane wave, i.e., M é localmente difeomorfa a R2 × Rn con métrica

g = 2 dudv +H(u, x1, . . . , xn)du2 +

n∑
i=1

dx2
i ,

onde H(u, x1, . . . , xn) = a(u)
n∑
i=1
x2
i +

n∑
i=1
bi(u)xi + c(u) para funcións a, bi, c arbi-

trarias e a función potencial vén dada por f(u, v, x1, . . . , xn) = f0(u), verificando a

condición f ′′0 (u) = − ρ
(
∂
∂u
, ∂∂u

)
= na(u).

Unha das consecuencias de que unha variedade sexa localmente conformemente chá é
que o tensor de Schouten é Codazzi, o que, como veremos, implica que ∇f é un autovector
do operador de Ricci. Esta propiedade permı́tenos considerar bases locais adaptadas e
investigar a xeometŕıa dos conxuntos de nivel da función potencial f por medio do seu
Hessiano, dando lugar a unha descomposición de produto deformado (warped) no caso
non dexenerado e á estrutura dunha pp-wave no caso dexenerado.

Motivados polos resultados do Caṕıtulo 2 e dado que as pp-waves xorden dun xeito
natural neste contexto, no Caṕıtulo 3 realizamos un estudo pormenorizado dos solitóns de
Ricci, tanto gradientes como xerais, en variedades deste tipo. Estes resultados, ademais
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de complementar a clasificación obtida no caṕıtulo anterior, teñen interese por si mesmos.
Dentro da familia de pp-waves, as plane waves desempeñan un importante e destacado
papel, polo que incidimos particularmente nesta subfamilia. Próbase que todas as plane
waves son solitóns de Ricci gradiente estables (λ = 0).

Teorema 3.1 Toda plane wave (M, gppw) é un solitón de Ricci gradiente estable non trivial
con función potencial f dada por f(u, v, x1, . . . , xn) = f0(u), onde

f ′′0 (u) = − ρ
(
∂

∂u
,
∂

∂u

)
=

n∑
i=1

aii(u).

Ademais, ‖∇f‖ ≥ 0 e ∇f é un campo de vectores xeodésico. Adicionalmente, o solitón de
Ricci gradiente (M, gppw, f) é completo se H(u, x1, . . . , xn) está definida en todo Rn+2.

A pesar da súa simplicidade, as plane waves son a estrutura subxacente a moitas
situacións xeométricas Lorentzianas sen análogo Riemanniano. Por exemplo, as varie-
dades Lorentzianas localmente conformemente chás con curvatura recurrente [55, 98], as
variedades Lorentzianas dos-simétricas [1, 10], as variedades de Lorentz conformemente
simétricas [47], as variedades de Lorentz que admiten unha estrutura homoxénea dexe-
nerada de tipo lineal [3, 72], e as variedades de Lorentz con grupo de isometŕıas grande
clasificadas por Patrangenaru [82] son algúns exemplos. De especial importancia son os
espazos simétricos Cahen-Wallach:

Teorema 3.5 Os espazos Lorentzianos simétricos indescompoñibles pero non irreducibles
son solitóns de Ricci gradiente isotrópicos e estables.

Os solitóns de Ricci gradiente homoxéneos estúdianse no Caṕıtulo 4. Como feito
técnico, amósase que a cada campo de vectores de Killing sobre a variedade pódeselle
asociar un campo de vectores paralelo que induce unha descomposición local baixo certas
circunstancias (cf. Lema 4.1). Este feito resulta ser moi restritivo en signatura Rieman-
niana, pero non o é tanto en signatura indefinida. Para realizar a análise deste tipo de
variedades, obteremos en primeiro lugar algúns resultados xerais sobre solitóns de Ricci
gradiente con curvatura escalar constante, para logo abordar o estudio das variedades
homoxéneas. Este realizarase distinguindo os solitóns en función da constante λ. Aśı,
primeiro analizaremos o caso λ 6= 0 e posteriormente o λ = 0.

Para solitóns de Ricci non estables obtemos unha descrición detallada da xeometŕıa
dos solitóns, obtendo a seguinte descomposición local

Teorema 4.7 Sexa (M, g) unha variedade de Lorentz homoxénea. Entón se (M, g, f) é un
solitón de Ricci gradiente non estable, a variedade (M, g) descomponse como un produto
M = N × Rk para algún k ≥ 0, onde ou ben

(a) (N, gN ) é unha variedade Lorentziana Einstein e o solitón é ŕıxido, ou
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(b) (N, gN ) é unha variedade Lorentziana de Walker admitindo un campo de vectores
nulo paralelo.

A xeometŕıa dos solitóns de Ricci estables é en moitos casos máis flexible. Dado que a
función potencial de calquera solitón de Ricci gradiente homoxéneo estable é unha solución
da ecuación Eikonal, centrámonos nas distintas posibilidades segundo sexa ∇f temporal,
nulo ou espacial. O caso en que é temporal é moi ŕıxido, e amósase no Teorema 4.10 que
iso conleva que a variedade é chá. No caso nulo obtemos algúns resultados parciais que
amosan que o operador de Ricci é ou ben nilpotente en tres pasos ou nilpotente en dous
pasos; de darse esta última posibilidade a variedade admite un campo de vectores nulo
paralelo (Lemas 4.11 e 4.13), polo que é unha variedade de Walker estrita. Por último,
o problema de estudar o caso espacial permanece aberto e supón un reto para futuras
investigacións. Como aplicación dos resultados anteriores, damos no Teorema 4.14 unha
descrición de todos os solitóns de Ricci gradientes simétricos Lorentzianos.

En dimensión tres o problema é máis manexable dado que o tensor curvatura está
completamente determinado polo tensor de Ricci. Na Sección 4.5 describimos completa-
mente todos os solitóns de Ricci gradientes homoxéneos de dimensión tres. Esencialmente
amósase que calquera destes solitóns é ou ben trivial, ou ben ŕıxido, ou ben a variedade
subxacente ten curvatura recurrente (cf. Teorema 4.15). Existen ademais outras carac-
teŕısticas propias desta dimensión que fan dela un caso especial. Aśı, por exemplo, as
variedades de Walker estrictas en dimensión tres coinciden coas pp-waves, feito que non
se dá en dimensións superiores.

Na Parte II da tese abórdase o caso xeral dos solitóns de Ricci, é dicir, estúdianse os
solitóns de Ricci que veñen dados por un campo de vectores arbitrario (non necesariamente
gradiente), e tamén o das variedades de Lorentz quasi-Einstein.

Dado que calquera variedade Lorentziana homoxénea é ou ben simétrica ou ben un
grupo de Lie [27], anaĺızase no Caṕıtulo 5 a existencia de solitóns de Ricci invariantes á
esquerda en grupos de Lie tridimensionais. Considéranse por separado os casos unimodular
e non unimodular. Os grupos de Lie Lorentzianos unimodulares descŕıbense en termos do
produto vectorial inducido polos para-cuaternios e certo operador autoadxunto L. Polo
tanto, como diferencia coa signatura Riemanniana, un debe considerar non só a estrutura
de autovalores, senón tamén a forma normal de Jordan de L, dando lugar a catro familias
de álxebras de Lie unimodulares [89]. Ó considerar os grupos non unimodulares, ana-
lizamos o núcleo unimodular e as distintas posibilidades para as restricións da métrica:
definida positiva, Lorentziana e dexenerada. Estas determinan tres familias de álxebras de
Lie non unimodulares [42]. Acadamos o noso obxectivo probando a existencia de solitóns
de Ricci en álxebras de Lie unimodulares e non unimodulares, ningún deles con análogo
Riemanniano.

Teorema 5.2 Sexa G un grupo de Lie Lorentziano de dimensión tres equipado con unha
métrica invariante á esquerda. (G, 〈 · , · 〉, X) é un solitón de Ricci invariante á esquerda
se e só se se corresponde cun dos seguintes casos:
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(i) G é un grupo de Lie unimodular cunha das seguintes álxebras de Lie:

(i.1) [e1, e2] = 1
2e2 − (β − 1

2)e3,

[e1, e3] = −(β + 1
2)e2 − 1

2e3,

[e2, e3] = αe1,
con α = 0 ou α = β 6= 0. Se α = 0 entón G = E(1, 1), mentres que se
α = β 6= 0 entón G = O(1, 2) ou G = SL(2,R).

(i.2) [e1, e2] = − 1√
2
e1 − αe3,

[e1, e3] = − 1√
2
e1 − αe2,

[e2, e3] = αe1 + 1√
2
e2 − 1√

2
e3.

Se α = 0 entón G = E(1, 1), mentres que se α 6= 0 entón ou G = O(1, 2) ou
G = SL(2,R).

(ii) G é un grupo de Lie non unimodular con álxebra de Lie dada por

[e1, e2] = − 1√
2

(
αe1 + 1√

2
β(e2 + e3)

)
,

[e1, e3] = 1√
2

(
αe1 + 1√

2
β(e2 + e3)

)
, α+ δ 6= 0, δ 6= 0,

[e2, e3] = 1√
2
δ(e2 + e3).

En todos os casos anteriores {e1, e2, e3} é unha base ortonormal de signatura (+ +−) da
correspondente álxebra de Lie.

Desde un punto de vista xeométrico, a existencia de solitóns de Ricci non triviais (i.e.,
asociados a métricas que non son Einstein) invariantes en grupos de Lie caracteŕızase polo
seguinte:

Teorema 5.5 Un grupo de Lie Lorentziano non simétrico de dimensión tres é un solitón
de Ricci non trivial se e só se o operador de Ricci ten exactamente tres autovalores iguais.

Obsérvase que a existencia dun único autovalor para o operador de Ricci non im-
plica que a variedade sexa Einstein debido a que, en xeral, os operadores autoadxuntos
no ámbito Lorentziano non son diagonalizables. Facemos fincapé en que os grupos de
Lie correspondentes ó Teorema 5.2–(ii) permiten todas as clases (expansivos, estables e
contractivos) de solitóns de Ricci. Esta situación, que non se dá para métricas definidas
positivas, está estreitamente relacionada coa existencia de solitóns de Yamabe [31].

Finalmente, o Caṕıtulo 6 ded́ıcase ó estudio de variedades quasi-Einstein. Unha varie-
dade de Lorentz (M, g) dise que é quasi-Einstein se existe unha función diferenciable f en
M e unha constante µ ∈ R tal que

Hesf +ρ− µdf ⊗ df = λ g
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para unha constante λ ∈ R. Claramente as variedades quasi-Einstein xeneralizan ás va-
riedades de Einstein (obtidas para f constante) e ós solitóns de Ricci gradiente (obtidos
para µ = 0). As métricas quasi-Einstein aparecen como unha deformación conforme das
métricas de Einstein e, reciprocamente, para calquera métrica quasi-Einstein con µ = − 1

n

a métrica conforme g̃ = e−
2
n
fg é unha métrica de Einstein, sendo dim(M) = n + 2.

Ademais, a ecuación quasi-Einstein xorde dun xeito moi natural ó considerar o tensor de
Ricci Lichnerowicz-Bakry-Emery, que vén dado pola expresión ρmf = ρ+ Hesf − 1

mdf ⊗ df ,

onde 0 < m ≤ ∞. Este tensor def́ınese en variedades con densidade (M, g, e−fdvolg)
e a ecuación xorde ó impoñer a condición análoga á de Einstein, é dicir, que ρmf sexa
un múltiplo escalar da métrica g. Ademais, esta mesma condición está estreitamente
relacionada coa busca de métricas de Einstein en produtos warped. En efecto, se M ×ϕ F
é un produto warped Einstein, entón (M, g) é quasi-Einstein para f = −(dim(F )) log(ϕ)
e µ = 1

dim(F ) . Reciprocamente, se (M, g) é quasi-Einstein, entón para certas f e µ existen

fibras axeitadas (F, gF ) tal que o produto warped M ×ϕ F é Einstein [66].

Coa motivación que outorgan os resultados do Caṕıtulo 2, determı́nase a estrutura
subxacente das métricas Lorentzianas quasi-Einstein localmente conformemente chás.

Teorema 6.2 Sexa (M, g, f, µ) unha variedade quasi-Einstein localmente conformemente
chá.

(i) Se µ = − 1
n , entón (M, g) é globalmente conformemente equivalente a un space form.

(ii) Se µ 6= − 1
n , entón

(a) nunha veciñanza dun punto onde ‖∇f‖ 6= 0, M é localmente isométrica a un
produto warped I ×ϕ F , onde I é un intervalo real e F é unha fibra (n + 1)-
dimensional de curvatura seccional constante.

(b) se ‖∇f‖ = 0, entón (M, g) é localmente isométrica a unha plane wave, i.e.,
(M, g) é localmente isométrica a R2 × Rn con métrica

g = 2 dudv +H(u, x1, . . . , xn)du2 +
n∑
i=1

dx2
i ,

onde H(u, x1, . . . , xn) = a(u)
n∑
i=1
x2
i +

n∑
i=1
bi(u)xi + c(u), para funcións a, bi, c

arbitrarias e unha función f(u, v, x1, . . . , xn) = f0(u) verificando a condición
f ′′0 (u)− µ(f ′0(u))2 − na(u) = 0.

O Teorema 6.2 amosa que as métricas quasi-Einstein localmente conformemente chás
son ou ben localmente equivalentes a un space form (se µ = − 1

n), ou ben localmente un
produto warped de tipo Robertson-Walker (sempre que os conxuntos de nivel da función
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potencial f sexan hipersuperficies non dexeneradas), ou ben localmente isométricas a
certas pp-waves (cando os conxuntos de nivel da función potencial son dexenerados).

Aı́nda que este resultado se parece ó do Teorema 2.1, aparecen diferenzas importantes
cando se considera a estrutura global. Mentres a existencia de solitóns de Ricci gradiente
isotrópicos en plane waves está controlada por unha ecuación linear de segunda orde, o
potencial quasi-Einstein está definido por unha ecuación diferencial de tipo Ricatti. Polo
tanto hai que buscar solucións positivas de certa ecuación de segunda orde non linear
(cf. Teorema 6.10). Aplicando técnicas estándar de Sturm-Liouville amósase que calquera
plane wave homoxénea é tamén quasi-Einstein, áında que existen plane waves que son
solitóns de Ricci gradientes e que non admiten ningunha estrutura quasi-Einstein con
µ 6= 0.

Ó remate de cada unha das partes, Parte I e Parte II, plantexamos algúns problemas
abertos que xorden como consecuencia dos resultados obtidos ou estreitamente relaciona-
dos con eles e que son merecentes dunha investigación futura.
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Introduction

The investigation of rigidity phenomena is a central and broad topic in pseudo-Riemannian
geometry. Rigidity results may appear at the metric level, like splitting theorems, or at the
topological level, being compactness theorems or results involving the first fundamental
group classical examples. Moreover, if the manifold is equipped with some additional
structure, one analyzes its behavior as it often gives rise to restrictions at both levels.

In this thesis we consider Lorentzian manifolds equipped with an additional structure
given by certain differential equations: the Ricci soliton and the quasi-Einstein equations.
Traditionally, in Analysis, one is mostly interested in the existence of a nontrivial solution
to a differential equation on a certain domain. However, from a more geometric point
of view, one can also argue the existence of a domain manifold or structure for a differ-
ential equation to provide a nontrivial solution, and this leads to rigidity results for the
corresponding structure.

Ricci solitons and quasi-Einstein metrics can be viewed as generalizations of Einstein
manifolds, although the motivation for their study comes from different problems. The
ultimate aim of the different geometric evolution equations is to produce (or deduce the
existence of) manifolds with an optimal behavior with respect to given invariants: the Ricci
flow makes it possible to construct Einstein metrics under certain conditions, whereas the
mean curvature flow makes it possible to deform certain submanifolds into other ones
whose mean curvature is constant. However, there are conditions under which the initial
structure does not evolve under the flow but remains as a fixed point of it. Ricci solitons
are the geometric fixed points (modulo homotheties and diffeomorphisms) of the Ricci flow.
Moreover, since they appear as singular models for the flow, analyzing their geometry is
an important step towards an understanding of the Ricci flow itself. The quasi-Einstein
equation appears as a natural equation associated to the Lichnerowicz-Bakry-Emery Ricci
tensor, which is a modified Ricci curvature on weighted manifolds. Furthermore, the
quasi-Einstein equation encodes necessary and sufficient information to construct Einstein
warped product metrics.

It has been our purpose in this work to investigate Ricci solitons and quasi-Einstein
metrics under some natural curvature conditions and to show some rigidity phenomena
for both structures. Within the family of Ricci solitons, we have paid special attention to
gradient Ricci solitons. Essentially, both conditions, namely gradient Ricci solitons and
quasi-Einstein, provide information about the level sets of the corresponding potential
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function and the Ricci curvature of the underlying manifold. Hence, one naturally focusses
on locally conformally flat spaces, as in this case the Ricci tensor determines the curvature
and one can show a local rigidity for the structures in question. It is worth emphasizing
here that, in general, the Lorentzian setting is less rigid than its Riemannian analog. This
is due to the fact that Lorentzian geometry allows degenerate hypersurfaces which may
occur as level sets of the solutions of the differential equations under consideration.

Special attention is also paid to the existence of solutions for the Ricci soliton equation
in manifolds with a certain degree of homogeneity. Our results are the most complete in
the three-dimensional context, where we provide a complete description of homogeneous
gradient Ricci solitons. Also, for manifolds with large isometry group, we show that they
all support expanding, steady and shrinking Ricci solitons.

The general scheme of this memoir goes as follows.
A preliminary chapter, Chapter 1, is presented with the purpose of establishing the

main definitions and some basic results on the subject that will be needed later on. Walker
metrics are discussed, with special attention to pp-waves and plane waves. Ricci solitons
are introduced as triples (M, g,X), where (M, g) is a pseudo-Riemannian manifold and X
is a vector field so that the following equation is satisfied:

LXg + ρ = λ g,

where L denotes the Lie derivative, ρ is the Ricci tensor and λ ∈ R. Gradient Ricci solitons
are triples (M, g, f) obeying the equation

Hesf +ρ = λ g,

which corresponds to the special case of a gradient vector field X = 1
2∇f for some po-

tential function f . The soliton is said to be expanding, steady or shrinking according to
λ < 0, λ = 0 and λ > 0, respectively. We recall some examples and known results from the
Riemannian setting, which also motivate our study. A detailed study of two-dimensional
gradient Ricci solitons is carried out, leading to the construction of the Lorentzian cigar
soliton in Section 1.4.4. Then the existence of Einstein gradient Ricci solitons is consid-
ered in Section 1.4.5, showing the existence of non-trivial examples without Riemannian
counterpart. All these examples are related to the existence of null parallel vector fields.
The main body of the thesis is divided into two different parts. Part I deals with the
geometry of gradient Ricci solitons, while Part II is devoted to the study of general Ricci
solitons and quasi-Einstein metrics, as they are natural generalizations of gradient Ricci
solitons.

Part I begins with Chapter 2, which is devoted to the study of locally conformally flat
gradient Ricci solitons. Their local structure is given by the following theorem:

Theorem 2.1 Let (M, g, f) be a locally conformally flat Lorentzian gradient Ricci soliton.

(i) In a neighborhood of any point where ‖∇f‖ 6= 0, M is locally isometric to a Robertson-
Walker warped product I ×ϕ N with metric ε dt2 + ϕ2gN , where I is a real interval
and (N, gN ) is a space of constant sectional curvature c.
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(ii) If ‖∇f‖ = 0 on a non-empty open set, then (M, g) is locally isometric to a plane
wave, i.e., M is locally diffeomorphic to R2 × Rn with metric

g = 2 dudv +H(u, x1, . . . , xn)du2 +
n∑
i=1

dx2
i ,

where H(u, x1, . . . , xn) = a(u)
n∑
i=1
x2
i +

n∑
i=1
bi(u)xi+c(u) for some functions a, bi, c and

the potential function is given by f(u, v, x1, . . . , xn) = f0(u), satisfying the condition
f ′′0 (u) = − ρ

(
∂
∂u ,

∂
∂u

)
= na(u).

One important consequence of the locally conformally flat condition is given by the
fact that the Schouten tensor is Codazzi, which implies that ∇f is an eigenvector of the
Ricci operator. This property allows us to specialize local frames and to investigate the
geometry of the level sets of the potential function f by means of its Hessian, leading
to a warped product decomposition in the non-degenerate case and to the structure of a
pp-wave in the degenerate case.

Motivated by the special properties of pp-waves, we investigate the existence of Ricci
solitons in pp-waves (with emphasis on plane waves) in Chapter 3. We show that all plane
waves are steady gradient Ricci solitons.

Theorem 3.1 Let (M, gppw) be a plane wave. Then it results in a nontrivial steady
gradient Ricci soliton with potential function f given by f(u, v, x1, . . . , xn) = f0(u), where

f ′′0 (u) = −ρ
(
∂

∂u
,
∂

∂u

)
=

n∑
i=1

aii(u).

Moreover, ‖∇f‖ ≥ 0 and ∇f is a geodesic vector field. The gradient Ricci soliton
(M, gppw, f) is complete if H(u, x1, . . . , xn) is defined on the whole Rn+2.

Besides their simplicity, plane waves are the underlying structure of many Lorentzian
geometric situations without Riemannian analog. For instance, locally conformally flat
Lorentzian manifolds with recurrent curvature [55, 98], two-symmetric Lorentzian mani-
folds [1, 10], conformally symmetric Lorentzian manifolds [47], Lorentzian manifolds ad-
mitting a degenerate homogeneous structure of linear type [3, 72], and the Lorentzian
manifolds with large isometry group classified by Patrangenaru [82] are representative
examples. Of special significance are Cahen-Wallach symmetric spaces:

Theorem 3.5 Indecomposable but not irreducible Lorentzian symmetric spaces are isotropic
steady gradient Ricci solitons.

Homogeneous gradient Ricci solitons are studied in Chapter 4. As a technical fact, we
show that given a Killing vector field on the manifold, one can associate a parallel vector
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field which induces a local splitting under some circumstances (cf. Lemma 4.1). In the
non-steady case, one has a local decomposition.

Theorem 4.7 Let (M, g) be a homogeneous Lorentzian manifold. If it is a non-steady
gradient Ricci soliton, then it splits as a product M = N × Rk for some k ≥ 0, where
either

(a) (N, gN ) is a Lorentzian Einstein manifold and the soliton is rigid, or

(b) (N, gN ) is a Lorentzian Walker manifold admitting a parallel null vector field.

The steady case is somehow more flexible. Observing that the potential function of
any steady homogeneous gradient Ricci soliton is a solution of the Eikonal equation (i.e.,
‖∇f‖ = µ for some constant µ), we focus on the different possibilities of timelike, null
and spacelike ∇f . The timelike case is very rigid, and we show in Theorem 4.10 that in
such a case the manifold is flat. In the null case we obtain some partial results showing
that the Ricci operator is either three-step nilpotent or two-step nilpotent, moreover in
the later case the manifold admits a null parallel vector field (Lemmas 4.11 and 4.13).
As an application of previous results, we give a description of all symmetric Lorentzian
gradient Ricci solitons in Theorem 4.14.

The three-dimensional context is more tractable and we give in Section 4.5 a complete
description of all three-dimensional homogeneous gradient Ricci solitons. Essentially we
show that any such soliton is either trivial (i.e., Einstein), rigid (i.e., the product of an
Einstein manifold and a Euclidean or Minkowskian factor), or the underlying manifold
has recurrent curvature (cf. Theorem 4.15).

In the second part of this thesis, Part II, we consider general (not necessarily gradient)
Ricci solitons and quasi-Einstein Lorentzian manifolds.

Since any complete and simply connected three-dimensional homogeneous Lorentzian
manifold is either symmetric or a Lie group [27], we analyze the existence of invariant
Ricci solitons on three-dimensional Lie groups in Chapter 5. We consider the unimodular
and non-unimodular cases separately. Unimodular Lorentzian Lie groups are described
in terms of the vector product induced by the unit para-quaternions and a self-adjoint
operator L. Hence, as a difference with the Riemannian setting, one must consider not only
the eigenvalue structure but also the Jordan normal form of L, giving rise to four families
of unimodular Lie algebras [89]. When considering the non-unimodular case, one studies
the unimodular kernel and the possibilities for the restriction of the metric (positive-
definite, Lorentzian and degenerate) which determine three families of non-unimodular Lie
algebras [42]. We show the existence of Ricci solitons on unimodular and non-unimodular
Lie algebras, none of them with Riemannian analog.

Theorem 5.2 Let G be a three-dimensional Lorentzian Lie group equipped with a left-
invariant metric. (G, 〈 · , · 〉, X) is a left-invariant Ricci soliton if and only if it corresponds
to one of the following:
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(i) G is a unimodular Lie group with one of the following Lie algebras:

(i.1) [e1, e2] = 1
2e2 − (β − 1

2)e3,

[e1, e3] = −(β + 1
2)e2 − 1

2e3,

[e2, e3] = αe1,
with either α = 0 or α = β 6= 0. If α = 0 then G = E(1, 1), while if α = β 6= 0
then G = O(1, 2) or G = SL(2,R).

(i.2) [e1, e2] = − 1√
2
e1 − αe3,

[e1, e3] = − 1√
2
e1 − αe2,

[e2, e3] = αe1 + 1√
2
e2 − 1√

2
e3.

If α = 0 then G = E(1, 1), while if α 6= 0 then either G = O(1, 2) or
G = SL(2,R).

(ii) G is a non-unimodular Lie group with Lie algebra given by

[e1, e2] = − 1√
2

(
αe1 + 1√

2
β(e2 + e3)

)
,

[e1, e3] = 1√
2

(
αe1 + 1√

2
β(e2 + e3)

)
, α+ δ 6= 0, δ 6= 0

[e2, e3] = 1√
2
δ(e2 + e3).

In all the cases above, {e1, e2, e3} is an orthonormal basis of signature (+ + −) of the
corresponding Lie algebra.

From a geometric point of view, the existence of invariant Ricci solitons on Lie groups
is characterized by the following.

Theorem 5.5 A non-symmetric three-dimensional Lorentzian Lie group is a non-trivial
Ricci soliton if and only if the Ricci operator has exactly three equal eigenvalues.

Observe that the existence of a single eigenvalue for the Ricci operator does not imply
that the manifold is Einstein. We emphasize that Lie groups corresponding to Theo-
rem 5.2–(ii) support all classes of (expanding, steady and shrinking) Ricci solitons. This
situation, which is not possible in the Riemannian case, is closely related to the existence
of Yamabe solitons [31].

Finally, Chapter 6 is devoted to the study of quasi-Einstein manifolds. A Lorentzian
manifold (M, g) is said to be quasi-Einstein if there exists a smooth function f on M and
a constant µ ∈ R such that

Hesf +ρ− µdf ⊗ df = λ g

for a constant λ ∈ R. Clearly, quasi-Einstein manifolds generalize Einstein manifolds
(obtained whenever the function f is constant) and gradient Ricci solitons (which cor-
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respond to µ = 0). Quasi-Einstein metrics appear as conformal deformations of Ein-
stein metrics and, conversely: for any quasi-Einstein metric with µ = − 1

n the confor-

mal metric g̃ = e−
2
n
fg is an Einstein metric where dim(M) = n + 2. Moreover, their

own interest comes from the consideration of the Lichnerowicz-Bakry-Emery Ricci tensor
ρmf = ρ+ Hesf − 1

mdf ⊗ df in manifolds with density (M, g, e−fdvolg), where 0 < m ≤ ∞.
Furthermore, a search for warped product Einstein metrics leads to the quasi-Einstein
condition which appears naturally in this context too. Indeed, if M ×ϕ F is an Einstein
warped product, then (M, g) is quasi-Einstein for f = −(dim(F )) log(ϕ) and µ = 1

dim(F )

and, conversely, if (M, g) is quasi-Einstein, then there exist suitable fibers (F, gF ) such
that the warped product manifold M ×ϕ F is Einstein [66].

Motivated by the results in Chapter 2, we determine the underlying structure of lo-
cally conformally flat Lorentzian quasi-Einstein metrics. Theorem 6.2 shows that locally
conformally flat quasi-Einstein metrics are either locally equivalent to a space form (if
µ = − 1

n), locally a warped product of Robertson-Walker type (whenever the level sets of
the potential function f are non-degenerate hypersurfaces), or locally isometric to certain
pp-waves (when the level sets of the potential function become degenerate). Although this
result resembles that of Theorem 2.1, important differences appear when considering the
global structure. While the existence of isotropic gradient Ricci solitons on plane waves is
controlled by a linear second order equation, the quasi-Einstein potential is defined by a
Ricatti-type differential equation. Hence one must search for positive solutions of a certain
second order non-linear equation (cf. Theorem 6.10). Applying standard Sturm-Liouville
techniques we show that any homogeneous plane-wave is also quasi-Einstein but there
exist plane waves resulting in gradient Ricci solitons that do not admit a quasi-Einstein
structure with µ 6= 0.
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Chapter 1

Preliminaries

In this chapter we introduce the main concepts we are going to work with in this memoir.
In first section we recall some basic notions and objects from pseudo-Riemannian geometry
and establish the corresponding notation. Among the families of metrics that we will find
in this work, warped products play an important role, so we treat them in Section 1.2.
Indecomposable but not irreducible Lorentzian manifolds are discussed in Section 1.3,
with special attention to pp-waves. In Section 1.4 the notion of a Ricci soliton, which
constitutes the core of this work, is introduced. Also, we recall some known examples and
results from the Riemannian setting which motivate several questions discussed later on.

