Campos de vectores harmónicos-Killing

Autores

María Trinidad Pérez López
##semicolon## Riemann, Xeometría de, Aplicacións harmónicas

Resumo

En este trabajo consideramos la harmonicidad del grupo 1-paramétrico local de difeomorfismo asociado a un campo de vectores en una variedad (pseudo) Riemanniana lo que da lugar a las definiciones de campo de vectores harmónico-Killing y 1-harmónico-Killing. Para estos campos de vectores obtenemos resultados, cracterizaciones y ejemplos. Encontramos también la relación existente entre estos nuevos campos de vectores y los ya clásicos campos de vectores Killing, afines, conformes y proyectivos. Por otra parte damos respuesta a una conjectura formulada por K.Yano y T.Nagrano viendo que el flujo de los campos de Jacobi a lo largo de la identidad no está formado por aplicaciones harmónicas pero si por aplicaciones 1-harmónicas (es decir, tan solo la parte lineal del campo de tensión se anula). Estudiamos los campos de vectores harmónicos-Killing en variedades Kahler probando que en el caso compacto de vectores holomorfos. En estas variedades estudiamos también los campos de vectores para los cuales el grupo 1-paramétrico local de difeomorfismo está formado por aplicaciones pluriharmónicas (1-Pluriharmónicas) a los que le llamamos campos de vectores pluriharmónicos (resp. 1-pluriharmónicos) y obtenemos para los mismos caracterizaciones, propiedades y ejemplos. Utilizando el formalismo Clifford junto con la definición de aplicación alpha-pluriharmónica, siendo alpha una 2-forma harmónica, extendemos la definición de campo de vectores pluriharmónico a variedades (pseudo)-Riemannianas no necesariamente Kahler. En el caso Kahler compacto probamos que todas las definiciones coinciden. Por último abrimos una nueva linea de investigación en el caso (pseudo)-Riemanniano pués son muchos los resultados de variedades Riemannianas que no se pueden aplicar directamente al caso pseudo-Riemaniano.

Cuberta para Campos de vectores harmónicos-Killing
Publicado
October 14, 2003

Detalles sobre este monográfico

Propietario (01)
DXT102
Identificador para Xebook (99)
DX1101061544
Fecha de primera publicación (11)
2003-10-14