Resultados de descomposición asociados á ecuación de Möbius

Autores

Manuel Fernández López
##semicolon## Riemann, Variedades de, Osserman, Variacións de

Resumo

In analysis, mostly the existence of a nontrivial solution to a differential equation on a certain domain is argued. But in geometry, one can also argue the existence of a manifold structure for a differential equation to possess a nontrivial solution. This may be considered as an analytic characterization (or representation) of a manifold structure by a differential equation if this manifold structure serves as a unique domain structure for this differential equation to possess a nontrivial solution in a certain class of manifolds. An example to the previous program is Obata’s Theorem, which completely characterizes Euclidean spheres among compact Einstein manifolds by the existence of a solution of the differential equation Δφ −nkφ, where φ is a real-valued function on the manifold M= dimand denotes the reduced scalar curvature

Cuberta para Resultados de descomposición asociados á ecuación de Möbius
Publicado
October 14, 2002

Detalles sobre este monográfico

ISBN-10 (02)
84-89390-13-4
Propietario (01)
DXT096
Fecha de primera publicación (11)
2002-10-14
Calendario de Hijri