1.1 Basic notions

The context of this work is pseudo-Riemannian geometry. For this reason we start the
first chapter by recalling the principal geometric objects of a pseudo-Riemannian manifold
and fixing the notation that we will use in this memoir.

A pseudo-Riemannian manifold is a differentiable manifold of dimension n+2 equipped
with a metric tensor g (i.e., a symmetric and non-degenerate (0, 2)-tensor) of signature
(ν, n + 2 − ν). The pair (M, g) will denote a pseudo-Riemannian manifold of signature
(ν, n+2−ν). As a matter of terminology, we will say that a pseudo-Riemannian manifold
is Riemannian if the metric is positive definite and Lorentzian if the signature is (1, n+1).
We will denote by TpM the tangent space at the point p ∈ M and by TM the tangent
bundle of the manifold M .

We will consider X(M) the space of all tangent vector fields of M . As a general rule,
vector fields will be denoted by capital letters X, Y , Z, V , W, . . . and the tangent vectors
at a given point of the manifold by small letters x, y, z, v, w, . . .. If (x1, x2, . . . ) are local
coordinates on M , then we denote partial derivatives by {∂x1 := ∂

∂x1
, ∂x2 := ∂

∂x2
, . . . }.

Following the usual notation in pseudo-Riemannian geometry, we will say that a non-zero
vector z ∈ TpM is timelike if gp(z, z) < 0, spacelike if gp(z, z) > 0, and null if gp(z, z) = 0
(in Lorentzian geometry null vectors are also called lightlike).
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2 1 Preliminaries

For a pseudo-Riemannian manifold (M, g), the Levi-Civita connection ∇ is the unique
torsion-free connection which makes the metric g parallel, i.e., for X, Y ∈ X(M) the
connection ∇ satisfies

∇XY −∇YX − [X,Y ] = 0, and(1.1)

∇g = 0.(1.2)

The Koszul formula gives the expression of such connection:

2 g(∇XY,Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

where X, Y , Z ∈ X(M) and [·, ·] denotes the Lie bracket.
We also denote by ∇ the gradient operator in M . Note that the gradient of a smooth

function f : M −→ R is the vector field ∇f determined by

g(∇f,X) = X(f), X ∈ X(M).

Let (x1, . . . , xn+2) be a system of local coordinates in M . Then the gradient of a
function is given in local coordinates as

(1.3) ∇f = gik
∂f

∂xk

∂

∂xi
,

where (gαβ) is the inverse matrix of (gαβ), which expresses the metric tensor in local
coordinates. We adopt the Einstein convention and sum over repeated indices.

Now we are going to define some differential operators that will play an important role
along this memoir. Let f : M −→ R be a smooth function, we define the Hessian operator,
hesf , of the function f as

hesf (X) = ∇X∇f,

where X ∈ X(M). Additionally the (0, 2) symmetric tensor, Hesf , defined as

Hesf (X,Y ) = g (hesf (X), Y ) ,

is called the Hessian tensor of f , where again X, Y ∈ X(M). In local coordinates it
expresses as

Hesf

(
∂

∂xi
,
∂

∂xj

)
=

∂2f

∂xi∂xj
+

1

2
gkl
(
∂gij
∂xl
−
∂glj
∂xi
− ∂gli
∂xj

)
∂f

∂xk
.

We define the Laplacian of f and the divergence of a vector field X as follows

∆ f = tr (hesf ), and div (X) = tr (∇X),

respectively, where ∇X is the operator Z 7→ ∇ZX, for all vector fields Z on M .



1.1 Basic notions 3

The Lie derivative of a function is the directional derivative of the function, so if f is
a real function on M we have that LXf = X(f) = ∇Xf . The Lie derivative of a vector
field is the Lie bracket, therefore, if Y is a vector field LXY = [X,Y ].

We extend the definition of Lie derivative to a tensor field T as follows

(LXT )p =
d

dt
|t=0 ((ψ(t))∗T )p,

where ψ : I×M ⊂ R×M →M is the local flow induced by X and (ψ(t))∗ is the pullback
along the diffeomorphism ψ(t) for all t ∈ I.

As a particular case, the Lie derivative of the metric is defined as a usual derivation
on a (0, 2)-tensor by

(LXg)(Y, Z) = Xg(Y, Z)− g(LXY,Z)− g(Y,LXZ),

which, by (1.1) and (1.2), can also be written as

(LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX,Y ).

A vector field X in M is said to be Killing if the Lie derivative of the metric g with
respect to X vanishes identically LXg = 0 or equivalently if the local flow of X is performed
by isometries. A vector field X is said to be conformal if it satisfies

LXg = φ g,

for some function φ. Equivalently, its local flow consists of conformal transformations.
Having in mind that tr (LXg) = 2 div(X), we get that a vector field X is conformal if and
only if LXg = 2

n+2 div(X) g. Whenever div(X) is constant, a conformal vector field is
called homothetic, i.e., its local flow is performed by homotheties.

Using the Levi-Civita connection we define the (1, 3)-curvature tensor by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

and the (0, 4)-curvature tensor is given by R(X,Y, Z, V ) = g(R(X,Y )Z, V ).

The curvature tensor satisfies the following algebraic symmetries:

(a) R(X,Y, Z, V ) = −R(Y,X,Z, V ) = −R(X,Y, V, Z),

(b) R(X,Y, Z, V ) + R(Y, Z,X, V ) +R(Z,X, Y, V ) = 0,(1.4)

(c) R(X,Y, Z, V ) = R(Z, V,X, Y ),

and the differential identity:

(1.5) (d) (∇XR)(Y,Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X,Y, U, V ) = 0.



4 1 Preliminaries

We will refer to the identities (b) and (d) as the first and the second Bianchi identity,
respectively.

The sectional curvature of a Riemannian manifold (M, g) is the real function K defined
on the Grassmannian of two-planes as

K(π) :=
R(x, y, x, y)

g(x, x)g(y, y)− g(x, y)2
,

for every two-plane π = span{x, y} in TpM . In the pseudo-Riemannian setting, the pre-
vious definition should be restricted to the Grassmannian of non-degenerate two-planes
(i.e., those planes π = span{x, y} satisfying g(x, x)g(y, y) − g(x, y)2 6= 0). The possibil-
ity of continuously extending K to the whole Grassmannian is indeed equivalent to the
constancy of K [43].

In a purely algebraic context, a (0, 4)-tensor satisfying the identities in equation (1.4) is
called an algebraic curvature tensor. A standard procedure to build an algebraic curvature
tensor from two symmetric bilinear forms D and B is provided by the Kulkarni-Nomizu
product, which is defined by

(D �B)(X,Y, Z, V ) = D(X,Z)B(Y, V ) +D(Y, V )B(X,Z)

−D(X,V )B(Y,Z)−D(Y,Z)B(X,V ).

Now, it is well-known that a pseudo-Riemannian manifold (M, g) has constant sectional
curvature c if and only if the curvature tensor is determined by the metric tensor as

R =
c

2
g � g.

The Ricci tensor ρ is defined as the trace of the curvature tensor as follows

ρ(x, y) = tr{z 7→ R(x, z)y}.

Sometimes we will work with the Ricci operator Ric which is defined from the Ricci tensor
by g(Ric(X), Y ) = ρ(X,Y ). Now, the scalar curvature τ is defined as follows

τ = tr (Ric) .

In a system of local coordinates (x1, . . . , xn+2), the Ricci tensor and the scalar curvature
are given by

ρ(x, y) =
n+2∑
i,j=1

gijR(x, ∂xi , y, ∂xj ), and τ =
n+2∑
i,j=1

gijρ(∂xi , ∂xj ).

Remark 1.1 Since the Ricci tensor is symmetric, the Ricci operator is self-adjoint and
hence diagonalizable in Riemannian signature. Therefore the curvature tensor of any three-
dimensional Riemannian manifold is determined by the eigenvalues of the Ricci operator.
The Lorentzian setting, however, requires a more detailed analysis since a self-adjoint
operator may have non-trivial Jordan normal form.

For the purpose of subsequent chapters, recall that a self-adjoint operator L on a
three-dimensional Lorentzian vector space corresponds to one of the following
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(Ia) The operator L is diagonalizable, i.e.,

L =

 α 0 0
0 β 0
0 0 γ

 .

(Ib) The operator L has complex eigenvalues, i.e.,

L =

 α −β 0
β α 0
0 0 γ

 ,

where β 6= 0.

(II) There is a double root of the minimal polinomial of L, i.e.,

L =

 α 0 0
0 β 0
0 1 β

 .

(III) There is a triple root of the minimal polinomial of L, i.e.,

L =

 α 0 0
1 α 0
0 1 α

 .

Tracing (1.5) appropriately, one gets the so-called contracted second Bianchi identity

(1.6) ∇Xτ = 2 div(Ric(X)).

Also, if f is a function on M , the Bochner formula relates differential operators of the
function with the geometry of the manifold as follows

(1.7) div(Hesf )(X) = ρ(∇f,X) + g(∇∆f,X).

A pseudo-Riemannian manifold (M, g) is said to be Einstein if its Ricci tensor is a

scalar multiple of the metric. In such a case one has that ρ =
τ

n+ 2
g.

The Schouten tensor of a pseudo-Riemannian manifold of dimension n + 2 is defined
by

(1.8) C =
1

n

(
ρ− τ

2(n+ 1)
g

)
.

Note that the curvature tensor of any two-dimensional manifold is determined by the

metric asR =
τ

2
g � g, where

τ

2
corresponds to the Gaussian curvature of the surface. Also,
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it is well-known that the curvature tensor of any three-dimensional pseudo-Riemannian
manifold is completely determined by its Ricci tensor, so it has the form R = C � g.

The geometric meaning of the Schouten tensor appears in the study of conformal
geometry. Define the Weyl tensor of a pseudo-Riemannian manifold as W = R − C � g,
hence

(1.9)

W (X,Y, Z, V ) = R(X,Y, Z, V ) +
τ

n(n+ 1)
{g(X,Z)g(Y, V )− g(Y, Z)g(X,V )}

− 1

n
{ρ(X,Z)g(Y, V )− ρ(Y,Z)g(X,V )

+ρ(Y, V )g(X,Z)− ρ(X,V )g(Y,Z)} ,

for X, Y , Z, V ∈ X(M).

A pseudo-Riemannian manifold (M, g) is said to be locally conformally flat if for each
point p ∈ M there exists an open neighborhood U and a positive function eσ : U → R
such that g = eσg0, where g0 is a pseudo-Euclidean metric on En+2.

Locally conformally flat manifolds of dimension three are characterized by the fact
that the Schouten tensor is Codazzi, that is (∇XC)(Y,Z) = (∇Y C)(X,Z), while higher
dimensional locally conformally flat manifolds are characterized by the vanishing of the
corresponding Weyl tensor. Further more, observe that the Schouten tensor of any locally
conformally flat manifold is a Codazzi tensor, a fact that will be used in subsequent
chapters.

Remark 1.2 The action of the orthogonal group decomposes the space of algebraic cur-
vature tensors into three irreducible modules, except in dimension four that there are four
irreducible modules. Thus, the curvature tensor R of any pseudo-Riemannian manifold
can be written as

R =
τ

2(n+ 2)(n+ 1)
g � g +

1

n
ρ0 � g +W,

where ρ0 is the traceless Ricci tensor: ρ0 = ρ− τ

n+ 2
g.

1.2 Warped products

Let (B, gB) and (F, gF ) be two pseudo-Riemannian manifolds and ϕ : B → R+ a positive
function on B. The warped product M = B ×ϕ F is the product manifold M = B × F
equipped with the metric

g = π∗(gB) + (ϕ ◦ π)2σ∗(gF ),

where π denotes the canonical projection of M in B and σ is the canonical projection of
M on F . The function ϕ is called the warping function of the warped product, B is called
the base and F the fiber.
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The relation of a warped product to the base B is almost as simple as in the special
case of a pseudo-Riemannian product; however, the relation to the fiber F often involves
the warping function ϕ. To approach the geometry of warped products, we begin by seeing
the expression of its Levi-Civita connection with respect to vectors tangent to B and F .

Lemma 1.3 [81] Let M = B ×ϕ F be a warped product manifold. Let X, Y ∈ X(B) and
U , V ∈ X(F ). The Levi-Civita connection of M is given by:

1. ∇XY is the lift to B × F of ∇BXY ,

2. ∇XU = ∇UX = X(ϕ)
ϕ U ,

3. nor(∇UV ) = II(U, V ) = −g(U,V )
ϕ ∇ϕ,

4. tan(∇UV ) is the lift to B × F of ∇FUV ,

where ∇B and ∇F denote the Levi-Civita connections of (B, gB) and (F, gF ), respectively,
and II represents the second fundamental form of the fibers.

Lemma 1.4 [81] Let M = B ×ϕ F be a warped product. Let X, Y , Z ∈ X(B) and U , V ,
W ∈ X(F ). The curvature tensor R of M is determined by:

1. R(X,Y )Z is the lift to B × F of RB(X,Y )Z on B,

2. R(U,X)Y =
Hesϕ(X,Y )

ϕ ,

3. R(X,Y )U = R(U, V )X = 0,

4. R(X,U)V = g(U,V )
ϕ ∇X(∇ϕ),

5. R(U, V )W = RF (U, V )W − g(∇ϕ,∇ϕ)
ϕ2 (g(U,W )V − g(V,W )U),

where RB and RF are the curvature tensors of the base B and the fiber F , respectively.

Lemma 1.5 [81] Let M = B ×ϕ F be a warped product with d = dim(F ) > 1. Let X,
Y ∈ X(B) and U , V ∈ X(F ). Then the Ricci tensor of M is given by:

1. ρ(X,Y ) = ρB(X,Y )− d
ϕ Hesϕ(X,Y ),

2. ρ(X,U) = 0,

3. ρ(U, V ) = ρF (U, V )− g(U, V )
(

∆ϕ
ϕ + (d− 1) g(∇ϕ,∇ϕ)

ϕ2

)
,

where ρB and ρF are the Ricci tensors of B and F , respectively.
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Remark 1.6 Let I×ϕF be a warped product with metric ε dt2⊕ϕ2gF , where ε = ±1 and
d = dim(F ). We specialize the expressions of Lemmas 1.3 and 1.5 for a warped product
with one-dimensional base as follows. Let U, V ∈ X(F ), then the Levi-Civita connection
is given by

1. ∇∂t∂t = 0,

2. ∇∂tU = ∇U∂t = ϕ′

ϕ U ,

3. nor(∇UV ) = II(U, V ) = −ε ϕ
′

ϕ g(U, V )∂t,

4. tan(∇UV ) is the lift of ∇FUV ,

whereas the Ricci tensor is given by:

(1.10)

ρ(∂t, ∂t) = −ε d ϕ
′′

ϕ , ρ(∂t, U) = 0,

ρ(U, V ) = ρF (U, V )− ε
(
ϕ′′

ϕ + (d− 1)
(
ϕ′

ϕ

)2
)
g(U, V ).

An important result related with completeness of warped products with one-dimensional
base, that we will need in our subsequent study is as follows:

Theorem 1.7 [33] Let M = I ×ϕ F be a warped product where I = (α, β) is a (possibly
unbounded) real interval and (F, gF ) is a geodesically complete manifold. Then M is
timelike, spacelike and null geodesically complete if and only if for some γ ∈ (α, β) one
has that ∫ γ

α

ϕ√
1 + ϕ2

dt =

∫ β

γ

ϕ√
1 + ϕ2

dt = +∞.

We turn our attention back to general warped products. Using the fact that any warped
product metric is in the conformal class of a direct product metric, a characterization of
locally conformally flat warped products was given in [22] as follows

Theorem 1.8 [22] Let M = B ×ϕ F be a pseudo-Riemannian warped product. Then the
following holds:

(i) If dim(B) = 1, then M = B ×ϕ F is locally conformally flat if and only if (F, gF )
has constant sectional curvature.

(ii) If dim(B) > 1 and dim(F ) > 1, then M = B ×ϕ F is locally conformally flat if and
only if

(ii.a) (F, gF ) has constant sectional curvature cF .

(ii.b) The function ϕ : B → R+ defines a global conformal deformation on B such

that
(
B, 1

ϕ2 gB

)
has constant sectional curvature c̃B = −cF .
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(iii) If dim(F ) = 1, then M = B ×ϕ F is locally conformally flat if and only if the

function ϕ : B → R+ defines a conformal deformation on B such that
(
B, 1

ϕ2 gB

)
has constant sectional curvature.

A generalization of the warped product metrics previously considered is given by the
twisted products. This is defined formally in the same way than the warped structure
g = π∗(gB) + (ϕ ◦ π)2σ∗(gF ) but the twisting function ϕ : M → R, i.e. the function ϕ is
defined on M instead of B.

The different possible metric structures we have defined on a direct product manifold
address several differences on the geometry of the canonical foliations of the product and
vice versa. Thus, for M = B×F , let LB denote the canonical horizontal foliation and LF
the canonical vertical foliation. One has the following

Theorem 1.9 [88] Let M = B × F be a pseudo-Riemannian manifold such that the
canonical foliations LB and LF intersect orthogonally with respect to a metric g. Then

1. (M, g) is a direct product if and only if LB and LF are totally geodesic.

2. (M, g) is a warped product if and only if LB is totally geodesic and LF is spherical.

3. (M, g) is a twisted product if and only if LB is totally geodesic and LF is totally
umbilic.

Although more general a priori, under certain curvature conditions the twisted struc-
ture reduces to the warped one.

Theorem 1.10 [53] Let B ×ϕ F be a twisted product with dim(F ) > 1. If ρ(X,U) = 0
for all X, U with X tangent to B and U tangent to F , then B×ϕ F can be expressed as a
warped product B×ϕ̄F of (B, gB) and (F, ḡF ), where ḡF is a metric conformally equivalent
to gF .

1.3 Holonomy and Walker metrics

Let γ : [a, b] → M be a smooth curve and v ∈ Tγ(a)M , then the parallel transport of v
along γ is given by solving the following equation

∇γ(t)v(t) = 0.

Let γ be a closed curve, i.e., γ(a) = γ(b) = p ∈ M . The map v(a) → v(b) given by
parallel transport around γ defines an isomorphism Lγ : TpM → TpM . The set of all such
linear maps forms a group called the holonomy group of the connection. Holonomy groups
corresponding to different points in a connected manifold are all isomorphic and thus the
role of the basepoint p is usually suppressed. The holonomy group is a closed subgroup
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of GL(TpM) and therefore is a Lie group. When one uses the Levi-Civita connection of
a pseudo-Riemannian metric, the holonomy group is a subgroup of the orthogonal group,
since parallel transport is realized by isometries, and we refer to it as the holonomy group
of the pseudo-Riemannian manifold.

For a Riemannian metric the holonomy group acts completely reducibly, i.e., the tan-
gent space decomposes into subspaces which are invariant under its action and where it
acts trivially or irreducibly, but for indefinite metrics the situation is more subtle. One
says that the holonomy group acts indecomposably if the metric is degenerate on any in-
variant proper subspace. If this happens we also say that the manifold is indecomposable.
Of course, for Riemannian manifolds, indecomposability is equivalent to irreducibility.

A remarkable property is that the holonomy group of a product of Riemannian man-
ifolds (i.e., equipped with the product metric) is the product of the holonomy groups of
these manifolds (with the corresponding representation on the direct sum). Furthermore,
a converse of this statement is true in the following sense: let M be a connected pseudo-
Riemannian manifold whose tangent space at a single point (and hence at every point)
admits an orthogonal direct sum decomposition into non-degenerate subspaces which are
invariant under the holonomy representation, then M is locally isometric to a product of
pseudo-Riemannian manifolds corresponding to the invariant subspaces. Moreover, the
holonomy group is the product of the groups acting on the corresponding invariant sub-
spaces. A global version of this statement under the assumption that the manifold is
simply connected and complete was proven by G. de Rham [90] for Riemannian manifolds
and by H. Wu [99] in arbitrary signature.

Theorem 1.11 [99] Any simply connected complete pseudo-Riemannian manifold M is
isometric to a product of simply connected complete pseudo-Riemannian manifolds one of
which can be flat and the others have an indecomposably acting holonomy group. Moreover,
the holonomy group of (M, g) is the product of these indecomposably acting holonomy
groups.

For indefinite metrics there exists the possibility that one of the factors in the previous
theorem is indecomposable, but not irreducible. This means that the holonomy repre-
sentation admits an invariant subspace on which the metric is degenerate, but no proper
non-degenerate invariant subspaces. An attempt to classify holonomy groups for indefinite
metrics has to provide a classification of these indecomposable, not irreducible, holonomy
groups. If a holonomy group acts indecomposably, but not irreducibly, with a degenerate
invariant subspace V ⊂ TpM , it admits a totally isotropic invariant subspace S := V ∩V ⊥.

1.3.1 Walker coordinates

Walker [97] studied pseudo-Riemannian manifolds (M, g) with a parallel field of null planes
D and derived a canonical form for their metric in adapted coordinates. An r-dimensional
distribution D on a manifold (i.e., a section of the Grassmann bundle Grk(TM)) is said
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to be parallel if ∇XD ⊂ D, i.e., if ∇XY ∈ D for all Y ∈ D and any X ∈ X(M). Moti-
vated by this seminal work of A. G. Walker, a pseudo-Riemannian manifold (M, g) which
admits a parallel null distribution D is said to be a Walker manifold. Walker manifolds
constitute the underlying structure of many strictly pseudo-Riemannian situations with no
Riemannian counterpart: indecomposable but not irreducible manifolds, Einstein hyper-
surfaces with nilpotent shape operators, some classes of non-symmetric Osserman metrics
and para-Kähler manifolds are typical examples. We refer to [21] for more information
and examples on Walker manifolds.

Canonical forms were known previously for parallel non-degenerate distributions. In
this case, the metric tensor, in matrix notation, expresses in canonical form as

(gij) =

(
A 0
0 B

)
,

where A is a symmetric r × r matrix whose coefficients are functions of (x1, . . . , xr) and
B is a symmetric (n + 2 − r) × (n + 2 − r) matrix whose coefficients are functions of
(xr+1, . . . , xn+2). In the case of a parallel null distribution one has

Theorem 1.12 [97] A canonical form for an (n + 2)-dimensional pseudo-Riemannian
manifold M admitting a parallel field of null r-dimensional planes D is given by the metric
tensor in matrix form as

(gij) =

 0 0 Idr
0 A H
Idr Ht B

 ,

where Idr is the r × r identity matrix and A, B, H are matrices whose coefficients are
functions of the coordinates satisfying the following:

(a) A and B are symmetric matrices of order (n + 2 − 2r) × (n + 2 − 2r) and r × r
respectively. H is a matrix of order (n+ 2− 2r)× r and Ht stands for the transpose
of H.

(b) A and H are independent of the coordinates (x1, . . . , xr).

Furthermore, the null parallel r-plane D is locally generated by the coordinate vector fields
{∂x1 , . . . , ∂xr}.

Following the terminology of [97], a field of r-planes D is said to be strictly parallel if
it is locally generated by orthogonal parallel null vectors.

Theorem 1.13 [97] A canonical form for an (n + 2)-dimensional pseudo-Riemannian
manifold M admitting a strictly parallel field of null r-dimensional planes D is given by
the metric tensor in Theorem 1.12, where B is independent of the coordinates (x1, . . . , xr).

Remark 1.14 We emphasize that the local coordinates in Theorems 1.12 and 1.13 are
not unique.
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The special case of Lorentzian manifolds was previously investigated by Brinkmann
[13], who showed the following

Theorem 1.15 [13] Let (M, g) be a Lorentzian manifold of dimension n + 2 with a null
recurrent vector field. Then there are local coordinates (u, v, x1, . . . , xn) in which the metric
g has the form

(1.11) g = 2 dudv + f du2 +
n∑
i=1

ai dudxi +
n∑

i,j=1

gij dxidxj

where ∂
∂v gij = ∂

∂v ai = 0. Moreover ∂
∂v f = 0 if and only if the recurrent vector field can

be re-scaled to a parallel vector field, in which case the coordinates can be chosen so that
ai = 0 and even that f = 0.

1.3.2 pp-waves

Lorentzian manifolds admitting a parallel null vector V are of interest both in Physics and
Mathematics. A special class of such manifolds [21] are pp-waves, which occurs whenever
the Ricci tensor is completely determined by the parallel null vector V (i.e., ρ = ωV [⊗V [

for a function ω and where V [( · ) = g(V, · )) and the metric is transversally flat.

The general form of an (n+2)-dimensional pp-wave is the following: the ambient space
is Rn+2 (n ≥ 0) with coordinates (u, v, x1, . . . , xn), and the Lorentzian metric g is given
by

(1.12) gppw = 2 dudv +H(u, x1, . . . , xn)du2 +
n∑
i=1

dx2
i ,

whereH(u, x1, . . . , xn) is an arbitrary smooth function usually called the potential function
of the pp-wave.

The possibly non-zero components of the Levi-Civita connection of a pp-wave in the
basis of coordinate vector fields {∂u = ∂

∂u , ∂v = ∂
∂v , ∂xi = ∂

∂xi
} are

(1.13) ∇∂u∂u =
1

2
∂uH ∂v −

1

2

n∑
i=1

∂xiH ∂xi , ∇∂u∂xi =
1

2
∂xiH ∂v, i = 1, . . . , n.

This shows that the null vector field ∂v is parallel. Adopt notation ∂2
xixj := ∂xi∂xj hence-

forth. The possibly non-vanishing components of the curvature tensor are given (up to
the usual symmetries) by

(1.14) R(∂u, ∂xi , ∂u, ∂xj ) = −1

2
∂2
xixjH, i, j = 1, . . . , n.
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Next, we obtain that the only possibly non-vanishing component of the Ricci tensor is

(1.15) ρ(∂u, ∂u) = −1

2

n∑
i=1

∂2
xixiH,

and, hence, the Ricci operator is described in local coordinates as follows:

(1.16) Ric =


0 0 0 · · · 0

−1
2

n∑
i=1
∂2
xixiH 0 0 · · · 0

...
...

...
...

...
0 0 0 · · · 0

 .

The scalar curvature τ is zero, since the Ricci tensor is determined by (1.15). Therefore,
a pp-wave is Einstein (and hence Ricci flat) if and only if the space-Laplacian of the defining

function H vanishes identically, i.e., ρ(∂u, ∂u) = −1
2 ∆xH = 0, where ∆xH =

n∑
i=1
∂2
xixiH

denotes the Laplacian of H with respect to x = (x1, . . . , xn).

The existence of a parallel null plane D on a pseudo-Riemannian manifold influences
the curvature as follows (see, for example, [48])

(1.17) R(D,D⊥, ·, ·) = 0, R(D,D, ·, ·) = 0, and R(D⊥,D⊥,D, ·) = 0.

The following curvature characterization of pp-waves given by Leistner [71] will be
useful for our purposes in subsequent chapters.

Theorem 1.16 [71] A Lorentzian manifold (M, g) admitting a parallel null distribution
D is locally isometric to a pp-wave if and only if the curvature tensor satisfies the con-
dition R(D⊥,D⊥, ·, ·) = 0 and the image of the Ricci operator is totally isotropic (i.e.,
g(Ric(X),Ric(X)) = 0 for all X ∈ X(M)).

Plane waves

A special class of pp-waves is constituted by the so-called plane waves. In spite of their
simplicity, plane waves occur as the underlying structure of many interesting geometrical
situations, as we shall see along this section.

A pp-wave whose potential function H(u, · ) defines a quadratic form on Rn is called
a plane wave. Thus, for any plane wave, we can write

(1.18) H(u, x1, . . . , xn) =
n∑

i,j=1

aij(u)xixj ,

where aij are arbitrary functions that are the components of a n× n symmetric matrix.
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Theorem 1.17 [32] Let (Rn+2, gppw) with metric given by (1.12) and (1.18) be a plane
wave. Then it is geodesically complete.

Remark 1.18 Locally conformally flat pp-waves are given by (1.12) with

(1.19) H(u, x1, . . . , xn) = a(u)

n∑
i,j=1

xixj +

n∑
i=1

bi(u)xi + c(u).

Moreover, by a suitable change of coordinates H(u, x1, . . . , xn) reduces to (1.18), and thus
they are plane waves.

Cahen-Wallach symmetric spaces

Recall that the notion of irreducibility is very strong in the pseudo-Riemannian setting.
Indeed, irreducible Lorentzian symmetric spaces are necessarily of constant sectional cur-
vature [24]. Indecomposable Lorentzian symmetric spaces are either irreducible or the
so-called Cahen-Wallach symmetric spaces which are given as follows [24, 25]. Take
M = Rn+2 with coordinates as before and define a metric tensor by

(1.20) gcw = 2 dudv +

(
n∑
i=1

ai x
2
i

)
du2 +

n∑
i=1

dx2
i

for some non-zero constants ai, i = 1, . . . , n.
The Levi-Civita connection is determined by the non-zero Christoffel symbols as follows

∇∂u∂u = −
n∑
i=1

ai xi ∂xi , ∇∂u∂xi = ∇∂xi∂u = ai xi ∂v .

