Bach-flat manifolds and conformally Einstein structures

Autores

Ixchel Dzohara Gutiérrez Rodríguez
Universidade de Santiago de Compostela

Resumo

Einstein manifolds, being critical for the Hilbert-Einstein functional, are central in Riemannian Geometry and Mathematical Physics. A strategy to construct Einstein metrics consists on deforming a given metric by a conformal factor so that the resulting metric is Einstein. In the present Thesis we follow this approach with special emphasis in dimension four. In this work we classify four-dimensional homogeneous conformally Einstein manifolds and provide a large family of strictly Bach-flat gradient Ricci solitons. We show the existence of Bach-flat structures given as deformations of Riemannian extensions by means of the Cauchy-Kovalevskaya theorem.

Cuberta para Bach-flat manifolds and conformally Einstein structures
Publicado
September 17, 2020
Categorías
Creative Commons License
Esta obra está baixo licenza internacional Creative Commons Recoñecemento-NonComercial-SenObrasDerivadas 4.0.

Detalles sobre este monográfico

Identificador para Xebook (99)
DX1101341044
Fecha de anuncio para el sector (10)
2020-09-17
Calendario de Hijri