The above shows that all constants aj must be non-zero if the manifold is indecomposable
but not irreducible. The only non-zero components of the (0, 4)-curvature tensor are given
by

R(∂u, ∂xi , ∂u, ∂xi) = −ai, i = 1, . . . , n.

The Ricci tensor satisfies ρ(∂u, ∂u) = −
n∑
i=1
ai, the other terms being zero.

Two-symmetric Lorentzian manifolds

A Lorentzian manifold (M, g) is said to be two-symmetric if the second covariant derivative
of the curvature tensor vanishes, i.e., ∇2R = 0. While this condition implies local sym-
metry for Riemannian manifolds, there exist non-symmetric two-symmetric Lorentzian
manifolds. The local structure of such manifolds was given independently by Alekseevsky
and Galaev [1] and Blanco, Sánchez and Senovilla [11] showing that any non-symmetric
two-symmetric Lorentzian manifold is a plane wave.
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Theorem 1.19 [11] A non-symmetric two-symmetric Lorentzian manifold (M, g) is lo-
cally isometric to Rn+2 with metric

g = 2 dudv +

 n∑
i,j=1

aij(u)xixj

 du2 +
n∑
i=1

dx2
i

where aij(u) = αij u + βij for some constants αij, βij, where at least one of the αij is
non-zero.

In this case the Ricci tensor satisfies ρ(∂u, ∂u) = −
n∑
i=1

(αii u+ βii), the other terms

being zero.
Moreover, the previous local characterization is global if (M, g) is assumed to be

geodesically complete and simply connected.

Conformally symmetric Lorentzian manifolds

A pseudo-Riemannian manifold is said to be conformally symmetric if the Weyl tensor is
parallel (i.e., ∇W = 0). In the Riemannian setting any conformally symmetric manifold
is either locally conformally flat or locally symmetric, but the Lorentzian signature admits
non-trivial examples. Derdzinski and Roter [47] showed that any non-trivial conformally
symmetric Lorentzian manifold is a plane wave:

Theorem 1.20 [47] Let (M, g) be a non-trivial conformally symmetric Lorentzian mani-
fold. Then it is locally isometric to Rn+2 with metric

g = 2 dudv +

 n∑
i,j=1

aij(u)xixj

 du2 +

n∑
i=1

dx2
i

where aij(u) = a(u)αij + βij for some non-constant function a(u).

The Ricci tensor satisfies ρ(∂u, ∂u) = −
n∑
i=1

(a(u)αii + βii), the other terms being zero.

Homogeneous Lorentzian structures of linear type

The characterization of Cartan of locally symmetric spaces (i.e., ∇R = 0) was extended to
homogeneous spaces by Ambrose and Singer [2] in the Riemannian case and by Gadea and
Oubiña [54] in the reductive homogeneous pseudo-Riemannian setting. Hence, a pseudo-
Riemannian manifold is reductive homogeneous if and only if there exists a (1, 2)-tensor
field S such that the connection ∇̃ = ∇− S satisfies the Ambrose-Singer equations

∇̃g = 0, ∇̃R = 0, ∇̃S = 0.
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The tensor field S is called a homogeneous structure.
Considering the action of the orthogonal group on the space of algebraic tensors with

the symmetries of a homogeneous structure on a vector space V ,

T (V ) = {S ∈ ⊗3V ∗;SXY Z = −SXZY , X, Y, Z ∈ V },

Tricerri and Vanhecke [96] obtained a decomposition of such space into irreducible compo-
nents in Riemannian signature. Later Gadea and Oubiña [54] considered indefinite met-
rics, showing that T (V ) decomposes into a direct sum of three invariant and irreducible
subspaces, T (V ) = T1(V )⊕ T2(V )⊕ T3(V ), where

T1(V ) = {S ∈ T (V ); SXY Z = 〈X,Y 〉θ(Z)− 〈X,Z〉θ(Y ), θ ∈ V ∗},

T2(V ) = {S ∈ T (V ); GXY ZSXY Z = 0, c12(S) = 0}, and

T3(V ) = {S ∈ T (V ); SXY Z + SY XZ = 0},

here GXY Z denotes the cyclic sum and c12(S)(Z) =
∑
gijSeiejZ for any basis {ei} of V .

A homogeneous pseudo-Riemannian structure S on (M, g) is said to be of class Ti if
Sp belongs to Ti(TpM) for each p ∈ M . Moreover, a homogeneous pseudo-Riemannian
structure of type T1 is said to be of linear type, in which case there exists a vector field ξ
on M such that SXY = g(X,Y )ξ − g(ξ, Y )X. Now the condition ∇̃S = 0 is equivalent
to ∇Xξ = g(X, ξ)ξ − g(ξ, ξ)X and it follows that ξ spans a parallel one-dimensional
distribution whenever it is a null vector field.

A Riemannian manifold admits a linear homogeneous structure if and only if it is of
constant negative curvature [96]. In the Lorentzian setting, a linear homogeneous structure
occurs if and only if the sectional curvature is constant whenever ξ is non-null, and the
sign of the sectional curvature depends on the causality of ξ. According to Montesinos [3]
the case of linear structures associated to null vector fields occur only if the manifold is
a plane wave. This result was later extended by Meessen [72] to homogeneous structures
of type T1 ⊕ T3 showing that, if the vector field ξ is null, the underlying geometry of any
such manifold is that of a plane wave.

Lorentzian manifolds with recurrent curvature

A pseudo-Riemannian manifold (M, g) is said to be recurrent (or with recurrent curvature)
if ∇R = σ⊗R for some one-form σ. While Riemannian manifolds with recurrent curvature
are locally symmetric, non-symmetric examples exist in the Lorentzian setting.

Recurrent Lorentzian manifolds have been classified by Walker [98] (see also Galaev
[55] for a modern exposition). Non-symmetric Lorentzian recurrent manifolds are pp-
waves, and thus the metric tensor is given by (1.12). Moreover, they correspond to one of
the following two families

Type I. The defining function satisfies H(u, x1, . . . , xn) = H(u, x1) where ∂2
x1x1H is

not constant and the only possibly non-vanishing component of the Ricci tensor
is ρ(∂u, ∂u) = −1

2 ∂
2
x1x1H(u, x1).
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Type II. The defining function is given by H(u, x1, . . . , xn) = a(u)

(
n∑
i=1
bi x

2
i

)
for con-

stants b1,. . . ,bn satisfying |b1| ≥ · · · ≥ |bn|, b2 6= 0, and a function a such that
a′(u) 6= 0. In this case the only possibly non-vanishing component of the Ricci

tensor is ρ(∂u, ∂u) = −a(u)
n∑
i=1
bi.

Observe that any Lorentzian manifold with recurrent curvature of Type II is a plane
wave and, moreover, that it is locally conformally flat. On the other hand, recurrent
Lorentz manifolds of Type I are not locally conformally flat if the dimension is greater
than three.

Lorentzian manifolds with large isometry group

It is well-known that the isometry group of an (n + 2)-dimensional pseudo-Riemannian
manifold (M, g) has dimension at most 1

2(n+2)(n+3) and that it is exactly 1
2(n+2)(n+3) if

and only if (M, g) has constant sectional curvature. Lower bounds on the dimension of the
isometry group still guarantee the constancy of the sectional curvature in some particular
contexts. Thus, Riemannian and Lorentzian manifolds whose isometry group is larger than
1
2(n + 2)(n + 1) + 2 are still of constant curvature, but there are examples of manifolds
with non-constant curvature whose isometry group has dimension 1

2(n+ 2)(n+ 1) + 1.

Riemannian manifolds whose isometry group is larger than 1
2(n + 2)(n + 1) + 1 are

either of constant sectional curvature or products of a space of constant sectional curvature
and the real line (and thus they are locally conformally flat). In the Lorentzian setting
there are other two examples which are still locally conformally flat: Egorov and ε-spaces
(assuming the dimension is greater than five and different from seven) [82].

An Egorov space is a Lorentzian manifold (Rn+2, gE), n ≥ 1, where E is a positive
function of one variable and the metric is given by the warped product

gE = 2 dudv + E(u)
n∑
i=1

dx2
i .

Egorov spaces are not homogeneous in general. However the Ricci tensor is recurrent and
so is the curvature tensor since they are locally conformally flat (see [7, 29]). Hence they
are pp-waves corresponding to Type II above, and thus plane waves.

An ε-space is the Lorentzian manifold (Rn+2, g) with metric given by

g = 2 dudv + ε
n∑
i=1

x2
i du

2 +
n∑
i=1

dx2
i .

Cahen-Wallach symmetric spaces are locally conformally flat if and only if a1 = · · · = an,
in which case the resulting manifold is an ε-space (we refer to [7, 29] for more information
on the geometry of ε-spaces).



18 1 Preliminaries

1.4 Ricci solitons

A number of geometric evolution equations, corresponding to different problems, have
been recently studied in Riemannian geometry. The curve shortening flow and the mean
curvature flow are just two important examples which attracted considerable attention.
Our work is related to another important evolution equation: the Ricci flow.

A one-parameter family of metrics g(t) on a manifold M defined on some time interval
I ⊂ R is a solution of the Ricci flow equation if

(1.21)
∂

∂t
g(t) = −2ρ(g(t)).

It was shown by Hamilton [58] that for any C∞ metric g0 on a closed manifold M ,
there exists a unique solution of the Ricci flow equation g(t), t ∈ [0, ε), for some ε > 0,
with g(0) = g0.

The genuine fixed points of the Ricci flow are given by Ricci flat metrics. However, if
(M, g0) is an Einstein metric with constant λ 6= 0, then

(1.22) g(t) = (1− 2λt)g0

is a solution of the Ricci flow. Observe that g(t) differs from g0 by a homothety. Hence
if one looks for geometric fixed points of the flow, i.e., considering the Ricci flow in the
space of metrics modulo diffeomorphisms and homotheties, Einstein metrics also arise as
fixed points of the flow. Moreover, observe that if λ < 0, then the solution g(t) is defined
for all t > 1

2λ and it expands with t, while if λ > 0, then g(t) is defined for t < 1
2λ and it

shrinks.

Generalizing the behavior of Einstein metrics, and allowing the initial metric to change
not only by homotheties but also by diffeomorphisms, a solution g(t) of the Ricci flow is
said to be self-similar if there exists a positive function σ(t) and a one-parameter group
of diffeomorphisms ψ(t) : M →M such that

(1.23) g(t) = σ(t)ψ(t)∗g(0).

Remark 1.21 If (1.23) defines a solution of the Ricci flow (1.21), then differentiating
(1.23) yields

(1.24) −2 ρ(g(t)) = σ′(t)ψ(t)∗g0 + σ(t)ψ(t)∗(LXg0),

where g0 = g(0), X is the time-dependent vector field such that X(ψ(t)(p)) = d
dt(ψ(t)(p))

for any p ∈M , and σ′ = dσ
dt .

Since ρ(g(t)) = ψ(t)∗ρ(g0), one can drop the pullbacks in (1.24) and get:

(1.25) −2 ρ(g0) = σ′(t)g0 + LX̃(t)g0,
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where X̃(t) = σ(t)X(t). Put λ = −1
2 σ̇(0) and X0 = 1

2 X̃(0), so that equation (1.25)
becomes

−2 ρ(g0) = −2λ g0 + 2LX0g0, at t = 0.

This shows that for any self-similar solution of the Ricci flow there exists a vector field on
M satisfying

LXg + ρ = λ g.

Conversely, let X be a complete vector field on a pseudo-Riemannian manifold (M, g)
and denote by ψ(t) : M → M with ψ(0) = idM the family of diffeomorphisms generated
by X according to

∂

∂t
ψ(t)(p) =

1

1− 2λt
X(ψ(t)(p)),

which is defined for all t < 1
2λ if λ > 0 and for all t > 1

2λ if λ < 0. Considering now the
one-parameter family of metrics

g(t) = (1− 2λt)ψ(t)∗g,

one has
∂
∂t g(t) = −2λψ(t)∗g + (1− 2λ)ψ(t)∗

(
L 1

1−2λt
Xg
)

= ψ(t)∗
(
−2λ g + LX(ψ(t)(p))g

)
.

Now, if the vector field X satisfies (1.26), then

∂

∂t
g(t) = ψ(t)∗(−2 ρ) = −2ψ(t)∗ρ = −2 ρ(ψ(t)∗g) = −2 ρ(g(t)),

which shows that g(t) is a solution of the Ricci flow given by (1.21).

The above remark motivates the following definition.

Definition 1.22 A triple (M, g,X) where (M, g) is a pseudo-Riemannian manifold and
X is a vector field on M satisfying

(1.26) LXg + ρ = λ g

is called a Ricci soliton. A Ricci soliton is said to be shrinking, steady or expanding if
λ > 0, λ = 0 or λ < 0, respectively.

A Ricci soliton is a gradient Ricci soliton if there exists a smooth function f on M
such that X = 1

2 ∇f , i.e., if

(1.27) Hesf +ρ = λ g.

In this case we say that the triple (M, g, f) is a gradient Ricci soliton and we refer to f
as the potential function of the soliton.



20 1 Preliminaries

Remark 1.23 If (M, g, f) is a gradient Ricci soliton with g positive definite, then the
completeness of (M, g) guaranties the completeness of the vector field ∇f [101].

Remark 1.24 Since the Ricci tensor is invariant by homotheties, one can re-scale any
Ricci soliton (M, g,X) as follows. Set g̃ = µg and X̃ = 1

µX for any positive constant µ,
then

ρ = λ g − LXg = λ
1

µ
g̃ − 1

µ
µLX̃ g̃ =

λ

µ
g̃ − LX̃ g̃.

This shows that (M, g̃, X̃) is a Ricci soliton with constant λ
µ and that only the sign,

but not the absolute value of the constant, matters. Hence, one may assume that a
expanding (resp., shrinking) Ricci soliton is given by a vector field X on (M, g) satisfying
LXg + ρ = −g (resp., LXg + ρ = g).

1.4.1 Some examples of Ricci solitons in Riemannian geometry

Next we recall some examples of Riemannian Ricci solitons. As already discussed, the first
trivial examples correspond to Einstein metrics. If g0 is an Einstein metric with Einstein
constant λ (i.e, ρ = λ g0), then

g(t) = (1− 2λ t)g0

is a solution of the Ricci flow and thus a trivial Ricci soliton.

The Gaussian soliton

Although Rn+2 endowed with the Euclidean metric g0 is clearly a steady Ricci soliton
since it is Ricci flat, (Rn+2, g0) also admits a structure of non-steady gradient Ricci soli-
ton. Consider the potential function f(x) = λ

2 ‖x‖
2; it is straightforward to check that

(Rn+2, g0, f) defines a gradient Ricci soliton which is expanding or shrinking depending
on the sign of λ 6= 0. This soliton is known in the literature as the Gaussian soliton and
it depends on the existence of homothetic vector fields on the Euclidean space which are
not Killing.

The Gaussian soliton shows that a possible extension of Myers’ theorem for shrinking
Ricci solitons is not valid unless one assumes some additional conditions on the norm
of the Ricci soliton [51]. Moreover, while any compact Riemannian expanding or steady
Ricci soliton is trivial, there exist non-trivial expanding Ricci solitons in the complete
non-compact case.

Rigid solitons

As a generalization of the Gaussian soliton, a gradient Ricci soliton (M, g, f) is said to
be rigid if (M, g) is isometric to a quotient of N × Rk, where N is an Einstein manifold
with Einstein constant λ and the potential function f is defined on the Euclidean factor
as f = λ

2 ‖x‖
2 [86].
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Although rigidity is a rather restrictive condition, rigid Ricci solitons are the only
examples in many important situations. A characterization of gradient shrinking Ricci
solitons was given in [52, 74], where it is shown that a complete gradient shrinking Ricci
soliton is rigid if and only if the Weyl curvature is harmonic (or, equivalently, the Schouten
tensor is Codazzi).

The cigar soliton

Hamilton’s cigar soliton, also known in the Physics literature as Witten’s black hole, is the
steady gradient Ricci soliton given by the complete Riemannian surface R2 equipped with
the metric g = 1

1+x2+y2
(dx2 +dy2) and the potential function f(x, y) = − log(x2 +y2 + 1).

Some characterizations of the cigar soliton are the following (see, for example, [41])

• Positively curved two-dimensional gradient steady soliton:
It is a straightforward calculation to check that the metric g above has positive
Gauss curvature. Moreover, one has that if (M, g) is a complete two-dimensional
steady gradient Ricci soliton with positive curvature, then (M, g) is isometric to the
cigar soliton.

• Uniqueness of the cigar:
If (R2, g, f) is a steady gradient Ricci soliton with g conformal to the Euclidean
metric g0 on R2, then it is either the cigar soliton or the flat metric.

The Bryant soliton

As a generalization of the cigar soliton, Bryant [23] extended the construction of Hamil-
ton’s cigar soliton to arbitrary dimensions by considering the Euclidean space in radial
coordinates. Let gcan denote the standard metric on the unit (n + 1)-dimensional sphere
and let (0,∞)×ϕ Sn+1 be Rn+2\{0} viewed as a warped product. A steady gradient Ricci
soliton whose potential function only depends on the radial coordinate is given by the
equations

f ′′ = (n+ 1)
ϕ′′

ϕ
; ϕϕ′f ′ = −n(1− (ϕ′)2) + ϕϕ′′.

In order to define a complete steady gradient Ricci soliton, one must show the existence
of a solution to the above equations which can be smoothly extended through the origin.
This requires an analysis of the phase portrait corresponding to the system above. (A
detailed exposition is available at [41]).

For our purposes of pointing out the existence of many complete non-compact gradient
Ricci solitons, we emphasize that the Bryant construction was generalized by Ivey [63] and
Dancer and Wang [44, 45] who constructed expanding, steady and shrinking gradient Ricci
solitons on manifolds whose underlying structure is that of a multiply warped product.

As well as for the cigar, Bryant soliton is also characterized by its curvature properties;
we refer to [49] for specific results.
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Algebraic Ricci solitons

The examples discussed so far are gradient Ricci solitons. There is however, no scarcity of
non-gradient Ricci solitons. All the examples below are expanding or steady Ricci solitons
which are constructed on Lie groups by considering the more general class of algebraic
Ricci solitons introduced by Lauret [70].

A Lie group G equipped with a left-invariant pseudo-Riemannian metric g is said to be
an algebraic Ricci soliton if Ric = λ Id +D, where D is a derivation of the Lie algebra g of
G, i.e., D[X,Y ] = [DX,Y ] + [X,DY ] for all X, Y ∈ g. It was shown in [70, 79] that any
algebraic Ricci soliton on a solvable Lie group corresponds to a Ricci soliton. Moreover,
all these examples are either expanding or steady.

1.4.2 Some results in the Riemannian setting

In this section we recall some results which are specific to positive definite signature. The
theory of Lorentzian Ricci solitons is somehow richer than its Riemannian analog, and the
purpose of this section is to point out some aspects where the Riemannian signature forces
some rigidity which does not occur in the Lorentzian case, as we shall see presently.

Gradient Ricci solitons

Perelman [84] showed that if (M, g,X) is a compact Ricci soliton then X is the sum of a
gradient and a Killing vector field (see also [46] for a direct Riemannian proof of Perelman’s
theorem, not invoking the Ricci flow). Moreover, this result was extended by Naber [75]
to the complete non-compact case under a boundedness condition on the curvature.

Compactness is a very restrictive condition when dealing with Ricci solitons. Indeed
it is a consequence of the expression

∆τ = 2 〈∇τ,X〉 − 2

(
‖ρ‖2 − τ2

n+ 2

)
− τ

n+ 2

(
τ − 1

vol(M, g)

∫
M
τ

)
and the Hopf maximum principle that non-trivial compact Ricci solitons are necessarily
shrinking [59].

Homogeneous Ricci solitons

Petersen and Wylie proved that homogeneity is a very rigid condition when considering
gradient Ricci solitons, as next theorem shows.

Theorem 1.25 [85] Any Riemannian homogeneous gradient Ricci soliton is rigid.

Note that the above result fails when passing from the Riemannian to the Lorentzian
setting. Indeed, indecomposable but not irreducible Lorentzian symmetric spaces provide
examples of non-trivial steady gradient Ricci solitons which are not rigid. We will discuss
such examples in Chapter 3.
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Left-invariant Ricci solitons on solvable Lie groups were studied by di Cerbo [39], who
showed that any such soliton is necessarily expanding and moreover that left-invariant
unimodular Lie groups cannot result in Ricci solitons in the Riemannian setting. These
results depend on an analysis of the evolution of certain curvature quantities along the Ricci
flow. Once again, the Lorentzian situation is richer allowing some non-trivial invariant
three-dimensional Ricci solitons on Lie groups (Chapter 5).

On the other hand, there are a number of expanding Ricci solitons constructed from
algebraic Ricci solitons on nilpotent Lie algebras [5, 70]. It is still an open question whether
all Riemannian homogeneous Ricci solitons are algebraic, although counterexamples are
known in the Lorentzian setting [8].

Locally conformally flat gradient Ricci solitons

Hamilton [59] and Ivey [62] showed that any compact Ricci soliton of dimension two or
three has constant sectional curvature. Since the Weyl tensor vanishes in both dimensions,
the curvature tensor is determined by the Ricci tensor. As a generalization of this situation
to higher dimensions, there has been an special interest in understanding the geometry of
locally conformally flat gradient Ricci solitons.

From a more philosophical point of view, note that the gradient Ricci soliton equation
provides information about the Hessian of the potential function (and thus the geometry
of its level sets) and the curvature of the manifold through its Ricci tensor. Since the
Ricci tensor determines the curvature whenever the Weyl tensor vanishes, one expects to
be able to determine the structure of the manifold from such information.

The classification of complete locally conformally flat gradient shrinking Ricci solitons
has been finally achieved as a result of several previous works. The compact case was
settled by Derdzinski [46] and Eminenti, La Nave and Mantegazza [50] showed that the
only possibilities are the standard sphere or one of its quotients. Ni and Wallach [76]
classified complete locally conformally flat gradient shrinking Ricci solitons under the
assumptions of non-negative Ricci curvature and that the norm of the curvature tensor
has at most exponencial growth. In such a case the soliton must be Sn, Rn, R× Sn−1 or
one of their quotients. Cao, Wang and Zhang [35] improved previous result by relaxing the
assumption on the Ricci curvature and assuming only that the Ricci curvature is bounded
from below. Petersen and Wylie [87] got the same result by using a different assumption,
namely that

(1.28)

∫
M
‖R‖2e−f <∞,

where f is any potential function of the gradient shrinking Ricci soliton. Zhang [100]
showed that the classification is true for all locally conformally flat gradient shrinking
Ricci solitons, proving that they have non-negative curvature operator and that the growth
of its norm is at most exponential. Munteanu and Sesum [74] gave a different proof of
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this result, showing that the integral inequality (1.28) holds for shrinking gradient Ricci
solitons with vanishing Weyl tensor.

In what refers to the classification of complete steady gradient Ricci solitons, Bryant
[23] proved that there exists, up to scaling, a unique complete rotationally symmetric
gradient Ricci soliton on Rn+2, together with the trivial steady Gaussian soliton. Cao
and Chen [34] proved that these are the only possibilities under the assumptions of being
steady and locally conformally flat.

Theorem 1.26 [34] Let (M, g, f) be a complete locally conformally flat gradient Ricci
soliton.

(a) If (M, g, f) is shrinking, then it is Einstein or a product R×N , where (N, gN ) is a
space of constant curvature.

(b) If (M, g, f) is steady, then it is flat or the Bryant soliton.

Working at the local level, Riemannian locally conformally flat gradient Ricci solitons
are locally warped products of the form I×ϕN , where I ⊂ R is a real interval and (N, gN )
is of constant curvature [22]. Properties of the Ricci flow then show that (N, gN ) is indeed
of positive sectional curvature in the steady or shrinking case, from where the result is
obtained as a consequence of the classification of rotationally symmetric gradient Ricci
solitons [69]. The fact that no classification results are available for expanding gradient
Ricci solitons is not surprising since a classification of locally conformally flat manifolds
with negative Ricci curvature is not available either.

One of the purposes of this work is to determine the local structure of locally confor-
mally flat Lorentzian gradient Ricci solitons. We show in Theorem 2.1 that even their
local structure is richer than the corresponding Riemannian one.

Manifolds admitting different kinds of Ricci solitons

Let (M, g,X), (M, g, Y ) be two Ricci solitons with the same underlying Riemannian man-
ifold (M, g) for some constants λX and λY , i.e. X, Y are vector fields on M satisfying
LXg + ρ = λX g and LY g + ρ = λY g. Set ξ = X − Y , then

Lξg = LXg − LY g = (λX − λY )g,

which shows that ξ is a homothetic vector field on (M, g). Conversely, if (M, g,X) is a
Ricci soliton and ξ is a homothetic vector field on (M, g) (i.e., Lξg = κ g for some constant
κ), then Y = ξ +X satisfies

LY g = Lξg + LXg = (κ+ λ)g − ρ

which shows that (M, g, Y ) is a Ricci soliton.
The above shows that any two Ricci solitons with the same underlying Riemannian

manifold differ by a homothetic vector field. Hence, a Riemannian manifold (M, g) admits
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two distinct non-trivial Ricci solitons (M, g,X) and (M, g, Y ) with λX 6= λY if and only if
there exists a non-Killing homothetic vector field on (M, g). This has strong consequences
if the manifold is assumed to be Riemannian and complete. Indeed, a complete Riemannian
manifold admits a non-Killing homothetic vector field if and only if it is locally Euclidean
[95]. Hence, a complete Riemannian manifold results in two distinct Ricci solitons if and
only if it is the Euclidean space and the Ricci solitons are Gaussian solitons.

In this memoir we construct geodesically complete Lorentzian manifolds that yield all
classes of Ricci solitons without being the Gaussian soliton, even if the manifold is assumed
to be symmetric (see Section 3.5).

1.4.3 General formulae

Due to the indefiniteness of the metric, when investigating the geometry of Lorentzian
(gradient) Ricci solitons we will work with the defining equation (1.27) rather than with the
Ricci flow itself. In this section we derive some formulae which are direct consequences of
the defining equation (1.27) and that will be used through this work. Since the analysis we
present in the following chapters is developed within the context of Lorentzian geometry,
we concentrate on that particular signature henceforth.

Lemma 1.27 A Lorentzian gradient Ricci soliton with potential function f satisfies

∇τ = 2 Ric(∇f),(1.29)

τ + ‖∇ f‖2 − 2λf = const .(1.30)

Proof.
Let (M, g, f) be a gradient Ricci soliton, i.e., Hesf + Ric = λ g. Tracing this equation one
obtains ∆f + τ = (n+ 2)λ, hence ∇τ = −∇∆f . Moreover, since ∇Zτ = 2 div(Ric(Z)) by
(1.6) and div(Hesf )(X) = ρ(∇f,X) + g(∇∆f,X) by (1.7), one has

0 = div(λ g)(X)

= div(ρ+ Hesf )(X)

= 1
2 g(X,∇τ) + ρ(∇f,X)− g(∇τ,X)

= ρ(∇f,X)− 1
2 g(∇τ,X)

and hence ∇τ = 2 Ric(∇f), which proves (1.29).
Moreover

0 = ρ(∇f,X) + 1
2 g(∇∆f,X)

= λ g(X,∇f)−Hesf (X,∇f) + 1
2 g(∇∆f,X)

= λ g(X,∇f)− g(X,∇∇f∇f) + 1
2 g(∇∆f,X)

= g(X,λ∇f −∇∇f∇f + 1
2∇∆f)

= g(X,λ∇f − 1
2∇‖∇f‖

2 − 1
2∇τ),
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where we have used that ∇∇f∇f = 1
2∇‖∇f‖

2. This shows that 2λf − τ − ‖∇f‖2 is
constant, thus proving (1.30). �

Remark 1.28 As a consequence of Lemma 1.27, there are several particular situations in
which ∇f is an eigenvector of the Ricci operator, a technical fact which will be extensively
used in our analysis of (1.27). Thus, if τ is constant, from (1.29) it follows that ∇f
is an eigenvector for the Ricci operator associated to the eigenvalue zero. Also, if ∇f
is null, then from (1.30) one has τ = const +2λf ; now substitute in (1.29) to see that
Ric(∇f) = λ∇f .

1.4.4 Two-dimensional case

If (M, g,X) is a two-dimensional Lorentzian Ricci soliton, then X is a conformal vector
field since ρ = τ

2 g and the soliton equation (1.26) reduces to LXg = (λ − τ
2 )g. Consider

the canonical para-Kähler structure J (i.e., J2 = Id, g(J · , J · ) = −g( · , · ), ∇J = 0) on
(M, g) defined by any local orientation. Then for any (M, g, f) two-dimensional gradient
Ricci soliton it follows from the following argument that J(∇f) is a Killing vector field:(

LJ(∇f)g
)

(X,Y ) = g(∇XJ∇f, Y ) + g(∇Y J∇f,X)

= g(J∇X∇f, Y ) + g(J∇Y∇f,X)

= −g(∇X∇f, JY )− g(∇Y∇f, JX)

= −Hesf (X, JY )−Hesf (Y, JX)

= 1
2

(
τ
2 − λ

)
{g(X, JY ) + g(Y, JX)} = 0,

where we have used that ∇f is a conformal vector field.
Now, proceeding as in [41], we have the following

Lemma 1.29 A non-flat Lorentzian surface with a non-zero Killing vector field K is
locally a warped product. In particular, any non-trivial gradient Ricci soliton on a surface
is locally a warped product.

Proof.
Let (M, g) be a surface with a non-null Killing vector field K. Proceeding in a analogous
way as in [41], one has thatM is locally a warped product of the form g = ε dr2−ε f(r)2dθ2,
where ε = ±1 depending on the causal character of the Killing vector field K.

On the other hand, assuming that K is a null vector field, choose coordinates (x1, x2)
so that the null Killing vector field is K = ∂x2 . The metric tensor takes following form
g = a(x1, x2)dx2

1 + b(x1, x2)dx1dx2 for some functions a and b. Now, the fact that K is
Killing implies that ∂

∂x2
a = 0 and ∂

∂x2
b = 0. This shows that g is flat and K is indeed

parallel. �
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Two-dimensional steady gradient Ricci solitons

Recall from Subsection 1.4.1 that Hamilton’s cigar soliton is a two-dimensional complete
steady gradient Ricci soliton. Here, we are going to extend the Hamilton’s cigar soliton to
the Lorentzian setting. Let (M, g, f) be a two-dimensional steady gradient Ricci soliton
with ∇f a timelike vector field (the spacelike case is similar). Set M = I × N with
metric g = −dt2 +ϕ(t)2ds2 and assume that f only depends on t. Then a straightforward
calculation from (1.27) gives that (M, g, f) is a steady gradient Ricci soliton if and only if

f ′′(t)− ϕ′′(t)

ϕ(t)
= 0 and − f ′(t)ϕ′(t) + ϕ′′(t) = 0.

Hence f ′′ϕ − f ′ϕ′ = 0 and we integrate it to see that f ′(t) = κϕ(t) for some constant κ.
Equations above then reduce to κϕϕ′ − ϕ′′ = 0. Hence the possible solutions, depending
on the sign of κ, are the following:

(i) If κ = 0; then ϕ(t) = a t + b for some constants a and b. In this case M is flat and
f is constant.

(ii) If κ = r2; then ϕ(t) = a
√

2
r tan r

√
2(a t+ b), where a and b are constants. The

potential function is f(t) = d− 2 log
(

cos
(
r(a t+b)√

2

))
for a constant d, and the scalar

curvature is τ = 2a r2 sec2
(
r (a t+b)√

2

)
.

(iii) If κ = −r2; then ϕ(t) = a
√

2
r tanh r

√
2(a t+ b) for some constants a and b. The

potential function is f(t) = d + 2 log
(

cosh
(
r(a t+b)√

2

))
for a constant d, and the

scalar curvature is τ = −2a r2 sech2
(
r (a t+b)√

2

)
.

Analyzing geodesic completeness in the Lorentzian case is a subtle task. Indeed
Lorentzian warped products of geodesically complete manifolds need not be complete,
as occurs in positive definite signature. Necessary and sufficient conditions for geodesic
completeness of Lorentzian warped products were summarized in Lemma 1.7 (see [33] for
details). As a consequence, the Lorentzian warped products given by (ii) above are not
geodesically complete, while those given by (iii) are. Thus, (iii) generalizes Hamilton’s
cigar soliton (see [59]) to the Lorentzian setting.

We summarize the above as follows

Theorem 1.30 Let M = I ×ϕ N be a warped product with metric g = −dt2 + ϕ(t)2ds2,

where ϕ(t) = ±a
√

2
r tanh r

√
2(at+ b). Then (M, g) is a two-dimensional complete steady

gradient Ricci soliton.

Remark 1.31 Note that the metric described in the previous theorem is conformally
equivalent to the flat metric g = − 1

ϕ(t)2
dt2 + ds2, as occurs with Hamilton’s cigar soliton,
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which is conformally equivalent to the Euclidean space. As a difference with the Rieman-
nian case, the Lorentzian cigar described in Theorem 1.30 has negative Gauss curvature
and ∇f is timelike. By reversing the metric, one has a Lorentzian cigar with positive
Gauss curvature and spacelike ∇f .

1.4.5 Einstein Ricci solitons

Ricci solitons are generalizations of Einstein metrics. If (M, g) is a complete Riemannian
Einstein manifold, then either (M, g, f) is a gradient Ricci soliton if and only if Hesf = 0,
or otherwise it is the Gaussian soliton [86]. The next result describes the local structure
of Einstein gradient Ricci solitons in the Lorentzian setting.

Theorem 1.32 Let (M, g) be a Lorentzian Einstein manifold. If (M, g, f) is a gradient
Ricci soliton with non-constant f , then (M, g) is Ricci flat. Moreover:

(i) If ‖∇f‖ 6= 0, then (M, g) is locally a warped product of the form I ×f ′ N and the
potential function is given by f(t) = λ

2 t
2 + a t+ b.

(ii) If ‖∇f‖ = 0, then there exist coordinates (u, v, x1, . . . , xn) in which the metric has
the form g = 2dudv + g̃, where the n-dimensional metric g̃ does not depend on v.
Moreover, the potential function f is given by any function f(u) with f ′′(u) = 0 and
the soliton is steady.

Proof.
Let (M, g, f) be an Einstein gradient Ricci soliton. Since the scalar curvature is constant,
it follows from (1.29) that either the potential function f is constant or otherwise (M, g)
is Ricci flat.

Assume (M, g) is Ricci flat. The soliton equation (1.27) reduces to Hesf = λg=
∆f

n+ 2
g.

This equation was previously investigated by Brinkmann [13] (see [65] for a modern ex-
position) showing that in a neighborhood of any point where ‖∇f‖ 6= 0 the manifold
(M, g) decomposes locally as a warped product of a real interval I ⊂ R and an Einstein
manifold (N, gN ) so that g = ε dt2 + (f ′)2gN , where f is a real function defined on I
with f ′ 6= 0. Now, since (M, g) is Ricci flat, a direct computation of the Ricci tensor
for the metric ε dt2 + (f ′)2gN shows that gN is Einstein and f must satisfy f ′′′ = 0 and
f ′f ′′′ + n ε(f ′′)2 = τN

n+1 . Hence f(t) = λ
2 t

2 + a t+ b and τN = n(n+ 1)ε λ2.
Now assume ‖∇f‖ = 0 identically. Then (1.30) shows that either f is constant or

the gradient Ricci soliton is steady. If λ = 0 the Ricci soliton equation (1.27) reduces to
Hesf = 0. Then ∇f is a parallel isotropic vector field and the metric tensor can be written
in suitable Rosen coordinates (u, v, x1, . . . , xn) as g = 2 dudv+ g̃, where the n-dimensional
metric g̃(u) is Ricci flat for any fixed u and does not depend on v [13, 65]. Moreover, in
this coordinates ∇f = ∂

∂v and the potential function depends only on the variable u. Now
the result follows by computing the Hessian of f . �
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Gradient Ricci solitons
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Chapter 2

Locally conformally flat gradient
Ricci solitons

Let (M, g, f) be a gradient Ricci soliton. The Ricci soliton equation (1.27) relates the
geometry of the level sets of the potential function to the geometry of (M, g). More
concretely the curvature of the manifold is involved in the Ricci soliton equation by means
of the Ricci tensor, which imposes some restrictions on the geometry of (M, g). Considering
the decomposition of the curvature tensor as in Remark 1.2, there is a lack of information
on the conformally invariant component represented by the Weyl tensor. This is one of
the reasons why a complete classification of gradient Ricci solitons is hard to attain.

In this chapter we simplify the curvature of the manifold by concentrating on the
family of metrics which are locally conformally flat. We will see that within this setting
the Ricci soliton equation provides enough information to obtain a local classification.

The purpose of this chapter is to investigate locally conformally flat gradient Ricci
solitons in the Lorentzian setting by focusing on their local structure in order to prove the
following result.

Theorem 2.1 Let (M, g, f) be a locally conformally flat Lorentzian gradient Ricci soliton.

(i) In a neighborhood of any point where ‖∇f‖ 6= 0, M is locally isometric to a warped
product I ×ϕ N with metric ε dt2 + ϕ2gN , where I is a real interval and (N, gN ) is
a space of constant sectional curvature c.

(ii) If ‖∇f‖ = 0 on a non-empty open set, then (M, g) is locally isometric to a plane
wave, i.e., M is locally diffeomorphic to R2 × Rn with metric

gppw = 2dudv +H(u, x1, . . . , xn)du2 +

n∑
i=1

dx2
i ,

where H(u, x1, . . . , xn) = a(u)
n∑
i=1
x2
i +

n∑
i=1
bi(u)xi + c(u) for some functions a, bi, c

31
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and the potential function is given by f(u, v, x1, . . . , xn) = f0(u), satisfying condition
f ′′0 (u) = −ρ(∂u, ∂u) = na(u).

While Riemannian locally conformally flat gradient Ricci solitons correspond to those
manifolds discussed in Theorem 2.1–(i), due to holonomy action, there exist other possi-
bilities in Lorentzian signature, as Theorem 2.1–(ii) shows.

Remark 2.2 The causal character of ∇f may vary from one point to another as the
Lorentzian analog of the Gaussian soliton shows. Let (Ln+2, g) be the flat Minkowski space
and let f(x1, . . . , xn+2) = λ

2

(
−x2

1 + x2
2 + · · ·+ x2

n+2

)
be defined on Ln+2. The gradient of f

is given by∇f = λ (x1 + x2 + · · ·+ xn+2) and the Hessian is Hesf = λ g. Hence the soliton
equation (1.27) is satisfied for any given λ. Note that ‖∇f‖2 = λ2

(
−x2

1 + x2
2 + · · ·+ x2

n+2

)
is positive, zero or negative depending on (x1, . . . , xn+2), so the causality of ∇f varies with
the point.

As a matter of notation, a gradient Ricci soliton is said to be non-isotropic if ‖∇f‖ 6= 0
and isotropic if ‖∇f‖ = 0 but ∇f 6= 0. In the following sections we will study both cases
separately.

The chapter is organized as follows. In Section 2.1 we give some sufficient conditions
to guarantee that ∇f is an eigenvector of the Ricci operator; this will be crucial in the
proof of Theorem 2.1. We devote Section 2.2 to analyze locally conformally flat non-
isotropic gradient Ricci solitons and Section 2.3 to study the isotropic case, showing that
the underlying structure of such a soliton is a pp-wave. In Section 2.4 we discuss which
pp-waves are gradient Ricci solitons in general, without any assumption on isotropicity or
local conformal flatness. Thus the restriction of this discussion to locally conformally flat
isotropic pp-waves completes the proof of Theorem 2.1. The main results of this chapter
are summarized in [16].

2.1 General remarks on locally conformally flat gradient
Ricci solitons

Although locally conformally flat gradient Ricci solitons will be more deeply analyzed in
Sections 2.2 and 2.3, we begin here by giving the expression of the curvature tensor of a
locally conformally flat manifold and by establishing a technical lemma. If the dimension
of a manifold is greater than or equal to four, local conformal flatness is characterized by
the fact that the Weyl conformal tensor vanishes. Hence, by (1.9), the curvature tensor is
given by the Ricci tensor as follows

(2.1)

R(X,Y, Z, T ) =
τ

n(n+ 1)
{g(X,T )g(Y,Z)− g(X,Z)g(Y, T )}

+ 1
n {ρ(X,Z)g(Y, T ) + ρ(Y, T )g(X,Z)

−ρ(X,T )g(Y, Z)− ρ(Y,Z)g(X,T )} .
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Proceeding in a similar way to that developed in [52], one has the following:

Lemma 2.3 Let (M, g, f) be a locally conformally flat gradient Ricci soliton. Then ∇f
is an eigenvector of the Ricci operator.

Proof.
Since (M, g) is locally conformally flat, the Schouten tensor is Codazzi. This means that,
(∇XC)(Y,Z) = (∇Y C)(X,Z) for all vector fields X,Y, Z. Hence by (1.8)

(∇Xρ)(Y, Z)− X(τ)

2(n+ 1)
g(Y,Z) = (∇Y ρ)(X,Z)− Y (τ)

2(n+ 1)
g(X,Z).(2.2)

From (1.27) and using that Hesf (X,Y ) = g(∇X∇f, Y ) one has

(∇Xρ)(Y,Z) = −(∇X Hesf )(Y,Z)

= −Xg(∇Y∇f, Z) + g(∇∇XY∇f, Z) + g(∇Y∇f,∇XZ)

= −g(∇X∇Y∇f, Z) + g(∇∇XY∇f, Z).

Substituting this expression into (2.2) we get

g(∇X∇Y∇f, Z)− g(∇∇XY∇f, Z) +
X(τ)

2(n+ 1)
g(Y, Z)

= g(∇Y∇X∇f, Z)− g(∇∇YX∇f, Z) +
Y (τ)

2(n+ 1)
g(X,Z).

Thus

g(∇X∇Y∇f −∇Y∇X∇f −∇[X,Y ]∇f, Z) = − X(τ)

2(n+ 1)
g(Y,Z) +

Y (τ)

2(n+ 1)
g(X,Z),

that is,

R(X,Y, Z,∇f) = − X(τ)

2(n+ 1)
g(Y,Z) +

Y (τ)

2(n+ 1)
g(X,Z),

or equivalently, using (1.29),

(2.3) R(X,Y, Z,∇f) = − 1

n+ 1
ρ(X,∇f)g(Y,Z) +

1

n+ 1
ρ(Y,∇f)g(X,Z).

Let Z = ∇f in (2.3) to obtain

ρ(Y,∇f)g(X,∇f) = ρ(X,∇f)g(Y,∇f).

Now choose X so that g(X,∇f) = 1 to see that for all Y ⊥ ∇f one has

0 = ρ(Y,∇f) = −Hesf (Y,∇f)

and conclude that ∇f is an eigenvector of the Ricci operator Ric. Note that ∇f is also
an eigenvector of the Hessian operator hesf . �
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Remark 2.4 We emphasize here that if (M, g, f) is an isotropic gradient Ricci soliton,
then∇f is an eigenvector of the Ricci operator (see Remark 1.28), without any assumption
on the curvature of (M, g).

2.2 Locally conformally flat non-isotropic gradient Ricci soli-
tons

Next we show that in a neighborhood of any point where ‖∇f‖ 6= 0 the underlying manifold
has the local structure of a warped product, thus proving Theorem 2.1–(i).

Lemma 2.5 Let (M, g, f) be a locally conformally flat Lorentzian gradient Ricci soliton
with ‖∇f‖p 6= 0 for some point p ∈M . Then, on a neighborhood of p, (M, g) is a warped
product of a real interval and a space of constant sectional curvature c.

Proof.
If the Weyl tensor of (M, g) vanishes, then the curvature tensor is given by (2.1).

Consider the unit vector V = ∇f
‖∇f‖ on the tangent space TpM , which can be time-

like or spacelike (we set g(V, V ) = ε). Extend this definition to a neighborhood of p
where ‖∇f‖ 6= 0 and complete it to a local orthonormal frame {V,E1, . . . , En+1} where
g(Ei, Ei) = εi. Then from (2.3) one has

R(V,Ei, Ei, V ) = − 1

n+ 1
ρ(V, V )εi ,

while from (2.1) one gets

R(V,Ei, Ei, V ) =
τ

n(n+ 1)
ε εi −

1

n
ρ(V, V )εi −

1

n
ρ(Ei, Ei)ε .

Hence for all i = 1, . . . , n+ 1:

− 1

n+ 1
ρ(V, V )εi = − 1

n
ρ(V, V )εi −

1

n
ρ(Ei, Ei)ε+

τ

n(n+ 1)
ε εi,

from where ρ(Ei, Ei)ε = 1
n+1(τ ε− ρ(V, V ))εi. Using (1.27) we have

Hesf (Ei, Ei) = λ εi +
1

n+ 1
(ρ(V, V )ε− τ) εi,

which shows that the level sets of f are totally umbilical hypersurfaces. Hence (M, g)
decomposes locally as a twisted product of the form I ×ϕ N by Theorem 1.9 (see [88]
for details). Now, since ∇f is an eigenvector of the Ricci operator by Lemma 2.3, it
follows that ρ(V,Ei) = 0 for all i = 1, . . . , n + 1, and therefore the twisted product
reduces to a warped product by Theorem 1.10. Hence (M, g) is locally a warped product
(I×N, ε dt2+ϕ(t)2gN ) where (N, gN ) is a Riemannian or a Lorentzian manifold of constant
sectional curvature c by applying Theorem 1.8. �
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Remark 2.6 The potential function f in Lemma 2.5 is a radial function f(t), and hence
a direct computation from the soliton equation (1.27) shows that it is given as a solution
to the equations:

f ′′ = ε λ+ (n+ 1)
ϕ′′

ϕ
, εϕϕ′f ′ = λϕ2 − n c+ ε(ϕϕ′′ + n(ϕ′)2).

Note that these equations impose restrictions on the warping function ϕ, thus the warped
product is not arbitrary.

2.3 Locally conformally flat isotropic gradient Ricci solitons

In this section we study gradient Ricci solitons (M, g, f) with ‖∇f‖ = 0.

Lemma 2.7 Any isotropic locally conformally flat Lorentzian gradient Ricci soliton is
steady and the underlying manifold is locally a pp-wave.

Proof.

Let (M, g, f) be a gradient Ricci soliton with ‖∇f‖ = 0. In what follows we will show
that ∇f spans a parallel null line field and use Theorem 1.16 to prove that (M, g) is a
pp-wave. Set V = ∇f . Since V is a null vector, there exist orthogonal vectors S, T
satisfying g(S, S) = −g(T, T ) = 1

2 such that V = S + T . Define U = S − T , which is a
null vector such that g(U, V ) = g(S, S)− g(T, T ) = 1, and consider a pseudo-orthonormal
basis {U, V,E1, . . . , En}. For any vector field Z, from equations (2.3) and (2.1) we get

(2.4)

R(Z,Ei, Ej , V ) = − 1
n+1 ρ(Z, V )δij + 1

n+1 ρ(Ei, V )g(Z,Ej)

= τ
n(n+1) g(Z, V )δij − τ

n(n+1) g(Ei, V )g(Z,Ej)

− 1
n ρ(Z, V )δij − 1

n ρ(Ei, Ej)g(Z, V )

+ 1
n ρ(Z,Ej)g(Ei, V ) + 1

n ρ(Ei, V )g(Z,Ej).

We use the fact that Ric(V ) = λV (see Remark 1.28) to check that

ρ(V, V ) = 0, ρ(U, V ) = λ, ρ(V,Ei) = 0 for all i = 1, . . . , n.

On the other hand compute R(U,Ei, Ej , V ) in expression (2.4) to get that

R(U,Ei, Ej , V ) =− 1

n+ 1
λ δij

=
τ

n(n+ 1)
δij −

1

n
λ δij −

1

n
ρ(Ei, Ej).
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Hence ρ(Ei, Ej) = 0 if i 6= j and ρ(Ei, Ei) = τ−λ
n+1 for all i = 1, . . . , n. Now, compute

τ = 2ρ(U, V ) + nρ(Ei, Ei) =
(n+ 2)λ+ n τ

n+ 1

to see that τ = (n+2)λ. Hence the scalar curvature τ is constant and from (1.29) we have
0 = ∇τ = 2 Ric(V ) = 2λV . Therefore we conclude that λ = 0 = τ and the only possibly
non-zero Ricci component is ρ(U,U), so (M, g, f) is a steady gradient Ricci soliton with
nilpotent Ricci operator.

Since the soliton is steady, from (1.27) we have hesf = −Ric. Now since Ric(V ) = 0,
it follows that ∇V V = 0, which shows that V is a geodesic vector field.

The gradient of the potential function is a recurrent vector field (i.e., the null line field
D = span{∇f} is parallel) if and only if ∇X∇f = hesf (X) = σ(X)∇f for some one-form
σ and for all X. Since (M, g, f) is a steady gradient Ricci soliton, it follows from the
expressions above for the Ricci operator that

hesf (U) = −Ric(U) = −ρ(U,U)V,

hesf (V ) = −Ric(V ) = 0,

hesf (Ei) = −Ric(Ei) = 0.

This shows that V is a recurrent vector field with one-form σ given by σ(U) = −ρ(U,U),
σ(V ) = 0 and σ(Ei) = 0 for all i = 1, . . . , n.

It follows now from (2.1), the expressions of the Ricci tensor above and the vanishing
of the scalar curvature that

R(D⊥,D⊥, ·, ·) = 0.

Moreover note that the Ricci tensor is isotropic and thus that (M, g) is indeed a pp-wave
by Theorem 1.16. �

Remark 2.8 Note that although (M, g) is a pp-wave, and hence it admits a null parallel
vector field, ∇f is not in general parallel.

2.4 Gradient Ricci solitons on pp-waves

In this section we analyze the existence of gradient Ricci solitons on pp-waves. Due to
their simplicity, one can explicitly integrate the gradient Ricci soliton equations when the
underlying Lorentzian structure corresponds to a pp-wave. Theorem 2.1–(ii) will follow
as a consequence of Lemma 2.7 and the following analysis.

Set M = Rn+2 with coordinates (u, v, x1, . . . , xn), and let gppw be given by (1.12) for
some arbitrary function H(u, x1, . . . , xn). Then, one has
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Theorem 2.9 (M, gppw, f) is a non-trivial gradient Ricci soliton if and only if it is steady

and the potential function f is given by f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1
κi xi, where

(2.5) f ′′0 (u) = −ρ(∂u, ∂u)− 1

2

n∑
i=1

κi ∂xiH(u, x1, . . . , xn)

for some constants κ1, . . . , κn.

Proof.
Let f be a function on Rn+2. Then the gradient of the previous function is given by
∇f = (∂vf, ∂uf −H∂vf, ∂x1f, . . . , ∂xnf) and thus (1.27) becomes

(2.6)



1
2

n∑
i=1
∂xiH ∂xif + ∂2

uuf − 1
2 ∂uH ∂vf + ρ(∂u, ∂u) = λH,

∂2
uxif −

1
2 ∂xiH ∂vf = 0, 1 ≤ i ≤ n,

∂2
xixif = λ, 1 ≤ i ≤ n,

∂2
uvf = λ,

∂2
xixjf = ∂2

vxif = ∂2
vvf = 0, 1 ≤ i 6= j ≤ n.

Integrating equations ∂2
vxif = ∂2

vvf = 0 in (2.6) we obtain that the potential function splits
as f(u, v, x1, . . . , xn) = f0(u, x1, . . . , xn)+v f1(u) for some functions f0, f1. Moreover equa-

tions ∂2
uvf = λ and ∂2

xixjf = 0 now show that f(u, v, x1, . . . , xn) =
n∑
i=1

fi(u, xi) + v(λu+ κ)

for some constant κ and functions fi, i = 1, . . . , n. Hence (2.6) reduces to

(2.7)



1
2

n∑
i=1
∂xiH ∂xifi +

n∑
i=1
∂2
uufi − 1

2(λu+ κ)∂uH + ρ(∂u, ∂u) = λH,

∂2
uxifi −

1
2(λu+ κ)∂xiH = 0, 1 ≤ i ≤ n,

∂2
xixifi = λ, 1 ≤ i ≤ n.

Integrating the last equations in (2.7) we have

fi(u, xi) = f0i(u) + xi κi(u) +
λ

2
x2
i ,

for some functions f0i and κi. Substituting the above into (2.7) and differentiating the
second set of equations we get

0 = ∂3
uxixifi = (λu+ κ)∂2

xixiH,
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which shows that either, ∂2
xixiH = 0 for all i (and hence the pp-wave is Ricci flat) or

otherwise that λ = κ = 0.

The first case, when (M, gppw) is Ricci flat, was already analyzed in Theorem 1.32.
The second case, λ = κ = 0 shows that non Einstein gradient Ricci solitons are steady

and f becomes f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1
κi(u)xi. Now the second set of equations

in (2.7) reduces to κ′i(u) = 0 for all i = 1, . . . , n and hence κi(u) = κi for real constants
κi, which gives

(2.8) f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1

κi xi.

Finally, it follows from the first equations in (2.7) that the function f0(u) is given by
the differential equation

f ′′0 =
1

2

(
n∑
i=1

∂2
xixiH

)
− 1

2

n∑
i=1

κi ∂xiH = −ρ(∂u, ∂u)− 1

2

n∑
i=1

κi ∂xiH,

which completes the proof. �

Remark 2.10 In general, equation (2.5) does not have a solution, since the derivatives
∂xiH(u, x1, . . . , xn) and ∂2

xixiH may be functions of the xi’s. Further note that ∇f is

not isotropic in general since ‖∇f‖ =
n∑
i=1
κ2
i , although it is a geodesic vector field since

∇∇f∇f = −Ric(∇f) = 0.

Remark 2.11 It is easy to show the existence of non-isotropic steady gradient Ricci
solitons on pp-waves. For instance, let Rn+2 be the pp-wave with metric g given by (1.12)

for a function H(u, x1, . . . , xn) = a(u)ex1+···+xn . Since f(u, v, x1, . . . , xn) =
n∑
i=1
xi satisfies

(2.5), it is immediate from Theorem 2.9 that (Rn+2, g, f) is a steady gradient Ricci soliton.
Moreover, ∇f = ∂x1 + · · ·+ ∂xn is a spacelike vector field on Rn+2.

2.4.1 Gradient Ricci solitons on locally conformally flat pp-waves

It follows from the expressions (1.14) and (1.15), that a pp-wave is locally conformally flat
if and only if the defining function H takes the form

(2.9) H(u, x1, . . . , xn) = a(u)
n∑
i=1

x2
i +

n∑
i=1

bi(u)xi + c(u),

where a, b1, . . . , bn, c are arbitrary smooth functions of the variable u.
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In this case condition (2.5) reduces to

f ′′0 = −ρ(∂u, ∂u)− 1

2

n∑
i=1

κi bi(u)− a(u)
n∑
i=1

κi xi,(2.10)

where ρ(∂u, ∂u) = −na(u). So, if we differentiate (2.10) with respect to xi we get that
a(u)κi = 0 for all i = 1, . . . , n. Then, unless the manifold is flat, it follows that necessarily
κi = 0 for all i, and the potential function is given by

f(u, v, x1, . . . , xn) = f0(u), where f ′′0 (u) = −ρ(∂u, ∂u) = na(u).

This completes the proof of Theorem 2.1.

2.4.2 Ricci solitons on locally conformally flat pp-waves

Gradient Ricci solitons are a special class of Ricci solitons. So far, we have shown that
pp-waves support steady gradient Ricci solitons in many cases. The existence of (non-
gradient) Ricci solitons is a weaker condition, and in what follows we show that any
locally conformally flat pp-wave admits many non-gradient expanding and shrinking Ricci
solitons.

Let X = Xu∂u +Xv∂v +

n∑
i=1

Xi∂xi be an arbitrary vector field on (Rn+2, gppw), where

the metric gppw is given by (1.19). Then (1.26) becomes
(2.11)

1
2

n∑
i=1
∂xiHXi + 1

2 ∂uHXu +H∂uXu + ∂uXv + ρ(∂u, ∂u) = λH,

H∂vXu + ∂vXv + ∂uXu = 2λ,

H∂xiXu + ∂xiXv + ∂uXi = 0, 1 ≤ i ≤ n,

∂xiXj + ∂xjXi = 0, 1 ≤ i 6= j ≤ n,

∂xiXu + ∂vXi = 0, 1 ≤ i ≤ n,

∂vXu = 0; ∂xiXi = λ, 1 ≤ i ≤ n.

While we are not explicitly integrating (2.11), in what follows we point out the existence
of non-gradient solutions.

Consider the vector field

(2.12) X =

(
p(u)−

n∑
i=1

q′i(u)xi + 2λ v

)
∂v +

n∑
i=1

(qi(u) + λxi) ∂xi ,
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where functions p and qi satisfy the following conditions

(2.13)


a(u)qi(u)− q′′i (u) = λ

2 bi(u), 1 ≤ i ≤ n,

1
2

n∑
i=1
bi(u)qi(u) + ρ(∂u, ∂u) + p′(u) = λ c(u).

with functions a and bi given by (1.19). Note that one can always find p, qi being solutions
of (3.8). A straightforward calculation from (2.11) shows that (M, g,X) is a Ricci soliton.
Also observe that λ is the constant of equation (1.26) and can be chosen arbitrarily.

Opposite to the gradient case, we obtain that any locally conformally flat pp-wave
(M, g) admits appropriate vector fields resulting in expanding, steady and shrinking Ricci
solitons.

Remark 2.12 As discussed in Section 1.4.2, two vector fields X and Y satisfying (1.26)
differ by a homothetic vector field. Since complete non-flat Riemannian manifolds do not
admit proper homothetic vector fields (see [67, 95] for this classical result), a complete
Riemannian Ricci soliton (M, g,X) which is shrinking cannot be expanding or steady for
another vector field Y unless it is flat. Nevertheless the situation is different in Lorentzian
signature: locally conformally flat pp-waves are geodesically complete Lorentzian manifolds
which admit vector fields so that the corresponding triples are expanding, steady and
shrinking Ricci solitons. This is due to the existence of non-Killing homothetic vector
fields on pp-waves [64, 94].



Chapter 3

Special families of gradient Ricci
solitons

In this chapter we point out the existence of gradient Ricci solitons on special classes
of Lorentzian manifolds related to the family of pp-waves. Since plane waves are the
underlying structure of many Lorentzian situations without Riemannian counterpart, they
are a natural family to look for new examples of complete gradient Ricci solitons exhibiting
nice geometrical properties.

Henceforth we specialize a pp-wave (1.12) to be a plane wave, i.e.,

H(u, x1, . . . , xn) =
n∑

i,j=1

aij(u)xixj

for some functions aij . Let A be the symmetric matrix A = (aij(u)) and consider the
vector −→κ = (κ1, . . . , κn). Now, a direct application of Theorem 2.9 shows

Theorem 3.1 Let (M, gppw) be a plane wave. Then it is a non-trivial steady gradient

Ricci soliton with potential function f given by f(u, v, x1, . . . , xn) = f0(u)+
n∑
i=1
κixi, where

A · −→κ = 0 and

(3.1) f ′′0 (u) = −ρ(∂u, ∂u) =

n∑
i=1

aii(u).

Moreover, ‖∇f‖ =
n∑
i=1
κ2
i ≥ 0 and ∇f is a geodesic vector field.

Proof.

Specialize Theorem 2.9 by taking H(u, x1, . . . , xn) =

n∑
i,j=1

aij(u)xixj . Then the potential

function of any gradient Ricci soliton, which is of the form (2.8), satisfies (2.5). Differen-
tiating (2.5) with respect to xj one gets

41
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0 = −∂xjρ(∂u, ∂u)− 1

2

n∑
i=1

κi ∂
2
xixjH(u, x1, . . . , xn)

= −∂xj
n∑
i=1

aii(u)− 1

2

n∑
i=1

κi ∂
2
xixj

n∑
r,s=1

ars(u)xrxs

= −
n∑
i=1

κi aij(u) = −A · −→κ ,

and hence equation (2.5) becomes

f ′′0 (u) = −ρ(∂u, ∂u)− 1
2

n∑
i=1
κi ∂xiH(u, x1, . . . , xn)

= −ρ(∂u, ∂u)− 1
2

n∑
i=1
κi ∂xi

n∑
r,s=1

ars(u)xrxs

= −ρ(∂u, ∂u)−
n∑
i=1
κi

n∑
r=1

ari(u)xr

= −ρ(∂u, ∂u)−
n∑
r=1

xr
n∑
i=1
κiari(u)

= −ρ(∂u, ∂u) =
n∑
i=1
aii(u)

Finally, note that if κi = 0 for all i = 1, . . . , n, then the potential function is given by
f(u, v, x1, . . . , xn) = f0(u), and in this case, ‖∇f‖ = 0. On the other hand, if there exist
some constant κj 6= 0, then ‖∇f‖ = κ2

j > 0, thus resulting in a non-isotropic Lorentzian
gradient steady Ricci soliton. �

Remark 3.2 Let (Rn+2, gppw, f) be a complete plane wave. Then it is a complete steady
gradient Ricci soliton. Moreover, the causal structure of any gradient Ricci soliton depends
on the symmetric matrix A = (aij(u)), since the first equation at (3.1) is A ·−→κ = 0. Hence
any plane wave gradient soliton is isotropic if A is non-degenerate and spacelike otherwise.

In next sections we point out some applications of the previous theorem to spe-
cial classes of Lorentzian manifolds (Cahen-Wallach symmetric spaces, two-symmetric
Lorentzian manifolds, conformally symmetric Lorentzian manifolds, etc.) showing that all
of them are naturally equipped with a non-trivial gradient Ricci soliton structure. More-
over, these results will also show some of the differences between the gradient Ricci solitons
and the quasi-Einstein metrics, which will be discussed in Chapter 6. In the final section
of this chapter, the existence of non-steady Ricci solitons on plane waves is considered.
The results in this chapter are summarized in [6, 16].
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3.1 Lorentzian manifolds with recurrent curvature

Recall that a pseudo-Riemannian manifold (M, g) is said to be recurrent (or with recurrent
curvature) if ∇R = σ ⊗R for some one-form σ.

Recurrent Lorentz manifolds have been classified by Walker [98] (see also Galaev [55]
for a modern exposition based on holonomy theory). As already pointed out in the intro-
duction, non-symmetric Lorentzian recurrent manifolds are pp-waves which correspond to
one of the following two families

Type I The defining function satisfies H(u, x1, . . . , xn) = H(u, x1) where ∂2
x1x1H is not

constant.

Type II The defining function is given by H(u, x1, . . . , xn) = a(u)

(
n∑
i=1
bix

2
i

)
for con-

stants b1, . . . , bn with |b1| ≥ · · · ≥ |bn|, b2 6= 0, and a function a such that a′(u) 6= 0.

Observe here that manifolds of Type II are locally conformally flat plane waves, while
manifolds of Type I are not plane waves. We analyze both cases separately.

For a recurrent manifold of Type I, by Theorem 2.9 we have that the existence of a
gradient Ricci soliton is equivalent to the possibility of solving the equation

(3.2)
f ′′0 (u) = −ρ(∂u, ∂u)− 1

2
κ1 ∂x1H(u, x1)

=
1

2
∂2
x1x1H(u, x1)− 1

2
κ1 ∂x1H(u, x1),

for some constant κ1.

Differentiating in (3.2) with respect to x1 we get

κ1

2
∂2
x1x1H(u, x1)− 1

2
∂3
x1x1x1H(u, x1) = 0,

and hence the defining function H(u, x1) becomes

H(u, x1) =
1

κ2
1

eκ1 x1h0(u) + h1(u) + x1h2(u).

Then the soliton is given by the potential function f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1
κi xi

(see (2.8)-(3.1)), where

f ′′0 (u) = −κ1

2
h2(u).

Note that in this case∇f is always spacelike (since κ1 6= 0) and the underlying manifold
is not locally conformally flat (unless it is flat which occurs if h0(u) = 0).
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For a recurrent manifold of Type II, it follows by Theorem 3.1 that the potential func-

tion of any gradient Ricci soliton must be of the form f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1

κi xi,

where

f ′′0 (u) = −ρ(∂u, ∂u)− a(u)
n∑
i=1

κi bi xi.(3.3)

Now, since ρ(∂u, ∂u) = −a(u)
n∑
i=1
bi in this case, taking derivatives with respect to xi in

(3.3) we get that κi bia(u) = 0 for all i and therefore, as b1 6= 0 6= b2 there are two different
possibilities:

(i) If bi 6= 0 for all i, unless the manifold is flat, it follows that κi = 0 for all i and the

potential function is f(u, v, x1, . . . , xn) = f0(u) with f ′′0 (u) = −ρ(∂u, ∂u) = a(u)
n∑
i=1
bi.

In this case the Ricci soliton is isotropic (‖∇f‖ = 0).

(ii) If bj = 0 for some j ∈ {3, . . . , n}, then κi = 0 for i < j and the potential function is
given by

f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=j

κi xi , where f ′′0 (u) = −ρ(∂u, ∂u) = a(u)

j∑
i=1

bi.

Further observe that in this case ∇f is spacelike.

Summarizing the above, we have that

Theorem 3.3 Let (M, g) be a Lorentzian manifold with recurrent curvature.

I. If (M, g) is of Type I, then it is a gradient Ricci soliton if and only if the defining
function is H(u, x1) = 1

κ21
eκ1 x1 h0(u) + h1(u) + x1h2(u). In this case the potential

function is of the form f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1
κi xi, where

f ′′0 (u) = −κ1

2
h2(u).

The Ricci soliton is steady and ‖∇f‖ is spacelike.

II. If (M, g) is of Type II, then it is a steady gradient Ricci soliton. Moreover

II-(i). If bi 6= 0 for all i = 1, . . . , n, then the potential function is given by

f(u, v, x1, . . . , xn) = f0(u), satisfying f ′′0 (u) = −ρ(∂u, ∂u) = a(u)
n∑
i=1
bi and

‖∇f‖ = 0.
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II-(ii). If bj = 0 for some j ∈ {3, . . . , n}, then the potential function is given by

f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=j
κi xi, where f ′′0 (u) = −ρ(∂u, ∂u) = a(u)

j∑
i=1
bi

and ∇f is spacelike.

Remark 3.4 The existence of Ricci solitons in Lorentzian manifolds with large isome-
try groups was investigated in [6]. It follows from the work of Patrangenaru [82] that
(n + 2)-dimensional Lorentzian manifolds whose isometry group is of dimension at least
1
2(n+ 2)(n+ 1) + 1 are one of the following: manifolds of constant curvature, the product
of a line with a space of constant curvature, an ε-space or an Egorov space.

The class of ε-spaces can be viewed as a degenerate class of the Type II family above
just considering a(u) = ε and bi = 1 for all i = 1, . . . , n. Moreover, Egorov spaces are
locally conformally flat, non-symmetric and with recurrent curvature (see [29]). Hence
they are pp-waves of Type II–(ii), as discussed in the previous theorem.

Hence, (n+2)-dimensional Lorentzian manifolds whose isometry group is of dimension
at least 1

2(n+ 2)(n+ 1) + 1 are isotropic steady gradient Ricci solitons.

Another special case of Theorem 3.3 are the Cahen-Wallach symmetric spaces, which
can be viewed as a limit case of Type II recurrent manifolds when a(u) is a constant
function.

Theorem 3.5 Indecomposable but not irreducible Lorentzian symmetric spaces are iso-
tropic steady gradient Ricci solitons.

3.2 Two-symmetric Lorentzian manifolds

Recall that a Lorentzian manifold is said to be two-symmetric if ∇2R = 0 but ∇R 6= 0. As
already discussed in the introduction, two-symmetric Lorentzian manifolds are a special
class of plane waves given by (see [1, 11])

(3.4) H(u, x1, . . . , xn) =
n∑

i,j=1

(aij u+ bij)xixj ,

where (aij) is a diagonal matrix with the diagonal elements a11 ≤ · · · ≤ ann non-null real
numbers and (bij) an arbitrary symmetric matrix of real numbers.

Now, an immediate application of Theorem 3.1 shows that two-symmetric Lorentzian
manifolds are steady gradient Ricci solitons. If we differentiate (3.1) with respect to u and
xi, then one gets aii κi = 0, but as all the terms aii are non-null we conclude that κi = 0
for all i = 1, . . . , n and the potential function is given by f(u, v, x1, . . . , xn) = f0(u) where

f ′′0 (u) = −ρ(∂u, ∂u) =
n∑
i=1

(aii u+ bii).

Finally observe that ∇f is a geodesic vector field and (M, g) is geodesically complete.
Moreover ∇f is isotropic.
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3.3 Conformally symmetric Lorentzian manifolds

A Lorentzian manifold is said to be conformally symmetric if the covariant derivative
of the Weyl tensor vanishes identically (∇W = 0). Conformally symmetric Lorentzian
manifolds which are neither locally conformally flat nor locally symmetric have recurrent
Ricci tensor and have been described locally by Derdzinski and Roter [47]. It turns out
that all of them are plane waves given by

H(u, x1, . . . , xn) = (a(u)αij + βij)xixj

where (βij) is a non-zero symmetric matrix with
n∑
i=1
bii = 0.

Now Theorem 3.1 shows that any conformally symmetric Lorentzian manifold admits
a function f resulting in a steady gradient Ricci soliton with isotropic ∇f .

3.4 Homogeneous structures of linear type

As already mentioned in Section 1.3.2, Montesinos characterized Lorentzian manifolds
admitting a degenerate homogeneous structures of type T1.

Theorem 3.6 [3] Let (M, g) be an (n + 2)-dimensional connected Lorentzian manifold
with a degenerate homogeneous structure of type T1. Then (M, g) is locally isometric to
Rn+2 with the pseudo-Riemannian metric

(3.5) g = 2dudv + (b(x, x) + 2u)dv2 + h,

where b and h are symmetric bilinear forms in Rn, h is non-degenerate, x is the position
vector in Rn and u, v are the coordinates in R2.

This result was later extended by Meessen to the T1 ⊕ T3 case, showing that

Theorem 3.7 [72] A connected homogeneous Lorentzian space admitting a non-degenerate
T1 ⊕ T3 structure is a locally symmetric space.

The underlying geometry of a connected homogeneous Lorentzian space that admits a
degenerate T1 ⊕ T3 structure is that of a singular homogeneous plane wave.

Homogeneous Lorentzian manifolds admitting a degenerate T1⊕T3 structure are special
cases of plane waves and therefore again by Theorem 3.1 any Lorentzian manifold admitting
a degenerate T1 ⊕ T3 homogeneous structure is a steady gradient Ricci soliton.
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3.5 Ricci solitons on plane waves

Recall that gradient Ricci solitons are a special class of Ricci solitons. So far, we have
shown that the family of plane waves support steady gradient Ricci solitons in many cases.
The existence of (non-gradient) Ricci solitons is a weaker condition, and in what follows
we show that any plane wave admits many non-gradient expanding and shrinking Ricci
solitons.

Let X = Xu∂u +Xv∂v +

n∑
i=1

Xi∂xi be an arbitrary vector field on (Rn+2, gppw), where

the metric gppw is given by the function H(u, x1, . . . , xn) =
n∑

i,j=1
aij(u)xixj . Then (1.26)

becomes

(3.6)



1
2

n∑
i=1
∂xiHXi + 1

2 ∂uHXu +H∂uXu + ∂uXv + ρ(∂u, ∂u) = λH,

H∂vXu + ∂vXv + ∂uXu = 2λ,

H∂xiXu + ∂xiXv + ∂uXi = 0, 1 ≤ i ≤ n,

∂xiXj + ∂xjXi = 0, 1 ≤ i 6= j ≤ n,

∂xiXu + ∂vXi = 0, 1 ≤ i ≤ n,

∂vXu = 0; ∂xiXi = λ, 1 ≤ i ≤ n,

as in (2.11) on previous chapter, but now specialized to the previous function H.
While we are not explicitly integrating previous system of differential equations, in

what follows we point out the existence of non-gradient solutions.
Consider the vector field

(3.7) X =

(
p(u)−

n∑
i=1

q′i(u)xi + 2λ v

)
∂v +

n∑
i=1

(qi(u) + λxi) ∂xi ,

where functions p and qi satisfy the following conditions

(3.8)


n∑
j=1

aij(u)qi(u)− q′′i (u) = 0, 1 ≤ i ≤ n,

ρ(∂u, ∂u) + p′(u) = 0,

where aij are the functions that appear in the definition function of a plane wave as in
(1.18). Note that one can always find p, qi being solutions of (3.8). A straightforward
calculation from (2.11) shows that (M, g,X) is a Ricci soliton. Also observe that λ is the
constant of equation (1.26) and can be chosen arbitrarily.

In contrast to the gradient case, we obtain that
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Theorem 3.8 Any plane wave (M, g) admits vector fields resulting in expanding, steady
and shrinking Ricci solitons.

Remark 3.9 We refer to [6] for an explicit integration of (3.6) in the special case of the
Cahen-Wallach symmetric spaces.



Chapter 4

Homogeneous gradient Ricci
solitons

The geometry of homogeneous gradient Ricci solitons has been recently investigated in the
Riemannian setting [85], showing that any homogeneous Riemannian gradient Ricci soliton
is rigid (i.e., M is a product M = N×Rk, where (N, gN ) is an Einstein manifold with Ricci
tensor ρN = λ gN and the potential function of the soliton is given by f(x) = λ

2‖π(x)‖2,
where π is the orthogonal projection on the Euclidean factor). The Lorentzian situation
allows other possibilities closely related to the existence of degenerate parallel line fields.
For instance it was shown in the previous chapter that indecomposable but not irreducible
Lorentzian symmetric spaces are non-rigid gradient Ricci solitons.

In this chapter we analyze the geometry of gradient Ricci solitons which are homo-
geneous, showing that three-dimensional homogeneous expanding or shrinking gradient
Ricci solitons are rigid. On the other hand, we show the existence of non-rigid homoge-
neous steady gradient Ricci solitons when the background metric corresponds to that of
a Walker manifold. We describe the structure of the chapter in more detail as follows.
First we give some general properties of gradient Ricci solitons with constant scalar cur-
vature in Section 4.1. Afterwards we study the non-steady and the steady homogeneous
cases separately in Sections 4.2 and 4.3. As a particular family of homogeneous manifolds,
symmetric spaces are considered in Section 4.4. Finally we classify three-dimensional ho-
mogeneous gradient Ricci solitons in Section 4.5. The main results in this chapter are
summarized in references [15, 18].

4.1 Gradient Ricci solitons with constant scalar curvature

Since homogeneous spaces have constant scalar curvature, we begin by analyzing some
properties of gradient Ricci solitons with this characteristic. Note that by Remark 1.28,
the gradient of the potential function is an eigenvector of the Ricci operator associated to
the eigenvalue zero. This fact will be crucial to describe the structure of an homogeneous

49
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soliton. Moreover, the study of homogeneous spaces is linked with the geometry of Killing
vector fields. Recall from Section 1.1 that a vector field X on (M, g) is Killing if and
only if LXg = 0. Now, choose local adapted coordinates (x1, . . . , xn+2) so that X = ∂x1 .
Denote gij := g(∂xi , ∂xj ) and observe that

∂x1 gij = g(∇∂x1∂xi , ∂xj ) + g(∂xi ,∇∂x1∂xj )

= g(∇∂xi∂x1 , ∂xj ) + g(∂xi ,∇∂xj ∂x1) = (L∂x1 g)(∂xi , ∂xj ).

Hence, if X = ∂x1 is a Killing vector field then ∂x1 gij = 0, and thus ∂x1 Γkij = 0 as well.
Let f be a smooth function on M . Then

(L∂x1 Hesf )(∂xi , ∂xj ) = L∂x1 Hesf (∂xi , ∂xj )

= L∂x1
(
∂2
xixj (f)− Γkij∂xk(f)

)
= ∂3

x1xixj (f)− ∂x1(Γkij)∂xk(f)− Γkij∂
2
x1xk

(f),

and
Hes∂x1 (f)(∂xi , ∂xj ) = ∂2

xixj∂x1(f)− Γkij∂xk∂x1(f)

= ∂3
x1xixj (f)− Γkij∂

2
x1xk

(f),

which shows that (LX Hesf ) = HesX(f) for all Killing vector fields X on (M, g).
Although we usually denote the gradient of a function by the symbol ∇, for notational

clarity we will use grad f instead along this chapter.

Lemma 4.1 Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature. If
X is a Killing vector field, then gradX(f) is a parallel vector field. Moreover, if λ 6= 0,
then gradX(f) = 0 if and only if X(f) = 0.

Proof.
Assume X is a Killing vector field, i.e. LXg = 0, hence LXρ = 0. Also it follows from
(1.27) that LX Hesf = 0, and therefore HesX(f) = 0. This shows that gradX(f) is parallel.

It is clear that gradX(f) = 0 if X(f) = 0. Assume now that gradX(f) = 0. Then
X(f) = κ for some constant κ. Now, since the scalar curvature is constant, from (1.29)
we have that Ric(∇f) = 0 and since X is Killing the following sequence of equalities holds

0 = ∇f(κ) = ∇f(X(f)) = ∇∇fg(∇f,X)

= g(∇∇f∇f,X) + g(∇f,∇∇fX)

= Hesf (∇f,X) + 1
2(LXg)(∇f,∇f)

= −ρ(∇f,X) + λ g(∇f,X)

= λκ,

from where it follows that κ = 0, and thus that gradX(f) = 0 if and only if X(f) = 0. �
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Lemma 4.2 Let (M, g, f) be a gradient Ricci soliton with constant scalar curvature. Then
the following relation holds

(4.1) λ((n+ 2)λ− τ) = ‖ hesf ‖2.

Proof.

Recall from Lemma 1.27 that Ric(∇f) = 0. Also recall the following Bochner identity

1

2
∆ g(∇f,∇f) = ‖ hesf ‖2 + ρ(∇f,∇f) + g(∇∆f,∇f).

From (1.30) we have that τ + ‖∇f‖2 − 2λf = const, so the left-hand side in the Bochner
formula becomes 1

2 ∆ g(∇f,∇f) = λ∆f − 1
2 ∆τ . Taking the trace of the Ricci soliton

equation (1.27) show us that ∆f = (n+2)λ−τ and hence 1
2 ∆ g(∇f,∇f) = λ((n+2)λ−τ).

On the other hand, since Ric(∇f) = 0 and ∇∆f = −∇τ = 0, the right-hand side in
Bochner formula reduces to ‖ hesf ‖2, thus getting (4.1). �

Remark 4.3 An immediate application of Lemma 4.2 shows that any Riemannian steady
gradient Ricci soliton with constant scalar curvature is Ricci flat. In the Lorentzian case,
steady solitons with the same property have isotropic hesf , and thus, isotropic Ricci
operator.

4.2 Non-steady homogeneous gradient Ricci solitons

Theorem 4.4 Let (M, g, f) be an isotropic non-steady gradient Ricci soliton with constant
scalar curvature. Then (M, g) is Einstein.

Proof.

From Lemma 1.27 we have that τ + ‖∇f‖2 − 2λf = const. Modify the potential function
f̃ = f + const so that τ + ‖∇f‖2 − 2λf = 0. Now, if (M, g, f) is isotropic, one has
2λf̃ = −τ , which shows that f̃ is constant (and thus (M, g) is Einstein) if and only if the
scalar curvature is constant. �

Recall that a Lorentzian manifold is said to be irreducible if the holonomy represen-
tation does not admit any nontrivial invariant subspace. Moreover, (M, g) is said to be
indecomposable, but not irreducible if the holonomy representation admits a nontrivial
invariant subspace on which the metric is degenerate. Hence, we have

Theorem 4.5 Let (M, g) be a homogeneous irreducible Lorentzian manifold admitting a
non-steady gradient Ricci soliton. Then (M, g) is Einstein.
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Proof.

The fact that the holonomy representation does not admit any nontrivial invariant sub-
space is equivalent to the non-existence of any parallel k-dimensional distribution on
(M, g). This implies that all parallel vector fields gradX(f) must vanish, and hence,
since the soliton is non-steady, X(f) = 0 for all Killing vector field X on M . This shows
that f is constant and the metric is Einstein. �

The following observation by Petersen and Wylie was made in the Riemannian setting,
but it extends immediately to arbitrary signature.

Lemma 4.6 [85] If a gradient Ricci soliton (M, g, f) splits as a pseudo-Riemannian prod-
uct (M, g) = (M1 ×M2, g1 ⊕ g2), then the potential function f(x1 + x2) = f1(x1) + f2(x2)
also splits in such a way that each factor (Mi, gi, fi), i = 1, 2, is a gradient Ricci soliton.

We now use the result of Lemma 4.1 to obtain a splitting result generalizing Theorem 4.5.

Theorem 4.7 Let (M, g) be a homogeneous Lorentzian manifold. If (M, g, f) is a non-
steady gradient Ricci soliton, then it splits as a product M = N × Rk for some k ≥ 0,
where either

(a) (N, gN ) is a Lorentzian Einstein manifold and the soliton is rigid, or

(b) (N, gN ) is a Lorentzian Walker manifold admitting a parallel null vector field.

Proof.

Recall from Lemma 4.1 that if X is a Killing vector field then gradX(f) is parallel. If
gradX(f) is spacelike or timelike then splits a one-dimensional factor from (M, g). Hence,
after considering all such possible Killing vector fields, (M, g) splits as M = N × Rk for
some k ≥ 0 such that no Killing vector field Y exists on (N, gN ) with gradY (f) spacelike
or timelike.

If Y (f) = 0 for all Killing vector fields on (N, gN ), then it is an Einstein manifold and
the rigidity is obtained as in [85]. Otherwise, assume there is a Killing vector field Z such
that gradZ(f) is null. This shows that (N, gN ) is a strict Walker manifold. �

Remark 4.8 In the proof of Theorem 4.7, there is a unique parallel null vector field of the
form gradZ(f), Z being a Killing vector field. Indeed, if Z1, Z2 are Killing vector fields
such that gradZ1(f) and gradZ2(f) are null vectors, then they span a Lorentzian vector
space π = span{gradZ1(f), gradZ2(f)}. Since no orthogonal null vectors may exist in
Lorentzian signature, it follows that gradZ1(f) ± gradZ2(f) are non-null parallel vector
fields on (N, gN ), but this contradicts the assumption that no such vector fields exist.
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4.3 Steady homogeneous gradient Ricci solitons

First of all, observe from Lemma 4.2 that ‖ hesf ‖2 = 0 for all homogeneous steady gradient
Ricci solitons (and thus also ‖Ric ‖2 = 0). Moreover, since hesf = −Ric one has from
Lemma 1.27 that hesf (∇f) = 0, which shows that ∇f is a geodesic vector field. Next,
using the identity τ + ‖∇f‖2− 2λf = const, one has that ‖∇f‖2 is constant and therefore
f is a solution of the Eikonal equation ‖∇f‖2 = µ.

Remark 4.9 Observe that all the conclusions above still remain true under the more
general hypothesis that (M, g) has constant scalar curvature.

In what follows we will consider separately the different situations corresponding to
the possible values of µ. We begin by analyzing the case µ < 0.

Theorem 4.10 Let (M, g, f) be a homogeneous steady gradient Ricci soliton such that
‖∇f‖2 = µ < 0. Then (M, g) splits isometrically as a product (R×N,−dt2 + gN ), where
(N, gN ) is a flat Riemannian manifold and f is the projection on R.

Proof.
Under these assumptions f is a solution of the timelike Eikonal equation. The special
significance of this case comes from the fact that hesf (∇f) = 0, and thus one can consider
the restriction of the Hessian tensor to ∇f⊥, which is now a positive definite vector space.
Hence the Hessian operator diagonalizes and thus the condition ‖hesf ‖2 = 0 in Lemma 4.2
shows that indeed hesf = 0.

Now, hesf = 0 shows that ∇f is a parallel vector field, and thus (M, g) is locally a
product (R×N,−dt2 + gN ), where (N, gN ) is a homogeneous Riemannian manifold (see,
for example, [57]). Moreover, it follows from Lemma 4.6 that (N, gN ) is a homogeneous
steady gradient Ricci soliton, and therefore Einstein. Since the soliton is steady, one has
that (N, gN ) is Ricci flat and, finally, given that all Ricci flat homogenous manifolds are
flat, that (N, gN ) is indeed flat. �

The cases when µ ≥ 0 are less rigid than the previous one and they allow the existence
of non-trivial homogeneous steady gradient Ricci solitons. In the isotropic case one has
some restrictions on the Ricci operator, which must be nilpotent according to the following

Lemma 4.11 Let (M, g, f) be an isotropic homogeneous steady gradient Ricci soliton.
There exists a local pseudo-orthonormal basis {U, V,E1, . . . , En} such that

(4.2) hesf =


0 0 0 0 . . . 0
a 0 b1 b2 . . . bn
b1 0 0 0 . . . 0
...

...
...

...
...

...
bn 0 0 0 . . . 0

 .
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Moreover, the Ricci operator is two-step nilpotent if b1 = b2 = bn = 0, or three-step
nilpotent otherwise.

Proof.
Since ∇f is a null vector, choose orthogonal vectors X and Y so that V = ∇f = X + Y ,

U = X − Y and 〈U, V 〉 = 1. Let ∇f⊥ denote the non-degenerate normal space giving by

∇f⊥ = ∇f⊥/ span {∇f} and denote by π : ∇f⊥ → ∇f⊥ the projection. Now the fact

that hesf (∇f) = 0 allow us to consider the induced Hessian operator on ∇f⊥ defined by
hesf (x) = π(hesf (x)) for any x such that π(x) = x, which remains self-adjoint.

Since the induced metric on the n-dimensional non-degenerate normal space ∇f⊥ is
positive definite, hesf diagonalizes in an orthonormal basis {Ē1, . . . , Ēn} with eigenvalues
λ1, . . . , λn. Then, it follows that ‖hesf‖2 = ‖ hesf ‖2 = 0, and thus λ1 = · · · = λn = 0.
Now the result follows by using that hesf is self-adjoint and hesf (∇f) = 0. �

Remark 4.12 There exists homogeneous Lorentzian manifolds with two and three-step
nilpotent Ricci operators. However, in dimension three, no homogeneous Lorentzian man-
ifold may have three-step nilpotent Ricci operator [26].

Observe that if (M, g, f) is an isotropic homogeneous steady gradient Ricci soliton
with two-step nilpotent Ricci operator, then hesf is given by (4.2) with b1 = · · · = bn = 0
and hence ∇f is a recurrent vector field. This implies that there exists a parallel one-
dimensional null distribution on (M, g). Moreover, one has the following

Lemma 4.13 Let (M, g, f) be a non-trivial isotropic homogeneous steady gradient Ricci
soliton with two-step nilpotent Ricci operator. Then there exists a parallel null vector field
on (M, g).

Proof.
Let (M, g, f) be a homogeneous steady gradient Ricci soliton with two-step nilpotent Ricci
operator. Adopt the notation of Lemma 4.11 and consider a basis {U, V,E1, . . . , En} so
that hesf has associated matrix as in (4.2) at given point p ∈M . Extend Ei, i = 1, . . . , n
being Killing vector fields and U so that g(U,U) = 0 and g(U, V ) = 1. Now, since Ei
is Killing, by Lemma 4.1, grad(Ei(f)) is a parallel vector field. Several possibilities may
occur now, we analyze them separately.

First we show that grad(Ei(f)) cannot be non-null for all i = 1, . . . , n. Assume on
the contrary that grad(Ei(f)) is non-null for all i = 1, . . . , n, then the manifold splits as
M = N × Rn where N is a two-dimensional gradient Ricci solitons by Lemma 4.6. Note
that (N, gN ) can be Riemannian or Lorentzian, but an argument as in Section 1.4.4 shows
that the only possibility for a steady homogeneous manifold is that (N, gN ) is flat and the
potential function is constant. So M reduces to a product M = R2 × Rn with hesf = 0,
which contradicts the non-triviality assumption.
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Secondly, if ‖ grad(Ei(f))‖2 = 0 for some i ∈ {1, . . . , n}, then this is a parallel null
vector field.

Finally, if grad(Ei(f)) = 0 for i = 1, . . . , k and ‖ grad(Ei(f))‖2 6= 0 for i = k+1, . . . , n,
where it may be k = n. Then the manifold splits as N × Rn−k and N is a gradient
Ricci soliton by Lemma 4.6. If N has positive signature then the soliton is trivial, so
we assume N is Lorentzian. Then Ei(f) = κi where κi is a constant for i = 1, . . . , k,
but since Ei(f) = 0 at p, we have that g(Ei, V ) = 0 everywhere. This shows that hesf
has associated matrix as in (4.2) everywhere with b1 = · · · = bk = 0 since it is two-step
nilpotent.

Note that

0 = ρ(U, V ) = R(U, V, V, U) +

n∑
i,j=1

R(U,Ei, V, Ej) = R(U, V, V, U),

so R(U, V, U, V ) = 0. Also, in general, if X is a Killing vector field, then we have that
R(X,Y )Z = −∇Y∇ZX +∇∇Y ZX for all Y , Z ∈ X(M) (see, for example, [68, 77]). Since
Ei are Killing vector fields, we compute

R(Ei, U, U, V ) = −g(∇U∇UEi, V ) + g(∇∇UUEi, V )

= −U g(∇UEi, V ) + g(∇UEi,∇UV ) + (∇UU)g(Ei, V )− g(Ei,∇∇UUV )

= −U(U g(Ei, V )− g(Ei,∇UV )) + g(∇UEi, aV )

= −U g(Ei, a V ) + a g(∇UEi, V ) = 0

since g(∇UEi, V ) = U g(Ei, V )− g(Ei,∇UV ) = −g(Ei, a V ) = 0.

Now, as we saw in the proof of Lemma 2.3, the identity R(X,Y, Z,∇f) = (∇Xρ)(Y,Z)
− (∇Y ρ)(X,Z) holds for any gradient Ricci soliton for any X, Y , Z ∈ X(M), so we have
that

0 = R(U, V, U, V ) = (∇Uρ)(V,U)− (∇V ρ)(U,U)

0 = R(Ei, U, U, V ) = (∇Eiρ)(U,U)− (∇Uρ)(Ei, U).

Taking into account that ρ = −Hesf , this gives rise to

−V (a) = V ρ(U,U)

= (∇V ρ)(U,U) + 2 ρ(∇V U,U)

= (∇Uρ)(V,U)− 2 g(∇V U, a V )

= U ρ(V,U)− ρ(∇UV,U)− ρ(V,∇UU)− 2a(V g(U, V )− g(U,∇V V )) = 0

and for all i = 1, . . . , n we have
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−Ei(a) = Eiρ(U,U)

= (∇Eiρ)(U,U) + 2 ρ(∇EiU,U)

= (∇Uρ)(Ei, U)− 2 g(∇EiU, a V )

= U ρ(Ei, U)− ρ(∇UEi, U)− ρ(Ei,∇UU)− 2a(Eig(U, V )− g(U,∇EiV ))

= g(∇UEi, a V ) =

= aUg(Ei, V )− a g(Ei, a V ) = 0.

Next, let h : M → R be a function on M which is constant in every direction except
in the direction of U , thus V (h) = Ei(h) = 0 and such that U(h) + h a = 0. Such an h
exists precisely because V (a) and Ei(a) = 0 for all i = 1, . . . , k. Consider the vector field
hV and compute:

∇V (hV ) = V (h)V + h∇V V = 0 ,

∇U (hV ) = U(h)V + h∇UV = (U(h) + h a)V = 0 ,

∇Ei(hV ) = Ei(h)V + h∇EiV = 0 .

Hence hV is a parallel null vector field. �

4.4 Symmetric gradient Ricci solitons

Let (M, g) be a symmetric Lorentzian manifold. If (M, g) admits a non-steady gradient
Ricci soliton, then Theorem 4.7 shows that it splits as a product M = N×Rk, where either
(N, gN ) is an irreducible Lorentzian symmetric manifold (and thus of constant sectional
curvature) and the soliton is rigid or, otherwise, (N, gN ) is an indecomposable but not
irreducible Lorentzian symmetric space (hence a Cahen-Wallach symmetric space). Now,
it follows from the results in previous chapter that any gradient Ricci soliton on (N, gN )
is steady, and thus any symmetric non-steady Lorentzian gradient Ricci soliton is rigid.

Next, assume (M, g, f) to be a Lorentzian steady symmetric gradient Ricci soliton.
Using the de Rham-Wu decomposition of the manifold, (M, g) splits as a product M =
Rkν × N ×M1 × · · · ×Ml, where Rkν is either the Euclidean or the Minkowskian space,
(N, gN ) is a Cahen-Wallach symmetric space and Mi are irreducible symmetric spaces.
Since irreducible symmetric spaces are Einstein, the induced soliton is either trivial or
otherwise the scalar curvature vanishes, which implies that Mi is Ricci flat. Now, observe
that if Mi is Riemannian, then it is flat since Ricci flat homogeneous spaces are flat in
the Riemannian setting [9]. Moreover, if Mi is Lorentzian, then it is flat since irreducible
Lorentzian symmetric spaces are of constant sectional curvature [24]. Hence, if the gradient
Ricci soliton is steady, then the decomposition above reduces to M = N × Rk, where
(N, gN ) is a Cahen-Wallach symmetric space. Hence,
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Theorem 4.14 Let (M, g, f) be a symmetric Lorentzian gradient Ricci soliton.

(i) If (M, g, f) is not steady, then (M, g) splits as a product M = N×Rk, where (N, gN )
is Einstein and the soliton is rigid.

(ii) If (M, g, f) is steady, then (M, g) splits as a product M = N ×Rk, where (N, gN ) is
a Cahen-Wallach symmetric space and the potential function of the soliton is given
by Theorem 3.1.

4.5 Three-dimensional homogeneous gradient Ricci solitons

The special properties of dimension three allow us to obtain some more conclusive results
about homogeneous gradient Ricci solitons. Due to the fact that the Weyl tensor vanishes,
the Ricci operator completely determines the curvature. The purpose of this section is to
prove the following classification result for three-dimensional homogeneous gradient Ricci
solitons.

Theorem 4.15 Let (M, g, f) be a three-dimensional homogeneous Lorentzian gradient
Ricci soliton. Then (M, g) is of constant sectional curvature and the soliton is trivial,
or otherwise

(i) (M, g) splits as R × N , where (N, gN ) is a surface of constant curvature, and the
soliton is rigid.

(ii) (M, g) admits a parallel null vector field and either

(ii.1) there exists local coordinates (t, x, y) so that the metric g takes the form

g = 2dtdy + dx2 + φ(x, y)dy2

for some function

φ(x, y) =
1

α2
a(y) eαx + x b(y) + c(y)

and the potential function of the soliton is given by f(x, y) = xα + γ(y) with
γ′′(y) = −1

2 α b(y).

(ii.2) or (M, g) is locally conformally flat and hence a plane wave.

Moreover, in both cases (ii.1) and (ii.2) the Ricci soliton is steady.

Remark 4.16 Observe that metrics in case (ii) above have two-step nilpotent Ricci op-
erator and hence they have recurrent curvature [30]. Indeed, cases (ii.1) and (ii.2) corre-
spond to types I and II of Lorentzian manifolds with recurrent curvature as discussed in
Section 3.1.
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Remark 4.17 Homogeneous plane waves have been characterized in [12], showing that in
the three-dimensional case the metric (1.12) reduces to one of the following two possibilities

(i) A symmetric Cahen-Wallach space, i.e., the Euclidean space R3 with coordinates
(u, v, x) and metric tensor

g = 2dudv + κx2du2 + dx2,

where κ is an arbitrary non-zero constant, or

(ii) a non-symmetric homogeneous plane wave, i.e., an open set U ⊂ R3 with coordinates
(u, v, x) and metric tensor

g = 2dudv +
κ

u2
x2du2 + dx2,

where κ is an arbitrary non-zero constant.

In both cases they admit steady gradient Ricci solitons, which are constructed as discussed
in Chapter 3.

Remark 4.18 Proceeding as in Section 1.4.2, one sees that a Lorentzian manifold ad-
mits two-distinct gradient Ricci solitons if and only if it admits a gradient homothetic
vector field. Hence, it follows from results in [31] that a three-dimensional homogeneous
Lorentzian manifold admits two distinct gradient Ricci solitons if and only if it is flat, which
shows the uniqueness of steady gradient Ricci solitons considered in Theorem 4.15 – (ii).

The aim of this section is to prove Theorem 4.15.

First of all, since Walker metrics play a distinguished role in dimension three, we begin
by characterizing which manifolds in this family result in a gradient Ricci soliton.

Lemma 4.19 Let (M, g) be a non-flat three-dimensional Lorentzian manifold admitting
a parallel null vector field. Then (M, g, f) is a gradient Ricci soliton if and only if one of
the following occurs:

(i) There exist coordinates (t, x, y) so that the metric g takes the form

g = 2dtdy + dx2 + φ(x, y)dy2

where

φ(x, y) =
1

α2
a(y) eαx + x b(y) + c(y)

for some arbitrary functions a, b and c. Moreover, in this case the potential function
of the soliton is given by f(t, x, y) = xα+ γ(y), where γ′′(y) = −1

2 αb(y).
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(ii) There exist coordinates (t, x, y) so that the metric g takes the form

g = 2dtdy + dx2 + φ(x, y)dy2

where

φ(x, y) = x2 a(y) + x b(y) + c(y)

for some arbitrary functions a, b and c. Moreover the potential function of the soliton
is given by f(t, x, y) = γ(y), where γ′′(y) = 1

4 a(y).

Moreover, in both cases the Ricci soliton is steady.

Proof.

Choose adapted Walker coordinates (t, x, y) so that the metric expresses as follows (we
refer to [21] for a broad exposition on Walker manifolds)

(4.3) g = 2dtdy + dx2 + φ(x, y)dy2.

where φ is an arbitrary function. Let f(t, x, y) be an arbitrary function on M . In order
to simplify the notation we denote with sub-indices the corresponding partial derivatives,

thus, for example, ft = ∂f
∂t , ftx = ∂2f

∂t∂x ,. . . . Then a straightforward calculation shows that
(1.27) is equivalent to the following

ftt = ftx = 0,(4.4)

fxx − λ = fty − λ = 0,(4.5)

2fxy − φxft = 0,(4.6)

2λφ+ φxx − 2fyy − φxfx + φyft = 0.(4.7)

Now, it follows from (4.4)–(4.5) that the potential function of any gradient Ricci soliton
satisfies

f(t, x, y) = t(λ y + κ) +
1

2
λx2 + α(y)x+ γ(y)

for some functions α, γ and a constant κ. Hence, the previous system of PDEs reduces to

2α′(y)− (λ y + κ) φx = 0,(4.8)

2λφ− 2 γ′′(y)− 2xα′′(y) + (λ y + κ)φy − (λx+ α(y))φx + φxx = 0.(4.9)

Next differentiate (4.8) with respect to x to obtain

(4.10) 0 = (λ y + κ)φxx.
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Note here that a simple calculation gives that the Ricci operator of any three-dimensional
strict Walker metric satisfies

Ric =

 0 0 −1
2 φxx

0 0 0
0 0 0

 ,

which shows that (4.3) is flat if and only if φxx = 0. Hence, assuming the Walker metric
is non-flat, one has that λ = κ = 0, so the gradient Ricci soliton is steady.

Now, from equations (4.8) and (4.10) we get that the potential function of any gradient
Ricci soliton on a non-flat Walker manifold (4.3) is given by f(t, x, y) = αx + γ(y).
Moreover, in this case (4.9) reduces to

(4.11) 2 γ′′(y) + αφx − φxx = 0.

Hence, differentiating with respect to x, one has that αφxx = φxxx. Two possibilities may
occur:

• α 6= 0. In this case the metric (4.3) is given by a function

φ(x, y) =
1

α2
a(y) eαx + x b(y) + c(y)

for some arbitrary functions a(y) 6= 0, b(y) and c(y). Moreover the potential function
of the soliton is given by f(t, x, y) = αx+ γ(y), where γ′′(y) = −1

2 α b(y).

In this case ∇f = γ′(y) ∂t + α∂x is spacelike.

• α = 0. In this case the metric (4.3) is given by a function

φ(x, y) = x2 a(y) + x b(y) + c(y)

for some arbitrary functions a(y) 6= 0, b(y) and c(y). Moreover the potential function
of the soliton is given by f(t, x, y) = γ(y), where γ′′(y) = 1

4 a(y).

In this case ∇f = γ′(y) ∂t is a null and recurrent vector field.

This completes the proof. �

Now, as an application of Lemmas 4.1 and 4.19, one has

Lemma 4.20 Any three-dimensional non-steady homogeneous Lorentzian gradient Ricci
soliton is either trivial or rigid.

Proof.
For any Killing vector field X on (M, g), proceeding as in Section 4.1, either X(f) = 0
for all Killing vector fields or there exist some Killing vector fields such that X(f) 6= 0. If
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X(f) = 0 for all Killing vector fields then f is constant and (M, g) is of constant sectional
curvature. Assume, on the contrary, that there exists a Killing vector field X such that
X(f) 6= 0. If gradX(f) is non-null, then it induces a local splitting of the form I × N ,
where I is a real interval and (N, gN ) is a two-dimensional manifold of constant curvature,
from where it follows that the soliton is rigid. If gradX(f) is null, then the manifold has
a null parallel vector field and by Lemma 4.19 it cannot be non-steady unless it is flat. �

Now we we are going to analyze the steady case.

Lemma 4.21 Let (M, g, f) be a three-dimensional homogeneous steady gradient Ricci soli-
ton. Then either it is rigid or it admits a parallel null vector field.

Proof.
Let (M, g, f) be a three-dimensional homogeneous steady gradient Ricci soliton. Hence, as
discussed in previous section, the potential function is a solution of the Eikonal equation
‖∇f‖2 = µ. In the case µ < 0, the manifold splits as a product and the soliton is
rigid (Theorem 4.10). In the isotropic case, the Ricci operator must be two- or three-step
nilpotent (Lemma 4.11). As it is shown in [26] there are no homogeneous Walker manifolds
with three-step nilpotent Ricci operator. If the Ricci operator is two-step nilpotent, then
the manifold admits a parallel null vector field (Lemma 4.13) and the existence of gradient
Ricci solitons has been already considered in Lemma 4.19. Finally, consider the spacelike
case ‖∇f‖2 = µ > 0. Since the scalar curvature is constant, the Ricci operator satisfies
Ric(∇f) = 0. This shows that either f is constant, or else the Ricci operator has a zero
eigenvalue. We now consider the different possibilities for the kernel of Ric.

Assume dim(ker(Ric)) = 1. It follows from [27] that (M, g) is either a symmetric space
or a Lie group. If (M, g) is symmetric, then it is one of the following: a manifold of
constant sectional curvature, a product R×N where (N, gN ) is of constant curvature, or a
three-dimensional Cahen-Wallach symmetric space. Hence, in all the cases, any gradient
Ricci soliton is trivial, rigid or the underlying manifold admits a null parallel vector field.
Now we concentrate on Lie groups. Since the eigenspaces of the Ricci operator are left-
invariant and ∇f has constant norm µ > 0, it follows from the fact that dim(ker(Ric)) = 1
that ∇f is a left-invariant vector field. By Theorem 5.5 in next chapter, the existence of
left-invariant Ricci solitons is equivalent to the fact that the Ricci operator has exactly
one-single eigenvalue, which must be zero since Ric(∇f) = 0. This shows that the Ricci
operator is two-step nilpotent and the manifold admits a null parallel vector field [21, 30].
Hence, the existence of gradient Ricci solitons is covered by Lemma 4.19.

Next assume dim(ker(Ric)) = 2. In this case the Ricci operator is either diagonalizable
or two-step nilpotent. The later implies that the manifold admits a null parallel vector
field, and the result is covered by Lemma 4.19, while in the first case the result follows
from the splitting theorem in [57] (note that since Hesf = −ρ, the Ricci operator is
diagonalizable if and only if so is the Hessian operator). �
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Open problems I

There are many open questions on the geometry of Lorentzian gradient Ricci solitons.
Some interesting problems which are closely related to our work are the following:

• Compact Riemannian Ricci solitons are necessarily gradient and, moreover, compact
expanding or steady Ricci solitons are necessarily Einstein [41]. These results depend
on the validity of maximum principles for the Laplace operator. It is an open question
whether they remain valid in the Lorentzian setting.

• Riemannian homogeneous gradient Ricci solitons are rigid [85]. We showed that this
is not true in the Lorentzian setting and gave some partial results on the character-
ization of Lorentzian homogeneous gradient Ricci solitons. One might wonder if the
underlying structure of isotropic homogeneous gradient Ricci solitons is a pp-wave
in view of the results in Section 4.3.

However, it may happen that some additional hypothesis on the curvature of such
homogeneous spaces is needed. One such condition could be the harmonicity of the
Weyl tensor as it provided some useful information in the Riemannian setting [52].

• Riemannian Ricci solitons whose curvature operator R : Λ2(M) → Λ2(M) is non-
negative have been extensively investigated. Although bounds on the sectional cur-
vature of Lorentzian manifolds are very rigid, one may expect to obtain some infor-
mation by considering the sign of the curvature tensor as in [4].
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Part II

Generalizations of gradient Ricci
solitons
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Chapter 5

Homogeneous Ricci solitons

The purpose of this chapter is to discuss homogeneous Lorentzian Ricci solitons in dimen-
sion three. Three-dimensional locally homogeneous Lorentzian manifolds are either locally
symmetric or locally isometric to a three-dimensional Lie group equipped with a left-
invariant Lorentzian metric. Moreover, three-dimensional locally symmetric Lorentzian
manifolds which are not of constant sectional curvature either are locally isometric to a
Lorentzian product of a real line and a surface of constant Gauss curvature, or they are
Walker manifolds with two-step nilpotent Ricci operator [27].

As proved in [39] (see also [60, 83]), three-dimensional Lie groups do not admit left-
invariant Riemannian Ricci solitons. In this chapter we study the corresponding existence
problem in Lorentzian signature. This context was also investigated in [80], showing the
existence of expanding, steady and shrinking left-invariant Ricci solitons. Besides their
geometric interest, homogeneous Ricci solitons are also important in Physics, as they have
been used in the construction of black holes [60, 61].

We organize this chapter as follows. First of all we consider the existence of Ricci soli-
tons given by left-invariant vector fields on Lie groups; we provide a complete description
and study some geometric properties in Section 5.1. Secondly, in Section 5.2, we focus
on the study of Ricci solitons on three-dimensional Walker manifolds with nilpotent Ricci
operator, proving the existence of expanding, steady and shrinking locally symmetric Ricci
solitons. The results of this chapter are collected in [14].

5.1 Invariant Ricci solitons on three-dimensional Lie groups

Let (G, 〈 · , · 〉) be a three-dimensional Lie group equipped with a left-invariant metric.

Definition 5.1 (G, 〈 · , · 〉, X) is an left-invariant Ricci soliton if (1.26) holds and X is a
left-invariant vector field.

A complete description of left-invariant Ricci solitons on three-dimensional Lie groups,
is given in [14]. The result is summarized as follows
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Theorem 5.2 Let G be a three-dimensional Lorentzian Lie group equipped with a left-
invariant metric. (G, 〈 · , · 〉, X) is a left-invariant Ricci soliton if and only if it corresponds
to one of the following:

(i) G is a unimodular Lie group with one of the following Lie algebras:

(i.1) [e1, e2] = 1
2 e2 − (β − 1

2) e3,

[e1, e3] = −(β + 1
2) e2 − 1

2 e3,

[e2, e3] = α e1,

with either α = 0 or α = β 6= 0. If α = 0 then G = E(1, 1), while if α = β 6= 0
then G = O(1, 2) or G = SL(2,R).

(i.2) [e1, e2] = − 1√
2
e1 − α e3,

[e1, e3] = − 1√
2
e1 − α e2,

[e2, e3] = α e1 + 1√
2
e2 − 1√

2
e3.

If α = 0 then G = E(1, 1), while if α 6= 0 then either G = O(1, 2) or
G = SL(2,R).

(ii) G is a non-unimodular Lie group with Lie algebra given by

[e1, e2] = − 1√
2

(
α e1 + 1√

2
β (e2 + e3)

)
,

[e1, e3] = 1√
2

(
α e1 + 1√

2
β (e2 + e3)

)
, α+ δ 6= 0, δ 6= 0

[e2, e3] = 1√
2
δ (e2 + e3).

In all the cases above, {e1, e2, e3} is an orthonormal basis of signature (+ + −) of the
corresponding Lie algebra.

Remark 5.3 The invariant Ricci soliton structures in previous theorem satisfy the fol-
lowing:

(i.1) Ricci solitons are steady (λ = 0) if α = 0 and the left-invariant vector field is given
by X = −β e1.

Ricci solitons are expanding
(
λ = −1

2 β
2
)

if α = β 6= 0, and there exists a one-
parameter family of left-invariant Ricci solitons given by X = −1

2 β e1 + t e2 + t e3,
for any t ∈ R.

(i.2) Ricci solitons are expanding
(
λ = −1

2 α
2
)

and the left-invariant vector field is given
by X = α e1 − 1√

2
e2 + 1√

2
e3.

(ii) In the general case, Ricci solitons are steady and the left-invariant vector field is

given by X = α2−αδ
2δ
√

2
(e2 + e3). Moreover, in the special case when α = 1

2 δ, the
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left-invariant Ricci solitons are given by

X = −2βλ

δ2
e1 −

δ4 + 8(δ2 − 2β2)λ

8δ3
√

2
e2 −

δ4 − 8(δ2 + 2β2)λ

8δ3
√

2
e3

and they can be expanding, steady or shrinking, depending on the value of λ.

Remark 5.4 Note that none of the Lie algebras in Theorem 5.2 have a Riemannian coun-
terpart. This agrees with the results in [39] on non-existence of non-trivial left-invariant
Ricci solitons on Riemannian Lie groups. On the other hand, some three-dimensional Lie
groups admit non-trivial Ricci solitons which are not left-invariant [41].

Taking into account the classification given in Theorem 5.2, we have the following

Theorem 5.5 A non-symmetric three-dimensional Lorentzian Lie group with a left-invar-
iant metric results in a non-trivial Ricci soliton if and only if the Ricci operator Ric has
exactly three equal eigenvalues.

Let × denote the Lorentzian vector product on R3
1 induced by the product of the

para-quaternions (i.e., e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = e2, where {e1, e2, e3} is
an orthonormal basis of signature (+ + −)). The Lie bracket [ · , · ] defines the corre-
sponding Lie algebra g, which is unimodular if and only if the endomorphism L defined
by [Z, Y ] = L(Z × Y ) is self-adjoint [89] and non-unimodular if L is not self-adjoint. We
recall that the Ricci operator, Ric, being self-adjoint, is always diagonalizable in the Rie-
mannian case, while four different possibilities can occur at each point of a Lorentzian
manifold (cf. Remark 1.1).

For the sake of completeness we include a brief description of three-dimensional uni-
modular and non-unimodular Lie groups. Theorem 5.2 will be a consequence of the analy-
sis carried out in Subsections 5.1.1 and 5.1.2. Theorem 5.5 will follow from the subsequent
analysis and the proof will be completed in Subsection 5.1.3.

5.1.1 Unimodular Lie groups

Lie groups having unimodular Lie algebras compatible with the Ricci soliton equation
(1.26), and listed in Theorem 5.2, can be deduced from [89] (see also [27]). Considering
the different types of L, we have the following four classes of unimodular three-dimensional
Lie algebras (we follow notation in [56]):

Type (Ia).

If L is diagonalizable with eigenvalues {α, β, γ} with respect to an orthonormal basis
{e1, e2, e3} of signature (+ +−), the corresponding Lie algebra is given by

(5.1) gIa : [e1, e2] = −γ e3, [e1, e3] = −β e2, [e2, e3] = α e1.
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Up to symmetries, the only non-vanishing components of the curvature tensor are given
by

R1221 = 1
4

(
α2 + β2 − 3γ2 − 2αβ + 2αγ + 2βγ

)
,

R1313 = 1
4

(
α2 − 3β2 + γ2 + 2αβ − 2αγ + 2βγ

)
,

R2332 = 1
4

(
3α2 − β2 − γ2 − 2αβ − 2αγ + 2βγ

)
,

and the Ricci operator is diagonalizable (that is, of type (Ia)) with respect to the basis
{e1, e2, e3} with eigenvalues

(5.2) λ1 = 1
2

(
(β − γ)2 − α2

)
, λ2 = 1

2

(
(α− γ)2 − β2

)
, λ3 = 1

2

(
(α− β)2 − γ2

)
.

For an arbitrary vector X =
3∑
i=1
Xiei, from equation (5.1) we get

LXg =

 0 X3(α− β) X2(γ − α)
X3(α− β) 0 X1(β − γ)
X2(γ − α) X1(β − γ) 0

 .

Hence, by (1.26), there exist a Ricci soliton of this type if and only if the following system
of equations is satisfied:

(5.3)



(β − γ)2 − α2 = 2λ,

(α− γ)2 − β2 = 2λ,

(α− β)2 − γ2 = 2λ,

X1(β − γ) = 0,

X2(α− γ) = 0,

X3(α− β) = 0.

Now, from (5.2), it is clear that any solution of (5.3) gives rise to an Einstein metric.
Therefore there are no homogeneous non-trivial Ricci solitons of type (Ia).

Type (Ib).

Assume L has a complex eigenvalue. Then

L =

 α 0 0
0 γ −β
0 β γ

 , β 6= 0,

with respect to an orthonormal basis {e1, e2, e3} of signature (+ +−). The corresponding
Lie algebra is given by

gIb : [e1, e2] = β e2 − γ e3, [e1, e3] = −γ e2 − β e3, [e2, e3] = α e1.
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The non-zero components of the curvature tensor (up to symmetries) are

R1221 = R1313 = 1
4

(
α2 + 4β2

)
, R2332 = 3

4 α
2 + β2 − αγ, R1231 = β(α− 2γ).

The Ricci operator, with respect to the basis {e1, e2, e3}, is described as follows:

Ric =

 −1
2(α2 + 4β2) 0 0

0 1
2 α(α− 2γ) −β(α− 2γ)

0 β(α− 2γ) 1
2 α(α− 2γ)

 , β 6= 0.

Hence, Ric is of type (Ib) if α 6= 2γ and (Ia) if α = 2γ. For X =
3∑
i=1
Xiei, one has

LXg =

 0 X2β +X3(α− γ) X3β +X2(γ − α)
X2β +X3(α− γ) −2X1β 0
X3β +X2(γ − α) 0 −2X1β

 ,

and thus, we have a homogeneous Ricci soliton of type (Ib) if and only if

(5.4)



α2 + 4β2 = −2λ,

α2 − 2αγ − 4X1β = 2λ,

α2 − 2αγ + 4X1β = 2λ,

X3(α− γ) +X2β = 0,

X2(α− γ)−X3β = 0,

β(α− 2γ) = 0.

Since β 6= 0, the last equation in (5.4) gives α− 2γ = 0. Hence, the second and third
equations simplify to −4X1β = 2λ and 4X1β = 2λ, respectively, which imply X1 = λ = 0.
Finally, from the first equation one gets that there are no solutions of (5.4) with β 6= 0.
Therefore there are no homogeneous Ricci solitons of type (Ib).

Type (II).

Assume L has a double root of its minimal polynomial. Then, with respect to an orthonor-
mal basis {e1, e2, e3} of signature (+ +−), one has

L =

 α 0 0
0 1

2 + β −1
2

0 1
2 −1

2 + β


and the corresponding Lie algebra is given by

gII : [e1, e2] = 1
2 e2 −

(
β − 1

2

)
e3, [e1, e3] = −

(
β + 1

2

)
e2 − 1

2 e3, [e2, e3] = α e1.
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The non-zero components of the curvature tensor are (up to symmetries) given by

R1221 = 1
4

(
α2 − 2α+ 4β

)
, R1313 = 1

4

(
α2 + 2α− 4β

)
,

R2332 = 1
4 α(3α− 4β), R1231 = 1

2 α− β.

Hence the Ricci operator takes the form

(5.5) Ric =

 −1
2 α

2 0 0
0 1

2 (α+ 1)(α− 2β) −1
2 α+ β

0 1
2 α− β

1
2 (α− 1)(α− 2β)

 ,

with eigenvalues λ1 = −1
2 α

2 and λ2 = λ3 = 1
2 α(α− 2β). Thus, Ric is of type (II) if and

only if α = 0 or α = β.

For a vector field X =
3∑
i=1
Xiei, we get

LXg =

 0 a12 a13

a12 −X1 X1

a13 X1 −X1

 ,

where a12 =
1

2
(X2 +X3(2α− 2β − 1)) and a13 =

1

2
(X3 +X2(2β − 2α− 1)). Necessary

and sufficient conditions for the existence of a homogeneous Ricci soliton of type (II) are
then given by

(5.6)



α2 = −2λ,

α2 − 2αβ + α− 2β − 2X1 = 2λ,

α2 − 2αβ − α+ 2β + 2X1 = 2λ,

α− 2β − 2X1 = 0,

(2α− 2β)X3 +X2 −X3 = 0,

(2α− 2β)X2 +X2 −X3 = 0.

From the second and forth equation in (5.6) one gets α2− 2αβ− 2λ = 0. Substituting
this relation into the first equation, we then obtain α(α−β) = 0. Hence, either α = 0 6= β
or α = β 6= 0. (We excluded the case α = β = 0, since by (5.5) this corresponds to a flat
manifold.)

First case: α = 0 6= β. From the first equation in (5.6) one gets λ = 0, the last two
equations give X2 = X3 and the fourth equation yields X1 = −β. Therefore, the (space-
like) vector field

(5.7) X = −β e1

defines a homogeneous (steady) Ricci soliton. By (5.5), the Ricci operator is two-step
nilpotent but non-vanishing (since β 6= 0), that is, of type (II) with a single eigenvalue
equal to zero.
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Second case: α = β 6= 0. In this case, one easily gets from (5.6) that λ = −1
2 β

2, that

X1 = −1
2 β and that X2 = X3; thus, there exists a one-parameter family of homogeneous

expanding Ricci solitons, given by

(5.8) X = −1

2
β e1 + δ e2 + δ e3, δ ∈ R.

Note that the causality of X is again fixed and one can only find examples of solitons for
X spacelike but not null or timelike. Since α = β 6= 0, (5.5) yields that the Ricci operator
is of type (II), with one non-zero eigenvalue equal to −1

2 α
2.

Remark 5.6 A Lie group of type (II) with α = 0 or α = β is locally symmetric if and
only if β = 0 (see [26]). This shows that previous examples are not locally symmetric.

Type (III).

Assume L has a triple root of its minimal polynomial. Then

L =

 α 1√
2

1√
2

1√
2

α 0

− 1√
2

0 α


with respect to an orthonormal basis {e1, e2, e3} of signature (++−), and the correspond-
ing Lie algebra is given by

gIII :

{
[e1, e2] = − 1√

2
e1 − α e3, [e1, e3]=− 1√

2
e1 − α e2,

[e2, e3] = α e1 + 1√
2
e2 − 1√

2
e3.

Hence the non-zero components of the curvature tensor (up to symmetries) are

R1221 = 1
4

(
α2 + 4

)
, R1331 = 1− 1

4 α
2, R2323 = 1

4 α
2,

R1231 = 1, R1223 = R1323 = 1√
2
α.

The Ricci operator, expressed in terms of the basis {e1, e2, e3}, becomes

Ric =

 −
1
2 α

2 − 1√
2
α − 1√

2
α

− 1√
2
α −1

2(α2 + 2) −1
1√
2
α 1 1− 1

2 α
2

 ,

with a single eigenvalue −1
2 α

2. If α 6= 0, then Ric is of type (III), while Ric is two-step
nilpotent if α = 0.
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For a vector X =
3∑
i=1
Xiei, the Lie derivative has the following expression

LXg =
1√
2

 −2(X2 +X3) X1 X1

X1 2X3 X3 −X2

X1 X3 −X2 −2X2

 .

Thus the Ricci soliton condition (1.26) on gIII gives rise to the following system of equa-
tions:

(5.9)



α2

2 +
√

2X2 +
√

2X3 = −λ,
α2

2 −
√

2X3 + 1 = −λ,
α2

2 −
√

2X2 − 1 = −λ,
1√
2

(X1 − α) = 0,

X2 −X3 +
√

2 = 0.

If we subtract half of the second and third equations from the first equation in (5.9),
we see that X2 = −X3 and therefore λ = −1

2 α
2. Moreover from the fourth equation

X1 = α. Hence any type (III) unimodular Lie group is a homogeneous Ricci soliton for

(5.10) X = α e1 −
1√
2
e2 +

1√
2
e3.

Remark 5.7 A vector field X defining a homogeneous Ricci soliton on gIII satisfies
〈X,X〉 = α2 and thus it is either spacelike or null. Correspondingly, the homogeneous
Ricci soliton is either expanding or steady. Note also that type (III) unimodular Lie
groups are not symmetric (see also [26]).

Our discussion above proves (i) of Theorem 5.2. The results we proved are summarized
in the following

Theorem 5.8 The following are all non-trivial homogeneous Lorentzian Ricci solitons
realized as unimodular Lorentzian Lie groups G:

a) G = E(1, 1), with Lie algebra as in Theorem 5.2–(i.1), α = 0 6= β. The homogeneous
Ricci soliton is steady and defined by a spacelike vector field (5.7).

b) G = O(1, 2) or SL(2,R), with Lie algebra as in Theorem 5.2–(i.1), α = β 6= 0. The
homogeneous Ricci soliton is expanding and defined by a spacelike vector field (5.8).

c) G = O(1, 2) or SL(2,R), with Lie algebra as in Theorem 5.2–(i.2), α 6= 0. The
homogeneous Ricci soliton is expanding and defined by a spacelike vector field (5.10).

d) G = E(1, 1), with Lie algebra as in Theorem 5.2–(i.2), α = 0. The homogeneous
Ricci soliton is steady and defined by a null vector field (5.10).

Remark 5.9 Ricci solitons listed in Theorem 5.8 are locally conformally flat if and only
if they correspond to G = E(1, 1), which is not locally symmetric.
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5.1.2 Non-unimodular Lie groups

Following [42], now we consider the rest of the three-dimensional Lie algebras g. We note
in passing that these are in fact all solvable. We shall exclude from our study the class G
corresponding to those Lie algebras where [x, y] = l(x)y− l(y)x for all x, y for some linear
map l on the Lie algebra. Briefly, all left-invariant Lorentzian metrics on groups of this
class have constant curvature, and this constant can be any real number [73, 78].

Given a non-unimodular g not in G, let u denote its unimodular kernel,

u = ker(tr ad : g→ R),

and let 〈 · , · 〉 be a Lorentzian metric tensor on g. There are two cases that we consider
separately.

If u is not a null plane (i.e., u is not tangent to the lightcone of 〈 · , · 〉 in g), then we
can choose a 〈 · , · 〉-orthonormal basis {e1, e2, e3} with e3 ⊥ u and [e1, e3] ⊥ [e2, e3] in u,
where ⊥ denotes 〈 · , · 〉-orthogonal. If u is a spacelike plane, then e3 is a timelike vector
and we have signature (−− +). If u is a spacetime plane (also called a timelike plane in
relativity), then e3 is spacelike and we have signature (+ − −) or (− + −). Taking into
account the semidirect product structure of our g, it easily follows that these last two
signatures produce equivalent geometries. We shall consider only (+−−) explicitly.

If u is a null plane, then we can choose a null basis {e1, e2, e3} with e3 a null vector,
e1, e2 ∈ u, and with

〈e3, e3〉 = 〈e2, e2〉 = 〈e1, e3〉 = 〈e1, e2〉 = 0,
〈e3, e2〉 = −〈e1, e1〉 = 1,

[e1, e3] ⊥ [e2, e3].

Then, non-unimodular Lorentzian Lie algebras of non-constant sectional curvature are
given, with respect to a suitable basis {e1, e2, e3}, by

(5.11) gIV : [e1, e2] = 0, [e1, e3] = α e1 + β e2, [e2, e3] = γ e1 + δ e2,

where α+ δ 6= 0 and one of the following holds:

IV.1 {e1, e2, e3} is orthonormal with 〈e1, e1〉 = −〈e2, e2〉 = −〈e3, e3〉 = −1 and the struc-
ture constants satisfy αγ − β δ = 0.

IV.2 {e1, e2, e3} is orthonormal with 〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = 1 and the structure
constants satisfy αγ + β δ = 0.

IV.3 {e1, e2, e3} is a pseudo-orthonormal basis with

〈 · , · 〉 =

 1 0 0
0 0 −1
0 −1 0


and the structure constants satisfy αγ = 0.

We analyze the three cases separately.
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Type (IV.1).

The non-zero components of the curvature tensor are given by

R1212 = 1
4

(
β2 + γ2 + 4α δ − 2β γ

)
,

R1313 = 1
4

(
4α2 − 3β2 + γ2 + 2β γ

)
,

R2332 = 1
4

(
β2 − 3γ2 + 4δ2 + 2β γ

)
.

Hence the Ricci operator is diagonalizable with eigenvalues

λ1 = 1
2(β2 − γ2 − 2α(α+ δ)),

λ2 = 1
2(γ2 − β2 − 2δ(α+ δ)),

λ3 = 1
2((β − γ)2 − 2(α2 + δ2)).

The Lie derivative of the metric for an arbitrary vector X =
3∑
i=1
Xiei is given by

LXg =

 −2αX3 X3(β − γ) X1α+X2γ
X3(β − γ) 2X3δ −X1β −X2δ
X1α+X2γ −X1β −X2δ 0

 ,

and thus necessary and sufficient conditions for the existence of an invariant homogeneous
Ricci soliton (1.26) on gIV.1 are given by

(5.12)



β2 − γ2 − 2α(α+ δ) + 4X3 α = 2λ,

γ2 − β2 − 2δ(α+ δ) + 4X3 δ = 2λ,

(β − γ)2 − 2(α2 + δ2) = 2λ,

X1 α+X2 γ = 0,

X1 β +X2 δ = 0,
X3(β − γ) = 0.

If X3 = 0, then the first three equations in (5.12) imply λ1 = λ2 = λ3. On the other
hand, if X3 6= 0, then the last equation in (5.12) gives β = γ. Since αγ − β δ = 0, from
α + δ 6= 0 and (5.12) we obtain α = δ and hence λ1 = λ2 = λ3. Thus, all solutions of
(5.12) are Einstein, and hence of constant sectional curvature.

Type (IV.2).

Assume the non-unimodular Lie algebra gIV has a basis as in IV.2. Then, a straightforward
calculation shows that the non-zero components of the curvature tensor are given by

R1212 = α δ − 1
4(β + γ)2,

R1331 = 1
4

(
4α2 + 3β2 − γ2 + 2βγ

)
,

R2323 = 1
4

(
β2 − 3γ2 − 4δ2 − 2βγ

)
.
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Therefore, the Ricci operator is diagonalizable with eigenvalues

λ1 = 1
2(β2 − γ2 + 2α(α+ δ)),

λ2 = 1
2(γ2 − β2 + 2δ(α+ δ)),

λ3 = 1
2((β + γ)2 + 2(α2 + δ2)).

A straightforward calculation from (5.11), using the fact that the structure constants
satisfy αγ + β δ = 0 and α + δ 6= 0, shows that the Lie derivative of the metric with

respect to a vector X =
3∑
i=1
Xiei is given by

LXg =

 2X3α X3(β + γ) −X1α−X2γ
X3(β + γ) 2X3δ −X1β −X2δ
−X1α−X2γ −X1β −X2δ 0

 .

Then an invariant Ricci soliton must satisfy

(5.13)



β2 − γ2 + 2α(α+ δ) + 4X3α = 2λ,

γ2 − β2 + 2δ(α+ δ) + 4X3δ = 2λ,

(β + γ)2 + 2(α2 + δ2) = 2λ,

X1α+X2γ = 0,

X1β +X2δ = 0,

X3(β + γ) = 0.

A similar analysis to that developed for type (IV.1) shows that an invariant homoge-
neous Ricci solitons of type (IV.2) are necessarily of constant sectional curvature.

Type (IV.3).

Let now gIV admit a pseudo-orthonormal basis as in IV.3. We then consider the orthonor-
mal basis

ẽ1 := e1, ẽ2 := 1√
2

(e2 − e3), ẽ3 := 1√
2

(e2 + e3),

with signature (+ +−). Then the non-zero components of the curvature tensor are given
by

R1212 = 1
4 (2α δ − 2α2 − γ(2β + γ)), R1213 = 1

2 (α2 + β γ − α δ),

R1313 = 1
4 (2α δ − 2α2 + γ(γ − 2β)), R2323 = −3

4 γ
2.

The Ricci operator in the new basis {ẽ1, ẽ2, ẽ3} becomes

Ric =

 −1
2 γ

2 0 0
0 1

2 (α(δ − α) + γ(γ − β)) 1
2 (α(α− δ) + βγ)

0 −1
2 (α(α− δ) + βγ) 1

2 (α(α− δ) + γ(β + γ))

 ,
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which has eigenvalues λ1 = −1
2 γ

2 and λ2 = λ3 = 1
2 γ

2. Thus, Ric is of type (II) (see
Remark 1.1).

For an arbitrary vector X =
3∑
i=1
Xiẽi, the Lie derivative of the metric becomes

LXg =


√

2α(X3 −X2) a12 a13

a12 X1β +
√

2X3δ −X1β − 1√
2
δ(X2 +X3)

a13 −X1β − 1√
2
δ(X2 +X3) X1β +

√
2X2δ

 ,

where
a12 = 1

2

(
X3(β + 2γ) +

√
2X1α−X2β

)
,

a13 = 1
2

(
X2(β − 2γ)−

√
2X1α−X3β

)
.

Now, since αγ = 0, we consider the possibilities α = 0 and γ = 0 separately. Note that if
α = γ = 0, then the metric gIV is flat.

Assume first that α = 0 6= γ. Then, (1.26) holds if and only if

(5.14)



γ2 = −2λ,

γ2 − β γ + 2X1β + 2
√

2X3δ = 2λ,

γ2 + β γ − 2X1β − 2
√

2X2δ = 2λ,

−2γX3 +X2β −X3β = 0,

2γX2 −X2β +X3β = 0,

β γ − 2X1β −
√

2X2δ −
√

2X3δ = 0,

for a vector X =
3∑
i=1
Xiẽi. From the fourth and fifth equation in (5.14) we get X2 = X3,

which implies, using the second and third equations, that (5.14) admits no solutions.
Assume now α 6= 0 = γ. Then, (1.26) reduces to the following system of equations

(5.15)



2
√

2α(X2 −X3) = −2λ,

α δ − α2 + 2X1β + 2
√

2X3δ = 2λ,

α2 − α δ − 2X1β − 2
√

2X2δ = 2λ,
√

2X1α−X2β +X3β = 0,

α2 − α δ − 2X1β =
√

2δ(X2 +X3),

for a vector X =
3∑
i=1
Xiẽi. We subtract the third equation to the second one and conclude,

using the first equation, that either 2α = δ or X2 = X3. We analyze both cases separately.
Set first α = 1

2δ 6= 0. Then there exists homogeneous Ricci solitons for

(5.16) X = −2β λ

δ2
ẽ1 −

δ4 + 8(δ2 − 2β2)λ

8
√

2δ3
ẽ2 −

δ4 − 8(δ2 + 2β2)λ

8
√

2δ3
ẽ3.
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Note that the corresponding solitons may be expanding, steady or shrinking depending
on the value of λ, which can be chosen arbitrarily.

Set now X2 = X3. Then necessarily λ = 0 and X1 = 0. The remaining equation
α2 − α δ − 2

√
2X2δ = 0 in (5.15) gives rise to homogeneous steady Ricci solitons for

(5.17) X =
α2 − α δ

2
√

2δ
(ẽ2 + ẽ3) .

In all cases above the Ricci operator is two-step nilpotent and the metric is non-
symmetric whenever α δ(α− δ) 6= 0. Furthermore, for the particular choice δ = 0 6= α, the
resulting metric is symmetric but not of constant curvature [26].

The results of this subsection prove case (ii) of Theorem 5.2 and are summarized in
the following

Theorem 5.10 A non-unimodular Lie group G equipped with a left-invariant Lorentzian
metric results in a non-trivial invariant homogeneous Ricci soliton if and only if its non-
unimodular Lie algebra gIV satisfies α 6= 0 = γ.

Steady Ricci solitons, defined by null vector fields (5.17), exist for any choice of α 6= 0,
β and δ.

In the special case δ = 2α, there exist expanding, steady and shrinking Ricci solitons,
defined by vector fields (5.16), whose causal character depends on λ.

Remark 5.11 Non-trivial Ricci solitons in Theorem 5.10 are locally conformally flat
if and only if γ = β = 0, in which case they are not locally symmetric. Therefore,
Theorem 5.10 provides examples of complete locally conformally flat expanding, steady
and shrinking Ricci solitons.

5.1.3 Some remarks on left-invariant Ricci solitons

Remark 5.12 Since the Weyl tensor of any three-dimensional Lorentzian manifold is
identically zero, the whole curvature is completely determined by the Ricci operator. Fur-
ther more observe that although the Ricci operator is self-adjoint, it may have non-trivial
Jordan form due to the indefiniteness of the metric. The Ricci operators corresponding to
the Ricci solitons in Theorem 5.2 are described below.

• The Ricci operator corresponding to a unimodular Lie group with Lie algebra as in
(i.1) is given by

Ric =

 0 0 0

0 −β β

0 −β β


if α = 0, and by

Ric = −1

2

 β2 0 0

0 β(1 + β) −β
0 β β(β − 1)
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if α = β 6= 0. Hence the Ricci operator is two-step nilpotent (if α = 0) or otherwise
it has single eigenvalue −1

2 β
2, which is a double root of the minimal polynomial (if

α = β 6= 0).

• The Ricci operator corresponding to a unimodular Lie group with Lie algebra as in
(i.2) is given by

Ric =


−α2

2 − α√
2

− α√
2

− α√
2
−1

2 (α2 + 2) −1

α√
2

1 1− α2

2

 .

Hence the Ricci operator has a single eigenvalue −1
2 α

2, which is a triple root of the
minimal polynomial (if α 6= 0) or a double root of the minimal polynomial (if α = 0).

• The Ricci operator corresponding to a non-unimodular Lie group with Lie algebra
as in (ii) is given by

Ric =

 0 0 0

0 1
2 α(δ − α) −1

2 α(δ − α)

0 1
2 α(δ − α) −1

2 α(δ − α)

 .

Hence the Ricci operator is two-step nilpotent.

This proves Theorem 5.5.

Remark 5.13 Two natural generalizations of locally symmetric spaces are the classes of
P-spaces and C-spaces defined as follows. A Lorentzian manifold (M, g) is said to be a
P-space if the eigenspaces of the Jacobi operators are parallel along timelike geodesics. A
Lorentzian manifold (M, g) is said to be a C-space if the eigenvalues of the Jacobi operators
are constant along timelike geodesics. Moreover, a Lorentzian manifold is simultaneously
a P-space and a C-space if and only if it is locally symmetric [19].

It was shown in [30] that a homogeneous Lorentzian three-dimensional manifold is a
P-space if and only if the Ricci operator is two-step nilpotent. Hence it follows from
Remark 5.12 that

• Left-invariant Ricci solitons corresponding to (i.1) and (i.2) with α = 0, as well as
any left-invariant Ricci soliton corresponding to (ii) are P-spaces.

• Any non-symmetric homogeneous P-space admits a left-invariant Ricci soliton.

On the other hand, three-dimensional Lorentzian C-spaces are characterized by the fact
that their Ricci tensor is cyclic parallel (i.e., ∇Xρ(X,X) = 0). Now, as an application of
the results in [26, 30] one has

• Left-invariant Ricci solitons corresponding to (i.1) with α = β 6= 0 are C-spaces.
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• Any non-symmetric homogeneous C-space with non-diagonalizable Ricci operator is
a left-invariant Ricci soliton.

Remark 5.14 A straightforward calculation shows that Lie groups given by (i.1) and
(i.2) in Theorem 5.2 are not locally symmetric unless they are flat. On the other hand,
Lie groups given by (ii) are non-flat locally symmetric if and only if δ = 0. In this
case, they are Cahen-Wallach symmetric spaces and they admit expanding, steady and
shrinking Ricci solitons as an immediate application of Theorem 3.8. However note that
none of them are left-invariant, since no left-invariant Ricci soliton exists on a Lie algebra
of type (IV.3) with γ = δ = 0, unless the metric is flat (see Remark 5.3).

It follows from the discussion in Section 1.4.2 that a Lorentzian manifold admits two-
distinct Ricci solitons if and only if it admits a homothetic vector field. The existence of
homothetic vector fields on three-dimensional Lie groups was discussed in [31], from where
it follows that

Theorem 5.15 [31] A non-flat three-dimensional homogeneous Lorentzian manifold (M, g)
admits two distinct Ricci solitons if and only if it is locally conformally flat and its Ricci
operator is two-step nilpotent.

Remark 5.16 Three-dimensional locally conformally flat Lorentzian Lie groups corre-
spond to cases (i.2) for α = 0 and (ii) in Theorem 5.2. Note that left-invariant homothetic
vector fields exist in non-unimodular Lie groups as in Theorem 5.2–(ii) with α = 1

2 δ but
not in unimodular Lie groups corresponding to Theorem 5.2–(i.2) [31]. This agrees with
the different possibilities of Ricci solitons described in Remark 5.3. Hence, although lo-
cally conformally flat Lie groups with two-step nilpotent Ricci operators admit two distinct
Ricci solitons, these are not left-invariant in general.

5.2 Ricci solitons on three-dimensional Walker manifolds

We now consider three-dimensional Lorentzian manifolds (M, g) admitting a parallel null
vector field U . We refer to [21, 40] for more information on the geometry of three-
dimensional Walker metrics. Although we are going to use the classical notation on Walker
metrics, these manifolds correspond to three-dimensional pp-waves (see Section 1.3.2). As
in Chapter 4, in order to simplify the notation we denote with sub-indices the correspond-

ing partial derivatives, thus, for example, ft = ∂f
∂t , ftx = ∂2f

∂t∂x ,. . . .

Following [97] choose adapted coordinates (t, x, y) where the Lorentzian metric tensor
expresses as

(5.18) g =

 0 0 1
0 1 0
1 0 φ(x, y)

 ,
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for some function φ(x, y), where the parallel null vector field is U = ∂
∂t . Then, the associ-

ated Levi-Civita connection is described by

(5.19) ∇∂x∂y = 1
2 ∂xφ∂t, ∇∂y∂y = 1

2 ∂yφ∂t −
1
2 ∂xφ∂x.

As shown in [40], the Ricci tensor ρ and the Ricci operator Ric of a metric g as in
(5.18), expressed in the coordinate basis, take the form

(5.20) ρ = −1

2
φxx

 0 0 0

0 0 0

0 0 1

 , Ric = −1

2
φxx

 0 0 1

0 0 0

0 0 0

 .

Hence, if φxx = 0, then (M, g) is flat, while for φxx 6= 0 the Ricci operator Ric is two-step
nilpotent.

Next, let X = (A(t, x, y),B(t, x, y), C(t, x, y)) be an arbitrary vector field on M . A
straightforward calculation from (5.19) shows that the Lie derivative of the metric LXg
expresses in the coordinate basis as follows:

(5.21) LXg=

 2Ct εBt + Cx At + Cy + φ Ct
εBt + Cx 2εBx Ax + εBy + φ Cx

At + Cy + φ Ct Ax + εBy + φ Cx B φx + C φy + 2(Ay + φ Cy)

.
Now, from (5.20) and (5.21) we obtain the following necessary and sufficient conditions

for a strict Walker metric (5.18) to be a Ricci soliton:

(5.22)



2Ct = 0,

Cx + εBt = 0,

Cy +At + φ Ct = λ,

2Bx = λ,

Ax + εBy + φ Cx = 0,

2Ay + φxB + φyC − 1
2ε φxx = φ(λ− 2Cy).

The first equation in (5.22) gives C = C(x, y) and simplifies the third one. Since C does
not depend on t, we can easily integrate the second and third equations in (5.22) to get

A = (λ− Cy)t+G(x, y), B = −Cxt
ε

+H(x, y).

Therefore, the fourth equation in (5.22) now gives

(5.23) −2t Cxx + 2εHx = ε λ.

Since (5.23) must hold for any value of t, it implies at once Cxx = 0 and 2Hx = λ. By
integration we then have C = u(y)x+ v(y) and H = 1

2 λx+w(y). Then the fifth equation
in (5.22) becomes

φu(y)− 2t u′(y) + w′(y) +Gx = 0
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from where it follows that u(y) is constant: u(y) = α. Then, the system (5.22) now reduces
to

(5.24)


αφ+ εw′(y) +Gx = 0,

2φ v′(y)− λφ− 2t v′′(y) + φy(αx+ v(y)) + 2Gy

+ φx
(
w(y) + λ

2 x− ε α t
)

= 1
2ε φxx.

The second equation in (5.24) holds for any value of t. Hence αφx
ε = −2v′′(y) and thus

αφxx = 0. Since φxx = 0 if and only if the Walker metric is flat, we assume α = 0 and
(5.24) reduces to

(5.25)

{
εw′(y) +Gx = 0,

2φ v′(y)− λφ− 2t v′′(y) + φy v(y) + 2Gy + φx
(
w(y) + λ

2 x
)

= 1
2ε φxx.

The first equation in (5.25) gives G(x, y) = −xw′(y) + µ(y). Then, since the second
equation in (5.25) must be independent of t, one gets v′′(y) = 0 and hence v(t) = β y+ γ.

Finally we conclude that there exist non-trivial Ricci solitons given by strict Walker
metrics (5.18) if and only if the vector field X takes the form

X(t, x, y)=

(
t (λ− β)− ε xw′(y) + µ(y),

1

2
λx+ w(y), β y + γ

)
,

for some real constants β, γ and smooth functions w and µ, satisfying the partial differ-
ential equation

(5.26) 2β φ− λφ+ 2µ′(y)− 2ε xw′′(y) + φy(β y + γ) + φx

(
λ

2
x+ w(y)

)
=

1

2ε
φxx.

One can not expect the partial differential equation (5.26) to admit solutions in general.
We now turn our attention to the special case when the Walker metric is locally symmetric.
Locally symmetric Walker metrics (5.18) are characterized by the fact that their defining
function φ(x, y) is given by (see [21, 40])

(5.27) φ(x, y) = x2κ+ xP (y) +Q(y),

for arbitrary functions P and Q, and constant κ which vanishes if and only if the metric
is flat. When φ satisfies (5.27), a straightforward calculation shows that equation (5.26)
becomes

(5.28)
0 = 2x2β κ+ x

(
2β P (y)− 1

2 λP (y) + 2κw(y) + (β y + γ)P ′(y)− 2w′′(y)
)

− κ+ 2β Q(y)− λQ(y) + P (y)w(y) + (β y + γ)Q′(y) + 2µ′(y).

But (5.28) must hold for all values of x. Therefore, it gives β = 0 (excluding the flat
case κ = 0) and reduces to the system

(5.29)

{
2w′′(y)− 2κw(y) = γ P ′(y)− 1

2 λP (y),

2µ′(y) = κ− P (y)w(y) + λQ(y)− γQ′(y).
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The second equation in (5.29), by direct integration, permits to express µ in terms
of w and P , Q. The first equation in (5.29) is a second order linear ordinary differential
equation for w determined by the smooth function γ P ′(y) − λ

2 P (y), which has globally
defined solutions. Therefore, we have proved the following

Theorem 5.17 Any three-dimensional symmetric Walker metric (5.18) is a Ricci soliton,
which can be expanding, steady or shrinking and is defined by vector fields

(5.30) X(t, x, y)=

(
λ t− xw′(y) + µ(y),

1

2
λx+ w(y), γ

)
,

where λ is the constant in (1.26), γ is an arbitrary constant and the functions w and µ
are arbitrary solutions of (5.29). In general, the causal character of X may vary with the
point.



Chapter 6

Quasi-Einstein manifolds

In this chapter we focus on another generalization of gradient Ricci solitons which is
related to the geometry of smooth metric measure spaces. A smooth metric measure
space is a Riemannian manifold with a measure which is conformal to the Riemannian
one. Formally, it is a triple (M, g, e−fdvolg), where M is a complete n-dimensional smooth
manifold with Riemannian metric g, f is a smooth real valued function on M , and dvolg is
the Riemannian volume density on (M, g). This is also sometimes called a manifold with
density.

A natural extension of the Ricci tensor to smooth metric measure spaces is the m-
Bakry-Emery Ricci tensor

ρmf = ρ+ Hesf −
1

m
df ⊗ df, for 0 < m ≤ ∞.

When f is constant, this is the usual Ricci tensor. We call a quadruple (M, g, f,− 1
m) quasi-

Einstein if it satisfies the equation ρmf = λ g, for some λ ∈ R. Quasi-Einstein manifolds
are a generalization of Einstein metrics and they contain gradient Ricci solitons as a limit
case when m = ∞. Moreover they are also closely related to the construction of warped
product Einstein metrics. Recall here that a complete classification of warped product
Einstein metrics is still an open problem in spite of their interest in describing standard
stationary metrics. Quasi-Einstein metrics and, more generally, the m-Bakry-Emery Ricci
tensor allows some generalizations of the celebrated Hawking-Penrose singularity theorems
and the Lorentzian splitting theorem [36].

We are going to work in a slightly more general setting.

Definition 6.1 Let (M, g) be a Lorentzian manifold of dimension n + 2, with n ≥ 1.
Let f be a smooth function on M and let µ ∈ R be an arbitrary constant. We say that
(M, g, f, µ) is quasi-Einstein if there exists λ ∈ R so that

(6.1) Hesf +ρ− µdf ⊗ df = λg.

85
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If we specialize the elements of this quadruple, then we get some important families
of manifolds. Thus, for example, if µ = 0 then quasi-Einstein manifolds correspond
to gradient Ricci solitons and if f is constant (6.1) reduces to the Einstein equation.
There are other interesting relations between quasi-Einstein manifolds and some well-
known structures:

(a) If
(
M, g, f,− 1

n

)
is quasi-Einstein, then the conformal metric g̃ = e−

2
n
fg is Einstein

since, from the expression of the Ricci tensor of a conformal metric, we get [91]

ρg̃ = ρg + Hesf +
1

n
df ⊗ df +

1

n
(∆f − ‖∇f‖2)g(6.2)

=
1

n
(∆f − ‖∇f‖2 + nλ)e

2
n
f g̃.

In particular, if g is also locally conformally flat, then g̃ has constant curvature.

(b) Let M ×ϕ F be an Einstein warped product. Then it follows from the expressions of
the Ricci tensor of the warped product (see, for example, [53]) that(
M, g,−(dim(F )) log(ϕ), 1

dim(F )

)
is quasi-Einstein.

Moreover, it follows from [66] that for any quasi-Einstein manifold (M, g, f, µ) with
µ = 1

m > 0, there exist suitable fibers (F, gF ) so that the warped product M ×ϕ F
is Einstein, where ϕ = e−µf .

Locally conformally flat complete quasi-Einstein Riemannian manifolds were recently
classified in [38]. The purpose of this chapter is to describe the local structure of locally
conformally flat quasi-Einstein manifolds in the Lorentzian setting. The main result is
summarized as follows

Theorem 6.2 Let (M, g, f, µ) be a locally conformally flat Lorentzian quasi-Einstein man-
ifold.

(i) If µ = − 1
n , then (M, g) is globally conformally equivalent to a space form.

(ii) If µ 6= − 1
n , then

(a) In a neighborhood of any point where ‖∇f‖ 6= 0, M is locally isometric to a
warped product I×ϕF , where I is a real interval and F is a (n+1)-dimensional
fiber of constant sectional curvature.

(b) If ‖∇f‖ = 0, then (M, g) is locally isometric to a plane wave, i.e., (M, g) is
locally isometric to R2 × Rn with metric

g = 2dudv +H(u, x1, . . . , xn)du2 +

n∑
i=1

dx2
i ,

where H(u, x1, . . . , xn) = a(u)
n∑
i=1
x2
i +

n∑
i=1
bi(u)xi+c(u), for some functions a, bi,

c, and function f(u, v, x1, . . . , xn) = f0(u) with f ′′0 (u)−µ (f ′0(u))2−na(u) = 0.
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Depending on the character of ∇f we say that a quasi-Einstein manifold is non-
isotropic if ‖∇f‖ 6= 0 or isotropic if ‖∇f‖ = 0. In the following sections we will study
both cases separately.

The chapter is organized as follows. In Section 6.1 we study some formulae and prop-
erties involving geometric objects of quasi-Einstein manifolds, specially the Ricci tensor.
The analysis of case (ii)–(a) in Theorem 6.2 is carried out in Section 6.2. In Section 6.3
we obtain some results on the isotropic case and, finally, we study locally conformally flat
quasi-Einstein pp-waves in Section 6.4 to complete the proof of Theorem 6.2. The main
results of this chapter are collected in [17, 20].

6.1 General remarks on locally conformally flat quasi-Einstein
manifolds

Let (M, g, f, µ) be a Lorentzian quasi-Einstein manifold. As observed above, if µ = − 1
n ,

the manifold is globally conformally equivalent to a space form. In what follows, we are
going to introduce some results and definitions that we will use in subsequent sections to
prove Theorem 6.2–(ii).

6.1.1 General formulae

Although the next result was given in [38], we include a sketch of a proof following a
different strategy in order to make this memoir as self-contained as possible.

Lemma 6.3 A Lorentzian quasi-Einstein manifold (M, g, f, µ) satisfies

τ + ∆f − µ‖∇f‖2 = (n+ 2)λ,(6.3)

∇τ = 2(λ− (n+ 2)λµ+ µ(1− µ)‖∇f‖2 + µ τ)∇f + (µ− 1)∇‖∇f‖2.(6.4)

Proof.

Equation (6.3) is obtained by simply contracting equation (6.1). Taking into account the
contracted Second Bianchi identity, ∇τ = 2 div(ρ), and the following Bochner formula,
div(∇∇f) = ρ(∇f) +∇∆f , we compute the divergence of Equation (6.1):

0 = div(λ g)(X)

= div(ρ+ Hesf −µdf ⊗ df)(X)

=
1

2
g(∇τ,X) + ρ(∇f,X) + g(∇∆f,X)

− µ g((div∇f)∇f,X)− µ g(∇∇f∇f,X).
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Covariantly differentiating Equation (6.3) we get ∇τ = −∇∆f+µ∇‖∇f‖2. Using this
equation and that ∇∇f∇f = 1

2 ∇‖∇f‖
2 we see that

0 =
1

2
g(∇τ,X) + λ g(∇f,X) + µ ‖∇f‖2g(∇f,X)− g(∇∇f∇f,X)

+ g(µ∇‖∇f‖2, X)− g(∇τ,X)− µ g(∆f∇f,X)− µ g(∇∇f∇f,X)

=g

(
−1

2
∇τ + (λ+ µ ‖∇f‖2 − µ∆f)∇f +

(
µ− 1

2

)
∇‖∇f‖2, X

)
.

Now we replace ∆f by (n+ 2)λ+ µ ‖∇f‖2 − τ to obtain Equation (6.4). �

Remark 6.4 If the quasi-Einstein manifold (M, g, f, µ) is isotropic, i.e., ‖∇f‖ = 0, then
Equation (6.4) reduces to

∇τ = 2(λ− µ((n+ 2)λ− τ))∇f.

Also note that, from Equation (6.1), one can write the Ricci operator in the direction of
∇f as

2 Ric(∇f) = 2λ∇f + 2µ ‖∇f‖2∇f −∇‖∇f‖2,
so, if ‖∇f‖ = 0, then Ric(∇f) = λ∇f and ∇f is an eigenvector of the Ricci operator
associated to the eigenvalue λ.

6.1.2 Some curvature properties of locally conformally flat quasi-Einstein
manifolds.

We proceed as in [52] to continue the study of the spectrum of the Ricci operator.

Lemma 6.5 Let (M, g, f, µ) be a locally conformally flat quasi-Einstein manifold of di-
mension n+ 2. Then, if µ 6= − 1

n , ∇f is an eigenvector of the Ricci operator.

Proof.
Since (M, g) is locally conformally flat the Schouten tensor is Codazzi, so

(6.5) (∇Xρ)(Y, Z)− X(τ)

2(n+ 1)
g(Y,Z) = (∇Y ρ)(X,Z)− Y (τ)

2(n+ 1)
g(X,Z),

for all vector fields X, Y , Z.
Using Equation (6.1) we can write

(∇Xρ)(Y, Z) =− (∇X Hesf )(Y,Z) + µ (∇Xdf ⊗ df)(Y,Z)

=−X(Hesf )(Y,Z) + g(∇∇XY∇f, Z) + g(∇Y∇f,∇XZ)

+ µ (X(df ⊗ df(Y, Z))− g(∇f,∇XY )Z(f)− g(∇f,∇XZ)Y (f))

=− g(∇X∇Y∇f, Z) + g(∇∇XY∇f, Z)

+ µ (Hesf (X,Y )g(∇f, Z) + Hesf (X,Z)g(∇f, Y )).
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We substitute this expression in (6.5) to get

− g(∇X∇Y∇f, Z) + g(∇∇XY∇f, Z)− X(τ)

2(n+ 1)
g(Y,Z) + µHesf (X,Z)g(∇f, Y )

=− g(∇Y∇X∇f, Z) + g(∇∇YX∇f, Z)− Y (τ)

2(n+ 1)
g(X,Z) + µHesf (Y,Z)g(∇f,X).

Reorganizing the terms of this expression and using that the curvature tensor is given by
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we obtain

R(X,Y, Z,∇f) =− X(τ)

2(n+ 1)
g(Y,Z) +

Y (τ)

2(n+ 1)
g(X,Z)(6.6)

+ µ (Hesf (X,Z)g(∇f, Y )−Hesf (Y,Z)g(∇f,X)).

We choose vector fields Z = ∇f and X such that g(X,∇f) = 1 to get that

0 =
Y (τ)

2(n+ 1)
− µHesf (Y,∇f)

for all Y ⊥ ∇f . Now, from Equation (6.4) we have that Y (τ) = 2(µ− 1) Hesf (Y,∇f) so

0 = −nµ+ 1

n+ 1
Hesf (Y,∇f),

if Y ⊥ ∇f . Hence, either µ = − 1
n or ∇f is an eigenvector of the Hessian operator

hesf (X) = ∇X∇f . Assume the latter, from (6.1) we have that ρ(Y,∇f) = −Hesf (Y,∇f)
and therefore

0 =
nµ+ 1

n+ 1
ρ(Y,∇f),

for Y ⊥ ∇f , showing that ∇f is also an eigenvector of the Ricci operator, unless the
parameter µ takes the value µ = − 1

n .
�

6.2 Non-isotropic locally conformally flat quasi-Einstein man-
ifolds

In this section we show that in a neighborhood of any point where ‖∇f‖ 6= 0 the underlying
manifold has the local structure of a warped product, thus proving Theorem 6.2–(ii)–(a).

Lemma 6.6 Let (M, g, f, µ) be a locally conformally flat Lorentzian quasi-Einstein man-
ifold with ‖∇f‖p 6= 0 in some point p ∈M . Then, if µ 6= − 1

n , (M, g) is a warped product
of a real interval and a space of constant sectional curvature on a neighborhood of p.
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Proof.
Since ‖∇f‖p 6= 0, ‖∇f‖ 6= 0 on a neighborhood U of p. Consider the unit vector V = ∇f

‖∇f‖
on U , which can be timelike or spacelike (we set ε = g(V, V ) = ±1). Consider a local
orthonormal frame {V = E0, E1, . . . , En+1} and set εi = g(Ei, Ei).

From Lemma 6.5 we have that ρ(Ei, V ) = Hesf (Ei, V ) = 0 for all i = 1, . . . , n + 1.
Hence from Equation (6.4) we obtain

Ei(τ) = 2‖∇f‖(1− µ)ρ(V,Ei) = 0.

We compute R(V,Ei, Ei, V ) in Equations (6.6) and (2.1) to see that

− V (τ)

2(n+ 1)‖∇f‖
εi − µHesf (Ei, Ei)ε =

τ

n(n+ 1)
εiε−

1

n
ρ(V, V )εi −

1

n
ρ(Ei, Ei)ε,

which shows that(
µ+

1

n

)
Hesf (Ei, Ei)ε =

(
− τ

n(n+ 1)
ε+

1

n
ρ(V, V ) +

1

n
λε− V (τ)

2(n+ 1)‖∇f‖

)
εi.

This shows that, when µ 6= − 1
n , the level sets of f are totally umbilical hypersurfaces.

Hence, as the normal foliations are totally geodesic (g(∇∇f∇f,Ei) = Hesf (∇f,Ei) = 0,
∀i = 1, . . . , n + 1), (M, g) decomposes locally as a twisted product (see [88]). Now, since
ρ(V,Ei) = 0 for all i = 1, . . . , n + 1, the twisted product reduces to a warped product
[53]. In conclusion (M, g) is locally a warped product (I × N, ε dt2 + ψ(t)2gN ), which is
locally conformally flat by hypothesis and hence (N, gN ) is a Riemannian or a Lorentzian
manifold of constant sectional curvature [22]. �

Remark 6.7 Note that in Riemannian signature a quasi-Einstein manifold satisfies the
hypothesis of Lemma 6.6 and analogous arguments to those given here apply. Thus one
has that locally conformally flat quasi-Einstein manifolds are either conformally equivalent
to a space form or locally isometric to a warped product of a real interval and a space of
constant sectional curvature. We refer to [38] for a different proof of this result.

6.3 Isotropic locally conformally flat quasi-Einstein mani-
folds

In order to prove Theorem 6.2–(ii)–(b), in this section we are going to study isotropic
locally conformally flat Lorentzian quasi-Einstein manifolds.

Lemma 6.8 Let (M, g, f, µ) be an isotropic locally conformally flat Lorentzian quasi-
Einstein manifold. Then, if µ 6= − 1

n , around any regular point of f , the manifold (M, g)
is locally a pp-wave.
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Proof.
Let (M, g, f, µ) be quasi-Einstein with ‖∇f‖ = 0. We will see that ∇f spans a parallel null
line field, but we start by analyzing the Ricci tensor. First we choose an appropriate basis
to work with. Set V = ∇f . Since V is a null vector, there exist orthogonal vectors S, T
satisfying g(S, S) = −g(T, T ) = 1

2 such that V = S+T . Define U = S−T , which is a null
vector such that g(U, V ) = g(S, S)− g(T, T ) = 1, and consider a basis {U, V,E1, . . . , En},
with g(Ei, Ei) = 1 for all i = 1, . . . , n. We begin the study of the Ricci tensor by noting
that, since Ric(V ) = λV by Remark 6.4, we have

ρ(V, V ) = 0, ρ(U, V ) = λ and ρ(V,Ei) = 0 ∀i = 1, . . . , n.

We compute R(U,Ei, Ej , V ) both in Equation (6.6) and in Equation (2.1) to see that

(6.7)
−U(τ)

2(n+ 1)
δij − µ Hesf (Ei, Ej) =

τ

n(n+ 1)
δij −

1

n
λ δij −

1

n
ρ(Ei, Ej).

From Equation (6.1) we get that Hesf (Ei, Ej) = λ δij − ρ(Ei, Ej) and from Remark 6.4
that U(τ) = 2(λ − µ((n + 2)λ − τ)). Hence, since µ 6= − 1

n , from Equation (6.7) we

conclude that, if i 6= j, then ρ(Ei, Ej) = 0, whereas ρ(Ei, Ei) = τ−λ
n+1 for all i = 1, . . . , n.

Now, compute the scalar curvature

τ = 2ρ(U, V ) + nρ(Ei, Ei) = 2λ+ n
τ − λ
n+ 1

,

to see that
τ = (n+ 2)λ,

so τ is constant. Moreover, since ∇τ = 0, by Remark 6.4 we have λ−µ((n+ 2)λ− τ) = 0
and consequently λ = 0 = τ . From (2.1) we compute

ρ(U,Ei) = R(U, V,Ei, V ) +
∑
j 6=i

R(U,Ej , Ei, Ej) =
n− 1

n
ρ(U,Ei).

Thus ρ(U,Ei) = 0 for i = 1, . . . , n and the only possibly nonzero term of the Ricci tensor
is ρ(U,U). Therefore the Ricci operator is two-step nilpotent and its image is totally
isotropic.

Now we are going to show that the line field D = span{V } is parallel by checking that
V is a recurrent vector field. Thus, from Equation (6.1) we compute

hesf (U) = −Ric(U) + µdf ⊗ df(U) = −ρ(U,U)U + µU,

hesf (V ) = −Ric(V ) + µdf ⊗ df(V ) = 0,

hesf (Ei) = −Ric(Ei) + µdf ⊗ df(Ei) = 0.

This shows that ∇X∇f = σ(X)∇f for the one-form σ given by σ(U) = µ − ρ(U,U),
σ(V ) = 0, σ(Ei) = 0 for all i = 1, . . . , n.
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It is now easy to see from (2.1) and the information on the Ricci tensor that

R(D⊥,D⊥, ·, ·) = 0.

Hence, by Theorem 1.16, it follows that (M, g) is a pp-wave. �

Remark 6.9 Note that although (M, g) is a pp-wave, and hence it admits a null parallel
vector field, ∇f is not in general parallel.

6.4 Locally conformally flat quasi-Einstein pp-waves

Let (M, gppw) be a pp-wave given in local coordinates as in (1.12).

As a consequence of expressions (1.14) and (1.15), a pp-wave as in (1.12) is locally
conformally flat if

(6.8) H(u, x1, . . . , xn) = a(u)

n∑
i=1

x2
i +

n∑
i=1

bi(u)xi + c(u),

for arbitrary smooth functions a, b1, . . . , bn, c. Furthermore, note that in this case the
Ricci tensor is only a function of u, ρ(∂u, ∂u) = −na(u). Recall that a pp-wave whose
defining function H is a quadratic form on the variables x1, . . . , xn is called a plane wave.
Thus, one can change variables in Equation (6.8) to see that locally conformally flat pp-
waves are a particular family of plane waves.

The following result characterizes locally conformally flat quasi-Einstein pp-waves.

Theorem 6.10 Let (M, gppw, f, µ) be a non-trivial locally conformally flat quasi-Einstein
pp-wave with gppw given as in (1.12). Then one of the following holds:

(i) µ = 0 and (M, gppw, f) is a steady gradient Ricci soliton with f a function of u
satisfying f ′′(u) = −ρ(∂u, ∂u) = na(u).

(ii) µ = − 1
n and (M, gppw) is conformally equivalent to a manifold of constant sectional

curvature c ≤ 0. Moreover, if M is three-dimensional or ‖∇f‖ = 0, it is conformally
equivalent to a flat manifold.

(iii) µ 6= 0 and µ 6= − 1
n , then the function f is given by

(6.9) f(u, v, x1, . . . , xn) = − 1

µ
log(f0(u))

with

(6.10) f ′′0 (u) = µρ(∂u, ∂u)f0(u) = −µna(u)f0(u).
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Proof.
If µ = 0 then (M, gppw, f) is a gradient Ricci soliton and the result follows from Section 2.4.

Now assume µ 6= 0. Let f(u, v, x1, . . . , xn) be an arbitrary function. The gradient of f
with respect to (1.12) is given by ∇f = (∂vf, ∂uf −H∂vf, ∂x1f, . . . , ∂xnf) and thus (6.1)
reduces to the following equations:

(6.11)
1

2

n∑
i=1

∂xiH ∂xif + ∂2
uuf −

1

2
∂uH ∂vf + ρ(∂u, ∂u)− µ(∂uf)2 = λH,

∂2
uxif −

1

2
∂xiH ∂vf − µ∂xif∂uf = 0, 1 ≤ i ≤ n,(6.12)

∂2
xixif − µ(∂xif)2 = λ, 1 ≤ i ≤ n,(6.13)

∂2
uvf − µ∂uf ∂vf = λ,(6.14)

∂2
vvf − µ(∂vf)2 = 0,(6.15)

∂2
vxif − µ∂xif ∂vf = 0, 1 ≤ i ≤ n,(6.16)

∂2
xixjf − µ∂xif ∂xjf = 0, 1 ≤ i 6= j ≤ n.(6.17)

First we are going to show that ∂vf = 0 and that λ = 0. We argue as follows.
Differentiate (6.14) with respect to v to see that ∂3

uvv f − µ∂2
uvf ∂vf − µ∂uf∂

2
vvf = 0.

Differentiate (6.15) with respect to u to see that ∂3
uvvf = 2µ∂vf∂

2
uvf and substitute the

third order term to get that µ∂vf∂
2
uvf − µ∂uf∂2

vvf = 0. Now use (6.14) and (6.15) to
reduce higher order terms to first order terms and get λµ∂vf = 0. Since µ 6= 0, either
λ = 0 or ∂vf = 0. If ∂vf = 0 then, as a consequence of (6.14), we also have that λ = 0.

Now if µ = − 1
n , then it follows that (M, gppw) is conformally equivalent to an Ein-

stein manifold and, since (M, gppw) is locally conformally flat, it is conformally equivalent
to a manifold of constant sectional curvature. Furthermore since τ = λ = 0, we ob-
tain from Equation (6.3) that ∆f = −1

n ‖∇f‖
2. Hence the conformal factor reduces to

1
n

(
1
n − 1

)
‖∇f‖2, which is zero whenever n = 1 or ‖∇f‖ = 0, or otherwise positive. This

proves (ii).
Next assume µ 6= − 1

n and λ = 0. Differentiate (6.12) with respect to xi to get

(6.18) ∂3
uxixif −

1

2

(
∂2
xixiH ∂vf + ∂xiH ∂2

vxif
)
− µ

(
∂2
xixi f∂uf + ∂xif ∂

2
uxif

)
= 0.

Differentiate (6.13) with respect to u to see that ∂3
uxixif = 2µ∂xif ∂

2
uxif . Simplify (6.18)

using (6.12), (6.13) and (6.16) to obtain

1

2
∂2
xixiH ∂vf = −λµ∂uf = 0.

Since ∂2
xixiH 6= 0 for some i (otherwise the manifold is flat), we conclude that ∂vf = 0.
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From equations ∂2
xixif − µ(∂xif)2 = 0 we get that

(6.19) f(u, v, x1, . . . , xn) = − 1

µ
log

(
f0(u) +

n∑
i=1

κi xi

)
,

for some constants κi and some function f0(u). Replace H by the expression in (6.8) and
simplify to see that equations (6.11)–(6.17) reduce to the condition

µρ(∂u, ∂u)

(
f0(u) +

n∑
i=1

κi xi

)
= f ′′0 (u) + a(u)

n∑
i=1

κi xi +
1

2

n∑
i=1

κi bi(u).

Since ρ(∂u, ∂u) = −na(u), we may differentiate with respect to xi to see that

−nµκi a(u) = κi a(u).

Since a(u) 6= 0 (otherwise the manifold is flat) and µ 6= − 1
n , we conclude that κi = 0 for

all i = 1, . . . , n and the result follows. �

Proof of Theorem 6.2. The result follows from Lemmas 6.6, 6.8 and 6.10.

Remark 6.11 Let (M, g, f, µ) be a quasi-Einstein pp-wave with f given by (6.19). Then

∇f =

0,
−f ′0(u)

µ

(
f0(u) +

n∑
i=1
κi xi

) , −κ1

µ

(
f0(u) +

n∑
i=1
κi xi

) , . . . , −κn

µ

(
f0(u) +

n∑
i=1
κi xi

)


and hence ‖∇f‖2 =
n∑
i=1

κ2
i

µ2

(
f0(u) +

n∑
i=1
κi xi

)2 . Now if µ 6= 0 and µ 6= − 1
n then κi = 0 for

all i = 1, . . . , n and (M, g, f, µ) is isotropic.

Remark 6.12 It was shown in Section 2.4 that a pp-wave (1.12) is a gradient Ricci
soliton (i.e., a quasi-Einstein metric with µ = 0) if and only if there exists a function

f(u, v, x1, . . . , xn) = f0(u) +
n∑
i=1
κi xi satisfying f ′′0 (u) = −ρ(∂u, ∂u)− 1

2

n∑
i=1
κi ∂xiH.

6.4.1 Quasi-Einstein plane waves

As an immediate application of Lemma 6.10 we have the following result:

Theorem 6.13 Every plane wave is locally an isotropic quasi-Einstein manifold.
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Proof.
For the function given in (6.9) we have that ‖∇f‖ = 0 (see Remark 6.11). Moreover, the
necessary and sufficient condition given in (6.10) in Theorem 6.10 becomes

(6.20) f ′′0 (u) = µρ(∂u, ∂u)f0(u).

Now, since the Ricci tensor of a plane wave (1.18) satisfies ρ(∂u, ∂u) = −
n∑
i=1
aii(u), one can

always guarantee the existence of positive local solutions f0(u) of (6.20). �

Remark 6.14 Note that no function f(u, v, x1, . . . , xn) = − 1
µ log

(
f0(u) +

n∑
i=1
κi xi

)
can

be globally defined on Rn+2 unless κi = 0 for all i = 1, . . . , n. Hence, in search-
ing for global solutions of (6.1) within the class of plane waves one must assume that

f(u, v, x1, . . . , xn) = − 1

µ
log (f0(u)) and look for positive solutions of (6.20), which can be

approached by standard Sturm-Liouville arguments.

Theorem 6.15 Any plane wave whose Ricci tensor is nowhere zero results in an isotropic
quasi-Einstein manifold for appropriate f and µ.

Proof.
Let f0 be a solution of (6.20) satisfying the initial conditions f0(0) = 1, f ′0(0) = 0 and
choose µ such that µρ(∂u, ∂u) > 0. Then f0 is positive in a neighborhood of zero and,
since µρ(∂u, ∂u) > 0, f ′′0 remains positive in such interval. Hence f0 has a minimum at
zero and the assumption µρ(∂u, ∂u) > 0 guarantees that no other extremum of f0 may
occur. Therefore f0 remains positive for all time. �

Remark 6.16 Any plane wave (1.18) results in a gradient Ricci soliton (i.e., quasi-
Einstein with µ = 0) just considering a function f(u, v, x1, . . . , xn) = f0(u) satisfying
f ′′0 (u) = −ρ(∂u, ∂u) as shown in Theorem 3.1.

Remark 6.17 For the special choice of µ = − 1
n , Theorem 6.13 shows that any plane wave

is a locally conformally Einstein manifold. Furthermore, since τ = ‖∇f‖ = 0 and λ = 0,
we get from (6.3) that ∆f = 0 as well, so the conformal factor in (6.2) vanishes and we
get that a plane wave is indeed locally conformally equivalent to a Ricci flat manifold.

6.4.2 Special classes of quasi-Einstein plane waves

Recall that indecomposable Lorentzian symmetric spaces are either irreducible or the so-
called Cahen-Wallach symmetric spaces which are given by a plane wave metric (1.18)

with H(u, x1, . . . , xn) =
n∑
i=1
ai x

2
i where ai are non-zero real numbers for all i = 1, . . . , n. It
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was shown in [6] that Cahen-Wallach symmetric spaces are steady gradient Ricci solitons.

Moreover, since the Ricci tensor satisfies ρ(∂u, ∂u) = −
n∑
i=1
ai, one has that

Theorem 6.18 Every Cahen-Wallach symmetric space is an isotropic quasi-Einstein man-
ifold.

Remark 6.19 Classical Sturm-Liouville theory investigates the existence of zeroes for sec-
ond order ordinary differential equations of this form. It is well known that any nontrivial
(i.e., not identically zero) solution of a differential equation of the form y′′+ q(x)y = 0 has
at most one zero if q(x) < 0.

On the other hand any nontrivial solution of y′′+ q(x)y = 0 has infinitely many zeroes
if q(x) > 0 for all x > α and ∫ ∞

α
q(x)dx = +∞.

See, for example the discussion in [93].

Remark 6.20 Obstructions to the existence of positive solutions of the differential equa-
tion f ′′0 (u) = −ρ(∂u, ∂u) f0(u) easily follow by Sturm-Liouville arguments [92]. In fact, if∫∞

1 ρ(∂u, ∂u) = ∞, then any solution of f ′′0 (u) = −ρ(∂u, ∂u) f0(u) has an infinite number
of zeros.

Recall that the only non-zero component of the Ricci tensor of a two-symmetric

Lorentzian manifold is given by ρ(∂u, ∂u) = −
n∑
i=1

(αii u+ βii), which shows that the Ricci

tensor changes sign. Hence any two-symmetric Lorentzian manifold is locally but not
globally quasi-Einstein spaces.

Also, as an application of the results in the previous section we get that

Theorem 6.21 Every Lorentzian space admitting a degenerate homogeneous structure of
linear type is a quasi-Einstein manifold.

Remark 6.22 Meessen [72] proved that the underlying geometry of a singular homoge-
neous plane wave is that of a connected homogeneous Lorentzian space that admits a
degenerate T1⊕T3-structure and, conversely, any Lorentzian manifold admitting a degen-
erate homogeneous T1 ⊕ T3-structure is a singular homogeneous plane wave. Therefore,
Theorem 6.21 extends to the broader class T1 ⊕ T3.



Open problems II

The geometry of general Ricci solitons and quasi-Einstein metrics is still far from being
completely understood. There are many open problems, but we mention just a few of
them which are closely related to our work:

• Invariant Ricci solitons on four-dimensional homogeneous spaces have been recently
investigated in [28]. Although some progress has been made, the geometric structure
of Ricci solitons in [28] needs to be elucidated.

• Algebraic Ricci solitons, which involve the underlying Lie group structure, have
a strong connection with Ricci solitons and Einstein metrics, as shown in [70].
Lorentzian algebraic Ricci solitons have been recently investigated in [79], showing
the existence of steady algebraic Ricci solitons. Moreover Lorentzian Ricci solitons
need not be algebraic Ricci solitons [8], a question that still remains open in the
Riemannian setting.

• The existence of Lorentzian manifolds admitting different kinds of Ricci solitons with
a background pp-wave metric suggests that this could be the underlying structure
of Lorentzian manifolds admitting homothetic vector fields. This is indeed the case
in many situations [94] but the general problem remains open.

• A rigidity result for quasi-Einstein Riemannian metrics was proven in [37] under the
conditions of harmonic Weyl tensor and zero radial Weyl curvature, showing that
they are locally warped products. In view of the results in Chapter 6, one could
expect pp-waves to play an important role in Lorentzian signature whenever the
level sets of the potential function f become degenerate.

97
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for a twisted product to be a warped product, Manuscripta Math. 106 (2001), 213–
217.

[54] P.M. Gadea and J.A. Oubiña, Reductive homogeneous pseudo-Riemannian mani-
folds, Monatsh. Math. 124 (1997), 17–34.

[55] A.S. Galaev, Lorentzian manifolds with recurrent curvature tensor, arXiv:
1011.6541v2.



Bibliography 103
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